WorldWideScience

Sample records for immune activation defines

  1. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    Science.gov (United States)

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice.

  2. Defining immune engagement thresholds for in vivo control of virus-driven lymphoproliferation.

    Directory of Open Access Journals (Sweden)

    Cristina Godinho-Silva

    2014-06-01

    Full Text Available Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL. Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4 to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation.

  3. U.S. Immunization program adult immunization activities and resources

    Science.gov (United States)

    Woods, LaDora O.; Bridges, Carolyn B.; Graitcer, Samuel B.; Lamont, Brock

    2016-01-01

    ABSTRACT Adults are recommended to receive vaccines based on their age, medical conditions, prior vaccinations, occupation and lifestyle. However, adult immunization coverage is low in the United States and lags substantially below Healthy People 2020 goals. To assess activities and resources designated for adult immunization programs by state and local health department immunization programs in the United States, we analyzed 2012 and 2013 data from the Centers for Disease Control and Prevention's (CDC) Program Annual Reports and Progress Assessments (PAPA) survey of CDC-funded immunization programs. Fifty-six of 64 funded US immunization programs' responses were included in the analysis. Eighty-two percent of (n = 46) programs reported having a designated adult immunization coordinator in 2012 and 73% (n = 41) in 2013. Of the 46 coordinators reported in 2012, 30% (n = 14) spent more than 50% of their time on adult immunization activities, and only 24% (n = 10) of the 41 adult coordinators in 2013 spent more than 50% of their time on adult immunization activities. In 2012, 23% (n = 13) of the 56 programs had a separate immunization coalition for adults and 68% (n = 38) included adult issues in their overall immunization program coalition. In 2013, 25% (n = 14) had a separate adult immunization coalition while 57% (n = 32) incorporated adult immunizations into their overall immunization program coalition. The results indicate substantial variation across the US in public health infrastructure to support adult immunizations. Continued assessment of adult immunization resources and activities will be important in improving adult immunization coverage levels though program support. With many programs having limited resources dedicated to improving adult immunization rates in the in US, efforts by the health departments to collaborate with providers and other partners in their jurisdictions to increase awareness, increase the use of proven strategies to improve

  4. Measuring polio immunity to plan immunization activities.

    Science.gov (United States)

    Voorman, Arend; Lyons, Hil M

    2016-11-21

    The Global Polio Eradication Initiative is closer than ever to achieving a polio-free world. Immunization activities must still be carried out in non-endemic countries to maintain population immunity at levels which will stop poliovirus from spreading if it is re-introduced from still-infected areas. In areas where there is no active transmission of poliovirus, programs must rely on surrogate indicators of population immunity to determine the appropriate immunization activities, typically caregiver-reported vaccination history obtained from non-polio acute flaccid paralysis patients identified through polio surveillance. We used regression models to examine the relationship between polio vaccination campaigns and caregiver-reported polio vaccination history. We find that in many countries, vaccination campaigns have a surprisingly weak impact on these commonly used indicators. We conclude that alternative criteria and data, such as routine immunization indicators from vaccination records or household surveys, should be considered for planning polio vaccination campaigns, and that validation of such surrogate indicators is necessary if they are to be used as the basis for program planning and risk assessment. We recommend that the GPEI and similar organizations consider or continue devoting additional resources to rigorously study population immunity and campaign effectiveness in at-risk countries. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Immunizations: Active vs. Passive

    Science.gov (United States)

    ... Issues Health Issues Health Issues Conditions Injuries & Emergencies Vaccine Preventable Diseases ... Children > Safety & Prevention > Immunizations > Immunizations: Active vs. Passive Safety & ...

  6. Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules

    International Nuclear Information System (INIS)

    Teschendorff, Andrew E; Gomez, Sergio; Arenas, Alex; El-Ashry, Dorraya; Schmidt, Marcus; Gehrmann, Mathias; Caldas, Carlos

