WorldWideScience

Sample records for immune defense mechanism

  1. Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium.

    Science.gov (United States)

    Pukkila-Worley, Read; Ausubel, Frederick M

    2012-02-01

    Intestinal epithelial cells provide an essential line of defense for Caernohabditis elegans against ingested pathogens. Because nematodes consume microorganisms as their food source, there has presumably been selection pressure to evolve and maintain immune defense mechanisms within the intestinal epithelium. Here we review recent advances that further define the immune signaling network within these cells and suggest mechanisms used by the nematode to monitor for infection. In reviewing studies of pathogenesis that use this simple model system, we hope to illustrate some of the basic principles of epithelial immunity that may also be of relevance in higher order hosts. Copyright © 2012. Published by Elsevier Ltd.

  2. Defense Mechanisms: A Bibliography.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, Bonnie C.

    This bibliography includes studies of defense mechanisms, in general, and studies of multiple mechanisms. Defense mechanisms, briefly and simply defined, are the unconscious ego defendants against unpleasure, threat, or anxiety. Sigmund Freud deserves the clinical credit for studying many mechanisms and introducing them in professional literature.…

  3. Effector-triggered immunity: from pathogen perception to robust defense.

    Science.gov (United States)

    Cui, Haitao; Tsuda, Kenichi; Parker, Jane E

    2015-01-01

    In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.

  4. Immune defense in leaf-cutting ants

    DEFF Research Database (Denmark)

    Armitage, Sophie A O; Broch, Jens F; Marín, Hermogenes Fernández

    2011-01-01

    To ameliorate the impact of disease, social insects combine individual innate immune defenses with collective social defenses. This implies that there are different levels of selection acting on investment in immunity, each with their own trade-offs. We present the results of a cross......-fostering experiment designed to address the influences of genotype and social rearing environment upon individual and social immune defenses. We used a multiply mating leaf-cutting ant, enabling us to test for patriline effects within a colony, as well as cross-colony matriline effects. The worker's father influenced...... both individual innate immunity (constitutive antibacterial activity) and the size of the metapleural gland, which secretes antimicrobial compounds and functions in individual and social defense, indicating multiple mating could have important consequences for both defense types. However, the primarily...

  5. Immune defense and host life history.

    Science.gov (United States)

    Zuk, Marlene; Stoehr, Andrew M

    2002-10-01

    Recent interest has focused on immune response in an evolutionary context, with particular attention to disease resistance as a life-history trait, subject to trade-offs against other traits such as reproductive effort. Immune defense has several characteristics that complicate this approach, however; for example, because of the risk of autoimmunity, optimal immune defense is not necessarily maximum immune defense. Two important types of cost associated with immunity in the context of life history are resource costs, those related to the allocation of essential but limited resources, such as energy or nutrients, and option costs, those paid not in the currency of resources but in functional or structural components of the organism. Resource and option costs are likely to apply to different aspects of resistance. Recent investigations into possible trade-offs between reproductive effort, particularly sexual displays, and immunity have suggested interesting functional links between the two. Although all organisms balance the costs of immune defense against the requirements of reproduction, this balance works out differently for males than it does for females, creating sex differences in immune response that in turn are related to ecological factors such as the mating system. We conclude that immune response is indeed costly and that future work would do well to include invertebrates, which have sometimes been neglected in studies of the ecology of immune defense.

  6. Pathogen Pressure Puts Immune Defense into Perspective

    NARCIS (Netherlands)

    Horrocks, Nicholas P. C.; Matson, Kevin D.; Tieleman, B. Irene

    2011-01-01

    The extent to which organisms can protect themselves from disease depends on both the immune defenses they maintain and the pathogens they face. At the same time, immune systems are shaped by the antigens they encounter, both over ecological and evolutionary time. Ecological immunologists often

  7. Filoviral Immune Evasion Mechanisms

    Directory of Open Access Journals (Sweden)

    Christopher F. Basler

    2011-09-01

    Full Text Available The Filoviridae family of viruses, which includes the genera Ebolavirus (EBOV and Marburgvirus (MARV, causes severe and often times lethal hemorrhagic fever in humans. Filoviral infections are associated with ineffective innate antiviral responses as a result of virally encoded immune antagonists, which render the host incapable of mounting effective innate or adaptive immune responses. The Type I interferon (IFN response is critical for establishing an antiviral state in the host cell and subsequent activation of the adaptive immune responses. Several filoviral encoded components target Type I IFN responses, and this innate immune suppression is important for viral replication and pathogenesis. For example, EBOV VP35 inhibits the phosphorylation of IRF-3/7 by the TBK-1/IKKε kinases in addition to sequestering viral RNA from detection by RIG-I like receptors. MARV VP40 inhibits STAT1/2 phosphorylation by inhibiting the JAK family kinases. EBOV VP24 inhibits nuclear translocation of activated STAT1 by karyopherin-α. The examples also represent distinct mechanisms utilized by filoviral proteins in order to counter immune responses, which results in limited IFN-α/β production and downstream signaling.

  8. Contrasting invertebrate immune defense behaviors caused by a single gene, the Caenorhabditis elegans neuropeptide receptor gene npr-1

    NARCIS (Netherlands)

    Nakad, Rania; Snoek, Basten; Yang, Wentao; Ellendt, S.; Schneider, Franziska; Mohr, T.G.; Rösingh, Lone; Masche, Anna C.; Rosenstiel, P.C.; Dierking, K.; Kammenga, Jan E.; Schulenburg, Hinrich

    2016-01-01

    Background: The invertebrate immune system comprises physiological mechanisms, physical barriers and also behavioral responses. It is generally related to the vertebrate innate immune system and widely believed to provide
    nonspecific defense against pathogens, whereby the response to different

  9. Contrasting invertebrate immune defense behaviors caused by a single gene, the Caenorhabditis elegans neuropeptide receptor gene npr-1

    NARCIS (Netherlands)

    Nakad, Rania; Snoek, L.B.; Yang, Wentao; Ellendt, S.; Schneider, Franziska; Mohr, T.G.; Rösingh, Lone; Masche, Anna C.; Rosenstiel, P.C.; Dierking, K.; Kammenga, J.E.; Schulenburg, Hinrich

    2016-01-01

    Background The invertebrate immune system comprises physiological mechanisms, physical barriers and also behavioral responses. It is generally related to the vertebrate innate immune system and widely believed to provide nonspecific defense against pathogens, whereby the response to different

  10. Contrasting invertebrate immune defense behaviors caused by a single gene, the Caenorhabditis elegans neuropeptide receptor gene npr-1

    NARCIS (Netherlands)

    Nakad, Rania; Snoek, L Basten; Yang, Wentao; Ellendt, Sunna; Schneider, Franziska; Mohr, Timm G; Rösingh, Lone; Masche, Anna C; Rosenstiel, Philip C; Dierking, Katja; Kammenga, Jan E; Schulenburg, Hinrich

    2016-01-01

    BACKGROUND: The invertebrate immune system comprises physiological mechanisms, physical barriers and also behavioral responses. It is generally related to the vertebrate innate immune system and widely believed to provide nonspecific defense against pathogens, whereby the response to different

  11. Immunity, suicide or both? Ecological determinants for the combined evolution of anti-pathogen defense systems.

    Science.gov (United States)

    Iranzo, Jaime; Lobkovsky, Alexander E; Wolf, Yuri I; Koonin, Eugene V

    2015-03-13

    Parasite-host arms race is one of the key factors in the evolution of life. Most cellular life forms, in particular prokaryotes, possess diverse forms of defense against pathogens including innate immunity, adaptive immunity and programmed cell death (altruistic suicide). Coevolution of these different but interacting defense strategies yields complex evolutionary regimes. We develop and extensively analyze a computational model of coevolution of different defense strategies to show that suicide as a defense mechanism can evolve only in structured populations and when the attainable degree of immunity against pathogens is limited. The general principle of defense evolution seems to be that hosts do not evolve two costly defense mechanisms when one is sufficient. Thus, the evolutionary interplay of innate immunity, adaptive immunity and suicide, leads to an equilibrium state where the combination of all three defense strategies is limited to a distinct, small region of the parameter space. The three strategies can stably coexist only if none of them are highly effective. Coupled adaptive immunity-suicide systems, the existence of which is implied by the colocalization of genes for the two types of defense in prokaryotic genomes, can evolve either when immunity-associated suicide is more efficacious than other suicide systems or when adaptive immunity functionally depends on the associated suicide system. Computational modeling reveals a broad range of outcomes of coevolution of anti-pathogen defense strategies depending on the relative efficacy of different mechanisms and population structure. Some of the predictions of the model appear compatible with recent experimental evolution results and call for additional experiments.

  12. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    2011-06-01

    Full Text Available Candida albicans yeast cells are found in the intestine of most humans, yet this opportunist can invade host tissues and cause life-threatening infections in susceptible individuals. To better understand the host factors that underlie susceptibility to candidiasis, we developed a new model to study antifungal innate immunity. We demonstrate that the yeast form of C. albicans establishes an intestinal infection in Caenorhabditis elegans, whereas heat-killed yeast are avirulent. Genome-wide, transcription-profiling analysis of C. elegans infected with C. albicans yeast showed that exposure to C. albicans stimulated a rapid host response involving 313 genes (124 upregulated and 189 downregulated, ~1.6% of the genome many of which encode antimicrobial, secreted or detoxification proteins. Interestingly, the host genes affected by C. albicans exposure overlapped only to a small extent with the distinct transcriptional responses to the pathogenic bacteria Pseudomonas aeruginosa or Staphylococcus aureus, indicating that there is a high degree of immune specificity toward different bacterial species and C. albicans. Furthermore, genes induced by P. aeruginosa and S. aureus were strongly over-represented among the genes downregulated during C. albicans infection, suggesting that in response to fungal pathogens, nematodes selectively repress the transcription of antibacterial immune effectors. A similar phenomenon is well known in the plant immune response, but has not been described previously in metazoans. Finally, 56% of the genes induced by live C. albicans were also upregulated by heat-killed yeast. These data suggest that a large part of the transcriptional response to C. albicans is mediated through "pattern recognition," an ancient immune surveillance mechanism able to detect conserved microbial molecules (so-called pathogen-associated molecular patterns or PAMPs. This study provides new information on the evolution and regulation of the innate

  13. Evasion of host immune defenses by human papillomavirus.

    Science.gov (United States)

    Westrich, Joseph A; Warren, Cody J; Pyeon, Dohun

    2017-03-02

    A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Personality and innate immune defenses in a wild bird

    NARCIS (Netherlands)

    Jacques-Hamilton, Rowan; Hall, Michelle L.; Buttemer, William A.; Matson, Kevin D.; Gonçalves da Silva, Anders; Mulder, Raoul A.; Peters, Anne

    2017-01-01

    We tested the two main evolutionary hypotheses for an association between immunity and personality. The risk-of-parasitism hypothesis predicts that more proactive (bold, exploratory, risk-taking) individuals have more vigorous immune defenses because of increased risk of parasite exposure. In

  15. Immune Mechanisms in Myelodysplastic Syndrome

    Directory of Open Access Journals (Sweden)

    Andreas Glenthøj

    2016-06-01

    Full Text Available Myelodysplastic syndrome (MDS is a spectrum of diseases, characterized by debilitating cytopenias and a propensity of developing acute myeloid leukemia. Comprehensive sequencing efforts have revealed a range of mutations characteristic, but not specific, of MDS. Epidemiologically, autoimmune diseases are common in patients with MDS, fueling hypotheses of common etiological mechanisms. Both innate and adaptive immune pathways are overly active in the hematopoietic niche of MDS. Although supportive care, growth factors, and hypomethylating agents are the mainstay of MDS treatment, some patients—especially younger low-risk patients with HLA-DR15 tissue type—demonstrate impressive response rates after immunosuppressive therapy. This is in contrast to higher-risk MDS patients, where several immune activating treatments, such as immune checkpoint inhibitors, are in the pipeline. Thus, the dual role of immune mechanisms in MDS is challenging, and rigorous translational studies are needed to establish the value of immune manipulation as a treatment of MDS.

  16. Immune Mechanisms in Myelodysplastic Syndrome

    DEFF Research Database (Denmark)

    Glenthøj, Andreas; Ørskov, Andreas Due; Hansen, Jakob Werner

    2016-01-01

    diseases are common in patients with MDS, fueling hypotheses of common etiological mechanisms. Both innate and adaptive immune pathways are overly active in the hematopoietic niche of MDS. Although supportive care, growth factors, and hypomethylating agents are the mainstay of MDS treatment, some patients......-especially younger low-risk patients with HLA-DR15 tissue type-demonstrate impressive response rates after immunosuppressive therapy. This is in contrast to higher-risk MDS patients, where several immune activating treatments, such as immune checkpoint inhibitors, are in the pipeline. Thus, the dual role of immune...... mechanisms in MDS is challenging, and rigorous translational studies are needed to establish the value of immune manipulation as a treatment of MDS....

  17. Natural selection on immune defense: A field experiment.

    Science.gov (United States)

    Langeloh, Laura; Behrmann-Godel, Jasminca; Seppälä, Otto

    2017-02-01

    Predicting the evolution of phenotypic traits requires an understanding of natural selection on them. Despite its indispensability in the fight against parasites, selection on host immune defense has remained understudied. Theory predicts immune traits to be under stabilizing selection due to associated trade-offs with other fitness-related traits. Empirical studies, however, report mainly positive directional selection. This discrepancy could be caused by low phenotypic variation in the examined individuals and/or variation in host resource level that confounds trade-offs in empirical studies. In a field experiment where we maintained Lymnaea stagnalis snails individually in cages in a lake, we investigated phenotypic selection on two immune defense traits, phenoloxidase (PO)-like activity and antibacterial activity, in hemolymph. We used a diverse laboratory population and manipulated snail resource level by limiting their food supply. For six weeks, we followed immune activity, growth, and two fitness components, survival and fecundity of snails. We found that PO-like activity and growth were under stabilizing selection, while antibacterial activity was under positive directional selection. Selection on immune traits was mainly driven by variation in survival. The form of selection on immune defense apparently depends on the particular trait, possibly due to its importance for countering the present parasite community. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  18. Ultraviolet Radiations: Skin Defense-Damage Mechanism.

    Science.gov (United States)

    Mohania, Dheeraj; Chandel, Shikha; Kumar, Parveen; Verma, Vivek; Digvijay, Kumar; Tripathi, Deepika; Choudhury, Khushboo; Mitten, Sandeep Kumar; Shah, Dilip

    2017-01-01

    UV-radiations are the invisible part of light spectra having a wavelength between visible rays and X-rays. Based on wavelength, UV rays are subdivided into UV-A (320-400 nm), UV-B (280-320 nm) and UV-C (200-280 nm). Ultraviolet rays can have both harmful and beneficial effects. UV-C has the property of ionization thus acting as a strong mutagen, which can cause immune-mediated disease and cancer in adverse cases. Numbers of genetic factors have been identified in human involved in inducing skin cancer from UV-radiations. Certain heredity diseases have been found susceptible to UV-induced skin cancer. UV radiations activate the cutaneous immune system, which led to an inflammatory response by different mechanisms. The first line of defense mechanism against UV radiation is melanin (an epidermal pigment), and UV absorbing pigment of skin, which dissipate UV radiation as heat. Cell surface death receptor (e.g. Fas) of keratinocytes responds to UV-induced injury and elicits apoptosis to avoid malignant transformation. In addition to the formation of photo-dimers in the genome, UV also can induce mutation by generating ROS and nucleotides are highly susceptible to these free radical injuries. Melanocortin 1 receptor (MC1R) has been known to be implicated in different UV-induced damages such as pigmentation, adaptive tanning, and skin cancer. UV-B induces the formation of pre-vitamin D3 in the epidermal layer of skin. UV-induced tans act as a photoprotection by providing a sun protection factor (SPF) of 3-4 and epidermal hyperplasia. There is a need to prevent the harmful effects and harness the useful effects of UV radiations.

  19. Lysozyme's lectin-like characteristics facilitates its immune defense function

    KAUST Repository

    Zhang, Ruiyan

    2017-06-06

    Interactions between human lysozyme (HL) and the lipopolysaccharide (LPS) of Klebsiella pneumoniae O1, a causative agent of lung infection, were identified by surface plasmon resonance. To characterize the molecular mechanism of this interaction, HL binding to synthetic disaccharides and tetrasaccharides representing one and two repeating units, respectively, of the O-chain of this LPS were studied. pH-dependent structural rearrangements of HL after interaction with the disaccharide were observed through nuclear magnetic resonance. The crystal structure of the HL-tetrasaccharide complex revealed carbohydrate chain packing into the A, B, C, and D binding sites of HL, which primarily occurred through residue-specific, direct or water-mediated hydrogen bonds and hydrophobic contacts. Overall, these results support a crucial role of the Glu35/Asp53/Trp63/Asp102 residues in HL binding to the tetrasaccharide. These observations suggest an unknown glycan-guided mechanism that underlies recognition of the bacterial cell wall by lysozyme and may complement the HL immune defense function.

  20. Lysozyme's lectin-like characteristics facilitates its immune defense function

    KAUST Repository

    Zhang, Ruiyan; Wu, Lisha; Eckert, Thomas; Burg-Roderfeld, Monika; Rojas-Macias, Miguel A.; Lü tteke, Thomas; Krylov, Vadim B.; Argunov, Dmitry A.; Datta, Aritreyee; Markart, Philipp; Guenther, Andreas; Norden, Bengt; Schauer, Roland; Bhunia, Anirban; Enani, Mushira Abdelaziz; Billeter, Martin; Scheidig, Axel J.; Nifantiev, Nikolay E.; Siebert, Hans-Christian

    2017-01-01

    Interactions between human lysozyme (HL) and the lipopolysaccharide (LPS) of Klebsiella pneumoniae O1, a causative agent of lung infection, were identified by surface plasmon resonance. To characterize the molecular mechanism of this interaction, HL binding to synthetic disaccharides and tetrasaccharides representing one and two repeating units, respectively, of the O-chain of this LPS were studied. pH-dependent structural rearrangements of HL after interaction with the disaccharide were observed through nuclear magnetic resonance. The crystal structure of the HL-tetrasaccharide complex revealed carbohydrate chain packing into the A, B, C, and D binding sites of HL, which primarily occurred through residue-specific, direct or water-mediated hydrogen bonds and hydrophobic contacts. Overall, these results support a crucial role of the Glu35/Asp53/Trp63/Asp102 residues in HL binding to the tetrasaccharide. These observations suggest an unknown glycan-guided mechanism that underlies recognition of the bacterial cell wall by lysozyme and may complement the HL immune defense function.

  1. Antiviral Defense Mechanisms in Honey Bees

    Science.gov (United States)

    Brutscher, Laura M.; Daughenbaugh, Katie F.; Flenniken, Michelle L.

    2015-01-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation. PMID:26273564

  2. DETERMINATION OF DEFENSE MECHANISM IN Phaseolus ...

    African Journals Online (AJOL)

    Administrator

    Field studies were conducted to determine the role of defense mechanism in various parameters associated with plant protection subjected to UV-B radiation in Phaseolus trilobus Ait. commonly used as green manure and fodder. Spectrophotometric analysis showed that UV-B radiation decreases the chlorophyll content ...

  3. Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways.

    Science.gov (United States)

    Yuen, Grace J; Ausubel, Frederick M

    2018-12-31

    The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection.

  4. Genetic constraints and sexual dimorphism in immune defense

    DEFF Research Database (Denmark)

    Rolff, Jens; Armitage, Sophie Alice Octavia; Coltman, David W.

    2005-01-01

    The absence of continued evolutionary change despite the presence of genetic variation and directional selection is very common. Genetic correlations between traits can reduce the evolvability of traits. One intriguing example might be found in a sexual conflict over sexually dimorphic traits......: a common genetic architecture constrains the response to selection on a trait subjected to sexually asymmetric selection pressures. Here we show that males and females of the mealworm beetle Tenebrio molitor differ in the quantitative genetic architecture of four traits related to immune defense...

  5. Molecular basis of Trypanosoma cruzi and Leishmania interaction with their host(s): exploitation of immune and defense mechanisms by the parasite leading to persistence and chronicity, features reminiscent of immune system evasion strategies in cancer diseases.

    Science.gov (United States)

    Ouaissi, Ali; Ouaissi, Mehdi

    2005-01-01

    A number of features occurring during host-parasite interactions in Chagas disease caused by the protozoan parasite, Trypanosoma cruzi, and Leishmaniasis, caused by a group of kinetoplastid protozoan parasites are reminiscent of those observed in cancer diseases. In fact,although the cancer is not a single disease, and that T.cruzi and Leishmania are sophisticated eukaryotic parasites presenting a high level of genotypic variability the growth of the parasites in their host and that of cancer cells share at least one common feature, that is their mutual capacity for rapid cell division. Surprisingly, the parasitic diseases and cancers share some immune evasion strategies. Consideration of these immunological alterations must be added to the evaluation of the pathogenic processes. The molecular and functional characterization of virulence factors and the study of their effect on the arms of the immune system have greatly improved understanding of the regulation of immune effectors functions. The purpose of this review is to analyze some of the current data related to the regulatory components or processes originating from the parasite that control or interfere with host cell physiology. Attempts are also made to delineate some similarities between the immune evasion strategies that parasites and tumors employ. The elucidation of the mode of action of parasite virulence factors toward the host cell allow not only provide us with a more comprehensive view of the host-parasite relationships but may also represent a step forward in efforts aimed to identify new target molecules for therapeutic intervention.

  6. Potential Role of Probiotics in Mechanism of Intestinal Immunity

    Directory of Open Access Journals (Sweden)

    Imran Rashid Rajput and Wei Fen Li*

    2012-06-01

    Full Text Available Probiotics are nonpathogenic bacteria exert a constructive influence on health or physiology of the host. Effect of probiotics in the intestinal defense against variety of diseases is well known. The probiotics are involved in the mechanism of intestinal defense, support as antagonist against pathogens, improve intestinal epithelial layer and boost the innate as well as adaptive immunity. However these responses are also exerted by intestinal components. The intestinal components as well as probiotics play a reciprocal role to enhance the immune response of the individual. The possibilities of mechanism of action include the stimulation of epithelial cells, activation of dendritic cells via toll-like receptors (TLRs, conversely produce cytokines. These observations reviewed together advocate that specific immunomodulatory properties of probiotic bacteria should be focusing on mechanism of action via antigen presenting cells (APC.

  7. Rock mechanics contributions from defense programs

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1992-02-01

    An attempt is made at illustrating the many contributions to rock mechanics from US defense programs, over the past 30-plus years. Large advances have been achieved in the technology-base area covering instrumentation, material properties, physical modeling, constitutive relations and numerical simulations. In the applications field, much progress has been made in understanding and being able to predict rock mass behavior related to underground explosions, cratering, projectile penetration, and defense nuclear waste storage. All these activities stand on their own merit as benefits to national security. But their impact is even broader, because they have found widespread applications in the non-defense sector; to name a few: the prediction of the response of underground structures to major earthquakes, the physics of the earth's interior at great depths, instrumentation for monitoring mine blasting, thermo-mechanical instrumentation useful for civilian nuclear waste repositories, dynamic properties of earthquake faults, and transient large-strain numerical modeling of geological processes, such as diapirism. There is not pretense that this summary is exhaustive. It is meant to highlight success stories representative of DOE and DOD geotechnical activities, and to point to remaining challenges

  8. Narcissism and defense mechanisms in women

    Directory of Open Access Journals (Sweden)

    Sabina Bele

    2014-06-01

    Full Text Available The purpose of this research was to examine how the level of covert and overt narcissism is connected to the frequency of the use of defense mechanisms such as denial, repression, regression, projection, compensation, projection, intellectualization, reaction formation, displacement, dissociation, and somatoform dissociation. We can distinguish healthy narcissism, an appropriate self-evaluation, from pathological narcissism, unrealistic self-evalutaion hiding sense of one's own unworthiness with self-idealization and grandiose thinking. When combined with low/no empathy and exploiting of others, one is diagnosed with narcissistic personality disorder. In this research we focused on narcissism as a personality trait, keeping in mind that we can differentiate between more covert or overt form of narcissism. We also focused on defense mechanisms protecting an individual from stimuli that are either endangering self-esteem or produce anxiety. Although their use is often unconscious, recent findings support the thesis that an individual can observe and report them. Our sample comprised 203 women. We used Narcissistic Personality Inventory, The Hypersensitive Narcissism Scale, The Life Style Index, The Dissociative Experience Scale, and Somatoform Dissociation Questionnaire. Results indicated that women with higher levels of covert narcissism as a personality trait use defense mechanisms, especially regression on earlier developmental stage, compensation deficits on other areas, projection unwanted or unacceptable aspects, reaction formation, and dissociation (absorption, depersonalization and derealization more often than women with higher levels of overt narcissism. The later use more compensation as a way of dealing with loss, intellectualization as a rational response instead of emotional one, and regression.

  9. IL-36/LXR axis modulates cholesterol metabolism and immune defense to Mycobacterium tuberculosis.

    Science.gov (United States)

    Ahsan, Fadhil; Maertzdorf, Jeroen; Guhlich-Bornhof, Ute; Kaufmann, Stefan H E; Moura-Alves, Pedro

    2018-01-24

    Mycobacterium tuberculosis (Mtb) is a life-threatening pathogen in humans. Bacterial infection of macrophages usually triggers strong innate immune mechanisms, including IL-1 cytokine secretion. The newer member of the IL-1 family, IL-36, was recently shown to be involved in cellular defense against Mtb. To unveil the underlying mechanism of IL-36 induced antibacterial activity, we analyzed its role in the regulation of cholesterol metabolism, together with the involvement of Liver X Receptor (LXR) in this process. We report that, in Mtb-infected macrophages, IL-36 signaling modulates cholesterol biosynthesis and efflux via LXR. Moreover, IL-36 induces the expression of cholesterol-converting enzymes and the accumulation of LXR ligands, such as oxysterols. Ultimately, both IL-36 and LXR signaling play a role in the regulation of antimicrobial peptides expression and in Mtb growth restriction. These data provide novel evidence for the importance of IL-36 and cholesterol metabolism mediated by LXR in cellular host defense against Mtb.

  10. Endogenous egg immune defenses in the yellow mealworm beetle (Tenebrio molitor).

    Science.gov (United States)

    Jacobs, Chris G C; Gallagher, Joe D; Evison, Sophie E F; Heckel, David G; Vilcinskas, Andreas; Vogel, Heiko

    2017-05-01

    In order to survive microbe encounters, insects rely on both physical barriers as well as local and systemic immune responses. Most research focusses on adult or larval defenses however, whereas insect eggs are also in need of protection. Lately, the defense of eggs against microbes has received an increasing amount of attention, be it through endogenous egg defenses, trans-generational immune priming (TGIP) or parental investment. Here we studied the endogenous immune response in eggs and adults of Tenebrio molitor. We show that many immune genes are induced in both adults and eggs. Furthermore, we show that eggs reach comparable levels of immune gene expression as adults. These findings show that the eggs of Tenebrio are capable of an impressive endogenous immune response, and indicate that such inducible egg defenses are likely common in insects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Emotional exhaustion and defense mechanisms in intensive therapy unit nurses.

    Science.gov (United States)

    Regan, Anna; Howard, Ruth A; Oyebode, Jan R

    2009-05-01

    Contrary to its original conceptualization, research has found that emotional demands do not lead to burnout in nurses. According to psychoanalytic theory, unconscious defense mechanisms may protect nurses from conscious awareness of work-related anxiety. This prevents self-report and may explain research findings. The maturity of defense style influences how anxiety is managed. Immature defenses prevent the conscious processing necessary for resolution of anxiety. Therefore, it is hypothesized that the use of immature defenses will lead to emotional exhaustion. This cross-sectional study used questionnaires to explore the defense mechanisms of 87 Intensive Therapy Unit nurses. Although the sample endorsed a predominantly mature defense style, the use of immature defenses predicted emotional exhaustion. Also, lower levels of reported stress associated with emotional demands predicted emotional exhaustion. Although this strongly implies the mediating role of immature defense mechanisms, the results were not statistically significant.

  12. Mechanisms regulating skin immunity and inflammation.

    Science.gov (United States)

    Pasparakis, Manolis; Haase, Ingo; Nestle, Frank O

    2014-05-01

    Immune responses in the skin are important for host defence against pathogenic microorganisms. However, dysregulated immune reactions can cause chronic inflammatory skin diseases. Extensive crosstalk between the different cellular and microbial components of the skin regulates local immune responses to ensure efficient host defence, to maintain and restore homeostasis, and to prevent chronic disease. In this Review, we discuss recent findings that highlight the complex regulatory networks that control skin immunity, and we provide new paradigms for the mechanisms that regulate skin immune responses in host defence and in chronic inflammation.

  13. Molecular mechanisms of aging and immune system regulation in Drosophila.

    Science.gov (United States)

    Eleftherianos, Ioannis; Castillo, Julio Cesar

    2012-01-01

    Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span.

  14. Mechanism of immune evasion in breast cancer

    Science.gov (United States)

    Wang, Mozhi; Zhang, Changwang; Song, Yongxi; Wang, Zhenning; Wang, Yaojia; Luo, Fang; Xu, Yujie; Zhao, Yi; Wu, Zhonghua; Xu, Yingying

    2017-01-01

    Breast cancer (BC) is the most common malignant tumor among women, with high morbidity and mortality. Its onset, development, metastasis, and prognosis vary among individuals due to the interactions between tumors and host immunity. Many diverse mechanisms have been associated with BC, with immune evasion being the most widely studied to date. Tumor cells can escape from the body’s immune response, which targets abnormal components and foreign bodies, using different approaches including modification of surface antigens and modulation of the surrounding environment. In this review, we summarize the mechanisms and factors that impact the immunoediting process and analyze their functions in detail. PMID:28352189

  15. Adversity Quotient and Defense Mechanism of Secondary School Students

    Science.gov (United States)

    Nikam, Vibhawari B.; Uplane, Megha M.

    2013-01-01

    The present study was conducted to explore the relationship between Adversity Quotient (AQ) and Defense Mechanism (DM) of secondary school students. The aim of the study was to ascertain relationship between Adversity Quotient and Defense mechanism i. e. Turning against object (TAO), Projection (PRO), Turning against self (TAS), Principalisation…

  16. Proteomic approaches to understanding the role of the cytoskeleton in host-defense mechanisms

    Science.gov (United States)

    Radulovic, Marko; Godovac-Zimmermann, Jasminka

    2014-01-01

    The cytoskeleton is a cellular scaffolding system whose functions include maintenance of cellular shape, enabling cellular migration, division, intracellular transport, signaling and membrane organization. In addition, in immune cells, the cytoskeleton is essential for phagocytosis. Following the advances in proteomics technology over the past two decades, cytoskeleton proteome analysis in resting and activated immune cells has emerged as a possible powerful approach to expand our understanding of cytoskeletal composition and function. However, so far there have only been a handful of studies of the cytoskeleton proteome in immune cells. This article considers promising proteomics strategies that could augment our understanding of the role of the cytoskeleton in host-defense mechanisms. PMID:21329431

  17. Defense mechanisms in schizotypal, borderline, antisocial, and narcissistic personality disorders.

    Science.gov (United States)

    Perry, J Christopher; Presniak, Michelle D; Olson, Trevor R

    2013-01-01

    Numerous authors have theorized that defense mechanisms play a role in personality disorders. We reviewed theoretical writings and empirical studies about defenses in schizotypal, borderline, antisocial, and narcissistic personality disorders, developing hypotheses about these differential relationships. We then examined these hypotheses using dynamic interview data rated for defenses in a study of participants (n = 107) diagnosed with these four personality disorder types. Overall, the prevalence of immature defenses was substantial, and all four disorders fit within the broad borderline personality organization construct. Defenses predicted the most variance in borderline and the least variance in schizotypal personality disorder, suggesting that dynamic factors played the largest role in borderline and the least in schizotypal personality. Central to borderline personality were strong associations with major image-distorting defenses, primarily splitting of self and other's images, and the hysterical level defenses, dissociation and repression. Narcissistic and antisocial personality disorders shared minor image-distorting defenses, such as omnipotence or devaluation, while narcissistic also used splitting of self-images and antisocial used disavowal defenses like denial. Overall, differential relationships between specific defenses and personality disorder types were largely consistent with the literature, and consistent with the importance that the treatment literature ascribes to working with defenses.

  18. Local immune mechanisms against parasites

    International Nuclear Information System (INIS)

    Lloyd, S.

    1981-01-01

    The secretory immunological system of the gastrointestinal tract is associated with the production of secretory IgA immunoglobulins. However, despite the fact that secretory IgA antibodies are known to mediate protection against infection with a number of bacteria and viruses, little information is available on their role in protection against infection with parasites. Thus, although elevated levels of IgA immunoglobulins and antibodies are present in the gastrointestinal tract after infection with a number of helminths and protozoa, conclusive evidence that these are associated with protection against infection is often lacking. However, it has now been demonstrated that intestinal IgA antibodies are associated with protection against infection with Taenia taeniaeformis in mice. In addition, secretory IgA antibodies arising from the common mucosal immunological system of the mammary gland are associated with protection against infection with T. taeniaeformis in mice and rats. Thus, since the portal of entry and site of residence of many parasites is the gastrointestinal tract, the secretory immunological system may act as a first line of defence against infection, and it is possible that oral immunization and local stimulation of the gastrointestinal tract may be effective in inducing protection against infection. The use of nuclear techniques (radioisotope-labelled IgA, autoradiography to follow the role of hepatocytes in IgA transport across the liver) are mentioned marginally only in this review

  19. Immune mechanisms in Babesia-infected animals

    International Nuclear Information System (INIS)

    Phillips, R.S.

    1980-01-01

    The course of a Babesia infection depends on the species of host and parasite involved. Animals infected with virulent babesias may need chemotherapy before acquired immunity develops. Maintenance of immunity is not dependent on the presence of the parasite. Babesia infections are characteristically of long duration. The immune response to babesias includes both humoral and cellular components. Antibody levels detected in serodiagnostic tests do not relate to levels of resistance to the parasite. Some antibodies, however, appear to be protective. Antiparasitic antibodies may damage parasites in or outside the red cell and act as opsonins. T-cell-deficient and anti-lymphocyte-serum-treated rodents are more susceptible to rodent piroplasms indicating a role for T-cells as either helper cells and/or as mediators of cell-mediated immunity (CMI). There is indirect evidence of CMI, but the cell-mediated mechanisms involved in parasite killing are not known. In domestic animals immunity is largely species- and strain-specific. Antigenic variation by babesias occurs. In rodents, however, there is cross-immunity between different species of rodent piroplasms and between rodent piroplasms and some malaria parasites. Prior infection with agents such as BCG, and Corynebacterium parvum, gives mice non-specific resistance to rodent piroplasms possibly mediated through a soluble non-antibody factor. This factor may also be liberated during piroplasm infections and by being toxic to malaria parasites account for heterologous immunity. Active immunization against babesias has been achieved with avirulent strains, irradiated parasites and dead parasites in adjuvant. During Babesia infections the primary and, to a lesser degree, the secondary immune response to heterologous antigens can be depressed. Maximum depression coincides with peak parasitaemia when antigen priming may be abolished completely. Immunosuppression during Babesia infections can prolong or exacerbate concurrent

  20. Molecular Dynamics Simulation and Statistics Analysis Reveals the Defense Response Mechanism in Plants

    Science.gov (United States)

    Liu, Zhichao; Zhao, Yunjie; Zeng, Chen; Computational Biophysics Lab Team

    As the main protein of the bacterial flagella, flagellin plays an important role in perception and defense response. The newly discovered locus, FLS2, is ubiquitously expressed. FLS2 encodes a putative receptor kinase and shares many homologies with some plant resistance genes and even with some components of immune system of mammals and insects. In Arabidopsis, FLS2 perception is achieved by the recognition of epitope flg22, which induces FLS2 heteromerization with BAK1 and finally the plant immunity. Here we use both analytical methods such as Direct Coupling Analysis (DCA) and Molecular Dynamics (MD) Simulations to get a better understanding of the defense mechanism of FLS2. This may facilitate a redesign of flg22 or de-novo design for desired specificity and potency to extend the immune properties of FLS2 to other important crops and vegetables.

  1. Polyphenol Oxidase as a Biochemical Seed Defense Mechanism

    Directory of Open Access Journals (Sweden)

    E. Patrick Fuerst

    2014-12-01

    Full Text Available Seed dormancy and resistance to decay are fundamental survival strategies, which allow a population of seeds to germinate over long periods of time. Seeds have physical, chemical, and biological defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. Here, we hypothesize that seeds also possess enzyme-based biochemical defenses, based on induction of the plant defense enzyme, polyphenol oxidase (PPO, when wild oat (Avena fatua L. caryopses and seeds were challenged with seed-decaying Fusarium fungi. These studies suggest that dormant seeds are capable of mounting a defense response to pathogens. The pathogen-induced PPO activity from wild oat was attributed to a soluble isoform of the enzyme that appeared to result, at least in part, from proteolytic activation of a latent PPO isoform. PPO activity was also induced in wild oat hulls (lemma and palea, non-living tissues that cover and protect the caryopsis. These results are consistent with the hypothesis that seeds possess inducible enzyme-based biochemical defenses arrayed on the exterior of seeds and these defenses represent a fundamental mechanism of seed survival and longevity in the soil. Enzyme-based biochemical defenses may have broader implications since they may apply to other defense enzymes as well as to a diversity of plant species and ecosystems.

  2. The middle ear immune defense changes with age

    DEFF Research Database (Denmark)

    Nielsen, Michelle Christine; Friis, Morten; Martin-Bertelsen, Tomas

    2016-01-01

    of this study was to analyze the relationship between age and the mucosal immune system in the middle ear. It is hypothesized that genes involved in the middle ear immune system will change with age. A comprehensive assessment of these genetic differences using the techniques of complementary DNA has not been...... performed. Complementary DNA microarray technology was used to identify immune-related genes differentially expressed between the normal middle ear mucosa of young (10 days old) and adult rats (80 days old). Data were analyzed using tools of bioinformatics. A total of 260 age-related genes were identified...

  3. Staphylococcal biofilm exopolysaccharide protects against Caenorhabditis elegans immune defenses.

    Directory of Open Access Journals (Sweden)

    Jakob Begun

    2007-04-01

    Full Text Available Staphylococcus epidermidis and Staphylococcus aureus are leading causes of hospital-acquired infections that have become increasingly difficult to treat due to the prevalence of antibiotic resistance in these organisms. The ability of staphylococci to produce biofilm is an important virulence mechanism that allows bacteria both to adhere to living and artificial surfaces and to resist host immune factors and antibiotics. Here, we show that the icaADBC locus, which synthesizes the biofilm-associated polysaccharide intercellular adhesin (PIA in staphylococci, is required for the formation of a lethal S. epidermidis infection in the intestine of the model nematode Caenorhabditis elegans. Susceptibility to S. epidermidis infection is influenced by mutation of the C. elegans PMK-1 p38 mitogen-activated protein (MAP kinase or DAF-2 insulin-signaling pathways. Loss of PIA production abrogates nematocidal activity and leads to reduced bacterial accumulation in the C. elegans intestine, while overexpression of the icaADBC locus in S. aureus augments virulence towards nematodes. PIA-producing S. epidermidis has a significant survival advantage over ica-deficient S. epidermidis within the intestinal tract of wild-type C. elegans, but not in immunocompromised nematodes harboring a loss-of-function mutation in the p38 MAP kinase pathway gene sek-1. Moreover, sek-1 and pmk-1 mutants are equally sensitive to wild-type and icaADBC-deficient S. epidermidis. These results suggest that biofilm exopolysaccharide enhances virulence by playing an immunoprotective role during colonization of the C. elegans intestine. These studies demonstrate that C. elegans can serve as a simple animal model for studying host-pathogen interactions involving staphylococcal biofilm exopolysaccharide and suggest that the protective activity of biofilm matrix represents an ancient conserved function for resisting predation.

  4. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine.

    Science.gov (United States)

    Klunder, Leon J; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C D

    2017-07-05

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. Host defense mechanisms in oral mucosa

    OpenAIRE

    菅原, 俊二

    2003-01-01

    It is speculated that more than 500 bacterial species reside in the oral cavity. Some cause periodontitis and dental caries, an understanding of which requires examination of innate immunity in the oral cavity. Oral mucosal cells such as epithelial cells and fibroblasts are thought to act as a physical barrier against invasion by pathogenic organisms, but they also can produce inflammatory cytokines and express adhesion molecules, resulting in control of neutrophil and T cell infiltration. Th...

  6. Inducible defenses stay up late: temporal patterns of immune gene expression in Tenebrio molitor.

    Science.gov (United States)

    Johnston, Paul R; Makarova, Olga; Rolff, Jens

    2013-12-06

    The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo. Copyright © 2014 Johnston et al.

  7. In immune defense: redefining the role of the immune system in chronic disease.

    Science.gov (United States)

    Rubinow, Katya B; Rubinow, David R

    2017-03-01

    The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.

  8. Modulatory effects of defense and coping on stress-induced changes in endocrine and immune parameters

    NARCIS (Netherlands)

    Olff, M.; Brosschot, J. F.; Godaert, G.; Benschop, R. J.; Ballieux, R. E.; Heijnen, C. J.; de Smet, M. B.; Ursin, H.

    1995-01-01

    We examined whether habitual defense and coping affect the response of hormones (ACTH. cortisol, prolactin. endorphins, and noradrenaline) and immune parameters (numbers of T cells. B cells. natural killer [NK] cells, and proliferative responses to mitogens or antigens) to an acute laboratory

  9. Genome Defense Mechanisms in Neurospora and Associated Specialized Proteins

    Directory of Open Access Journals (Sweden)

    Ranjan Tamuli

    2010-06-01

    Full Text Available Neurospora crassa, the filamentous fungus possesses widest array of genome defense mechanisms known to any eukaryotic organism, including a process called repeat-induced point mutation (RIP. RIP is a genome defense mechanism that hypermutates repetitive DNA sequences; analogous to genomic imprinting in mammals. As an impact of RIP, Neurospora possesses many fewer genes in multigene families than expected. A DNA methyltransferase homologue, RID was shown to be essential for RIP. Recently, a variant catalytic subunit of translesion DNA polymerase zeta (Pol zeta has been found to be essential for dominant RIP suppressor phenotype. Meiotic silencing and quelling are two other genome defense mechanisms in Neurospora, and proteins required for these two processes have been identified through genetic screens.

  10. The interbranchial lymphoid tissue likely contributes to immune tolerance and defense in the gills of Atlantic salmon.

    Science.gov (United States)

    Aas, Ida Bergva; Austbø, Lars; Falk, Knut; Hordvik, Ivar; Koppang, Erling Olaf

    2017-11-01

    Central and peripheral immune tolerance is together with defense mechanisms a hallmark of all lymphoid tissues. In fish, such tolerance is especially important in the gills, where the intimate contact between gill tissue and the aqueous environment would otherwise lead to continual immune stimulation by innocuous antigens. In this paper, we focus on the expression of genes associated with immune regulation by the interbranchial lymphoid tissue (ILT) in an attempt to understand its role in maintaining immune homeostasis. Both healthy and virus-challenged fish were investigated, and transcript levels were examined from laser-dissected ILT, gills, head kidney and intestine. Lack of Aire expression in the ILT excluded its involvement in central tolerance and any possibility of its being an analogue to the thymus. On the other hand, the ILT appears to participate in peripheral immune tolerance due to its relatively high expression of forkhead box protein 3 (Foxp3) and other genes associated with regulatory T cells (Tregs) and immune suppression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Immune Evasion Mechanisms of Staphylococcus epidermidis Biofilm Infection

    Directory of Open Access Journals (Sweden)

    Katherine Y. Le

    2018-02-01

    Full Text Available The primary virulence factor of the skin commensal and opportunistic pathogen, Staphylococcus epidermidis, is the ability to form biofilms on surfaces of implanted materials. Much of this microorganism’s pathogenic success has been attributed to its ability to evade the innate immune system. The primary defense against S. epidermidis biofilm infection consists of complement activation, recruitment and subsequent killing of the pathogen by effector cells. Among pathogen-derived factors, the biofilm exopolysaccharide polysaccharide intercellular adhesion (PIA, as well as the accumulation-associated protein (Aap, and the extracellular matrix binding protein (Embp have been shown to modulate effector cell-mediated killing of S. epidermidis. Phenol-soluble modulins (PSMs constitute the only class of secreted toxins by S. epidermidis, at least one type of which (PSMδ possesses strong cytolytic properties toward leukocytes. However, through selective production of non-cytolytic subtypes of PSMs, S. epidermidis is able to maintain a low inflammatory infection profile and avoid eradication by the host immune system. Taken together, our emerging understanding of the mechanisms behind immune modulation by S. epidermidis elucidates the microorganism’s success in the initial colonization of device surfaces as well as the maintenance of a chronic and indolent course of biofilm infection.

  12. Social immunity and the superorganism: Behavioral defenses protecting honey bee colonies from pathogens and parasites

    Science.gov (United States)

    Honey bees (Apis mellifera) have a number of traits that effectively reduce the spread of pathogens and parasites throughout the colony. These mechanisms of social immunity are often analogous to the individual immune system. As such social immune defences function to protect the colony or superorga...

  13. The Role of Quinine-Responsive Taste Receptor Family 2 in Airway Immune Defense and Chronic Rhinosinusitis

    Directory of Open Access Journals (Sweden)

    Alan D. Workman

    2018-03-01

    Full Text Available BackgroundBitter (T2R and sweet (T1R taste receptors in the airway are important in innate immune defense, and variations in taste receptor functionality in one T2R (T2R38 correlate with disease status and disease severity in chronic rhinosinusitis (CRS. Quinine is a bitter compound that is an agonist for several T2Rs also expressed on sinonasal cells, but not for T2R38. Because of this property, quinine may stimulate innate immune defense mechanisms in the airway, and functional differences in quinine perception may be reflective of disease status in CRS.MethodsDemographic and taste intensity data were collected prospectively from CRS patients and non-CRS control subjects. Sinonasal tissue from patients undergoing rhinologic surgery was also collected and grown at an air–liquid interface (ALI. Nitric oxide (NO production and dynamic regulation of ciliary beat frequency in response to quinine stimulation were assessed in vitro.ResultsQuinine reliably increased ciliary beat frequency and NO production in ALI cultures in a manner consistent with T2R activation (p < 0.01. Quinine taste intensity rating was performed in 328 CRS patients and 287 control subjects demonstrating that CRS with nasal polyps (CRSwNP patients rated quinine as significantly less intense than did control subjects.ConclusionQuinine stimulates airway innate immune defenses by increasing ciliary beat frequency and stimulating NO production in a manner fitting with T2R activation. Patient variability in quinine sensitivity is observed in taste intensity ratings, and gustatory quinine “insensitivity” is associated with CRSwNP status. Thus, taste tests for quinine may be a biomarker for CRSwNP, and topical quinine has therapeutic potential as a stimulant of innate defenses.

  14. MECHANISMS OF IMMUNE RESPONSES IN CNIDARIANS

    Directory of Open Access Journals (Sweden)

    Iván Darío Ocampo

    2015-05-01

    Full Text Available The immune system maintains the integrity of the organisms through a complex network of molecules, cells, and tissues that recognize internal or external antigenic substances to neutralized and eliminate them. The mechanisms of immune response have evolved in a modular fashion, where members of a given module interact strongly among them, but weakly with members of other modules, providing robustness and evolvability to the immune system. Ancestral modules are the raw material for the generation of new modules through evolution. Thus, the study of immune systems in basal metazoans such as cnidarians seeks to determine the basic tool kit from which the metazoans started to construct their immune systems. In addition, understanding the immune mechanisms in cnidarians contributes to decipher the etiopathology of coral diseases of infectious nature that are affecting coral reefs worldwide. RESUMEN El sistema inmune mantiene la integridad de los organismos vivos por medio de una red compleja de moléculas, células y tejidos que reconocen sustancias antigénicas internas o externas para neutralizarlas y eliminarlas. Los mecanismos de respuesta inmune han evolucionado de una manera modular, en donde miembros de un módulo dado interactúan fuertemente entre sí, pero débilmente con componentes de otros módulos, otorgando así robustez y potencial evolutivo al sistema inmune. Módulos ancestrales representan el material básico para la generación de nuevos módulos durante el proceso evolutivo. Así, el estudio de sistemas inmunes en metazoarios basales como los cnidarios busca determinar cuales son los módulos ancestrales a partir de los cuales se constituyen los sistemas inmunes de animales derivados. Adicionalmente, el entendimiento de los mecanismos de respuesta inmune en cnidarios eventualmente contribuirá a descifrar la etiopatología de las enfermedades de corales de carácter infeccioso que está afectando los corales en el mundo.

  15. Mechanisms underlying UV-induced immune suppression

    International Nuclear Information System (INIS)

    Ullrich, Stephen E.

    2005-01-01

    Skin cancer is the most prevalent form of human neoplasia. Estimates suggest that in excess of one million new cases of skin cancer will be diagnosed this year alone in the United States (www.cancer.org/statistics). Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer. The cost of treating non-melanoma skin cancer is estimated to be in excess of US$ 650 million a year [J.G. Chen, A.B. Fleischer, E.D. Smith, C. Kancler, N.D. Goldman, P.M. Williford, S.R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg. 27 (2001) 1035-1038], and when melanoma is included, the estimated cost of treating skin cancer in the United States is estimated to rise to US$ 2.9 billion annually (www.cancer.org/statistics). Because the morbidity and mortality associated with skin cancer is a major public health problem, it is important to understand the mechanisms underlying skin cancer development. The primary cause of skin cancer is the ultraviolet (UV) radiation found in sunlight. In addition to its carcinogenic potential, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. The focus of this manuscript will be to review the mechanisms underlying the induction of immune suppression following UV exposure. Particular attention will be directed to the role of soluble mediators in activating immune suppression

  16. Protective immune mechanisms against pre-erythrocytic forms of Plasmodium berghei depend on the target antigen

    Directory of Open Access Journals (Sweden)

    Elke S. Bergmann-Leitner

    2014-01-01

    Full Text Available Pre-erythrocytic malaria vaccines are believed to either stop the injected sporozoites from reaching the liver or to direct cellular immune responses towards eliminating infected hepatocytes. The present study reveals for the first time the anatomical sites at which these immune mechanisms act against the malaria parasites. To determine the mechanisms leading to protection mediated by two previously characterized vaccines against either the circumsporozoite protein (CSP or the cell traversal protein for ookinetes and sporozoites (CelTOS, mice were immunized and subsequently challenged by subcutaneous injection of salivary gland sporozoites of luciferase-transgenic Plasmodium berghei parasites. The In Vivo Imaging System (IVIS was used to identify the anatomical site where the vaccine-induced immune response eliminates sporozoites after injection. The data demonstrate that CSP-based immunity acts at the site of infection (skin whereas CelTOS-based immunity is only partially efficient in the skin and allows reduced levels of liver infection that can be subsequently cleared. The results of this study challenge assumptions regarding CSP-mediated immune mechanisms and call into question the validity of some commonly used assays to evaluate anti-CSP immune responses. The knowledge of the mechanism and events leading to infection or immune defense will guide supportive treatment with drugs or combination therapies and thus accelerate the development of effective antimalarial strategies.

  17. Extraribosomal l13a is a specific innate immune factor for antiviral defense.

    Science.gov (United States)

    Mazumder, Barsanjit; Poddar, Darshana; Basu, Abhijit; Kour, Ravinder; Verbovetskaya, Valentina; Barik, Sailen

    2014-08-01

    We report a novel extraribosomal innate immune function of mammalian ribosomal protein L13a, whereby it acts as an antiviral agent. We found that L13a is released from the 60S ribosomal subunit in response to infection by respiratory syncytial virus (RSV), an RNA virus of the Pneumovirus genus and a serious lung pathogen. Unexpectedly, the growth of RSV was highly enhanced in L13a-knocked-down cells of various lineages as well as in L13a knockout macrophages from mice. In all L13a-deficient cells tested, translation of RSV matrix (M) protein was specifically stimulated, as judged by a greater abundance of M protein and greater association of the M mRNA with polyribosomes, while general translation was unaffected. In silico RNA folding analysis and translational reporter assays revealed a putative hairpin in the 3'untranslated region (UTR) of M mRNA with significant structural similarity to the cellular GAIT (gamma-activated inhibitor of translation) RNA hairpin, previously shown to be responsible for assembling a large, L13a-containing ribonucleoprotein complex that promoted translational silencing in gamma interferon (IFN-γ)-activated myeloid cells. However, RNA-protein interaction studies revealed that this complex, which we named VAIT (respiratory syncytial virus-activated inhibitor of translation) is functionally different from the GAIT complex. VAIT is the first report of an extraribosomal L13a-mediated, IFN-γ-independent innate antiviral complex triggered in response to virus infection. We provide a model in which the VAIT complex strongly hinders RSV replication by inhibiting the translation of the rate-limiting viral M protein, which is a new paradigm in antiviral defense. The innate immune mechanisms of host cells are diverse in nature and act as a broad-spectrum cellular defense against viruses. Here, we report a novel innate immune mechanism functioning against respiratory syncytial virus (RSV), in which the cellular ribosomal protein L13a is released

  18. Stealth proteins: in silico identification of a novel protein family rendering bacterial pathogens invisible to host immune defense.

    Directory of Open Access Journals (Sweden)

    Peter Sperisen

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  19. Stealth Proteins: In Silico Identification of a Novel Protein Family Rendering Bacterial Pathogens Invisible to Host Immune Defense.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  20. Lipid reserves and immune defense in healthy and diseased migrating monarchs Danaus plexippus

    Directory of Open Access Journals (Sweden)

    Dara A. SATTERFIELD, Amy E. WRIGHT, Sonia ALTIZER

    2013-06-01

    Full Text Available Recent studies suggest that the energetic demands of long-distance migration might lower the pool of resources available for costly immune defenses. Moreover, migration could amplify the costs of parasitism if animals suffering from parasite-induced damage or depleted energy reserves are less able to migrate long distances. We investigated relationships between long-distance migration, infection, and immunity in wild fall-migrating monarch butterflies Danaus plexippus. Monarchs migrate annually from eastern North America to central Mexico, accumulating lipids essential for migration and winter survival as they travel southward. Monarchs are commonly infected by the debilitating protozoan parasite Ophryocystis elektroscirrha (OE. We collected data on lipid reserves, parasite loads, and two immune measures (hemocyte concentration and phenoloxidase activity from wild monarchs migrating through north GA (USA to ask whether (1 parasite infection negatively affects lipid reserves, and (2 greater investment in lipid reserves is associated with lower immune measures. Results showed that monarchs sampled later in the fall migration had lower but not significantly different immune measures and significantly higher lipid reserves than those sampled earlier. Lipid measures correlated negatively but only nearly significantly with one measure of immune defense (phenoloxidase activity in both healthy and infected monarchs, but did not depend on monarch infection status or parasite load. These results provide weak support for a trade-off between energy reserves and immune defense in migrants, and suggest that previously-demonstrated costs of OE infection for monarch migration are not caused by depleted lipid reserves [Current Zoology 59 (3: 393–402, 2013].

  1. Consequences of Food Restriction for Immune Defense, Parasite Infection, and Fitness in Monarch Butterflies.

    Science.gov (United States)

    McKay, Alexa Fritzsche; Ezenwa, Vanessa O; Altizer, Sonia

    2016-01-01

    Organisms have a finite pool of resources to allocate toward multiple competing needs, such as development, reproduction, and enemy defense. Abundant resources can support investment in multiple traits simultaneously, but limited resources might promote trade-offs between fitness-related traits and immune defenses. We asked how food restriction at both larval and adult life stages of the monarch butterfly (Danaus plexippus) affected measures of immunity, fitness, and immune-fitness interactions. We experimentally infected a subset of monarchs with a specialist protozoan parasite to determine whether parasitism further affected these relationships and whether food restriction influenced the outcome of infection. Larval food restriction reduced monarch fitness measures both within the same life stage (e.g., pupal mass) as well as later in life (e.g., adult lifespan); adult food restriction further reduced adult lifespan. Larval food restriction lowered both hemocyte concentration and phenoloxidase activity at the larval stage, and the effects of larval food restriction on phenoloxidase activity persisted when immunity was sampled at the adult stage. Adult food restriction reduced only adult phenoloxidase activity but not hemocyte concentration. Parasite spore load decreased with one measure of larval immunity, but food restriction did not increase the probability of parasite infection. Across monarchs, we found a negative relationship between larval hemocyte concentration and pupal mass, and a trade-off between adult hemocyte concentration and adult life span was evident in parasitized female monarchs. Adult life span increased with phenoloxidase activity in some subsets of monarchs. Our results emphasize that food restriction can alter fitness and immunity across multiple life stages. Understanding the consequences of resource limitation for immune defense is therefore important for predicting how increasing constraints on wildlife resources will affect fitness and

  2. Colors and Some Morphological Traits as Defensive Mechanisms in Anurans

    Directory of Open Access Journals (Sweden)

    Luís Felipe Toledo

    2009-01-01

    Full Text Available Anurans may be brightly colored or completely cryptic. Generally, in the former situation, we are dealing with aposematism, and the latter is an example of camouflage. However, these are only simple views of what such colorations really mean and which defensive strategy is implied. For instance, a brightly colored frog may be part of a mimicry ring, which could be either Batesian, Müllerian, or Browerian. These are only examples of the diversity of color-usage systems as defensive strategies. Unfortunately, reports on the use of colors as defensive mechanisms are widespread in the available literature, and the possible functions are rarely mentioned. Therefore, we reviewed the literature and added new data to this subject. Then, we the use of colors (as defensive mechanism into categories. Mimicry was divided into the subcategories camouflage, homotypy, and nondeceitful homotypy, and these groups were also subcategorized. Dissuasive coloration was divided into behavioral display of colors, polymorphism, and polyphenism. Aposematism was treated apart, but aposematic colorations may be present in other defensive strategies. Finally, we propose functions and forms of evolution for some color systems in post-metamorphic anurans and hope that this review can be the basis for future research, even on other animal groups.

  3. Defense Mechanisms, Psychosomatic Symptomatology, and Conjugate Lateral Eye Movements

    Science.gov (United States)

    Gur, Raquel E.; Gur, Ruben C.

    1975-01-01

    Subjects were classified into left movers, right movers, and bidirectionals according to the characteristic direction of their eye movements in response to questions. The three groups were compared on their preferential use of defense mechanisms and on the number of psychosomatic complaints. (Author)

  4. Effective but costly, evolved mechanisms of defense against a virulent opportunistic pathogen in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Yixin H Ye

    2009-04-01

    Full Text Available Drosophila harbor substantial genetic variation for antibacterial defense, and investment in immunity is thought to involve a costly trade-off with life history traits, including development, life span, and reproduction. To understand the way in which insects invest in fighting bacterial infection, we selected for survival following systemic infection with the opportunistic pathogen Pseudomonas aeruginosa in wild-caught Drosophila melanogaster over 10 generations. We then examined genome-wide changes in expression in the selected flies relative to unselected controls, both of which had been infected with the pathogen. This powerful combination of techniques allowed us to specifically identify the genetic basis of the evolved immune response. In response to selection, population-level survivorship to infection increased from 15% to 70%. The evolved capacity for defense was costly, however, as evidenced by reduced longevity and larval viability and a rapid loss of the trait once selection pressure was removed. Counter to expectation, we observed more rapid developmental rates in the selected flies. Selection-associated changes in expression of genes with dual involvement in developmental and immune pathways suggest pleiotropy as a possible mechanism for the positive correlation. We also found that both the Toll and the Imd pathways work synergistically to limit infectivity and that cellular immunity plays a more critical role in overcoming P. aeruginosa infection than previously reported. This work reveals novel pathways by which Drosophila can survive infection with a virulent pathogen that may be rare in wild populations, however, due to their cost.

  5. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Kee Hoon Sohn

    2014-10-01

    Full Text Available Plant nucleotide-binding leucine-rich repeat (NB-LRR disease resistance (R proteins recognize specific "avirulent" pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs. How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4 and RRS1 (resistance to Ralstonia solanacearum 1, function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1 mutant encodes an RRS1 allele (RRS1SLH1 with a single amino acid (leucine insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed

  6. Host-pathogen interactions between the human innate immune system and Candida albicans - Understanding and modeling defense and evasion strategies

    Directory of Open Access Journals (Sweden)

    Sybille eDühring

    2015-06-01

    Full Text Available The diploid, polymorphic yeast Candida albicans is one of the most important humanpathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within thehuman host for a long time. Alterations in the host environment, however, can render C. albicansvirulent. In this review, we describe the immunological cross-talk between C. albicans and thehuman innate immune system. We give an overview in form of pairs of human defense strategiesincluding immunological mechanisms as well as general stressors such as nutrient limitation,pH, fever etc. and the corresponding fungal response and evasion mechanisms. FurthermoreComputational Systems Biology approaches to model and investigate these complex interactionare highlighted with a special focus on game-theoretical methods and agent-based models. Anoutlook on interesting questions to be tackled by Systems Biology regarding entangled defenseand evasion mechanisms is given.

  7. Investigating Relationships between Reproduction, Immune Defenses, and Cortisol in Dall Sheep.

    Science.gov (United States)

    Downs, Cynthia J; Boan, Brianne V; Lohuis, Thomas D; Stewart, Kelley M

    2018-01-01

    Life-history theory is fundamental to understanding how animals allocate resources among survival, development, and reproduction, and among traits within these categories. Immediate trade-offs occur within a short span of time and, therefore, are more easily detected. Trade-offs, however, can also manifest across stages of the life cycle, a phenomenon known as carryover effects. We investigated trade-offs on both time scales in two populations of Dall sheep ( Ovis dalli dalli ) in Southcentral Alaska. Specifically, we (i) tested for glucocorticoid-mediated carryover effects from the breeding season on reproductive success and immune defenses during parturition and (ii) tested for trade-offs between immune defenses and reproduction within a season. We observed no relationship between cortisol during mating and pregnancy success; however, we found marginal support for a negative relationship between maternal cortisol and neonate birth weights. Low birth weights, resulting from high maternal cortisol, may result in low survival or low fecundity for the neonate later in life, which could result in overall population decline. We observed a negative relationship between pregnancy and bacterial killing ability, although we observed no relationship between pregnancy and haptoglobin. Study site affected bactericidal capacity and the inflammatory response, indicating the influence of external factors on immune responses, although we could not test hypotheses about the cause of those differences. This study helps advance our understanding of the plasticity and complexity of the immune system and provides insights into the how individual differences in physiology may mediate differences in fitness.

  8. Investigating Relationships between Reproduction, Immune Defenses, and Cortisol in Dall Sheep

    Directory of Open Access Journals (Sweden)

    Cynthia J. Downs

    2018-01-01

    Full Text Available Life-history theory is fundamental to understanding how animals allocate resources among survival, development, and reproduction, and among traits within these categories. Immediate trade-offs occur within a short span of time and, therefore, are more easily detected. Trade-offs, however, can also manifest across stages of the life cycle, a phenomenon known as carryover effects. We investigated trade-offs on both time scales in two populations of Dall sheep (Ovis dalli dalli in Southcentral Alaska. Specifically, we (i tested for glucocorticoid-mediated carryover effects from the breeding season on reproductive success and immune defenses during parturition and (ii tested for trade-offs between immune defenses and reproduction within a season. We observed no relationship between cortisol during mating and pregnancy success; however, we found marginal support for a negative relationship between maternal cortisol and neonate birth weights. Low birth weights, resulting from high maternal cortisol, may result in low survival or low fecundity for the neonate later in life, which could result in overall population decline. We observed a negative relationship between pregnancy and bacterial killing ability, although we observed no relationship between pregnancy and haptoglobin. Study site affected bactericidal capacity and the inflammatory response, indicating the influence of external factors on immune responses, although we could not test hypotheses about the cause of those differences. This study helps advance our understanding of the plasticity and complexity of the immune system and provides insights into the how individual differences in physiology may mediate differences in fitness.

  9. Signaling Mechanisms in Pattern-Triggered Immunity (PTI)

    KAUST Repository

    Bigeard, Jean; Colcombet, Jean; Hirt, Heribert

    2015-01-01

    In nature, plants constantly have to face pathogen attacks. However, plant disease rarely occurs due to efficient immune systems possessed by the host plants. Pathogens are perceived by two different recognition systems that initiate the so-called pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), both of which are accompanied by a set of induced defenses that usually repel pathogen attacks. Here we discuss the complex network of signaling pathways occurring during PTI, focusing on the involvement of mitogen-activated protein kinases. © 2015 The Author.

  10. The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Gopaljee Jha

    2009-01-01

    Full Text Available Venturia inaequalis is the causal agent of apple scab, a devastating disease of apple. We outline several unique features of this pathogen which are useful for molecular genetics studies intended to understand plant-pathogen interactions. The pathogenicity mechanisms of the pathogen and overview of apple defense responses, monogenic and polygenic resistance, and their utilization in scab resistance breeding programs are also reviewed.

  11. Review of the Book “Defense Mechanisms. Coping Strategies. Self-Regulation”

    Directory of Open Access Journals (Sweden)

    Stoil Mavrodiev

    2012-10-01

    Full Text Available This book deals with coping strategies and defense mechanisms as two kinds of self-regulation of human behaviour. The defense mechanisms are described with some examples of fiction books.

  12. An Immunization Strategy Based on Propagation Mechanism

    Directory of Open Access Journals (Sweden)

    Yixin Zhu

    2014-01-01

    Full Text Available With the ubiquity of smart phones, wearable equipment, and wireless sensors, the topologies of networks composed by them change along with time. The immunization strategies in which network immune nodes are chosen by analyzing the static aggregation network topologies have been challenged. The studies about interaction propagations between two pathogens show that the interaction can change propagation threshold and the final epidemic size of each other, which provides a new thinking of immunization method. The eradication or inhibition of the virus can be achieved through the spread of its opposite party. Here, we put forward an immunization strategy whose implementation does not depend on the analysis of network topology. The immunization agents are randomly placed on a few of individuals of network and spread out from these individuals on network in a propagation method. The immunization agents prevent virus infecting their habitat nodes with certain immune success rate. The analysis and simulation of evolution equation of the model show that immune propagation has a significant impact on the spread threshold and steady-state density of virus on a finite size of BA networks. Simulations on some real-world networks also suggest that the immunization strategy is feasible and effective.

  13. Multilevel mechanisms of stimulatory effect of low dose radiation on immunity

    International Nuclear Information System (INIS)

    Shu-Zeng Liu

    1992-01-01

    Attention is paid to the effects of low level ionizing radiation on humans. The conference is devoted to low dose radiation and defense mechanisms of the body. Due to the importance of the immune system in body resistance, special attention has been given to host defense mechanisms following exposure to different doses of ionizing radiation. The immune system has long been known to be highly sensitive to moderate to high doses of ionizing radiation with immuno-depression as one of the most important causes of death in acute radiation syndrome. However, the dose-effect relationship of immune functions has been found to be quite different in the low dose range, especially with doses within 0.1 Gy. With doses above 0.5 Gy most immunologic parameters show a dose dependent depression. With doses between 0.1-0.5 Gy there may be no definite changes in immune functions. Doses within 0.1 Gy, given in single or chronic exposures, have been found to stimulate many immune responses. (author). 16 refs., 2 figs., 7 tabs

  14. Polymeric immunoglobulin receptor in intestinal immune defense against the lumen-dwelling protozoan parasite Giardia.

    Science.gov (United States)

    Davids, Barbara J; Palm, J E Daniel; Housley, Michael P; Smith, Jennifer R; Andersen, Yolanda S; Martin, Martin G; Hendrickson, Barbara A; Johansen, Finn-Eirik; Svärd, Staffan G; Gillin, Frances D; Eckmann, Lars

    2006-11-01

    The polymeric Ig receptor (pIgR) is conserved in mammals and has an avian homologue, suggesting evolutionarily important functions in vertebrates. It transports multimeric IgA and IgM across polarized epithelia and is highly expressed in the intestine, yet little direct evidence exists for its importance in defense against common enteric pathogens. In this study, we demonstrate that pIgR can play a critical role in intestinal defense against the lumen-dwelling protozoan parasite Giardia, a leading cause of diarrheal disease. The receptor was essential for the eradication of Giardia when high luminal IgA levels were required. Clearance of Giardia muris, in which IgA plays a dominant role, was severely compromised in pIgR-deficient mice despite significant fecal IgA output at 10% of normal levels. In contrast, eradication of the human strain Giardia lamblia GS/M, for which adaptive immunity is less IgA dependent in mice, was unaffected by pIgR deficiency, indicating that pIgR had no physiologic role when lower luminal IgA levels were sufficient for parasite elimination. Immune IgA was greatly increased in the serum of pIgR-deficient mice, conferred passive protection against Giardia, and recognized several conserved giardial Ags, including ornithine carbamoyltransferase, arginine deiminase, alpha-enolase, and alpha- and beta-giardins, that are also detected in human giardiasis. Corroborative observations were made in mice lacking the J chain, which is required for pIgR-dependent transepithelial IgA transport. These results, together with prior data on pIgR-mediated immune neutralization of luminal cholera toxin, suggest that pIgR is essential in intestinal defense against pathogenic microbes with high-level and persistent luminal presence.

  15. Immune defenses of healthy, bleached and diseased Montastraea faveolata during a natural bleaching event.

    Science.gov (United States)

    Mydlarz, Laura D; Couch, Courtney S; Weil, Ernesto; Smith, Garriet; Harvell, C Drew

    2009-11-16

    One prominent hypothesis regarding climate change and scleractinian corals is that thermal stress compromises immune competence. To test this hypothesis we tracked how the immune defenses of bleached, apparently healthy and yellow band disease (YBD) diseased Montastraea faveolata colonies varied with natural thermal stress in southwestern Puerto Rico. Colonies were monitored for 21 mo from the peak of the bleaching event in October 2005 to August 2007. Since sea surface temperature was significantly higher in summer and fall 2005 than 2006, year of collection was used as a proxy for temperature stress, and colony fragments collected in 2005 were compared with those collected in 2006. Mortality rate was high (43% overall) and all colonies (except one) either died or became infected with YBD by August 2007. YBD-infected tissue did not bleach (i.e. expel zooxanthellae) during the 2005 bleaching event, even when healthy tissue of these colonies bleached. Immune activity was assayed by measuring prophenoloxidase (PPO), peroxidase (POX), lysozyme-like (LYS) and antibacterial (AB) activity. Immune activity was variable between all coral samples, but there was a significant elevation of PPO activity in bleached colonies collected in 2005 relative to apparently healthy and YBD-diseased corals in 2006. In YBD-diseased colonies, LYS and AB activity were elevated in both healthy and infected tissue, indicating a systemic response; activity levels in these colonies were higher compared to those that appeared healthy. In both these immune parameters, there was a trend for suppression of activity in corals that were bleached in 2005. These data, while complicated by between-genet variability, illustrate the complex interaction between disease and temperature stress on immune function.

  16. Defense High-Level Waste Leaching Mechanisms Program. Final report

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1984-08-01

    The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90 0 C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations

  17. Defense High-Level Waste Leaching Mechanisms Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, J.E. (compiler)

    1984-08-01

    The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90/sup 0/C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations.

  18. Complex interplay of body condition, life history, and prevailing environment shapes immune defenses of garter snakes in the wild.

    Science.gov (United States)

    Palacios, Maria G; Cunnick, Joan E; Bronikowski, Anne M

    2013-01-01

    The immunocompetence "pace-of-life" hypothesis proposes that fast-living organisms should invest more in innate immune defenses and less in adaptive defenses compared to slow-living ones. We found some support for this hypothesis in two life-history ecotypes of the snake Thamnophis elegans; fast-living individuals show higher levels of innate immunity compared to slow-living ones. Here, we optimized a lymphocyte proliferation assay to assess the complementary prediction that slow-living snakes should in turn show stronger adaptive defenses. We also assessed the "environmental" hypothesis that predicts that slow-living snakes should show lower levels of immune defenses (both innate and adaptive) given the harsher environment they live in. Proliferation of B- and T-lymphocytes of free-living individuals was on average higher in fast-living than slow-living snakes, opposing the pace-of-life hypothesis and supporting the environmental hypothesis. Bactericidal capacity of plasma, an index of innate immunity, did not differ between fast-living and slow-living snakes in this study, contrasting the previously documented pattern and highlighting the importance of annual environmental conditions as determinants of immune profiles of free-living animals. Our results do not negate a link between life history and immunity, as indicated by ecotype-specific relationships between lymphocyte proliferation and body condition, but suggest more subtle nuances than those currently proposed.

  19. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis.

    Science.gov (United States)

    Silvestre, Marilene Chaves; Sato, Maria Notomi; Reis, Vitor Manoel Silva Dos

    2018-03-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation.

  20. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis*

    Science.gov (United States)

    Silvestre, Marilene Chaves; Sato, Maria Notomi; dos Reis, Vitor Manoel Silva

    2018-01-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation. PMID:29723367

  1. Host-pathogen interactions between the human innate immune system and Candida albicans—understanding and modeling defense and evasion strategies

    Science.gov (United States)

    Dühring, Sybille; Germerodt, Sebastian; Skerka, Christine; Zipfel, Peter F.; Dandekar, Thomas; Schuster, Stefan

    2015-01-01

    The diploid, polymorphic yeast Candida albicans is one of the most important human pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within the human host for a long time. However, alterations in the host environment can render C. albicans virulent. In this review, we describe the immunological cross-talk between C. albicans and the human innate immune system. We give an overview in form of pairs of human defense strategies including immunological mechanisms as well as general stressors such as nutrient limitation, pH, fever etc. and the corresponding fungal response and evasion mechanisms. Furthermore, Computational Systems Biology approaches to model and investigate these complex interactions are highlighted with a special focus on game-theoretical methods and agent-based models. An outlook on interesting questions to be tackled by Systems Biology regarding entangled defense and evasion mechanisms is given. PMID:26175718

  2. Mechanisms of innate immune evasion in re-emerging RNA viruses.

    Science.gov (United States)

    Ma, Daphne Y; Suthar, Mehul S

    2015-06-01

    Recent outbreaks of Ebola, West Nile, Chikungunya, Middle Eastern Respiratory and other emerging/re-emerging RNA viruses continue to highlight the need to further understand the virus-host interactions that govern disease severity and infection outcome. As part of the early host antiviral defense, the innate immune system mediates pathogen recognition and initiation of potent antiviral programs that serve to limit virus replication, limit virus spread and activate adaptive immune responses. Concordantly, viral pathogens have evolved several strategies to counteract pathogen recognition and cell-intrinsic antiviral responses. In this review, we highlight the major mechanisms of innate immune evasion by emerging and re-emerging RNA viruses, focusing on pathogens that pose significant risk to public health. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Study of General health, resiliency, and defense mechanisms in patients with migraine headache

    Directory of Open Access Journals (Sweden)

    Alireza Aghayusefi

    2013-06-01

    Full Text Available Background: Migraine is a neurological disease that the etiology, several factors affect its onset or its exacerbation. One of the factors affecting disease is psychological factors such as defense mechanisms, resiliency, and general health. This study assessed the relationship between general health, resiliency, and general defense mechanisms, and also predicts the general health of people with migraine headaches that have a high resiliency and use mature defense mechanisms. Material and Methods: 50 women with migraine headache in the city of Bushehr using defense mechanisms, resiliency, and general health questionnaires were studied. For statistical analysis, Pearson correlation and multiple regression tests were used by SPSS 17 software. Results: The results showed that most of the defense mechanisms of migraine sufferers are Immature and Neuroticism. There is significant negative correlation between the deterioration of general health and resiliency as well as the mature defense mechanism (p=0/003, and also there is a significant positive correlation between this deterioration with neuroticism (p=0/040 and immature defense mechanisms (p=0/041. On the other hand there is significant negative correlation between resiliencies with immature (p=0/009 and neuroticism defense mechanisms (p=0/04, and also with mature defense mechanism has a significant positive correlation (p=0/003. Also, as more people use the mature defense mechanism, their deterioration of general health will be reduced, but this relationship will be stronger with the presence of resiliency. So migraine people use the mature defense mechanisms with high resiliency will have more favorable general health (less deterioration of general health. Conclusion: This study showed that migraine patients use the mature defense mechanisms with high resiliency will have more favorable general health (less deterioration of general health.

  4. Ego defense mechanisms in Pakistani medical students: a cross sectional analysis

    Directory of Open Access Journals (Sweden)

    Khalid Roha

    2010-01-01

    Full Text Available Abstract Background Ego defense mechanisms (or factors, defined by Freud as unconscious resources used by the ego to reduce conflict between the id and superego, are a reflection of how an individual deals with conflict and stress. This study assesses the prevalence of various ego defense mechanisms employed by medical students of Karachi, which is a group with higher stress levels than the general population. Methods A questionnaire based cross-sectional study was conducted on 682 students from five major medical colleges of Karachi over 4 weeks in November 2006. Ego defense mechanisms were assessed using the Defense Style Questionnaire (DSQ-40 individually and as grouped under Mature, Immature, and Neurotic factors. Results Lower mean scores of Immature defense mechanisms (4.78 were identified than those for Neurotic (5.62 and Mature (5.60 mechanisms among medical students of Karachi. Immature mechanisms were more commonly employed by males whereas females employed more Neurotic mechanisms than males. Neurotic and Immature defenses were significantly more prevalent in first and second year students. Mature mechanisms were significantly higher in students enrolled in Government colleges than Private institutions (p Conclusions Immature defense mechanisms were less commonly employed than Neurotic and Mature mechanisms among medical students of Karachi. The greater employment of Neurotic defenses may reflect greater stress levels than the general population. Employment of these mechanisms was associated with female gender, enrollment in a private medical college, and students enrolled in the first 2 years of medical school.

  5. The role of immune mechanisms in Tourette syndrome.

    Science.gov (United States)

    Martino, Davide; Zis, Panagiotis; Buttiglione, Maura

    2015-08-18

    Tourette syndrome (TS) is a childhood-onset tic disorder associated with abnormal development of brain networks involved in the sensory and motor processing. An involvement of immune mechanisms in its pathophysiology has been proposed. Animal models based on active immunization with bacterial or viral mimics, direct injection of cytokines or patients' serum anti-neuronal antibodies, and transgenic approaches replicated stereotyped behaviors observed in human TS. A crucial role of microglia in the neural-immune crosstalk within TS and related disorders has been proposed by animal models and confirmed by recent post mortem studies. With analogy to autism, genetic and early life environmental factors could foster the involvement of immune mechanisms to the abnormal developmental trajectories postulated in TS, as well as lead to systemic immune dysregulation in this condition. Clinical studies demonstrate an association between TS and immune responses to pathogens like group A Streptococcus (GAS), although their role as risk-modifiers is still undefined. Overactivity of immune responses at a systemic level is suggested by clinical studies exploring cytokine and immunoglobulin levels, immune cell subpopulations, and gene expression profiling of peripheral lymphocytes. The involvement of autoantibodies, on the other hand, remains uncertain and warrants more work using live cell-based approaches. Overall, a body of evidence supports the hypothesis that disease mechanisms in TS, like other neurodevelopmental illnesses (e.g. autism), may involve dysfunctional neural-immune cross-talk, ultimately leading to altered maturation of brain pathways controlling different behavioral domains and, possibly, differences in organising immune and stress responses. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. DMPD: Toll-like receptors and the host defense against microbial pathogens: bringingspecificity to the innate-immune system. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15075354 Toll-like receptors and the host defense against microbial pathogens: brin...oc Biol. 2004 May;75(5):749-55. Epub 2004 Jan 14. (.png) (.svg) (.html) (.csml) Show Toll-like receptors and the host defense again...immune system. PubmedID 15075354 Title Toll-like receptors and the host defense against microbial pathogens:

  7. Immune mechanisms and immuno therapy of thyroid cancer

    International Nuclear Information System (INIS)

    Samuel, A.M.

    1999-01-01

    In recent years the role of immune mechanisms in the induction and progress of cancer has been established. The importance of oncogenes, growth suppressor genes, gene regulation immune surveillance and the interactions of the various components of the immune system in the pathogenesis and progress of cancers is being extensively studied. In fact, the newer concepts of using immune reactions as a modality of therapy is being explored in conjunction with the treatments for cancer. The increased hope and enthusiasm for tumor immunotherapy is in a large part due to animal studies and a better understanding about surface antigens on tumors, major histocompatibility complex molecules, adhesion molecules, cytokines and a variety of newly discovered molecules which play a role in immune interactions

  8. Salmonella Typhi Colonization Provokes Extensive Transcriptional Changes Aimed at Evading Host Mucosal Immune Defense During Early Infection of Human Intestinal Tissue

    Directory of Open Access Journals (Sweden)

    K.P. Nickerson

    2018-05-01

    Full Text Available Commensal microorganisms influence a variety of host functions in the gut, including immune response, glucose homeostasis, metabolic pathways and oxidative stress, among others. This study describes how Salmonella Typhi, the pathogen responsible for typhoid fever, uses similar strategies to escape immune defense responses and survive within its human host. To elucidate the early mechanisms of typhoid fever, we performed studies using healthy human intestinal tissue samples and “mini-guts,” organoids grown from intestinal tissue taken from biopsy specimens. We analyzed gene expression changes in human intestinal specimens and bacterial cells both separately and after colonization. Our results showed mechanistic strategies that S. Typhi uses to rearrange the cellular machinery of the host cytoskeleton to successfully invade the intestinal epithelium, promote polarized cytokine release and evade immune system activation by downregulating genes involved in antigen sampling and presentation during infection. This work adds novel information regarding S. Typhi infection pathogenesis in humans, by replicating work shown in traditional cell models, and providing new data that can be applied to future vaccine development strategies. Keywords: Typhoid fever, Salmonella, Snapwell™ system, Human tissue, Terminal ileum, Immune system, Innate immunity, Immune evasion, Host-pathogen interaction, Vaccine development, Intestinal organoids, Organoid monolayer

  9. PATHOGENETIC MECHANISMS IN EXPERIMENTAL IMMUNE FEVER

    Science.gov (United States)

    Root, Richard K.; Wolff, Sheldon M.

    1968-01-01

    When rabbits sensitized to human serum albumin (HSA) are challenged intravenously with specific antigen, fever develops and two transferable pyrogens can be demonstrated in the circulation. The first appears prior to the development of fever and has properties consistent with soluble antigen-antibody complexes. These have been shown to be pyrogenic when prepared in vitro and to produce a state of febrile tolerance when repeatedly administered. The second pyrogen, demonstrable during fever in donor rabbits, appears to be similar to endogenous pyrogen described in other experimental fevers. It is postulated that the formation of antigen-antibody complexes constitutes an important initial phase of the febrile reaction in this type of immune fever. PMID:4873023

  10. The levels of psychological functioning of personality and the mechanisms of defense

    OpenAIRE

    Benítez Camacho, Erika; Chávez-León, Enrique; Ontiveros Uribe, Martha Patricia; Yunes Jiménez, Arlette; Náfate López, Omar

    2010-01-01

    Otto Kernberg states three types of personality organizations, also named psychological functional levels. They reflect the patient's predominant psychological characteristics: identity integration grade, defense mechanisms, and reality test. In mental disorders, the predominant defensive influences significantly in the severity and evolution of the suffering. Objectives The objective of the actual study was to determine the usage of defense mechanisms by patients with some mental disorder, g...

  11. Exosomes as a tumor immune escape mechanism: possible therapeutic implications

    Directory of Open Access Journals (Sweden)

    Hanley Harold H

    2008-07-01

    Full Text Available Abstract Advances in cancer therapy have been substantial in terms of molecular understanding of disease mechanisms, however these advances have not translated into increased survival in the majority of cancer types. One unsolved problem in current cancer therapeutics is the substantial immune suppression seen in patients. Conventionally, investigations in this area have focused on antigen-nonspecific immune suppressive molecules such as cytokines and T cell apoptosis inducing molecules such as Fas ligand. More recently, studies have demonstrated nanovesicle particles termed exosomes are involved not only in stimulation but also inhibition of immunity in physiological conditions. Interestingly, exosomes secreted by cancer cells have been demonstrated to express tumor antigens, as well as immune suppressive molecules such as PD-1L and FasL. Concentrations of exosomes from plasma of cancer patients have been associated with spontaneous T cell apoptosis, which is associated in some situations with shortened survival. In this paper we place the "exosome-immune suppression" concept in perspective of other tumor immune evasion mechanisms. We conclude by discussing a novel therapeutic approach to cancer immune suppression by extracorporeal removal of exosomes using hollow fiber filtration technology

  12. SIGNALING MECHANISMS IN SEPSIS-INDUCED IMMUNE DYSFUNCTION

    OpenAIRE

    Hasan, Zirak

    2013-01-01

    Sepsis and subsequent organ failure remain the major cause of mortality in intensive care units in spite of significant research efforts. The lung is the most vulnerable organ affected by early hyper-inflammatory immune response in septic patients. On the other hand, the septic insult induces immune dysfunction in later phases of sepsis which in turn increases susceptibility to infections. The aim of this thesis was to investigate early and late inflammatory mechanisms in abdominal sepsis ind...

  13. Coordination of frontline defense mechanisms under severe oxidative stress.

    Science.gov (United States)

    Kaur, Amardeep; Van, Phu T; Busch, Courtney R; Robinson, Courtney K; Pan, Min; Pang, Wyming Lee; Reiss, David J; DiRuggiero, Jocelyne; Baliga, Nitin S

    2010-07-01

    Complexity of cellular response to oxidative stress (OS) stems from its wide-ranging damage to nucleic acids, proteins, carbohydrates, and lipids. We have constructed a systems model of OS response (OSR) for Halobacterium salinarum NRC-1 in an attempt to understand the architecture of its regulatory network that coordinates this complex response. This has revealed a multi-tiered OS-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking, and various other aspects of metabolism. Through experimental validation of interactions within the OSR regulatory network, we show that despite their inability to directly sense reactive oxygen species, general transcription factors have an important function in coordinating this response. Remarkably, a significant fraction of this OSR was accurately recapitulated by a model that was earlier constructed from cellular responses to diverse environmental perturbations--this constitutes the general stress response component. Notwithstanding this observation, comparison of the two models has identified the coordination of frontline defense and repair systems by regulatory mechanisms that are triggered uniquely by severe OS and not by other environmental stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of gamma rays.

  14. Molecular Mechanisms of Innate Immune Inhibition by Non-Segmented Negative-Sense RNA Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Srirupa; Basler, Christopher F.; Amarasinghe, Gaya K.; Leung, Daisy W.

    2016-08-01

    The host innate immune system serves as the first line of defense against viral infections. Germline-encoded pattern recognition receptors detect molecular patterns associated with pathogens and activate innate immune responses. Of particular relevance to viral infections are those pattern recognition receptors that activate type I interferon responses, which establish an antiviral state. The order Mononegavirales is composed of viruses that possess single-stranded, non-segmented negative-sense (NNS) RNA genomes and are important human pathogens that consistently antagonize signaling related to type I interferon responses. NNS viruses have limited encoding capacity compared to many DNA viruses, and as a likely consequence, most open reading frames encode multifunctional viral proteins that interact with host factors in order to evade host cell defenses while promoting viral replication. In this review, we will discuss the molecular mechanisms of innate immune evasion by select NNS viruses. A greater understanding of these interactions will be critical in facilitating the development of effective therapeutics and viral countermeasures.

  15. Defense mechanisms against radiation induced teratogenic damage in mice

    International Nuclear Information System (INIS)

    Kato, F.; Ootsuyama, A.; Nomoto, S.; Norimura, T.

    2002-01-01

    Experimental studies with mice have established that fetuses at midgestational stage are highly susceptible to malformation at high, but not low, doses of radiation. When DNA damage is produced by a small amount of radiation, it is efficiently eliminated by DNA repair. However, DNA repair is not perfect. There must be defense mechanisms other than DNA repair. In order to elucidate the essential role of p53 gene in apoptotic tissue repair, we compared the incidence of radiation-induced malformations and deaths (deaths after day 10) in wild-type p53 (+/+) mice and null p53 (-/-) mice. For p53 (+/+) mice, an X-ray dose of 2 Gy given at a high dose-rate (450 mGy/min) to fetuses at 9.5 days of gestation was highly lethal and considerably teratogenic whereas it was only slightly lethal but highly teratogenic for p53 (-/-) fetuses. This reciprocal relationship of radiosensitivity to malformations and deaths supports the notion that fetal tissues have a p53 -dependent idguardianln of the tissue that aborts cells bearing radiation-induced teratogenic DNA damage. When an equal dose of 2 Gy given at a 400-fold lower dose-rate (1.2 mGy/min), this dose became not teratogenic for p53 (+/+) fetuses exhibiting p53 -dependent apoptosis, whereas this dose remained teratogenic for p53 (-/-) fetuses unable to carry out apoptosis. Furthermore, when the dose was divided into two equal dose fractions (1+1 Gy) at high dose rate, separated by 24 hours, the incidences of malformations were equal with control level for p53 (+/+), but higher for p53 (-/-) mice. Hence, complete elimination of teratogenic damage from irradiated tissues requires a concerted cooperation of two mechanisms; proficient DNA repair and p53-dependent apoptotic tissue repair

  16. Personality and innate immune defenses in a wild bird: Evidence for the pace-of-life hypothesis.

    Science.gov (United States)

    Jacques-Hamilton, Rowan; Hall, Michelle L; Buttemer, William A; Matson, Kevin D; Gonҫalves da Silva, Anders; Mulder, Raoul A; Peters, Anne

    2017-02-01

    We tested the two main evolutionary hypotheses for an association between immunity and personality. The risk-of-parasitism hypothesis predicts that more proactive (bold, exploratory, risk-taking) individuals have more vigorous immune defenses because of increased risk of parasite exposure. In contrast, the pace-of-life hypothesis argues that proactive behavioral styles are associated with shorter lifespans and reduced investment in immune function. Mechanistically, associations between immunity and personality can arise because personality differences are often associated with differences in condition and stress responsiveness, both of which are intricately linked with immunity. Here we investigate the association between personality (measured as proactive exploration of a novel environment) and three indices of innate immune function (the non-specific first line of defense against parasites) in wild superb fairy-wrens Malurus cyaneus. We also quantified body condition, hemoparasites (none detected), chronic stress (heterophil:lymphocyte ratio) and circulating corticosterone levels at the end of the behavioral test (CORT, in a subset of birds). We found that fast explorers had lower titers of natural antibodies. This result is consistent with the pace-of-life hypothesis, and with the previously documented higher mortality of fast explorers in this species. There was no interactive effect of exploration score and duration in captivity on immune indices. This suggests that personality-related differences in stress responsiveness did not underlie differences in immunity, even though behavioral style did modulate the effect of captivity on CORT. Taken together these results suggest reduced constitutive investment in innate immune function in more proactive individuals. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Human embryo immune escape mechanisms rediscovered by the tumor.

    Science.gov (United States)

    Ridolfi, Laura; Petrini, Massimiliano; Fiammenghi, Laura; Riccobon, Angela; Ridolfi, Ruggero

    2009-01-01

    Towards the end of the 1990s, the two opposing theories on immunosurveillance and immunostimulation were extensively studied by researchers in an attempt to understand the complex mechanisms that regulate the relation between tumors and the host's immune system. Both theories probably have elements that would help us to comprehend how the host can induce anti-tumor clinical responses through stimulation of the immune system and which could also give us a deeper insight into the mechanisms of tumor immunosuppression. The model that most resembles the behavior of tumor cells in terms of growth, infiltration and suppression of the immune system of the environment in which they live is undoubtedly that of the embryonic cell. The fetus behaves like an allogenic transplant within the mother's body, using every means it has to escape from and defend itself against the mother's immune system. The majority of these mechanisms are the same as those found in tumor cells: antigenic loss, lack of expression of classic HLA-I molecules, production of immunosuppressive cytokines, induction of lack of expression of co-stimulatory molecules in antigen presenting cells, and induction of apoptosis in infiltrating lymphocytes, with activation of a type Th2 regulatory lymphocyte response. A careful and comparative study of key mechanisms capable of triggering tolerance or cytotoxicity in both embryonic and tumor cells could prove immensely valuable in designing new strategies for anti-tumor immunotherapy.

  18. Immune defense of wild-caught Norway rats is characterized by increased levels of basal activity but reduced capability to respond to further immune stimulation.

    Science.gov (United States)

    Mirkov, Ivana; Popov Aleksandrov, Aleksandra; Subota, Vesna; Kataranovski, Dragan; Kataranovski, Milena

    2018-03-01

    Studies of wild animals' immunity often use comparison with laboratory-raised individuals. Using such an approach, various data were obtained concerning wild Norway rat's immunity. Lower or higher potential of immune system cells to respond to activation stimuli were shown, because of analysis of disparate parameters and/ or small number of analyzed individuals. Inconsistent differences between laboratory and wild rats were shown too, owing to great response variability in wild rats. We hypothesized that wild rats will express more intense immune activity compared to their laboratory counterparts which live in a less demanding environment. To test this, we analyzed the circulating levels of inflammatory cytokine interleukin-6 (IL-6), a mediator which has a central role in host immune defense. In addition, we examined the activity of the central immune organ, the spleen, including cell proliferation and production of pro-inflammatory cytokines interferon-γ (IFN-γ) and interleukin-17 (IL-17), which are major effectors of cellular adaptive immune response. In order to obtain reasonable insight into the immunity of wild Norway rats, analysis was conducted on a much larger number of individuals compared to other studies. Higher levels of plasma IL-6, higher spleen mass, cellularity and basal IFN-γ production concomitantly with lower basal production of anti-inflammatory cytokine interleukin-10 (IL-10) revealed more intense immune activity in the wild compared to laboratory rats. However, lower responsiveness of their spleen cells' proinflammatory cytokine production to concanavalin A (ConA) stimulation, along with preserved capacity of IL-10 response, might be perceived as an indication of wild rats' reduced capability to cope with incoming environmental stimuli, but also as a means to limit tissue damage. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  19. Two different mechanisms of immune-complex trapping in the mouse spleen during immune responses

    NARCIS (Netherlands)

    Yoshida, K.; van den Berg, T. K.; Dijkstra, C. D.

    1993-01-01

    The capacity of immune-complex (IC) trapping was examined using purified horse radish peroxidase (HRP)-anti-HRP (PAP) on frozen sections of mouse spleen in vitro. We investigated the trapping mechanisms by applying the IC with or without fresh mouse serum added on the spleen sections of naive as

  20. DMBT1 encodes a protein involved in the immune defense and in epithelial differentiation and is highly unstable in cancer

    DEFF Research Database (Denmark)

    Mollenhauer, J; Herbertz, S; Holmskov, U

    2000-01-01

    in the respiratory immune defense. Immunohistochemical analyses revealed that DMBT1 is produced by both tumor-associated macrophages and tumor cells and that it is deregulated in glioblastoma multiforme in comparison to normal brain tissue. Our data further suggest that the proteins CRP-ductin and hensin, both...... of which have been implicated in epithelial differentiation, are the DMBT1 orthologs in mice and rabbits, respectively. These findings and the spatial and temporal distribution of DMBT1 in fetal and adult epithelia suggest that DMBT1 further plays a role in epithelial development. Rearrangements of DMBT1......, DMBT1 is a gene that is highly unstable in cancer and encodes for a protein with at least two different functions, one in the immune defense and a second one in epithelial differentiation....

  1. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine

    NARCIS (Netherlands)

    Klunder, Leon J.; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C. D.

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we

  2. Estimating Herd Immunity to Amphibian Chytridiomycosis in Madagascar Based on the Defensive Function of Amphibian Skin Bacteria

    OpenAIRE

    Bletz, Molly C.; Myers, Jillian; Woodhams, Douglas C.; Rabemananjara, Falitiana C. E.; Rakotonirina, Angela; Weldon, Che; Edmonds, Devin; Vences, Miguel; Harris, Reid N.

    2017-01-01

    For decades, Amphibians have been globally threatened by the still expanding infectious disease, chytridiomycosis. Madagascar is an amphibian biodiversity hotspot where Batrachochytrium dendrobatidis (Bd) has only recently been detected. While no Bd-associated population declines have been reported, the risk of declines is high when invasive virulent lineages become involved. Cutaneous bacteria contribute to host innate immunity by providing defense against pathogens for numerous animals, inc...

  3. Construction and characteristics of questionnaire for the assessment of defense mechanisms: MOD

    Directory of Open Access Journals (Sweden)

    Džamonja-Ignjatović Tamara

    2014-01-01

    Full Text Available Defense mechanisms are psychological constructs of key importance for the assessment of personality and planning therapeutic process. Their assessment is mainly based on interview, observation and projective techniques. Questionnaires, as the self-assessment techniques, apparently are not suitable method for unconscious processes such as defense mechanisms. The paper presents the results of construction of the questionnaire for the assessment of defense mechanisms, abbreviated called MOD (Mechanisms of Defense, which represents an attempt to clarify conceptualization and operationalization of these constructs through a variety of behavioral and emotional manifestations, personal attitudes and beliefs, patterns of interpersonal relationships and feedback from environment. Research objectives included testing of metric characteristics and the factor structure of the questionnaire, as well as its validity for differentiating subjects from clinical and non-clinical populations. The questionnaire has 110 items assessed at the 5-point Likert scale for evaluation of 20 defense mechanisms. The sample consisted of 194 subjects of both sexes, of which 136 students of psychology and social work and 58 nonpsychotic patients from clinical populations. The results showed that the reliability of the scale varies from high to unsatisfactory (Cronbach alpha .82- .35, although for most subscales is around .65-.70. The most of defense mechanisms has one factor structure, whereas from about a third of the subscales two principal components were isolated. Analysis of the structure of mature defense mechanisms clearly derived out four factors corresponding to the presumed mechanisms of defense, while for the groups of neurotic and immature mechanisms were not obtained pure solutions. The questionnaire successfully differentiate clinical from non-clinical sample, based on higher scores on mature and lower scores on immature mechanisms, while the groups did not differ

  4. Scavenging Iron: A Novel Mechanism of Plant Immunity Activation by Microbial Siderophores1[C][W

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W.G.; Rigault, Martine; Riache, Nassima; Joseph, Delphine; Desmaële, Didier; Mouille, Grégory; Boutet, Stéphanie; Soubigou-Taconnat, Ludivine; Renou, Jean-Pierre; Thomine, Sébastien; Expert, Dominique; Dellagi, Alia

    2014-01-01

    Siderophores are specific ferric iron chelators synthesized by virtually all microorganisms in response to iron deficiency. We have previously shown that they promote infection by the phytopathogenic enterobacteria Dickeya dadantii and Erwinia amylovora. Siderophores also have the ability to activate plant immunity. We have used complete Arabidopsis transcriptome microarrays to investigate the global transcriptional modifications in roots and leaves of Arabidopsis (Arabidopsis thaliana) plants after leaf treatment with the siderophore deferrioxamine (DFO). Physiological relevance of these transcriptional modifications was validated experimentally. Immunity and heavy-metal homeostasis were the major processes affected by DFO. These two physiological responses could be activated by a synthetic iron chelator ethylenediamine-di(o-hydroxyphenylacetic) acid, indicating that siderophores eliciting activities rely on their strong iron-chelating capacity. DFO was able to protect Arabidopsis against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. Siderophore treatment caused local modifications of iron distribution in leaf cells visible by ferrocyanide and diaminobenzidine-H2O2 staining. Metal quantifications showed that DFO causes a transient iron and zinc uptake at the root level, which is presumably mediated by the metal transporter iron regulated transporter1 (IRT1). Defense gene expression and callose deposition in response to DFO were compromised in an irt1 mutant. Consistently, plant susceptibility to D. dadantii was increased in the irt1 mutant. Our work shows that iron scavenging is a unique mechanism of immunity activation in plants. It highlights the strong relationship between heavy-metal homeostasis and immunity. PMID:24501001

  5. Seasonality influences cuticle melanization and immune defense in a cricket: support for a temperature-dependent immune investment hypothesis in insects

    Energy Technology Data Exchange (ETDEWEB)

    Fedorka, K. M. [Univ. of Central Florida, Orlando, FL (United States); Copeland, E. K. [Univ. of Central Florida, Orlando, FL (United States); Winterhalter, W. E. [Univ. of Central Florida, Orlando, FL (United States)

    2013-07-18

    To improve thermoregulation in colder environments, insects are expected to darken their cuticles with melanin via the phenoloxidase cascade, a phenomenon predicted by the thermal melanin hypothesis. However, the phenoloxidase cascade also plays a significant role in insect immunity, leading to the additional hypothesis that the thermal environment indirectly shapes immune function via direct selection on cuticle color. Support for the latter hypothesis comes from the cricket Allonemobius socius, where cuticle darkness and immune-related phenoloxidase activity increase with latitude. However, thermal environments vary seasonally as well as geographically, suggesting that seasonal plasticity in immunity may also exist. Although seasonal fluctuations in vertebrate immune function are common (because of flux in breeding or resource abundance), seasonality in invertebrate immunity has not been widely explored. We addressed this possibility by rearing crickets in simulated summer and fall environments and assayed their cuticle color and immune function. Prior to estimating immunity, crickets were placed in a common environment to minimize metabolic rate differences. Individuals reared under fall-like conditions exhibited darker cuticles, greater phenoloxidase activity and greater resistance to the bacteria Serratia marcescens. These data support the hypothesis that changes in the thermal environment modify cuticle color, which indirectly shapes immune investment through pleiotropy. This hypothesis may represent a widespread mechanism governing immunity in numerous systems, considering that most insects operate in seasonally and geographically variable thermal environments.

  6. DMPD: The interferon regulatory factor family in host defense: mechanism of action. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17502370 The interferon regulatory factor family in host defense: mechanism of acti....html) (.csml) Show The interferon regulatory factor family in host defense: mechanism of action. PubmedID 1...7502370 Title The interferon regulatory factor family in host defense: mechanism

  7. A mechanism for trauma induced muscle wasting and immune dysfunction

    Science.gov (United States)

    Madihally, S.; Toner, M.; Yarmush, M.; Mitchell, R.

    A diverse physiological conditions lead to a hypercatabolic state marked by the loss of proteins, primarily derived from skeletal muscle. The sustained loss of proteins results in loss of muscle mass and strength, poor healing, and long-term hospitalization. These problems are further compounded by the deterioration of immunity to infection which is a leading cause of morbidity and mortality of traumatic patients. In an attempt to understand the signal propagation mechanism(s), we tested the role of Interferon-? (IFN-? ) in an animal burn injury model; IFN-? is best conceptualized as a macrophage activating protein and known to modulate a variety of intracellular processes potentially relevant to muscle wasting and immune dysfunction. Mice congenitally -deficient in IFN-? , and IFN-? -Receptor, and wild type (WT) animals treated with IFN-? neutralizing antibody received either a 20% total body surface area burn or a control sham treatment. At days 1, 2, and 7 following treatment, skeletal muscle, peripheral blood, and spleen were harvested from both groups. Overall body weight, protein turnovers, changes in the lymphocyte subpopulations and alterations in the major histocompatibility complex I expression (MHC I) and proliferation capacity of lymphocytes was measured using mixed lymphocyte reaction (MLR). These results indicate that we can prevent both muscle wasting and immune dysfunction. Based on these observations and our previous other animal model results (using insulin therapy), a novel mechanism of interactions leading to muscle wasting and immune dysfunction will be discussed. Further, implications of these findings on future research and clinical therapies will be discussed in detail.

  8. The Child's Demystification of Psychological Defense Mechanisms: A Structural and Developmental Analysis.

    Science.gov (United States)

    Chandler, Michael J.; And Others

    1978-01-01

    Explored the relationships between the cognitive developmental level of preoperational, concrete operational, and formal operational children (N=10) and their success in interpreting and explaining each of eight commonly described mechanisms of psychological defense. (JMB)

  9. [Immune regulation activity and mechanism of Tibetan Kefir exopolysaccharide fractions].

    Science.gov (United States)

    Meng, Li; Zhang, Lanwei

    2009-12-01

    To investigate the effects and mechanism on immune regulation activity in mice of two Tibetan Kefir exoploysaccharides (EPS) with different molecular weight of 0.1 x 10(5) - 3 x 10(5) (fraction 1) and 1.8 x 10(3) (fraction 2). The immune regulation activity experiment was carried out in vitro based on the Functional Assessment Procedure and Test Methods of Health Food, which was issued by Ministry of Health of China. First, we treated mice subjects with EPS at doses of 40 mg/kg, 80 mg/kg, 120 mg/kg through ig. Then we detected the index of immune organs, the ability of antibody production (tested by HC50), activity of NK cell, delayed type hypersensitivity (DTH) and phagocytosis of macrophage in mice. Finally, we examined the expression of Erk protein in Macrophages by Western Blot assay. Fraction 1 could promote HC50, activity of NK cell and DTH in mice which low dose showed better. Fraction 2 could promote DTH, phagocytosis of macrophage which high dose showed better. The expression of Erk and COX-2 had the same trend with Phagocytic index. We verified the two fractions of Tibetan Kefir EPS could enhance immune functions in mice. Fraction 1 regulated immune function through NK cell and B cell while fraction 2 through macrophage cell and T cell. The effects to macrophage of Tibetan Kefir EPS in mice may realize through extra cellular signal-regulated kinase Erk pathway.

  10. [Mechanisms of retroviral immunosuppressive domain-induced immune modulation].

    Science.gov (United States)

    Blinov, V M; Krasnov, G S; Shargunov, A V; Shurdov, M A; Zverev, V V

    2013-01-01

    Immunosuppressive domains (ISD) of viral envelope glycoproteins provide highly pathogenic phenotypes of various retroviruses. ISD interaction with immune cells leads to an inhibition of a response. In the 1980s it was shown that the fragment of ISD comprising of 17 amino acids (named CKS-17) is carrying out such immune modulation. However the underlying mechanisms were not known. The years of thorough research allowed to identify the regulation of Ras-Raf-MEK-MAPK and PI3K-AKT-mTOR cellular pathways as a result of ISD interaction with immune cells. By the way, this leads to decrease of secretion of stimulatory cytokines (e.g., IL-12) and increase of inhibitory, anti-inflammatory ones (e.g., IL-10). One of the receptor tyrosine kinases inducing signal in these pathways acts as the primary target of ISD while other key regulators--cAMP and diacylglycerol (DAG), act as secondary messengers of signal transduction. Immunosuppressive-like domains can be found not only in retroviruses; the presence of ISD within Ebola viral envelope glycoproteins caused extremely hard clinical course of virus-induced hemorrhagic fever. A number of retroviral-origin fragments encoding ISD can be found in the human genome. These regions are expressed in the placenta within genes of syncytins providing a tolerance of mother's immune system to an embryo. The present review is devoted to molecular aspects of retroviral ISD-induced modulation of host immune system.

  11. The molecular mechanisms of signaling by cooperative assembly formation in innate immunity pathways.

    Science.gov (United States)

    Vajjhala, Parimala R; Ve, Thomas; Bentham, Adam; Stacey, Katryn J; Kobe, Bostjan

    2017-06-01

    The innate immune system is the first line of defense against infection and responses are initiated by pattern recognition receptors (PRRs) that detect pathogen-associated molecular patterns (PAMPs). PRRs also detect endogenous danger-associated molecular patterns (DAMPs) that are released by damaged or dying cells. The major PRRs include the Toll-like receptor (TLR) family members, the nucleotide binding and oligomerization domain, leucine-rich repeat containing (NLR) family, the PYHIN (ALR) family, the RIG-1-like receptors (RLRs), C-type lectin receptors (CLRs) and the oligoadenylate synthase (OAS)-like receptors and the related protein cyclic GMP-AMP synthase (cGAS). The different PRRs activate specific signaling pathways to collectively elicit responses including the induction of cytokine expression, processing of pro-inflammatory cytokines and cell-death responses. These responses control a pathogenic infection, initiate tissue repair and stimulate the adaptive immune system. A central theme of many innate immune signaling pathways is the clustering of activated PRRs followed by sequential recruitment and oligomerization of adaptors and downstream effector enzymes, to form higher-order arrangements that amplify the response and provide a scaffold for proximity-induced activation of the effector enzymes. Underlying the formation of these complexes are co-operative assembly mechanisms, whereby association of preceding components increases the affinity for downstream components. This ensures a rapid immune response to a low-level stimulus. Structural and biochemical studies have given key insights into the assembly of these complexes. Here we review the current understanding of assembly of immune signaling complexes, including inflammasomes initiated by NLR and PYHIN receptors, the myddosomes initiated by TLRs, and the MAVS CARD filament initiated by RIG-1. We highlight the co-operative assembly mechanisms during assembly of each of these complexes. Copyright

  12. Dual RNA-seq reveals no plastic transcriptional response of the coccidian parasite Eimeria falciformis to host immune defenses.

    Science.gov (United States)

    Ehret, Totta; Spork, Simone; Dieterich, Christoph; Lucius, Richard; Heitlinger, Emanuel

    2017-09-05

    Parasites can either respond to differences in immune defenses that exist between individual hosts plastically or, alternatively, follow a genetically canalized ("hard wired") program of infection. Assuming that large-scale functional plasticity would be discernible in the parasite transcriptome we have performed a dual RNA-seq study of the lifecycle of Eimeria falciformis using infected mice with different immune status as models for coccidian infections. We compared parasite and host transcriptomes (dual transcriptome) between naïve and challenge infected mice, as well as between immune competent and immune deficient ones. Mice with different immune competence show transcriptional differences as well as differences in parasite reproduction (oocyst shedding). Broad gene categories represented by differently abundant host genes indicate enrichments for immune reaction and tissue repair functions. More specifically, TGF-beta, EGF, TNF and IL-1 and IL-6 are examples of functional annotations represented differently depending on host immune status. Much in contrast, parasite transcriptomes were neither different between Coccidia isolated from immune competent and immune deficient mice, nor between those harvested from naïve and challenge infected mice. Instead, parasite transcriptomes have distinct profiles early and late in infection, characterized largely by biosynthesis or motility associated functional gene groups, respectively. Extracellular sporozoite and oocyst stages showed distinct transcriptional profiles and sporozoite transcriptomes were found enriched for species specific genes and likely pathogenicity factors. We propose that the niche and host-specific parasite E. falciformis uses a genetically canalized program of infection. This program is likely fixed in an evolutionary process rather than employing phenotypic plasticity to interact with its host. This in turn might limit the potential of the parasite to adapt to new host species or niches, forcing

  13. Immature psychological defense mechanisms are associated with greater personal importance of junk food, alcohol, and television.

    Science.gov (United States)

    Costa, Rui Miguel; Brody, Stuart

    2013-10-30

    Immature psychological defense mechanisms are psychological processes that play an important role in suppressing emotional awareness and contribute to psychopathology. In addition, unhealthy food, television viewing, and alcohol consumption can be among the means to escape self-awareness. In contrast, engaging in, and responding fully to specifically penile-vaginal intercourse (PVI) is associated with indices of better emotional regulation, including less use of immature defense mechanisms. There was a lack of research on the association of immature defense mechanisms with personal importance of junk food, alcohol, television, PVI, and noncoital sex. In an online survey, 334 primarily Scottish women completed the Defense Style Questionnaire (DSQ-40), and rated the personal importance of junk food, alcohol, television, PVI, and noncoital sex. Immature defense mechanisms correlated with importance of junk food, alcohol, and television. Importance of PVI correlated with mature defenses, and less use of some component immature defenses. Importance of alcohol correlated with importance of junk food, television, and noncoital sex. Importance of junk food was correlated with importance of television and noncoital sex. The findings are discussed in terms of persons with poorer self-regulatory abilities having more interest in junk food, television, and alcohol, and less interest in PVI. © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Immune evasion mechanisms of Entamoeba histolytica: progression to disease

    Directory of Open Access Journals (Sweden)

    Sharmin eBegum

    2015-12-01

    Full Text Available Entamoeba histolytica (Eh is a protozoan parasite that infects 10% of the world’s population and results in 100,000 deaths/year from amebic dysentery and/or liver abscess. In most cases, this extracellular parasite colonizes the colon by high affinity binding to MUC2 mucin without disease symptoms, whereas in some cases, Eh triggers an aggressive inflammatory response upon invasion of the colonic mucosa. The specific host-parasite factors critical for disease pathogenesis are still not well characterized. From the parasite, the signature events that lead to disease progression are cysteine protease cleavage of the C-terminus of MUC2 that dissolves the mucus layer followed by Eh binding and cytotoxicity of the mucosal epithelium. The host mounts an ineffective excessive host pro-inflammatory response following contact with host cells that causes tissue damage and participates in disease pathogenesis as Eh escapes host immune clearance by mechanisms that are not completely understood. Ameba can modulate or destroy effector immune cells by inducing neutrophil apoptosis and suppressing respiratory burst or nitric oxide (NO production from macrophages. Eh adherence to the host cells also induce multiple cytotoxic effects that can promote cell death through phagocytosis, apoptosis or by trogocytosis (ingestion of living cells that might play critical roles in immune evasion. This review focuses on the immune evasion mechanisms that Eh uses to survive and induce disease manifestation in the host.

  15. Immune Evasion Mechanisms of Entamoeba histolytica: Progression to Disease.

    Science.gov (United States)

    Begum, Sharmin; Quach, Jeanie; Chadee, Kris

    2015-01-01

    Entamoeba histolytica (Eh) is a protozoan parasite that infects 10% of the world's population and results in 100,000 deaths/year from amebic dysentery and/or liver abscess. In most cases, this extracellular parasite colonizes the colon by high affinity binding to MUC2 mucin without disease symptoms, whereas in some cases, Eh triggers an aggressive inflammatory response upon invasion of the colonic mucosa. The specific host-parasite factors critical for disease pathogenesis are still not well characterized. From the parasite, the signature events that lead to disease progression are cysteine protease cleavage of the C-terminus of MUC2 that dissolves the mucus layer followed by Eh binding and cytotoxicity of the mucosal epithelium. The host mounts an ineffective excessive host pro-inflammatory response following contact with host cells that causes tissue damage and participates in disease pathogenesis as Eh escapes host immune clearance by mechanisms that are not completely understood. Ameba can modulate or destroy effector immune cells by inducing neutrophil apoptosis and suppressing respiratory burst or nitric oxide (NO) production from macrophages. Eh adherence to the host cells also induce multiple cytotoxic effects that can promote cell death through phagocytosis, apoptosis or by trogocytosis (ingestion of living cells) that might play critical roles in immune evasion. This review focuses on the immune evasion mechanisms that Eh uses to survive and induce disease manifestation in the host.

  16. Vaginal orgasm is associated with less use of immature psychological defense mechanisms.

    Science.gov (United States)

    Brody, Stuart; Costa, Rui Miguel

    2008-05-01

    Freud implied a link between inability to have a vaginal orgasm and psychosexual immaturity. Since Kinsey, many sexologists have asserted that no such link exists. However, empirical testing of the issue has been lacking. The objective was to determine the relationship between different sexual behavior triggers of female orgasm and use of immature psychological defense mechanisms. Women reported their past month frequency of different sexual behaviors and corresponding orgasm rates and completed the Defense Style Questionnaire (DSQ-40). The association between ability to have vaginal intercourse orgasm (versus clitoral orgasm) and the use of DSQ-40 immature psychological defense mechanisms (associated with various psychopathologies) was examined. In a sample of 94 healthy Portuguese women, vaginal orgasm (triggered solely by penile-vaginal intercourse) was associated with less use of DSQ-40 immature defenses. Vaginal orgasm was associated with less somatization, dissociation, displacement, autistic fantasy, devaluation, and isolation of affect. Orgasm from clitoral stimulation or combined clitoral-intercourse stimulation was not associated with less use of immature defenses, and was associated with more use of some immature defenses. In one regression analysis, more masturbation and less vaginal orgasm consistency made independent contributions to the statistical prediction of immature defenses. In another regression analysis, any use of extrinsic clitoral stimulation for intercourse orgasm, and lack of any vaginal orgasm, made independent contributions to the statistical prediction of immature defenses. Vaginally anorgasmic women had immature defenses scores comparable to those of established (depression, social anxiety disorder, panic disorder, and obsessive-compulsive disorder) outpatient psychiatric groups. Results were not confounded by social desirability responding or relationship quality. The results linking penile-vaginal orgasm with less use of immature

  17. The role of earthworm defense mechanisms in ecotoxicity studies

    Czech Academy of Sciences Publication Activity Database

    Roubalová, Radka; Procházková, Petra; Dvořák, Jiří; Škanta, František; Bilej, Martin

    2015-01-01

    Roč. 12, č. 2015 (2015), s. 203-213 ISSN 1824-307X R&D Projects: GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : pollution * immune system * earthworms Subject RIV: EC - Immunology Impact factor: 0.754, year: 2015

  18. Immune mechanisms in fish skin against monogeneans--a model.

    Science.gov (United States)

    Buchmann, K

    1999-01-01

    Host responses against skin inhabiting monogeneans are commonly observed but the responsible immune mechanisms in the fish skin are sufficiently described. Based on recent knowledge of fish immunity and skin response mechanisms in mammals a model for the skin immunity in fish to monogenean infections is proposed. Important cellular components of the model are the epithelial cells, the mucous cells and leucocytes. The release of cytokines, e.g., IL-1, following mechanical or chemical injury of the epithelial cells, initiates a series of events leading to decrease of the ectoparasite population. Cytokines (e.g., IL-1, TNF, INF) are suggested to affect secretions from mucous cell and attract neutrophils and macrophages. Leukotrienes are probably involved in the inflammatory reactions. The subsequent production of humoral substances (among others complement factors and peptides) could be responsible for the antiparasitic response in the later stages of infection. Although non-specific factors dominate the response, the involvement of specific antibodies and lymphocytes cannot be excluded.

  19. Stress, depression and immunity: the role of defense and coping styles

    NARCIS (Netherlands)

    Olff, M.

    1999-01-01

    It is by now widely recognized that acute and chronic stress have an impact on the immune system. Acute stress may have a stimulating effect on the immune system, while in the case of chronic stress--and in particular in depression--the immune system may be down-regulated. However, there is

  20. Stress, depression and immunity : the role of defense and coping styles

    NARCIS (Netherlands)

    Olff, M

    1999-01-01

    It is by now widely recognized that acute and chronic stress have an impact on the immune system. Acute stress may have a stimulating effect on the immune system, while in the case of chronic stress - and in particular in depression - the immune system may be down-regulated. However, there is

  1. Transcriptome analysis describing new immunity and defense genes in peripheral blood mononuclear cells of rheumatoid arthritis patients.

    Directory of Open Access Journals (Sweden)

    Vitor Hugo Teixeira

    Full Text Available BACKGROUND: Large-scale gene expression profiling of peripheral blood mononuclear cells from Rheumatoid Arthritis (RA patients could provide a molecular description that reflects the contribution of diverse cellular responses associated with this disease. The aim of our study was to identify peripheral blood gene expression profiles for RA patients, using Illumina technology, to gain insights into RA molecular mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: The Illumina Human-6v2 Expression BeadChips were used for a complete genome-wide transcript profiling of peripheral blood mononuclear cells (PBMCs from 18 RA patients and 15 controls. Differential analysis per gene was performed with one-way analysis of variance (ANOVA and P values were adjusted to control the False Discovery Rate (FDR<5%. Genes differentially expressed at significant level between patients and controls were analyzed using Gene Ontology (GO in the PANTHER database to identify biological processes. A differentially expression of 339 Reference Sequence genes (238 down-regulated and 101 up-regulated between the two groups was observed. We identified a remarkably elevated expression of a spectrum of genes involved in Immunity and Defense in PBMCs of RA patients compared to controls. This result is confirmed by GO analysis, suggesting that these genes could be activated systemically in RA. No significant down-regulated ontology groups were found. Microarray data were validated by real time PCR in a set of nine genes showing a high degree of correlation. CONCLUSIONS/SIGNIFICANCE: Our study highlighted several new genes that could contribute in the identification of innovative clinical biomarkers for diagnostic procedures and therapeutic interventions.

  2. Intrauterine Defensive Mechanism of Amniotic Fluid and Fetal Membranes

    OpenAIRE

    金山, 尚裕

    1994-01-01

    To determine the intrauterine defensive role of urinary trypsin inhibitor (UTI), we studied the effects of UTI in amniotic fluid, fetal membranes and myometrium. The level of UTI was 94±34U/ml in neonatal urine (compared to adult urine 8.0±6.0U/ml) and 88±37U/ml in amniotic fluid. This may indicate that the main source of UTI in the amniotic fluid is the fetal urine. UTI was found to be concentrated in vernix, fetal intestine, amniotic membranes and uterine myometrium. Immunostaining of term ...

  3. Effective but costly, evolved mechanisms of defense against a virulent opportunistic pathogen in Drosophila melanogaster.

    OpenAIRE

    Yixin H Ye; Stephen F Chenoweth; Elizabeth A McGraw

    2009-01-01

    Drosophila harbor substantial genetic variation for antibacterial defense, and investment in immunity is thought to involve a costly trade-off with life history traits, including development, life span, and reproduction. To understand the way in which insects invest in fighting bacterial infection, we selected for survival following systemic infection with the opportunistic pathogen Pseudomonas aeruginosa in wild-caught Drosophila melanogaster over 10 generations. We then examined genome-wide...

  4. Early Family Relationships Predict Children’s Emotion Regulation and Defense Mechanisms

    Directory of Open Access Journals (Sweden)

    Jallu Lindblom

    2016-12-01

    Full Text Available Early family relationships have been suggested to influence the development of children’s affect regulation, involving both emotion regulation and defense mechanisms. However, we lack research on the specific family predictors for these two forms of affect regulation, which have been conceptualized to differ in their functions and accessibility to consciousness. Accordingly, we examine how the (a quality and (b timing of family relationships during infancy predict child’s later emotion regulation and defense mechanisms. Parents (N = 703 reported autonomy and intimacy in marital and parenting relationships at the child’s ages of 2 and 12 months, and the child’s use of emotion regulation and immature and neurotic defenses at 7 to 8 years. As hypothesized, the results showed that functional early family relationships predicted children’s efficient emotion regulation, whereas dysfunctional relationships predicted reliance on defense mechanisms in middle childhood. Further, results showed a timing effect for neurotic defenses, partially confirming our hypothesis of early infancy being an especially important period for the development of defense mechanisms. The findings are discussed from the viewpoints of attachment and family dynamics, emotional self-awareness, and sense of security.

  5. [Psychometric assessment of defense mechanisms: correlation between questionnaire and expert rating. Initial study of validity].

    Science.gov (United States)

    Reister, G; Fellhauer, R F; Franz, M; Wirth, T; Schellberg, D; Schepank, H; Tress, W

    1993-01-01

    Within the limits of an epidemiological longitudinal field survey on prevalence and course of psychogenic disorders a high-risk-population suffering from medical psychogenic impairment was investigated. The study was conducted in order to verify an etiological multi-level-model of psychogenic disorders in relation to the socialempiric variables "critical life events" and "social support" as well as the depth psychological oriented construct "personality". Besides other instruments a self rating scale based on Vallant's hierarchical model of defense, i.e. the german adaptation of the DSQ (Defense Style Questionnaire) of Bond and coworkers, was used for the accurate measurement of relevant personality parameters. Although defense processes predominantly work unconscious, manifestations of defense mechanisms could be measured indirectly by means of the rating scale. Its essential dimensions separated clinical patients from a group of healthy controls. Furthermore an immature organisation of defense was found to be related to psychogenic impairment. Concerning self- and expert-rating a significant correlation between "immature defense" and the defense mechanisms "schizoid phantasy", "projection" and "acting out" was proved.

  6. Studies on defense mechanism against xenobiotics in rats, using gold as a model

    International Nuclear Information System (INIS)

    Sugawa-Katayama, Yohko; Kojima, Akiko; Nakano, Yukihiro.

    1994-01-01

    For self-protection, a living organism has a special mechanism to prevent xenobiotics from being absorbed through the gastrointestinal tract. This led to the present study on the defense mechanism of the gastrointestinal tract where foods are digested and absorbed. The results obtained from this study showed that 1) starvation caused an insufficiency of the defense mechanism against xenobiotics in jejunal absorptive cells and Kupffer cells, 2) after refeeding diets, a reparative process occurred at the damaged cell sites, resulting in recovery of the defense mechanism against xenobiotics, and 3) a 5% fat diet seemed to be the best fat level for recovery of the defense mechanism against xenobiotics. In the nutritional point of view, the 5% fat diet is equivalent to 0.11 in fat energy ratio (fat energy/total energy of the diet). These data suggest that a diet with a much lower fat energy (equivalent to 0.11) can give a good effect on recovery of the defense mechanism against xenobiotics in the gastrointestinal tract and the liver. (author)

  7. Defence mechanisms and immune evasion in the interplay between the humane immune system and Plasmodium falciparum

    DEFF Research Database (Denmark)

    Theander, T G

    1992-01-01

    Immunity to P. falciparum malaria is developed as a result of long term exposure to the parasite and depends on immunological memory. The key directors in immune recognition and regulation of the immunological responses are the T-cells. It seems reasonable to propose that immunity is acquired when...... with development of immunity. Several mechanisms seem to be operating. 1) Induction of the immune response to some macromolecules is avoided because the parasites are living inside host cells during part of their life cycle, and the reaction to other molecules is apparently avoided by mimicry of host molecules. 2...

  8. Immune evasion mechanisms of human papillomavirus: An update.

    Science.gov (United States)

    Steinbach, Alina; Riemer, Angelika B

    2018-01-15

    Human papillomavirus (HPV) is the most frequently sexually transmitted agent in the world. It can cause cervical and other anogenital malignancies, and oropharyngeal cancer. HPV has the unique ability to persist in the host's epithelium for a long time-longer than most viruses do-which is necessary to complete its replication cycle. To this end, HPV has developed a variety of immune evasion mechanisms, which unfortunately also favor the progression of the disease from infection to chronic dysplasia and eventually to cancer. This article summarizes the current knowledge about HPV immune evasion strategies. A special emphasis lies in HPV-mediated changes of the antigen processing machinery, which is generating epitopes for T cells and contributes to the detectability of infected cells. © 2017 UICC.

  9. Innate immune defenses exhibit circadian rhythmicity and differential temporal sensitivity to a bacterial endotoxin in Nile tilapia (Oreochromis niloticus)

    DEFF Research Database (Denmark)

    Lazado, Carlo Cabacang; Skov, Peter Vilhelm; Pedersen, Per Bovbjerg

    2016-01-01

    The present study investigated the daily dynamics of humoral immune defenses and the temporal influence in the sensitivity of these responses to a bacterial endotoxin in Nile tilapia (Oreochromis niloticus). The first experiment subjected the fish to two photoperiod conditions, 12L:12D (LD) and 0L...... experiment, fish were injected with bacterial endotoxin lipopolysaccharide (LPS) either at ZT3 (day) or at ZT15 (night) to evaluate the temporal sensitivity of humoral immunity to a pathogen-associated molecular pattern. The results demonstrated that responses to LPS were gated by the time of day. LPS...... significantly modulated serum ALP and ANTI activities but only when the endotoxin was administered at ZT3. Serum LYZ and PER were stimulated at both injection times but with differing response profiles. Modulated LYZ activity was persistent when injected at ZT3 but transient when LPS was applied at ZT15...

  10. In Defense of a Heuristic Interpretation of Quantum Mechanics

    Science.gov (United States)

    Healy, Eamonn F.

    2010-01-01

    Although the presentation of quantum mechanics found in traditional textbooks is intellectually well founded, it suffers from a number of deficiencies. Specifically introducing quantum mechanics as a solution to the arcane dilemma, the ultraviolet catastrophe, does little to impress a nonscientific audience of the tremendous paradigmatic shift…

  11. The Comparison of Defense Mechanism Styles and Personality Characteristics in Addicts and Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Mohsen Ahmadi

    2012-11-01

    Full Text Available Aim: The purpose of this study was to comprise of psychological defense mechanism styles and personality characteristics in addicts and healthy individuals. Method: In this causal-comparative study, 70 addicts person (with an average age of 37.29±9.81and the age range 23 to 58 years were selected via accessible sampling method of clinics and Hamadan’s addicted self-representing center during the Autumn of 2011, The number of 70 relatives of these people that demographic variables were matched as possible with the comparison group were selected. Both groups were asked to respond to the defense mechanism style and Eysenk personality Questionnaires. Results: The result of this study showed that the scores mean of addicts were higher than healthy people on immature defense mechanism style, neourotism, and neurotic and extraversion personality characteristics and lower than in mature defense style variables. Conclusion: Based on the result of this study there was a significant difference between addict individuals and healthy people in defense mechanism and personality characteristics.

  12. A direct comparison of the defense mechanisms of nondepressed people and depressed psychiatric inpatients.

    Science.gov (United States)

    Margo, G M; Greenberg, R P; Fisher, S; Dewan, M

    1993-01-01

    This report presents a direct comparison of defensive styles (as measured by the Defense Mechanisms Inventory [DMI]) in a sample of depressed psychiatric inpatients and samples of nondepressed male and female normative groups. Consistent with the "depressive realism" literature, nondepressed men and women were more likely than their depressed counterparts to bias their perceptions in an overly cheerful, optimistic direction. Counternormative sex differences were also found. Depressed men were more likely to use internalizing defenses and depressed women were more likely to use externalizing defenses than their respective nondepressed comparison groups. Overall, as has been speculated, there was a relationship within depressed subjects between depression severity and the amount of negatively biased self-perception.

  13. Isonitrosoacetophenone drives transcriptional reprogramming in Nicotiana tabacum cells in support of innate immunity and defense.

    Directory of Open Access Journals (Sweden)

    Arnaud T Djami-Tchatchou

    Full Text Available Plants respond to various stress stimuli by activating broad-spectrum defense responses both locally as well as systemically. As such, identification of expressed genes represents an important step towards understanding inducible defense responses and assists in designing appropriate intervention strategies for disease management. Genes differentially expressed in tobacco cell suspensions following elicitation with isonitrosoacetophenone (INAP were identified using mRNA differential display and pyro-sequencing. Sequencing data produced 14579 reads, which resulted in 198 contigs and 1758 singletons. Following BLAST analyses, several inducible plant defense genes of interest were identified and classified into functional categories including signal transduction, transcription activation, transcription and protein synthesis, protein degradation and ubiquitination, stress-responsive, defense-related, metabolism and energy, regulation, transportation, cytoskeleton and cell wall-related. Quantitative PCR was used to investigate the expression of 17 selected target genes within these categories. Results indicate that INAP has a sensitising or priming effect through activation of salicylic acid-, jasmonic acid- and ethylene pathways that result in an altered transcriptome, with the expression of genes involved in perception of pathogens and associated cellular re-programming in support of defense. Furthermore, infection assays with the pathogen Pseudomonas syringae pv. tabaci confirmed the establishment of a functional anti-microbial environment in planta.