    2010-01-01

    Elucidating the activation pattern of molecular pathways across a given tumour type is a key challenge necessary for understanding the heterogeneity in clinical response and for developing novel more effective therapies. Gene expression signatures of molecular pathway activation derived from perturbation experiments in model systems as well as structural models of molecular interactions ('model signatures') constitute an important resource for estimating corresponding activation levels in tumours. However, relatively few strategies for estimating pathway activity from such model signatures exist and only few studies have used activation patterns of pathways to refine molecular classifications of cancer. Here we propose a novel network-based method for estimating pathway activation in tumours from model signatures. We find that although the pathway networks inferred from cancer expression data are highly consistent with the prior information contained in the model signatures, that they also exhibit a highly modular structure and that estimation of pathway activity is dependent on this modular structure. We apply our methodology to a panel of 438 estrogen receptor negative (ER-) and 785 estrogen receptor positive (ER+) breast cancers to infer activation patterns of important cancer related molecular pathways. We show that in ER negative basal and HER2+ breast cancer, gene expression modules reflecting T-cell helper-1 (Th1) and T-cell helper-2 (Th2) mediated immune responses play antagonistic roles as major risk factors for distant metastasis. Using Boolean interaction Cox-regression models to identify non-linear pathway combinations associated with clinical outcome, we show that simultaneous high activation of Th1 and low activation of a TGF-beta pathway module defines a subtype of particularly good prognosis and that this classification provides a better prognostic model than those based on the individual pathways. In ER+ breast cancer, we find that

  7. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition.

    Science.gov (United States)

    Reitz, M U; Gifford, M L; Schäfer, P

    2015-04-01

    Biotic stress and diseases caused by pathogen attack pose threats in crop production and significantly reduce crop yields. Enhancing immunity against pathogens is therefore of outstanding importance in crop breeding. However, this must be balanced, as immune activation inhibits plant growth. This immunity-coupled growth trade-off does not support resistance but is postulated to reflect the reallocation of resources to drive immunity. There is, however, increasing evidence that growth-immunity trade-offs are based on the reconfiguration of hormone pathways, shared by growth and immunity signalling. Studies in roots revealed the role of hormones in orchestrating growth across different cell types, with some hormones showing a defined cell type-specific activity. This is apparently highly relevant for the regulation of the cell cycle machinery and might be part of the growth-immunity cross-talk. Since plants are constantly exposed to Immuno-activating microbes under agricultural conditions, the transition from a growth to an immunity operating mode can significantly reduce crop yield and can conflict our efforts to generate next-generation crops with improved yield under climate change conditions. By focusing on roots, we outline the current knowledge of hormone signalling on the cell cycle machinery to explain growth trade-offs induced by immunity. By referring to abiotic stress studies, we further introduce how root cell type-specific hormone activities might contribute to growth under immunity and discuss the feasibility of uncoupling the growth-immunity cross-talk. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART.

    Directory of Open Access Journals (Sweden)

    Barbara Ensoli

    2010-11-01

    Full Text Available Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002. Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002, served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+ and CD8(+ cellular activation (CD38 and HLA-DR together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+ T cells and B cells with reduction of CD8(+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+ and CD8(+ T cells were accompanied by increases of CD4(+ and CD8(+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite

  9. Quantitative Evaluation of Stomatal Cytoskeletal Patterns during the Activation of Immune Signaling in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Masaki Shimono

    Full Text Available Historically viewed as primarily functioning in the regulation of gas and water vapor exchange, it is now evident that stomata serve an important role in plant immunity. Indeed, in addition to classically defined functions related to cell architecture and movement, the actin cytoskeleton has emerged as a central component of the plant immune system, underpinning not only processes related to cell shape and movement, but also receptor activation and signaling. Using high resolution quantitative imaging techniques, the temporal and spatial changes in the actin microfilament array during diurnal cycling of stomatal guard cells has revealed a highly orchestrated transition from random arrays to ordered bundled filaments. While recent studies have demonstrated that plant stomata close in response to pathogen infection, an evaluation of stimulus-induced changes in actin cytoskeletal dynamics during immune activation in the guard cell, as well as the relationship of these changes to the function of the actin cytoskeleton and stomatal aperture, remains undefined. In the current study, we employed quantitative cell imaging and hierarchical clustering analyses to define the response of the guard cell actin cytoskeleton to pathogen infection and the elicitation of immune signaling. Using this approach, we demonstrate that stomatal-localized actin filaments respond rapidly, and specifically, to both bacterial phytopathogens and purified pathogen elicitors. Notably, we demonstrate that higher order temporal and spatial changes in the filament array show distinct patterns of organization during immune activation, and that changes in the naïve diurnal oscillations of guard cell actin filaments are perturbed by pathogens, and that these changes parallel pathogen-induced stomatal gating. The data presented herein demonstrate the application of a highly tractable and quantifiable method to assign transitions in actin filament organization