  14. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mohammed Saeed-Zidane

    Full Text Available Various environmental insults including diseases, heat and oxidative stress could lead to abnormal growth, functions and apoptosis in granulosa cells during ovarian follicle growth and oocyte maturation. Despite the fact that cells exposed to oxidative stress are responding transcriptionally, the potential release of transcripts associated with oxidative stress response into extracellular space through exosomes is not yet determined. Therefore, here we aimed to investigate the effect of oxidative stress in bovine granulosa cells in vitro on the cellular and exosome mediated defense mechanisms. Bovine granulosa cells were aspirated from ovarian follicles and cultured in DMEM/F-12 Ham culture medium supplemented with 10% exosome-depleted fetal bovine serum. In the first experiment sub-confluent cells were treated with 5 μM H2O2 for 40 min to induce oxidative stress. Thereafter, cells were subjected to ROS and mitochondrial staining, cell proliferation and cell cycle assays. Furthermore, gene and protein expression analysis were performed in H2O2-challenged versus control group 24 hr post-treatment using qRT-PCR and immune blotting or immunocytochemistry assay, respectively. Moreover, exosomes were isolated from spent media using ultracentrifugation procedure, and subsequently used for RNA isolation and qRT-PCR. In the second experiment, exosomes released by granulosa cells under oxidative stress (StressExo or those released by granulosa cells without oxidative stress (NormalExo were co-incubated with bovine granulosa cells in vitro to proof the potential horizontal transfer of defense molecules from exosomes to granulosa cells and investigate any phenotype changes. Exposure of bovine granulosa cells to H2O2 induced the accumulation of ROS, reduced mitochondrial activity, increased expression of Nrf2 and its downstream antioxidant genes (both mRNA and protein, altered the cell cycle transitions and induced cellular apoptosis. Granulosa cells

  15. Estimating Herd Immunity to Amphibian Chytridiomycosis in Madagascar Based on the Defensive Function of Amphibian Skin Bacteria

    Directory of Open Access Journals (Sweden)

    Molly C. Bletz

    2017-09-01

    Full Text Available For decades, Amphibians have been globally threatened by the still expanding infectious disease, chytridiomycosis. Madagascar is an amphibian biodiversity hotspot where Batrachochytrium dendrobatidis (Bd has only recently been detected. While no Bd-associated population declines have been reported, the risk of declines is high when invasive virulent lineages become involved. Cutaneous bacteria contribute to host innate immunity by providing defense against pathogens for numerous animals, including amphibians. Little is known, however, about the cutaneous bacterial residents of Malagasy amphibians and the functional capacity they have against Bd. We cultured 3179 skin bacterial isolates from over 90 frog species across Madagascar, identified them via Sanger sequencing of approximately 700 bp of the 16S rRNA gene, and characterized their functional capacity against Bd. A subset of isolates was also tested against multiple Bd genotypes. In addition, we applied the concept of herd immunity to estimate Bd-associated risk for amphibian communities across Madagascar based on bacterial antifungal activity. We found that multiple bacterial isolates (39% of all isolates cultured from the skin of Malagasy frogs were able to inhibit Bd. Mean inhibition was weakly correlated with bacterial phylogeny, and certain taxonomic groups appear to have a high proportion of inhibitory isolates, such as the Enterobacteriaceae, Pseudomonadaceae, and Xanthamonadaceae (84, 80, and 75% respectively. Functional capacity of bacteria against Bd varied among Bd genotypes; however, there were some bacteria that showed broad spectrum inhibition against all tested Bd genotypes, suggesting that these bacteria would be good candidates for probiotic therapies. We estimated Bd-associated risk for sampled amphibian communities based on the concept of herd immunity. Multiple amphibian communities, including those in the amphibian diversity hotspots, Andasibe and Ranomafana, were

  16. Estimating Herd Immunity to Amphibian Chytridiomycosis in Madagascar Based on the Defensive Function of Amphibian Skin Bacteria.

    Science.gov (United States)

    Bletz, Molly C; Myers, Jillian; Woodhams, Douglas C; Rabemananjara, Falitiana C E; Rakotonirina, Angela; Weldon, Che; Edmonds, Devin; Vences, Miguel; Harris, Reid N

    2017-01-01

    For decades, Amphibians have been globally threatened by the still expanding infectious disease, chytridiomycosis. Madagascar is an amphibian biodiversity hotspot where Batrachochytrium dendrobatidis ( Bd ) has only recently been detected. While no Bd -associated population declines have been reported, the risk of declines is high when invasive virulent lineages become involved. Cutaneous bacteria contribute to host innate immunity by providing defense against pathogens for numerous animals, including amphibians. Little is known, however, about the cutaneous bacterial residents of Malagasy amphibians and the functional capacity they have against Bd . We cultured 3179 skin bacterial isolates from over 90 frog species across Madagascar, identified them via Sanger sequencing of approximately 700 bp of the 16S rRNA gene, and characterized their functional capacity against Bd . A subset of isolates was also tested against multiple Bd genotypes. In addition, we applied the concept of herd immunity to estimate Bd -associated risk for amphibian communities across Madagascar based on bacterial antifungal activity. We found that multiple bacterial isolates (39% of all isolates) cultured from the skin of Malagasy frogs were able to inhibit Bd . Mean inhibition was weakly correlated with bacterial phylogeny, and certain taxonomic groups appear to have a high proportion of inhibitory isolates, such as the Enterobacteriaceae, Pseudomonadaceae, and Xanthamonadaceae (84, 80, and 75% respectively). Functional capacity of bacteria against Bd varied among Bd genotypes; however, there were some bacteria that showed broad spectrum inhibition against all tested Bd genotypes, suggesting that these bacteria would be good candidates for probiotic therapies. We estimated Bd -associated risk for sampled amphibian communities based on the concept of herd immunity. Multiple amphibian communities, including those in the amphibian diversity hotspots, Andasibe and Ranomafana, were estimated to be

  17. Parental investment matters for maternal and offspring immune defense in the mouthbrooding cichlid Astatotilapia burtoni.

    Science.gov (United States)

    Keller, Isabel S; Salzburger, Walter; Roth, Olivia

    2017-12-20

    Parental care, while increasing parental fitness through offspring survival, also bears cost to the care-giving parent. Consequentially, trade offs between parental care and other vitally important traits, such as the immune system seem evident. In co-occurring phases of parental care and immunological challenges negative consequences through a resource allocation trade off on both the parental and the offspring conditions can be predicted. While the immune system reflects parental stress conditions, parental immunological investments also boost offspring survival via the transfer of immunological substances (trans-generational immune priming). We investigated this relationship in the mouthbrooding East African cichlid Astotatilapia burtoni. Prior to mating, females were exposed to an immunological activation, while others remained immunologically naïve. Correspondingly, the immunological status of females was either examined directly after reproduction or after mouthbrooding had ceased. Offspring from both groups were exposed to immunological challenges to assess the extent of trans-generational immune priming. As proxy for immune status, cellular immunological activity and gene expression were determined. Both reproducing and mouthbrooding females allocate their resources towards reproduction. While upon reproduction the innate immune system was impeded, mouthbrooding females showed an attenuation of inflammatory components. Juveniles from immune challenged mouthbrooding females showed downregulation of immune and life history candidate genes, implying a limitation of trans-generational plasticity when parents experience stress during the costly reproductive phase. Our results provide evidence that both parental investment via mouthbrooding and the rise of the immunological activity upon an immune challenge are costly traits. If applied simultaneously, not only mothers seem to be impacted in their performance, but also offspring are impeded in their ability to

  18. Evaluation of Traditional Medicines III: The Mechanism of Immune ...

    African Journals Online (AJOL)

    These results show that PHELA did not stimulate Th1 cytokines of a normal immune system but stimulated them when the immune system was suppressed by cyclosporine-A. In conclusion, PHELA is an immune-stimulant to a compromised immune system. Key words: PHELA, traditional medicine, cyclosporine-A, cytokines, ...

  19. Genetic and phenotypic relationships between immune defense, melanism and life-history traits at different temperatures and sexes in Tenebrio molitor.

    Science.gov (United States)

    Prokkola, J; Roff, D; Kärkkäinen, T; Krams, I; Rantala, M J

    2013-08-01

    Insect cuticle melanism is linked to a number of life-history traits, and a positive relationship is hypothesized between melanism and the strength of immune defense. In this study, the phenotypic and genetic relationships between cuticular melanization, innate immune defense, individual development time and body size were studied in the mealworm beetle (Tenebrio molitor) using three different temperatures with a half-sib breeding design. Both innate immune defense and cuticle darkness were higher in females than males, and a positive correlation between the traits was found at the lowest temperature. The effect of temperature on all the measured traits was strong, with encapsulation ability and development time decreasing and cuticle darkness increasing with a rise in temperature, and body size showing a curved response. The analysis showed a highly integrated system sensitive to environmental change involving physiological, morphological and life-history traits.

  20. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    International Nuclear Information System (INIS)

    Yamaoka, K.; Nomura, T.; Kojima, S.

    2000-01-01

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted α-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O 2 - to H 2 O 2 , the question as to whether the resultant H 2 O 2 is further detoxicated into H 2 O and O 2 or not must still be evaluated. Hence, we studied

  1. Ironing Out the Wrinkles in Host Defense: Interactions between Iron Homeostasis and Innate Immunity

    Science.gov (United States)

    Wang, Lijian; Cherayil, Bobby J.

    2009-01-01

    Iron is an essential micronutrient for both microbial pathogens and their mammalian hosts. Changes in iron availability and distribution have significant effects on pathogen virulence and on the immune response to infection. Recent advances in our understanding of the molecular regulation of iron metabolism have shed new light on how alterations in iron homeostasis both contribute to and influence innate immunity. In this article, we review what is currently known about the role of iron in the response to infection. PMID:20375603

  2. Immunological orchestration of zinc homeostasis: The battle between host mechanisms and pathogen defenses.

    Science.gov (United States)

    Subramanian Vignesh, Kavitha; Deepe, George S

    2016-12-01

    The importance of Zn ions (Zn) in regulating development and functions of the immune system is well established. However, recent years have witnessed a surge in our knowledge of how immune cells choreograph Zn regulatory mechanisms to combat the persistence of pathogenic microbes. Myeloid and lymphoid populations manipulate intracellular and extracellular Zn metabolism via Zn binding proteins and transporters in response to immunological signals and infection. Rapid as well as delayed changes in readily exchangeable Zn, also known as free Zn and the Zn proteome are crucial in determining activation of immune cells, cytokine responses, signaling and nutritional immunity. Recent studies have unearthed distinctive Zn modulatory mechanisms employed by specialized immune cells and necessitate an understanding of the Zn handling behavior in immune responses to infection. The focus of this review, therefore, stems from novel revelations of Zn intoxication, sequestration and signaling roles deployed by different immune cells, with an emphasis on innate immunity, to challenge microbial parasitization and cope with pathogen insult. Published by Elsevier Inc.

  3. Host Innate Immunity against Hepatitis E Virus and Viral Evasion Mechanisms.

    Science.gov (United States)

    Kang, Sangmin; Myoung, Jinjong

    2017-10-28

    Hepatitis E virus (HEV) infections cause epidemic or sporadic acute hepatitis, which are mostly self-limiting. However, viral infection in immunocompromised patients and pregnant women may result in serious consequences, such as chronic hepatitis and liver damage, mortality of the latter of which reaches up to 20-30%. Type I interferon (IFN)-induced antiviral immunity is known to be the first-line defense against virus infection. Upon HEV infection in the cell, the virus genome is recognized by pathogen recognition receptors, leading to rapid activation of intracellular signaling cascades. Expression of type I IFN triggers induction of a barrage of IFN-stimulated genes, helping the cells cope with viral infection. Interestingly, some of the HEV-encoded genes seem to be involved in disrupting signaling cascades for antiviral immune responses, and thus crippling cytokine/chemokine production. Antagonistic mechanisms of type I IFN responses by HEV have only recently begun to emerge, and in this review, we summarize known HEV evasion strategies and compare them with those of other hepatitis viruses.

  4. Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses

    Science.gov (United States)

    Feng, Pinghui; Moses, Ashlee; Früh, Klaus

    2015-01-01

    γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies. PMID:23735334

  5. Identification of a serine proteinase homolog (Sp-SPH) involved in immune defense in the mud crab Scylla paramamosain.

    Science.gov (United States)

    Zhang, Qiu-xia; Liu, Hai-peng; Chen, Rong-yuan; Shen, Kai-li; Wang, Ke-jian

    2013-01-01

    Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH), originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus), bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN), and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, Pparahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain.

  6. Identification of a Serine Proteinase Homolog (Sp-SPH) Involved in Immune Defense in the Mud Crab Scylla paramamosain

    Science.gov (United States)

    Zhang, Qiu-xia; Liu, Hai-peng; Chen, Rong-yuan; Shen, Kai-li; Wang, Ke-jian

    2013-01-01

    Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH), originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus), bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN), and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, Pparahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain. PMID:23724001

  7. Effects of Sex, Social Desirability, and Birth Order on the Defense Mechanisms Inventory.

    Science.gov (United States)

    Dudley, Gary E.

    1978-01-01

    Investigated effects of sex difference, social desirability instructions, and birth order of respondents on defense mechanisms inventory (DMI). Sex difference was found in projection only. Social desirability effects were found in turning-against-others, projection, principalization, and reversal. Thus, an interpretive caution is in order…

  8. A quorum-sensing-induced bacteriophage defense mechanism

    DEFF Research Database (Denmark)

    Høyland-Kroghsbo, Nina Molin; Mærkedahl, Rasmus Baadsgaard; Svenningsen, Sine

    2013-01-01

    of uninfected survivor cells after a potent attack by virulent phages. Notably, this mechanism may apply to a broader range of phages, as AHLs also reduce the risk of ¿ phage infection through a different receptor. IMPORTANCE To enable the successful manipulation of bacterial populations, a comprehensive...... sensing plays an important role in determining the susceptibility of E. coli to infection by bacteriophages ¿ and ¿. On the basis of our findings in the classical Escherichia coli-¿ model system, we suggest that quorum sensing may serve as a general strategy to protect bacteria specifically under...

  9. Transcriptomic variation of locally-infected skin of Epinephelus coioides reveals the mucosal immune mechanism against Cryptocaryon irritans.

    Science.gov (United States)

    Hu, Yazhou; Li, Anxing; Xu, Yang; Jiang, Biao; Lu, Geling; Luo, Xiaochun

    2017-07-01

    Fish skin is the largest immunologically active mucosal organ, providing first-line defense against external pathogens. However, the skin-associated immune mechanisms of fish are still unclear. Cryptocaryon irritans is an obligate ectoparasitic ciliated protozoan that infects almost all marine fish, and is believed to be an excellent pathogen model to study fish mucosal immunity. In this study, a de novo transcriptome assembly of Epinephelus coioides skin post C. irritans tail-infection was performed for the first time using the Illumina HiSeq™ 2500 system. Comparative analyses of infected skin (group Isk) and uninfected skin (group Nsk) from the same challenged fish and control skin (group C) from uninfected control fish were conducted. As a result, a total of 91,082 unigenes with an average length of 2880 base pairs were obtained and among them, 38,704 and 48,617 unigenes were annotated based on homology with matches in the non-redundant and zebrafish database, respectively. Pairwise comparison resulted in 10,115 differentially-expressed genes (DEGs) in the Isk/C group comparison (4,983 up-regulated and 5,132 down-regulated), 2,275 DEGs in the Isk/Nsk group comparison (1,319 up-regulated and 956 down-regulated) and 4,566 DEGs in the Nsk/C group comparison (1,534 up-regulated and 3,032 down-regulated). Seven immune-related categories including 91 differentially-expressed immune genes (86 up-regulated and 5 down-regulated) were scrutinized. Both DEGs and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and immune-related gene expression analysis were used, and both analyses showed that the genes were more significantly altered in the locally-infected skin than in the uninfected skin of the same challenged fish. This suggests the skin's local immune response is important for host defense against this ectoparasite infection. Innate immune molecules, including hepcidin, C-type lectin, transferrin, transferrin receptor protein, serum amyloid A

  10. Confronting actual influence of radiation on human bodies and biological defense mechanism

    International Nuclear Information System (INIS)

    Matsubara, Junko

    2012-01-01

    After the accident at Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company, social, economical, psychological pressures on local residents and fears of radiation among the general public have not been resolved. Based on the assumption that the negligence of specialists to clearly explain the influence of radiation on human bodies to the general public is the factor for above mentioned pressures and fears, the influence of radiation from a realistic view was discussed. The topics covered are: (1) understanding the meaning of radiation regulation, (2) radiation and threshold values, (3) actual influence of low-dose radiation, (4) chemical and biological defense in defense mechanism against radiation, (5) problems raised by Fukushima Daiichi nuclear accident. Furthermore, the article explains the principles and the applications of biological defense function activation, and suggested that self-help efforts to fight against stress are from now on. (S.K.)

  11. Zinc piracy as a mechanism of Neisseria meningitidis for evasion of nutritional immunity.

    Directory of Open Access Journals (Sweden)

    Michiel Stork

    2013-10-01

    Full Text Available The outer membrane of Gram-negative bacteria functions as a permeability barrier that protects these bacteria against harmful compounds in the environment. Most nutrients pass the outer membrane by passive diffusion via pore-forming proteins known as porins. However, diffusion can only satisfy the growth requirements if the extracellular concentration of the nutrients is high. In the vertebrate host, the sequestration of essential nutrient metals is an important defense mechanism that limits the growth of invading pathogens, a process known as "nutritional immunity." The acquisition of scarce nutrients from the environment is mediated by receptors in the outer membrane in an energy-requiring process. Most characterized receptors are involved in the acquisition of iron. In this study, we characterized a hitherto unknown receptor from Neisseria meningitidis, a causative agent of sepsis and meningitis. Expression of this receptor, designated CbpA, is induced when the bacteria are grown under zinc limitation. We demonstrate that CbpA functions as a receptor for calprotectin, a protein that is massively produced by neutrophils and other cells and that has been shown to limit bacterial growth by chelating Zn²⁺ and Mn²⁺ ions. Expression of CbpA enables N. meningitidis to survive and propagate in the presence of calprotectin and to use calprotectin as a zinc source. Besides CbpA, also the TonB protein, which couples energy of the proton gradient across the inner membrane to receptor-mediated transport across the outer membrane, is required for the process. CbpA was found to be expressed in all N. meningitidis strains examined, consistent with a vital role for the protein when the bacteria reside in the host. Together, our results demonstrate that N. meningitidis is able to subvert an important defense mechanism of the human host and to utilize calprotectin to promote its growth.

  12. Antioxidant Defense Mechanisms of Salinity Tolerance in Rice Genotypes

    Directory of Open Access Journals (Sweden)

    Mohammad Golam Kibria

    2017-05-01

    Full Text Available In order to elucidate the role of antioxidant responses in salinity tolerance in rice genotypes under salt stress, experiments were conducted using four rice varieties, including salt-sensitive BRRI dhan 28 and three salt-tolerant varieties BRRI dhan 47, BINA dhan 8 and BINA dhan 10. Thirty-day-old rice seedlings were transplanted into pots. At the active tillering stage (35 d after transplanting, plants were exposed to different salinity levels (0, 20, 40 and 60 mmol/L NaCl. Salt stress caused a significant reduction in growth for all the rice genotypes. Growth reduction was higher in the salt-sensitive genotype than in the salt-tolerant ones, and BINA dhan 10 showed higher salt tolerance in all measured physiological parameters. The reduction in shoot and root biomass was found to be minimal in BINA dhan 10. Chlorophyll content significantly decreased under salt stress except for BINA dhan 10. Proline content significantly increased in salt-tolerant rice genotypes with increased salt concentration, and the highest proline content was obtained from BINA dhan 10 under salt stress. Catalase and ascorbate peroxidase activities significantly decreased in salt-sensitive genotype whereas significantly increased in salt-tolerant ones with increasing salt concentration. However, salt stress significantly decreased guaiacol peroxidase activity in all the rice genotypes irrespective of salt tolerance. K+/Na+ ratio also significantly decreased in shoots and roots of all the rice genotypes. The salt-tolerant genotype BINA dhan 10 maintained higher levels of chlorophyll and proline contents as well as catalase and ascorbate peroxidase activities under salt stress, thus, this might be the underlying mechanism for salt tolerance.

  13. Peculiarities of Coping and Mechanisms of Psychological Defense in Persons with Alcohol Dependence

    Directory of Open Access Journals (Sweden)

    Тинатин Владимировна Чхиквадзе

    2018-12-01

    Full Text Available The article is devoted to the study of the features of the defensive-coping behavior of alcohol dependent personality in the context of the necessity to optimize addiction therapy methods. An analysis of the range of coping strategies and mechanisms of psychological defense in alcoholism was conducted. The study involved 120 men and women between the ages of 30 and 60; 62 of them are patients with alcohol dependence, registered with the narcological clinic, and 58 people who do not have alcohol dependence. The following psychodiagnostic methods were used: “Strategic Approach to Coping Scale - SACS” (S. Hofball, “Life Style Index - LSI” (R. Plutchik, H. Kellerman & H.R. Conte. In the course of the analysis, it was found that behavioral pattern “aggressive actions” is expressed at a higher level in individuals with alcohol dependence. The leading coping strategies for both dependent respondents and the control sample are “seeking social support”, “cautious actions”, “coming into contact”. When assessing the gender characteristics of coping behavior, it was revealed that alcohol-dependent women use coping “avoidance” and “impulsive actions” more often than alcohol-dependent men. The dominant mechanisms of psychological defense for both dependent respondents and the control sample are “projection”, “intellectualization” and “negation”. There are differences between the group of respondents with alcohol dependence and the control group in the degree of tension of the defense mechanisms “substitution” and “compensation”: higher rates are observed in patients with alcoholism. The mechanism of defense “intellectualization” is more often and more intensively manifested in alcohol-dependent men, “reactive formations” - in alcoholdependent women. Identified in the course of the empirical study, the features are considered as possible “targets” for the psychological correction of an alcohol

  14. Mechanisms by which Porphyromonas gingivalis evades innate immunity.

    Directory of Open Access Journals (Sweden)

    Kaveh Abdi

    Full Text Available The oral cavity is home to unique resident microbial communities whose interactions with host immunity are less frequently studied than those of the intestinal microbiome. We examined the stimulatory capacity and the interactions of two oral bacteria, Porphyromonas gingivalis (P. gingivalis and Fusobacterium nucleatum (F. nucleatum, on Dendritic Cell (DC activation, comparing them to the effects of the well-studied intestinal microbe Escherichia coli (E. coli. Unlike F. nucleatum and E. coli, P. gingivalis failed to activate DCs, and in fact silenced DC responses induced by F. nucleatum or E. coli. We identified a variant strain of P. gingivalis (W50 that lacked this immunomodulatory activity. Using biochemical approaches and whole genome sequencing to compare the two substrains, we found a point mutation in the hagA gene. This protein is though to be involved in the alteration of the PorSS/gingipain pathway, which regulates protein secretion into the extracellular environment. A proteomic comparison of the secreted products of the two substrains revealed enzymatic differences corresponding to this phenotype. We found that P. gingivalis secretes gingipain(s that inactivate several key proinflammatory mediators made by DCs and/or T cells, but spare Interleukin-1 (IL-1 and GM-CSF, which can cause capillary leaks that serve as a source of the heme that P. gingivalis requires for its survival, and GM-CSF, which can cause epithelial-cell growth. Taken together, our results suggest that P. gingivalis has evolved potent mechanisms to modulate its virulence factors and dampen the innate immune response by selectively inactivating most proinflammatory cytokines.

  15. IRAK-M regulation and function in host defense and immune homeostasis

    Directory of Open Access Journals (Sweden)

    Leah L.N. Hubbard

    2010-06-01

    Full Text Available Antigen presenting cells (APCs of the innate immune system sense a wide range of pathogens via pattern recognition receptors (PRRs. Engagement of certain PRRs can induce production of pro-inflammatory mediators that facilitate effective clearance of pathogen. Toll-like receptors (TLRs are a well described group of PRRs that belong to the TLR/Interleukin-1 receptor (IL-1R superfamily. However, TLR/IL-1R induction of pro-inflammatory mediators must be regulated to prevent excessive inflammation and tissue damage. One molecule of recent interest that is known to inhibit TLR/IL-1R signaling is interleukin-1 receptor associated kinase (IRAK-M, also known as IRAK-3. IRAK-M is expressed in a number of immune and epithelial cells types, and through its inhibition of pro-inflammatory cytokine production, IRAK-M can regulate immune homeostasis and tolerance in a number of infectious and non-infectious diseases. Furthermore, use of IRAK-M deficient animals has increased our understanding of the importance of IRAK-M in regulating immune responsiveness to a variety of pathogens. Although IRAK-M expression is typically induced through TLR signaling, IRAK-M can also be expressed in response to various endogenous and exogenous soluble factors as well as cell surface and intracellular signaling molecules. This review will focus on clinical scenarios in which expression of IRAK-M is beneficial (as in early sepsis and those situations where IRAK-M expression is harmful to the host (as in cancer and following bone marrow transplant. There is strong rationale for therapeutic targeting of IRAK-M for clinical benefit. However, effective targeting will require a greater understanding of the transcriptional regulation of this gene.

  16. Identification of a serine proteinase homolog (Sp-SPH involved in immune defense in the mud crab Scylla paramamosain.

    Directory of Open Access Journals (Sweden)

    Qiu-xia Zhang

    Full Text Available Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH, originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus, bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN, and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, P<0.05, and increase phenoloxidase activity if triggered by PGN in vitro (paired t-test, P<0.05. Importantly, the Sp-SPH protein was demonstrated to promote the survival rate of the animals after challenge with A. hydrophila or V. parahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain.

  17. A PROMISING MECHANISM FOR FINANCING THE NATIONAL ECONOMY, SECURITY AND DEFENSE OF UKRAINE

    OpenAIRE

    Dmitry Klinovoi, Peter Rogov

    2017-01-01

    The principles of the permanent financing of necessities of state development, national safety and defensive due to forming of legal institute of civil property on natural resources and mechanisms of the sovereign financing by receivabless from natural rent are grounded here. The description of sovereign fund and fund of civil dividends as institutes of accumulation of state facilities and management of assets is given here.

  18. DNA Damage Response and Immune Defence: Links and Mechanisms

    Directory of Open Access Journals (Sweden)

    Björn Schumacher

    2016-08-01

    Full Text Available DNA damage plays a causal role in numerous human pathologies including cancer, premature aging and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signalling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signalling. We highlight evidence gained into (i which molecular and cellular pathways of DDR activate immune signalling, (ii how DNA damage drives chronic inflammation, and (iii how chronic inflammation causes DNA damage and pathology in humans.

  19. Immune Reactions Among Marine and Other Invertebrates

    Science.gov (United States)

    Bang, Frederik B.

    1973-01-01

    Discusses the defense mechanisms and immune reaction found in invertebrates, and examines the wealth of related biological problems that need study and many of the leads that have recently been developed. (JR)

  20. Mechanisms for eco-immunity in a changing enviroment: how does the coral innate immune system contend with climate change?

    Science.gov (United States)

    Traylor-Knowles, N. G.

    2016-02-01

    Innate immunity plays a central role in maintaining homeostasis, and within the context of impending climate change scenarios, understanding how this system works is critical. However, the actual mechanisms involved in the evolution of the innate immune system are largely unknown. Cnidaria (including corals, sea anemones and jellyfish) are well suited for studying the fundamental functions of innate immunity because they share a common ancestor with bilaterians. This study will highlight the transcriptomic changes during a heat shock in the coral Acropora hyacinthus of American Samoa, examining the temporal changes, every half an hour for 5 hours. We hypothesize that genes involved in innate immunity, and extracellular matrix maintenance will be key components to the heat stress response. This presentation will highlight the novel role of the tumor necrosis factor receptor gene family as a responder to heat stress and present future directions for this developing field in coral reef research.

  1. Innate immune defense in the inner ear - mucines are expressed by the human endolymphatic sac

    DEFF Research Database (Denmark)

    Møller, Martin N; Kirkeby, Svend; Cayé-Thomasen, Per

    2017-01-01

    The human endolymphatic sac has been shown recently to have immunological capacities and has thus been proposed as the main entity protecting the inner ear from pathogen invasion, equivalent to mucosa-associated lymphoid tissue (MALT). Although the sac expresses molecules of the innate immune...... system, the potential expression of members of the important mucin family has not been detailed. Thus, this paper explores endolymphatic sac expression of a number of mucins and mucin precursors. Twelve fresh tissue samples from the human endolymphatic sac were obtained during translabyrinthine surgery...... immunological tissue structure of the inner ear, equivalent to MALT in other organs. The mucins may also play a role in the formation and continuous homeostasis of the inner ear fluids, as well as the pathogenesis of Meniere's disease....

  2. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities.

    Science.gov (United States)

    Huang, Zhi; Rose, Aaron H; Hoffmann, Peter R

    2012-04-01

    Dietary selenium (]Se), mainly through its incorporation into selenoproteins, plays an important role in inflammation and immunity. Adequate levels of Se are important for initiating immunity, but they are also involved in regulating excessive immune responses and chronic inflammation. Evidence has emerged regarding roles for individual selenoproteins in regulating inflammation and immunity, and this has provided important insight into mechanisms by which Se influences these processes. Se deficiency has long been recognized to negatively impact immune cells during activation, differentiation, and proliferation. This is related to increased oxidative stress, but additional functions such as protein folding and calcium flux may also be impaired in immune cells under Se deficient conditions. Supplementing diets with above-adequate levels of Se can also impinge on immune cell function, with some types of inflammation and immunity particularly affected and sexually dimorphic effects of Se levels in some cases. In this comprehensive article, the roles of Se and individual selenoproteins in regulating immune cell signaling and function are discussed. Particular emphasis is given to how Se and selenoproteins are linked to redox signaling, oxidative burst, calcium flux, and the subsequent effector functions of immune cells. Data obtained from cell culture and animal models are reviewed and compared with those involving human physiology and pathophysiology, including the effects of Se levels on inflammatory or immune-related diseases including anti-viral immunity, autoimmunity, sepsis, allergic asthma, and chronic inflammatory disorders. Finally, the benefits and potential adverse effects of intervention with Se supplementation for various inflammatory or immune disorders are discussed.

  3. Psychoticism, Immature Defense Mechanisms and a Fearful Attachment Style are Associated with a Higher Homophobic Attitude.

    Science.gov (United States)

    Ciocca, Giacomo; Tuziak, Bogdan; Limoncin, Erika; Mollaioli, Daniele; Capuano, Nicolina; Martini, Alessia; Carosa, Eleonora; Fisher, Alessandra D; Maggi, Mario; Niolu, Cinzia; Siracusano, Alberto; Lenzi, Andrea; Jannini, Emmanuele A

    2015-09-01

    Homophobic behavior and a negative attitude toward homosexuals are prevalent among the population. Despite this, few researches have investigated the psychologic aspects associated with homophobia, as psychopathologic symptoms, the defensive system, and attachment styles. The aim of this study was to investigate the psychologic factors mentioned earlier and their correlation with homophobia. Five hundred fifty-one university students recruited, aged 18-30, were asked to complete several psychometric evaluation. In particular, Homophobia Scale (HS) was used to assess homophobia levels, the Symptoms Check List Revised (SCL-90-R) for the identification of psychopathologic symptoms, the Defence Style Questionnaire (DSQ-40) for the evaluation of defense mechanisms and the Relationship Questionnaire (RQ) for attachment styles. After a regression analysis, we found a significant predictive value of psychoticism (β = 0.142; P = 0.04) and of immature defense mechanisms (β = 0.257; P homophobia, while neurotic defense mechanisms (β = -0.123; P = 0.02) and depressive symptoms (β = -0.152; P = 0.04) have an opposite role. Moreover, categorical constructs of the RQ revealed a significant difference between secure and fearful attachments styles in levels of homophobia (secure = 22.09 ± 17.22 vs. fearful = 31.07 ± 25.09; P homophobia compared with the subjects demonstrating a fearful style of attachment. Hence, in the assessment of homophobia and in the relevant programs of prevention, it is necessary to consider the psychologic aspects described earlier. © 2015 International Society for Sexual Medicine.

  4. Immunization

    Science.gov (United States)

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  5. Priming by Rhizobacterium Protects Tomato Plants from Biotrophic and Necrotrophic Pathogen Infections through Multiple Defense Mechanisms

    Science.gov (United States)

    Ahn, Il-Pyung; Lee, Sang-Woo; Kim, Min Gab; Park, Sang-Ryeol; Hwang, Duk-Ju; Bae, Shin-Chul

    2011-01-01

    A selected strain of rhizobacterium, Pseudomonas putida strain LSW17S (LSW17S), protects tomato plants (Lycopersicon esculentum L. cv. Seokwang) from bacterial speck by biotrophic Pseudomonas syringae pv. tomato strain DC3000 (DC3000) and bacterial wilt by necrotrophic Ralstonia solanacearum KACC 10703 (Rs10703). To investigate defense mechanisms induced by LSW17S in tomato plants, transcription patterns of pathogenesis-related (PR) genes and H2O2 production were analyzed in plants treated with LSW17S and subsequent pathogen inoculation. LSW17S alone did not induce transcriptions of employed PR genes in leaves and roots. DC3000 challenge following LSW17S triggered rapid transcriptions of PR genes and H2O2 production in leaves and roots. Catalase infiltration with DC3000 attenuated defense-related responses and resistance against DC3000 infection. Despite depriving H2O2 production and PR1b transcription by the same treatment, resistance against Rs10703 infection was not deterred significantly. H2O2 is indispensable for defense signaling and/or mechanisms primed by LSW17S and inhibition of bacterial speck, however, it is not involved in resistance against bacterial wilt. PMID:21710203

  6. Investigating aggressive styles and defense mechanisms in bipolar patients and in their parents

    Directory of Open Access Journals (Sweden)

    Nicola Luigi Bragazzi

    2014-10-01

    Full Text Available Bipolar disorder (BD is a very common mental health disorder, whose etiology concerning aggressive styles and defense mechanisms is still poorly known despite the efforts dedicated to develop psychological and biological theories. After obtaining written signed informed consent, this study will recruit inpatients with a clinical diagnosis of BD, based on Structured Clinical Interview and the Diagnostic and Statistical Manual of Mental Disorders criteria, and their parents. The Bus-Perry Aggression Questionnaire, the Defense Style Questionnaire 40, the Symptom check list SCL-90-R, developed by DeRogatis will be administered to the participants, together with a semi-structured questionnaire concerning demographic data (age, gender, employment, education and only for the patients clinical information (onset year of the disorder, presence of co-morbidities, alcohol and drug use, suicide tendencies, kind of treatment. All the questionnaires are in the Italian validated version. The successful completion of this study will shed light on the relationship between aggressive styles and defensive mechanisms in bipolar inpatients and in their parents, helping the clinicians to develop ad hoc psychological interventions.

  7. Memories of paternal relations are associated with coping and defense mechanisms in breast cancer patients: an observational study

    Directory of Open Access Journals (Sweden)

    Chiara Renzi

    2017-11-01

    Full Text Available Abstract Background Breast cancer diagnosis and treatment represent stressful events that demand emotional adjustment, thus recruiting coping strategies and defense mechanisms. As parental relations were shown to influence emotion regulation patterns and adaptive processes in adulthood, the present study investigated whether they are specifically associated to coping and defense mechanisms in patients with breast cancer. Methods One hundred and ten women hospitalized for breast cancer surgery were administered questionnaires assessing coping with cancer, defense mechanisms, and memories of parental bonding in childhood. Results High levels of paternal overprotection were associated with less mature defenses, withdrawal and fantasy and less adaptive coping mechanisms, such as hopelessness/helplessness. Low levels of paternal care were associated with a greater use of repression. No association was found between maternal care, overprotection, coping and defense mechanisms. Immature defenses correlated positively with less adaptive coping styles, while mature defenses were positively associated to a fighting spirit and to fatalism, and inversely related to less adaptive coping styles. Conclusions These data suggest that paternal relations in childhood are associated with emotional, cognitive, and behavioral regulation in adjusting to cancer immediately after surgery. Early experiences of bonding may constitute a relevant index for adaptation to cancer, indicating which patients are at risk and should be considered for psychological interventions.

  8. Mechanism of bystander-blaming: defensive attribution, counterfactual thinking, and gender.

    Science.gov (United States)

    Levy, Inna; Ben-David, Sarah

    2015-01-01

    Contemporary victimology recognizes that an understanding of the mechanism of blaming requires a comprehensive approach that includes the victim, the offender, and the bystander. However, most of the existing research on blaming focuses on the victim and the offender, ignoring the issue of bystander-blaming. This study highlights the bystander and investigates bystander-blaming by exploring some theoretical explanations, including counterfactual thinking, defensive attribution, and gender differences. The study included 363 young male and female participants, who read vignettes describing the behavior of the victim and the bystander in a rape scenario and answered questions regarding bystander-blaming. The results show that both counterfactual thinking and defensive attribution play a role in bystander-blaming. This article addresses the theoretical and practical implications of these findings. © The Author(s) 2013.

  9. Gene expression analysis of molecular mechanisms of defense induced in Medicago truncatula parasitized by Orobanche crenata.

    Science.gov (United States)

    Die, José Vicente; González Verdejo, Clara I; Dita, Miguel A; Nadal, Salvador; Román, Belén

    2009-07-01

    The infection of Medicago truncatula Gaertn. roots with the obligate parasite Orobanche crenata Forsk. is a useful model for studying the molecular events involved in the legumes-parasite interaction. In order to gain insight into the identification of gene-regulatory elements involved in the resistance mechanism, the temporal expression pattern of ten defense-related genes was carried out using real-time quantitative reverse-transcription polymerase chain reaction assays. The induction of all of the analyzed transcripts significantly increased over a range from 2- to 321-fold higher than the control depending on the gene and time point. The transcriptional changes observed in response to O. crenata infection suggest that resistance could rely on both, the induction of general defense-related genes and more specific responses.

  10. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda; Kirienko, Natalia V; Larkins-Ford, Jonah; Conery, Annie L; Ausubel, Frederick M

    2012-01-01

    The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes) in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  11. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    Full Text Available The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  12. Research on offense and defense technology for iOS kernel security mechanism

    Science.gov (United States)

    Chu, Sijun; Wu, Hao

    2018-04-01

    iOS is a strong and widely used mobile device system. It's annual profits make up about 90% of the total profits of all mobile phone brands. Though it is famous for its security, there have been many attacks on the iOS operating system, such as the Trident apt attack in 2016. So it is important to research the iOS security mechanism and understand its weaknesses and put forward targeted protection and security check framework. By studying these attacks and previous jailbreak tools, we can see that an attacker could only run a ROP code and gain kernel read and write permissions based on the ROP after exploiting kernel and user layer vulnerabilities. However, the iOS operating system is still protected by the code signing mechanism, the sandbox mechanism, and the not-writable mechanism of the system's disk area. This is far from the steady, long-lasting control that attackers expect. Before iOS 9, breaking these security mechanisms was usually done by modifying the kernel's important data structures and security mechanism code logic. However, after iOS 9, the kernel integrity protection mechanism was added to the 64-bit operating system and none of the previous methods were adapted to the new versions of iOS [1]. But this does not mean that attackers can not break through. Therefore, based on the analysis of the vulnerability of KPP security mechanism, this paper implements two possible breakthrough methods for kernel security mechanism for iOS9 and iOS10. Meanwhile, we propose a defense method based on kernel integrity detection and sensitive API call detection to defense breakthrough method mentioned above. And we make experiments to prove that this method can prevent and detect attack attempts or invaders effectively and timely.

  13. The Role of Big Five Personality Factors and Defense Mechanisms in Predicting Quality of Life in Sexually Dysfunctional Female Patients

    Directory of Open Access Journals (Sweden)

    S. salary

    2015-06-01

    Full Text Available Sexual dysfunction can lead to behavioral problems and reduction in a person's quality of life. In 50 % of patients with personality disorders, there is also sexual dysfunction. Psychoanalysis approach attributes the cause of sexual dysfunction to a kind of fundamental anxiety as well as the use of immature mechanisms in these patients. The purpose of this study was to investigate the role of big five personality traits and defensive mechanisms in predicting these patients' quality of life. Statistical sample of this research included 80 women attending sexual health and family clinics of Shahed University using accessible sampling during 2010 and 2011. These subjects were given the Neo Personality Inventory Traits, Defensive Mechanisms, and the World Health organization Quality of Life Questionnaires to answer. The findings showed that personality traits could predict the quality of life in woman with sexual dysfunction. Moreover, among those five personality traits, neuroticism (:./24 P=./04 and conscientiousness(:./31 P=./03 were able to predict the quality of life while predictability rate of both factors was 37% of variance on the whole (p=0/05. Based on regression analysis, there was a significant relationship between the quality of life and defensive mechanisms so that using more mature defensive mechanisms (:./37 P=./006 and immature defensive mechanisms (:-./31 P= ./02 could significantly predict quality of life (p=0/0001. Also, neurotic defensive mechanisms were not significant predictors of these women' quality of life. (;./04 P=./78.

  14. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines

    DEFF Research Database (Denmark)

    Blok, Bastiaan A; Arts, Rob J W; van Crevel, Reinout

    2015-01-01

    An increasing body of evidence shows that the innate immune system has adaptive characteristics that involve a heterologous memory of past insults. Both experimental models and proof-of-principle clinical trials show that innate immune cells, such as monocytes, macrophages, and NK cells, can...... provide protection against certain infections in vaccination models independently of lymphocytes. This process is regulated through epigenetic reprogramming of innate immune cells and has been termed "trained immunity." It has been hypothesized that induction of trained immunity is responsible...... for the protective, nonspecific effects induced by vaccines, such as BCG, measles vaccination, and other whole-microorganism vaccines. In this review, we will present the mechanisms of trained immunity responsible for the long-lasting effects of vaccines on the innate immune system....

  15. Defense mechanisms of Solanum tuberosum L. in response to attack by plant-pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    VERA A D POIATTI

    2009-01-01

    Full Text Available The natural resistance of plants to disease is based not only on preformed mechanisms, but also on induced mechanisms. The defense mechanisms present in resistant plants may also be found in susceptible ones. This study attempted to analyze the metabolic alterations in plants of the potato Solanum tuberosum L. cv. Agata that were inoculated with the incompatible plant-pathogenic bacteria X. axonopodis and R. solanacearum, and the compatible bacterium E. carotovora. Levels of total phenolic compounds, including the flavonoid group, and the activities of polyphenol oxidase (PPO and peroxidase (POX were evaluated. Bacteria compatibility was evaluated by means of infiltration of tubers. The defense response was evaluated in the leaves of the potato plants. Leaves were inoculated depending on their number and location on the stem. Multiple-leaf inoculation was carried out on basal, intermediate, and apical leaves, and single inoculations on intermediate leaves. Leaves inoculated with X. axonopodis and with R. solanacearum showed hypersensitive responses within 24 hours post-inoculation, whereas leaves inoculated with E. carotovora showed disease symptoms. Therefore, the R. solanacearum isolate used in the experiments did not exhibit virulence to this potato cultivar. Regardless of the bacterial treatments, the basal leaves showed higher PPO and POX activities and lower levels of total phenolic compounds and flavonoids, compared to the apical leaves. However, basal and intermediate leaves inoculated with R. solanacearum and X. axonopodis showed increases in total phenolic compounds and flavonoid levels. In general, multiple-leaf inoculation showed the highest levels of total phenolics and flavonoids, whereas the single inoculations resulted in the highest increase in PPO activity. The POX activity showed no significant difference between single- and multiple-leaf inoculations. Plants inoculated with E. carotovora showed no significant increase in

  16. Signaling pathways and immune evasion mechanisms in classical Hodgkin lymphoma.

    Science.gov (United States)

    Liu, W Robert; Shipp, Margaret A

    2017-11-23

    Classical Hodgkin lymphoma (cHL) is an unusual B-cell-derived malignancy in which rare malignant Hodgkin and Reed-Sternberg (HRS) cells are surrounded by an extensive but ineffective inflammatory/immune cell infiltrate. This striking feature suggests that malignant HRS cells escape immunosurveillance and interact with immune cells in the cancer microenvironment for survival and growth. We previously found that cHLs have a genetic basis for immune evasion: near-uniform copy number alterations of chromosome 9p24.1 and the associated PD-1 ligand loci, CD274/PD-L1 and PDCD1LG2/PD-L2, and copy number-dependent increased expression of these ligands. HRS cells expressing PD-1 ligands are thought to engage PD-1 receptor-positive immune effectors in the tumor microenvironment and induce PD-1 signaling and associated immune evasion. The genetic bases of enhanced PD-1 signaling in cHL make these tumors uniquely sensitive to PD-1 blockade. © 2017 by The American Society of Hematology.

  17. Host defense, dendritic cells and the human lung

    NARCIS (Netherlands)

    J.M.W. van Haarst (Jan Maarten)

    1995-01-01

    textabstractHost defense mechanisms protect the body against microorganisms and other foreign structures. These mechanisms can be divided in nonspecific, or innate, and specific, or acquired, immunity. In both branches of immunity the several types of leukocytes (white blood cells) play a dominant

  18. Effect of Probiotic Bacteria on Microbial Host Defense, Growth, and Immune Function in Human Immunodeficiency Virus Type-1 Infection

    Directory of Open Access Journals (Sweden)

    Stig Bengmark

    2011-12-01

    formula alone. Pilot studies have shown that probiotic bacteria given as a supplement have improved growth and protected against loss of CD4+ T cells. The recognition that normal bacterial flora prime neonatal immune response and that abnormal flora have a profound impact on metabolism has generated insight into potential mechanisms of gut dysfunction in many settings including HIV-1 infection. As discussed here, current and emerging studies support the concept that probiotic bacteria can provide specific benefit in HIV-1 infection. Probiotic bacteria have proven active against bacterial vaginosis in HIV-1 positive women and have enhanced growth in infants with congenital HIV-1 infection. Probiotic bacteria may stabilize CD4+ T cell numbers in HIV-1 infected children and are likely to have protective effects against inflammation and chronic immune activation of the gastrointestinal immune system.

  19. Immune evasion mechanisms and immune checkpoint inhibition in advanced merkel cell carcinoma.

    Science.gov (United States)

    Schadendorf, Dirk; Nghiem, Paul; Bhatia, Shailender; Hauschild, Axel; Saiag, Philippe; Mahnke, Lisa; Hariharan, Subramanian; Kaufman, Howard L

    2017-01-01

    Merkel cell carcinoma (MCC) is a rare skin cancer caused by Merkel cell polyomavirus (MCPyV) infection and/or ultraviolet radiation-induced somatic mutations. The presence of tumor-infiltrating lymphocytes is evidence that an active immune response to MCPyV and tumor-associated neoantigens occurs in some patients. However, inhibitory immune molecules, including programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1), within the MCC tumor microenvironment aid in tumor evasion of T-cell-mediated clearance. Unlike chemotherapy, treatment with anti-PD-L1 (avelumab) or anti-PD-1 (pembrolizumab) antibodies leads to durable responses in MCC, in both virus-positive and virus-negative tumors. As many tumors are established through the evasion of infiltrating immune-cell clearance, the lessons learned in MCC may be broadly relevant to many cancers.

  20. The analysis of the defense mechanism against indigenous bacterial translocation in X-irradiated mice

    International Nuclear Information System (INIS)

    Kobayashi, Toshiya; Ohmori, Toshihiro; Yanai, Minoru; Kawanishi, Gosei; Mitsuyama, Masao; Nomoto, Kikuo.

    1991-01-01

    The defense mechanism against indigenous bacterial translocation was studied using a model of endogenous infection in X-irradiated mice. All mice irradiated with 9 Gy died from day 8 to day 15 after irradiation. The death of mice was observed in parallel with the appearance of bacteria from day 7 in various organs, and the causative agent was identified to be Escherichia coli, an indigenous bacterium translocating from the intestine. Decrease in the number of blood leukocytes, peritoneal cells and lymphocytes in Peyer's patches or mesenteric lymph nodes was observed as early as 1 day after irradiation with 6 or 9 Gy. The mitogenic response of lymphocytes from various lymphoid tissues was severely affected as well. The impairment of these parameters for host defense reached the peak 3 days after irradiation and there was no recovery. However, in vivo bacterial activity of Kupffer cells in mice irradiated with 9 Gy was maintained in a normal level for a longer period. It was suggested that Kupffer cells play an important role in the defense against indigenous bacteria translocating from the intenstine in mice. (author)

  1. Modulation of pulmonary defense mechanisms by acute exposures to nitrogen dioxide

    International Nuclear Information System (INIS)

    Jakab, G.J.

    1987-01-01

    The effect of acute exposures to NO 2 on the antibacterial defenses of the murine lung was assessed following inhalation challenges with Staphylococcus aureus, Proteus mirabilis, and Pasteurella pneumotropica. With S. aureus pulmonary antibacterial defenses were suppressed at NO 2 levels of 4.0 ppm and greater. Exposure to 10.0 ppm enhanced the intrapulmonary killing of P. mirabilis which correlated with an increase in the phagocytic cell populations lavaged from the lungs; at 20.0 ppm bactericidal activity against P. mirabilis was impaired. Pulmonary antibacterial defenses against P. pneumotropica were impaired at 10.0 ppm which correlated with a decrease in the retrieved phagocytic lung cell population. Reversing the order of treatment (ie., NO 2 exposure prior to bacterial challenge) raised the threshold concentration for NO 2 -induced impairment of intrapulmonary bacterial killing. With S. aureus the effect was not observed at 5.0 ppm but at 10.0 ppm and with P. mirabilis not at 20.0 ppm but at 30.0 ppm intrapulmonary killing was enhanced. Exposures up to 20.0 ppm of NO 2 did not effect the physical translocation mechanisms of the lung as quantitated by declines in pulmonary radiotracer activity following aerogenic challenge with 32 P-labeled staphylococci

  2. ENDURANCE TRAINING AND GLUTATHIONE-DEPENDENT ANTIOXIDANT DEFENSE MECHANISM IN HEART OF THE DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    Mustafa Atalay

    2003-06-01

    Full Text Available Regular physical exercise beneficially influences cardiac antioxidant defenses in normal rats. The aim of this study was to test whether endurance training can strengthen glutathione-dependent antioxidant defense mechanism and decrease lipid peroxidation in heart of the streptozotocin-induced diabetic rats. Redox status of glutathione in blood of diabetic rats in response to training and acute exercise was also examined. Eight weeks of treadmill training increased the endurance in streptozotocin-induced diabetic rats. It did not affect glutathione level in heart tissue at rest and also after exercise. On the other hand, endurance training decreased glutathione peroxidase activity in heart, while glutathione reductase and glutathione S-transferase activities were not affected either by acute exhaustive exercise or endurance training. Reduced and oxidized glutathione levels in blood were not affected by either training or acute exercise. Conjugated dienes levels in heart tissue were increased by acute exhaustive exercise and also 8 weeks treadmill training. Longer duration of exhaustion in trained group may have contributed to the increased conjugated dienes levels in heart after acute exercise. Our results suggest that endurance type exercise may make heart more susceptible to oxidative stress. Therefore it may be wise to combine aerobic exercise with insulin treatment to prevent its adverse effects on antioxidant defense in heart in patients with diabetes mellitus

  3. Neuroendocrine-immune interaction

    NARCIS (Netherlands)

    Kemenade, van Lidy; Cohen, Nicholas; Chadzinska, Magdalena

    2017-01-01

    It has now become accepted that the immune system and neuroendocrine system form an integrated part of our physiology. Immunological defense mechanisms act in concert with physiological processes like growth and reproduction, energy intake and metabolism, as well as neuronal development. Not only

  4. Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering

    Directory of Open Access Journals (Sweden)

    Karina Stucken

    2013-01-01

    Full Text Available Cyanobacteria display a large diversity of cellular forms ranging from unicellular to complex multicellular filaments or aggregates. Species in the group present a wide range of metabolic characteristics including the fixation of atmospheric nitrogen, resistance to extreme environments, production of hydrogen, secondary metabolites and exopolysaccharides. These characteristics led to the growing interest in cyanobacteria across the fields of ecology, evolution, cell biology and biotechnology. The number of available cyanobacterial genome sequences has increased considerably in recent years, with more than 140 fully sequenced genomes to date. Genetic engineering of cyanobacteria is widely applied to the model unicellular strains Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. However the establishment of transformation protocols in many other cyanobacterial strains is challenging. One obstacle to the development of these novel model organisms is that many species have doubling times of 48 h or more, much longer than the bacterial models E. coli or B. subtilis. Furthermore, cyanobacterial defense mechanisms against foreign DNA pose a physical and biochemical barrier to DNA insertion in most strains. Here we review the various barriers to DNA uptake in the context of lateral gene transfer among microbes and the various mechanisms for DNA acquisition within the prokaryotic domain. Understanding the cyanobacterial defense mechanisms is expected to assist in the development and establishment of novel transformation protocols that are specifically suitable for this group.

  5. Immune mechanisms in Ehrlich ascites tumor growth in mice

    International Nuclear Information System (INIS)

    Marusic, M.

    1979-01-01

    Normal mice immunised with irradiated Ehrlich ascites tumor (EAT) cells rejected EAT challenge given 2 weeks later but T-cell-deficient thymectomised lethally irradiated, and bone-marrow-reconstituted (TIR) mice succumbed. However, when TIR mice were injected i.v. with thymus, lymph node, or spleen cells from normalsyngetic donors immediately following i.p. injection of irradiated EAT cells, they rejected the subsequent tumor challenge. This induction of immunity in TIR mice was shown to be T-cell dependent. Spleen cells from EAT- bearing mice given immediately after irradiated tumor cells were also able to promote rejection of EAT challenge in TIR mice. Spleen cells from EAT-immune mice inhibited EAT growth when admixed with tumor cells prior to i.p. injection into normal recipients, but had no effect on progressive tumor growth when given i.v. immediately after i.p. tumor injection. Immune serum inhibited i.p. EAT growth when given either i.p. or i.v. Whereas inhibition of EAT growth by admixed spleen cells was shown to be T-cell independent. The data indicate that T lymphocytes are required only in the induction phase of the immune reponse of mice against EAT, while the efferent phase of the response is accomplished by serum antibodies, perhaps through an interaction with host macrophages. (author)

  6. Genetic Mechanisms of Immune Evasion in Colorectal Cancer.

    Science.gov (United States)

    Grasso, Catherine S; Giannakis, Marios; Wells, Daniel K; Hamada, Tsuyoshi; Mu, Xinmeng Jasmine; Quist, Michael; Nowak, Jonathan A; Nishihara, Reiko; Qian, Zhi Rong; Inamura, Kentaro; Morikawa, Teppei; Nosho, Katsuhiko; Abril-Rodriguez, Gabriel; Connolly, Charles; Escuin-Ordinas, Helena; Geybels, Milan S; Grady, William M; Hsu, Li; Hu-Lieskovan, Siwen; Huyghe, Jeroen R; Kim, Yeon Joo; Krystofinski, Paige; Leiserson, Mark D M; Montoya, Dennis J; Nadel, Brian B; Pellegrini, Matteo; Pritchard, Colin C; Puig-Saus, Cristina; Quist, Elleanor H; Raphael, Ben J; Salipante, Stephen J; Shin, Daniel Sanghoon; Shinbrot, Eve; Shirts, Brian; Shukla, Sachet; Stanford, Janet L; Sun, Wei; Tsoi, Jennifer; Upfill-Brown, Alexander; Wheeler, David A; Wu, Catherine J; Yu, Ming; Zaidi, Syed H; Zaretsky, Jesse M; Gabriel, Stacey B; Lander, Eric S; Garraway, Levi A; Hudson, Thomas J; Fuchs, Charles S; Ribas, Antoni; Ogino, Shuji; Peters, Ulrike

    2018-06-01

    To understand the genetic drivers of immune recognition and evasion in colorectal cancer, we analyzed 1,211 colorectal cancer primary tumor samples, including 179 classified as microsatellite instability-high (MSI-high). This set includes The Cancer Genome Atlas colorectal cancer cohort of 592 samples, completed and analyzed here. MSI-high, a hypermutated, immunogenic subtype of colorectal cancer, had a high rate of significantly mutated genes in important immune-modulating pathways and in the antigen presentation machinery, including biallelic losses of B2M and HLA genes due to copy-number alterations and copy-neutral loss of heterozygosity. WNT/β-catenin signaling genes were significantly mutated in all colorectal cancer subtypes, and activated WNT/β-catenin signaling was correlated with the absence of T-cell infiltration. This large-scale genomic analysis of colorectal cancer demonstrates that MSI-high cases frequently undergo an immunoediting process that provides them with genetic events allowing immune escape despite high mutational load and frequent lymphocytic infiltration and, furthermore, that colorectal cancer tumors have genetic and methylation events associated with activated WNT signaling and T-cell exclusion. Significance: This multi-omic analysis of 1,211 colorectal cancer primary tumors reveals that it should be possible to better monitor resistance in the 15% of cases that respond to immune blockade therapy and also to use WNT signaling inhibitors to reverse immune exclusion in the 85% of cases that currently do not. Cancer Discov; 8(6); 730-49. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 663 . ©2018 American Association for Cancer Research.

  7. Gene expression profiling provides insights into the immune mechanism of Plutella xylostella midgut to microbial infection.

    Science.gov (United States)

    Lin, Junhan; Xia, Xiaofeng; Yu, Xiao-Qiang; Shen, Jinhong; Li, Yong; Lin, Hailan; Tang, Shanshan; Vasseur, Liette; You, Minsheng

    2018-03-20

    Insect gut immunity plays a key role in defense against microorganism infection. The knowledge of insect gut immunity has been obtained mostly from Drosophila melanogaster. Little is known about gut immunity in the diamondback moth, Plutella xylostella (L.), a pest destroying cruciferous crops worldwide. In this study, expressions of the immune-related genes in the midgut of P. xylostella orally infected with Staphylococcus aureus, Escherichia coli and Pichia pastoris were profiled by RNA-seq and qRT-PCR approaches. The results revealed that the Toll, IMD, JNK and JAK-STAT pathways and possibly the prophenoloxidase activation system in P. xylostella could be activated by oral infections, and moricins, gloverins and lysozyme2 might act as important effectors against microorganisms. Subsequent knock-down of IMD showed that this gene was involved in regulating the expression of down-stream genes in the IMD pathway. Our work indicates that the Toll, IMD, JNK and JAK-STAT pathways may synergistically modulate immune responses in the P. xylostella midgut, implying a complex and diverse immune system in the midgut of insects. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation.

    Science.gov (United States)

    Honti, Viktor; Csordás, Gábor; Kurucz, Éva; Márkus, Róbert; Andó, István

    2014-01-01

    In the animal kingdom, innate immunity is the first line of defense against invading pathogens. The dangers of microbial and parasitic attacks are countered by similar mechanisms, involving the prototypes of the cell-mediated immune responses, the phagocytosis and encapsulation. Work on Drosophila has played an important role in promoting an understanding of the basic mechanisms of phylogenetically conserved modules of innate immunity. The aim of this review is to survey the developments in the identification and functional definition of immune cell types and the immunological compartments of Drosophila melanogaster. We focus on the molecular and developmental aspects of the blood cell types and compartments, as well as the dynamics of blood cell development and the immune response. Further advances in the characterization of the innate immune mechanisms in Drosophila will provide basic clues to the understanding of the importance of the evolutionary conserved mechanisms of innate immune defenses in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Association of Ego Defense Mechanisms with Academic Performance, Anxiety and Depression in Medical Students: A Mixed Methods Study.

    Science.gov (United States)

    Waqas, Ahmed; Rehman, Abdul; Malik, Aamenah; Muhammad, Umer; Khan, Sarah; Mahmood, Nadia

    2015-09-30

     Ego defense mechanisms are unconscious psychological processes that help an individual to prevent anxiety when exposed to a stressful situation. These mechanisms are important in psychiatric practice to assess an individual's personality dynamics, psychopathologies, and modes of coping with stressful situations, and hence, to design appropriate individualized treatment. Our study delineates the relationship of ego defense mechanisms with anxiety, depression, and academic performance of Pakistani medical students.  This cross-sectional study was done at CMH Lahore Medical College and Fatima Memorial Hospital Medical and Dental College, both in Lahore, Pakistan, from December 1, 2014 to January 15, 2015. Convenience sampling was used and only students who agreed to take part in this study were included. The questionnaire consisted of three sections: 1) Demographics, documenting demographic data and academic scores on participants' most recent exams; 2) Hospital Anxiety and Depression Scale (HADS); and 3) Defense Style Questionnaire-40 (DSQ-40). The data were analyzed with SPSS v. 20. Mean scores and frequencies were calculated for demographic variables and ego defense mechanisms. Bivariate correlations, one-way ANOVA, and multiple linear regression were used to identify associations between academic scores, demographics, ego defense mechanisms, anxiety, and depression.  A total of 409 medical students participated, of whom 286 (70%) were females and 123 (30%) were males. Mean percentage score on the most recent exams was 75.6% in medical students. Bivariate correlation revealed a direct association between mature and neurotic ego defense mechanisms and academic performance, and an indirect association between immature mechanisms and academic performance. One-way ANOVA showed that moderate levels of anxiety (P academic performance.  There was a significant association between academic performance and ego defense mechanisms, anxiety, and depression levels in our

  10. A systems model for immune cell interactions unravels the mechanism of inflammation in human skin.

    Science.gov (United States)

    Valeyev, Najl V; Hundhausen, Christian; Umezawa, Yoshinori; Kotov, Nikolay V; Williams, Gareth; Clop, Alex; Ainali, Crysanthi; Ouzounis, Christos; Tsoka, Sophia; Nestle, Frank O

    2010-12-02

    Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.

  11. A systems model for immune cell interactions unravels the mechanism of inflammation in human skin.

    Directory of Open Access Journals (Sweden)

    Najl V Valeyev

    2010-12-01

    Full Text Available Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.

  12. Microbiota-stimulated immune mechanisms to maintain gut homeostasis.

    Science.gov (United States)

    Chung, Hachung; Kasper, Dennis Lee

    2010-08-01

    In recent years there has been an explosion of interest to identify microbial inhabitants of human and understand their beneficial role in health. In the gut, a symbiotic host-microbial interaction has coevolved as bacteria make essential contributions to human metabolism and bacteria in turn benefits from the nutrient-rich niche in the intestine. To maintain host-microbe coexistence, the host must protect itself against microbial invasion, injury, and overreactions to foreign food antigens, and gut microbes need protection against competing microbes and the host immune system. Perturbation of this homeostatic coexistence has been strongly associated with human disease. This review discusses how gut bacteria regulate host innate and adaptive immunity, with emphasis on how this regulation contributes to host-microbe homeostasis in the gut. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. MECHANISMS OF VITAMIN D ACTION ON THE IMMUNE SYSTEM

    Directory of Open Access Journals (Sweden)

    S. A. Snopov

    2014-01-01

    Full Text Available Besides the well-known effects upon bone metabolism, vitamin D (VD plays important roles in many other processes in the body, including immune regulation. VD action is carried out through its cellular membrane receptor, which is expressed in a variety of human organs and tissues, e.g., most cells of immune system, as well as epithelial cells lining the mucous membranes. The cell-membrane bound VD receptor is transferred to the cytoplasm, to form a functional complex with vitamin A and its receptor. This complex provides either inhibiting, or enhancing effect upon transcription of hundreds genes in the nuclear DNA, including those that regulate cell growth, differentiation, apoptosis, thus preventing malignancy and angiogenesis. The following effects of VD are supposed with respect to immune system: VD inhibits antigen presentation by dendritic cells, supresses Th1-cell differentiation and the production of Th1-cytokines, shifts the balance of Th1/Th2 cell responses towards the Th2 response, exerts inhibitory effect upon Th17 cells, promotes Treg cell development, and increases their activity. In addition, VD boosts production of «endogenous antibiotics» that may provide powerful effects upon Gram-positive and Gram-negative bacteria, fungi and viruses. Therefore, VD seems quite important for prevention of autoimmune and atopic diseases: multiple sclerosis, rheumatoid arthritis, type 1 diabetes, Crohn’s disease, ulcerative colitis, development of asthma in children and chronic obstructive pulmonary disease. VD protects from a wide range of infections, including tuberculosis, leprosy and respiratory infections, and prevents the development of several tumors. Almost half the population of different countries has a VD hypovitaminosis, often hidden and undiagnosed, and this can be a leading cause of weakened immunity and increased morbidity. The diagnostics of VD hypovitaminosis, prevention and treatment of hypovitaminosis should be among the

  14. Conservation of a Unique Mechanism of Immune Evasion across the Lyssavirus Genus

    Science.gov (United States)

    Wiltzer, L.; Larrous, F.; Oksayan, S.; Ito, N.; Marsh, G. A.; Wang, L. F.; Blondel, D.; Bourhy, H.; Jans, D. A.

    2012-01-01

    The evasion of host innate immunity by Rabies virus, the prototype of the genus Lyssavirus, depends on a unique mechanism of selective targeting of interferon-activated STAT proteins by the viral phosphoprotein (P-protein). However, the immune evasion strategies of other lyssaviruses, including several lethal human pathogens, are unresolved. Here, we show that this mechanism is conserved between the most distantly related members of the genus, providing important insights into the pathogenesis and potential therapeutic targeting of lyssaviruses. PMID:22740405

  15. Conservation of a unique mechanism of immune evasion across the Lyssavirus genus.

    Science.gov (United States)

    Wiltzer, L; Larrous, F; Oksayan, S; Ito, N; Marsh, G A; Wang, L F; Blondel, D; Bourhy, H; Jans, D A; Moseley, G W

    2012-09-01

    The evasion of host innate immunity by Rabies virus, the prototype of the genus Lyssavirus, depends on a unique mechanism of selective targeting of interferon-activated STAT proteins by the viral phosphoprotein (P-protein). However, the immune evasion strategies of other lyssaviruses, including several lethal human pathogens, are unresolved. Here, we show that this mechanism is conserved between the most distantly related members of the genus, providing important insights into the pathogenesis and potential therapeutic targeting of lyssaviruses.

  16. Viewing loved faces inhibits defense reactions: a health-promotion mechanism?

    Directory of Open Access Journals (Sweden)

    Pedro Guerra

    Full Text Available We have known for decades that social support is associated with positive health outcomes. And yet, the neurophysiological mechanisms underlying this association remain poorly understood. The link between social support and positive health outcomes is likely to depend on the neurophysiological regulatory mechanisms underlying reward and defensive reactions. The present study examines the hypothesis that emotional social support (love provides safety cues that activate the appetitive reward system and simultaneously inhibit defense reactions. Using the startle probe paradigm, 54 undergraduate students (24 men viewed black and white photographs of loved (romantic partner, father, mother, and best friend, neutral (unknown, and unpleasant (mutilated faces. Eye-blink startle, zygomatic major activity, heart rate, and skin conductance responses to the faces, together with subjective ratings of valence, arousal, and dominance, were obtained. Viewing loved faces induced a marked inhibition of the eye-blink startle response accompanied by a pattern of zygomatic, heart rate, skin conductance, and subjective changes indicative of an intense positive emotional response. Effects were similar for men and women, but the startle inhibition and the zygomatic response were larger in female participants. A comparison between the faces of the romantic partner and the parent who shares the partner's gender further suggests that this effect is not attributable to familiarity or arousal. We conclude that this inhibitory capacity may contribute to the health benefits associated with social support.

  17. Viewing loved faces inhibits defense reactions: a health-promotion mechanism?

    Science.gov (United States)

    Guerra, Pedro; Sánchez-Adam, Alicia; Anllo-Vento, Lourdes; Ramírez, Isabel; Vila, Jaime

    2012-01-01

    We have known for decades that social support is associated with positive health outcomes. And yet, the neurophysiological mechanisms underlying this association remain poorly understood. The link between social support and positive health outcomes is likely to depend on the neurophysiological regulatory mechanisms underlying reward and defensive reactions. The present study examines the hypothesis that emotional social support (love) provides safety cues that activate the appetitive reward system and simultaneously inhibit defense reactions. Using the startle probe paradigm, 54 undergraduate students (24 men) viewed black and white photographs of loved (romantic partner, father, mother, and best friend), neutral (unknown), and unpleasant (mutilated) faces. Eye-blink startle, zygomatic major activity, heart rate, and skin conductance responses to the faces, together with subjective ratings of valence, arousal, and dominance, were obtained. Viewing loved faces induced a marked inhibition of the eye-blink startle response accompanied by a pattern of zygomatic, heart rate, skin conductance, and subjective changes indicative of an intense positive emotional response. Effects were similar for men and women, but the startle inhibition and the zygomatic response were larger in female participants. A comparison between the faces of the romantic partner and the parent who shares the partner's gender further suggests that this effect is not attributable to familiarity or arousal. We conclude that this inhibitory capacity may contribute to the health benefits associated with social support.

  18. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and preeclampsia: shared disease mechanisms and translational opportunities.

    Science.gov (United States)

    Jafri, Salema; Ormiston, Mark L

    2017-12-01

    Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4 + helper T cell populations, defined by excessive Th17 responses and impaired T reg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8 + T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders. Copyright © 2017 the American Physiological Society.

  19. Greater tactile sensitivity and less use of immature psychological defense mechanisms predict women's penile-vaginal intercourse orgasm.

    Science.gov (United States)

    Brody, Stuart; Houde, Stephanie; Hess, Ursula

    2010-09-01

    Previous research has suggested that diminished tactile sensitivity might be associated with reduced sexual activity and function. Research has also demonstrated significant physiological and psychological differences between sexual behaviors, including immature psychological defense mechanisms (associated with various psychopathologies) impairing specifically women's orgasm from penile-vaginal intercourse (PVI). To examine the extent to which orgasm triggered by PVI (distinguished from other sexual activities) is associated with both greater tactile sensitivity and lesser use of immature psychological defenses. Seventy French-Canadian female university students (aged 18-30) had their finger sensitivity measured with von Frey type microfilaments, completed the Defense Style Questionnaire and a short form of the Marlowe-Crowne social desirability scale, and provided details of the 1 month (and ever) frequencies of engaging in, and having an orgasm from, PVI, masturbation, anal intercourse, partner masturbation, and cunnilingus. Logistic and linear regression prediction of orgasm triggered by PVI from tactile sensitivity, age, social desirability responding, and immature psychological defenses. Having a PVI orgasm in the past month was associated with greater tactile sensitivity (odds ratio=4.0 for each filament point) and less use of immature defense mechanisms (odds ratio=5.1 for each scale point). Lifetime PVI orgasm was associated only with less use of immature defense mechanisms (and lower social desirability responding score). Orgasms triggered by other activities were not associated with either tactile sensitivity or immature defense mechanisms. Tactile sensitivity was also associated with greater past month PVI frequency (inclusion of PVI frequency in a logistic regression model displaced tactile sensitivity), and lesser use of immature defenses was associated with greater past month PVI and PVI orgasm frequencies. Both diminished physical sensitivity and the

  20. Monuments of memory: defensive mechanisms of the collective psyche and their manifestation in the memorialization process.

    Science.gov (United States)

    Kalinowska, Malgorzata

    2012-09-01

    The paper searches for insight in the area of collective memory as a part of collective consciousness, a phenomenon understood as a stabilizing factor for a society's self-image and identity. Collective memories are seen as originating from shared communications transmitting and creating the meaning of the past in the form of narrative, symbols and signs. As such, they contain the individual, embodied and lived side of our relations to the past. As well as the identity-building and meaning-making functions of collective memories, their defensive function is discussed with a focus on commemorative practices taking place in a transitional space between psychic and social life. Fears of a lack of collective identity and coherence have contributed to the way Polish commemorative practices have been shaped. This is considered in relation to the Smolensk catastrophe in 2010, viewed in the context of the Jungian concept of the collective psyche and the psychoanalytical understanding of defensive group mechanisms against trauma, especially those relating to loss and mourning. It leads to a consideration of how historical experiences and the experience of history can be accessed, as well as their meaning for individual and group development. © 2012, The Society of Analytical Psychology.

  1. Dynamic Shaping of the Defensive Peripersonal Space through Predictive Motor Mechanisms: When the "Near" Becomes "Far".

    Science.gov (United States)

    Bisio, Ambra; Garbarini, Francesca; Biggio, Monica; Fossataro, Carlotta; Ruggeri, Piero; Bove, Marco

    2017-03-01

    The hand blink reflex is a subcortical defensive response, known to dramatically increase when the stimulated hand is statically positioned inside the defensive peripersonal space (DPPS) of the face. Here, we tested in a group of healthy human subjects the hand blink reflex in dynamic conditions, investigating whether the direction of the hand movements (up-to/down-from the face) could modulate it. We found that, on equal hand position, the response enhancement was present only when the hand approached to (and not receded from) the DPPS of the face. This means that, when the hand is close to the face but the subject is planning to move the hand down, the predictive motor system can anticipate the consequence of the movement: the "near" becomes "far." We found similar results both in passive movement condition, when only afferent (visual and proprioceptive) information can be used to estimate the final state of the system, and in motor imagery task, when only efferent (intentional) information is available to predict the consequences of the movement. All these findings provide evidence that the DPPS is dynamically shaped by predictive mechanisms run by the motor system and based on the integration of feedforward and sensory feedback signals. SIGNIFICANCE STATEMENT The defensive peripersonal space (DPPS) has a crucial role for survival, and its modulation is fundamental when we interact with the environment, as when we move our arms. Here, we focused on a defensive response, the hand blink reflex, known to increase when a static hand is stimulated inside the DPPS of the face. We tested the hand blink reflex in dynamic conditions (voluntary, passive, and imagined movements) and we found that, on equal hand position, the response enhancement was present only when the hand approached to (and not receded from) the DPPS of the face. This suggests that, through the integration of efferent and afferent signals, the safety boundary around the body is continuously shaped by

  2. Identification and utility of innate immune system evasion mechanisms of ASFV.

    Science.gov (United States)

    Correia, Sílvia; Ventura, Sónia; Parkhouse, Robert Michael

    2013-04-01

    The interferon (IFN) system is an early innate anti-virus host defense mechanism that takes place shortly after entry of the pathogen and long before the onset of adaptive immunity. Thus, African swine fever virus (ASFV), as an acute and persistent virus in pigs, is predicted to have evolved multiple genes for the manipulation and evasion of interferon. Although, ASFV is known to interfere with signaling pathways controlling the transcription of cytokines, surprisingly no individual virus gene manipulating the induction or impact of IFN has been described. Since an initial bioinformatics search of the ASFV genome failed to identify potential antagonists of the IFN response, our strategy was to functionally screen early expressed, "unassigned" ASFV genes without existing homologies, particularly from MGFs 360 and 530, in luciferase reporter assays for their inhibition of the induction and impact of IFN. Specifically, we used reporter plasmids containing the luciferase gene under the control of: (1) the IFN-β promoter, to screen for inhibition of induction of type I IFN stimulated by the addition of Poly(I:C); (2) the ISRE DNA elements, to screen for the inhibition of the impact of type I IFN; and (3) the GAS DNA elements to screen for the inhibition of the impact of type II IFN. Our initial experiments revealed six ASFV genes inhibiting one or more of the three luciferase assays. From these, we have selected a total of 3 genes for presentation. The ASFV A276R gene from MGF360 inhibited the induction of IFN-β via both the TLR3 and the cytosolic pathways, targeting IRF3, but not IRF7 or NF-κB. The ASFV A528R inhibited the induction of both NF-κB and IRF3 branches of the type I IFN induction signaling pathway and the impact of IFN response via both IFN type I and type II stimulation. The ASFV I329L gene is a functional viral TLR3 homologue inhibiting the induction of IFN at the level of TRIF. Thus, these genes reduce the IFN response by targeting different

  3. Mutations in fetal genes involved in innate immunity and host defense against microbes increase risk of preterm premature rupture of membranes (PPROM).

    Science.gov (United States)

    Modi, Bhavi P; Teves, Maria E; Pearson, Laurel N; Parikh, Hardik I; Haymond-Thornburg, Hannah; Tucker, John L; Chaemsaithong, Piya; Gomez-Lopez, Nardhy; York, Timothy P; Romero, Roberto; Strauss, Jerome F

    2017-11-01

    Twin studies have revealed a significant contribution of the fetal genome to risk of preterm birth. Preterm premature rupture of membranes (PPROM) is the leading identifiable cause of preterm delivery. Infection and inflammation of the fetal membranes is commonly found associated with PPROM. We carried out whole exome sequencing (WES) of genomic DNA from neonates born of African-American mothers whose pregnancies were complicated by PPROM (76) or were normal term pregnancies (N = 43) to identify mutations in 35 candidate genes involved in innate immunity and host defenses against microbes. Targeted genotyping of mutations in the candidates discovered by WES was conducted on an additional 188 PPROM cases and 175 controls. We identified rare heterozygous nonsense and frameshift mutations in several of the candidate genes, including CARD6, CARD8, DEFB1, FUT2, MBL2, NLP10, NLRP12, and NOD2. We discovered that some mutations (CARD6, DEFB1, FUT2, MBL2, NLRP10, NOD2) were present only in PPROM cases. We conclude that rare damaging mutations in innate immunity and host defense genes, the majority being heterozygous, are more frequent in neonates born of pregnancies complicated by PPROM. These findings suggest that the risk of preterm birth in African-Americans may be conferred by mutations in multiple genes encoding proteins involved in dampening the innate immune response or protecting the host against microbial infection and microbial products. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  4. Photochemistry and photobiology of actinic erythema: defensive and reparative cutaneous mechanisms

    Directory of Open Access Journals (Sweden)

    A.C. Tedesco

    1997-05-01

    Full Text Available Sunlight is part of our everyday life and most people accept it as beneficial to our health. With the advance of our knowledge in cutaneous photochemistry, photobiology and photomedicine over the past four decades, the terrestrial solar radiation has become a concern of dermatologists and is considered to be a major damaging environmental factor for our skin. Most photobiological effects (e.g., sunburn, suntanning, local and systemic immunosuppression, photoaging or dermatoheliosis, skin cancer and precancer, etc. are attributed to ultraviolet radiation (UVR and more particularly to UVB radiation (290-320 nm. UVA radiation (320-400 nm also plays an important role in the induction of erythema by the photosensitized generation of reactive oxygen species (singlet oxygen (1O2, superoxide (O2.- and hydroxyl radicals (.OH that damage DNA and cellular membranes, and promote carcinogenesis and the changes associated with photoaging. Therefore, research efforts have been directed at a better photochemical and photobiological understanding of the so-called sunburn reaction, actinic or solar erythema. To survive the insults of actinic damage, the skin appears to have different intrinsic defensive mechanisms, among which antioxidants (enzymatic and non-enzymatic systems play a pivotal role. In this paper, we will review the basic aspects of the action of UVR on the skin: a photochemical reactions resulting from photon absorption by endogenous chromophores; b the lipid peroxidation phenomenon, and c intrinsic defensive cutaneous mechanisms (antioxidant systems. The last section will cover the inflammatory response including mediator release after cutaneous UVR exposure and adhesion molecule expression

  5. Involvement of metabolites in early defense mechanism of oil palm (Elaeis guineensis Jacq.) against Ganoderma disease.

    Science.gov (United States)

    Nusaibah, S A; Siti Nor Akmar, A; Idris, A S; Sariah, M; Mohamad Pauzi, Z

    2016-12-01

    Understanding the mechanism of interaction between the oil palm and its key pathogen, Ganoderma spp. is crucial as the disease caused by this fungal pathogen leads to a major loss of revenue in leading palm oil producing countries in Southeast Asia. Here in this study, we assess the morphological and biochemical changes in Ganoderma disease infected oil palm seedling roots in both resistant and susceptible progenies. Rubber woodblocks fully colonized by G. boninense were applied as a source of inoculum to artificially infect the roots of resistant and susceptible oil palm progenies. Gas chromatography-mass spectrometry was used to measure an array of plant metabolites in 100 resistant and susceptible oil palm seedling roots treated with pathogenic Ganoderma boninense fungus. Statistical effects, univariate and multivariate analyses were used to identify key-Ganoderma disease associated metabolic agitations in both resistant and susceptible oil palm root tissues. Ganoderma disease related defense shifts were characterized based on (i) increased antifungal activity in crude extracts, (ii) increased lipid levels, beta- and gamma-sitosterol particularly in the resistant progeny, (iii) detection of heterocyclic aromatic organic compounds, benzo [h] quinoline, pyridine, pyrimidine (iv) elevation in antioxidants, alpha- and beta-tocopherol (iv) degraded cortical cell wall layers, possibly resulting from fungal hydrolytic enzyme activity needed for initial penetration. The present study suggested that plant metabolites mainly lipids and heterocyclic aromatic organic metabolites could be potentially involved in early oil palm defense mechanism against G. boninense infection, which may also highlight biomarkers for disease detection, treatment, development of resistant variety and monitoring. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Conformational occlusion of blockade antibody epitopes, a novel mechanism of GII.4 human norovirus immune evasion

    OpenAIRE

    Lindesmith, Lisa C.; Mallory, Michael L.; Debbink, Kari; Donaldson, Eric F.; Brewer-Jensen, Paul D.; Swann, Excel W.; Sheahan, Timothy P.; Graham, Rachel L.; Beltramello, Martina; Corti, Davide; Lanzavecchia, Antonio; Baric, Ralph S.

    2018-01-01

    ABSTRACT Extensive antigenic diversity within the GII.4 genotype of human norovirus is a major driver of pandemic emergence and a significant obstacle to development of cross-protective immunity after natural infection and vaccination. However, human and mouse monoclonal antibody studies indicate that, although rare, antibodies to conserved GII.4 blockade epitopes are generated. The mechanisms by which these epitopes evade immune surveillance are uncertain. Here, we developed a new approach f...

  7. Psychological defense mechanisms in patients with syphilis at different stages of the disease

    Directory of Open Access Journals (Sweden)

    Filonova A.V.

    2015-09-01

    Full Text Available Purpose: the study of psychological defense mechanisms in patients with syphilis at different stages of the disease. Material and methods. We used questionnaire Plutchik-Kellerman-Comte "life style Index". The study involved 257 people (118 women (46% and 139 men (54% aged 18 to 67 years (mean age — 23,5±8,9years. Results. In patients with primary syphilis primary mecha-protection scheme is "denying"; secondary syphilis of skin and mucus-purity membranes— "replacement"; syphilis latent early — "projection"; in patients with late syphilis — intellectualization. Thus, in patients with late forms of syphilis is dominated by more Mature mechanisms of protection (projection, rationalization. Patients with early forms use more primitive mechanisms (denial, substitution. Conclusion. The obtained data may be useful in the choice of methods of psychotherapy, the formation of patients more realistic (ADAP-tive installations for the treatment, restoration of family and other social relations, the prevention of distress and improving the quality of life of patients.

  8. Ebola virus: immune mechanisms of protection and vaccine development.

    Science.gov (United States)

    Nyamathi, Adeline M; Fahey, John L; Sands, Heather; Casillas, Adrian M

    2003-04-01

    Vaccination is one of our most powerful antiviral strategies. Despite the emergence of deadly viruses such as Ebola virus, vaccination efforts have focused mainly on childhood communicable diseases. Although Ebola virus was once believed to be limited to isolated outbreaks in distant lands, forces of globalization potentiate outbreaks anywhere in the world through incidental transmission. Moreover, since this virus has already been transformed into weapon-grade material, the potential exists for it to be used as a biological weapon with catastrophic consequences for any population vulnerable to attack. Ebola hemorrhagic fever (EHF) is a syndrome that can rapidly lead to death within days of symptom onset. The disease directly affects the immune system and vascular bed, with correspondingly high mortality rates. Patients with severe disease produce dangerously high levels of inflammatory cytokines, which destroy normal tissue and microcirculation, leading to profound capillary leakage, renal failure, and disseminated intravascular coagulation. Vaccine development has been fraught with obstacles, primarily of a biosafety nature. Case reports of acutely ill patients with EHF showing improvement with the transfusion of convalescent plasma are at odds with animal studies demonstrating further viral replication with the same treatment. Using mRNA extracted from bone marrow of Ebola survivors, human monoclonal antibodies against Ebola virus surface protein have been experimentally produced and now raise the hope for the development of a safe vaccine.

  9. Kidney and innate immunity.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2017-03-01

    Innate immune system is an important modulator of the inflammatory response during infection and tissue injury/repair. The kidney as a vital organ with high energy demand plays a key role in regulating the disease related metabolic process. Increasing research interest has focused on the immune pathogenesis of many kidney diseases. However, innate immune cells such as dendritic cells, macrophages, NK cells and a few innate lymphocytes, as well as the complement system are essential for renal immune homeostasis and ensure a coordinated balance between tissue injury and regeneration. The innate immune response provides the first line of host defense initiated by several classes of pattern recognition receptors (PRRs), such as membrane-bound Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), together with inflammasomes responsible for early innate immune response. Although the innate immune system is well studied, the research on the detailed relationship between innate immunity and kidney is still very limited. In this review, we will focus on the innate immune sensing system in renal immune homeostasis, as well as the corresponding pathogenesis of many kidney diseases. The pivotal roles of innate immunity in renal injury and regeneration with special emphasis on kidney disease related immunoregulatory mechanism are also discussed. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  10. The GraS Sensor in Staphylococcus aureus Mediates Resistance to Host Defense Peptides Differing in Mechanisms of Action.

    Science.gov (United States)

    Chaili, Siyang; Cheung, Ambrose L; Bayer, Arnold S; Xiong, Yan Q; Waring, Alan J; Memmi, Guido; Donegan, Niles; Yang, Soo-Jin; Yeaman, Michael R

    2016-02-01

    Staphylococcus aureus uses the two-component regulatory system GraRS to sense and respond to host defense peptides (HDPs). However, the mechanistic impact of GraS or its extracellular sensing loop (EL) on HDP resistance is essentially unexplored. Strains with null mutations in the GraS holoprotein (ΔgraS) or its EL (ΔEL) were compared for mechanisms of resistance to HDPs of relevant immune sources: neutrophil α-defensin (human neutrophil peptide 1 [hNP-1]), cutaneous β-defensin (human β-defensin 2 [hBD-2]), or the platelet kinocidin congener RP-1. Actions studied by flow cytometry included energetics (ENR); membrane permeabilization (PRM); annexin V binding (ANX), and cell death protease activation (CDP). Assay conditions simulated bloodstream (pH 7.5) or phagolysosomal (pH 5.5) pH contexts. S. aureus strains were more susceptible to HDPs at pH 7.5 than at pH 5.5, and each HDP exerted a distinct effect signature. The impacts of ΔgraS and ΔΕL on HDP resistance were peptide and pH dependent. Both mutants exhibited defects in ANX response to hNP-1 or hBD-2 at pH 7.5, but only hNP-1 did so at pH 5.5. Both mutants exhibited hyper-PRM, -ANX, and -CDP responses to RP-1 at both pHs and hypo-ENR at pH 5.5. The actions correlated with ΔgraS or ΔΕL hypersusceptibility to hNP-1 or RP-1 (but not hBD-2) at pH 7.5 and to all study HDPs at pH 5.5. An exogenous EL mimic protected mutant strains from hNP-1 and hBD-2 but not RP-1, indicating that GraS and its EL play nonredundant roles in S. aureus survival responses to specific HDPs. These findings suggest that GraS mediates specific resistance countermeasures to HDPs in immune contexts that are highly relevant to S. aureus pathogenesis in humans. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Evaluation of lung immunity in chimpanzees

    International Nuclear Information System (INIS)

    Bice, D.E.; Harris, D.L.; Muggenburg, B.A.; Bowen, J.A.

    1980-01-01

    The effects of inhaled pollutants on the immune defenses in the lung can be studied in several animal species. To assure that the data obtained can be extrapolated to man, it is essential that the development of lung immunity is similar in the experimental animal selected and in humans. Because of the similarity of immune responses in chimpanzees and in humans, the development of immunity in the chimpanzee after lung immunization was evaluated. The results from the chimpanzees were qualitatively the same as those from previous studies in which single lung lobes of dogs were immunized. It was concluded that immunotoxicology data obtained in dogs can be used to estimate the effects of inhaled pollutants on the immune defense mechanism in the human lung

  12. Autophagic Mechanism in Anti-Cancer Immunity: Its Pros and Cons for Cancer Therapy.

    Science.gov (United States)

    Li, Ying-Ying; Feun, Lynn G; Thongkum, Angkana; Tu, Chiao-Hui; Chen, Shu-Mei; Wangpaichitr, Medhi; Wu, Chunjing; Kuo, Macus T; Savaraj, Niramol

    2017-06-19

    Autophagy, a self-eating machinery, has been reported as an adaptive response to maintain metabolic homeostasis when cancer cells encounter stress. It has been appreciated that autophagy acts as a double-edge sword to decide the fate of cancer cells upon stress factors, molecular subtypes, and microenvironmental conditions. Currently, the majority of evidence support that autophagy in cancer cells is a vital mechanism bringing on resistance to current and prospective treatments, yet whether autophagy affects the anticancer immune response remains unclear and controversial. Accumulated studies have demonstrated that triggering autophagy is able to facilitate anticancer immunity due to an increase in immunogenicity, whereas other studies suggested that autophagy is likely to disarm anticancer immunity mediated by cytotoxic T cells and nature killer (NK) cells. Hence, this contradiction needs to be elucidated. In this review, we discuss the role of autophagy in cancer cells per se and in cancer microenvironment as well as its dual regulatory roles in immune surveillance through modulating presentation of tumor antigens, development of immune cells, and expression of immune checkpoints. We further focus on emerging roles of autophagy induced by current treatments and its impact on anticancer immune response, and illustrate the pros and cons of utilizing autophagy in cancer immunotherapy based on preclinical references.

  13. Chromosome-level genome map provides insights into diverse defense mechanisms in the medicinal fungus Ganoderma sinense

    Science.gov (United States)

    Zhu, Yingjie; Xu, Jiang; Sun, Chao; Zhou, Shiguo; Xu, Haibin; Nelson, David R.; Qian, Jun; Song, Jingyuan; Luo, Hongmei; Xiang, Li; Li, Ying; Xu, Zhichao; Ji, Aijia; Wang, Lizhi; Lu, Shanfa; Hayward, Alice; Sun, Wei; Li, Xiwen; Schwartz, David C.; Wang, Yitao; Chen, Shilin

    2015-01-01

    Fungi have evolved powerful genomic and chemical defense systems to protect themselves against genetic destabilization and other organisms. However, the precise molecular basis involved in fungal defense remain largely unknown in Basidiomycetes. Here the complete genome sequence, as well as DNA methylation patterns and small RNA transcriptomes, was analyzed to provide a holistic overview of secondary metabolism and defense processes in the model medicinal fungus, Ganoderma sinense. We reported the 48.96 Mb genome sequence of G. sinense, consisting of 12 chromosomes and encoding 15,688 genes. More than thirty gene clusters involved in the biosynthesis of secondary metabolites, as well as a large array of genes responsible for their transport and regulation were highlighted. In addition, components of genome defense mechanisms, namely repeat-induced point mutation (RIP), DNA methylation and small RNA-mediated gene silencing, were revealed in G. sinense. Systematic bioinformatic investigation of the genome and methylome suggested that RIP and DNA methylation combinatorially maintain G. sinense genome stability by inactivating invasive genetic material and transposable elements. The elucidation of the G. sinense genome and epigenome provides an unparalleled opportunity to advance our understanding of secondary metabolism and fungal defense mechanisms. PMID:26046933

  14. Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D.

    Science.gov (United States)

    Wei, Ran; Christakos, Sylvia

    2015-09-24

    Non-classical actions of vitamin D were first suggested over 30 years ago when receptors for the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), were detected in various tissues and cells that are not associated with the regulation of calcium homeostasis, including activated human inflammatory cells. The question that remained was the biological significance of the presence of vitamin D receptors in the different tissues and cells and, with regard to the immune system, whether or not vitamin D plays a role in the normal immune response and in modifying immune mediated diseases. In this article findings indicating that vitamin D is a key factor regulating both innate and adaptive immunity are reviewed with a focus on the molecular mechanisms involved. In addition, the physiological significance of vitamin D action, as suggested by in vivo studies in mouse models is discussed. Together, the findings indicate the importance of 1,25(OH)2D3 as a regulator of key components of the immune system. An understanding of the mechanisms involved will lead to potential therapeutic applications for the treatment of immune mediated diseases.

  15. A host defense mechanism involving CFTR-mediated bicarbonate secretion in bacterial prostatitis.

    Directory of Open Access Journals (Sweden)

    Chen Xie

    Full Text Available BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(- and HCO(3(-, in mediating prostate HCO(3(- secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II, along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3(- content (>50 mM, rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3(- on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3(- secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3(- secretion may be up-regulated in prostatitis as a host defense mechanism.

  16. Molecular mechanism of mast cell–mediated innate defense against endothelin and snake venom sarafotoxin

    Science.gov (United States)

    Schneider, Lars A.; Schlenner, Susan M.; Feyerabend, Thorsten B.; Wunderlin, Markus; Rodewald, Hans-Reimer

    2007-01-01

    Mast cells are protective against snake venom sarafotoxins that belong to the endothelin (ET) peptide family. The molecular mechanism underlying this recently recognized innate defense pathway is unknown, but secretory granule proteases have been invoked. To specifically disrupt a single protease function without affecting expression of other proteases, we have generated a mouse mutant selectively lacking mast cell carboxypeptidase A (Mc-cpa) activity. Using this mutant, we have now identified Mc-cpa as the essential protective mast cell enzyme. Mass spectrometry of peptide substrates after cleavage by normal or mutant mast cells showed that removal of a single amino acid, the C-terminal tryptophan, from ET and sarafotoxin by Mc-cpa is the principle molecular mechanism underlying this very rapid mast cell response. Mast cell proteases can also cleave ET and sarafotoxin internally, but such “nicking” is not protective because intramolecular disulfide bridges maintain peptide function. We conclude that mast cells attack ET and sarafotoxin exactly at the structure required for toxicity, and hence sarafotoxins could not “evade” Mc-cpa's substrate specificity without loss of toxicity. PMID:17923505

  17. Abundant genetic overlap between blood lipids and immune-mediated diseases indicates shared molecular genetic mechanisms.

    Directory of Open Access Journals (Sweden)

    Ole A Andreassen

    Full Text Available Epidemiological studies suggest a relationship between blood lipids and immune-mediated diseases, but the nature of these associations is not well understood. We used genome-wide association studies (GWAS to investigate shared single nucleotide polymorphisms (SNPs between blood lipids and immune-mediated diseases. We analyzed data from GWAS (n~200,000 individuals, applying new False Discovery Rate (FDR methods, to investigate genetic overlap between blood lipid levels [triglycerides (TG, low density lipoproteins (LDL, high density lipoproteins (HDL] and a selection of archetypal immune-mediated diseases (Crohn's disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, psoriasis and sarcoidosis. We found significant polygenic pleiotropy between the blood lipids and all the investigated immune-mediated diseases. We discovered several shared risk loci between the immune-mediated diseases and TG (n = 88, LDL (n = 87 and HDL (n = 52. Three-way analyses differentiated the pattern of pleiotropy among the immune-mediated diseases. The new pleiotropic loci increased the number of functional gene network nodes representing blood lipid loci by 40%. Pathway analyses implicated several novel shared mechanisms for immune pathogenesis and lipid biology, including glycosphingolipid synthesis (e.g. FUT2 and intestinal host-microbe interactions (e.g. ATG16L1. We demonstrate a shared genetic basis for blood lipids and immune-mediated diseases independent of environmental factors. Our findings provide novel mechanistic insights into dyslipidemia and immune-mediated diseases and may have implications for therapeutic trials involving lipid-lowering and anti-inflammatory agents.

  18. Defense Mechanisms of Pregnant Mothers Predict Attachment Security, Social-Emotional Competence, and Behavior Problems in Their Toddlers.

    Science.gov (United States)

    Porcerelli, John H; Huth-Bocks, Alissa; Huprich, Steven K; Richardson, Laura

    2016-02-01

    For at-risk (single parent, low income, low support) mothers, healthy adaptation and the ability to manage stress have clear implications for parenting and the social-emotional well-being of their young offspring. The purpose of this longitudinal study was to examine associations between defense mechanisms in pregnant women and their toddlers' attachment security, social-emotional, and behavioral adjustment. Participants were 84 pregnant women during their last trimester of pregnancy, recruited from community agencies primarily serving low-income families. Women were followed prospectively from pregnancy through 2 years after birth and completed several multimethod assessments during that period. Observations of mother-child interactions were also coded after the postnatal visits. Multiple regression analyses revealed that mothers' defense mechanisms were significantly associated with several toddler outcomes. Mature, healthy defenses were significantly associated with greater toddler attachment security and social-emotional competence and fewer behavior problems, and less mature defenses (disavowal in particular) were associated with lower levels of attachment security and social-emotional competence. Associations remained significant, or were only slightly attenuated, after controlling for demographic variables and partner abuse during pregnancy. The study findings suggest that defensive functioning in parents preparing for and parenting toddlers influences the parent-child attachment relationship and social-emotional adjustment in the earliest years of life. Possible mechanisms for these associations may include parental attunement and mentalization, as well as specific caregiving behavior toward the child. Defensive functioning during times of increased stress (such as the prenatal to postnatal period) may be especially important for understanding parental influences on the child.

  19. Mecanismos adaptativos do sistema imunológico em resposta ao treinamento físico Adaptative mechanisms of the immune system in response to physical training

    Directory of Open Access Journals (Sweden)

    Carol Góis Leandro

    2007-10-01

    Full Text Available O treinamento físico, de intensidade moderada, melhora os sistemas de defesa, enquanto que o treinamento intenso causa imunossupressão. Os mecanismos subjacentes estão associados à comunicação entre os sistemas nervoso, endócrino e imunológico, sugerindo vias autonômicas e modulação da resposta imune. Células do sistema imune, quando expostas a pequenas cargas de estresse, desenvolvem mecanismo de tolerância. Em muitos tecidos tem-se demonstrado que a resposta a situações agressivas parece ser atenuada pelo treinamento físico aplicado previamente, isto é, o treinamento induz tolerância para situações agressivas/estressantes. Nesta revisão são relatados estudos sugerindo os mecanismos adaptativos do sistema imunológico em resposta ao treinamento físico.Moderate physical training enhances the defense mechanisms, while intense physical training induces to immune suppression. The underlying mechanisms are associated with the link between nervous, endocrine, and immune systems. It suggests autonomic patterns and modulation of immune response. Immune cells, when exposed to regular bouts of stress, develop a mechanism of tolerance. In many tissues, it has been demonstrated that the response to aggressive conditions is attenuated by moderate physical training. Thus, training can induce tolerance to aggressive/stressful situations. In this review, studies suggesting the adaptation mechanisms of the immune system in response to physical training will be reported.

  20. Rab GTPases in Immunity and Inflammation

    Directory of Open Access Journals (Sweden)

    Akriti Prashar

    2017-09-01

    Full Text Available Strict spatiotemporal control of trafficking events between organelles is critical for maintaining homeostasis and directing cellular responses. This regulation is particularly important in immune cells for mounting specialized immune defenses. By controlling the formation, transport and fusion of intracellular organelles, Rab GTPases serve as master regulators of membrane trafficking. In this review, we discuss the cellular and molecular mechanisms by which Rab GTPases regulate immunity and inflammation.

  1. Rab GTPases in Immunity and Inflammation.

    Science.gov (United States)

    Prashar, Akriti; Schnettger, Laura; Bernard, Elliott M; Gutierrez, Maximiliano G

    2017-01-01

    Strict spatiotemporal control of trafficking events between organelles is critical for maintaining homeostasis and directing cellular responses. This regulation is particularly important in immune cells for mounting specialized immune defenses. By controlling the formation, transport and fusion of intracellular organelles, Rab GTPases serve as master regulators of membrane trafficking. In this review, we discuss the cellular and molecular mechanisms by which Rab GTPases regulate immunity and inflammation.

  2. The Role of Defense Mechanisms, Personality and Demographical Factors on Complicated Grief following Death of a loved one by Cancer

    Directory of Open Access Journals (Sweden)

    Isaac Rahimian-Boogar

    2015-10-01

    Full Text Available Objective: Identification of the risk factors and psychological correlates of prolonged grief disorder is vital for health promotions in relatives of persons who died of cancer. The aim of this research was to investigate the role of defense mechanisms, character dimension of personality and demographic factors on complicated grief following a loss of a family member to cancer .Method: A number of 226 persons who had lost a family member to cancer in a cancer institute at Tehran University of Medical Science were selected through compliance sampling and completed the Inventory of complicated Grief-Revised (ICG-R, the Defense Styles Questionnaire (DSQ, the Character dimension of Temperament and Character Inventory (TCI, and the Demographical questionnaire. Data were analyzed by stepwise multiple regression analysis, using the PASW version 18 .Results: Findings revealed that neurotic defense style had a significant positive predictive role in the complicated grief; and cooperativeness, age of the deceased person, self-transcendence and mature defense style had a significant negative predictive role in complicated grief (p<0.001. R2 was 0.73 for the final model (p<.001.Conclusion: The results revealed that two character dimensions (low cooperativeness and self-transcendence, high neurotic defense style and young age of the deceased person were involved in the psychopathological course of the complicated and prolonged grief. It was concluded that personality characteristics of the grieving persons and demographics of the deceased person should be addressed in designing tailored interventions for complicated grief.

  3. In Silico Identification of Mimicking Molecules as Defense Inducers Triggering Jasmonic Acid Mediated Immunity against Alternaria Blight Disease in Brassica Species

    Directory of Open Access Journals (Sweden)

    Dinesh Pandey

    2017-04-01

    Full Text Available Alternaria brassicae and Alternaria brassicicola are two major phytopathogenic fungi which cause Alternaria blight, a recalcitrant disease on Brassica crops throughout the world, which is highly destructive and responsible for significant yield losses. Since no resistant source is available against Alternaria blight, therefore, efforts have been made in the present study to identify defense inducer molecules which can induce jasmonic acid (JA mediated defense against the disease. It is believed that JA triggered defense response will prevent necrotrophic mode of colonization of Alternaria brassicae fungus. The JA receptor, COI1 is one of the potential targets for triggering JA mediated immunity through interaction with JA signal. In the present study, few mimicking compounds more efficient than naturally occurring JA in terms of interaction with COI1 were identified through virtual screening and molecular dynamics simulation studies. A high quality structural model of COI1 was developed using the protein sequence of Brassica rapa. This was followed by virtual screening of 767 analogs of JA from ZINC database for interaction with COI1. Two analogs viz. ZINC27640214 and ZINC43772052 showed more binding affinity with COI1 as compared to naturally occurring JA. Molecular dynamics simulation of COI1 and COI1-JA complex, as well as best screened interacting structural analogs of JA with COI1 was done for 50 ns to validate the stability of system. It was found that ZINC27640214 possesses efficient, stable, and good cell permeability properties. Based on the obtained results and its physicochemical properties, it is capable of mimicking JA signaling and may be used as defense inducers for triggering JA mediated resistance against Alternaria blight, only after further validation through field trials.

  4. [Regulatory Mechanisms of PD-L1 Expression and Its Role in Immune Evasion].

    Science.gov (United States)

    Kataoka, Keisuke

    2017-11-01

    Immune checkpoint blockade therapy using anti-PD-1 or anti-PD-L1 antibodies can unleash anti-tumor immunity and induce durable remission in a variety ofhuman cancers. However, the regulatory mechanisms of PD-L1 expression mediating immune evasion ofcancer cells have not been fully elucidated, including the genetic alterations causing PD-L1 overexpression. Recently, we have reported a novel genetic mechanism ofimmune evasion associated with structural variations(SVs)disrupting the 3'-untranslated region(UTR)ofthe PD-L1 gene in various malignancies, such as aggressive lymphomas and gastrointestinal cancers. Despite a heterogenous nature ofthese SVs, they are closely associated with a marked upregulation of PD-L1 expression, which augments tumor growth and escape from anti-tumor immunity. Here we present an overview of the regulatory mechanisms of PD-L1 expression in cancer cells, highlighting the genetic mechanisms of PD-L1 constitutive activation, with specific focus on PD-L1 3'-UTR disruption.

  5. [Adaptation of self-image level and defense mechanisms in elderly patients with complicated stoma].

    Science.gov (United States)

    Ortiz-Rivas, Miriam Karina; Moreno-Pérez, Norma Elvira; Vega-Macías, Héctor Daniel; Jiménez-González, María de Jesús; Navarro-Elías, María de Guadalupe

    2014-01-01

    Ostomy patients face a number of problems that impact negatively on their personal welfare. The aim of this research is determine the nature and intensity of the relationship between the level of self-concept adaptive mode and the consistent use of coping strategies of older adults with a stoma. Quantitative, correlational and transversal. VIVEROS 03 and CAPS surveys were applied in 3 hospitals in the City of Durango, México. The study included 90 older adults with an intestinal elimination stoma with complications. Kendall's Tau-b coefficient was the non-parametric test used to measure this association. Most older adults analyzed (61.3 < % < 79.9) are not completely adapted to the condition of living with an intestinal stoma. There is also a moderate positive correlation (0,569) between the level of adaptation of the older adults with a stoma and the conscious use of coping strategies. The presence of an intestinal stoma represents a physical and psychological health problem that is reflected in the level of adaptation of the self-image. Elderly people with a stoma use only a small part of defense mechanisms as part of coping process. This limits their ability to face the adversities related to their condition, potentially causing major health complications. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  6. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes.

    Science.gov (United States)

    Shen, Ding-Wu; Pouliot, Lynn M; Hall, Matthew D; Gottesman, Michael M

    2012-07-01

    Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis.

  7. Mechanism of ad5 vaccine immunity and toxicity: fiber shaft targeting of dendritic cells.

    Directory of Open Access Journals (Sweden)

    Cheng Cheng

    2007-02-01

    Full Text Available Recombinant adenoviral (rAd vectors elicit potent cellular and humoral immune responses and show promise as vaccines for HIV-1, Ebola virus, tuberculosis, malaria, and other infections. These vectors are now widely used and have been generally well tolerated in vaccine and gene therapy clinical trials, with many thousands of people exposed. At the same time, dose-limiting adverse responses have been observed, including transient low-grade fevers and a prior human gene therapy fatality, after systemic high-dose recombinant adenovirus serotype 5 (rAd5 vector administration in a human gene therapy trial. The mechanism responsible for these effects is poorly understood. Here, we define the mechanism by which Ad5 targets immune cells that stimulate adaptive immunity. rAd5 tropism for dendritic cells (DCs was independent of the coxsackievirus and adenovirus receptor (CAR, its primary receptor or the secondary integrin RGD receptor, and was mediated instead by a heparin-sensitive receptor recognized by a distinct segment of the Ad5 fiber, the shaft. rAd vectors with CAR and RGD mutations did not infect a variety of epithelial and fibroblast cell types but retained their ability to transfect several DC types and stimulated adaptive immune responses in mice. Notably, the pyrogenic response to the administration of rAd5 also localized to the shaft region, suggesting that this interaction elicits both protective immunity and vector-induced fevers. The ability of replication-defective rAd5 viruses to elicit potent immune responses is mediated by a heparin-sensitive receptor that interacts with the Ad5 fiber shaft. Mutant CAR and RGD rAd vectors target several DC and mononuclear subsets and induce both adaptive immunity and toxicity. Understanding of these interactions facilitates the development of vectors that target DCs through alternative receptors that can improve safety while retaining the immunogenicity of rAd vaccines.

  8. Chemical compounds from anthropogenic environment and immune evasion mechanisms: potential interactions

    Science.gov (United States)

    Kravchenko, Julia; Corsini, Emanuela; Williams, Marc A.; Decker, William; Manjili, Masoud H.; Otsuki, Takemi; Singh, Neetu; Al-Mulla, Faha; Al-Temaimi, Rabeah; Amedei, Amedeo; Colacci, Anna Maria; Vaccari, Monica; Mondello, Chiara; Scovassi, A. Ivana; Raju, Jayadev; Hamid, Roslida A.; Memeo, Lorenzo; Forte, Stefano; Roy, Rabindra; Woodrick, Jordan; Salem, Hosni K.; Ryan, Elizabeth P.; Brown, Dustin G.; Lowe, Leroy; Lyerly, H.Kim

    2015-01-01

    An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-β, FAK, IGF-1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals that are common in the anthropogenic environment such as fungicides (maneb, fluoxastrobin and pyroclostrobin), herbicides (atrazine), insecticides (pyridaben and azamethiphos), the components of personal care products (triclosan and bisphenol A) and diethylhexylphthalate with pathways critical to tumor immunosurveillance. At this time, these chemicals are not recognized as human carcinogens; however, it is known that they these chemicalscan simultaneously persist in the environment and appear to have some potential interfere with the host immune response, therefore potentially contributing to promotion interacting with of immune evasion mechanisms, and promoting subsequent tumor growth and progression. PMID:26002081

  9. Psycho-neuro-endocrine-immune mechanisms of action of yoga in type II diabetes.

    Science.gov (United States)

    Singh, Vijay Pratap; Khandelwal, Bidita; Sherpa, Namgyal T

    2015-01-01

    Yoga has been found to benefit all the components of health viz. physical, mental, social and spiritual well being by incorporating a wide variety of practices. Pathophysiology of Type II DM and co-morbidities in Type II DM has been correlated with stress mechanisms. Stress suppresses body's immune system and neuro-humoral actions thereby aff ecting normal psychological state. It would not be wrong to state that correlation of diabetes with stress, anxiety and other psychological factors are bidirectional and lead to difficulty in understanding the interrelated mechanisms. Type II DM cannot be understood in isolation with psychological factors such as stress, anxiety and depression, neuro-endocrine and immunological factors. There is no review which tries to understand these mechanisms exclusively. The present literature review aims to understand interrelated Psycho-Neuro-Endocrine and Immunological mechanisms of action of Yoga in Type II Diabetes Mellitus. Published literature concerning mechanisms of action of Yoga in Type II DM emphasizing psycho-neuro-endocrine or immunological relations was retrieved from Pubmed using key words yoga, Type II diabetes mellitus, psychological, neural, endocrine, immune and mechanism of action. Those studies which explained the psycho-neuroendocrine and immune mechanisms of action of yoga were included and rest were excluded. Although primary aim of this study is to explain these mechanisms in Type II DM, some studies in non-diabetic population which had a similar pathway of stress mechanism was included because many insightful studies were available in that area. Search was conducted using terms yoga OR yogic AND diabetes OR diabetic IN title OR abstract for English articles. Of the 89 articles, we excluded non-English articles (22), editorials (20) and letters to editor (10). 37 studies were considered for this review. The postulated mechanism of action of yoga is through parasympathetic activation and the associated anti

  10. The Virome and Its Major Component, Anellovirus, a Convoluted System Molding Human Immune Defenses and Possibly Affecting the Development of Asthma and Respiratory Diseases in Childhood

    Directory of Open Access Journals (Sweden)

    Giulia Freer

    2018-04-01

    Full Text Available The microbiome, a thriving and complex microbial community colonizing the human body, has a broad impact on human health. Colonization is a continuous process that starts very early in life and occurs thanks to shrewd strategies microbes have evolved to tackle a convoluted array of anatomical, physiological, and functional barriers of the human body. Cumulative evidence shows that viruses are part of the microbiome. This part, called virome, has a dynamic composition that reflects what we eat, how and where we live, what we do, our genetic background, and other unpredictable variables. Thus, the virome plays a chief role in shaping innate and adaptive host immune defenses. Imbalance of normal microbial flora is thought to trigger or exacerbate many acute and chronic disorders. A compelling example can be found in the respiratory apparatus, where early-life viral infections are major determinants for the development of allergic diseases, like asthma, and other non-transmissible diseases. In this review, we focus on the virome and, particularly, on Anelloviridae, a recently discovered virus family. Anelloviruses are major components of the virome, present in most, if not all, human beings, where they are acquired early in life and replicate persistently without causing apparent disease. We will discuss how modulation of innate and adaptive immune systems by Anelloviruses can influence the development of respiratory diseases in childhood and provide evidence for the use of Anelloviruses as useful and practical molecular markers to monitor inflammatory processes and immune system competence.

  11. An Artificial Immune System with Feedback Mechanisms for Effective Handling of Population Size

    Science.gov (United States)

    Gao, Shangce; Wang, Rong-Long; Ishii, Masahiro; Tang, Zheng

    This paper represents a feedback artificial immune system (FAIS). Inspired by the feedback mechanisms in the biological immune system, the proposed algorithm effectively manipulates the population size by increasing and decreasing B cells according to the diversity of the current population. Two kinds of assessments are used to evaluate the diversity aiming to capture the characteristics of the problem on hand. Furthermore, the processing of adding and declining the number of population is designed. The validity of the proposed algorithm is tested for several traveling salesman benchmark problems. Simulation results demonstrate the efficiency of the proposed algorithm when compared with the traditional genetic algorithm and an improved clonal selection algorithm.

  12. Mechanical stress induces neuroendocrine and immune responses of sea cucumber ( Apostichopus japonicus)

    Science.gov (United States)

    Tan, Jie; Li, Fenghui; Sun, Huiling; Gao, Fei; Yan, Jingping; Gai, Chunlei; Chen, Aihua; Wang, Qingyin

    2015-04-01

    Grading procedure in routine sea cucumber hatchery production is thought to affect juvenile sea cucumber immunological response. The present study investigated the impact of a 3-min mechanical perturbation mimicking the grading procedure on neuroendocrine and immune parameters of the sea cucumber Apostichopus japonicus. During the application of stress, concentrations of noradrenaline and dopamine in coelomic fluid increased significantly, indicating that the mechanical perturbation resulted in a transient state of stress in sea cucumbers. Coelomocytes concentration in coelomic fluid increased transiently after the beginning of stressing, and reached the maximum in 1 h. Whereas, coelomocytes phagocytosis at 3 min, superoxide anion production from 3 min to 0.5 h, acid phosphatase activity at 0.5 h, and phenoloxidase activity from 3 min to 0.5 h were all significantly down-regulated. All of the immune parameters recovered to baseline levels after the experiment was conducted for 8 h, and an immunostimulation occurred after the stress considering the phagocytosis and acid phosphatase activity. The results suggested that, as in other marine invertebrates, neuroendocrine/immune connections exist in sea cucumber A. japonicus. Mechanical stress can elicit a profound influence on sea cucumber neuroendocrine system. Neuroendocrine messengers act in turn to modulate the immunity functions. Therefore, these effects should be considered for developing better husbandry procedures.

  13. Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus

    Science.gov (United States)

    Flannagan, Ronald S.; Heit, Bryan; Heinrichs, David E.

    2015-01-01

    Habitually professional phagocytes, including macrophages, eradicate microbial invaders from the human body without overt signs of infection. Despite this, there exist select bacteria that are professional pathogens, causing significant morbidity and mortality across the globe and Staphylococcus aureus is no exception. S. aureus is a highly successful pathogen that can infect virtually every tissue that comprises the human body causing a broad spectrum of diseases. The profound pathogenic capacity of S. aureus can be attributed, in part, to its ability to elaborate a profusion of bacterial effectors that circumvent host immunity. Macrophages are important professional phagocytes that contribute to both the innate and adaptive immune response, however from in vitro and in vivo studies, it is evident that they fail to eradicate S. aureus. This review provides an overview of the antimicrobial mechanisms employed by macrophages to combat bacteria and describes the immune evasion strategies and some representative effectors that enable S. aureus to evade macrophage-mediated killing. PMID:26633519

  14. Host Defense Mechanisms against Bark Beetle Attack Differ between Ponderosa and Lodgepole Pines

    Directory of Open Access Journals (Sweden)

    Daniel R. West

    2016-10-01

    Full Text Available Conifer defenses against bark beetle attack include, but are not limited to, quantitative and qualitative defenses produced prior to attack. Our objective was to assess host defenses of lodgepole pine and ponderosa pine from ecotone stands. These stands provide a transition of host species for mountain pine beetle (Dendroctonus ponderosae; MPB. We asked two questions: (1 do the preformed quantitative host defenses (amount of resin and (2 the preformed qualitative host defenses (monoterpene constituents differ between lodgepole and ponderosa pines. We collected oleoresins at three locations in the Southern Rocky Mountains from 56 pairs of the pine species of similar size and growing conditions. The amount of preformed-ponderosa pine oleoresins exuded in 24 h (mg was almost four times that of lodgepole pine. Total qualitative preformed monoterpenes did not differ between the two hosts, though we found differences in all but three monoterpenes. No differences were detected in α-pinene, γ-terpinene, and bornyl acetate. We found greater concentrations of limonene, β-phellandrene, and cymene in lodgepole pines, whereas β-pinene, 3-carene, myrcene, and terpinolene were greater in ponderosa pine. Although we found differences both in quantitative and qualitative preformed oleoresin defenses, the ecological relevance of these differences to bark beetle susceptibility have not been fully tested.

  15. Evolution of JAK-STAT pathway components: mechanisms and role in immune system development.

    Directory of Open Access Journals (Sweden)

    Clifford Liongue

    Full Text Available BACKGROUND: Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK-Signal transducer and activator of transcription (STAT pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP, Protein inhibitors against Stats (PIAS, and Suppressor of cytokine signaling (SOCS proteins across a diverse range of organisms. RESULTS: Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components. CONCLUSION: Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity.

  16. Xanthomonas campestris lipooligosaccharides trigger innate immunity and oxidative burst in Arabidopsis

    NARCIS (Netherlands)

    Proietti, S; Giangrande, C; Amoresano, A; Pucci, P; Molinaro, A; Bertini, L; Caporale, C; Caruso, C

    2014-01-01

    Plants lack the adaptive immunity mechanisms of jawed vertebrates, so they rely on innate immune responses to defense themselves from pathogens. The plant immune system perceives the presence of pathogens by recognition of molecules known as pathogen-associated molecular patterns (PAMPs). PAMPs have

  17. Sophie's Defense Mechanism in Her Struggle to Break the Curse in Diana Wynne Jones' Howl's Moving Castle

    OpenAIRE

    Perwita, Ratnanggana Ausiyyah Mustika

    2015-01-01

    The experience that young people get has an effect to their personality and their problem solving. This is why older people tend to be more mature than the young people. In Diana Wynne Jones' Howl's Moving Castle, the main character has a development in her personality through experiences. Her experiences lead her to how she solves her problems while she unconsciously uses defense mechanism. In this case, in this study will be analyzed the characteristic of the main character, Sophie, when sh...

  18. [Immune mechanisms of the active ingredients of Chinese medicinal herbs for chronic prostatitis].

    Science.gov (United States)

    Wang, Hao; Zhou, Yu-chun; Xue, Jian-guo

    2016-01-01

    Chronic prostatitis is a common male disease, and its pathogenesis is not yet clear. Most scholars believe that oxidative stress and immune imbalance are the keys to the occurrence and progression of chronic prostatitis. Currently immunotherapy of chronic prostatitis remains in the exploratory stage. This article relates the active ingredients of 5 Chinese medicinal herbs (total glucosides of paeony, tripterigium wilfordii polglycosidium, curcumin, geniposide, and quercetin) for the treatment of chronic prostatitis and their possible action mechanisms as follows: 1) inhibiting the immune response and activation and proliferation of T-cells, and adjusting the proportion of Th1/Th2 cells; 2) upregulating the expression of Treg and enhancing the patient's tolerability; 3) suppressing the activation of the NF-kB factor, reducing the release of iNOS, and further decreasing the release of NO, IL-2 and other inflammatory cytokines, which contribute to the suppression of the immune response; 4) inhibiting the production of such chemokines as MCP-1 and MIP-1α in order to reduce their induction of inflammatory response. Studies on the immune mechanisms of Chinese medicinal herbs in the treatment of chronic prostatitis are clinically valuable for the development of new drugs for this disease.

  19. New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome.

    Science.gov (United States)

    Conti, H R; Baker, O; Freeman, A F; Jang, W S; Holland, S M; Li, R A; Edgerton, M; Gaffen, S L

    2011-07-01

    Oropharyngeal candidiasis (OPC, thrush) is an opportunistic infection caused by the commensal fungus Candida albicans. An understanding of immunity to Candida has recently begun to unfold with the identification of fungal pattern-recognition receptors such as C-type lectin receptors, which trigger protective T-helper (Th)17 responses in the mucosa. Hyper-IgE syndrome (HIES/Job's syndrome) is a rare congenital immunodeficiency characterized by dominant-negative mutations in signal transducer and activator of transcription 3, which is downstream of the Th17-inductive cytokines interleukin (IL)-6 and IL-23, and hence patients with HIES exhibit dramatic Th17 deficits. HIES patients develop oral and mucocutaneous candidiasis, supporting a protective role for Th17 cells in immunity to OPC. However, the Th17-dependent mechanisms of antifungal immunity in OPC are still poorly defined. An often unappreciated aspect of oral immunity is saliva, which is rich in antimicrobial proteins (AMPs) and exerts direct antifungal activity. In this study, we show that HIES patients show significant impairment in salivary AMPs, including β-defensin 2 and Histatins. This tightly correlates with reduced candidacidal activity of saliva and concomitantly elevated colonization with Candida. Moreover, IL-17 induces histatins in cultured salivary gland cells. This is the first demonstration that HIES is associated with defective salivary activity, and provides a mechanism for the severe susceptibility of these patients to OPC.

  20. Comparative proteomic analysis of oil palm leaves infected with Ganoderma boninense revealed changes in proteins involved in photosynthesis, carbohydrate metabolism, and immunity and defense.

    Science.gov (United States)

    Jeffery Daim, Leona Daniela; Ooi, Tony Eng Keong; Ithnin, Nalisha; Mohd Yusof, Hirzun; Kulaveerasingam, Harikrishna; Abdul Majid, Nazia; Karsani, Saiful Anuar

    2015-08-01

    The basidiomycete fungal pathogen Ganoderma boninense is the causative agent for the incurable basal stem rot (BSR) disease in oil palm. This disease causes significant annual crop losses in the oil palm industry. Currently, there is no effective method for disease control and elimination, nor is any molecular marker for early detection of the disease available. An understanding of how BSR affects protein expression in plants may help identify and/or assist in the development of an early detection protocol. Although the mode of infection of BSR disease is primarily via the root system, defense-related genes have been shown to be expressed in both the root and leafs. Thus, to provide an insight into the changes in the global protein expression profile in infected plants, comparative 2DE was performed on leaf tissues sampled from palms with and without artificial inoculation of the Ganoderma fungus. Comparative 2DE revealed that 54 protein spots changed in abundance. A total of 51 protein spots were successfully identified by LC-QTOF MS/MS. The majority of these proteins were those involved in photosynthesis, carbohydrate metabolism as well as immunity and defense. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. MECHANISMS OF MELATONIN EFFECTS UPON IMMUNE STATE IN EXPERIMENTAL DESYNCHRONOSES PRODUCED UNDER THE LED ILLUMINATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    M. V. Osikov

    2015-01-01

    Full Text Available Disorders of immune state in desynchronosis may be associated with reduced concentrations of melatonin in blood, thus being a prerequisite for pharmacological correction of appropriate homeostatic changes. The purpose of this work was to explore some mechanisms of exogenous melatonin actions upon parameters of innate and adaptive immunity in experimental model of desynchronosis under the conditions of LED illumination. The study was performed with 196 adult guinea pigs. Light desynchronosis was produced by day-and-night illumination of the animals having been continued for 30 days. Melatonin was administered applied per os daily at the total dose of 30 mg/kg. A solution of melatonin in isotonic NaCl solution was prepared from the Melaxen drug (INN: melatonin, “Unipharm Inc.,” USA ex tempore. To study innate immunity of blood cells, we determined leukocyte numbers, WBC differential counts, and functional activity of phagocytes, as spontaneous and induced NBT test, as well as engulfment of polystyrene latex particles. Th1-specific immune response was studied according to degree of delayed type hypersensitivity reaction; Th2-dependent response was assessed as the numbers of antibody-forming cells in the spleen of the animals after immunization with allogeneic erythrocytes. Serum concentrations of interleukin 4 (IL-4, interferon-gamma (IFNγ, melatonin, and cortisol were measured by enzyme immunoassay, using the “Immulayt 2000” (USA with guinea pigspecific test systems. It was found that experimental desynchronosis was associated with leukocytosis, lymphoand monocytopenia, activation of oxygen-dependent metabolism of blood phagocytes, suppression of Th1-and Th2-dependent immune response. Desynchronosis was also accompanied by decreased concentrations of serum melatonin, IFNγ and IL-4, along with increased cortisol concentrations. Reduced IFNγ and IL-4 amounts was associated with decreased melatonin concentrations

  2. A Two-Phenotype Model of Immune Evasion by Cancer Cells

    NARCIS (Netherlands)

    Bayer, Péter; Brown, Joel; Stankova, Katerina

    2017-01-01

    We propose a model with two types of cancer cells differentiated by their defense mechanisms against the immune system. ``Selfish'' cancer cells develop defense mechanisms that benefit the individual cell, whereas ``cooperative'' cells deploy countermeasures that increase the chance of survival of

  3. An Active Immune Defense with a Minimal CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) RNA and without the Cas6 Protein*

    Science.gov (United States)

    Maier, Lisa-Katharina; Stachler, Aris-Edda; Saunders, Sita J.; Backofen, Rolf; Marchfelder, Anita

    2015-01-01

    The prokaryotic immune system CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) is a defense system that protects prokaryotes against foreign DNA. The short CRISPR RNAs (crRNAs) are central components of this immune system. In CRISPR-Cas systems type I and III, crRNAs are generated by the endonuclease Cas6. We developed a Cas6b-independent crRNA maturation pathway for the Haloferax type I-B system in vivo that expresses a functional crRNA, which we termed independently generated crRNA (icrRNA). The icrRNA is effective in triggering degradation of an invader plasmid carrying the matching protospacer sequence. The Cas6b-independent maturation of the icrRNA allowed mutation of the repeat sequence without interfering with signals important for Cas6b processing. We generated 23 variants of the icrRNA and analyzed them for activity in the interference reaction. icrRNAs with deletions or mutations of the 3′ handle are still active in triggering an interference reaction. The complete 3′ handle could be removed without loss of activity. However, manipulations of the 5′ handle mostly led to loss of interference activity. Furthermore, we could show that in the presence of an icrRNA a strain without Cas6b (Δcas6b) is still active in interference. PMID:25512373

  4. An active immune defense with a minimal CRISPR (clustered regularly interspaced short palindromic repeats) RNA and without the Cas6 protein.

    Science.gov (United States)

    Maier, Lisa-Katharina; Stachler, Aris-Edda; Saunders, Sita J; Backofen, Rolf; Marchfelder, Anita

    2015-02-13

    The prokaryotic immune system CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) is a defense system that protects prokaryotes against foreign DNA. The short CRISPR RNAs (crRNAs) are central components of this immune system. In CRISPR-Cas systems type I and III, crRNAs are generated by the endonuclease Cas6. We developed a Cas6b-independent crRNA maturation pathway for the Haloferax type I-B system in vivo that expresses a functional crRNA, which we termed independently generated crRNA (icrRNA). The icrRNA is effective in triggering degradation of an invader plasmid carrying the matching protospacer sequence. The Cas6b-independent maturation of the icrRNA allowed mutation of the repeat sequence without interfering with signals important for Cas6b processing. We generated 23 variants of the icrRNA and analyzed them for activity in the interference reaction. icrRNAs with deletions or mutations of the 3' handle are still active in triggering an interference reaction. The complete 3' handle could be removed without loss of activity. However, manipulations of the 5' handle mostly led to loss of interference activity. Furthermore, we could show that in the presence of an icrRNA a strain without Cas6b (Δcas6b) is still active in interference. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Chemical compounds from anthropogenic environment and immune evasion mechanisms: potential interactions.

    Science.gov (United States)

    Kravchenko, Julia; Corsini, Emanuela; Williams, Marc A; Decker, William; Manjili, Masoud H; Otsuki, Takemi; Singh, Neetu; Al-Mulla, Faha; Al-Temaimi, Rabeah; Amedei, Amedeo; Colacci, Anna Maria; Vaccari, Monica; Mondello, Chiara; Scovassi, A Ivana; Raju, Jayadev; Hamid, Roslida A; Memeo, Lorenzo; Forte, Stefano; Roy, Rabindra; Woodrick, Jordan; Salem, Hosni K; Ryan, Elizabeth P; Brown, Dustin G; Bisson, William H; Lowe, Leroy; Lyerly, H Kim

    2015-06-01

    An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-β, FAK, IGF-1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals that are common in the anthropogenic environment such as fungicides (maneb, fluoxastrobin and pyroclostrobin), herbicides (atrazine), insecticides (pyridaben and azamethiphos), the components of personal care products (triclosan and bisphenol A) and diethylhexylphthalate with pathways critical to tumor immunosurveillance. At this time, these chemicals are not recognized as human carcinogens; however, it is known that they these chemicalscan simultaneously persist in the environment and appear to have some potential interfere with the host immune response, therefore potentially contributing to promotion interacting with of immune evasion mechanisms, and promoting subsequent tumor growth and progression. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Immune mechanisms in polymyositis and dermatomyositis and potential targets for therapy.

    Science.gov (United States)

    Venalis, Paulius; Lundberg, Ingrid E

    2014-03-01

    PM and DM are characterized clinically by weakness and low endurance of skeletal muscle. Other organs are frequently involved, suggesting that idiopathic inflammatory myopathies (IIMs) are systemic inflammatory diseases. Involvement of immune mechanisms in IIMs is supported by the presence of T cells, macrophages and dendritic cells in muscle tissue, by the presence of autoantibodies and by HLA-DR being a strong genetic risk factor. T cells may have direct and indirect toxic effects on muscle fibres, causing muscle fibre necrosis and muscle weakness, but the target of the immune reaction is not known. A newly identified T cell subset, CD28(null) T cells, may have cytotoxic effects in the CD4(+) and CD8(+) T cell phenotype. These cells are apoptosis resistant and may contribute to treatment resistance. Several myositis-specific autoantibodies have been identified, but they are all directed against ubiquitously expressed autoantigens and the specificity of the T cell reactivity is not known. These autoantibodies are associated with distinct clinical phenotypes and some with distinct molecular pathways; e.g. sera from patients with anti-Jo-1 autoantibodies may activate the type I IFN system and these sera also contain high levels of B cell activating factor compared with other IIM subsets. The characterization of patients into subgroups based on autoantibody profiles seems to be a promising way to learn more about the specificities of the immune reactions. Careful phenotyping of infiltrating immune cells in muscle tissue before and after specific therapies and relating the molecular findings to clinical outcome measures may be another way to improve knowledge on specific immune mechanism in IIMs. Such information will be important for the development of new therapies.

  7. Mechanisms of alteration of the immune system by ionizing radiations: a basis for radiation protection

    International Nuclear Information System (INIS)

    Bourguignon, M.; Perez, M.; Dubner, D.; Michelin, S.; Carosella, E.

    2006-01-01

    Full text of publication follows: Alterations of the immune system appear in relationship with exposure to ionizing radiation (IR) in different situations, e.g., accidents, radiation therapy of cancer, prenatal irradiation, some human diseases with hypersensitivity to IR and aging. Thus, the comprehension of the mechanisms of the alterations of the immune system by IR is necessary to elaborate strategies of protection and to pave the way for future possible therapies. At least 9 mechanisms of alterations can be identified: 1- Apoptosis. Apoptosis is a key mechanism of the natural regulation of the immune system and plays also a key role in the response to IR: lymphocytes die rapidly by apoptosis after exposure. Different pathways of induction of apoptosis have been identified, and include p53 dependent and mitochondria mediated pathways, as well as CD95 and ROS initiation; 2- TCR mutations. The T cell antigen receptor is responsible to discriminate between self and non self. Mutations of the TCR may result from exposure to IR; 3- Modification of the Th1-Th2 balance. T helper cells may express 2 distinct secretion patterns: Th1 cytokines promote cell-mediated immunity while Th2 cytokines favor humoral immunity. Although the effects of IR on the Th1/Th2 balance remains controversial, an imbalance towards a Th2 profile is likely and patients with cancer and systemic auto-immune disease often present a switch from Th1 to Th2; 4- Bystander effects and genetic instability. Stimulatory effect or genomic instability have been observed in haematopoietic cells exposed to IR and related to a bystander mechanism. 5- Shift toward an inflammatory profile. Ionizing radiation may induce a persistent inflammatory profile as a result of dis-regulation of cytokine production; such a status of persistent inflammation has been observed in Hiroshima and Nagasaki survivors. 6- Modification of antigen presentation. Antigen presentation by dendritic cells is an essential function preceding

  8. Mechanisms of alteration of the immune system by ionizing radiations: a basis for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Bourguignon, M. [Direction Generale de la Surete Nucleaire et de la Radioprotection, 75 - Paris (France); Perez, M.; Dubner, D.; Michelin, S. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Carosella, E. [CEA, Service de Recherches en Hemato -Immunologie, 75 - Paris (France)

    2006-07-01

    Full text of publication follows: Alterations of the immune system appear in relationship with exposure to ionizing radiation (IR) in different situations, e.g., accidents, radiation therapy of cancer, prenatal irradiation, some human diseases with hypersensitivity to IR and aging. Thus, the comprehension of the mechanisms of the alterations of the immune system by IR is necessary to elaborate strategies of protection and to pave the way for future possible therapies. At least 9 mechanisms of alterations can be identified: 1- Apoptosis. Apoptosis is a key mechanism of the natural regulation of the immune system and plays also a key role in the response to IR: lymphocytes die rapidly by apoptosis after exposure. Different pathways of induction of apoptosis have been identified, and include p53 dependent and mitochondria mediated pathways, as well as CD95 and ROS initiation; 2- TCR mutations. The T cell antigen receptor is responsible to discriminate between self and non self. Mutations of the TCR may result from exposure to IR; 3- Modification of the Th1-Th2 balance. T helper cells may express 2 distinct secretion patterns: Th1 cytokines promote cell-mediated immunity while Th2 cytokines favor humoral immunity. Although the effects of IR on the Th1/Th2 balance remains controversial, an imbalance towards a Th2 profile is likely and patients with cancer and systemic auto-immune disease often present a switch from Th1 to Th2; 4- Bystander effects and genetic instability. Stimulatory effect or genomic instability have been observed in haematopoietic cells exposed to IR and related to a bystander mechanism. 5- Shift toward an inflammatory profile. Ionizing radiation may induce a persistent inflammatory profile as a result of dis-regulation of cytokine production; such a status of persistent inflammation has been observed in Hiroshima and Nagasaki survivors. 6- Modification of antigen presentation. Antigen presentation by dendritic cells is an essential function preceding

  9. Family matters: effect of host plant variation in chemical and mechanical defenses on a sequestering specialist herbivore.

    Science.gov (United States)

    Dimarco, Romina D; Nice, Chris C; Fordyce, James A

    2012-11-01

    Insect herbivores contend with various plant traits that are presumed to function as feeding deterrents. Paradoxically, some specialist insect herbivores might benefit from some of these plant traits, for example by sequestering plant chemical defenses that herbivores then use as their own defense against natural enemies. Larvae of the butterfly species Battus philenor (L.) (Papilionidae) sequester toxic alkaloids (aristolochic acids) from their Aristolochia host plants, rendering larvae and adults unpalatable to a broad range of predators. We studied the importance of two putative defensive traits in Aristolochia erecta: leaf toughness and aristolochic acid content, and we examined the effect of intra- and interplant chemical variation on the chemical phenotype of B. philenor larvae. It has been proposed that genetic variation for sequestration ability is "invisible to natural selection" because intra- and interindividual variation in host-plant chemistry will largely eliminate a role for herbivore genetic variation in determining an herbivore's chemical phenotype. We found substantial intra- and interplant variation in leaf toughness and in the aristolochic acid chemistry in A. erecta. Based on field observations and laboratory experiments, we showed that first-instar larvae preferentially fed on less tough, younger leaves and avoided tougher, older leaves, and we found no evidence that aristolochic acid content influenced first-instar larval foraging. We found that the majority of variation in the amount of aristolochic acid sequestered by larvae was explained by larval family, not by host-plant aristolochic acid content. Heritable variation for sequestration is the predominant determinant of larval, and likely adult, chemical phenotype. This study shows that for these highly specialized herbivores that sequester chemical defenses, traits that offer mechanical resistance, such as leaf toughness, might be more important determinants of early-instar larval

  10. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes.

    Science.gov (United States)

    Al-Attar, Sinan; Westra, Edze R; van der Oost, John; Brouns, Stan J J

    2011-04-01

    Many prokaryotes contain the recently discovered defense system against mobile genetic elements. This defense system contains a unique type of repetitive DNA stretches, termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs). CRISPRs consist of identical repeated DNA sequences (repeats), interspaced by highly variable sequences referred to as spacers. The spacers originate from either phages or plasmids and comprise the prokaryotes' 'immunological memory'. CRISPR-associated (cas) genes encode conserved proteins that together with CRISPRs make-up the CRISPR/Cas system, responsible for defending the prokaryotic cell against invaders. CRISPR-mediated resistance has been proposed to involve three stages: (i) CRISPR-Adaptation, the invader DNA is encountered by the CRISPR/Cas machinery and an invader-derived short DNA fragment is incorporated in the CRISPR array. (ii) CRISPR-Expression, the CRISPR array is transcribed and the transcript is processed by Cas proteins. (iii) CRISPR-Interference, the invaders' nucleic acid is recognized by complementarity to the crRNA and neutralized. An application of the CRISPR/Cas system is the immunization of industry-relevant prokaryotes (or eukaryotes) against mobile-genetic invasion. In addition, the high variability of the CRISPR spacer content can be exploited for phylogenetic and evolutionary studies. Despite impressive progress during the last couple of years, the elucidation of several fundamental details will be a major challenge in future research.

  11. A novel mechanism for NETosis provides antimicrobial defense at the oral mucosa

    DEFF Research Database (Denmark)

    Mohanty, Tirthankar; Sjögren, Jonathan; Kahn, Fredrik

    2015-01-01

    Neutrophils are essential for host defense at the oral mucosa and neutropenia or functional neutrophil defects lead to disordered oral homeostasis. We found that neutrophils from the oral mucosa harvested from morning saliva had released neutrophil extracellular traps (undergone NETosis) in vivo...

  12. Mechanism study of tumor-specific immune responses induced by laser immunotherapy

    Science.gov (United States)

    Li, Xiaosong; Zhou, Feifan; Le, Henry; Wolf, Roman F.; Howard, Eric; Nordquist, Robert E.; Hode, Tomas; Liu, Hong; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT) has shown its efficacy against late-stage, metastatic cancers, both in pre-clinical studies and clinical pilot trials. However, the possible mechanism of LIT is still not fully understood. In our previous studies, we have shown that LIT induces tumor-specific antibodies that strongly bind to the target tumors. Tumor resistance in cured animals demonstrated long-term immunological effect of LIT. Successful transfer of adoptive immunity using spleen cells from LIT-cured animals indicated a long-term immunological memory of the host system. In clinical trials for the treatment of late-stage melanoma patients and breast cancer patients, the similar long-term, systemic effects have also been observed. To further study the immunological mechanism of LIT, immuno-histochemical analysis of patient tumor samples has performed before and after LIT treatment. Our results showed strong evidence that LIT significantly increases the infiltration of immune cells in the target tumors. Specifically, LIT appeared to drive the infiltrating immune cell populations in the direction of CD4, CD8 and CD68 T-cells. It is possible that activation and enhancement of both humeral and cellular arms of the host immune system are achievable by the treatment of LIT. These special features of LIT have contributed to the success of patient treatment. The underlying mechanism of LIT appears to be an in-situ autologous whole-cell cancer vaccination, using all components of tumors as sources of tumor antigens. Our preliminary mechanistic studies and future in-depth studies will contribute to the understanding and development of LIT as an effective modality for the treatment of late stage cancer patients who are facing severely limited options.

  13. Cow's Milk and Immune Function in the Respiratory Tract: Potential Mechanisms.

    Science.gov (United States)

    Perdijk, Olaf; van Splunter, Marloes; Savelkoul, Huub F J; Brugman, Sylvia; van Neerven, R J Joost

    2018-01-01

    During the last decades, the world has witnessed a dramatic increase in allergy prevalence. Epidemiological evidence shows that growing up on a farm is a protective factor, which is partly explained by the consumption of raw cow's milk. Indeed, recent studies show inverse associations between raw cow's milk consumption in early life and asthma, hay fever, and rhinitis. A similar association of raw cow's milk consumption with respiratory tract infections is recently found. In line with these findings, controlled studies in infants with milk components such as lactoferrin, milk fat globule membrane, and colostrum IgG have shown to reduce respiratory infections. However, for ethical reasons, it is not possible to conduct controlled studies with raw cow's milk in infants, so formal proof is lacking to date. Because viral respiratory tract infections and aeroallergen exposure in children may be causally linked to the development of asthma, it is of interest to investigate whether cow's milk components can modulate human immune function in the respiratory tract and via which mechanisms. Inhaled allergens and viruses trigger local immune responses in the upper airways in both nasal and oral lymphoid tissue. The components present in raw cow's milk are able to promote a local microenvironment in which mucosal immune responses are modified and the epithelial barrier is enforced. In addition, such responses may also be triggered in the gut after exposure to allergens and viruses in the nasal cavity that become available in the GI tract after swallowing. However, these immune cells that come into contact with cow's milk components in the gut must recirculate into the blood and home to the (upper and lower) respiratory tract to regulate immune responses locally. Expression of the tissue homing-associated markers α4β7 and CCR9 or CCR10 on lymphocytes can be influenced by vitamin A and vitamin D3, respectively. Since both vitamins are present in milk, we speculate that raw

  14. Cow’s Milk and Immune Function in the Respiratory Tract: Potential Mechanisms

    Directory of Open Access Journals (Sweden)

    Olaf Perdijk

    2018-02-01

    Full Text Available During the last decades, the world has witnessed a dramatic increase in allergy prevalence. Epidemiological evidence shows that growing up on a farm is a protective factor, which is partly explained by the consumption of raw cow’s milk. Indeed, recent studies show inverse associations between raw cow’s milk consumption in early life and asthma, hay fever, and rhinitis. A similar association of raw cow’s milk consumption with respiratory tract infections is recently found. In line with these findings, controlled studies in infants with milk components such as lactoferrin, milk fat globule membrane, and colostrum IgG have shown to reduce respiratory infections. However, for ethical reasons, it is not possible to conduct controlled studies with raw cow’s milk in infants, so formal proof is lacking to date. Because viral respiratory tract infections and aeroallergen exposure in children may be causally linked to the development of asthma, it is of interest to investigate whether cow’s milk components can modulate human immune function in the respiratory tract and via which mechanisms. Inhaled allergens and viruses trigger local immune responses in the upper airways in both nasal and oral lymphoid tissue. The components present in raw cow’s milk are able to promote a local microenvironment in which mucosal immune responses are modified and the epithelial barrier is enforced. In addition, such responses may also be triggered in the gut after exposure to allergens and viruses in the nasal cavity that become available in the GI tract after swallowing. However, these immune cells that come into contact with cow’s milk components in the gut must recirculate into the blood and home to the (upper and lower respiratory tract to regulate immune responses locally. Expression of the tissue homing-associated markers α4β7 and CCR9 or CCR10 on lymphocytes can be influenced by vitamin A and vitamin D3, respectively. Since both vitamins are present

  15. Molecular Mechanisms Underlying β-Adrenergic Receptor-Mediated Cross-Talk between Sympathetic Neurons and Immune Cells

    Directory of Open Access Journals (Sweden)

    Dianne Lorton

    2015-03-01

    Full Text Available Cross-talk between the sympathetic nervous system (SNS and immune system is vital for health and well-being. Infection, tissue injury and inflammation raise firing rates of sympathetic nerves, increasing their release of norepinephrine (NE in lymphoid organs and tissues. NE stimulation of β2-adrenergic receptors (ARs in immune cells activates the cAMP-protein kinase A (PKA intracellular signaling pathway, a pathway that interfaces with other signaling pathways that regulate proliferation, differentiation, maturation and effector functions in immune cells. Immune–SNS cross-talk is required to maintain homeostasis under normal conditions, to develop an immune response of appropriate magnitude after injury or immune challenge, and subsequently restore homeostasis. Typically, β2-AR-induced cAMP is immunosuppressive. However, many studies report actions of β2-AR stimulation in immune cells that are inconsistent with typical cAMP–PKA signal transduction. Research during the last decade in non-immune organs, has unveiled novel alternative signaling mechanisms induced by β2-AR activation, such as a signaling switch from cAMP–PKA to mitogen-activated protein kinase (MAPK pathways. If alternative signaling occurs in immune cells, it may explain inconsistent findings of sympathetic regulation of immune function. Here, we review β2-AR signaling, assess the available evidence for alternative signaling in immune cells, and provide insight into the circumstances necessary for “signal switching” in immune cells.

  16. A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood.

    Directory of Open Access Journals (Sweden)

    Kerstin Hünniger

    2014-02-01

    Full Text Available Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost [Formula: see text] of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment

  17. Conformational Occlusion of Blockade Antibody Epitopes, a Novel Mechanism of GII.4 Human Norovirus Immune Evasion.

    Science.gov (United States)

    Lindesmith, Lisa C; Mallory, Michael L; Debbink, Kari; Donaldson, Eric F; Brewer-Jensen, Paul D; Swann, Excel W; Sheahan, Timothy P; Graham, Rachel L; Beltramello, Martina; Corti, Davide; Lanzavecchia, Antonio; Baric, Ralph S

    2018-01-01

    Extensive antigenic diversity within the GII.4 genotype of human norovirus is a major driver of pandemic emergence and a significant obstacle to development of cross-protective immunity after natural infection and vaccination. However, human and mouse monoclonal antibody studies indicate that, although rare, antibodies to conserved GII.4 blockade epitopes are generated. The mechanisms by which these epitopes evade immune surveillance are uncertain. Here, we developed a new approach for identifying conserved GII.4 norovirus epitopes. Utilizing a unique set of virus-like particles (VLPs) representing the in vivo -evolved sequence diversity within an immunocompromised person, we identify key residues within epitope F, a conserved GII.4 blockade antibody epitope. The residues critical for antibody binding are proximal to evolving blockade epitope E. Like epitope F, antibody blockade of epitope E was temperature sensitive, indicating that particle conformation regulates antibody access not only to the conserved GII.4 blockade epitope F but also to the evolving epitope E. These data highlight novel GII.4 mechanisms to protect blockade antibody epitopes, map essential residues of a GII.4 conserved epitope, and expand our understanding of how viral particle dynamics may drive antigenicity and antibody-mediated protection by effectively shielding blockade epitopes. Our data support the notion that GII.4 particle breathing may well represent a major mechanism of humoral immune evasion supporting cyclic pandemic virus persistence and spread in human populations. IMPORTANCE In this study, we use norovirus virus-like particles to identify key residues of a conserved GII.4 blockade antibody epitope. Further, we identify an additional GII.4 blockade antibody epitope to be occluded, with antibody access governed by temperature and particle dynamics. These findings provide additional support for particle conformation-based presentation of binding residues mediated by a particle

  18. Mechanisms of glacial-to-future atmospheric CO2 effects on plant immunity.

    Science.gov (United States)

    Williams, Alex; Pétriacq, Pierre; Schwarzenbacher, Roland E; Beerling, David J; Ton, Jurriaan

    2018-04-01

    The impacts of rising atmospheric CO 2 concentrations on plant disease have received increasing attention, but with little consensus emerging on the direct mechanisms by which CO 2 shapes plant immunity. Furthermore, the impact of sub-ambient CO 2 concentrations, which plants have experienced repeatedly over the past 800 000 yr, has been largely overlooked. A combination of gene expression analysis, phenotypic characterisation of mutants and mass spectrometry-based metabolic profiling was used to determine development-independent effects of sub-ambient CO 2 (saCO 2 ) and elevated CO 2 (eCO 2 ) on Arabidopsis immunity. Resistance to the necrotrophic Plectosphaerella cucumerina (Pc) was repressed at saCO 2 and enhanced at eCO 2 . This CO 2 -dependent resistance was associated with priming of jasmonic acid (JA)-dependent gene expression and required intact JA biosynthesis and signalling. Resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) increased at both eCO 2 and saCO 2 . Although eCO 2 primed salicylic acid (SA)-dependent gene expression, mutations affecting SA signalling only partially suppressed Hpa resistance at eCO 2 , suggesting additional mechanisms are involved. Induced production of intracellular reactive oxygen species (ROS) at saCO 2 corresponded to a loss of resistance in glycolate oxidase mutants and increased transcription of the peroxisomal catalase gene CAT2, unveiling a mechanism by which photorespiration-derived ROS determined Hpa resistance at saCO 2 . By separating indirect developmental impacts from direct immunological effects, we uncover distinct mechanisms by which CO 2 shapes plant immunity and discuss their evolutionary significance. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  19. White shrimp Litopenaeus vannamei that have received fucoidan exhibit a defense against Vibrio alginolyticus and WSSV despite their recovery of immune parameters to background levels.

    Science.gov (United States)

    Chen, Yu-Yuan; Kitikiew, Suwaree; Yeh, Su-Tuen; Chen, Jiann-Chu

    2016-12-01

    White shrimp Litopenaeus vannamei receiving fucoidan at 2, 6, and 10 μg g -1 after 0-144 h or 0-120 h were examined for immune parameters (haemograms, phenoloxidase activity, respiratory burst, and superoxide dismutase activity), proliferation of haemocyte in the haematopoietic tissue (HPT), gene expression, and phagocytic activity and clearance efficiency to Vibrio alginolyticus. Immune parameters and mitotic index of HPT increased after 3-24 h, reached their maxima after 48-72 h, and returned to background values after 144 h. Transcripts of lipopolysaccharide and β-1,3-glucan binding protein (LGBP), peroxinectin (PX), prophenoloxidase (proPO) I, proPO II, astakine, and haemocyte homeostasis-associated protein (HHAP) were up-regulated to a maximum after 48-72 h and returned to background values after 144 h. Phagocytic activity and clearance efficiency to V. alginolyticus increased after 12 h, reached its maximum after 48 h, and continued to remain higher after 120 h. In another experiment, shrimp receiving fucoidan after 48 h and 144 h were respectively challenged with V. alinolyticus at 6 × 10 6  colony-forming units (cfu) shrimp -1 or challenged with WSSV at 1.2 × 10 5  copies shrimp -1 and then placed in seawater. The survival rate of shrimp receiving fucoidan was significantly higher than in controls. In conclusion, shrimp receiving fucoidan showed a proliferation of HPT, increased immune parameters, and up-regulated transcripts of LGBP, PX, proPO I, proPO II, astakine, and HHAP after 48 h. Shrimp receiving fucoidan exhibited a defense against V. alginolyticus and WSSV, even after immune parameters recovered to background levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Modulation of pulmonary defense mechanisms by acute exposures to nitrogen dioxide. [Staphylococcus aureus; Proteus mirabilis; Pasteurella pneumotropica

    Energy Technology Data Exchange (ETDEWEB)

    Jakab, G.J.

    1987-02-01

    The effect of acute exposures to NO/sub 2/ on the antibacterial defenses of the murine lung was assessed following inhalation challenges with Staphylococcus aureus, Proteus mirabilis, and Pasteurella pneumotropica. With S. aureus pulmonary antibacterial defenses were suppressed at NO/sub 2/ levels of 4.0 ppm and greater. Exposure to 10.0 ppm enhanced the intrapulmonary killing of P. mirabilis which correlated with an increase in the phagocytic cell populations lavaged from the lungs; at 20.0 ppm bactericidal activity against P. mirabilis was impaired. Pulmonary antibacterial defenses against P. pneumotropica were impaired at 10.0 ppm which correlated with a decrease in the retrieved phagocytic lung cell population. Reversing the order of treatment (ie., NO/sub 2/ exposure prior to bacterial challenge) raised the threshold concentration for NO/sub 2/-induced impairment of intrapulmonary bacterial killing. With S. aureus the effect was not observed at 5.0 ppm but at 10.0 ppm and with P. mirabilis not at 20.0 ppm but at 30.0 ppm intrapulmonary killing was enhanced. Exposures up to 20.0 ppm of NO/sub 2/ did not effect the physical translocation mechanisms of the lung as quantitated by declines in pulmonary radiotracer activity following aerogenic challenge with /sup 32/P-labeled staphylococci.

  1. Human and Animal Isolates of Yersinia enterocolitica Show Significant Serotype-Specific Colonization and Host-Specific Immune Defense Properties

    Science.gov (United States)

    Schaake, Julia; Kronshage, Malte; Uliczka, Frank; Rohde, Manfred; Knuuti, Tobias; Strauch, Eckhard; Fruth, Angelika; Wos-Oxley, Melissa

    2013-01-01

    Yersinia enterocolitica is a human pathogen that is ubiquitous in livestock, especially pigs. The bacteria are able to colonize the intestinal tract of a variety of mammalian hosts, but the severity of induced gut-associated diseases (yersiniosis) differs significantly between hosts. To gain more information about the individual virulence determinants that contribute to colonization and induction of immune responses in different hosts, we analyzed and compared the interactions of different human- and animal-derived isolates of serotypes O:3, O:5,27, O:8, and O:9 with murine, porcine, and human intestinal cells and macrophages. The examined strains exhibited significant serotype-specific cell binding and entry characteristics, but adhesion and uptake into different host cells were not host specific and were independent of the source of the isolate. In contrast, survival and replication within macrophages and the induced proinflammatory response differed between murine, porcine, and human macrophages, suggesting a host-specific immune response. In fact, similar levels of the proinflammatory cytokine macrophage inflammatory protein 2 (MIP-2) were secreted by murine bone marrow-derived macrophages with all tested isolates, but the equivalent interleukin-8 (IL-8) response of porcine bone marrow-derived macrophages was strongly serotype specific and considerably lower in O:3 than in O:8 strains. In addition, all tested Y. enterocolitica strains caused a considerably higher level of secretion of the anti-inflammatory cytokine IL-10 by porcine than by murine macrophages. This could contribute to limiting the severity of the infection (in particular of serotype O:3 strains) in pigs, which are the primary reservoir of Y. enterocolitica strains pathogenic to humans. PMID:23959720

  2. Pteromalus puparum venom impairs host cellular immune responses by decreasing expression of its scavenger receptor gene

    Science.gov (United States)

    Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Although there is a rich literature on these systems, parasitoid immune-disabling mechanisms have not been fully elucidated. Here we ...

  3. Visible light induced changes in the immune response through an eye-brain mechanism (photoneuroimmunology).

    Science.gov (United States)

    Roberts, J E

    1995-07-01

    The immune system is susceptible to a variety of stresses. Recent work in neuroimmunology has begun to define how mood alteration, stress, the seasons, and daily rhythms can have a profound effect on immune response through hormonal modifications. Central to these factors may be light through an eye-brain hormonal modulation. In adult primates, only visible light (400-700 nm) is received by the retina. This photic energy is then transduced and delivered to the visual cortex and by an alternative pathway to the suprachiasmatic nucleus (SCN). The SCN is a part of the hypothalamic region in the brain believed to direct circadian rhythm. Visible light exposure also modulates the pituitary and pineal gland which leads to neuroendocrine changes. Melatonin, norepinephrine and acetylcholine decrease with light activation, while cortisol, serotonin, gaba and dopamine levels increase. The synthesis of vasoactive intestinal polypeptide (VIP), gastrin releasing peptide (GRP) and neuropeptide Y (NPY) in rat SCN has been shown to be modified by light. These induced neuroendocrine changes can lead to alterations in mood and circadian rhythm. All of these neuroendocrine changes can lead to immune modulation. An alternative pathway for immune modulation by light is through the skin. Visible light (400-700 nm) can penetrate epidermal and dermal layers of the skin and may directly interact with circulating lymphocytes to modulate immune function. However, even in the presence of phototoxic agents such as eosin and rose bengal, visible light did not produce suppression of contact hypersensitivity with suppresser cells. In contrast to visible light, in vivo exposure to UV-B (280-320 nm) and UV-A (320-400 nm) radiation can only alter normal human immune function by a skin mediated response. Each UV subgroup (B, A) induces an immunosuppressive response but by differing mechanisms involving the regulation of differing interleukins and growth factors. Some effects observed in humans are

  4. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection.

    Science.gov (United States)

    Fujimura, Kei E; Demoor, Tine; Rauch, Marcus; Faruqi, Ali A; Jang, Sihyug; Johnson, Christine C; Boushey, Homer A; Zoratti, Edward; Ownby, Dennis; Lukacs, Nicholas W; Lynch, Susan V

    2014-01-14

    Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development, and dog ownership is associated with a distinct house dust microbial exposure. Here, we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen-mediated airway pathology. Protected animals exhibited significant reduction in the total number of airway T cells, down-regulation of Th2-related airway responses, as well as mucin secretion. Following dog-associated dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild-type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii-mediated protection was associated with significant reductions in the total number and proportion of activated CD11c(+)/CD11b(+) and CD11c(+)/CD8(+) cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct gastrointestinal microbiome composition. Moreover, the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults.

  5. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage

    International Nuclear Information System (INIS)

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J.; Rudich, Yinon

    2016-01-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. - Highlights: • Repeated exposure to urban PM cause systemic inflammation and oxidative damage to lung tissue lipids and proteins. • Repeated exposure to these PM extracts decreased transcription of Nrf2 protective genes. • Single as opposed to repeated exposure, induced confined lung response accompanied by activated defense mechanisms. • Metals, potentially from break and tire wear, drive the pulmonary response with exposure to urban PM. - Repeated exposures to urban PM water extracts

  6. Exploring the Caste-Specific Multi-Layer Defense Mechanism of Formosan Subterranean Termites, Coptotermes formosanus Shiraki

    Directory of Open Access Journals (Sweden)

    Abid Hussain

    2017-12-01

    Full Text Available The survival and foraging of Coptotermes formosanus Shiraki in a microbe-rich environment reflect the adaptation of an extraordinary, sophisticated defense mechanism by the nest-mates. We aimed to explore the host pathogen interaction by studying caste-specific volatile chemistry and genes encoding the antioxidant defense of winged imagoes, nymphs, soldiers and workers of Formosan subterranean termites. Qualitative analyses of C. formosanus Shiraki performed by HS-SPME/GC-MS showed considerable variations in the chemical composition of volatile organic compounds (VOCs and their proportions among all the castes. Winged imagoes produced the most important compounds such as naphthalene and n-hexanoic acid. The antifungal activity of these compounds along with nonanal, n-pentadecane, n-tetradecane, n-heptadecane and methyl octanoate against the conidial suspensions of Metarhizium anisopliae and Beauveria bassiana isolates enable us to suggest that the failure of natural fungal infection in the nest is due to the antiseptic environment of the nest, which is mainly controlled by the VOCs of nest-mates. In addition, conidial germination of M. anisopliae and B. bassiana isolates evaluated on the cuticle of each caste showed significant variations among isolates and different castes. Our results showed that the conidia of M. anisopliae 02049 exhibited the highest germination on the cuticle of all the inoculated castes. Moreover, we recorded the lowest germination of the conidia of B. bassiana 200436. Caste-specific germination variations enabled us to report for the first time that the cuticle of winged imagoes was found to be the most resistant cuticle. The analysis of the transcriptome of C. formosanus Shiraki revealed the identification of 17 genes directly involved in antioxidant defense. Expression patterns of the identified antioxidant genes by quantitative real-time PCR (qPCR revealed the significantly highest upregulation of CAT, GST, PRXSL, Cu

  7. The Transcriptome and Terpene Profile of Eucalyptus grandis Reveals Mechanisms of Defense Against the Insect Pest, Leptocybe invasa.

    Science.gov (United States)

    Oates, Caryn N; Külheim, Carsten; Myburg, Alexander A; Slippers, Bernard; Naidoo, Sanushka

    2015-07-01

    Plants have evolved complex defenses that allow them to protect themselves against pests and pathogens. However, there is relatively little information regarding the Eucalyptus defensome. Leptocybe invasa is one of the most damaging pests in global Eucalyptus forestry, and essentially nothing is known regarding the molecular mechanisms governing the interaction between the pest and host. The aim of the study was to investigate changes in the transcriptional landscape and terpene profile of a resistant and susceptible Eucalyptus genotype in an effort to improve our understanding of this interaction. We used RNA-seqencing to investigate transcriptional changes following L. invasa oviposition. Expression levels were validated using real-time quantitative PCR. Terpene profiles were investigated using gas chromatography coupled to mass spectometry on uninfested and oviposited leaves. We found 698 and 1,115 significantly differentially expressed genes from the resistant and susceptible interactions, respectively. Gene Ontology enrichment and Mapman analyses identified putative defense mechanisms including cell wall reinforcement, protease inhibitors, cell cycle suppression and regulatory hormone signaling pathways. There were significant differences in the mono- and sesquiterpene profiles between genotypes and between control and infested material. A model of the interaction between Eucalyptus and L. invasa was proposed from the transcriptomic and chemical data. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Marijuana usage in relation to harmfulness ratings, perceived likelihood of negative consequences, and defense mechanisms in high school students.

    Science.gov (United States)

    Como-Lesko, N; Primavera, L H; Szeszko, P R

    1994-08-01

    This study investigated high school students' marijuana usage patterns in relation to their harmfulness ratings of 15 licit and illicit drugs, perceived negative consequences from using marijuana, and types of defense mechanisms employed. Subjects were classified into one of five pattern-of-use groups based on marijuana usage: principled nonusers, nonusers, light users, moderate users, and heavy users. Principled nonusers (individuals who have never used marijuana and would not do so if it was legalized) rated marijuana, hashish, cocaine, and alcohol as significantly more harmful than heavy users. A cluster analysis of the drugs' harmfulness ratings best fit a three cluster solution and were named medicinal drugs, recreational drugs, and hard drugs. In general, principled nonusers rated negative consequences from using marijuana as significantly more likely to occur than other groups. Principled nonusers and heavy users utilized reversal from the Defense Mechanism Inventory, which includes repression and denial, significantly more than nonusers, indicating some trait common to the two extreme pattern-of-use groups.

  9. ERAP1 overexpression in HPV-induced malignancies: A possible novel immune evasion mechanism.

    Science.gov (United States)

    Steinbach, Alina; Winter, Jan; Reuschenbach, Miriam; Blatnik, Renata; Klevenz, Alexandra; Bertrand, Miriam; Hoppe, Stephanie; von Knebel Doeberitz, Magnus; Grabowska, Agnieszka K; Riemer, Angelika B

    2017-01-01

    Immune evasion of tumors poses a major challenge for immunotherapy. For human papillomavirus (HPV)-induced malignancies, multiple immune evasion mechanisms have been described, including altered expression of antigen processing machinery (APM) components. These changes can directly influence epitope presentation and thus T-cell responses against tumor cells. To date, the APM had not been studied systematically in a large array of HPV + tumor samples. Therefore in this study, systematic expression analysis of the APM was performed on the mRNA and protein level in a comprehensive collection of HPV16 + cell lines. Subsequently, HPV + cervical tissue samples were examined by immunohistochemistry. ERAP1 (endoplasmic reticulum aminopeptidase 1) was the only APM component consistently altered - namely overexpressed - in HPV16 + tumor cell lines. ERAP1 was also found to be overexpressed in cervical intraepithelial neoplasia and cervical cancer samples; expression levels were increasing with disease stage. On the functional level, the influence of ERAP1 expression levels on HPV16 E7-derived epitope presentation was investigated by mass spectrometry and in cytotoxicity assays with HPV16-specific T-cell lines. ERAP1 overexpression did not cause a complete destruction of any of the HPV epitopes analyzed, however, an influence of ERAP1 overexpression on the presentation levels of certain HPV epitopes could be demonstrated by HPV16-specific CD8 + T-cells. These showed enhanced killing toward HPV16 + CaSki cells whose ERAP1 expression had been attenuated to normal levels. ERAP1 overexpression may thus represent a novel immune evasion mechanism in HPV-induced malignancies, in cases when presentation of clinically relevant epitopes is reduced by overactivity of this peptidase.

  10. Mechanism for maintaining homeostasis in the immune system of the intestine.

    Science.gov (United States)

    Taniguchi, Yoshie; Yoshioka, Noriko; Nakata, Kazue; Nishizawa, Takashi; Inagawa, Hiroyuki; Kohchi, Chie; Soma, Gen-Ichiro

    2009-11-01

    Every organism possesses a mechanism for maintaining homeostasis. We have focused on the immune system as a system that helps maintain homeostasis of the body, and particularly on the intestine as the largest organ of immunity in the body. We have also focused our research on the mechanism that responds to foreign substances in the intestine, especially the toll-like receptors (TLR). The activation of myeloid differentiation primary response gene 88 (MyD88) signal transduction as a response to TLR in the intestine is believed to contribute to the maintenance of homeostasis of the body through the homeostasis of the intestine. Furthermore, significant findings were reported in which signal transduction from TLR4 was essential for the maintenance and regulation of the intestine. These results strongly suggest the possibility that homeostasis in the intestine is maintained by TLR4, and signaling by TLR4 after exposure to lipopolysaccharide (LPS) probably has a role in regulating homeostasis. It is expected that the prevention and treatment of various diseases using TLR4 will continue to develop. As LPS is a substance that enhances the activity of TLR4, it will also attract attention as a valuable substance in its own right.

  11. Immune Defenses of the Invasive Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae: Phagocytic Hemocytes in the Circulation and the Kidney.

    Directory of Open Access Journals (Sweden)

    Juan A Cueto

    hyalinocytes participate in the storage and circulation of this compound. Injection of microorganisms in the foot results in phagocytosis by hemocytes in the islets, and the different phagosomes formed are similar to those in circulating hyalinocytes. Dispersed hemocytes were obtained after kidney collagenase digestion and cell sorting, and they were able to phagocytize fluorescent beads. A role for the kidney as an immune barrier is proposed for this snail.

  12. Insight into the mechanisms regulating immune homeostasis in health and disease.

    Science.gov (United States)

    Sirisinha, Stitaya

    2011-03-01

    Innate and adaptive immune systems consist of cells and molecules that work together in concert to fight against microbial infection and maintain homeostasis. Hosts encounter microbes / exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs) all the time and they must have proper mechanisms to counteract the danger such that appropriate responses (e.g., degree of inflammation and types of mediators induced) can be mounted in different scenarios. Increasing numbers of endogenous danger signals of host origin are being identified including, for example, uric acid and cholesterol crystals, high mobility group box1 (HMGB1) protein, oxidized LDL, vesicans, heat shock proteins (HSPs) and self DNA. Many of these endogenous ligands have been shown to be associated with inflammation-related diseases like atherosclerosis, gout and type 2 diabetes. Several DAMPs appear to have the ability to interact with more than one receptor. We are now beginning to understand how the immune system can distinguish infection from endogenous ligands elaborated following cellular insults and tissue damage. Appropriate responses to maintain the homeostatic state in health and disease depend largely on the recognition and response to these stimuli by germline encoded pattern-recognition receptors (PRRs) present on both immune and non-immune cells. These receptors are, for example, Toll-like receptors (TLRs), C-type lectin receptors (CLRs) and cytosolic receptors (e.g., RLRs, NLRs and some intracellular DNA sensors). Atypical PRR "danger" receptors, like the receptor for advanced glycation end products (RAGE) and their ligands have been identified. A proper response to maintain homeostasis relies on specific negative regulators and regulatory pathways to dampen its response to tissue injury while maintaining the capacity to eliminate infection and induce proper tissue repair. Moreover, some PRRs (e.g., TLR2,TLR4 and NLRP3) and atypical

  13. Cytokine regulation of immune tolerance

    OpenAIRE

    Wu, Jie; Xie, Aini; Chen, Wenhao

    2014-01-01

    The immune system provides defenses against invading pathogens while maintaining immune tolerance to self-antigens. This immune homeostasis is harmonized by the direct interactions between immune cells and the cytokine environment in which immune cells develop and function. Herein, we discuss three non-redundant paradigms by which cytokines maintain or break immune tolerance. We firstly describe how anti-inflammatory cytokines exert direct inhibitory effects on immune cells to enforce immune ...

  14. Oxidative Stress and Antioxidant Defense Mechanisms Linked to Exercise During Cardiopulmonary and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Kelsey Fisher-Wellman

    2009-01-01

    Full Text Available Oxidative stress has been implicated in the pathophysiology of multiple human diseases, in addition to the aging process. Although various stimuli exist, acute exercise is known to induce a transient increase in reactive oxygen and nitrogen species (RONS, evident by several reports of increased oxidative damage following acute bouts of aerobic and anaerobic exercise. Although the results are somewhat mixed and appear disease dependent, individuals with chronic disease experience an exacerbation in oxidative stress following acute exercise when compared to healthy individuals. However, this increased oxidant stress may serve as a necessary “signal” for the upregulation in antioxidant defenses, thereby providing protection against subsequent exposure to prooxidant environments within susceptible individuals. Here we present studies related to both acute exercise-induced oxidative stress in those with disease, in addition to studies focused on adaptations resulting from increased RONS exposure associated with chronic exercise training in persons with disease.

  15. Polyamine metabolism influences antioxidant defense mechanism in foxtail millet (Setaria italica L.) cultivars with different salinity tolerance.

    Science.gov (United States)

    Sudhakar, Chinta; Veeranagamallaiah, Gounipalli; Nareshkumar, Ambekar; Sudhakarbabu, Owku; Sivakumar, M; Pandurangaiah, Merum; Kiranmai, K; Lokesh, U

    2015-01-01

    Polyamines can regulate the expression of antioxidant enzymes and impart plants tolerance to abiotic stresses. A comparative analysis of polyamines, their biosynthetic enzymes at kinetic and at transcriptional level, and their role in regulating the induction of antioxidant defense enzymes under salt stress condition in two foxtail millet (Setaria italica L.) cultivars, namely Prasad, a salt-tolerant, and Lepakshi, a salt-sensitive cultivar was conducted. Salt stress resulted in elevation of free polyamines due to increase in the activity of spermidine synthase and S-adenosyl methionine decarboxylase enzymes in cultivar Prasad compared to cultivar Lepakshi under different levels of NaCl stress. These enzyme activities were further confirmed at the transcript level via qRT-PCR analysis. The cultivar Prasad showed a greater decrease in diamine oxidase and polyamine oxidase activity, which results in the accumulation of polyamine pools over cultivar Lepakshi. Generation of free radicals, such as O 2 (·-) and H2O2, was also analyzed quantitatively. A significant increase in O 2 (·-) and H2O2 in the cultivar Lepakshi compared with cultivar Prasad was recorded in overall pool sizes. Further, histochemical staining showed lesser accumulation of O 2 (·-) and of H2O2 in the leaves of cultivar Prasad than cultivar Lepakshi. Our results also suggest the ability of polyamine oxidation in regulating the induction of antioxidative defense enzymes, which involve in the elimination of toxic levels of O 2 (·-) and H2O2, such as Mn-superoxide dismutase, catalase and ascorbate peroxidase. The contribution of polyamines in modulating antioxidative defense mechanism in NaCl stress tolerance is discussed.

  16. Mechanisms of virus immune evasion lead to development from chronic inflammation to cancer formation associated with human papillomavirus infection.

    Science.gov (United States)

    Senba, Masachika; Mori, Naoki

    2012-10-02

    Human papillomavirus (HPV) has developed strategies to escape eradication by innate and adaptive immunity. Immune response evasion has been considered an important aspect of HPV persistence, which is the main contributing factor leading to HPV-related cancers. HPV-induced cancers expressing viral oncogenes E6 and E7 are potentially recognized by the immune system. The major histocompatibility complex (MHC) class I molecules are patrolled by natural killer cells and CD8+ cytotoxic T lymphocytes, respectively. This system of recognition is a main target for the strategies of immune evasion deployed by viruses. The viral immune evasion proteins constitute useful tools to block defined stages of the MHC class I presentation pathway, and in this way HPV avoids the host immune response. The long latency period from initial infection to persistence signifies that HPV evolves mechanisms to escape the immune response. It has now been established that there are oncogenic mechanisms by which E7 binds to and degrades tumor suppressor Rb, while E6 binds to and inactivates tumor suppressor p53. Therefore, interaction of p53 and pRb proteins can give rise to an increased immortalization and genomic instability. Overexpression of NF-κB in cervical and penile cancers suggests that NF-κB activation is a key modulator in driving chronic inflammation to cancer. HPV oncogene-mediated suppression of NF-κB activity contributes to HPV escape from the immune system. This review focuses on the diverse mechanisms of the virus immune evasion with HPV that leads to chronic inflammation and cancer.

  17. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks.

    Science.gov (United States)

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.

  18. Immune Response Induction and New Effector Mechanisms Possibly Involved in Protection Conferred by the Cuban Anti-Meningococcal BC Vaccine

    Science.gov (United States)

    Pérez, Oliver; Lastre, Miriam; Lapinet, José; Bracho, Gustavo; Díaz, Miriam; Zayas, Caridad; Taboada, Carlos; Sierra, Gustavo

    2001-01-01

    This report explores the participation of some afferent mechanisms in the immune response induced by the Cuban anti-meningococcal vaccine VA-MENGOC-BC. The induction of delayed-type hypersensitivity in nursing babies and lymphocyte proliferation after immunization is demonstrated. The presence of gamma interferon IFN-γ and interleukin-2 (IL-2) mRNAs but absence of IL-4, IL-5, and IL-10 mRNAs were observed in peripheral blood mononuclear cells from immunized subjects after in vitro challenge with outer membrane vesicles. In addition, some effector functions were also explored. The presence of opsonic activity was demonstrated in sera from vaccinees. The role of neutrophils as essential effector cells was shown. In conclusion, we have shown that, at least in the Cuban adult population, VA-MENGOC-BC induces mechanisms with a T-helper 1 pattern in the afferent and effector branches of the immune response. PMID:11401992

  19. Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies.

    Science.gov (United States)

    van den Bijgaart, Renske J E; Eikelenboom, Dylan C; Hoogenboom, Martijn; Fütterer, Jurgen J; den Brok, Martijn H; Adema, Gosse J

    2017-02-01

    Tumor ablation technologies, such as radiofrequency-, cryo- or high-intensity focused ultrasound (HIFU) ablation will destroy tumor tissue in a minimally invasive manner. Ablation generates large volumes of tumor debris in situ, releasing multiple bio-molecules like tumor antigens and damage-associated molecular patterns. To initiate an adaptive antitumor immune response, antigen-presenting cells need to take up tumor antigens and, following activation, present them to immune effector cells. The impact of the type of tumor ablation on the precise nature, availability and suitability of the tumor debris for immune response induction, however, is poorly understood. In this review, we focus on immune effects after HIFU-mediated ablation and compare these to findings using other ablation technologies. HIFU can be used both for thermal and mechanical destruction of tissue, inducing coagulative necrosis or subcellular fragmentation, respectively. Preclinical and clinical results of HIFU tumor ablation show increased infiltration and activation of CD4 + and CD8 + T cells. As previously observed for other types of tumor ablation technologies, however, this ablation-induced enhanced infiltration alone appears insufficient to generate consistent protective antitumor immunity. Therapies combining ablation with immune stimulation are therefore expected to be key to boost HIFU-induced immune effects and to achieve systemic, long-lasting, antitumor immunity.

  20. Molecular mechanism for differential recognition of membrane phosphatidylserine by the immune regulatory receptor Tim4.

    Science.gov (United States)

    Tietjen, Gregory T; Gong, Zhiliang; Chen, Chiu-Hao; Vargas, Ernesto; Crooks, James E; Cao, Kathleen D; Heffern, Charles T R; Henderson, J Michael; Meron, Mati; Lin, Binhua; Roux, Benot; Schlossman, Mark L; Steck, Theodore L; Lee, Ka Yee C; Adams, Erin J

    2014-04-15

    Recognition of phosphatidylserine (PS) lipids exposed on the extracellular leaflet of plasma membranes is implicated in both apoptotic cell removal and immune regulation. The PS receptor T cell immunoglobulin and mucin-domain-containing molecule 4 (Tim4) regulates T-cell immunity via phagocytosis of both apoptotic (high PS exposure) and nonapoptotic (intermediate PS exposure) activated T cells. The latter population must be removed at lower efficiency to sensitively control immune tolerance and memory cell population size, but the molecular basis for how Tim4 achieves this sensitivity is unknown. Using a combination of interfacial X-ray scattering, molecular dynamics simulations, and membrane binding assays, we demonstrate how Tim4 recognizes PS in the context of a lipid bilayer. Our data reveal that in addition to the known Ca(2+)-coordinated, single-PS binding pocket, Tim4 has four weaker sites of potential ionic interactions with PS lipids. This organization makes Tim4 sensitive to PS surface concentration in a manner capable of supporting differential recognition on the basis of PS exposure level. The structurally homologous, but functionally distinct, Tim1 and Tim3 are significantly less sensitive to PS surface density, likely reflecting the differences in immunological function between the Tim proteins. These results establish the potential for lipid membrane parameters, such as PS surface density, to play a critical role in facilitating selective recognition of PS-exposing cells. Furthermore, our multidisciplinary approach overcomes the difficulties associated with characterizing dynamic protein/membrane systems to reveal the molecular mechanisms underlying Tim4's recognition properties, and thereby provides an approach capable of providing atomic-level detail to uncover the nuances of protein/membrane interactions.

  1. Susceptibility and Immune Defence Mechanisms of Rhynchophorus ferrugineus (Olivier (Coleoptera: Curculionidae against Entomopathogenic Fungal Infections

    Directory of Open Access Journals (Sweden)

    Abid Hussain

    2016-09-01

    Full Text Available Insects infected with entomopathogenic fungi, experience physiological changes that influence their growth and immune defence. The potential of nine isolates of entomopathogenic fungi was evaluated after determining percent germination and relative conidial hydrophobicity. However, nutritional indices were evaluated after immersing eighth-instar Rhynchophorus ferrugineus larvae into each isolate suspension (1 × 107 conidia/mL. The results showed that isolates B6884 and M9374 had 44.51% and 39.02% higher conidial hydrophobicity compared with isolate I03011 (least virulent. The results of nutritional index assays revealed a significant reduction in growth indices after infection with different isolates. Compared with control, B6884 and M9374 greatly decreased larval growth by reducing the efficacy of conversion of ingested food (36%–47% and Efficacy of conversion of digested food (50%–63%. Furthermore, only isolate B6884 induced 100% mortality within 12 days. Compared with control, isolate I03011, possessing the lowest conidial hydrophobicity, only reduced 0.29% of the efficacy of conversion of ingested food (ECI and 0.48% of the efficacy of conversion of digested food (ECD. Similarly, transcriptomic analysis of genes related to the Red palm weevil (RPW immune response, including pathogen recognition receptors (C-type lectin and endo-beta-1,4-glucanse, signal modulator (Serine protease-like protein, signal transductors (Calmodulin-like protein and EF-hand domain containing protein and effectors (C-type lysozyme, Cathepsin L., Defensin-like protein, Serine carboxypeptidase, and Thaumatin-like protein, was significantly increased in larval samples infected with B6884 and M9374. These results suggest that for an isolate to be virulent, conidial hydrophobicity and germination should also be considered during pathogen selection, as these factors could significantly impact host growth and immune defence mechanisms.

  2. Chemical and mechanical defenses vary among maternal lines and leaf ages in Verbascum thapsus L. (Scrophulariaceae and reduce palatability to a generalist insect.

    Directory of Open Access Journals (Sweden)

    Christina Alba

    Full Text Available Intra-specific variation in host-plant quality affects herbivore foraging decisions and, in turn, herbivore foraging decisions mediate plant fitness. In particular, variation in defenses against herbivores, both among and within plants, shapes herbivore behavior. If variation in defenses is genetically based, it can respond to natural selection by herbivores. We quantified intra-specific variation in iridoid glycosides, trichome length, and leaf strength in common mullein (Verbascum thapsus L, Scrophulariaceae among maternal lines within a population and among leaves within plants, and related this variation to feeding preferences of a generalist herbivore, Trichopulsia ni Hübner. We found significant variation in all three defenses among maternal lines, with T. ni preferring plants with lower investment in chemical, but not mechanical, defense. Within plants, old leaves had lower levels of all defenses than young leaves, and were strongly preferred by T. ni. Caterpillars also preferred leaves with trichomes removed to leaves with trichomes intact. Differences among maternal lines indicate that phenotypic variation in defenses likely has a genetic basis. Furthermore, these results reveal that the feeding behaviors of T. ni map onto variation in plant defense in a predictable way. This work highlights the importance of variation in host-plant quality in driving interactions between plants and their herbivores.

  3. Chemical and mechanical defenses vary among maternal lines and leaf ages in Verbascum thapsus L. (Scrophulariaceae) and reduce palatability to a generalist insect.

    Science.gov (United States)

    Alba, Christina; Bowers, M Deane; Blumenthal, Dana; Hufbauer, Ruth A

    2014-01-01

    Intra-specific variation in host-plant quality affects herbivore foraging decisions and, in turn, herbivore foraging decisions mediate plant fitness. In particular, variation in defenses against herbivores, both among and within plants, shapes herbivore behavior. If variation in defenses is genetically based, it can respond to natural selection by herbivores. We quantified intra-specific variation in iridoid glycosides, trichome length, and leaf strength in common mullein (Verbascum thapsus L, Scrophulariaceae) among maternal lines within a population and among leaves within plants, and related this variation to feeding preferences of a generalist herbivore, Trichopulsia ni Hübner. We found significant variation in all three defenses among maternal lines, with T. ni preferring plants with lower investment in chemical, but not mechanical, defense. Within plants, old leaves had lower levels of all defenses than young leaves, and were strongly preferred by T. ni. Caterpillars also preferred leaves with trichomes removed to leaves with trichomes intact. Differences among maternal lines indicate that phenotypic variation in defenses likely has a genetic basis. Furthermore, these results reveal that the feeding behaviors of T. ni map onto variation in plant defense in a predictable way. This work highlights the importance of variation in host-plant quality in driving interactions between plants and their herbivores.

  4. Mechanisms of remodelling of small arteries, antihypertensive therapy and the immune system in hypertension.

    Science.gov (United States)

    Schiffrin, Ernesto L

    2015-12-04

    This review summarizes my lecture for the 2015 Distinguished Scientist Award from the Canadian Society of Clinical Investigation, and is based mainly on studies in my laboratory on the mechanisms of remodelling of small arteries in experimental animal and human hypertension and on treatments that lower blood pressure and improve structure and function of resistance vessels. Small resistance arteries undergo either inward eutrophic or hypertrophic remodelling, which raises blood pressure and impairs tissue perfusion. These vascular changes are corrected by some antihypertensive drugs, which may lead to improved outcomes. Vasoconstriction, growth, oxidative stress and inflammation are some of the mechanisms, within the vascular wall, that can be beneficially affected by antihypertensive agents. These antihypertensive-sensitive mechanisms are reviewed in this review, together with the inflammatory and immune mechanisms that may participate in hypertension and associated cardiovascular injury. Molecular studies, based on this research, will hopefully identify novel diagnostic and therapeutic targets, which will improve our ability to prevent and treat hypertension and cardiovascular disease.

  5. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage.

    Science.gov (United States)

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J; Rudich, Yinon

    2016-03-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. [Officer in charge, that unknown being - an explorative, qualitative study of unconscious fears, wishes, and defense mechanisms].

    Science.gov (United States)

    Beck, Thomas; Kumnig, Martin; Breuss, Margit; Mitmansgruber, Horst; Schusser, Sandra; Andreatta, Pia; Mader, Maria; Schüßler, Gerhard

    2013-01-01

    The stress and coping strategies found among emergency relief personnel have been studied in detail but without considering their function in the team. However, specifically officers in charge have to be addressed and investigated separately. This study focuses on the unconscious desires, fears, and defense mechanisms present in order to improve our understanding of the stress experienced during operations. Four officers in charge were interviewed concerning their stressful experiences during operations. These interviews were then coded and analysed using the JAKOB Narrative Analysis ("Klinische Erzählanalyse JAKOB", Boothe et al. 2002). The recorded unconscious desires included solidarity, phallic integrity, generativity, unconscious fears destruction, loss of power/influence, and social hostility, and as defense strategies rationalism, repression/denial, and idealization. The analysis of the interviews shows a high reliability between the raters (0.74-0.79). The greatest burden for officers in charge is a loss of safety. Especially being confronted with strains in their own team leads to stress, which shows that the methods used for stress management following critical incidents is not sufficient.

  7. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes

    NARCIS (Netherlands)

    Al-Attar, S.; Westra, E.R.; Oost, van der J.; Brouns, S.J.J.

    2011-01-01

    Many prokaryotes contain the recently discovered defense system against mobile genetic elements. This defense system contains a unique type of repetitive DNA stretches, termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs). CRISPRs consist of identical repeated DNA sequences

  8. Beta-Glucan induced immune modulation of wound healing in common carp (Cyprinus carpio)

    OpenAIRE

    Jiménez, Natalia Ivonne Vera; Nielsen, Michael Engelbrecht; Lindenstrøm, Thomas

    2012-01-01

    Immune modulators are compounds capable to interact with the immune system and to modify the host response. This interaction enhances non-specific defense mechanisms, improving health and promoting survival. β-glucans are glucose polysaccharides present in sea weed, bacteria, fungi and cereal but not in animals. β-glucans are commonly used as immune modulators, but the mechanisms through which the modulation is achieved remains to be understood. Wound healing and tissue regeneration are essen...

  9. Mechanisms of HO-1 mediated attenuation of renal immune injury: a gene profiling study.

    Science.gov (United States)

    Duann, Pu; Lianos, Elias A

    2011-10-01

    Using a mouse model of immune injury directed against the renal glomerular vasculature and resembling human forms of glomerulonephritis (GN), we assessed the effect of targeted expression of the cytoprotective enzyme heme oxygenase (HO)-1. A human (h) HO-1 complementary DNAN (cDNA) sequence was targeted to glomerular epithelial cells (GECs) using a GEC-specific murine nephrin promoter. Injury by administration of antibody against the glomerular basement membrane (anti-GBM) to transgenic (TG) mice with GEC-targeted hHO-1 was attenuated compared with wild-type (WT) controls. To explore changes in the expression of genes that could mediate this salutary effect, we performed gene expression profiling using a microarray analysis of RNA isolated from the renal cortex of WT or TG mice with or without anti-GBM antibody-induced injury. Significant increases in expression were detected in 9 major histocompatibility complex (MHC)-class II genes, 2 interferon-γ (IFN-γ)-inducible guanosine triphosphate (GTP)ases, and 3 genes of the ubiquitin-proteasome system. The increase in MHC-class II and proteasome gene expression in TG mice with injury was validated by real-time polymerase chain reaction (PCR) or Western blot analysis. The observations point to novel mechanisms underlying the cytoprotective effect of HO-1 in renal immune injury. Copyright © 2011. Published by Mosby, Inc.

  10. Sulfur volatiles in guava (Psidium guajava L.) leaves: possible defense mechanism.

    Science.gov (United States)

    Rouseff, Russell L; Onagbola, Ebenezer O; Smoot, John M; Stelinski, Lukasz L

    2008-10-08

    Volatiles from crushed and intact guava leaves (Psidium guajava L.) were collected using static headspace SPME and determined using GC-PFPD, pulsed flame photometric detection, and GC-MS. Leaf volatiles from four common citrus culitvars were examined similarly to determine the potential component(s) responsible for guava's protective effect against the Asian citrus psyllid (Diaphorina citri Kuwayama), which is the insect vector of Huanglongbing (HLB) or citrus greening disease. Seven sulfur volatiles were detected: hydrogen sulfide, sulfur dioxide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), methional, and dimethyl trisulfide (DMTS). Identifications were based on matching linear retention index values on ZB-5, DB-Wax, and PLOT columns and MS spectra in the case of DMDS and DMS. DMDS is an insect toxic, defensive volatile produced only by wounded guava but not citrus leaves and, thus, may be the component responsible for the protective effect of guava against the HLB vector. DMDS is formed immediately after crushing, becoming the major headspace volatile within 10 min. Forty-seven additional leaf volatiles were identified from LRI and MS data in the crushed guava leaf headspace.

  11. Signaling mechanisms underlying the robustness and tunability of the plant immune network

    Science.gov (United States)

    Kim, Yungil; Tsuda, Kenichi; Igarashi, Daisuke; Hillmer, Rachel A.; Sakakibara, Hitoshi; Myers, Chad L.; Katagiri, Fumiaki

    2014-01-01

    Summary How does robust and tunable behavior emerge in a complex biological network? We sought to understand this for the signaling network controlling pattern-triggered immunity (PTI) in Arabidopsis. A dynamic network model containing four major signaling sectors, the jasmonate, ethylene, PAD4, and salicylate sectors, which together explain up to 80% of the PTI level, was built using data for dynamic sector activities and PTI levels under exhaustive combinatorial sector perturbations. Our regularized multiple regression model had a high level of predictive power and captured known and unexpected signal flows in the network. The sole inhibitory sector in the model, the ethylene sector, was central to the network robustness via its inhibition of the jasmonate sector. The model's multiple input sites linked specific signal input patterns varying in strength and timing to different network response patterns, indicating a mechanism enabling tunability. PMID:24439900

  12. Mechanisms and pathways of innate immune activation and regulation in health and cancer.

    Science.gov (United States)

    Cui, Jun; Chen, Yongjun; Wang, Helen Y; Wang, Rong-Fu

    2014-01-01

    Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.

  13. Local mechanical stimulation induces components of the pathogen defense response in parsley

    Science.gov (United States)

    Gus-Mayer, Sabine; Naton, Beatrix; Hahlbrock, Klaus; Schmelzer, Elmon

    1998-01-01

    Cell suspension cultures of parsley (Petroselinum crispum) have previously been used as a suitable system for studies of the nonhost resistance response to Phytophthora sojae. In this study, we replaced the penetrating fungus by local mechanical stimulation by using a needle of the same diameter as a fungal hypha, by local application of a structurally defined fungus-derived elicitor, or by a combination of the two stimuli. Similar to the fungal infection hypha, the local mechanical stimulus alone induced the translocation of cytoplasm and nucleus to the site of stimulation, the generation of intracellular reactive oxygen intermediates (ROI), and the expression of some, but not all, elicitor-responsive genes. When the elicitor was applied locally to the cell surface without mechanical stimulation, intracellular ROI also accumulated rapidly, but morphological changes were not detected. A combination of the mechanical stimulus with simultaneous application of low doses of elicitor closely simulated early reactions to fungal infection, including cytoplasmic aggregation, nuclear migration, and ROI accumulation. By contrast, cytoplasmic rearrangements were impaired at high elicitor concentrations. Neither papilla formation nor hypersensitive cell death occurred under the conditions tested. These results suggest that mechanical stimulation by the invading fungus is responsible for the observed intracellular rearrangements and may trigger some of the previously demonstrated changes in the activity of elicitor-responsive genes, whereas chemical stimulation is required for additional biochemical processes. As yet unidentified signals may be involved in papilla formation and hypersensitive cell death. PMID:9653198

  14. Expression of Fas ligand by human gastric adenocarcinomas: a potential mechanism of immune escape in stomach cancer.

    Science.gov (United States)

    Bennett, M W; O'connell, J; O'sullivan, G C; Roche, D; Brady, C; Kelly, J; Collins, J K; Shanahan, F

    1999-02-01

    Despite being immunogenic, gastric cancers overcome antitumour immune responses by mechanisms that have yet to be fully elucidated. Fas ligand (FasL) is a molecule that induces Fas receptor mediated apoptosis of activated immunocytes, thereby mediating normal immune downregulatory roles including immune response termination, tolerance acquisition, and immune privilege. Colon cancer cell lines have previously been shown to express FasL and kill lymphoid cells by Fas mediated apoptosis in vitro. Many diverse tumours have since been found to express FasL suggesting that a "Fas counterattack" against antitumour immune effector cells may contribute to tumour immune escape. To ascertain if human gastric tumours express FasL in vivo, as a potential mediator of immune escape in stomach cancer. Thirty paraffin wax embedded human gastric adenocarcinomas. FasL protein was detected in gastric tumours using immunohistochemistry; FasL mRNA was detected in the tumours using in situ hybridisation. Cell death was detected in situ in tumour infiltrating lymphocytes using terminal deoxynucleotidyl transferase mediated dUTP nick end labelling (TUNEL). Prevalent expression of FasL was detected in all 30 resected gastric adenocarcinomas examined. In the tumours, FasL protein and mRNA were co-localised to neoplastic gastric epithelial cells, confirming expression by the tumour cells. FasL expression was independent of tumour stage, suggesting that it may be expressed throughout gastric cancer progression. TUNEL staining disclosed a high level of cell death among lymphocytes infiltrating FasL positive areas of tumour. Human gastric adenocarcinomas express the immune downregulatory molecule, FasL. The results suggest that FasL is a prevalent mediator of immune privilege in stomach cancer.

  15. Expression of Fas ligand by human gastric adenocarcinomas: a potential mechanism of immune escape in stomach cancer.

    LENUS (Irish Health Repository)

    Bennett, M W

    2012-02-03

    BACKGROUND: Despite being immunogenic, gastric cancers overcome antitumour immune responses by mechanisms that have yet to be fully elucidated. Fas ligand (FasL) is a molecule that induces Fas receptor mediated apoptosis of activated immunocytes, thereby mediating normal immune downregulatory roles including immune response termination, tolerance acquisition, and immune privilege. Colon cancer cell lines have previously been shown to express FasL and kill lymphoid cells by Fas mediated apoptosis in vitro. Many diverse tumours have since been found to express FasL suggesting that a "Fas counterattack" against antitumour immune effector cells may contribute to tumour immune escape. AIM: To ascertain if human gastric tumours express FasL in vivo, as a potential mediator of immune escape in stomach cancer. SPECIMENS: Thirty paraffin wax embedded human gastric adenocarcinomas. METHODS: FasL protein was detected in gastric tumours using immunohistochemistry; FasL mRNA was detected in the tumours using in situ hybridisation. Cell death was detected in situ in tumour infiltrating lymphocytes using terminal deoxynucleotidyl transferase mediated dUTP nick end labelling (TUNEL). RESULTS: Prevalent expression of FasL was detected in all 30 resected gastric adenocarcinomas examined. In the tumours, FasL protein and mRNA were co-localised to neoplastic gastric epithelial cells, confirming expression by the tumour cells. FasL expression was independent of tumour stage, suggesting that it may be expressed throughout gastric cancer progression. TUNEL staining disclosed a high level of cell death among lymphocytes infiltrating FasL positive areas of tumour. CONCLUSIONS: Human gastric adenocarcinomas express the immune downregulatory molecule, FasL. The results suggest that FasL is a prevalent mediator of immune privilege in stomach cancer.

  16. The body’s immune response in the induction and progression of cancer of the cervix uteri: possible mechanisms

    Directory of Open Access Journals (Sweden)

    O. V. Kurmyshkina

    2011-01-01

    Full Text Available Human papillomavirus (HPV that is a main cause of cancer of the cervix uteri (CCU has immunogenic properties, i.e. an abilityto activate antiviral immunity responses as adaptive HPV-specific and innate ones. For this reason, despite multiple mechanisms generated by HPV to avoid immunity responses, the human body can eliminate the infection in most cases. At the same time, CCU results from the combined influence of many factors of different nature, among which the factors that impair the normal course of an immune response are of vital importance.This review describes the major factors and mechanisms, which promote the establishment of persistent HPV infection and the progression of dysplasia to cancer, on the one hand, and allow the tumor cells in CCU to restrict the body’s immune reactions, on the other Immune disorders induced by the virus and/or tumor cells are considered at both local and systemic levels. Particular emphasis is placed on the molecular mechanisms that can change the population composition and functional activity of leukocytes and the cytokine profile of cells and can form the tumor suppressor microenvironment.

  17. Localized Sympathectomy Reduces Mechanical Hypersensitivity by Restoring Normal Immune Homeostasis in Rat Models of Inflammatory Pain.

    Science.gov (United States)

    Xie, Wenrui; Chen, Sisi; Strong, Judith A; Li, Ai-Ling; Lewkowich, Ian P; Zhang, Jun-Ming

    2016-08-17

    Some forms of chronic pain are maintained or enhanced by activity in the sympathetic nervous system (SNS), but attempts to model this have yielded conflicting findings. The SNS has both pro- and anti-inflammatory effects on immunity, confounding the interpretation of experiments using global sympathectomy methods. We performed a "microsympathectomy" by cutting the ipsilateral gray rami where they entered the spinal nerves near the L4 and L5 DRG. This led to profound sustained reductions in pain behaviors induced by local DRG inflammation (a rat model of low back pain) and by a peripheral paw inflammation model. Effects of microsympathectomy were evident within one day, making it unlikely that blocking sympathetic sprouting in the local DRGs or hindpaw was the sole mechanism. Prior microsympathectomy greatly reduced hyperexcitability of sensory neurons induced by local DRG inflammation observed 4 d later. Microsympathectomy reduced local inflammation and macrophage density in the affected tissues (as indicated by paw swelling and histochemical staining). Cytokine profiling in locally inflamed DRG showed increases in pro-inflammatory Type 1 cytokines and decreases in the Type 2 cytokines present at baseline, changes that were mitigated by microsympathectomy. Microsympathectomy was also effective in reducing established pain behaviors in the local DRG inflammation model. We conclude that the effect of sympathetic fibers in the L4/L5 gray rami in these models is pro-inflammatory. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some chronic inflammatory pain conditions. Sympathetic blockade is used for many pain conditions, but preclinical studies show both pro- and anti-nociceptive effects. The sympathetic nervous system also has both pro- and anti-inflammatory effects on immune tissues and cells. We examined effects of a very localized sympathectomy. By cutting the gray rami to the spinal nerves near the lumbar sensory

  18. Immune mechanisms regulating pharmacokinetics and pharmacodynamics of PEGylated liposomal anticancer agents

    Science.gov (United States)

    Song, Gina

    Nanotechnology has made significant advances in drug delivery system for the treatment of cancer. Among various nanoparticle (NP) platforms, liposomes have been most widely used as a NP drug carrier for cancer therapy. High variation in pharmacokinetics (PK) and pharmacodynamics (PD) of liposome-based therapeutics has been reported. However, the interaction of liposome-based therapeutics with the immune system, specifically the mononuclear phagocyte system (MPS), and underlying molecular mechanisms for variable responses to liposomal drugs remain poorly understood. The objective of this dissertation was to elucidate immune mechanisms for the variable responses to PEGylated liposomal doxorubicin (PLD; DoxilRTM), a clinically relevant NP, in animal models and in patients. In vitro, in vivo and clinical systems were investigated to evaluate the effects of chemokines (CCL2 and CCL5), heterogeneity of the tumor microenvironment, and genetic variations on PK and PD of PLD. Results showed that there was a significantly positive linear relationship between PLD exposure (AUC) and total amount of CCL2 and CCL5, most prevalent chemokines in plasma, in patients with recurrent ovarian cancer. Consistent with these findings, preclinical studies using mice bearing SKOV3 orthotopic ovarian cancer xenografts demonstrated that PLD induced the production and secretion of chemokines into plasma. In addition, in vitro studies using human monocytic THP-1 cells demonstrated that PLD altered monocyte migration towards CCL2 and CCL5. The PK and efficacy studies of PLD in murine models of breast cancer showed that heterogeneous tumor microenvironment was associated with significantly different tumor delivery and efficacy of PLD, but not small molecule doxorubicin between two breast tumor models. A candidate genetic locus that was associated with clearance of PLD in 23 inbred mouse strains contains a gene that encodes for engulfment adapter PTB domain containing 1 (Gulp1). By using

  19. Effector Mechanisms of Neutrophils within the Innate Immune System in Response to Mycobacterium tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Eric Warren

    2017-02-01

    Full Text Available Neutrophils have a significant yet controversial role in the innate immune response to Mycobacterium tuberculosis (M. tb infection, which is not yet fully understood. In addition to neutrophils’ well-known effector mechanisms, they may also help control infection of M. tb through the formation of neutrophil extracellular traps (NETs, which are thought to further promote the killing of M. tb by resident alveolar macrophages. Cytokines such as IFN-γ have now been shown to serve an immunomodulatory role in neutrophil functioning in conjunction to its pro-inflammatory function. Additionally, the unique transcriptional changes of neutrophils may be used to differentiate between infection with M. tb and other bacterial and chronic rheumatological diseases such as Systemic Lupus Erythematosus. Adversely, during the innate immune response to M. tb, inappropriate phagocytosis of spent neutrophils can result in nonspecific damage to host cells due to necrotic lysis. Furthermore, some individuals have been shown to be more genetically susceptible to tuberculosis (TB due to a “Trojan Horse” phenomenon whereby neutrophils block the ability of resident macrophages to kill M. tb. Despite these aforementioned negative consequences, through the scope of this review we will provide evidence to support the idea that neutrophils, while sometimes damaging, can also be an important component in warding off M. tb infection. This is exemplified in immunocompromised individuals, such as those with human immunodeficiency virus (HIV infection or Type 2 diabetes mellitus. These individuals are at an increased risk of developing tuberculosis (TB due to a diminished innate immune response associated with decreased levels of glutathione. Consequently, there has been a worldwide effort to limit and contain M. tb infection through the use of antibiotics and vaccinations. However, due to several significant limitations, the current bacille Calmette-Guerin vaccine (BCG

  20. Studies on the control mechanism and the degenerative immune function of dendritic cells using radiation

    International Nuclear Information System (INIS)

    Yee, Sung Tae; Kim, Jong Jin; Choi, Ji Na; Park, Jung Eun; Jeong, Young Ran

    2010-05-01

    Dendritic cells are actively used as cellular adjuvant in cancer immunotherapy. However, although DC immunotherapies primarily target the elderly population, little is known about the effect of aging on DC functions. Here, we compared the T-cell stimulation, cytokine production, and costimulatory molecule expression of spleen or bone marrow-derived CD11c + DCs of C57BL/6 mice. In the first year, we compared various function of dendritic cells isolated from young and gamma-irradiated 57BL/6 mice(5 weeks after γ-radiation) for the development of aging models using radiation. In the second year, we also compared the function of spleen- and bone marrow-derived dendritic cells of young(2-3 months) and old(23-24 months) 57BL/6 mice. And we studied the differences of spleen- and bone marrow-derived dendritic cells of young and gamma-irradiated 57BL/6 mice(2, 4, 6 months after γ-radiation) for the development of aging models in third year. And we obtained various differences between spleen- and bone marrow-derived dendritic cells of normal and old(23-24 months) or γ-irradiated 57BL/6 mice. It is possible to use our results as age-associated model for modulation of the declined immunity and hematopoiesis for treatment of cancer, adult diseases and stress in aging. Such studies on the mechanism of aging model would further lead to new avenues for the development of functional foods which effect such as pathogenesis, inflammatory and autoimmune disorders. It will contributed to activation of related industry conforming quality and diversity of radiation industry. The techniques developed in our research may provide novel therapeutic modalities for age-associated immune dysfunctions

  1. Structural basis for Marburg virus VP35-mediated immune evasion mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Ramanan, Parameshwaran; Edwards, Megan R.; Shabman, Reed S.; Leung, Daisy W.; Endlich-Frazier, Ariel C.; Borek, Dominika M.; Otwinowski, Zbyszek; Liu, Gai; Huh, Juyoung; Basler, Christopher F.; Amarasinghe, Gaya K. [Sinai; (WU-MED); (UTSMC)

    2013-07-22

    Filoviruses, marburgvirus (MARV) and ebolavirus (EBOV), are causative agents of highly lethal hemorrhagic fever in humans. MARV and EBOV share a common genome organization but show important differences in replication complex formation, cell entry, host tropism, transcriptional regulation, and immune evasion. Multifunctional filoviral viral protein (VP) 35 proteins inhibit innate immune responses. Recent studies suggest double-stranded (ds)RNA sequestration is a potential mechanism that allows EBOV VP35 to antagonize retinoic-acid inducible gene-I (RIG-I) like receptors (RLRs) that are activated by viral pathogen–associated molecular patterns (PAMPs), such as double-strandedness and dsRNA blunt ends. Here, we show that MARV VP35 can inhibit IFN production at multiple steps in the signaling pathways downstream of RLRs. The crystal structure of MARV VP35 IID in complex with 18-bp dsRNA reveals that despite the similar protein fold as EBOV VP35 IID, MARV VP35 IID interacts with the dsRNA backbone and not with blunt ends. Functional studies show that MARV VP35 can inhibit dsRNA-dependent RLR activation and interferon (IFN) regulatory factor 3 (IRF3) phosphorylation by IFN kinases TRAF family member-associated NFkb activator (TANK) binding kinase-1 (TBK-1) and IFN kB kinase e (IKKe) in cell-based studies. We also show that MARV VP35 can only inhibit RIG-I and melanoma differentiation associated gene 5 (MDA5) activation by double strandedness of RNA PAMPs (coating backbone) but is unable to inhibit activation of RLRs by dsRNA blunt ends (end capping). In contrast, EBOV VP35 can inhibit activation by both PAMPs. Insights on differential PAMP recognition and inhibition of IFN induction by a similar filoviral VP35 fold, as shown here, reveal the structural and functional plasticity of a highly conserved virulence factor.

  2. Studies on the control mechanism and the degenerative immune function of dendritic cells using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Sung Tae; Kim, Jong Jin; Choi, Ji Na; Park, Jung Eun; Jeong, Young Ran [Sunchon National University, Sunchon (Korea, Republic of)

    2010-05-15

    Dendritic cells are actively used as cellular adjuvant in cancer immunotherapy. However, although DC immunotherapies primarily target the elderly population, little is known about the effect of aging on DC functions. Here, we compared the T-cell stimulation, cytokine production, and costimulatory molecule expression of spleen or bone marrow-derived CD11c{sup +} DCs of C57BL/6 mice. In the first year, we compared various function of dendritic cells isolated from young and gamma-irradiated 57BL/6 mice(5 weeks after {gamma}-radiation) for the development of aging models using radiation. In the second year, we also compared the function of spleen- and bone marrow-derived dendritic cells of young(2-3 months) and old(23-24 months) 57BL/6 mice. And we studied the differences of spleen- and bone marrow-derived dendritic cells of young and gamma-irradiated 57BL/6 mice(2, 4, 6 months after {gamma}-radiation) for the development of aging models in third year. And we obtained various differences between spleen- and bone marrow-derived dendritic cells of normal and old(23-24 months) or {gamma}-irradiated 57BL/6 mice. It is possible to use our results as age-associated model for modulation of the declined immunity and hematopoiesis for treatment of cancer, adult diseases and stress in aging. Such studies on the mechanism of aging model would further lead to new avenues for the development of functional foods which effect such as pathogenesis, inflammatory and autoimmune disorders. It will contributed to activation of related industry conforming quality and diversity of radiation industry. The techniques developed in our research may provide novel therapeutic modalities for age-associated immune dysfunctions

  3. Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense.

    Science.gov (United States)

    Walters, Edgar T

    2014-08-01

    Neuropathic pain after spinal cord injury (SCI) is common, often intractable, and can be severely debilitating. A number of mechanisms have been proposed for this pain, which are discussed briefly, along with methods for revealing SCI pain in animal models, such as the recently applied conditioned place preference test. During the last decade, studies of animal models have shown that both central neuroinflammation and behavioral hypersensitivity (indirect reflex measures of pain) persist chronically after SCI. Interventions that reduce neuroinflammation have been found to ameliorate pain-related behavior, such as treatment with agents that inhibit the activation states of microglia and/or astroglia (including IL-10, minocycline, etanercept, propentofylline, ibudilast, licofelone, SP600125, carbenoxolone). Reversal of pain-related behavior has also been shown with disruption by an inhibitor (CR8) and/or genetic deletion of cell cycle-related proteins, deletion of a truncated receptor (trkB.T1) for brain-derived neurotrophic factor (BDNF), or reduction by antisense knockdown or an inhibitor (AMG9810) of the activity of channels (TRPV1 or Nav1.8) important for electrical activity in primary nociceptors. Nociceptor activity is known to drive central neuroinflammation in peripheral injury models, and nociceptors appear to be an integral component of host defense. Thus, emerging results suggest that spinal and systemic effects of SCI can activate nociceptor-mediated host defense responses that interact via neuroinflammatory signaling with complex central consequences of SCI to drive chronic pain. This broader view of SCI-induced neuroinflammation suggests new targets, and additional complications, for efforts to develop effective treatments for neuropathic SCI pain. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Biological defense mechanisms against DNA double-strand break and their possible medical applications

    International Nuclear Information System (INIS)

    Matsumoto, Yoshihisa

    2011-01-01

    Radiation is now widely used for clinical diagnosis and therapeutics. On the other hand, radiation influences various tissues represented by immunological and reproductive systems, and is also recognized as one of the cause of carcinogenesis. Such pleiotropic effects of radiation are mediated through generation of damages on DNA molecule, vitally important genetic macromolecule. Among various types of DNA damages, double-strand break (DSB) is considered most critical and, therefore, responsible for biological effects. DSB is repaired mainly through two pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). Understanding of these mechanisms has been greatly deepened in past 20 years and is now providing a promising approach toward cancer therapy. We have studied the mechanisms of NHEJ, focusing especially on the role of phosphorylation and the assembly of machinery therein, which will be introduced below. (author)

  5. Inducible versus constitutive immunity: Examining effects of colony infection on glucose oxidase and Defensin-1 production in honey bees

    Science.gov (United States)

    Honey bees use a variety of defense mechanisms to reduce disease infection and spread throughout the colony. Many of these defenses rely on the collective action of multiple individuals to prevent, reduce or eradicate pathogens—often referred as 'social immunity'. Glucose oxidase (GOX) and some anti...

  6. Metallothioneins: Emerging Modulators in Immunity and Infection

    Directory of Open Access Journals (Sweden)

    Kavitha Subramanian Vignesh

    2017-10-01

    Full Text Available Metallothioneins (MTs are a family of metal-binding proteins virtually expressed in all organisms including prokaryotes, lower eukaryotes, invertebrates and mammals. These proteins regulate homeostasis of zinc (Zn and copper (Cu, mitigate heavy metal poisoning, and alleviate superoxide stress. In recent years, MTs have emerged as an important, yet largely underappreciated, component of the immune system. Innate and adaptive immune cells regulate MTs in response to stress stimuli, cytokine signals and microbial challenge. Modulation of MTs in these cells in turn regulates metal ion release, transport and distribution, cellular redox status, enzyme function and cell signaling. While it is well established that the host strictly regulates availability of metal ions during microbial pathogenesis, we are only recently beginning to unravel the interplay between metal-regulatory pathways and immunological defenses. In this perspective, investigation of mechanisms that leverage the potential of MTs to orchestrate inflammatory responses and antimicrobial defenses has gained momentum. The purpose of this review, therefore, is to illumine the role of MTs in immune regulation. We discuss the mechanisms of MT induction and signaling in immune cells and explore the therapeutic potential of the MT-Zn axis in bolstering immune defenses against pathogens.

  7. Immunological mechanisms involved in the protection against intestinal taeniosis elicited by oral immunization with Taenia solium calreticulin.

    Science.gov (United States)

    Leon-Cabrera, Sonia; Cruz-Rivera, Mayra; Mendlovic, Fela; Romero-Valdovinos, Mirza; Vaughan, Gilberto; Salazar, Ana María; Avila, Guillermina; Flisser, Ana

    2012-11-01

    Oral immunization with functional recombinant Taenia solium calreticulin (rTsCRT) induces 37% reduction in tapeworm burden in the experimental model of intestinal taeniosis in hamsters. Furthermore, tapeworms recovered from vaccinated animals exhibit diminished length, being frequently found in more posterior parts of the small intestine. The aim of this study was to analyze the immunological mechanisms involved in protection in response to rTsCRT oral immunization. Hamsters were orally immunized with rTsCRT using cholera toxin (CT) as adjuvant, weekly for 4 weeks. Fifteen days after the last boost animals were challenged with four T. solium cysticerci. Reduction in the adult worm recovery and increased transcription of mRNA for IL-4 and IFN-γ in the mucosa of rTsCRT+CT immunized animals were observed. Immunization also induced goblet cell hyperplasia in the mucosa surrounding the implantation site of the parasite. Specific IgG and IgA antibodies in serum and fecal supernatants were detected after the second immunization, being more pronounced after challenge. Our data suggest that oral vaccination with rTsCRT+CT regulates a local expression of IL-4 and IFN-γ, stimulating secretion of IgA that, together with the increase of goblet cells and mucin production, could result in an unfavorable environment for T. solium promoting an impaired tapeworm development. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    Science.gov (United States)

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  9. Mechanisms of immunity in post-exposure vaccination against Ebola virus infection.

    Directory of Open Access Journals (Sweden)

    Steven B Bradfute

    Full Text Available Ebolaviruses can cause severe hemorrhagic fever that is characterized by rapid viral replication, coagulopathy, inflammation, and high lethality rates. Although there is no clinically proven vaccine or treatment for Ebola virus infection, a virus-like particle (VLP vaccine is effective in mice, guinea pigs, and non-human primates when given pre-infection. In this work, we report that VLPs protect Ebola virus-infected mice when given 24 hours post-infection. Analysis of cytokine expression in serum revealed a decrease in pro-inflammatory cytokine and chemokine levels in mice given VLPs post-exposure compared to infected, untreated mice. Using knockout mice, we show that VLP-mediated post-exposure protection requires perforin, B cells, macrophages, conventional dendritic cells (cDCs, and either CD4+ or CD8+ T cells. Protection was Ebola virus-specific, as marburgvirus VLPs did not protect Ebola virus-infected mice. Increased antibody production in VLP-treated mice correlated with protection, and macrophages were required for this increased production. However, NK cells, IFN-gamma, and TNF-alpha were not required for post-exposure-mediated protection. These data suggest that a non-replicating Ebola virus vaccine can provide post-exposure protection and that the mechanisms of immune protection in this setting require both increased antibody production and generation of cytotoxic T cells.

  10. Mechanisms of immunity in post-exposure vaccination against Ebola virus infection.

    Science.gov (United States)

    Bradfute, Steven B; Anthony, Scott M; Stuthman, Kelly S; Ayithan, Natarajan; Tailor, Prafullakumar; Shaia, Carl I; Bray, Mike; Ozato, Keiko; Bavari, Sina

    2015-01-01

    Ebolaviruses can cause severe hemorrhagic fever that is characterized by rapid viral replication, coagulopathy, inflammation, and high lethality rates. Although there is no clinically proven vaccine or treatment for Ebola virus infection, a virus-like particle (VLP) vaccine is effective in mice, guinea pigs, and non-human primates when given pre-infection. In this work, we report that VLPs protect Ebola virus-infected mice when given 24 hours post-infection. Analysis of cytokine expression in serum revealed a decrease in pro-inflammatory cytokine and chemokine levels in mice given VLPs post-exposure compared to infected, untreated mice. Using knockout mice, we show that VLP-mediated post-exposure protection requires perforin, B cells, macrophages, conventional dendritic cells (cDCs), and either CD4+ or CD8+ T cells. Protection was Ebola virus-specific, as marburgvirus VLPs did not protect Ebola virus-infected mice. Increased antibody production in VLP-treated mice correlated with protection, and macrophages were required for this increased production. However, NK cells, IFN-gamma, and TNF-alpha were not required for post-exposure-mediated protection. These data suggest that a non-replicating Ebola virus vaccine can provide post-exposure protection and that the mechanisms of immune protection in this setting require both increased antibody production and generation of cytotoxic T cells.

  11. Immune and Metabolic Regulation Mechanism of Dangguiliuhuang Decoction against Insulin Resistance and Hepatic Steatosis

    Directory of Open Access Journals (Sweden)

    Hui Cao

    2017-07-01

    Full Text Available Dangguiliuhuang decoction (DGLHD is a traditional Chinese medicine (TCM formula, which mainly consists of angelica, radix rehmanniae, radix rehmanniae praeparata, scutellaria baicalensis, coptis chinensis, astragalus membranaceus, and golden cypress, and used for the treatment of diabetes and some autoimmune diseases. In this study, we explored the potential mechanism of DGLHD against insulin resistance and fatty liver in vivo and in vitro. Our data revealed that DGLHD normalized glucose and insulin level, increased the expression of adiponectin, diminished fat accumulation and lipogenesis, and promoted glucose uptake. Metabolomic analysis also demonstrated that DGLHD decreased isoleucine, adenosine, and cholesterol, increased glutamine levels in liver and visceral adipose tissue (VAT of ob/ob mice. Importantly, DGLHD promoted the shift of pro-inflammatory to anti-inflammatory cytokines, suppressed T lymphocytes proliferation, and enhanced regulatory T cells (Tregs differentiation. DGLHD also inhibited dendritic cells (DCs maturation, attenuated DCs-stimulated T cells proliferation and secretion of IL-12p70 cytokine from DCs, and promoted the interaction of DCs with Tregs. Further studies indicated that the changed PI3K/Akt signaling pathway and elevated PPAR-γ expression were not only observed with the ameliorated glucose and lipid metabolism in adipocytes and hepatocytes, but also exhibited in DCs and T cells by DGLHD. Collectively, our results suggest that DGLHD exerts anti-insulin resistant and antisteatotic effects by improving abnormal immune and metabolic homeostasis. And DGLHD may be a novel approach to the treatment of obesity-related insulin resistance and hepatic steatosis.

  12. Progranulin contributes to endogenous mechanisms of pain defense after nerve injury in mice.

    Science.gov (United States)

    Lim, Hee-Young; Albuquerque, Boris; Häussler, Annett; Myrczek, Thekla; Ding, Aihao; Tegeder, Irmgard

    2012-04-01

    Progranulin haploinsufficiency is associated with frontotemporal dementia in humans. Deficiency of progranulin led to exaggerated inflammation and premature aging in mice. The role of progranulin in adaptations to nerve injury and neuropathic pain are still unknown. Here we found that progranulin is up-regulated after injury of the sciatic nerve in the mouse ipsilateral dorsal root ganglia and spinal cord, most prominently in the microglia surrounding injured motor neurons. Progranulin knockdown by continuous intrathecal spinal delivery of small interfering RNA after sciatic nerve injury intensified neuropathic pain-like behaviour and delayed the recovery of motor functions. Compared to wild-type mice, progranulin-deficient mice developed more intense nociceptive hypersensitivity after nerve injury. The differences escalated with aging. Knockdown of progranulin reduced the survival of dissociated primary neurons and neurite outgrowth, whereas addition of recombinant progranulin rescued primary dorsal root ganglia neurons from cell death induced by nerve growth factor withdrawal. Thus, up-regulation of progranulin after neuronal injury may reduce neuropathic pain and help motor function recovery, at least in part, by promoting survival of injured neurons and supporting regrowth. A deficiency in this mechanism may increase the risk for injury-associated chronic pain. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  13. Mechanisms of vasculitis : How pauci-immune is ANCA-associated renal vasculitis?

    NARCIS (Netherlands)

    van Paassen, P.; Tervaert, J. W. Cohen; Heeringa, P.

    2007-01-01

    Both the innate and the acquired immune system are involved in the pathophysiology of renal vasculitis. However, anti-neutrophil cytoplasmic antibody (ANCA)-associated renal vasculitis is characterized by a 'pauci-immune' pattern of immunofluorescence during kidney biopsy, indicating the relative

  14. Molecular mechanism and function of CD40/CD40L engagement in the immune system.

    Science.gov (United States)

    Elgueta, Raul; Benson, Micah J; de Vries, Victor C; Wasiuk, Anna; Guo, Yanxia; Noelle, Randolph J

    2009-05-01

    During the generation of a successful adaptive immune response, multiple molecular signals are required. A primary signal is the binding of cognate antigen to an antigen receptor expressed by T and B lymphocytes. Multiple secondary signals involve the engagement of costimulatory molecules expressed by T and B lymphocytes with their respective ligands. Because of its essential role in immunity, one of the best characterized of the costimulatory molecules is the receptor CD40. This receptor, a member of the tumor necrosis factor receptor family, is expressed by B cells, professional antigen-presenting cells, as well as non-immune cells and tumors. CD40 binds its ligand CD40L, which is transiently expressed on T cells and other non-immune cells under inflammatory conditions. A wide spectrum of molecular and cellular processes is regulated by CD40 engagement including the initiation and progression of cellular and humoral adaptive immunity. In this review, we describe the downstream signaling pathways initiated by CD40 and overview how CD40 engagement or antagonism modulates humoral and cellular immunity. Lastly, we discuss the role of CD40 as a target in harnessing anti-tumor immunity. This review underscores the essential role CD40 plays in adaptive immunity.

  15. MECHANISMS OF ANTIINFECTIOUS FUNCTIONS OF INNATE IMMUNITY: ROLE OF TOLL-LIKE RECEPTORS

    Directory of Open Access Journals (Sweden)

    S. I. Suskov

    2012-01-01

    Full Text Available This review describes the main role of toll-like receptors of innate immunity for pathogen recognition; signaling; production of inflammatory response. Also Interrelation of innate and adaptive Immunity in conditions of pathology and organ transplantation were considered. 

  16. Using the Defensive Style Questionnaire to evaluate the impact of sex reassignment surgery on defensive mechanisms in transsexual patients Aplicação do Defensive Style Questionnaire para avaliar o impacto da cirurgia de redesignação sexual nos mecanismos de defesa de pacientes transexuais

    Directory of Open Access Journals (Sweden)

    Maria Inês Lobato

    2009-12-01

    Full Text Available Objective: To evaluate the impact of sex reassignment surgery on the defense mechanisms of 32 transsexual patients at two different points in time using the Defensive Style Questionnaire. Method: The Defensive Style Questionnaire was applied to 32 patients upon their admission to the Gender Identity Disorder Program, and 12 months after they had undergone sex reassignment surgery. Results: There were changes in two defense mechanisms: anticipation and idealization. However, no significant differences were observed in terms of the mature, neurotic and immature categories. Discussion: One possible explanation for this result is the fact that the procedure does not resolve gender dysphoria, which is a core symptom in such patients. Another aspect is related to the early onset of the gender identity disorder, which determines a more regressive defensive structure in these patients. Conclusion: Sex reassignment surgery did not improve the defensive profile as measured by the Defensive Style Questionnaire.Objetivo: Avaliar o efeito da cirurgia de redesignação sexual nos mecanismos de defesa de 32 pacientes transexuais em dois momentos do estudo usando o Defensive Style Questionnaire. Método: O Defensive Style Questionnaire foi aplicado a 32 pacientes quando ingressaram no Programa de Transtorno de Identidade de Gênero e 12 meses após a cirurgia de redesignação sexual. Resultados: Houve modificações em dois mecanismos de defesa: antecipação e idealização; porém, sem mudanças significativas nos fatores maduro, neurótico e imaturo. Discussão: Uma possibilidade para esse resultado é o fato de a intervenção cirúrgica não resolver a disforia de gênero (principal sintoma desses pacientes. Outro aspecto está relacionado com o fato de o transtorno de identidade de gênero ser instalado precocemente, o que determina uma estrutura defensiva mais regressiva para esses pacientes. Conclusão: A cirurgia de redesignação sexual não foi

  17. Natural and traditional defense mechanisms to reduce climate risks in coastal zones of Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammed Ataur Rahman

    2015-03-01

    Full Text Available Substantially resourceful and densely populated coastal zones of Bangladesh experience numerous extreme events linked to hydro-meteorological processes viz. cyclones, tidal surges, floods, salinity intrusion and erosion etc. These hazards give rise to extensive damage to property and loss of lives every year. Further, anthropogenic activities in the coastal zones are accentuating environmental degradation causing widespread suffering. Cyclones and tornadoes in particular damage infrastructures and crops every year affecting the economy of the country negatively. Some naturally adapted plants as well as landscapes usually reduce the speed of cyclones and tornadoes and thus, protect the coastal zones. However, human activities have destroyed many of the forests and landscapes. Sundarbans and Chokoria Sundarbans mangrove forests of Bangladesh are under a great threat of extinction due to illicit logging and agricultural expansion. At least 34 plant species of tropical forest are on the verge of extinction. Many animals e.g., cats, bears, porcupines, wild boars, pythons and anteaters are in the process of being wiped out from the coastal areas. Among the marine and coastal species, Red crabs, jelly-fish, sharks, and dolphins are also rare but these were the major species prior to 1980s. This study revealed that during the recent decades there has been massive plantations and construction of embankment and polderization but these and other measures have been found to be impractical and ineffective in reducing disasters in coastal areas. There is a need for integration of traditional coping practices and wisdoms with modern approaches. Available knowledge on some of these traditional practices has been documented for establishing a sustainable policy for management of coastal zones of Bangladesh. By combining traditional and scientific management of coastal ecosystem with mangroves and other plants following triple-tier mechanism and habitat, it is

  18. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species

    Science.gov (United States)

    Whibley, Natasha; Gaffen, Sarah L.

    2015-01-01

    The fungal genus Candida encompasses numerous species that inhabit a variety of hosts, either as commensal microbes and/or pathogens. Candida species are a major cause of fungal infections, yet to date there are no vaccines against Candida or indeed any other fungal pathogen. Our knowledge of immunity to Candida mainly comes from studies on C. albicans, the most frequent species associated with disease. However, non-albicans Candida (NAC) species also cause disease and their prevalence is increasing. Although research into immunity to NAC species is still at an early stage, it is becoming apparent that immunity to C. albicans differs in important ways from non-albicans species, with important implications for treatment, therapy and predicted demographic susceptibility. This review will discuss the current understanding of immunity to NAC species in the context of immunity to C. albicans, and highlight as-yet unanswered questions. PMID:26276374

  19. Ego mechanisms of defense are associated with patients’ preference of treatment modality independent of psychological distress in end-stage renal disease

    Directory of Open Access Journals (Sweden)

    Thomas Hyphantis

    2010-02-01

    Full Text Available Thomas Hyphantis1, Spiros Katsoudas2, Sonia Voudiclari31Associate Professor of Psychiatry, Department of Psychiatry, Medical School, University of Ioannina, Ioannina, Greece; 2Nephrologist, Renal Clinic, Hippocration General Hospital, Athens, Greece; 3Department of Nephrology, University of Athens, GreeceAbstract: Several parameters mediate the selection of treatment modality in end-stage renal disease (ESRD. The nephrology community suggests that patient preference should be the prime determinant of modality choice. We aimed to test whether ego mechanisms of defense are associated with patients’ treatment modality preferences, independent of psychological distress. In 58 eligible ESRD patients who had themselves chosen their treatment modality, we administered the Symptom Distress Checklist-90-R and the Defense Style Questionnaire. Thirtyseven patients (53.4% had chosen hemodialysis and 21 (46.6% peritoneal dialysis. Patients who preferred peritoneal dialysis were younger (odds ratio [OR], 0.89; 95% confidence interval [CI]: 0.804–0.988, had received more education (OR, 8.84; 95% CI: 1.301–60.161, and were twice as likely to adopt an adaptive defense style as compared to patients who preferred hemodialysis (57.1% vs 27.0%, respectively; P < 0.033. On the contrary, the latter were more likely to adopt an image-distorting defense style (35.1% vs 14.3%; P = 0.038 and passive–aggressive defenses (OR, 0.73: 95% CI: 0.504–1.006. These results were independent of psychological distress. Our findings indicate that the patient’s personality should be taken into account, if we are to better define which modalities are best suited to which patients. Also, physicians should bear in mind passive–aggressive behaviors that warrant attention and intervention in patients who preferred hemodialysis.Keywords: end-stage renal disease, hemodialysis, peritoneal dialysis, ego mechanisms of defense, DSQ, psychopathology

  20. An extracellular subtilase switch for immune priming in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Vicente Ramírez

    Full Text Available In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of immunological memory is not well known. We identified an extracellular subtilase from Arabidopsis, SBT3.3, the overexpression of which enhances innate immune responses while the loss of function compromises them. SBT3.3 expression initiates a durable autoinduction mechanism that promotes chromatin remodeling and activates a salicylic acid(SA-dependent mechanism of priming of defense genes for amplified response. Moreover, SBT3.3 expression-sensitized plants for enhanced expression of the OXI1 kinase gene and activation of MAP kinases following pathogen attack, providing additional clues for the regulation of immune priming by SBT3.3. Conversely, in sbt3.3 mutant plants pathogen-mediated induction of SA-related defense gene expression is drastically reduced and activation of MAP kinases inhibited. Moreover, chromatin remodeling of defense-related genes normally associated with activation of an immune priming response appear inhibited in sbt3.3 plants, further indicating the importance of the extracellular SBT3.3 subtilase in the establishment of immune priming. Our results also point to an epigenetic control in the regulation of plant immunity, since SBT3.3 is up-regulated and priming activated when epigenetic control is impeded. SBT3.3 represents a new regulator of primed immunity.

  1. Vaccination of koalas (Phascolarctos cinereus) with a recombinant chlamydial major outer membrane protein adjuvanted with poly I:C, a host defense peptide and polyphosphazine, elicits strong and long lasting cellular and humoral immune responses.

    Science.gov (United States)

    Khan, Shahneaz Ali; Waugh, Courtney; Rawlinson, Galit; Brumm, Jacqui; Nilsson, Karen; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2014-10-07

    Chlamydial infections are wide spread in koalas across their range and a solution to this debilitating disease has been sought for over a decade. Antibiotics are the currently accepted therapeutic measure, but are not an effective treatment due to the asymptomatic nature of some infections and a low efficacy rate. Thus, a vaccine would be an ideal way to address this infectious disease threat in the wild. Previous vaccine trials have used a three-dose regimen; however this is very difficult to apply in the field as it would require multiple capture events, which are stressful and invasive processes for the koala. In addition, it requires skilled koala handlers and a significant monetary investment. To overcome these challenges, in this study we utilized a polyphosphazine based poly I:C and a host defense peptide adjuvant combined with recombinant chlamydial major outer membrane protein (rMOMP) antigen to induce long lasting (54 weeks) cellular and humoral immunity in female koalas with a novel single immunizing dose. Immunized koalas produced a strong IgG response in plasma, as well as at mucosal sites. Moreover, they showed high levels of C. pecorum specific neutralizing antibodies in the plasma as well as vaginal and conjunctival secretions. Lastly, Chlamydia-specific lymphocyte proliferation responses were produced against both whole chlamydial elementary bodies and rMOMP protein, over the 12-month period. The results of this study suggest that a single dose rMOMP vaccine incorporating a poly I:C, host defense peptide and polyphosphazine adjuvant is able to stimulate both arms of the immune system in koalas, thereby providing an alternative to antibiotic treatment and/or a three-dose vaccine regime. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Chromatin versus pathogens: the function of epigenetics in plant immunity

    Science.gov (United States)

    Ding, Bo; Wang, Guo-Liang

    2015-01-01

    To defend against pathogens, plants have developed a sophisticated innate immunity that includes effector recognition, signal transduction, and rapid defense responses. Recent evidence has demonstrated that plants utilize the epigenetic control of gene expression to fine-tune their defense when challenged by pathogens. In this review, we highlight the current understanding of the molecular mechanisms of histone modifications (i.e., methylation, acetylation, and ubiquitination) and chromatin remodeling that contribute to plant immunity against pathogens. Functions of key histone-modifying and chromatin remodeling enzymes are discussed. PMID:26388882

  3. Mechanical disruption of tumors by iron particles and magnetic field application results in increased anti-tumor immune responses.

    Directory of Open Access Journals (Sweden)

    Myriam N Bouchlaka

    Full Text Available The primary tumor represents a potential source of antigens for priming immune responses for disseminated disease. Current means of debulking tumors involves the use of cytoreductive conditioning that impairs immune cells or removal by surgery. We hypothesized that activation of the immune system could occur through the localized release of tumor antigens and induction of tumor death due to physical disruption of tumor architecture and destruction of the primary tumor in situ. This was accomplished by intratumor injection of magneto-rheological fluid (MRF consisting of iron microparticles, in Balb/c mice bearing orthotopic 4T1 breast cancer, followed by local application of a magnetic field resulting in immediate coalescence of the particles, tumor cell death, slower growth of primary tumors as well as decreased tumor progression in distant sites and metastatic spread. This treatment was associated with increased activation of DCs in the draining lymph nodes and recruitment of both DCs and CD8(+T cells to the tumor. The particles remained within the tumor and no toxicities were observed. The immune induction observed was significantly greater compared to cryoablation. Further anti-tumor effects were observed when MRF/magnet therapy was combined with systemic low dose immunotherapy. Thus, mechanical disruption of the primary tumor with MRF/magnetic field application represents a novel means to induce systemic immune activation in cancer.

  4. Distinct effects on diversifying selection by two mechanisms of immunity against Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Yuan Li

    Full Text Available Antigenic variation to evade host immunity has long been assumed to be a driving force of diversifying selection in pathogens. Colonization by Streptococcus pneumoniae, which is central to the organism's transmission and therefore evolution, is limited by two arms of the immune system: antibody- and T cell- mediated immunity. In particular, the effector activity of CD4(+ T(H17 cell mediated immunity has been shown to act in trans, clearing co-colonizing pneumococci that do not bear the relevant antigen. It is thus unclear whether T(H17 cell immunity allows benefit of antigenic variation and contributes to diversifying selection. Here we show that antigen-specific CD4(+ T(H17 cell immunity almost equally reduces colonization by both an antigen-positive strain and a co-colonized, antigen-negative strain in a mouse model of pneumococcal carriage, thus potentially minimizing the advantage of escape from this type of immunity. Using a proteomic screening approach, we identified a list of candidate human CD4(+ T(H17 cell antigens. Using this list and a previously published list of pneumococcal Antibody antigens, we bioinformatically assessed the signals of diversifying selection among the identified antigens compared to non-antigens. We found that Antibody antigen genes were significantly more likely to be under diversifying selection than the T(H17 cell antigen genes, which were indistinguishable from non-antigens. Within the Antibody antigens, epitopes recognized by human antibodies showed stronger evidence of diversifying selection. Taken together, the data suggest that T(H17 cell-mediated immunity, one form of T cell immunity that is important to limit carriage of antigen-positive pneumococcus, favors little diversifying selection in the targeted antigen. The results could provide new insight into pneumococcal vaccine design.

  5. Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion.

    Directory of Open Access Journals (Sweden)

    John J Worthington

    2013-01-01

    Full Text Available Gastrointestinal infection is often associated with hypophagia and weight loss; however, the precise mechanisms governing these responses remain poorly defined. Furthermore, the possibility that alterations in feeding during infection may be beneficial to the host requires further study. We used the nematode Trichinella spiralis, which transiently inhabits the small intestine before migrating to skeletal muscle, as a biphasic model of infection to determine the cellular and molecular pathways controlling feeding during enteric and peripheral inflammation. Through the infection of genetically modified mice lacking cholecystokinin, Tumor necrosis factor α receptors and T and B-cells, we observed a biphasic hypophagic response to infection resulting from two separate immune-driven mechanisms. The enteroendocrine I-cell derived hormone cholecystokinin is an essential mediator of initial hypophagia and is induced by CD4+ T-cells during enteritis. In contrast, the second hypophagic response is extra-intestinal and due to the anorectic effects of TNFα during peripheral infection of the muscle. Moreover, via maintaining naive levels of the adipose secreted hormone leptin throughout infection we demonstrate a novel feedback loop in the immunoendocrine axis. Immune driven I-cell hyperplasia and resultant weight loss leads to a reduction in the inflammatory adipokine leptin, which in turn heightens protective immunity during infection. These results characterize specific immune mediated mechanisms which reduce feeding during intestinal or peripheral inflammation. Importantly, the molecular mediators of each phase are entirely separate. The data also introduce the first evidence that I-cell hyperplasia is an adaptively driven immune response that directly impinges on the outcome to infection.

  6. New insights into enterocin CRL35: mechanism of action and immunity revealed by heterologous expression in Escherichia coli.

    Science.gov (United States)

    Barraza, Daniela E; Ríos Colombo, Natalia S; Galván, Adriana E; Acuña, Leonardo; Minahk, Carlos J; Bellomio, Augusto; Chalón, Miriam C

    2017-09-01

    The role of the class IIa bacteriocin membrane receptor protein remains unclear, and the following two different mechanisms have been proposed: the bacteriocin could interact with the receptor changing it to an open conformation or the receptor might act as an anchor allowing subsequent bacteriocin insertion and membrane disruption. Bacteriocin-producing cells synthesize an immunity protein that forms an inactive bacteriocin-receptor-immunity complex. To better understand the molecular mechanism of enterocin CRL35, the peptide was expressed as the suicidal probe EtpM-enterocin CRL35 in Escherichia coli, a naturally insensitive microorganism since it does not express the receptor. When the bacteriocin is anchored to the periplasmic face of the plasma membrane through the bitopic membrane protein, EtpM , E. coli cells depolarize and die. Moreover, co-expression of the immunity protein prevents the deleterious effect of EtpM-enterocin CRL35. The binding and anchoring of the bacteriocin to the membrane has demonstrated to be a sufficient condition for its membrane insertion. The final step of membrane disruption by EtpM-enterocin CRL35 is independent from the receptor, which means that the mannose PTS might not be involved in the pore structure. In addition, the immunity protein can protect even in the absence of the receptor. © 2017 John Wiley & Sons Ltd.

  7. Hypothyroidism in Cancer Patients on Immune Checkpoint Inhibitors with anti-PD1 Agents: Insights on Underlying Mechanisms.

    Science.gov (United States)

    Alhusseini, M; Samantray, J

    2017-04-01

    Background: Immune therapy using monoclonal antibodies against cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death 1 receptor (PD-1) for various cancers have been reported to cause thyroid dysfunction. Little is known, however, about the underlying pathogenic mechanisms and the course of hypothyroidism that subsequently develops. In this report, we use the change in thyroglobulin and thyroid antibody levels in patients on immune therapy who develop hypothyroidism to better understand its pathogenesis as well as examine the status of hypothyroidism in the long term. Methods: We report a case series of 10 patients who developed hypothyroidism after initiation of immune therapy (either anti-PD-1 alone or in combination with anti-CTLA-4). Available thyroid antibodies including anti-thyroglobulin (anti-Tg), anti-thyroid peroxidase (anti-TPO), and thyroid stimulating immunoglobulin (TSI) were noted during the initial thyroiditis phase as well as the hypothyroid phase. Persistence or remission of hypothyroidism was noted at 6 months. Summary: During the thyroiditis phase, 50% of the patients had elevated Tg titers, 40% had elevated anti-Tg, and 40% had elevated TSI. All of these titers decreased during the hypothyroid phase. Permanent hypothyroidism was noted in 80% of the cases. Conclusion: Hypothyroidism following initiation of immune therapy has immunologic and non-immunologic mediated mechanisms and is likely to be persistent. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Chromatin Remodeling and Plant Immunity.

    Science.gov (United States)

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance? © 2017 Elsevier Inc. All rights reserved.

  9. Mechanisms Underlying the Immune Response Generated by an Oral Vibrio cholerae Vaccine

    Directory of Open Access Journals (Sweden)

    Danylo Sirskyj

    2016-07-01

    Full Text Available Mechanistic details underlying the resulting protective immune response generated by mucosal vaccines remain largely unknown. We investigated the involvement of Toll-like receptor signaling in the induction of humoral immune responses following oral immunization with Dukoral, comparing wild type mice with TLR-2-, TLR-4-, MyD88- and Trif-deficient mice. Although all groups generated similar levels of IgG antibodies, the proliferation of CD4+ T-cells in response to V. cholerae was shown to be mediated via MyD88/TLR signaling, and independently of Trif signaling. The results demonstrate differential requirements for generation of immune responses. These results also suggest that TLR pathways may be modulators of the quality of immune response elicited by the Dukoral vaccine. Determining the critical signaling pathways involved in the induction of immune response to this vaccine would be beneficial, and could contribute to more precisely-designed versions of other oral vaccines in the future.

  10. Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco.

    Science.gov (United States)

    Alamillo, Josefa M; Saénz, Pilar; García, Juan Antonio

    2006-10-01

    Plum pox virus (PPV) is able to replicate in inoculated leaves of Nicotiana tabacum, but is defective in systemic movement in this host. However, PPV produces a systemic infection in transgenic tobacco expressing the silencing suppressor P1/HC-Pro from tobacco etch virus (TEV). In this work we show that PPV is able to move to upper non-inoculated leaves of tobacco plants expressing bacterial salicylate hydroxylase (NahG) that degrades salicylic acid (SA). Replication and accumulation of PPV is higher in the locally infected leaves of plants deficient in SA or expressing TEV P1/HC-Pro silencing suppressor. Accumulation of viral derived small RNAs was reduced in the NahG transgenic plants, suggesting that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco. Besides, expression of SA-mediated defense transcripts, such as those of pathogenesis-related (PR) proteins PR-1 and PR-2 or alternative oxidase-1, as well as that of the putative RNA-dependent RNA polymerase NtRDR1, is induced in response to PPV infection, and the expression patterns of these defense transcripts are altered in the TEV P1/HC-Pro transgenic plants. Long-distance movement of PPV is highly enhanced in NahG x P1/HC-Pro double-transgenic plants and systemic symptoms in these plants reveal that the expression of an RNA-silencing suppressor and the lack of SA produce additive but distinct effects. Our results suggest that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco, and that silencing suppressors, such as P1/HC-Pro, also alter the SA-mediated defense. Both an RNA-silencing and an SA-mediated defense mechanism could act together to limit PPV infection.

  11. Lymphoma: Immune Evasion Strategies

    International Nuclear Information System (INIS)

    Upadhyay, Ranjan; Hammerich, Linda; Peng, Paul; Brown, Brian; Merad, Miriam; Brody, Joshua D.

    2015-01-01

    While the cellular origin of lymphoma is often characterized by chromosomal translocations and other genetic aberrations, its growth and development into a malignant neoplasm is highly dependent upon its ability to escape natural host defenses. Neoplastic cells interact with a variety of non-malignant cells in the tumor milieu to create an immunosuppressive microenvironment. The resulting functional impairment and dysregulation of tumor-associated immune cells not only allows for passive growth of the malignancy but may even provide active growth signals upon which the tumor subsequently becomes dependent. In the past decade, the success of immune checkpoint blockade and adoptive cell transfer for relapsed or refractory lymphomas has validated immunotherapy as a possible treatment cornerstone. Here, we review the mechanisms by which lymphomas have been found to evade and even reprogram the immune system, including alterations in surface molecules, recruitment of immunosuppressive subpopulations, and secretion of anti-inflammatory factors. A fundamental understanding of the immune evasion strategies utilized by lymphomas may lead to better prognostic markers and guide the development of targeted interventions that are both safer and more effective than current standards of care

  12. Lymphoma: Immune Evasion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Ranjan; Hammerich, Linda; Peng, Paul [Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Brown, Brian [Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Merad, Miriam [Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Brody, Joshua D., E-mail: joshua.brody@mssm.edu [Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States)

    2015-04-30

    While the cellular origin of lymphoma is often characterized by chromosomal translocations and other genetic aberrations, its growth and development into a malignant neoplasm is highly dependent upon its ability to escape natural host defenses. Neoplastic cells interact with a variety of non-malignant cells in the tumor milieu to create an immunosuppressive microenvironment. The resulting functional impairment and dysregulation of tumor-associated immune cells not only allows for passive growth of the malignancy but may even provide active growth signals upon which the tumor subsequently becomes dependent. In the past decade, the success of immune checkpoint blockade and adoptive cell transfer for relapsed or refractory lymphomas has validated immunotherapy as a possible treatment cornerstone. Here, we review the mechanisms by which lymphomas have been found to evade and even reprogram the immune system, including alterations in surface molecules, recruitment of immunosuppressive subpopulations, and secretion of anti-inflammatory factors. A fundamental understanding of the immune evasion strategies utilized by lymphomas may lead to better prognostic markers and guide the development of targeted interventions that are both safer and more effective than current standards of care.

  13. Effects of a Nutrient Enriched Beverage on Host Defense Mechanisms of Soldiers Completing the Special Forces Assessment and Selection School

    National Research Council Canada - National Science Library

    Kennedy, Jeffrey

    2000-01-01

    We evaluated a liquid supplement containing anti-oxidants, indigestible carbohydrate, structured lipid, and vitamins and minerals for its effects upon the immune responses of soldiers participating...

  14. The innate immune response during urinary tract infection and pyelonephritis.

    Science.gov (United States)

    Spencer, John David; Schwaderer, Andrew L; Becknell, Brian; Watson, Joshua; Hains, David S

    2014-07-01

    Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides-a ubiquitous component of the innate immune response.

  15. Fas ligand exists on intervertebral disc cells: a potential molecular mechanism for immune privilege of the disc.

    Science.gov (United States)

    Takada, Toru; Nishida, Kotaro; Doita, Minoru; Kurosaka, Masahiro

    2002-07-15

    Rat and human intervertebral disc specimens were examined immunohistochemically. Reverse transcription polymerase chain reaction (RT-PCR) analysis was also performed on rat disc tissue to demonstrate the existence of Fas ligand. To clarify the existence of Fas ligand on intact intervertebral disc cells. The nucleus pulposus has been reported to be an immune-privileged site. The immune-privileged characteristic in other tissues such as the retina and testis has been attributed to the local expression of Fas ligand, which acts by inducing apoptosis of invading Fas-positive T-cells. The existence of Fas ligand in normal disc cells has not yet been addressed. Skeletally mature SD male rats were killed, and the coccygeal discs were harvested. Human disc specimens were obtained from idiopathic scoliosis patients during surgical procedures. Immunohistochemical staining for Fas ligand was performed for cross-sections of the discs by standard procedures. Reverse transcription polymerase chain reaction analysis was also carried out to demonstrate Fas ligand mRNA expression on rat intervertebral discs. Testes of the rats were used for positive controls, and muscles were used for negative controls. The sections were observed by light microscopy. The nucleus pulposus cells exhibited intense positive immune staining for Fas ligand. The outer anulus fibrosus cells and notochordal cells exhibited little immunopositivity. The positive controls exhibited positive immune staining, and the negative control showed no immunopositivity. The result of RT-PCR confirmed the existence of Fas ligand in disc cells. The human nucleus pulposus cells showed a similar predilection to rat disc cells. We demonstrated the existence of Fas ligand on disc cells, which should play a key role in the potential molecular mechanism to maintain immune privilege of the disc. Immune privilege and Fas ligand expression of the intervertebral disc may provide a new insight for basic science research as well as

  16. Diversity of Innate Immune Recognition Mechanism for Bacterial Polymeric meso-Diaminopimelic Acid-type Peptidoglycan in Insects

    OpenAIRE

    Yu, Yang; Park, Ji-Won; Kwon, Hyun-Mi; Hwang, Hyun-Ok; Jang, In-Hwan; Masuda, Akiko; Kurokawa, Kenji; Nakayama, Hiroshi; Lee, Won-Jae; Dohmae, Naoshi; Zhang, Jinghai; Lee, Bok Luel

    2010-01-01

    In Drosophila, the synthesis of antimicrobial peptides in response to microbial infections is under the control of the Toll and immune deficiency (Imd) signaling pathway. The Toll signaling pathway responds mainly to the lysine-type peptidoglycan of Gram-positive bacteria and fungal β-1,3-glucan, whereas the Imd pathway responds to the meso-diaminopimelic acid (DAP)-type peptidoglycan of Gram-negative bacteria and certain Gram-positive bacilli. Recently we determined the activation mechanism ...

  17. Reorganization of Extracellular Matrix in Placentas from Women with Asymptomatic Chagas Disease: Mechanism of Parasite Invasion or Local Placental Defense?

    Directory of Open Access Journals (Sweden)

    Juan Duaso

    2012-01-01

    Full Text Available Chagas disease, produced by the protozoan Trypanosoma cruzi (T. cruzi, is one of the most frequent endemic diseases in Latin America. In spite the fact that in the past few years T. cruzi congenital transmission has become of epidemiological importance, studies about this mechanism of infection are scarce. In order to explore some morphological aspects of this infection in the placenta, we analyzed placentas from T. cruzi-infected mothers by immunohistochemical and histochemical methods. Infection in mothers, newborns, and placentas was confirmed by PCR and by immunofluorescence in the placenta. T. cruzi-infected placentas present destruction of the syncytiotrophoblast and villous stroma, selective disorganization of the basal lamina, and disorganization of collagen I in villous stroma. Our results suggest that the parasite induces reorganization of this tissue component and in this way may regulate both inflammatory and immune responses in the host. Changes in the ECM of placental tissues, together with the immunological status of mother and fetus, and parasite load may determine the probability of congenital transmission of T. cruzi.

  18. Ego mechanisms of defense are associated with patients? preference of treatment modality independent of psychological distress in end-stage renal disease

    OpenAIRE

    Hyphantis, Thomas; Katsoudas, Spiros; Voudiclari, Sonia

    2010-01-01

    Several parameters mediate the selection of treatment modality in end-stage renal disease (ESRD). The nephrology community suggests that patient preference should be the prime determinant of modality choice. We aimed to test whether ego mechanisms of defense are associated with patients? treatment modality preferences, independent of psychological distress. In 58 eligible ESRD patients who had themselves chosen their treatment modality, we administered the Symptom Distress Checklist-90-R and ...

  19. Defense styles of pedophilic offenders.

    Science.gov (United States)

    Drapeau, Martin; Beretta, Véronique; de Roten, Yves; Koerner, Annett; Despland, Jean-Nicolas

    2008-04-01

    This pilot study investigated the defense styles of pedophile sexual offenders. Interviews with 20 pedophiles and 20 controls were scored using the Defense Mechanisms Rating Scales. Results showed that pedophiles had a significantly lower overall defensive functioning score than the controls. Pedophiles used significantly fewer obsessional-level defenses but more major image-distorting and action-level defenses. Results also suggested differences in the prevalence of individual defenses where pedophiles used more dissociation, displacement, denial, autistic fantasy, splitting of object, projective identification, acting out, and passive aggressive behavior but less intellectualization and rationalization.

  20. Protumor Activities of the Immune Response: Insights in the Mechanisms of Immunological Shift, Oncotraining, and Oncopromotion

    Directory of Open Access Journals (Sweden)

    G. K. Chimal-Ramírez

    2013-01-01

    Full Text Available Experimental and clinical studies indicate that cells of the innate and adaptive immune system have both anti- and pro-tumor activities. This dual role of the immune system has led to a conceptual shift in the role of the immune system’s regulation of cancer, in which immune-tumor cell interactions are understood as a dynamic process that comprises at least five phases: immunosurveillance, immunoselection, immunoescape, oncotraining, and oncopromotion. The tumor microenvironment shifts immune cells to perform functions more in tune with the tumor needs (oncotraining; these functions are related to chronic inflammation and tissue remodeling activities. Among them are increased proliferation and survival, increased angiogenesis and vessel permeability, protease secretion, acquisition of migratory mesenchymal characteristics, and self-renewal properties that altogether promote tumor growth and metastasis (oncopromotion. Important populations in all these pro-tumor processes are M2 macrophages, N2 neutrophils, regulatory T cells, and myeloid derived suppressor cells; the main effectors molecules are CSF-1, IL-6, metalloproteases, VEGF, PGE-2, TGF-β, and IL-10. Cancer prognosis correlates with densities and concentrations of protumoral populations and molecules, providing ideal targets for the intelligent design of directed preventive or anticancer therapies.

  1. Pathogen entrapment by transglutaminase--a conserved early innate immune mechanism.

    Directory of Open Access Journals (Sweden)

    Zhi Wang

    2010-02-01

    Full Text Available Clotting systems are required in almost all animals to prevent loss of body fluids after injury. Here, we show that despite the risks associated with its systemic activation, clotting is a hitherto little appreciated branch of the immune system. We compared clotting of human blood and insect hemolymph to study the best-conserved component of clotting systems, namely the Drosophila enzyme transglutaminase and its vertebrate homologue Factor XIIIa. Using labelled artificial substrates we observe that transglutaminase activity from both Drosophila hemolymph and human blood accumulates on microbial surfaces, leading to their sequestration into the clot. Using both a human and a natural insect pathogen we provide functional proof for an immune function for transglutaminase (TG. Drosophila larvae with reduced TG levels show increased mortality after septic injury. The same larvae are also more susceptible to a natural infection involving entomopathogenic nematodes and their symbiotic bacteria while neither phagocytosis, phenoloxidase or-as previously shown-the Toll or imd pathway contribute to immunity. These results firmly establish the hemolymph/blood clot as an important effector of early innate immunity, which helps to prevent septic infections. These findings will help to guide further strategies to reduce the damaging effects of clotting and enhance its beneficial contribution to immune reactions.

  2. HvWRKY10, HvWRKY19, and HvWRKY28 positively regulate Mla-triggered immunity and basal defense to barley powdery mildew

    Science.gov (United States)

    WRKY proteins represent a large family of transcription factors (TFs), involved in plant development and defense responses. So far, fifty-five unique barley TFs have been annotated that contain the WRKY domain; twenty-six of these are present on the Barley1 GeneChip. We analyzed time-course expres...

  3. Evaluation of traditional plant extracts for innate immune mechanisms and disease resistance against fish bacterial Aeromonas hydrophila and Pseudomonas sp.

    Science.gov (United States)

    Hardi, E. H.; Saptiani, G.; Kusuma, I. W.; Suwinarti, W.; Nugroho, R. A.

    2018-03-01

    The purposes of this study were to evaluate effect of ethanol herbal extracts of Boesenbergia pandurata, Solanum ferox and Zingimber zerumbet on Tilapia (Oreochromis nilaticus) innate immune mechanisms and disease resistance against Aeromonas hydrophila and Pseudomonas sp. Fish were intramuscularly injected with 0.1 mL/fish (1010 CFU mL-1) of each bacterium on the day 6th of post treatment using extract by several methods (injection, oral administration and immersion). The doses of extract were 600 ppm of B. pandurata, 900 ppm S. ferox and 200 ppm of Z. zerumbet. The percentage mortality, Relative Percent Survival (RPS) and innate immune response were assessed on weeks 1, 2, 3 and 4. All the methods were effective to enhance the immune parameters after 2 weeks application and the RPS of treatment reached more than 90 %. The results showed that the injection method of extracts was the most effective method to control A. hydrophila and Pseudomonas sp. The result indicated that all the doses of extracts could be significantly influence the immune response and protect the health status of tilapia against A. hydrophila and Pseudomonas sp. infections.

  4. Bactericidal Immunity to Salmonella in Africans and Mechanisms Causing Its Failure in HIV Infection.

    Directory of Open Access Journals (Sweden)

    Yun Shan Goh

    2016-04-01

    Full Text Available Nontyphoidal strains of Salmonella are a leading cause of death among HIV-infected Africans. Antibody-induced complement-mediated killing protects healthy Africans against Salmonella, but increased levels of anti-lipopolysaccharide (LPS antibodies in some HIV-infected African adults block this killing. The objective was to understand how these high levels of anti-LPS antibodies interfere with the killing of Salmonella.Sera and affinity-purified antibodies from African HIV-infected adults that failed to kill invasive S. Typhimurium D23580 were compared to sera from HIV-uninfected and HIV-infected subjects with bactericidal activity. The failure of sera from certain HIV-infected subjects to kill Salmonella was found to be due to an inherent inhibitory effect of anti-LPS antibodies. This inhibition was concentration-dependent and strongly associated with IgA and IgG2 anti-LPS antibodies (p<0.0001 for both. IgG anti-LPS antibodies, from sera of HIV-infected individuals that inhibit killing at high concentration, induced killing when diluted. Conversely, IgG, from sera of HIV-uninfected adults that induce killing, inhibited killing when concentrated. IgM anti-LPS antibodies from all subjects also induced Salmonella killing. Finally, the inhibitory effect of high concentrations of anti-LPS antibodies is seen with IgM as well as IgG and IgA. No correlation was found between affinity or avidity, or complement deposition or consumption, and inhibition of killing.IgG and IgM classes of anti-S. Typhimurium LPS antibodies from HIV-infected and HIV-uninfected individuals are bactericidal, while at very high concentrations, anti-LPS antibodies of all classes inhibit in vitro killing of Salmonella. This could be due to a variety of mechanisms relating to the poor ability of IgA and IgG2 to activate complement, and deposition of complement at sites where it cannot insert in the bacterial membrane. Vaccine trials are required to understand the significance of

  5. Platelets and the innate immune system: Mechanisms of bacterial-induced platelet activation.

    OpenAIRE

    Cox, Dermot; Kerrigan, Steven W; Watson, Steve

    2011-01-01

    It has become clear that platelets are not simply cell fragments that can plug the leak in a damaged blood vessel, they are in fact key components in the innate immune system which is supported by the presence of Toll-like receptors (TLRs) on platelets. As the first responding cell to a site of injury they are well placed to direct the immune response to deal with any resulting exposure to pathogens. The response is triggered by bacteria binding to platelets which usually triggers platelet ac...

  6. Transforming Defense

    National Research Council Canada - National Science Library

    Lamb, Christopher J; Bunn, M. E; Lutes, Charles; Cavoli, Christopher

    2005-01-01

    .... Despite the resources and attention consumed by the war on terror, and recent decisions by the White House to curtail the growth of defense spending, the senior leadership of the Department of Defense (DoD...

  7. Mechanisms of diabetic autoimmunity: I--the inductive interface between islets and the immune system at onset of inflammation.

    Science.gov (United States)

    Askenasy, Nadir

    2016-04-01

    The mechanisms of autoimmune reactivity onset in type 1 diabetes (T1D) remain elusive despite extensive experimentation and discussion. We reconsider several key aspects of the early stages of autoimmunity at four levels: islets, pancreatic lymph nodes, thymic function and peripheral immune homeostasis. Antigen presentation is the islets and has the capacity to provoke immune sensitization, either in the process of physiological neonatal β cell apoptosis or as a consequence of cytolytic activity of self-reactive thymocytes that escaped negative regulation. Diabetogenic effectors are efficiently expanded in both the islets and the lymph nodes under conditions of empty lymphoid niches during a period of time coinciding with a synchronized wave of β cell apoptosis surrounding weaning. A major drive of effector cell activation and expansion is inherent peripheral lymphopenia characteristic of neonates, though it remains unclear when is autoimmunity triggered in subjects displaying hyperglycemia in late adolescence. Our analysis suggests that T1D evolves through coordinated activity of multiple physiological mechanisms of stimulation within specific characteristics of the neonate immune system.

  8. Cellular and Molecular Mechanisms of Anterior Chamber-Associated Immune Deviation (ACAID: What We Have Learned from Knockout Mice

    Directory of Open Access Journals (Sweden)

    Julie Vendomèle

    2017-11-01

    Full Text Available Anterior chamber-associated immune deviation (ACAID is a well-known phenomenon that can occur after an antigen is introduced without any danger signal into the anterior chamber of a murine eye. It is reported to lead to an antigen-specific immune deviation throughout the body. Despite the relatively little evidence of this phenomenon in humans, it has been suggested as a potential prophylactic strategy in allograft rejections and in several autoimmune diseases. Cellular and molecular mechanisms of ACAID have been explored in different murine models mainly as proofs of concept, first by direct analyses of immune components in normal immunocompetent settings and by cell transfer experiments. Later, use of knockout (KO mice has helped considerably to decipher ACAID mechanisms. However, several factors raise questions about the reliability and validity of studies using KO murine models. This mini-review summarizes results obtained with KO mice and discusses their advantages, their potential weaknesses, and their potential methods for further progress.

  9. Genetics of immune-mediated disorders : from genome-wide association to molecular mechanism

    NARCIS (Netherlands)

    Kumar, Vinod; Wijmenga, Cisca; Xavier, Ramnik J.

    2014-01-01

    Genetic association studies have identified not only hundreds of susceptibility loci to immune-mediated diseases but also pinpointed causal amino-acid variants of HLA genes that contribute to many autoimmune reactions. Majority of non-HLA genetic variants are located within non-coding regulatory

  10. Insights into the immune manipulation mechanisms of pollen allergens by protein domain profiling.

    Science.gov (United States)

    Patel, Seema; Rani, Aruna; Goyal, Arun

    2017-10-01

    Plant pollens are airborne allergens, as their inhalation causes immune activation, leading to rhinitis, conjunctivitis, sinusitis and oral allergy syndrome. A myriad of pollen proteins belonging to profilin, expansin, polygalacturonase, glucan endoglucosidase, pectin esterase, and lipid transfer protein class have been identified. In the present in silico study, the protein domains of fifteen pollen sequences were extracted from the UniProt database and submitted to the interactive web tool SMART (Simple Modular Architecture Research Tool), for finding the protein domain profiles. Analysis of the data based on custom-made scripts revealed the conservation of pathogenic domains such as OmpH, PROF, PreSET, Bet_v_1, Cpl-7 and GAS2. Further, the retention of critical domains like CHASE2, Galanin, Dak2, DALR_1, HAMP, PWI, EFh, Excalibur, CT, PbH1, HELICc, and Kelch in pollen proteins, much like cockroach allergens and lethal viruses (such as HIV, HCV, Ebola, Dengue and Zika) was observed. Based on the shared motifs in proteins of taxonomicall-ydispersed organisms, it can be hypothesized that allergens and pathogens manipulate the human immune system in a similar manner. Allergens, being inanimate, cannot replicate in human body, and are neutralized by immune system. But, when the allergens are unremitting, the immune system becomes persistently hyper-sensitized, creating an inflammatory milieu. This study is expected to contribute to the understanding of pollen allergenicity and pathogenicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury.

    Science.gov (United States)

    Hasan, Djo; Blankman, Paul; Nieman, Gary F

    2017-09-01

    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.

  12. In silico genomic insights into aspects of food safety and defense mechanisms of a potentially probiotic Lactobacillus pentosus MP-10 isolated from brines of naturally fermented Aloreña green table olives.

    Directory of Open Access Journals (Sweden)

    Hikmate Abriouel

    Full Text Available Lactobacillus pentosus MP-10, isolated from brines of naturally fermented Aloreña green table olives, exhibited high probiotic potential. The genome sequence of L. pentosus MP-10 is currently considered the largest genome among lactobacilli, highlighting the microorganism's ecological flexibility and adaptability. Here, we analyzed the complete genome sequence for the presence of acquired antibiotic resistance and virulence determinants to understand their defense mechanisms and explore its putative safety in food. The annotated genome sequence revealed evidence of diverse mobile genetic elements, such as prophages, transposases and transposons involved in their adaptation to brine-associated niches. In-silico analysis of L. pentosus MP-10 genome sequence identified a CRISPR (clustered regularly interspaced short palindromic repeats/cas (CRISPR-associated protein genes as an immune system against foreign genetic elements, which consisted of six arrays (4-12 repeats and eleven predicted cas genes [CRISPR1 and CRISPR2 consisted of 3 (Type II-C and 8 (Type I genes] with high similarity to L. pentosus KCA1. Bioinformatic analyses revealed L. pentosus MP-10 to be absent of acquired antibiotic resistance genes, and most resistance genes were related to efflux mechanisms; no virulence determinants were found in the genome. This suggests that L. pentosus MP-10 could be considered safe and with high-adaptation potential, which could facilitate its application as a starter culture and probiotic in food preparations.

  13. Mechanisms of immune evasion and current status of checkpoint inhibitors in non-small cell lung cancer.

    Science.gov (United States)

    Qin, Angel; Coffey, David G; Warren, Edus H; Ramnath, Nithya

    2016-09-01

    In the past several years, immunotherapy has emerged as a viable treatment option for patients with advanced non-small cell lung cancer (NSCLC) without actionable driver mutations that have progressed on standard chemotherapy. We are also beginning to understand the methods of immune evasion employed by NSCLC which likely contribute to the 20% response rate to immunotherapy. It is also yet unclear what tumor or patient factors predict response to immunotherapy. The objectives of this review are (1) review the immunogenicity of NSCLC (2) describe the mechanisms of immune evasion (3) summarize efforts to target the anti-program death-1 (PD-1) and anti-program death-ligand 1(PD-L1) pathway (4) outline determinants of response to PD-1/PD-L1 therapy and (5) discuss potential future areas for research. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  14. Mechanism of immune tolerance induced by donor derived immature dendritic cells in rat high-risk corneal transplantation

    Directory of Open Access Journals (Sweden)

    Xu-Dong Zhao

    2013-06-01

    Full Text Available AIM: To study the role of immature dendritic cells (imDCs on immune tolerance in rat penetrating keratoplasty (PKP in high-risk eyes and to investigate the mechanism of immune hyporesponsiveness induced by donor-derived imDCs. METHODS: Seventy-five SD rats (recipient and 39 Wistar rats (donor were randomly divided into 3 groups: control, imDC and mature dendritic cell (mDC group respectively. Using a model of orthotopic corneal transplantation in which allografts were placed in neovascularized high-risk eyes of recipient rat. Corneal neovascularization was induced by alkaline burn in the central cornea of recipient rat. Recipients in imDC group or mDC group were injected donor bone marrow-derived imDCs or mDCs of 1×106 respectively 1 week before corneal transplantation via tail vein. Control rat received the same volume of PBS. In each group, 16 recipients were kept for determination of survival time and other 9 recipients were executed on day 3, 7 and 14 after transplantation. Cornea was harvested for hematoxylin-eosin staining and acute rejection evaluation, Western blot was used to detect the expression level of Foxp3. RESULTS: The mean survival time of imDC group was significantly longer than that of control and mDC groups (all P<0.05. The expression level of Foxp3 on CD4+CD25+T cells of imDC group (2.24±0.18 was significantly higher than that in the control (1.68±0.09 and mDC groups (1.46±0.13 (all P<0.05. CONCLUSION: Donor-derived imDC is an effective treatment in inducing immune hyporesponsiveness in rat PKP. The mechanism of immune tolerance induced by imDC might be inhibit T lymphocytes responsiveness by regulatory T cells.

  15. Hepatitis B virus surface antigen impairs myeloid dendritic cell function: a possible immune escape mechanism of hepatitis B virus

    Science.gov (United States)

    Op den Brouw, Marjoleine L; Binda, Rekha S; van Roosmalen, Mark H; Protzer, Ulrike; Janssen, Harry L A; van der Molen, Renate G; Woltman, Andrea M

    2009-01-01

    Chronic hepatitis B virus (HBV) infection is the result of an inadequate immune response towards the virus. Myeloid dendritic cells (mDC) of patients with chronic HBV are impaired in their maturation and function, resulting in more tolerogenic rather than immunogenic responses, which may contribute to viral persistence. The mechanism responsible for altered mDC function remains unclear. The HBV-infected patients display large amounts of HBV particles and viral proteins in their circulation, especially the surface antigen HBsAg, which allows multiple interactions between the virus, its viral proteins and DC. To assess whether HBV directly influences mDC function, the effects of HBV and HBsAg on human mDC maturation and function were investigated in vitro. As already described for internalization of HBV by DC, the present study shows that peripheral blood-derived mDC of healthy controls also actively take up HBsAg in a time-dependent manner. Cytokine-induced maturation in the presence of HBV or HBsAg resulted in a significantly more tolerogenic mDC phenotype as demonstrated by a diminished up-regulation of costimulatory molecules and a decreased T-cell stimulatory capacity, as assessed by T-cell proliferation and interferon-γ production. In addition, the presence of HBV significantly reduced interleukin-12 production by mDC. These results show that both HBV particles and purified HBsAg have an immune modulatory capacity and may directly contribute to the dysfunction of mDC in patients with chronic HBV. The direct immune regulatory effect of HBV and circulating HBsAg particles on the function of DC can be considered as part of the mechanism by which HBV escapes immunity. PMID:18624732

  16. The role of cognitive and affective defense mechanisms in reducing children’s susceptibility to advertising effects

    NARCIS (Netherlands)

    Rozendaal, E.; Buijzen, M.; Valkenburg, P.

    2011-01-01

    The main aim of this study was to develop and test a model of children’s advertising defenses. In this model two paths to reduced advertising susceptibility (i.e., advertised brand attitude) were hypothesized: a cognitive and an affective path. The secondary aim was to compare these paths for two

  17. Mechanisms of humoral immune response against Pseudomonas aeruginosa biofilm infection in cystic fibrosis

    DEFF Research Database (Denmark)

    Mauch, Renan Marrichi; Jensen, Peter Østrup; Moser, Claus

    2018-01-01

    P. aeruginosa chronic lung infection is the major cause of morbidity and mortality in patients with cystic fibrosis (CF), and is characterized by a biofilm mode of growth, increased levels of specific IgG antibodies and immune complex formation. However, despite being designed to combat...... this infection, such elevated humoral response is not associated with clinical improvement, pointing to a lack of anti-pseudomonas effectiveness. The mode of action of specific antibodies, as well as their structural features, and even the background involving B-cell production, stimulation and differentiation...... into antibody-producing cells in the CF airways are poorly understood. Thus, the aim of this review is to discuss studies that have addressed the intrinsic features of the humoral immune response and provide new insights regarding its insufficiency in the CF context....

  18. Model distinguishability and inference robustness in mechanisms of cholera transmission and loss of immunity

    OpenAIRE

    Lee, Elizabeth C.; Kelly, Michael R.; Ochocki, Brad M.; Akinwumi, Segun M.; Hamre, Karen E. S.; Tien, Joseph H.; Eisenberg, Marisa C.

    2016-01-01

    Mathematical models of cholera and waterborne disease vary widely in their structures, in terms of transmission pathways, loss of immunity, and other features. These differences may yield different predictions and parameter estimates from the same data. Given the increasing use of models to inform public health decision-making, it is important to assess distinguishability (whether models can be distinguished based on fit to data) and inference robustness (whether model inferences are robust t...

  19. Phagocytosis by Thrombocytes is a Conserved Innate Immune Mechanism in Lower Vertebrates

    OpenAIRE

    Nagasawa, Takahiro; Nakayasu, Chihaya; Rieger, Aja M.; Barreda, Daniel R.; Somamoto, Tomonori; Nakao, Miki

    2014-01-01

    Thrombocytes, nucleated hemostatic blood cells of non-mammalian vertebrates, are regarded as the functional equivalent of anucleated mammalian platelets. Additional immune functions, including phagocytosis, have also been suggested for thrombocytes, but no conclusive molecular or cellular experimental evidence for their potential ingestion and clearance of infiltrating microbes has been provided till date. In the present study, we demonstrate the active phagocytic ability of thrombocytes in l...

  20. Central Nervous System and Innate Immune Mechanisms for Inflammation- and Cancer-induced Anorexia

    OpenAIRE

    Ruud, Johan

    2012-01-01

    Anyone who has experienced influenza or a bacterial infection knows what it means to be ill. Apart from feeling feverish, experiencing aching joints and muscles, you lose the desire to eat. Anorexia, defined as loss of appetite or persistent satiety leading to reduced energy intake, is a hallmark of acute inflammatory disease. The anorexia is part of the acute phase response, triggered as the result of activation of the innate immune system with concomitant release of inflammatory mediators, ...

  1. Phagocytosis by Thrombocytes is a Conserved Innate Immune Mechanism in Lower Vertebrates.

    Science.gov (United States)

    Nagasawa, Takahiro; Nakayasu, Chihaya; Rieger, Aja M; Barreda, Daniel R; Somamoto, Tomonori; Nakao, Miki

    2014-01-01

    Thrombocytes, nucleated hemostatic blood cells of non-mammalian vertebrates, are regarded as the functional equivalent of anucleated mammalian platelets. Additional immune functions, including phagocytosis, have also been suggested for thrombocytes, but no conclusive molecular or cellular experimental evidence for their potential ingestion and clearance of infiltrating microbes has been provided till date. In the present study, we demonstrate the active phagocytic ability of thrombocytes in lower vertebrates using teleost fishes and amphibian models. Ex vivo, common carp thrombocytes were able to ingest live bacteria as well as latex beads (0.5-3 μm in diameter) and kill the bacteria. In vivo, we found that thrombocytes represented nearly half of the phagocyte population in the common carp total peripheral blood leukocyte pool. Phagocytosis efficiency was further enhanced by serum opsonization. Particle internalization led to phagolysosome fusion and killing of internalized bacteria, pointing to a robust ability for microbe elimination. We find that this potent phagocytic activity is shared across teleost (Paralichthys olivaceus) and amphibian (Xenopus laevis) models examined, implying its conservation throughout the lower vertebrate lineage. Our results provide novel insights into the dual nature of thrombocytes in the immune and homeostatic response and further provide a deeper understanding of the potential immune function of mammalian platelets based on the conserved and vestigial functions.

  2. Phagocytosis by thrombocytes is a conserved innate immune mechanism in lower vertebrates

    Directory of Open Access Journals (Sweden)

    Takahiro eNagasawa

    2014-09-01

    Full Text Available Thrombocytes, nucleated hemostatic blood cells of nonmammalian vertebrates, are regarded as the functional equivalent of anucleated mammalian platelets. Additional immune functions, including phagocytosis, have also been suggested for thrombocytes, but no conclusive molecular or cellular experimental evidence for their potential ingestion and clearance of infiltrating microbes has been provided till date. In the present study, we demonstrate the active phagocytic ability of thrombocytes in lower vertebrates using teleost fishes and amphibian models. Ex vivo, common carp thrombocytes were able to ingest live bacteria as well as latex beads (0.5–3 μm in diameter and kill the bacteria. In vivo, we found that thrombocytes represented nearly half of the phagocyte population in the common carp total peripheral blood leukocyte pool. Phagocytosis efficiency was further enhanced by serum opsonization. Particle internalization led to phagolysosome fusion and killing of internalized bacteria, pointing to a robust ability for microbe elimination. We find that this potent phagocytic activity is shared across teleost (Paralichthys olivaceus and amphibian (Xenopus laevis models examined, implying its conservation throughout the lower vertebrate lineage. Our results provide novel insights into the dual nature of thrombocytes in the immune and homeostatic response and further provide a deeper understanding of the potential immune function of mammalian platelets based on the conserved and vestigial functions.

  3. [Advances in molecular mechanisms of adaptive immunity mediated by type I-E CRISPR/Cas system--A review].

    Science.gov (United States)

    Sun, Dongchang; Qiu, Juanping

    2016-01-04

    To better adapt to the environment, prokaryocyte can take up exogenous genes (from bacteriophages, plasmids or genomes of other species) through horizontal gene transfer. Accompanied by the acquisition of exogenous genes, prokaryocyte is challenged by the invasion of 'selfish genes'. Therefore, to protect against the risk of gene transfer, prokaryocyte needs to establish mechanisms for selectively taking up or degrading exogenous DNA. In recent years, researchers discovered an adaptive immunity, which is mediated by the small RNA guided DNA degradation, prevents the invasion of exogenous genes in prokaryocyte. During the immune process, partial DNA fragments are firstly integrated.to the clustered regularly interspaced short palindromic repeats (CRISPR) located within the genome DNA, and then the mature CRISPR RNA transcript and the CRISPR associated proteins (Cas) form a complex CRISPR/Cas for degrading exogenous DNA. In this review, we will first briefly describe the CRISPR/Cas systems and then mainly focus on the recent advances of the function mechanism and the regulation mechanism of the type I-E CRISPR/Cas system in Escherichia coli.

  4. Type, Frequency, and Spatial Distribution of Immune Cell Infiltrates in CNS Germinomas: Evidence for Inflammatory and Immunosuppressive Mechanisms.

    Science.gov (United States)

    Zapka, Pia; Dörner, Evelyn; Dreschmann, Verena; Sakamato, Noriaki; Kristiansen, Glen; Calaminus, Gabriele; Vokuhl, Christian; Leuschner, Ivo; Pietsch, Torsten

    2018-02-01

    Central nervous system germinomas are characterized by a massive immune cell infiltrate. We systematically characterized these immune cells in 28 germinomas by immunophenotyping and image analysis. mRNA expression was analyzed by Nanostring technology and in situ RNA hybridization. Tumor infiltrating lymphocytes (TILs) were composed of 61.8% ± 3.1% (mean ± SE) CD3-positive T cells, including 45.2% ± 3.5% of CD4-positive T-helper cells, 23.4% ± 1.5% of CD8-positive cytotoxic T cells, 5.5% ± 0.9% of FoxP3-positive regulatory T cells, and 11.9% ±1.3% PD-1-positive TILs. B cells accounted for 35.8% ± 2.9% of TILs and plasma cells for 9.3% ± 1.6%. Tumor-associated macrophages consisted of clusters of activated PD-L1-positive macrophages and interspersed anti-inflammatory macrophages expressing CD163. Germinoma cells did not express PD-L1. Expression of genes encoding immune cell markers and cytokines was high and comparable to mRNA levels in lymph node tissue. IFNG and IL10 mRNA was detected in subfractions of TILs and in PD-L1-positive macrophages. Taken together, the strong immune reaction observed in germinomas involves inflammatory as well as various suppressive mechanisms. Expression of PD-1 and PD-L1 and infiltration of cytotoxic T cells are biomarkers predictive of response to anti-PD-1/PD-L1 therapies, constituting a rationale for possible novel treatment approaches. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  5. Review of Cyber-Physical Attacks and Counter Defense Mechanisms for Advanced Metering Infrastructure in Smart Grid

    OpenAIRE

    Wei, Longfei; Rondon, Luis Puche; Moghadasi, Amir; Sarwat, Arif I.

    2018-01-01

    The Advanced Metering Infrastructure (AMI) is a vital element in the current development of the smart grid. AMI technologies provide electric utilities with an effective way of continuous monitoring and remote control of smart grid components. However, owing to its increasing scale and cyber-physical nature, the AMI has been faced with security threats in both cyber and physical domains. This paper provides a comprehensive review of the crucial cyber-physical attacks and counter defense mecha...

  6. Ego mechanisms of defense are associated with patients' preference of treatment modality independent of psychological distress in end-stage renal disease.

    Science.gov (United States)

    Hyphantis, Thomas; Katsoudas, Spiros; Voudiclari, Sonia

    2010-03-24

    Several parameters mediate the selection of treatment modality in end-stage renal disease (ESRD). The nephrology community suggests that patient preference should be the prime determinant of modality choice. We aimed to test whether ego mechanisms of defense are associated with patients' treatment modality preferences, independent of psychological distress. In 58 eligible ESRD patients who had themselves chosen their treatment modality, we administered the Symptom Distress Checklist-90-R and the Defense Style Questionnaire. Thirty-seven patients (53.4%) had chosen hemodialysis and 21 (46.6%) peritoneal dialysis. Patients who preferred peritoneal dialysis were younger (odds ratio [OR], 0.89; 95% confidence interval [CI]: 0.804-0.988), had received more education (OR, 8.84; 95% CI: 1.301-60.161), and were twice as likely to adopt an adaptive defense style as compared to patients who preferred hemodialysis (57.1% vs 27.0%, respectively; P psychological distress. Our findings indicate that the patient's personality should be taken into account, if we are to better define which modalities are best suited to which patients. Also, physicians should bear in mind passive-aggressive behaviors that warrant attention and intervention in patients who preferred hemodialysis.

  7. RNAi and Antiviral Defense in the Honey Bee

    Science.gov (United States)

    Brutscher, Laura M.; Flenniken, Michelle L.

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans. PMID:26798663

  8. RNAi and Antiviral Defense in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Laura M. Brutscher

    2015-01-01

    Full Text Available Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD- affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans.

  9. The Role of Non-specific and Specific Immune Systems in Poultry against Newcastle Disease

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2015-09-01

    Full Text Available Newcastle disease (ND is caused by avian paramyxovirus-1 which belong to Avulavirus genus and Paramyxoviridae family. The birds have abnormalities in humoral (bursa fabricius and cellular (thymus and spleen lymphoid organs. Lesions decrease the immune system. Immune system consists of non-specific and specific immune systems. The main components of non-specific immunity are physical and chemical barrier (feather and skin or mucosa, phagocytic cells (macrophages and natural killer, protein complement and the mediator of inflammation and cytokines. Interferons (IFNs belong to a group of cytokines that play a major role in the nonspecific or innate (natural immunity. The virulent ND virus encodes protein of V gene can be suppressed IFN type I. This leads to non-specific immune system fail to respond to the virulent strains resulting in severe pathogenicity. The defense mechanism of the host is replaced by specific immunity (adaptive immunity when natural immunity fails to overcome the infection. The specific immune system consists of humoral mediated immunity (HMI and cell-mediated immunity (CMI. The cells of immune system that react specifically with the antigen are B lymphocytes producing the antibodies, T lymphocytes that regulate the synthesis of antibodies and T cells as effector or the direct cytotoxic cells. Both non-specific and specific immunities are complementary against the invasion of ND virus in the birds. The objective of this article is to discuss the role of non specific and specific immune system in ND.

  10. A Novel Energy-Efficient Multi-Sensor Fusion Wake-Up Control Strategy Based on a Biomimetic Infectious-Immune Mechanism for Target Tracking.

    Science.gov (United States)

    Zhou, Jie; Liang, Yan; Shen, Qiang; Feng, Xiaoxue; Pan, Quan

    2018-04-18

    A biomimetic distributed infection-immunity model (BDIIM), inspired by the immune mechanism of an infected organism, is proposed in order to achieve a high-efficiency wake-up control strategy based on multi-sensor fusion for target tracking. The resultant BDIIM consists of six sub-processes reflecting the infection-immunity mechanism: occurrence probabilities of direct-infection (DI) and cross-infection (CI), immunity/immune-deficiency of DI and CI, pathogen amount of DI and CI, immune cell production, immune memory, and pathogen accumulation under immunity state. Furthermore, a corresponding relationship between the BDIIM and sensor wake-up control is established to form the collaborative wake-up method. Finally, joint surveillance and target tracking are formulated in the simulation, in which we show that the energy cost and position tracking error are reduced to 50.8% and 78.9%, respectively. Effectiveness of the proposed BDIIM algorithm is shown, and this model is expected to have a significant role in guiding the performance improvement of multi-sensor networks.

  11. Model distinguishability and inference robustness in mechanisms of cholera transmission and loss of immunity.

    Science.gov (United States)

    Lee, Elizabeth C; Kelly, Michael R; Ochocki, Brad M; Akinwumi, Segun M; Hamre, Karen E S; Tien, Joseph H; Eisenberg, Marisa C

    2017-05-07

    Mathematical models of cholera and waterborne disease vary widely in their structures, in terms of transmission pathways, loss of immunity, and a range of other features. These differences can affect model dynamics, with different models potentially yielding different predictions and parameter estimates from the same data. Given the increasing use of mathematical models to inform public health decision-making, it is important to assess model distinguishability (whether models can be distinguished based on fit to data) and inference robustness (whether inferences from the model are robust to realistic variations in model structure). In this paper, we examined the effects of uncertainty in model structure in the context of epidemic cholera, testing a range of models with differences in transmission and loss of immunity structure, based on known features of cholera epidemiology. We fit these models to simulated epidemic and long-term data, as well as data from the 2006 Angola epidemic. We evaluated model distinguishability based on fit to data, and whether the parameter values, model behavior, and forecasting ability can accurately be inferred from incidence data. In general, all models were able to successfully fit to all data sets, both real and simulated, regardless of whether the model generating the simulated data matched the fitted model. However, in the long-term data, the best model fits were achieved when the loss of immunity structures matched those of the model that simulated the data. Two parameters, one representing person-to-person transmission and the other representing the reporting rate, were accurately estimated across all models, while the remaining parameters showed broad variation across the different models and data sets. The basic reproduction number (R 0 ) was often poorly estimated even using the correct model, due to practical unidentifiability issues in the waterborne transmission pathway which were consistent across all models. Forecasting

  12. On vitamin D-dependent regulation of local mechanisms of non-specific defense in children with connective tissue dysplasia

    Directory of Open Access Journals (Sweden)

    L.I. Omelchenko

    2017-11-01

    Full Text Available Background. The influence of active vitamin D (VD metabolites on the reaction of nonspecific defense mechanisms of mucous membranes may be of particular importance in children with connective tissue dysplasia (СТD. The purpose of the study was to establish the concentration of human -defensin (HBD-2 and lysozyme in local secretions in children with CTD taking into account the body’s VD supply. Materials and methods. We examined 127 children aged 11–17 years with phenotypic manifestations of CTD taking into account the supplementation of VD. Four groups of children were identified: group 1 — healthy children with a physiological level of 25OHD, group 2 — children with moderate and severe CTD degrees and physiological concentrations of VD (75–100 nmol/l, group 3 — children with CTD and 25OHD insufficiency (50–75 nmol/l, group 4 — children with CTD and vitamin D deficiency (VDD (below 50 nmol/l. Determination of HBD-2 level by immunoassay and lysozyme using a dry powder of one-day Micrococcus lyzodeiticus culture in local secretions (saliva, coprofiltrate (CF was performed in all children. Results. When studying HBD-2 in saliva, its highest concentrations were found in children of group 1 — 4.52 ± 0.06 ng/ml. Lower levels of HBD-2 were reported in children of groups 2 and 3, and in children with CTD and DVD, the rates were lowest — 3.88 ± 0.08 ng/ml. The highest HBD-2 concentrations in CF were detected in group 1 — 81.14 ± 5.13 ng/ml. In groups of children with dysplastic manifestations, a significant difference in data (p ≤ 0.05 is observed depending on the concentration of 25OHD, with the lowest concentrations found in VDD group — 52.63 ± 3.01 ng/ml. The highest lysozyme levels in CF were in children from groups 1 (4.68 ± 0.10 mg/l and 2 (4.41 ± 0.09 mg/l; however, the lowest concentration of lysozyme was found in children with CTD and VDD — 4.09 ± 0.08 mg/l. A direct relationship is determined between the

  13. Abdominal pain in Irritable Bowel Syndrome: a review of putative psychological, neural and neuro-immune mechanisms.

    Science.gov (United States)

    Elsenbruch, Sigrid

    2011-03-01

    Chronic abdominal pain is a common symptom of great clinical significance in several areas of medicine. In many cases no organic cause can be established resulting in the classification as functional gastrointestinal disorder. Irritable Bowel Syndrome (IBS) is the most common of these conditions and is considered an important public health problem because it can be disabling and constitutes a major social and economic burden given the lack of effective treatments. IBS aetiology is most likely multi-factorial involving biological, psychological and social factors. Visceral hyperalgesia (or hypersensitivity) and visceral hypervigilance, which could be mediated by peripheral, spinal, and/or central pathways, constitute key concepts in current research on pathophysiological mechanisms of visceral hyperalgesia. The role of central nervous system mechanisms along the "brain-gut axis" is increasingly appreciated, owing to accumulating evidence from brain imaging studies that neural processing of visceral stimuli is altered in IBS together with long-standing knowledge regarding the contribution of stress and negative emotions to symptom frequency and severity. At the same time, there is also growing evidence suggesting that peripheral immune mechanisms and disturbed neuro-immune communication could play a role in the pathophysiology of visceral hyperalgesia. This review presents recent advances in research on the pathophysiology of visceral hyperalgesia in IBS, with a focus on the role of stress and anxiety in central and peripheral response to visceral pain stimuli. Together, these findings support that in addition to lower pain thresholds displayed by a significant proportion of patients, the evaluation of pain appears to be altered in IBS. This may be attributable to affective disturbances, negative emotions in anticipation of or during visceral stimulation, and altered pain-related expectations and learning processes. Disturbed "top-down" emotional and cognitive pain

  14. Molecular characterization of a genomic region in a Lactococcus bacteriophage that is involved in its sensitivity to the phage defense mechanism AbiA.

    OpenAIRE

    Dinsmore, P K; Klaenhammer, T R

    1997-01-01

    A spontaneous mutant of the lactococcal phage phi31 that is insensitive to the phage defense mechanism AbiA was characterized in an effort to identify the phage factor(s) involved in sensitivity of phi31 to AbiA. A point mutation was localized in the genome of the AbiA-insensitive phage (phi31A) by heteroduplex analysis of a 9-kb region. The mutation (G to T) was within a 738-bp open reading frame (ORF245) and resulted in an arginine-to-leucine change in the predicted amino acid sequence of t...

  15. ALTERNATE MECHANISMS OF INITIAL PATTERN RECOGNITION DRIVE DIFFERENTIAL IMMUNE RESPONSES TO RELATED POXVIRUSES

    Science.gov (United States)

    O’Gorman, William E.; Sampath, Padma; Simonds, Erin F.; Sikorski, Rachel; O’Malley, Mark; Krutzik, Peter O.; Chen, Hannah; Panchanathan, Vijay; Chaudhri, Geeta; Karupiah, Gunasegaran; Lewis, David B.; Thorne, Steve H.; Nolan, Garry P.

    2010-01-01

    Summary Although vaccinia virus infection results in induction of a robust immunizing response, many closely related poxviruses such as variola (smallpox) and ectromelia (mousepox) are highly pathogenic in their natural hosts. We developed a strategy to map the activation of key signaling networks in vivo and applied this approach to define and compare the earliest signaling events elicited by poxvirus infections in mice. Vaccinia induced rapid TLR2-dependent responses leading to IL-6 production, which then initiated STAT3 signaling in dendritic cells and T cells. In contrast, ectromelia did not induce TLR2 activation and profound mouse strain-dependent responses were observed. In resistant C57BL/6 mice, the STAT1 and STAT3 pathways were rapidly activated, whereas in susceptible BALB/c mice, IL-6-dependent STAT3 activation did not occur. These results indicate that vaccination with vaccinia is dependent on rapid TLR2 and IL-6 driven responses and link the earliest immune signaling events to the outcome of infection. PMID:20709294

  16. Altered levels of soluble CD18 may associate immune mechanisms with outcome in sepsis

    DEFF Research Database (Denmark)

    Kragstrup, Tue Wenzel; Juul-Madsen, Kristian; Hill Christiansen, Stig

    2017-01-01

    and phagocytosis through complement opsonisation, both processes relevant to the immune response during sepsis. Here, we investigate the role of soluble (s)CD18 in sepsis with emphasis on sCD18 as a mechanistic biomarker of immune reactions and outcome of sepsis. sCD18 levels were measured in fifteen septic....../CD18, also known as Mac-1 or complement receptor 3. Serum sCD18 levels in sepsis non-survivors displayed two distinct peaks permitting a partitioning into two groups, namely sCD18 “high” and sCD18 “low” with median levels of sCD18 at 2158 mU/ml (IQR 2093-2811 mU/ml) and 488 mU/ml (IQR 360-617 m......U/ml), respectively, at the day of ICU admission. Serum sCD18 levels partitioned sepsis non-survivors into one group of “high” sCD18 and low CRP and another group with “low” sCD18 and high CRP. Together with the mechanistic data generated in vitro, we suggest the partitioning in sCD18 to reflect a compensatory anti...

  17. Immune effector mechanisms of the nitric oxide pathway in malaria: cytotoxicity versus cytoprotection

    Directory of Open Access Journals (Sweden)

    Hossein Nahrevanian

    Full Text Available Nitric oxide (NO is thought to be an important mediator and critical signaling molecule for malaria immunopathology; it is also a target for therapy and for vaccine. Inducible nitric oxide synthase (iNOS is synthesized by a number of cell types under inflammatory conditions. The most relevant known triggers for its expression are endotoxins and cytokines. To date, there have been conflicting reports concerning the clinical significance of NO in malaria. Some researchers have proposed that NO contributes to the development of severe and complicated malaria, while others have argued that NO has a protective role. Infection with parasites resistant to the microbicidal action of NO may result in high levels of NO being generated, which could then damage the host, instead of controlling parasitemia. Consequently, the host-parasite interaction is a determining factor for whether the parasite is capable of stimulating NO production; the role of NO in resistance to malaria appears to be strain specific. It is known that NO and/or its related molecules are involved in malaria, but their involvement is not independent of other immune events. NO is an important, but possibly not an essential contributor to the control of acute-phase malaria infection. The protective immune responses against malaria parasite are multifactorial; however, they necessarily involve final effector molecules, including NO, iNOS and RNI.

  18. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation.

    Science.gov (United States)

    Cox, D; Kerrigan, S W; Watson, S P

    2011-06-01

    It has become clear that platelets are not simply cell fragments that plug the leak in a damaged blood vessel; they are, in fact, also key components in the innate immune system, which is supported by the presence of Toll-like receptors (TLRs) on platelets. As the cells that respond first to a site of injury, they are well placed to direct the immune response to deal with any resulting exposure to pathogens. The response is triggered by bacteria binding to platelets, which usually triggers platelet activation and the secretion of antimicrobial peptides. The main platelet receptors that mediate these interactions are glycoprotein (GP)IIb-IIIa, GPIbα, FcγRIIa, complement receptors, and TLRs. This process may involve direct interactions between bacterial proteins and the receptors, or can be mediated by plasma proteins such as fibrinogen, von Willebrand factor, complement, and IgG. Here, we review the variety of interactions between platelets and bacteria, and look at the potential for inhibiting these interactions in diseases such as infective endocarditis and sepsis. © 2011 International Society on Thrombosis and Haemostasis.

  19. CXCR1 regulates pulmonary anti-Pseudomonas host defense

    Science.gov (United States)

    Carevic, M.; Öz, H.; Fuchs, K.; Laval, J.; Schroth, C.; Frey, N.; Hector, A.; Bilich, T.; Haug, M.; Schmidt, A.; Autenrieth, S. E.; Bucher, K.; Beer-Hammer, S.; Gaggar, A.; Kneilling, M.; Benarafa, C.; Gao, J.; Murphy, P.; Schwarz, S.; Moepps, B.; Hartl, D.

    2016-01-01

    Pseudomonas aeruginosa is a key opportunistic pathogen causing disease in cystic fibrosis (CF) and other lung diseases such as chronic obstructive pulmonary disease (COPD). However, the pulmonary host defense mechanisms regulating anti-Pseudomonas aeruginosa immunity remain incompletely understood. Here we demonstrate, by studying an airway Pseudomonas aeruginosa infection model, in vivo bioluminescence imaging, neutrophil effector responses and human airway samples, that the chemokine receptor CXCR1 regulates pulmonary host defense against Pseudomonas aeruginosa. Mechanistically, CXCR1 regulated anti-Pseudomonas neutrophil responses through modulation of reactive oxygen species and interference with toll-like receptor 5 expression. These studies define CXCR1 as a novel non-canonical chemokine receptor that regulates pulmonary anti-Pseudomonas host defense with broad implications for CF, COPD and other infectious lung diseases. PMID:26950764

  20. In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus.

    Science.gov (United States)

    Azevedo, Raimunda S S; de Sousa, Jorge R; Araujo, Marialva T F; Martins Filho, Arnaldo J; de Alcantara, Bianca N; Araujo, Fernanda M C; Queiroz, Maria G L; Cruz, Ana C R; Vasconcelos, Beatriz H Baldez; Chiang, Jannifer O; Martins, Lívia C; Casseb, Livia M N; da Silva, Eliana V; Carvalho, Valéria L; Vasconcelos, Barbara C Baldez; Rodrigues, Sueli G; Oliveira, Consuelo S; Quaresma, Juarez A S; Vasconcelos, Pedro F C

    2018-01-08

    Zika virus (ZIKV) has recently caused a pandemic disease, and many cases of ZIKV infection in pregnant women resulted in abortion, stillbirth, deaths and congenital defects including microcephaly, which now has been proposed as ZIKV congenital syndrome. This study aimed to investigate the in situ immune response profile and mechanisms of neuronal cell damage in fatal Zika microcephaly cases. Brain tissue samples were collected from 15 cases, including 10 microcephalic ZIKV-positive neonates with fatal outcome and five neonatal control flavivirus-negative neonates that died due to other causes, but with preserved central nervous system (CNS) architecture. In microcephaly cases, the histopathological features of the tissue samples were characterized in three CNS areas (meninges, perivascular space, and parenchyma). The changes found were mainly calcification, necrosis, neuronophagy, gliosis, microglial nodules, and inflammatory infiltration of mononuclear cells. The in situ immune response against ZIKV in the CNS of newborns is complex. Despite the predominant expression of Th2 cytokines, other cytokines such as Th1, Th17, Treg, Th9, and Th22 are involved to a lesser extent, but are still likely to participate in the immunopathogenic mechanisms of neural disease in fatal cases of microcephaly caused by ZIKV.

  1. Epigenetic Mechanisms Regulate Innate Immunity against Uropathogenic and Commensal-Like Escherichia coli in the Surrogate Insect Model Galleria mellonella.

    Science.gov (United States)

    Heitmueller, Miriam; Billion, André; Dobrindt, Ulrich; Vilcinskas, Andreas; Mukherjee, Krishnendu

    2017-10-01

    Innate-immunity-related genes in humans are activated during urinary tract infections (UTIs) caused by pathogenic strains of Escherichia coli but are suppressed by commensals. Epigenetic mechanisms play a pivotal role in the regulation of gene expression in response to environmental stimuli. To determine whether epigenetic mechanisms can explain the different behaviors of pathogenic and commensal bacteria, we infected larvae of the greater wax moth, Galleria mellonella , a widely used model insect host, with a uropathogenic E. coli (UPEC) strain that causes symptomatic UTIs in humans or a commensal-like strain that causes asymptomatic bacteriuria (ABU). Infection with the UPEC strain (CFT073) was more lethal to larvae than infection with the attenuated ABU strain (83972) due to the recognition of each strain by different Toll-like receptors, ultimately leading to differential DNA/RNA methylation and histone acetylation. We used next-generation sequencing and reverse transcription (RT)-PCR to correlate epigenetic changes with the induction of innate-immunity-related genes. Transcriptomic analysis of G. mellonella larvae infected with E. coli strains CFT073 and 83972 revealed strain-specific variations in the class and expression levels of genes encoding antimicrobial peptides, cytokines, and enzymes controlling DNA methylation and histone acetylation. Our results provide evidence for the differential epigenetic regulation of transcriptional reprogramming by UPEC and ABU strains of E. coli in G. mellonella larvae, which may be relevant to understanding the different behaviors of these bacterial strains in the human urinary tract. Copyright © 2017 American Society for Microbiology.

  2. Immune Evasion by Epstein-Barr Virus.

    Science.gov (United States)

    Ressing, Maaike E; van Gent, Michiel; Gram, Anna M; Hooykaas, Marjolein J G; Piersma, Sytse J; Wiertz, Emmanuel J H J

    2015-01-01

    Epstein-Bar virus (EBV) is widespread within the human population with over 90% of adults being infected. In response to primary EBV infection, the host mounts an antiviral immune response comprising both innate and adaptive effector functions. Although the immune system can control EBV infection to a large extent, the virus is not cleared. Instead, EBV establishes a latent infection in B lymphocytes characterized by limited viral gene expression. For the production of new viral progeny, EBV reactivates from these latently infected cells. During the productive phase of infection, a repertoire of over 80 EBV gene products is expressed, presenting a vast number of viral antigens to the primed immune system. In particular the EBV-specific CD4+ and CD8+ memory T lymphocytes can respond within hours, potentially destroying the virus-producing cells before viral replication is completed and viral particles have been released. Preceding the adaptive immune response, potent innate immune mechanisms provide a first line of defense during primary and recurrent infections. In spite of this broad range of antiviral immune effector mechanisms, EBV persists for life and continues to replicate. Studies performed over the past decades have revealed a wide array of viral gene products interfering with both innate and adaptive immunity. These include EBV-encoded proteins as well as small noncoding RNAs with immune-evasive properties. The current review presents an overview of the evasion strategies that are employed by EBV to facilitate immune escape during latency and productive infection. These evasion mechanisms may also compromise the elimination of EBV-transformed cells, and thus contribute to malignancies associated with EBV infection.

  3. The role of autophagy in chloroplast degradation and chlorophagy in immune defenses during Pst DC3000 (AvrRps4 infection.

    Directory of Open Access Journals (Sweden)

    Junjian Dong

    Full Text Available BACKGROUND: Chlorosis of leaf tissue normally observed during pathogen infection may result from the degradation of chloroplasts. There is a growing evidence to suggest that the chloroplast plays a significant role during pathogen infection. Although most degradation of the organelles and cellular structures in plants is mediated by autophagy, its role in chloroplast catabolism during pathogen infection is largely unknown. RESULTS: In this study, we investigated the function of autophagy in chloroplast degradation during avirulent Pst DC3000 (AvrRps4 infection. We examined the expression of defensive marker genes and suppression of bacterial growth using the electrolyte leakage assay in normal light (N and low light (L growing environments of wild-type and atg5-1 plants during pathogen treatment. Stroma-targeted GFP proteins (CT-GFP were observed with LysoTracker Red (LTR staining of autophagosome-like structures in the vacuole. The results showed that Arabidopsis expressed a significant number of small GFP-labeled bodies when infected with avirulent Pst DC3000 (AvrRps4. While barely detectable, there were small GFP-labeled bodies in plants with the CT-GFP expressing atg5-1 mutation. The results showed that chloroplast degradation depends on autophagy and this may play an important role in inhibiting pathogen growth. CONCLUSION: Autophagy plays a role in chloroplast degradation in Arabidopsis during avirulent Pst DC3000 (AvrRps4 infection. Autophagy dependent chloroplast degradation may be the primary source of reactive oxygen species (ROS as well as the pathogen-response signaling molecules that induce the defense response.

  4. Mechanisms of immune red cell destruction, and red cell compatibility testing

    International Nuclear Information System (INIS)

    Garratty, G.

    1983-01-01

    The immune destruction of red cells can occur as a complement-mediated intravascular process, or extravascularly, where the red cells are destroyed by macrophages following interaction with cell-bound IgG1, IgG3, and/or C3b. Many of the factors that affect this in vivo destruction are not taken into account during in vitro pretransfusion compatibility testing. At present, even by use of more elaborate tests, it is difficult to accurately predict the fate of a transfused unit of blood. By using some simple information, such as antibody specificity and thermal range, it is sometimes possible to predict the outcome of transfusing a unit of blood that is incompatible in vitro. At other times it may be necessary to utilize 51 Cr-labeled red cells to determine the risk of transfusing such units. Because of the paucity of reported clinical correlations, macrophage/monocyte monolayer assays are of little practical value at present

  5. La protéine CG4572 de Drosophile et la propagation du signal ARNi immun antiviral

    OpenAIRE

    Karlikow , Margot

    2015-01-01

    During viral infection, cell survival will depend on adequately giving, receiving and processing information to establish an efficient antiviral immune response. Cellular communication is therefore essential to allow the propagation of immune signals that will confer protection to the entire organism.The major antiviral defense in insects is the RNA interference (RNAi) mechanism that is activated by detection of viral double-stranded RNA (dsRNA). The antiviral RNAi mechanism can be divided in...

  6. On the Mechanism Determining the Th1/Th2 Phenotype of an Immune Response, and its Pertinence to Strategies for the Prevention, and Treatment, of Certain Infectious Diseases

    Science.gov (United States)

    Bretscher, P A

    2014-01-01

    It is well recognized that the physiological/pathological consequences of an immune response, against a foreign or a self-antigen, are often critically dependent on the class of immunity generated. Here we focus on how antigen interacts with the cells of the immune system to determine whether antigen predominantly generates Th1 or Th2 cells. We refer to this mechanism as the ‘decision criterion’ controlling the Th1/Th2 phenotype of the immune response. A plausible decision criterion should account for the variables of immunization known to affect the Th1/Th2 phenotype of the ensuing immune response. Documented variables include the nature of the antigen, in terms of its degree of foreignness, the dose of antigen and the time after immunization at which the Th1/Th2 phenotype of the immune response is assessed. These are quantitative variables made at the level of the system. In addition, the route of immunization is also critical. I describe a quantitative hypothesis as to the nature of the decision criterion, referred to as the Threshold Hypothesis. This hypothesis accounts for the quantitative variables of immunization known to affect the Th1/Th2 phenotype of the immune response generated. I suggest and illustrate how this is not true of competing, contemporary hypotheses. I outline studies testing predictions of the hypothesis and illustrate its potential utility in designing strategies to prevent or treat medical situations where a predominant Th1 response is required to contain an infection, such as those caused by HIV-1 and by Mycobacterium tuberculosis, or to contain cancers. PMID:24684592

  7. [Mechanism of tonifying Qi traditional Chinese medicines contained in Yiqi Qingwen Jiedu mixture against influenza immune inflammatory injury].

    Science.gov (United States)

    Xu, Hong-Ri; Wang, Cheng-Xiang; Wang, Lan; Zhou, Ping-An; Yin, Ren-Yi; Jiang, Liang-Duo; Wang, Hui-Fang

    2014-10-01

    To observe the impact of tonifying Qi traditional Chinese medicines contained in Yiqi Qingwen Jiedu mixture on mRNA expression of lung inflammatory cytokines and pulmonary pathological injury of mice infected by influenza virus, in order to discuss the mechanism of tonifying Qi traditional Chinese medicines against pulmonary immune inflammatory injury of infected mice. In different time phases after mice were infected with influenza virus FM1, the RT-PCR method was adopted to observe the impact of tonifying Qi traditional Chinese medicines contained in Yiqi Qingwen Jiedu mixture on five inflammatory cytokines TNF-α, IL-1, IL-6, IL-10 and IFN-γ, and the changes in pulmonary pathological injury of mice with viral pneumonia after intervention with tonifying qi traditional Chinese medicines. (1) Tonifying Qi traditional Chinese medicines significantly reduced the mRNA expression of TNF-α at 1-5 d and IL-1 mRNA expression at 7 d, may increase IL-1 mRNA expression in mouse lung at 3 d, significantly reduced IL-6 mRNA expression in mouse lung and increased IL-10 mRNA expression at 3-7 d, and significantly increased IFN-γ mRNA expression at 1 d. (2) Tonifying Qi traditional Chinese medicines could significantly inhibited and repaired pulmonary immune inflammatory injury of mice infected by FM1, which was most remarkable at 3-7 d after the infection with influenza virus FM1. Tonifying Qi traditional Chinese medicines contained in Yiqi Qingwen Jiedu mixture could resist pulmonary immune inflammatory injury and repair inflammatory injury by regulating the mRNA expression of imbalance inflammatory cytokines of organisms infected with influenza virus.

  8. Modulation of immune homeostasis by commensal bacteria

    Science.gov (United States)

    Ivanov, Ivaylo I.; Littman, Dan R.

    2011-01-01

    Intestinal bacteria form a resident community that has co-evolved with the mammalian host. In addition to playing important roles in digestion and harvesting energy, commensal bacteria are crucial for the proper functioning of mucosal immune defenses. Most of these functions have been attributed to the presence of large numbers of “innocuous” resident bacteria that dilute or occupy niches for intestinal pathogens or induce innate immune responses that sequester bacteria in the lumen, thus quenching excessive activation of the mucosal immune system. However it has recently become obvious that commensal bacteria are not simply beneficial bystanders, but are important modulators of intestinal immune homeostasis and that the composition of the microbiota is a major factor in pre-determining the type and robustness of mucosal immune responses. Here we review specific examples of individual members of the microbiota that modify innate and adaptive immune responses, and we focus on potential mechanisms by which such species-specific signals are generated and transmitted to the host immune system. PMID:21215684

  9. Trichomoniasis immunity and the involvement of the purinergic signaling

    Directory of Open Access Journals (Sweden)

    Camila Braz Menezes

    2016-08-01

    Full Text Available Innate and adaptive immunity play a significant role in trichomoniasis, the most common non-viral sexually transmitted disease worldwide. In the urogenital tract, innate immunity is accomplished by a defense physical barrier constituted by epithelial cells, mucus, and acidic pH. During infection, immune cells, antimicrobial peptides, cytokines, chemokines, and adaptive immunity evolve in the reproductive tract, and a proinflammatory response is generated to eliminate the invading extracellular pathogen Trichomonas vaginalis. However, the parasite has developed complex evolutionary mechanisms to evade the host immune response through cysteine proteases, phenotypic variation, and molecular mimicry. The purinergic system constitutes a signaling cellular net where nucleotides and nucleosides, enzymes, purinoceptors and transporters are involved in almost all cells and tissues signaling pathways, especially in central and autonomic nervous systems, endocrine, respiratory, cardiac, reproductive, and immune systems, during physiological as well as pathological processes. The involvement of the purinergic system in T. vaginalis biology and infection has been demonstrated and this review highlights the participation of this signaling pathway in the parasite immune evasion strategies. Keywords: Trichomoniasis, Innate immune response, Adaptive immune response, Evasion mechanisms, Purinergic signaling

  10. Immune Response to Dengue and Zika.

    Science.gov (United States)

    Ngono, Annie Elong; Shresta, Sujan

    2018-04-26

    Flaviviruses such as dengue (DENV), yellow fever (YFV), West Nile (WNV), and Zika (ZIKV) are human pathogens of global significance. In particular, DENV causes the most prevalent mosquito-borne viral diseases in humans, and ZIKV emerged from obscurity into the spotlight in 2016 as the etiologic agent of congenital Zika syndrome. Owing to the recent emergence of ZIKV as a global pandemic threat, the roles of the immune system during ZIKV infections are as yet unclear. In contrast, decades of DENV research implicate a dual role for the immune system in protection against and pathogenesis of DENV infection. As DENV and ZIKV are closely related, knowledge based on DENV studies has been used to prioritize investigation of ZIKV immunity and pathogenesis, and to accelerate ZIKV diagnostic, therapeutic, and vaccine design. This review discusses the following topics related to innate and adaptive immune responses to DENV and ZIKV: the interferon system as the key mechanism of host defense and viral target for immune evasion, antibody-mediated protection versus antibody-dependent enhancement, and T cell-mediated protection versus original T cell antigenic sin. Understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during DENV and ZIKV infections is critical toward development of safe and effective DENV and ZIKV therapeutics and vaccines.

  11. Suppression of cellular immunity by head and neck irradiation. Precipitating factors and reparative mechanisms in an experimental model

    International Nuclear Information System (INIS)

    Gray, W.C.; Hasslinger, B.J.; Suter, C.M.; Blanchard, C.L.; Goldstein, A.L.; Chretien, P.B.

    1986-01-01

    A model was developed in C 3 H mice to investigate the immunosuppressive effects of head and neck irradiation and to explore mechanisms for repair of the defects. Mice receiving 1200 rad (12 Gy) of head and neck irradiation showed significant depression of delayed-type hypersensitivity, peripheral blood lymphocyte counts, spleen cell counts, and spleen cell production of interleukin-2. Treatment with optimal dosages of thymosin alpha 1 (T alpha-1) produced significant increases in all of these values, in some instances to levels higher than in the nonirradiated controls. In identical experiments with mice irradiated to a portal limited to the pelvic region, T alpha-1 induced only partial remission of the abnormalities. The dose response of T alpha-1 with head and neck irradiation showed a relatively limited dose range for immune restoration, a finding that warrants similar determinations in clinical trials with immunomodulating agents. The results suggest a potential clinical usefulness of T alpha-1 and also interleukin-2 in restoring cellular immunity after irradiation for head and neck cancers. The model appears to be useful for investigating immunomodulating agents before they are clinically evaluated as adjuvants with head and neck irradiation regimens

  12. Mechanisms and kinetics for platelet and neutrophil localization in immune complex nephritis

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.J.; Alpers, C.E.; Pruchno, C.; Schulze, M.; Baker, P.J.; Pritzl, P.; Couser, W.G. (Univ. of Washington, Seattle (USA))

    1989-11-01

    We have previously reported that both neutrophils (PMNs) and platelets mediate proteinuria in a model of subendothelial immune complex (IC) nephritis (GN) in the rat. In order to understand the interaction of PMNs and platelets in this model, we quantitated the uptake of {sup 111}In-labelled platelets in glomeruli and correlated this with the number of PMNs observed histologically at 10 and 30 minutes, 1, 4 and 24 hours following induction of GN. Platelet accumulation was biphasic with a major peak at 10 minutes and a minor peak at four hours. Early platelet accumulation was complement dependent, and PMN-independent. PMN accumulation occurred after the initial platelet influx, peaking at one and four hours, was complement dependent, but was not affected by platelet depletion. Complement depletion significantly reduced proteinuria. This is the first documentation that platelet accumulation in glomeruli in IC GN is complement dependent. In addition, the enhancement of PMN-mediated injury by the platelet in this model does not involve effects of platelets on PMN localization, thus implying a functional interaction between these cells within the glomerulus.

  13. Non-pharmacological treatment effects on psychosomatic and immune regulatory mechanisms in patients with rheumatic arthritis

    Directory of Open Access Journals (Sweden)

    Zharikova I.P.

    2014-12-01

    Full Text Available Objective: comparative analysis of the influence of the methods of the lateral ophthalmotilapia and low-intensity magnetic therapy on the Central and peripheral nervous system and the immune status in patients with rheumatoid arthritis. Material and methods: a comparative analysis of the impact of the 44 patients with rheumatoid arthritis aged 18 to 65 years, of which 19 patients (43.2 percent — 1 group received low-frequency low-intensity magnetic therapy and 25 patients (56.8 per cent — group 2, the lateral ophthalmotilapia. Results. In group 1 significantly improved memory both short-term (from 69.2±9.0 to 81,7±12,7, p=0.003, and the reminiscence relating to medium-term characteristics of memory (57,3±22 to 79,0±14,5; p=0.004. In patients of the 2nd group in the course of treatment was observed more pronounced dynamics of improvement of parameters of higher nervous activity, namely short-term memory (79,4±17 to 88,2±12, p=0.003and reminiscences of memory (from 69.4±27 to 82.4±19,5, p=0,0016. Conclusion. Lateral ophthalmotilapia and low-frequency magnetotherapy for help expand the list of rehabilitation programs in rheumatoid arthritis, the disease having dual autoimmune and psychosomatic genesis.

  14. Manganese-superoxide dismutase (MnSOD), a role player in seahorse (Hippocampus abdominalis) antioxidant defense system and adaptive immune system.

    Science.gov (United States)

    Perera, N C N; Godahewa, G I; Lee, Seongdo; Kim, Myoung-Jin; Hwang, Jee Youn; Kwon, Mun Gyeong; Hwang, Seong Don; Lee, Jehee

    2017-09-01

    Manganese superoxide dismutase (MnSOD) is a metaloenzyme that catalyzes dismutation of the hazardous superoxide radicals into less hazardous H 2 O 2 and H 2 O. Here, we identified a homolog of MnSOD from big belly seahorse (Hippocampus abdominalis; HaMnSOD) and characterized its structural and functional features. HaMnSOD transcript possessed an open reading frame (ORF) of 672 bp which codes for a peptide of 223 amino acids. Pairwise alignment showed that HaMnSOD shared highest identity with rock bream MnSOD. Results of the phylogenetic analysis of HaMnSOD revealed a close proximity with rock bream MnSOD which was consistent with the result of homology alignment. The intense expression of HaMnSOD was observed in the ovary, followed by the heart and the brain. Further, immune related responses of HaMnSOD towards pathogenic stimulation were observed through bacterial and viral challenges. Highest HaMnSOD expression in response to stimulants Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide (LPS), and polyinosinic-polycytidylic acid (Poly I:C) was observed in the late stage in the blood tissue. Xanthine/xanthine oxidase assay (XOD assay) indicated the ROS-scavenging ability of purified recombinant HaMnSOD (rHaMnSOD). The optimum conditions for the SOD activity of rHaMnSOD were pH 9 and the 25 °C. Collectively, the results obtained through the expressional analysis profiles and the functional assays provide insights into potential immune related and antioxidant roles of HaMnSOD in the big belly seahorse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Combined chromatin and expression analysis reveals specific regulatory mechanisms within cytokine genes in the macrophage early immune response.

    Directory of Open Access Journals (Sweden)

    Maria Jesus Iglesias

    Full Text Available Macrophages play a critical role in innate immunity, and the expression of early response genes orchestrate much of the initial response of the immune system. Macrophages undergo extensive transcriptional reprogramming in response to inflammatory stimuli such as Lipopolysaccharide (LPS.To identify gene transcription regulation patterns involved in early innate immune responses, we used two genome-wide approaches--gene expression profiling and chromatin immunoprecipitation-sequencing (ChIP-seq analysis. We examined the effect of 2 hrs LPS stimulation on early gene expression and its relation to chromatin remodeling (H3 acetylation; H3Ac and promoter binding of Sp1 and RNA polymerase II phosphorylated at serine 5 (S5P RNAPII, which is a marker for transcriptional initiation. Our results indicate novel and alternative gene regulatory mechanisms for certain proinflammatory genes. We identified two groups of up-regulated inflammatory genes with respect to chromatin modification and promoter features. One group, including highly up-regulated genes such as tumor necrosis factor (TNF, was characterized by H3Ac, high CpG content and lack of TATA boxes. The second group, containing inflammatory mediators (interleukins and CCL chemokines, was up-regulated upon LPS stimulation despite lacking H3Ac in their annotated promoters, which were low in CpG content but did contain TATA boxes. Genome-wide analysis showed that few H3Ac peaks were unique to either +/-LPS condition. However, within these, an unpacking/expansion of already existing H3Ac peaks was observed upon LPS stimulation. In contrast, a significant proportion of S5P RNAPII peaks (approx 40% was unique to either condition. Furthermore, data indicated a large portion of previously unannotated TSSs, particularly in LPS-stimulated macrophages, where only 28% of unique S5P RNAPII peaks overlap annotated promoters. The regulation of the inflammatory response appears to occur in a very specific manner at

  16. γδ T LYMPHOCYTES AS A FIRST LINE OF IMMUNE DEFENSE: OLD AND NEW WAYS OF ANTIGEN RECOGNITION AND IMPLICATIONS FOR CANCER IMMUNOTHERAPY.

    Directory of Open Access Journals (Sweden)

    Maria Raffaella eZocchi

    2014-11-01

    Full Text Available Among γδT cells, the Vδ1 subset, resident in epithelial tissues, is implied in the defense against viruses, fungi and certain hematological malignancies, while the circulating Vδ2 subpopulation mainly respond to mycobacteria and solid tumors. Both subsets can be activated by stress-induced molecules (MIC-A, MIC-B, ULBPs to produce pro-inflammatory cytokines and lytic enzymes and destroy bacteria or damaged cells. γδT lymphocytes can also recognize lipids, as those associated to M. tuberculosis, presented by the CD1 molecule, or phosphoantigens (P-Ag, either autologous, which accumulates in virus-infected cells, or microbial produced by prokaryotes and parasites. In cancer cells P-Ag accumulate due to alterations in the mevalonate pathway; recently, butyrophilin 3A1 has been shown to be the presenting molecule for P-Ag. Of interest, aminobisphosphonates indirectly activate Vδ2 T cells inducing the accumulation of P-Ag. Based on these data, γδT lymphocytes are attractive effectors for cancer immunotherapy. However, the results obtained in clinical trials so far have been disappointing: this review will focus on the possible reasons of this failure as well as on suggestions for implementation of the therapeutic strategies.

  17. The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation.

    Science.gov (United States)

    Mendes, Fernando; Domingues, Cátia; Rodrigues-Santos, Paulo; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Estrela, Jéssica; Encarnação, João; Pires, Ana Salomé; Laranjo, Mafalda; Alves, Vera; Teixo, Ricardo; Sarmento, Ana Bela; Botelho, Maria Filomena; Rosa, Manuel Santos

    2016-04-01

    Immune surveillance seems to represent an effective tumor suppressor mechanism. However, some cancer cells survive and become variants, being poorly immunogenic and able to enter a steady-state phase. These cells become functionally dormant or remain hidden clinically throughout. Neoplastic cells seem to be able to instruct immune cells to undergo changes promoting malignancy. Radiotherapy may act as a trigger of the immune response. After radiotherapy a sequence of reactions occurs, starting in the damage of oncogenic cells by multiple mechanisms, leading to the immune system positive feedback against the tumor. The link between radiotherapy and the immune system is evident. T cells, macrophages, Natural Killer cells and other immune cells seem to have a key role in controlling the tumor. T cells may be dysfunctional and remain in a state of T cell exhaustion, nonetheless, they often retain a high potential for successful defense against cancer, being able to be mobilized to become highly functional. The lack of clinical trials on a large scale makes data a little robust, in spite of promising information, there are still many variables in the studies relating to radiation and immune system. The clarification of the mechanisms underlying immune response to radiation exposure may contribute to treatment improvement, gain of life quality and span of patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Ribavirin enhances IFN-α signalling and MxA expression: a novel immune modulation mechanism during treatment of HCV.

    Directory of Open Access Journals (Sweden)

    Nigel J Stevenson

    Full Text Available The nucleoside analogue Ribavirin significantly increases patient response to IFN-α treatment of HCV, by directly inhibiting viral replication. Recent studies indicate that Ribavirin also regulates immunity and we propose that Ribavirin enhances specific interferon sensitive gene (ISG expression by amplifying the IFN-α-JAK/STAT pathway. We found that IFN-α-induced STAT1 and STAT3 phosphorylation was increased in hepatocytes co-treated with Ribavirin and IFN-α, compared to IFN-α alone. Ribavirin specifically enhanced IFN-α induced mRNA and protein of the anti-viral mediator MxA, which co-localised with HCV core protein. These novel findings indicate for the first time that Ribavirin, in addition to its viral incorporation, also enhances IFN-α-JAK/STAT signalling, leading to a novel MxA-mediated immuno-modulatory mechanism that may enhance IFN-α anti-viral activity against HCV.

  19. Up-date on neuro-immune mechanisms involved in allergic and non-allergic rhinitis

    NARCIS (Netherlands)

    van Gerven, L.; Boeckxstaens, G.; Hellings, P.

    2012-01-01

    Non-allergic rhinitis (NAR) is a common disorder, which can be defined as chronic nasal inflammation, independent of systemic IgE-mediated mechanisms. Symptoms of NAR patients mimic those of allergic rhinitis (AR) patients. However, AR patients can easily be diagnosed with skin prick test or

  20. Constructing dual-defense mechanisms on membrane surfaces by synergy of PFSA and SiO2 nanoparticles for persistent antifouling performance

    Science.gov (United States)

    Zhou, Linjie; Gao, Kang; Jiao, Zhiwei; Wu, Mengyuan; He, Mingrui; Su, Yanlei; Jiang, Zhongyi

    2018-05-01

    Synthetic antifouling membrane surfaces with dual-defense mechanisms (fouling-resistant and fouling-release mechanism) were constructed through the synergy of perfluorosulfonic acid (PFSA) and SiO2 nanoparticles. During the nonsolvent induced phase separation (NIPS) process, the amphiphilic PFSA polymers spontaneously segregated to membrane surfaces and catalyzed the hydrolysis-polycondensation of tetraethyl orthosilicate (TEOS) to generate hydrophilic SiO2 nanoparticles (NPs). The resulting PVDF/PFSA/SiO2 hybrid membranes were characterized by contact angle measurements, FTIR, XPS, SEM, AFM, TGA, and TEM. The hydrophilic microdomains and low surface energy microdomains of amphiphilic PFSA polymers respectively endowed membrane surfaces with fouling-resistant mechanism and fouling-release mechanism, while the hydrophilic SiO2 NPs intensified the fouling-resistant mechanism. When the addition of TEOS reached 3 wt%, the hybrid membrane with optimal synergy of PFSA and SiO2 NPs displayed low flux decline (17.4% DRt) and high flux recovery (99.8% FRR) during the filtration of oil-in-water emulsion. Meanwhile, the long-time stability test verified that the hybrid membrane possessed persistent antifouling performance.

  1. Elimination of self-reactive CD8+, but not CD4+, T cells by a peripheral immune mechanism

    International Nuclear Information System (INIS)

    Rammensee, H.G.; Huegin, D.

    1990-01-01

    Unirradiated (BALB/c X B6)F1 recipients of lymphocytes from either parent or (B6 X DBA/2)F2 recipients of DBA/2 parental lymphocytes specifically remove the function of donor-derived F1-reactive CTL from the spleen, since such cells could not be recovered 1 week after injection. However, donor-derived CTL specific for third-party antigens, as well as donor-derived F1-reactive CD4+ T cells could be recovered. In contrast, CTL in spleens from recipients sublethally irradiated prior to injections consisted predominantly of F1-reactive CTL in all strain combinations tested. Athymic BALB/c nude mice grafted with fetal thymus of B6 develop a T cell compartment tolerant of BALB/c and B6, like (BALB/c X B6)F1 animals. However, unlike the F1 mice, the thymus-grafted nude mice were not able to eliminate B6-reactive lymphocytes after injection of normal BALB/c spleen cells. Our data indicate the existence of a peripheral immune mechanism capable of selectively eliminating self-reactive CD8+ CTL, but not CD4+, T cells. This mechanism requires self antigen expressed on radiosensitive cells. The presence of T cells tolerant to self antigen by thymic negative selection is not sufficient and perhaps not required. Most likely, this mechanism is involved in the relative resistance to lethal GVHR mediated by parental CD8+ T cells in parent-into-F1 situations

  2. Transcriptome Analysis Reveals Novel Entry Mechanisms and a Central Role of SRC in Host Defense during High Multiplicity Mycobacterial Infection.

    Directory of Open Access Journals (Sweden)

    Jay Zhang

    Full Text Available Mycobacterium tuberculosis (MTB infects an estimated one-third of the global population and is one of the main causes of mortality from an infectious agent. The characteristics of macrophages challenged by MTB with a high multiplicity of infection (MOI, which mimics both clinical disseminated infection and granuloma formation, are distinct from macrophages challenged with a low MOI. To better understand the cross talk between macrophage host cells and mycobacteria, we compared the transcription patterns of mouse macrophages infected with bacille Calmette-Guérin, H37Ra and M. smegmatis. Attention was focused on the changes in the abundance of transcripts related to immune system function. From the results of a transcriptome profiling study with a high mycobacterial MOI, we defined a pathogen-specific host gene expression pattern. The present study suggests that two integrins, ITGA5 and ITGAV, are novel cell surface receptors mediating mycobacterium entry into macrophages challenged with high MOI. Our results indicate that SRC likely plays a central role in regulating multiple unique signaling pathways activated by MTB infection. The integrated results increase our understanding of the molecular networks behind the host innate immune response and identify important targets that might be useful for the development of tuberculosis therapy.

  3. Ocular surface immunity: homeostatic mechanisms and their disruption in dry eye disease.

    Science.gov (United States)

    Barabino, Stefano; Chen, Yihe; Chauhan, Sunil; Dana, Reza

    2012-05-01

    The tear film, lacrimal glands, corneal and conjunctival epithelia and Meibomian glands work together as a lacrimal functional unit (LFU) to preserve the integrity and function of the ocular surface. The integrity of this unit is necessary for the health and normal function of the eye and visual system. Nervous connections and systemic hormones are well known factors that maintain the homeostasis of the ocular surface. They control the response to internal and external stimuli. Our and others' studies show that immunological mechanisms also play a pivotal role in regulating the ocular surface environment. Our studies demonstrate how anti-inflammatory factors such as the expression of vascular endothelial growth factor receptor-3 (VEGFR-3) in corneal cells, immature corneal resident antigen-presenting cells, and regulatory T cells play an active role in protecting the ocular surface. Dry eye disease (DED) affects millions of people worldwide and negatively influences the quality of life for patients. In its most severe forms, DED may lead to blindness. The etiology and pathogenesis of DED remain largely unclear. Nonetheless, in this review we summarize the role of the disruption of afferent and efferent immunoregulatory mechanisms that are responsible for the chronicity of the disease, its symptoms, and its clinical signs. We illustrate current anti-inflammatory treatments for DED and propose that prevention of the disruption of immunoregulatory mechanisms may represent a promising therapeutic strategy towards controlling ocular surface inflammation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling.

    Science.gov (United States)

    Trusov, Yuri; Sewelam, Nasser; Rookes, James Edward; Kunkel, Matt; Nowak, Ekaterina; Schenk, Peer Martin; Botella, José Ramón

    2009-04-01

    Heterotrimeric G proteins are involved in the defense response against necrotrophic fungi in Arabidopsis. In order to elucidate the resistance mechanisms involving heterotrimeric G proteins, we analyzed the effects of the Gβ (subunit deficiency in the mutant agb1-2 on pathogenesis-related gene expression, as well as the genetic interaction between agb1-2 and a number of mutants of established defense pathways. Gβ-mediated signaling suppresses the induction of salicylic acid (SA)-, jasmonic acid (JA)-, ethylene (ET)- and abscisic acid (ABA)-dependent genes during the initial phase of the infection with Fusarium oxysporum (up to 48 h after inoculation). However, at a later phase it enhances JA/ET-dependent genes such as PDF1.2 and PR4. Quantification of the Fusarium wilt symptoms revealed that Gβ- and SA-deficient mutants were more susceptible than wild-type plants, whereas JA- and ET-insensitive and ABA-deficient mutants demonstrated various levels of resistance. Analysis of the double mutants showed that the Gβ-mediated resistance to F. oxysporum and Alternaria brassicicola was mostly independent of all of the previously mentioned pathways. However, the progressive decay of agb1-2 mutants was compensated by coi1-21 and jin1-9 mutations, suggesting that at this stage of F. oxysporum infection Gβ acts upstream of COI1 and ATMYC2 in JA signaling. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.

  5. Two distinct CXC chemokine receptors (CXCR3 and CXCR4) from the big-belly seahorse Hippocampus abdominalis: Molecular perspectives and immune defensive role upon pathogenic stress.

    Science.gov (United States)

    Priyathilaka, Thanthrige Thiunuwan; Oh, Minyoung; Bathige, S D N K; De Zoysa, Mahanama; Lee, Jehee

    2017-06-01

    CXC chemokine receptor 3 (CXCR3) and 4 (CXCR4) are members of the seven transmembrane G protein coupled receptor family, involved in pivotal physiological functions. In this study, seahorse CXCR3 and CXCR4 (designated as HaCXCR3 and HaCXCR4) cDNA sequences were identified from the transcriptome library and subsequently molecularly characterized. HaCXCR3 and HaCXCR4 encoded 363 and 373 amino acid long polypeptides, respectively. The HaCXCR3 and HaCXCR4 deduced proteins have typical structural features of chemokine receptors, including seven transmembrane domains and a G protein coupled receptors family 1 profile with characteristic DRY motifs. Amino acid sequence comparison and phylogenetic analysis of these two CXC chemokine receptors revealed a close relationship to their corresponding teleost counterparts. Quantitative real time PCR analysis revealed that HaCXCR3 and HaCXCR4 were ubiquitously expressed in all the tested tissues, with highest expression levels in blood cells. The seahorse blood cells and kidney HaCXCR3 and HaCXCR4 mRNA expressions were differently modulated when challenged with Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide, and polyinosinic:polycytidylic acid, confirming their involvement in post immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Planetary Defense

    Science.gov (United States)

    2016-05-01

    4 Abstract Planetary defense against asteroids should be a major concern for every government in the world . Millions of asteroids and...helps make Planetary Defense viable because defending the Earth against asteroids benefits from all the above technologies. So if our planet security...information about their physical characteristics so we can employ the right strategies. It is a crucial difference if asteroids are made up of metal

  7. Immunity's ancient arms

    OpenAIRE

    Litman, Gary W.; Cannon, John P.

    2009-01-01

    Diverse receptors on two types of cell mediate adaptive immunity in jawed vertebrates. In the lamprey, a jawless vertebrate, immunity is likewise compartmentalized but the molecular mechanics are very different.

  8. The mechanism of humoral immune response to allogeneic organ transplantation

    Directory of Open Access Journals (Sweden)

    A. S. Berkos

    2017-01-01

    Full Text Available The problem of antibody-mediated rejection of donor organ remains extremely relevant. The main targets of the antibodies are mainly donor HLA-antigens (Human Leucocyte Antigens, expressed, in particular, by the cells of graft vascular endothelium. This review describes the mechanisms of the development of humoral alloimmunity which are based on B-cell recognition of epitopes of donor HLA-molecules and affinity maturation of B-cell receptors in the germinal centers of peripheral lymphatic system. Monitoring of epitope load and cross-reactivity indicators to evaluate HLA-compatibility of donor and recipient plays an important role in the prevention of allograft humoral rejection.

  9. Disentangling detoxification: gene expression analysis of feeding mountain pine beetle illuminates molecular-level host chemical defense detoxification mechanisms.

    Directory of Open Access Journals (Sweden)

    Jeanne A Robert

    Full Text Available The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.

  10. The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures.

    Science.gov (United States)

    Chung, Oksung; Jin, Seondeok; Cho, Yun Sung; Lim, Jeongheui; Kim, Hyunho; Jho, Sungwoong; Kim, Hak-Min; Jun, JeHoon; Lee, HyeJin; Chon, Alvin; Ko, Junsu; Edwards, Jeremy; Weber, Jessica A; Han, Kyudong; O'Brien, Stephen J; Manica, Andrea; Bhak, Jong; Paek, Woon Kee

    2015-10-21

    The cinereous vulture, Aegypius monachus, is the largest bird of prey and plays a key role in the ecosystem by removing carcasses, thus preventing the spread of diseases. Its feeding habits force it to cope with constant exposure to pathogens, making this species an interesting target for discovering functionally selected genetic variants. Furthermore, the presence of two independently evolved vulture groups, Old World and New World vultures, provides a natural experiment in which to investigate convergent evolution due to obligate scavenging. We sequenced the genome of a cinereous vulture, and mapped it to the bald eagle reference genome, a close relative with a divergence time of 18 million years. By comparing the cinereous vulture to other avian genomes, we find positively selected genetic variations in this species associated with respiration, likely linked to their ability of immune defense responses and gastric acid secretion, consistent with their ability to digest carcasses. Comparisons between the Old World and New World vulture groups suggest convergent gene evolution. We assemble the cinereous vulture blood transcriptome from a second individual, and annotate genes. Finally, we infer the demographic history of the cinereous vulture which shows marked fluctuations in effective population size during the late Pleistocene. We present the first genome and transcriptome analyses of the cinereous vulture compared to other avian genomes and transcriptomes, revealing genetic signatures of dietary and environmental adaptations accompanied by possible convergent evolution between the Old World and New World vultures.

  11. Two interdependent mechanisms of antimicrobial activity allow for efficient killing in nylon-3-based polymeric mimics of innate immunity peptides.

    Science.gov (United States)

    Lee, Michelle W; Chakraborty, Saswata; Schmidt, Nathan W; Murgai, Rajan; Gellman, Samuel H; Wong, Gerard C L

    2014-09-01

    Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In this study, we investigate a family of nylon-3 polymer-based antimicrobials. By combining vesicle dye leakage, bacterial permeation, and bactericidal assays with small-angle X-ray scattering (SAXS), we find that these polymers are capable of two interdependent mechanisms of action: permeation of bacterial membranes and binding to intracellular targets such as DNA, with the latter necessarily dependent on the former. We systemically examine polymer-induced membrane deformation modes across a range of lipid compositions that mimic both bacteria and mammalian cell membranes. The results show that the polymers' ability to generate negative Gaussian curvature (NGC), a topological requirement for membrane permeation and cellular entry, in model Escherichia coli membranes correlates with their ability to permeate membranes without complete membrane disruption and kill E. coli cells. Our findings suggest that these polymers operate with a concentration-dependent mechanism of action: at low concentrations permeation and DNA binding occur without membrane disruption, while at high concentrations complete disruption of the membrane occurs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The catalytic mechanism of cyclic GMP-AMP synthase (cGAS) and implications for innate immunity and inhibition.

    Science.gov (United States)

    Hall, Justin; Ralph, Erik C; Shanker, Suman; Wang, Hong; Byrnes, Laura J; Horst, Reto; Wong, Jimson; Brault, Amy; Dumlao, Darren; Smith, James F; Dakin, Leslie A; Schmitt, Daniel C; Trujillo, John; Vincent, Fabien; Griffor, Matt; Aulabaugh, Ann E

    2017-12-01

    Cyclic GMP-AMP synthase (cGAS) is activated by ds-DNA binding to produce the secondary messenger 2',3'-cGAMP. cGAS is an important control point in the innate immune response; dysregulation of the cGAS pathway is linked to autoimmune diseases while targeted stimulation may be of benefit in immunoncology. We report here the structure of cGAS with dinucleotides and small molecule inhibitors, and kinetic studies of the cGAS mechanism. Our structural work supports the understanding of how ds-DNA activates cGAS, suggesting a site for small molecule binders that may cause cGAS activation at physiological ATP concentrations, and an apparent hotspot for inhibitor binding. Mechanistic studies of cGAS provide the first kinetic constants for 2',3'-cGAMP formation, and interestingly, describe a catalytic mechanism where 2',3'-cGAMP may be a minor product of cGAS compared with linear nucleotides. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  13. PF-1355, a mechanism-based myeloperoxidase inhibitor, prevents immune complex vasculitis and anti-glomerular basement membrane glomerulonephritis.

    Science.gov (United States)

    Zheng, Wei; Warner, Roscoe; Ruggeri, Roger; Su, Chunyan; Cortes, Christian; Skoura, Athanasia; Ward, Jessica; Ahn, Kay; Kalgutkar, Amit; Sun, Dexue; Maurer, Tristan S; Bonin, Paul D; Okerberg, Carlin; Bobrowski, Walter; Kawabe, Thomas; Zhang, Yanwei; Coskran, Timothy; Bell, Sammy; Kapoor, Bhupesh; Johnson, Kent; Buckbinder, Leonard

    2015-05-01

    Small vessel vasculitis is a life-threatening condition and patients typically present with renal and pulmonary injury. Disease pathogenesis is associated with neutrophil accumulation, activation, and oxidative damage, the latter being driven in large part by myeloperoxidase (MPO), which generates hypochlorous acid among other oxidants. MPO has been associated with vasculitis, disseminated vascular inflammation typically involving pulmonary and renal microvasculature and often resulting in critical consequences. MPO contributes to vascular injury by 1) catabolizing nitric oxide, impairing vasomotor function; 2) causing oxidative damage to lipoproteins and endothelial cells, leading to atherosclerosis; and 3) stimulating formation of neutrophil extracellular traps, resulting in vessel occlusion and thrombosis. Here we report a selective 2-thiouracil mechanism-based MPO inhibitor (PF-1355 [2-(6-(2,5-dimethoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide) and demonstrate that MPO is a critical mediator of vasculitis in mouse disease models. A pharmacokinetic/pharmacodynamic response model of PF-1355 exposure in relation with MPO activity was derived from mouse peritonitis. The contribution of MPO activity to vasculitis was then examined in an immune complex model of pulmonary disease. Oral administration of PF-1355 reduced plasma MPO activity, vascular edema, neutrophil recruitment, and elevated circulating cytokines. In a model of anti-glomerular basement membrane disease, formerly known as Goodpasture disease, albuminuria and chronic renal dysfunction were completely suppressed by PF-1355 treatment. This study shows that MPO activity is critical in driving immune complex vasculitis and provides confidence in testing the hypothesis that MPO inhibition will provide benefit in treating human vasculitic diseases. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Induction of Nrf2-mediated cellular defenses and alteration of phase I activities as mechanisms of chemoprotective effects of coffee in the liver.

    Science.gov (United States)

    Cavin, C; Marin-Kuan, M; Langouët, S; Bezençon, C; Guignard, G; Verguet, C; Piguet, D; Holzhäuser, D; Cornaz, R; Schilter, B

    2008-04-01

    Coffee consumption has been associated with a significant decrease in the risk of developing chronic diseases such as Parkinson disease, diabetes type-2 and several types of cancers (e.g. colon, liver). In the present study, a coffee-dependent induction of enzymes involved in xenobiotic detoxification processes was observed in rat liver and primary hepatocytes. In addition, coffee was found to induce the mRNA and protein expression of enzymes involved in cellular antioxidant defenses. These inductions were correlated with the activation of the Nrf2 transcription factor as shown using an ARE-reporter luciferase assay. The induction of detoxifying enzymes GSTs and AKR is compatible with a protection against both genotoxicity and cytotoxicity of aflatoxin B1 (AFB1). This hypothesis was confirmed in in vitro and ex vivo test systems, where coffee reduced both AFB1-DNA and protein adducts. Interestingly, coffee was also found to inhibit cytochrome CYP1A1/2, indicating that other mechanisms different from a stimulation of detoxification may also play a significant role in the chemoprotective effects of coffee. Further investigations in either human liver cell line and primary hepatocytes indicated that the chemoprotective effects of coffee against AFB1 genotoxicity are likely to be of relevance for humans. These data strongly suggest that coffee may protect against the adverse effects of AFB1. In addition, the coffee-mediated stimulation of the Nrf2-ARE pathway resulting in increased endogenous defense mechanisms against electrophilic but also oxidative insults further support that coffee may be associated with a protection against various types of chemical stresses.

  15. Viral DNA Sensors IFI16 and Cyclic GMP-AMP Synthase Possess Distinct Functions in Regulating Viral Gene Expression, Immune Defenses, and Apoptotic Responses during Herpesvirus Infection.

    Science.gov (United States)

    Diner, Benjamin A; Lum, Krystal K; Toettcher, Jared E; Cristea, Ileana M

    2016-11-15

    The human interferon-inducible protein IFI16 is an important antiviral factor that binds nuclear viral DNA and promotes antiviral responses. Here, we define IFI16 dynamics in space and time and its distinct functions from the DNA sensor cyclic dinucleotide GMP-AMP synthase (cGAS). Live-cell imaging reveals a multiphasic IFI16 redistribution, first to viral entry sites at the nuclear periphery and then to nucleoplasmic puncta upon herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV) infections. Optogenetics and live-cell microscopy establish the IFI16 pyrin domain as required for nuclear periphery localization and oligomerization. Furthermore, using proteomics, we define the signature protein interactions of the IFI16 pyrin and HIN200 domains and demonstrate the necessity of pyrin for IFI16 interactions with antiviral proteins PML and cGAS. We probe signaling pathways engaged by IFI16, cGAS, and PML using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated knockouts in primary fibroblasts. While IFI16 induces cytokines, only cGAS activates STING/TBK-1/IRF3 and apoptotic responses upon HSV-1 and HCMV infections. cGAS-dependent apoptosis upon DNA stimulation requires both the enzymatic production of cyclic dinucleotides and STING. We show that IFI16, not cGAS or PML, represses HSV-1 gene expression, reducing virus titers. This indicates that regulation of viral gene expression may function as a greater barrier to viral replication than the induction of antiviral cytokines. Altogether, our findings establish coordinated and distinct antiviral functions for IFI16 and cGAS against herpesviruses. How mammalian cells detect and respond to DNA viruses that replicate in the nucleus is poorly understood. Here, we decipher the distinct functions of two viral DNA sensors, IFI16 and cGAS, during active immune signaling upon infection with two herpesviruses, herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV). We show that IFI16

  16. Efficient natural defense mechanisms against Listeria monocytogenes in T and B cell-deficient allogeneic bone marrow radiation chimeras. Preactivated macrophages are the main effector cells in an early phase after bone marrow transfer

    International Nuclear Information System (INIS)

    Roesler, J.; Groettrup, E.B.; Baccarini, M.; Lohmann-Mattes, M.L.

    1989-01-01

    Radiation chimeras in the early phase after bone marrow transplantation are a good model to study the efficiency of the body's nonspecific defense system represented by macrophages (M phi), polymorphonuclear cells (PMN), and NK cells. These cell types are present in large numbers in spleen and liver at that time, whereas the specific immune system represented by T and B cells is functionally deficient. We previously reported enhanced activities in vitro of M phi (and PMN) from recipient animals in an early phase after allogeneic bone marrow transfer. We here demonstrate that these activities result in enhanced spontaneous resistance against Listeria monocytogenes in vivo: CFU of L. monocytogenes in spleen and liver 48 h after infection were about 1 or 2 to 4 log steps less than in untreated control mice of donor or host haplotype. This enhanced resistance decreased over the 4-mo period after marrow transfer. Preactivated M phi were identified as the most important effector cells. Isolated from spleen and peritoneal cavity, they performed enhanced killing of phagocytosed Listeria. Such preactivated M phi occurred in recipient animals after transfer of allogeneic but not of syngeneic bone marrow. The precise mechanism of M phi activation in the allogeneic radiation chimera in the complete absence of any detectable T cell function is not clear at present. However, these preactivated M phi display an important protective effect against L. monocytogenes: chimeras could eliminate Listeria without acquisition of positive delayed-type sensitivity when infected with 10(3) bacteria. An inoculum of 5 . 10(3) L. monocytogenes resulted either in prolonged survival compared with normal mice of the recipient haplotype or in definitive survival accompanied by a positive delayed-type sensitivity

  17. Initiation of innate immune responses by surveillance of homeostasis perturbations.

    Science.gov (United States)

    Colaço, Henrique G; Moita, Luis F

    2016-07-01

    Pathogen recognition, signaling transduction pathways, and effector mechanisms are necessary steps of innate immune responses that play key roles in the early phase of defense and in the stimulation of the later specific response of adaptive immunity. Here, we argue that in addition to the direct recognition of conserved common structural and functional molecular signatures of microorganisms using pattern recognition receptors, hosts can mount an immune response following the sensing of disruption in homeostasis as proximal reporters for infections. Surveillance of disruption of core cellular activities leading to defense responses is a flexible strategy that requires few additional components and that can effectively detect relevant threats. It is likely to be evolutionarily very conserved and ancient because it is operational in organisms that lack pattern recognition triggered immunity. A homeostasis disruption model of immune response initiation and modulation has broad implications for pathophysiology and treatment of disease and might constitute an often overlooked but central component of a comprehensive conceptual framework for innate immunity. © 2016 Federation of European Biochemical Societies.

  18. Emerging Evidence for Platelets as Immune and Inflammatory Effector Cells

    Directory of Open Access Journals (Sweden)

    Matthew Thomas Rondina

    2014-12-01

    Full Text Available While traditionally recognized for their roles in hemostatic pathways, emerging evidence demonstrates that platelets have previously unrecognized, dynamic roles that span the immune continuum. These newly-recognized platelet functions, including the secretion of immune mediators, interactions with endothelial cells, monocytes, and neutrophils, toll-like receptor (TLR mediated responses, and induction of neutrophil extracellular trap (NET formation, bridge thrombotic and inflammatory pathways and contribute to host defense mechanisms against invading pathogens. In this focused review, we highlight several of these emerging aspects of platelet biology and their implications in clinical infectious syndromes.

  19. RNA interference-mediated intrinsic antiviral immunity in invertebrates.

    Science.gov (United States)

    Nayak, Arabinda; Tassetto, Michel; Kunitomi, Mark; Andino, Raul

    2013-01-01

    In invertebrates such as insects and nematodes, RNA interference (RNAi) provides RNA-based protection against viruses. This form of immunity restricts viral replication and dissemination from infected cells and viruses, in turn, have evolved evasion mechanisms or RNAi suppressors to counteract host defenses. Recent advances indicate that, in addition to RNAi, other related small RNA pathways contribute to antiviral functions in invertebrates. This has led to a deeper understanding of fundamental aspects of small RNA-based antiviral immunity in invertebrates and its contribution to viral spread and pathogenesis.

  20. World Health Organization's Innovative Direct Disbursement Mechanism for Payment of Grassroots Immunization Personnel and Operations in Nigeria: 2004–2015

    Science.gov (United States)

    Yehualashet, Yared G.; Wadda, Alieu; Agblewonu, Koffi B.; Zhema, Theophilus; Ibrahim, Al-asi A.; Corr, Alhagie; Linkins, Jennifer; Mkanda, Pascal; Vaz, Rui G.; Nsubuga, Peter; Ashogbon, Daniel

    2016-01-01

    Background. Following the 1988 World Health Assembly resolution to eradicate polio, the government of Nigeria, with support from partners, has been implementing several rounds of supplementary immunization activities (SIAs) each year. In addition to the technical requirements, the success of the polio eradication initiative depends on timely provision of adequate financial resources. Disbursement of funds for SIAs and payment of allowances to numerous vaccination personnel at the grassroots level are enormous operational challenges in a country the size of Nigeria. Upon donors' request for a transparent and effective payment mechanism, the World Health Organization (WHO), in consultation with national counterparts, created the innovative direct disbursement mechanism (DDM) in 2004. The objective of the DDM was to timely deploy operational funds at the field level and directly pay vaccination personnel allowances at the grassroots level. Methods. A detailed operational guideline for funds disbursement was developed in close consultation with central and field stakeholders. Multiyear financial resource requirements and operational budgets for every campaign were produced by an interagency-coordinated finance subcommittee. The WHO engaged a bank and an accounting firm as DDM partners to support disbursement of and accounting for the SIA funds, respectively. The 37 WHO field offices were equipped with electronic financial systems to support the DDM process, and temporary payment sites were set up to facilitate payment to vaccination personnel at the grassroots level. Coordination meetings among DDM partners were held regularly to reconcile financial records and address operational challenges. Results. Between 2004 and 2014, DDM supported 99 polio and nonpolio vaccination campaigns, disbursing more than $370 million to about 16 million beneficiaries across 280 temporary payment sites. To mitigate security risks and reduce operational costs, the WHO and DDM

  1. World Health Organization's Innovative Direct Disbursement Mechanism for Payment of Grassroots Immunization Personnel and Operations in Nigeria: 2004-2015.

    Science.gov (United States)

    Yehualashet, Yared G; Wadda, Alieu; Agblewonu, Koffi B; Zhema, Theophilus; Ibrahim, Al-Asi A; Corr, Alhagie; Linkins, Jennifer; Mkanda, Pascal; Vaz, Rui G; Nsubuga, Peter; Ashogbon, Daniel

    2016-05-01

    Following the 1988 World Health Assembly resolution to eradicate polio, the government of Nigeria, with support from partners, has been implementing several rounds of supplementary immunization activities (SIAs) each year. In addition to the technical requirements, the success of the polio eradication initiative depends on timely provision of adequate financial resources. Disbursement of funds for SIAs and payment of allowances to numerous vaccination personnel at the grassroots level are enormous operational challenges in a country the size of Nigeria. Upon donors' request for a transparent and effective payment mechanism, the World Health Organization (WHO), in consultation with national counterparts, created the innovative direct disbursement mechanism (DDM) in 2004. The objective of the DDM was to timely deploy operational funds at the field level and directly pay vaccination personnel allowances at the grassroots level. A detailed operational guideline for funds disbursement was developed in close consultation with central and field stakeholders. Multiyear financial resource requirements and operational budgets for every campaign were produced by an interagency-coordinated finance subcommittee. The WHO engaged a bank and an accounting firm as DDM partners to support disbursement of and accounting for the SIA funds, respectively. The 37 WHO field offices were equipped with electronic financial systems to support the DDM process, and temporary payment sites were set up to facilitate payment to vaccination personnel at the grassroots level. Coordination meetings among DDM partners were held regularly to reconcile financial records and address operational challenges. Between 2004 and 2014, DDM supported 99 polio and nonpolio vaccination campaigns, disbursing more than $370 million to about 16 million beneficiaries across 280 temporary payment sites. To mitigate security risks and reduce operational costs, the WHO and DDM partners introduced mobile payment to

  2. Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics

    Directory of Open Access Journals (Sweden)

    Zhang Dapeng

    2012-06-01

    polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative ‘cheating’ in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses. Conclusions Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers. Reviewers This article was reviewed by AM, FE and IZ.

  3. Defense Business Board

    Science.gov (United States)

    Skip to main content (Press Enter). Toggle navigation Defense Business Board Search Search Defense Business Board: Search Search Defense Business Board: Search Defense Business Board Business Excellence in Defense of the Nation Defense Business Board Home Charter Members Meetings Studies Contact Us The Defense

  4. The intracellular cholesterol landscape: dynamic integrator of the immune response

    Science.gov (United States)

    Fessler, Michael B.

    2016-01-01

    Cholesterol has typically been considered an exogenous, disease-related factor in immunity; however, recent literature suggests that a paradigm shift is in order. Sterols are now recognized to ligate several immune receptors. Altered flux through the mevalonic acid synthesis pathway also appears to be a required event in the antiviral interferon response of macrophages and in the activation, proliferation, and differentiation of T cells. In this review, evidence is discussed that suggests an intrinsic, ‘professional’ role for sterols and oxysterols in macrophage and T cell immunity. Host defense may have been the original selection pressure behind the development of mechanisms for intracellular cholesterol homeostasis. Functional coupling between sterol metabolism and immunity has fundamental implications for health and disease. PMID:27692616

  5. International Workshop on Mathematical Modeling of Tumor-Immune Dynamics

    CERN Document Server

    Kim, Peter; Mallet, Dann

    2014-01-01

    This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction betwe...

  6. Proactive Self Defense in Cyberspace

    National Research Council Canada - National Science Library

    Caulkins, Bruce D

    2009-01-01

    ... and standards to properly secure and defend the Global Information Grid (GIG) from cyber attacks. This paper will discuss the strategic requirements for enacting a proactive self-defense mechanism in cyberspace...

  7. Local and systemic immune mechanisms underlying the anti-colitis effects of the dairy bacterium Lactobacillus delbrueckii.

    Directory of Open Access Journals (Sweden)

    Clarissa Santos Rocha

    Full Text Available Several probiotic bacteria have been proposed for treatment or prevention of inflammatory bowel diseases (IBD, showing a protective effect in animal models of experimental colitis and for some of them also in human clinical trials. While most of these probiotic bacteria are isolated from the digestive tract, we recently reported that a Lactobacillus strain isolated from cheese, L. delbrueckii subsp. lactis CNRZ327 (Lb CNRZ327, also possesses anti-inflammatory effects in vitro and in vivo, demonstrating that common dairy bacteria may be useful in the treatment or prevention of IBD. Here, we studied the mechanisms underlying the protective effects of Lb CNRZ327 in vivo, in a mouse dextran sodium sulfate (DSS colitis model. During colitis, Lb CNRZ327 modulated the production of TGF-β, IL-6, and IL-12 in colonic tissue and of TGF-β and IL-6 in the spleen, and caused an expansion of CD4+Foxp3+ regulatory T cells in the cecal lymph nodes. Moreover, a strong tendency to CD4+Foxp3+ expansion was also observed in the spleen. The results of this study for the first time show that orally administered dairy lactobacilli can not only modulate mucosal but also systemic immune responses and constitute an effective treatment of IBD.

  8. Local and systemic immune mechanisms underlying the anti-colitis effects of the dairy bacterium Lactobacillus delbrueckii.

    Science.gov (United States)

    Santos Rocha, Clarissa; Gomes-Santos, Ana Cristina; Garcias Moreira, Thais; de Azevedo, Marcela; Diniz Luerce, Tessalia; Mariadassou, Mahendra; Longaray Delamare, Ana Paula; Langella, Philippe; Maguin, Emmanuelle; Azevedo, Vasco; Caetano de Faria, Ana Maria; Miyoshi, Anderson; van de Guchte, Maarten

    2014-01-01

    Several probiotic bacteria have been proposed for treatment or prevention of inflammatory bowel diseases (IBD), showing a protective effect in animal models of experimental colitis and for some of them also in human clinical trials. While most of these probiotic bacteria are isolated from the digestive tract, we recently reported that a Lactobacillus strain isolated from cheese, L. delbrueckii subsp. lactis CNRZ327 (Lb CNRZ327), also possesses anti-inflammatory effects in vitro and in vivo, demonstrating that common dairy bacteria may be useful in the treatment or prevention of IBD. Here, we studied the mechanisms underlying the protective effects of Lb CNRZ327 in vivo, in a mouse dextran sodium sulfate (DSS) colitis model. During colitis, Lb CNRZ327 modulated the production of TGF-β, IL-6, and IL-12 in colonic tissue and of TGF-β and IL-6 in the spleen, and caused an expansion of CD4+Foxp3+ regulatory T cells in the cecal lymph nodes. Moreover, a strong tendency to CD4+Foxp3+ expansion was also observed in the spleen. The results of this study for the first time show that orally administered dairy lactobacilli can not only modulate mucosal but also systemic immune responses and constitute an effective treatment of IBD.

  9. Mechanisms of protective immunity against Schistosoma mansoni infection in mice vaccinated with irradiated cercaria- I. analysis of antibody and T-lymphocyte responses in mouse strains developing differing levels of immunity

    International Nuclear Information System (INIS)

    James, S.L.; Labine, M.; Sher, A.

    1981-01-01

    The kinetics of cellular and humoral responses directed against schistosomula were examined in mice of three inbred strains which demonstrate differences in the degree of resistance induced by immunization with irradiated cercariae. T-Cell reactivity was observed during the first 4 weeks after vaccination but declined to control levels thereafter. Anti-schistosomulum antibody was first detected 2 weeks after vaccination, peaked by 6 weeks, and persisted as late as 15 weeks. In sera obtained at 6 weeks, antibody activity was detected in affinity chromatography-purified fractions containing IgM, IgA, IgG 1 , IgG 2 /sub a/, and IgG 3 immunoglobulins. In general, the cellular and humoral responses observed in C57Bl/6J mice, which consistently developed a high level of immunity after vaccination, were not significantly different from those observed in C3H/HeJ or CBA/J mice, which achieved only low to moderate levels of immunity. Thus, although antibody production appears to correlate more closely than T lymphocyte responsiveness with the typical long-term resistance pattern observed in this model, the absence of striking differences in parasite-specific antibody levels between mice of these different strains suggests that additional mechanisms may be involved in the development of immunity after vaccination

  10. Exposure to Silver Nanospheres Leads to Altered Respiratory Mechanics and Delayed Immune Response in an in Vivo Murine Model

    Directory of Open Access Journals (Sweden)

    Danielle Botelho

    2018-03-01

    Full Text Available Here we examine the organ level toxicology of both carbon black (CB and silver nanoparticles (AgNP. We aim to determine metal-specific effects to respiratory function, inflammation and potential interactions with lung lining fluid (LLF. C57Bl6/J male mice were intratracheally instilled with saline (control, low (0.05 μg/g or high (0.5 μg/g doses of either AgNP or CB 15 nm nanospheres. Lung histology, cytology, surfactant composition and function, inflammatory gene expression, and pulmonary function were measured at 1, 3, and 7 days post-exposure. Acutely, high dose CB resulted in an inflammatory response, increased neutrophilia and cytokine production, without alteration in surfactant composition or respiratory mechanics. Low dose CB had no effect. Neither low nor high dose AgNPs resulted in an acute inflammatory response, but there was an increase in work of breathing. Three days post-exposure with CB, a persistent neutrophilia was noted. High dose AgNP resulted in an elevated number of macrophages and invasion of lymphocytes. Additionally, AgNP treated mice displayed increased expression of IL1B, IL6, CCL2, and IL10. However, there were no significant changes in respiratory mechanics. At day 7, inflammation had resolved in AgNP-treated mice, but tissue stiffness and resistance were significantly decreased, which was accompanied by an increase in surfactant protein D (SP-D content. These data demonstrate that the presence of metal alters the response of the lung to nanoparticle exposure. AgNP-surfactant interactions may alter respiratory function and result in a delayed immune response, potentially due to modified airway epithelial cell function.

  11. Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis.

    Directory of Open Access Journals (Sweden)

    Karen L Wozniak

    2009-09-01

    Full Text Available Cryptococcus neoformans is an opportunistic fungal pathogen that causes life-threatening pneumonia and meningoencephalitis in immune compromised individuals. Previous studies have shown that immunization of BALB/c mice with an IFN-gamma-producing C. neoformans strain, H99gamma, results in complete protection against a second pulmonary challenge with an otherwise lethal cryptococcal strain. The current study evaluated local anamnestic cell-mediated immune responses against pulmonary cryptococcosis in mice immunized with C. neoformans strain H99gamma compared to mice immunized with heat-killed C. neoformans (HKC.n.. Mice immunized with C. neoformans strain H99gamma had significantly reduced pulmonary fungal burden post-secondary challenge compared to mice immunized with HKC.n. Protection against pulmonary cryptococcosis was associated with increased pulmonary granulomatous formation and leukocyte infiltration followed by a rapid resolution of pulmonary inflammation, which protected the lungs from severe allergic bronchopulmonary mycosis (ABPM-pathology that developed in the lungs of mice immunized with HKC.n. Pulmonary challenge of interleukin (IL-4 receptor, IL-12p40, IL-12p35, IFN-gamma, T cell and B cell deficient mice with C. neoformans strain H99gamma demonstrated a requirement for Th1-type T cell-mediated immunity, but not B cell-mediated immunity, for the induction of H99gamma-mediated protective immune responses against pulmonary C. neoformans infection. CD4(+ T cells, CD11c(+ cells, and Gr-1(+ cells were increased in both proportion and absolute number in protected mice. In addition, significantly increased production of Th1-type/pro-inflammatory cytokines and chemokines, and conversely, reduced Th2-type cytokine production was observed in the lungs of protected mice. Interestingly, protection was not associated with increased production of cytokines IFN-gamma or TNF-alpha in lungs of protected mice. In conclusion, immunization with C

  12. The Inflammasome in Host Defense

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2009-12-01

    Full Text Available Nod-like receptors have emerged as an important family of sensors in host defense. These receptors are expressed in macrophages, dendritic cells and monocytes and play an important role in microbial immunity. Some Nod-like receptors form the inflammasome, a protein complex that activates caspase-1 in response to several stimuli. Caspase-1 activation leads to processing and secretion of pro-inflammatory cytokines such as interleukin (IL-1β and IL-18. Here, we discuss recent advances in the inflammasome field with an emphasis on host defense. We also compare differential requirements for inflammasome activation in dendritic cells, macrophages and monocytes.

  13. Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics--current achievements and perspectives.

    Science.gov (United States)

    Barkla, Bronwyn J; Castellanos-Cervantes, Thelma; de León, José L Diaz; Matros, Andrea; Mock, Hans-Peter; Perez-Alfocea, Francisco; Salekdeh, Ghasem H; Witzel, Katja; Zörb, Christian

    2013-06-01

    Salinity is a major threat limiting the productivity of crop plants. A clear demand for improving the salinity tolerance of the major crop plants is imposed by the rapidly growing world population. This review summarizes the achievements of proteomic studies to elucidate the response mechanisms of selected model and crop plants to cope with salinity stress. We also aim at identifying research areas, which deserve increased attention in future proteome studies, as a prerequisite to identify novel targets for breeding strategies. Such areas include the impact of plant-microbial communities on the salinity tolerance of crops under field conditions, the importance of hormone signaling in abiotic stress tolerance, and the significance of control mechanisms underlying the observed changes in the proteome patterns. We briefly highlight the impact of novel tools for future proteome studies and argue for the use of integrated approaches. The evaluation of genetic resources by means of novel automated phenotyping facilities will have a large impact on the application of proteomics especially in combination with metabolomics or transcriptomics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The extracellular adherence protein (Eap) of Staphylococcus aureus inhibits wound healing by interfering with host defense and repair mechanisms.

    Science.gov (United States)

    Athanasopoulos, Athanasios N; Economopoulou, Matina; Orlova, Valeria V; Sobke, Astrid; Schneider, Darius; Weber, Holger; Augustin, Hellmut G; Eming, Sabine A; Schubert, Uwe; Linn, Thomas; Nawroth, Peter P; Hussain, Muzaffar; Hammes, Hans-Peter; Herrmann, Mathias; Preissner, Klaus T; Chavakis, Triantafyllos

    2006-04-01

    Staphylococcus aureus is a major human pathogen interfering with host-cell functions. Impaired wound healing is often observed in S aureus-infected wounds, yet, the underlying mechanisms are poorly defined. Here, we identify the extracellular adherence protein (Eap) of S aureus to be responsible for impaired wound healing. In a mouse wound-healing model wound closure was inhibited in the presence of wild-type S aureus and this effect was reversible when the wounds were incubated with an isogenic Eap-deficient strain. Isolated Eap also delayed wound closure. In the presence of Eap, recruitment of inflammatory cells to the wound site as well as neovascularization of the wound were prevented. In vitro, Eap significantly reduced intercellular adhesion molecule 1 (ICAM-1)-dependent leukocyte-endothelial interactions and diminished the consequent activation of the proinflammatory transcription factor nuclear factor kappaB (NFkappaB) in leukocytes associated with a decrease in expression of tissue factor. Moreover, Eap blocked alphav-integrin-mediated endothelial-cell migration and capillary tube formation, and neovascularization in matrigels in vivo. Collectively, the potent anti-inflammatory and antiangiogenic properties of Eap provide an underlying mechanism that may explain the impaired wound healing in S aureus-infected wounds. Eap may also serve as a lead compound for new anti-inflammatory and antiangiogenic therapies in several pathologies.

  15. Infectious Agents as Stimuli of Trained Innate Immunity

    Directory of Open Access Journals (Sweden)

    Paulina Rusek

    2018-02-01

    Full Text Available The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction. Additionally, we discuss the mechanisms of cell reprogramming and the implications for immune response stimulation/manipulation.

  16. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Science.gov (United States)

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  17. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    2011-01-01

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  18. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity.

    Science.gov (United States)

    Ryan, Karen K; Woods, Stephen C; Seeley, Randy J

    2012-02-08

    The central nervous system (CNS) plays key role in the homeostatic regulation of body weight. Satiation and adiposity signals, providing acute and chronic information about available fuel, are produced in the periphery and act in the brain to influence energy intake and expenditure, resulting in the maintenance of stable adiposity. Diet-induced obesity (DIO) does not result from a failure of these central homeostatic circuits. Rather, the threshold for defended adiposity is increased in environments providing ubiquitous access to palatable, high-fat foods, making it difficult to achieve and maintain weight loss. Consequently, mechanisms by which nutritional environments interact with central homeostatic circuits to influence the threshold for defended adiposity represent critical targets for therapeutic intervention. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses.

    Science.gov (United States)

    Fernandez-Garcia, Maria Dolores; Meertens, Laurent; Chazal, Maxime; Hafirassou, Mohamed Lamine; Dejarnac, Ophélie; Zamborlini, Alessia; Despres, Philippe; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Jouvenet, Nolwenn; Amara, Ali

    2016-02-09

    The live attenuated yellow fever virus (YFV) vaccine 17D stands as a "gold standard" for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E) protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation. The yellow fever virus (YFV) vaccine 17D is one of the safest and most effective live virus vaccines ever developed. The molecular determinants for virulence attenuation and immunogenicity of 17D are poorly understood. 17D was generated by serially passaging the virulent Asibi strain in vertebrate tissues. Here we examined the entry mechanisms engaged by YFV Asibi and the 17D vaccine. We found the two viruses use different entry

  20. PPARγ Agonists in Adaptive Immunity: What Do Immune Disorders and Their Models Have to Tell Us?

    Directory of Open Access Journals (Sweden)

    Laurindo Ferreira da Rocha Junior

    2013-01-01

    Full Text Available Adaptive immunity has evolved as a very powerful and highly specialized tool of host defense. Its classical protagonists are lymphocytes of the T- and B-cell lineage. Cytokines and chemokines play a key role as effector mechanisms of the adaptive immunity. Some autoimmune and inflammatory diseases are caused by disturbance of the adaptive immune system. Recent advances in understanding the pathogenesis of autoimmune diseases have led to research on new molecular and therapeutic targets. PPARγ are members of the nuclear receptor superfamily and are transcription factors involved in lipid metabolism as well as innate and adaptive immunity. PPARγ is activated by synthetic and endogenous ligands. Previous studies have shown that PPAR agonists regulate T-cell survival, activation and T helper cell differentiation into effector subsets: Th1, Th2, Th17, and Tregs. PPARγ has also been associated with B cells. The present review addresses these issues by placing PPARγ agonists in the context of adaptive immune responses and the relation of the activation of these receptors with the expression of cytokines involved in adaptive immunity.

  1. A Role for the Anti-Viral Host Defense Mechanism in the Phylogenetic Divergence in Baculovirus Evolution.

    Directory of Open Access Journals (Sweden)

    Toshihiro Nagamine

    Full Text Available Although phylogenic analysis often suggests co-evolutionary relationships between viruses and host organisms, few examples have been reported at the microevolutionary level. Here, we show a possible example in which a species-specific anti-viral response may drive phylogenic divergence in insect virus evolution. Two baculoviruses, Autographa californica multiple nucleopolyhedrovirus (AcMNPV and Bombyx mori nucleopolyhedrovirus (BmNPV, have a high degree of DNA sequence similarity, but exhibit non-overlapping host specificity. In our study of their host-range determination, we found that BmNPV replication in B. mori cells was prevented by AcMNPV-P143 (AcP143, but not BmNPV-P143 (BmP143 or a hybrid P143 protein from a host-range expanded phenotype. This suggests that AcMNPV resistance in B. mori cells depends on AcP143 recognition and that BmNPV uses BmP143 to escapes this recognition. Based on these data, we propose an insect-baculovirus co-evolution scenario in which an ancestor of silkworms exploited an AcMNPV-resistant mechanism; AcMNPV counteracted this resistance via P143 mutations, resulting in the birth of BmNPV.

  2. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses

    Directory of Open Access Journals (Sweden)

    Maria Dolores Fernandez-Garcia

    2016-02-01

    Full Text Available The live attenuated yellow fever virus (YFV vaccine 17D stands as a “gold standard” for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation.

  3. Secondary targets of nitrite-derived reactive nitrogen species: nitrosation/nitration pathways, antioxidant defense mechanisms and toxicological implications.

    Science.gov (United States)

    d'Ischia, Marco; Napolitano, Alessandra; Manini, Paola; Panzella, Lucia

    2011-12-19

    Nitrite, the primary metabolite of nitric oxide (NO) and a widely diffused component of human diet, plays distinct and increasingly appreciated roles in human physiology. However, when exposed to acidic environments, typically in the stomach, or under oxidative stress conditions, it may be converted to a range of reactive nitrogen species (RNS) which in turn can target a variety of biomolecules. Typical consequences of toxicological relevance include protein modification, DNA base deamination and the formation of N-nitrosamines, among the most potent mutagenic and carcinogenic compounds for humans. Besides primary biomolecules, nitrite can cause structural modifications to a variety of endogenous and exogenous organic compounds, ranging from polyunsaturated fatty acids to estrogens, tocopherol, catecholamines, furans, retinoids, dietary phenols, and a range of xenobiotics. The study of the interactions between nitrite and key food components, including phenolic antioxidants, has therefore emerged as an area of great promise for delineating innovative strategies in cancer chemoprevention. Depending on substrates and conditions, diverse reaction pathways may compete to determine product features and distribution patterns. These include nitrosation and nitration but also oxidation, via electron transfer to nitrosonium ion or nitrogen dioxide. This contribution aims to provide an overview of the main classes of compounds that can be targeted by nitrite and to discuss at chemical levels the possible reaction mechanisms under conditions that model those occurring in the stomach. The toxicological implications of the nitrite-modified molecules are finally addressed, and a rational chemical approach to the design of potent antinitrosing agents is illustrated. © 2011 American Chemical Society

  4. Mechanism of stimulation of antibody-forming ability of bone marrow cells of mice immunized with staphylococci

    International Nuclear Information System (INIS)

    Lyashchenko, K.P.; Golovanova, T.A.; Bobrovnik, S.A.

    1987-01-01

    The purpose of this paper is to study the formation of the ability of the bone marrow cells of mice immunized with staphylococci to create antibodies to this antigen. The research includes a study of the effect of the irradiation in vitro of the bone marrow cells on their stimulating activity and the role played by the thymus and spleen in the formation of this activity. Experiments were carried out on CBA and BALB/c mice as well as on mice with congenital absence of the thymus. The bone marrow cell donors were immunized intravenously with staphylococcal corpuscular antigen. Receptor mice were irradiated with cobalt 60 gamma radiation and injected intravenously with bone marrow cell extract from the immunized donors and were immunized with the antigen. Spleen cells were labelled with chromium 51 and injected intravenously into intact syngeneic recipients together with as well as without the antigen. Three days later the level of radioactivity in the spleen and femora of the animals was determined by scintillation counting. Total radioactivity of the bone marrow was calculated. Irradiation of the bone marrow cells of immunized animals was shown to abolish their stimulating effect on the humoral immune response of intact syngeneic recipients to the staphylococcal corpuscular antigen. Consequently, the immunostimulating effect of bone marrow cells is realized through the proliferating and radiosensitive lymphoid cells rather than through the macrophages

  5. CodY Regulates Thiol Peroxidase Expression as Part of the Pneumococcal Defense Mechanism against H2O2 Stress.

    Science.gov (United States)

    Hajaj, Barak; Yesilkaya, Hasan; Shafeeq, Sulman; Zhi, Xiangyun; Benisty, Rachel; Tchalah, Shiran; Kuipers, Oscar P; Porat, Nurith

    2017-01-01

    Streptococcus pneumoniae is a facultative anaerobic pathogen. Although it maintains fermentative metabolism, during aerobic growth pneumococci produce high levels of H 2 O 2 , which can have adverse effects on cell viability and DNA, and influence pneumococcal interaction with its host. The pneumococcus is unusual in its dealing with toxic reactive oxygen species (ROS) in that it neither has catalase nor the global regulators of peroxide stress resistance. Previously, we identified pneumococcal thiol peroxidase (TpxD) as the key enzyme for enzymatic removal of H 2 O 2 , and showed that TpxD synthesis is up-regulated upon exposure to H 2 O 2 . This study aimed to reveal the mechanism controlling TpxD expression under H 2 O 2 stress. We hypothesize that H 2 O 2 activates a transcription factor which in turn up-regulates tpxD expression. Microarray analysis revealed a pneumococcal global transcriptional response to H 2 O 2 . Mutation of tpxD abolished H 2 O 2 -mediated response to high H 2 O 2 levels, signifying the need for an active TpxD under oxidative stress conditions. Bioinformatic tools, applied to search for a transcription factor modulating tpxD expression, pointed toward CodY as a potential candidate. Indeed, a putative 15-bp consensus CodY binding site was found in the proximal region of tpxD- coding sequence. Binding of CodY to this site was confirmed by EMSA, and genetic engineering techniques demonstrated that this site is essential for TpxD up-regulation under H 2 O 2 stress. Furthermore, tpxD expression was reduced in a Δ codY mutant. These data indicate that CodY is an activator of tpxD expression, triggering its up-regulation under H 2 O 2 stress. In addition we show that H 2 O 2 specifically oxidizes the 2 CodY cysteines. This oxidation may trigger a conformational change in CodY, resulting in enhanced binding to DNA. A schematic model illustrating the contribution of TpxD and CodY to pneumococcal global transcriptional response to H 2 O 2 is

  6. On Computer Viral Infection and the Effect of Immunization

    National Research Council Canada - National Science Library

    Wang, Chenxi; Knight, John C; Elder, Matthew C

    2005-01-01

    .... Defenses against infections by known viruses rely at present on immunization yet, for a variety of reasons, immunization is often only effective on a subset of the nodes in a network and many nodes remain unprotected...

  7. Sistema imunitário: Parte I. Fundamentos da imunidade inata com ênfase nos mecanismos moleculares e celulares da resposta inflamatória Immune system: Part I. Fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response

    Directory of Open Access Journals (Sweden)

    Wilson de Melo Cruvinel

    2010-08-01

    Full Text Available O sistema imunológico é constituído por uma intrincada rede de órgãos, células e moléculas, e tem por finalidade manter a homeostase do organismo, combatendo as agressões em geral. A imunidade inata atua em conjunto com a imunidade adaptativa e caracteriza-se pela rápida resposta à agressão, independentemente de estímulo prévio, sendo a primeira linha de defesa do organismo. Seus mecanismos compreendem barreiras físicas, químicas e biológicas, componentes celulares e moléculas solúveis. A primeira defesa do organismo frente a um dano tecidual envolve diversas etapas intimamente integradas e constituídas pelos diferentes componentes desse sistema. A presente revisão tem como objetivo resgatar os fundamentos dessa resposta, que apresenta elevada complexidade e é constituída por diversos componentes articulados que convergem para a elaboração da resposta imune adaptativa. Destacamos algumas etapas: reconhecimento molecular dos agentes agressores; ativação de vias bioquímicas intracelulares que resultam em modificações vasculares e teciduais; produção de uma miríade de mediadores com efeitos locais e sistêmicos no âmbito da ativação e proliferação celulares, síntese de novos produtos envolvidos na quimioatração e migração de células especializadas na destruição e remoção do agente agressor, e finalmente a recuperação tecidual com o restabelecimento funcional do tecido ou órgão.The immune system consists of an intricate network of organs, cells, and molecules responsible for maintaining the body's homeostasis and responding to aggression in general. Innate immunity operates in conjunction with adaptive immunity and is characterized by rapid response to aggression, regardless of previous stimulus, being the organism first line of defense. Its mechanisms include physical, chemical and biological barriers, cellular components, as well as soluble molecules. The organism first line of defense against

  8. Down regulation of the TCR complex CD3 ζ-chain on CD3+ T cells: a potential mechanism for helminth mediated immune modulation

    Directory of Open Access Journals (Sweden)

    Laura Jane Appleby

    2015-02-01

    Full Text Available The CD3ζ forms part of the T cell receptor (TCR where it plays an important role in coupling antigen recognition to several intracellular signal-transduction pathways leading to T cell effector functions. Down regulation of CD3ζ leads to impairment of immune responses including reduced cell proliferation and cytokine production. In experimental models helminth parasites have been shown to modulate immune responses directed against them and unrelated antigens, so called bystander antigens, but there is a lack of studies validating these observations in humans. This study focused on investigated the relationship between expression levels of the TCR CD3ζ chain with lymphocyte cell proliferation during human infection with the helminth parasite, Schistosoma haematobium which causes uro-genital schistosomiasis. Using flow cytometry, peripheral blood mononuclear cells (PBMCs from individuals naturally exposed to S. haematobium in rural Zimbabwe were phenotyped, and expression levels of CD3ζ on T cells were related to intensity of infection. In this population, parasite infection intensity was inversely related to CD3ζ expression levels (p<0.05, consistent with down-regulation of CD3ζ expression during helminth infection. Furthermore, PBMC proliferation was positively related to expression levels of CD3ζ (p<0.05 after allowing for confounding variables (host age, sex, infection level. CD3ζ expression levels had a differing relationship between immune correlates of susceptibility and immunity, measured by antibody responses, indicating a complex relationship between immune activation status and immunity. The relationships between the CD3ζ chain of the TCR and schistosome infection, PBMC proliferation and schistosome-specific antibody responses have not previously been reported, and these results may indicate a mechanism for the impaired T cell proliferative responses observed during human schistosome infection.

  9. Priming of antiherbivore defensive responses in plants

    Institute of Scientific and Technical Information of China (English)

    Jinwon Kim; Gary W.Felton

    2013-01-01

    Defense priming is defined as increased readiness of defense induction.A growing body of literature indicates that plants (or intact parts of a plant) are primed in anticipation of impending environmental stresses,both biotic and abiotic,and upon the following stimulus,induce defenses more quickly and strongly.For instance,some plants previously exposed to herbivore-inducible plant volatiles (HIPVs) from neighboring plants under herbivore attack show faster or stronger defense activation and enhanced insect resistance when challenged with secondary insect feeding.Research on priming of antiherbivore defense has been limited to the HIPV-mediated mechanism until recently,but significant advances were made in the past three years,including non-HIPV-mediated defense priming,epigenetic modifications as the molecular mechanism of priming,and others.It is timely to consider the advances in research on defense priming in the plantinsect interactions.

  10. Alternative Immune Systems

    Directory of Open Access Journals (Sweden)

    Luis Fernando Cadavid Gutierrez

    2011-09-01

    Full Text Available The immune system in animals is a complex network of molecules, cells and tissues that coordinately maintain the physiological and genetic integrity of the organism. Traditionally, two classes of immunity have been considered, the innate immunity and the adaptive immunity. The former is ancestral, with limited variability and low discrimination. The latter is highly variable, specific and limited to jawed vertebrates. Adaptive immunity is based on antigen receptors that rearrange somatically to generate a nearly unlimited diversity of molecules. Likely, this mechanism of somatic recombination arose as a consequence of a horizontal transfer of transposons and transposases from bacterial genomes in the ancestor of jawed vertebrates. The recent discovery in jawless vertebrates and invertebrates of alternative adaptive immune mechanisms, suggests during evolution different animal groups have found alternative solutions to the problem of immune recognition.

  11. Immunity by equilibrium.

    Science.gov (United States)

    Eberl, Gérard

    2016-08-01

    The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.

  12. [Immune system and tumors].

    Science.gov (United States)

    Terme, Magali; Tanchot, Corinne

    2017-02-01

    Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope. Copyright © 2016. Published by Elsevier Masson SAS.

  13. Whole body exposure to low-dose γ-radiation enhances the antioxidant defense system

    International Nuclear Information System (INIS)

    Pathak, C.M.; Avti, P.K.; Khanduja, K.L.; Sharma, S.C.

    2008-01-01

    It is believed that the extent of cellular damage by low- radiation dose is proportional to the effects observed at high radiation dose as per the Linear-No-Threshold (LNT) hypothesis. However, this notion may not be true at low-dose radiation exposure in the living system. Recent evidence suggest that the living organisms do not respond to ionizing radiations in a linear manner in the low dose range 0.01-0.5Gy and rather restore the homeostasis both in vivo and in vitro by normal physiological mechanisms such as cellular and DNA repair processes, immune reactions, antioxidant defense, adaptive responses, activation of immune functions, stimulation of growth etc. In this study, we have attempted to find the critical radiation dose range and the post irradiation period during which the antioxidant defense systems in the lungs, liver and kidneys remain stimulated in these organs after whole body exposure of the animals to low-dose radiation

  14. Evolution and Function of Thioester-Containing Proteins and the Complement System in the Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Upasana Shokal

    2017-06-01

    Full Text Available The innate immune response is evolutionary conserved among organisms. The complement system forms an important and efficient immune defense mechanism. It consists of plasma proteins that participate in microbial detection, which ultimately results in the production of various molecules with antimicrobial activity. Thioester-containing proteins (TEPs are a superfamily of secreted effector proteins. In vertebrates, certain TEPs act in the innate immune response by promoting recruitment of immune cells, phagocytosis, and direct lysis of microbial invaders. Insects are excellent models for dissecting the molecular basis of innate immune recognition and response to a wide range of microbial infections. Impressive progress in recent years has generated crucial information on the role of TEPs in the antibacterial and antiparasite response of the tractable model insect Drosophila melanogaster and the mosquito malaria vector Anopheles gambiae. This knowledge is critical for better understanding the evolution of TEPs and their involvement in the regulation of the host innate immune system.

  15. Chemical and mechanical defenses vary among maternal lines and leaf ages in Verbascum thapsus L. (Scrophulariaceae) and reduce palatability to a generalist insect

    Czech Academy of Sciences Publication Activity Database

    Alba, Christina; Bowers, M. D.; Blumenthal, D.; Hufbauer, R. A.

    2014-01-01

    Roč. 9, č. 8 (2014), s. 1-11, e104889 E-ISSN 1932-6203 Institutional support: RVO:67985939 Keywords : iridoid glycoside * plant defense * herbivory Subject RIV: EF - Botanics Impact factor: 3.234, year: 2014

  16. A review of the immune molecules in the sea cucumber.

    Science.gov (United States)

    Xue, Zhuang; Li, Hui; Wang, Xiuli; Li, Xia; Liu, Yang; Sun, Jing; Liu, Cenjie

    2015-05-01

    It is very important to identify and characterize the immune-related genes that respond to pathogens. Until recently, only some of the immune-related genes in sea cucumbers had been characterized. Their expression patterns after pathogen challenges have been analyzed via expressed sequence tag libraries, microarray studies and proteomic approaches. These genes include lectins, antimicrobial peptides, lysozyme, enzymes, clotting protein, pattern recognition proteins, Toll receptors, complement C3 and other humoral factors that might participate in the innate immune system of sea cucumbers. Although the participation of some of these immune molecules in the sea cucumber's innate immune defense against invading pathogens has been demonstrated, the functions of many of the molecules remain unclear. This review focuses on the discovery and functional characterization of the immune-related molecules from the sea cucumber for the first time and provides new insights into the immune mechanisms of the sea cucumber, which opens new possibilities for developing drugs for novel anti-bacterial and antiviral applications in fisheries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Mechanisms of stage-transcending protection following immunization of mice with late liver stage-arresting genetically attenuated malaria parasites.

    Directory of Open Access Journals (Sweden)

    Brandon K Sack

    2015-05-01

    Full Text Available Malaria, caused by Plasmodium parasite infection, continues to be one of the leading causes of worldwide morbidity and mortality. Development of an effective vaccine has been encumbered by the complex life cycle of the parasite that has distinct pre-erythrocytic and erythrocytic stages of infection in the mammalian host. Historically, malaria vaccine development efforts have targeted each stage in isolation. An ideal vaccine, however, would target multiple life cycle stages with multiple arms of the immune system and be capable of eliminating initial infection in the liver, the subsequent blood stage infection, and would prevent further parasite transmission. We have previously shown that immunization of mice with Plasmodium yoelii genetically attenuated parasites (GAP that arrest late in liver stage development elicits stage-transcending protection against both a sporozoite challenge and a direct blood stage challenge. Here, we show that this immunization strategy engenders both T- and B-cell responses that are essential for stage-transcending protection, but the relative importance of each is determined by the host genetic background. Furthermore, potent anti-blood stage antibodies elicited after GAP immunization rely heavily on FC-mediated functions including complement fixation and FC receptor binding. These protective antibodies recognize the merozoite surface but do not appear to recognize the immunodominant merozoite surface protein-1. The antigen(s targeted by stage-transcending immunity are present in both the late liver stages and blood stage parasites. The data clearly show that GAP-engendered protective immune responses can target shared antigens of pre-erythrocytic and erythrocytic parasite life cycle stages. As such, this model constitutes a powerful tool to identify novel, protective and stage-transcending T and B cell targets for incorporation into a multi-stage subunit vaccine.

  18. Always one step ahead: How pathogenic bacteria use the type III secretion system to manipulate the intestinal mucosal immune system

    Directory of Open Access Journals (Sweden)

    Marchès Olivier

    2011-05-01

    Full Text Available Abstract The intestinal immune system and the epithelium are the first line of defense in the gut. Constantly exposed to microorganisms from the environment, the gut has complex defense mechanisms to prevent infections, as well as regulatory pathways to tolerate commensal bacteria and food antigens. Intestinal pathogens have developed strategies to regulate intestinal immunity and inflammation in order to establish or prolong infection. The organisms that employ a type III secretion system use a molecular syringe to deliver effector proteins into the cytoplasm of host cells. These effectors target the host cell cytoskeleton, cell organelles and signaling pathways. This review addresses the multiple mechanisms by which the type III secretion system targets the intestinal immune response, with a special focus on pathogenic E. coli.

  19. Defense Human Resources Activity > PERSEREC

    Science.gov (United States)

    Skip to main content (Press Enter). Toggle navigation Defense Human Resources Activity Search Search Defense Human Resources Activity: Search Search Defense Human Resources Activity: Search Defense Human Resources Activity U.S. Department of Defense Defense Human Resources Activity Overview

  20. BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism.

    Science.gov (United States)

    Lv, Wentang; Du, Ba; Shangguan, Xinxin; Zhao, Yan; Pan, Yufang; Zhu, Lili; He, Yuqing; He, Guangcun

    2014-08-11

    Brown planthopper (BPH, Nilaparvata lugens Stål), is the most destructive phloem-feeding insect pest of rice (Oryza sativa). The BPH-resistance gene BPH15 has been proved to be effective in controlling the pest and widely applied in rice breeding programs. Nevertheless, molecular mechanism of the resistance remain unclear. In this study, we narrowed down the position of BPH15 on chromosome 4 and investigated the transcriptome of BPH15 rice after BPH attacked. We analyzed 13,000 BC2F2 plants of cross between susceptible rice TN1 and the recombinant inbred line RI93 that carrying the BPH15 gene from original resistant donor B5. BPH15 was mapped to a 0.0269 cM region on chromosome 4, which is 210-kb in the reference genome of Nipponbare. Sequencing bacterial artificial chromosome (BAC) clones that span the BPH15 region revealed that the physical size of BPH15 region in resistant rice B5 is 580-kb, much bigger than the corresponding region in the reference genome of Nipponbare. There were 87 predicted genes in the BPH15 region in resistant rice. The expression profiles of predicted genes were analyzed. Four jacalin-related lectin proteins genes and one LRR protein gene were found constitutively expressed in resistant parent and considered the candidate genes of BPH15. The transcriptomes of resistant BPH15 introgression line and the susceptible recipient line were analyzed using high-throughput RNA sequencing. In total, 2,914 differentially expressed genes (DEGs) were identified. BPH-responsive transcript profiles were distinct between resistant and susceptible plants and between the early stage (6 h after infestation, HAI) and late stage (48 HAI). The key defense mechanism was related to jasmonate signaling, ethylene signaling, receptor kinase, MAPK cascades, Ca(2+) signaling, PR genes, transcription factors, and protein posttranslational modifications. Our work combined BAC and RNA sequencing to identify candidate genes of BPH15 and revealed the resistance mechanism

  1. Analysis of psychological defense mechanism and personality character in patients with alcohol dependence%酒依赖患者心理防御机制及人格特征的分析

    Institute of Scientific and Technical Information of China (English)

    何伟健

    2013-01-01

    目的:探讨酒依赖患者心理防御机制和人格特征. 方法:64例酒依赖患者于人院治疗2周后完全戒断酒精及躯体不适消除后运用防御方式问卷(DSQ)及艾森克个性问卷(EPQ)分别评定其防御机制及人格类型,并与129名健康对照者比较. 结果:酒依赖患者心理防御机制为不成熟及中间型;EPQ精神质和神经质评分显著高于正常对照者(P<0.05或P<O.01);不成熟及中间型防御机制与EPQ精神质和神经质评分正相关. 结论:酒依赖患者可能存在不良人格,其与不成熟防御机制相互关联.%Objective:To explore the psychological defense mechanism and personality character in patients with alcohol dependence.Method:After 2 weeks treatment in hospital,the 64 patients with alcohol dependence were completely eliminated withdrawal after alcohol and body discomfort.Then,the psychological defense mechanism and personality type were assessed by defense style questionnaire (DSQ) and Eysenck personality questionnaire (EPQ).The results were compared with 129 normal controls.Results:The psychological defense mechanisms in the patients were immature type and middle type.The scores of psychoticism and neuroticism of EPQ were significantly higher than normal controls (P < 0.05 or P < 0.01).The styles of immature and middle psychological defense mechanisms were positively correlated to the scores of psychoticism and neuroticism in EPQ.Conclusion:The patients with alcohol dependence may have ill-personality; which correlated with immature defense mechanism.

  2. Fish gut-liver immunity during homeostasis or inflammation revealed by integrative transcriptome and proteome studies

    Science.gov (United States)

    Wu, Nan; Song, Yu-Long; Wang, Bei; Zhang, Xiang-Yang; Zhang, Xu-Jie; Wang, Ya-Li; Cheng, Ying-Yin; Chen, Dan-Dan; Xia, Xiao-Qin; Lu, Yi-Shan; Zhang, Yong-An

    2016-11-01

    The gut-associated lymphoid tissue, connected with liver via bile and blood, constructs a local immune environment of both defense and tolerance. The gut-liver immunity has been well-studied in mammals, yet in fish remains largely unknown, even though enteritis as well as liver and gallbladder syndrome emerged as a limitation in aquaculture. In this study, we performed integrative bioinformatic analysis for both transcriptomic (gut and liver) and proteomic (intestinal mucus and bile) data, in both healthy and infected tilapias. We found more categories of immune transcripts in gut than liver, as well as more adaptive immune in gut meanwhile more innate in liver. Interestingly reduced differential immune transcripts between gut and liver upon inflammation were also revealed. In addition, more immune proteins in bile than intestinal mucus were identified. And bile probably providing immune effectors to intestinal mucus upon inflammation was deduced. Specifically, many key immune transcripts in gut or liver as well as key immune proteins in mucus or bile were demonstrated. Accordingly, we proposed a hypothesized profile of fish gut-liver immunity, during either homeostasis or inflammation. Current data suggested that fish gut and liver may collaborate immunologically while keep homeostasis using own strategies, including potential unique mechanisms.

  3. Imbalanced immune homeostasis in immune thrombocytopenia.

    Science.gov (United States)

    Yazdanbakhsh, Karina

    2016-04-01

    Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder resulting from low platelet counts caused by inadequate production as well as increased destruction by autoimmune mechanisms. As with other autoimmune disorders, chronic ITP is characterized by perturbations of immune homeostasis with hyperactivated effector cells as well as defective regulatory arm of the adaptive immune system, which will be reviewed here. Interestingly, some ITP treatments are associated with restoring the regulatory imbalance, although it remains unclear whether the immune system is redirected to a state of tolerance once treatment is discontinued. Understanding the mechanisms that result in breakdown of immune homeostasis in ITP will help to identify novel pathways for restoring tolerance and inhibiting effector cell responses. This information can then be translated into developing therapies for averting autoimmunity not only in ITP but also many autoimmune disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Molecular characterization of a genomic region in a Lactococcus bacteriophage that is involved in its sensitivity to the phage defense mechanism AbiA.

    Science.gov (United States)

    Dinsmore, P K; Klaenhammer, T R

    1997-05-01

    A spontaneous mutant of the lactococcal phage phi31 that is insensitive to the phage defense mechanism AbiA was characterized in an effort to identify the phage factor(s) involved in sensitivity of phi31 to AbiA. A point mutation was localized in the genome of the AbiA-insensitive phage (phi31A) by heteroduplex analysis of a 9-kb region. The mutation (G to T) was within a 738-bp open reading frame (ORF245) and resulted in an arginine-to-leucine change in the predicted amino acid sequence of the protein. The mutant phi31A-ORF245 reduced the sensitivity of phi31 to AbiA when present in trans, indicating that the mutation in ORF245 is responsible for the AbiA insensitivity of phi31A. Transcription of ORF245 occurs early in the phage infection cycles of phi31 and phi31A and is unaffected by AbiA. Expansion of the phi31 sequence revealed ORF169 (immediately upstream of ORF245) and ORF71 (which ends 84 bp upstream of ORF169). Two inverted repeats lie within the 84-bp region between ORF71 and ORF169. Sequence analysis of an independently isolated AbiA-insensitive phage, phi31B, identified a mutation (G to A) in one of the inverted repeats. A 118-bp fragment from phi31, encompassing the 84-bp region between ORF71 and ORF169, eliminates AbiA activity against phi31 when present in trans, establishing a relationship between AbiA and this fragment. The study of this region of phage phi31 has identified an open reading frame (ORF245) and a 118-bp DNA fragment that interact with AbiA and are likely to be involved in the sensitivity of this phage to AbiA.

  5. Contribution of transcription factor, SP1, to the promotion of HB-EGF expression in defense mechanism against the treatment of irinotecan in ovarian clear cell carcinoma

    International Nuclear Information System (INIS)

    Miyata, Kohei; Yotsumoto, Fusanori; Nam, Sung Ouk; Odawara, Takashi; Manabe, Sadao; Ishikawa, Toyokazu; Itamochi, Hiroaki; Kigawa, Junzo; Takada, Shuji; Asahara, Hiroshi; Kuroki, Masahide; Miyamoto, Shingo

    2014-01-01

    Ovarian clear cell carcinoma (OCCC) is a worst histological subtype than other ovarian malignant tumor. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a promising target for ovarian cancer therapy. The aims of this study were to validate the efficacy of HB-EGF–targeted therapy for OCCC and to identify the transcription factor that contributed to the induction of HB-EGF by SN38 treatment in OCCC cells. HB-EGF was highly expressed in OCCC cells, and an increase of HB-EGF was induced by SN38 which had only antitumor effect among conventional anticancer agents on OCCC. A specific inhibitor of HB-EGF, a cross-reacting material 197 (CRM197), led to a synergistic increase in the number of apoptotic OCCC cells with the treatment of SN38. The luciferase assay with 5′-deletion promoter constructs identified a GC-rich element between −125 and −178 (the distal transcription start site was denoted +1) as a cis-regulatory region, and the treatment of SN38 induced luciferase activity in this region. An in silico and chromatin immunoprecipitation analysis estimated that SP1 bound to the cis-regulatory region of HB-EGF in OCCC cells. Real-time PCR and cell viability assays showed that the transfection of a small interfering RNA targeting SP1 suppressed the expression of HB-EGF induced by SN38, resulting in the enhanced sensitivity of SN38. Taken together, these results indicate that induction of HB-EGF expression contributed to defense mechanism against treatment of SN38 through the transcriptional activity of SP1 in OCCC cells

  6. 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells.

    Science.gov (United States)

    Lim, Juhee; Lee, Sung Ho; Cho, Sera; Lee, Ik-Soo; Kang, Bok Yun; Choi, Hyun Jin

    2013-10-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator for the protection of cells against oxidative and xenobiotic stresses. Recent studies have demonstrated that high constitutive expression of Nrf2 is observed in many types of cancer cells showing resistance to anti-cancer drugs, suggesting that the suppression of overexpressed Nrf2 could be an attractive therapeutic strategy to overcome cancer drug resistance. In the present study, we aimed to find small molecule compounds that enhance the sensitivity of tumor cells to cisplatin induced cytotoxicity by suppressing Nrf2-mediated defense mechanism. A549 lung cancer cells were shown to be more resistant to the anti-cancer drug cisplatin than HEK293 cells, with higher Nrf2 signaling activity; constitutively high amounts of Nrf2-downstream target proteins were observed in A549 cells. Among the three chalcone derivatives 4-methoxy-chalcone (4-MC), hesperidin methylchalcone, and neohesperidin dihydrochalcone, 4-MC was found to suppress transcriptional activity of Nrf2 in A549 cells but to activate it in HEK293 cells. 4-MC was also shown to down-regulate expression of Nrf2 and the downstream phase II detoxifying enzyme NQO1 in A549 cells. The PI3K/Akt pathway was found to be involved in the 4-MC-induced inhibition of Nrf2/ARE activity in A549 cells. This inhibition of Nrf2 signaling results in the accelerated generation of reactive oxygen species and exacerbation of cytotoxicity in cisplatin-treated A549 cells. Taken together, these results suggest that the small molecule compound 4-MC could be used to enhance the sensitivity of tumor cells to the therapeutic effect of cisplatin through the regulation of Nrf2/ARE signaling.

  7. Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice1[C][W][OA

    Science.gov (United States)

    De Vleesschauwer, David; Van Buyten, Evelien; Satoh, Kouji; Balidion, Johny; Mauleon, Ramil; Choi, Il-Ryong; Vera-Cruz, Casiana; Kikuchi, Shoshi; Höfte, Monica

    2012-01-01

    Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy. PMID:22353574

  8. Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice.

    Science.gov (United States)

    De Vleesschauwer, David; Van Buyten, Evelien; Satoh, Kouji; Balidion, Johny; Mauleon, Ramil; Choi, Il-Ryong; Vera-Cruz, Casiana; Kikuchi, Shoshi; Höfte, Monica

    2012-04-01

    Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicyl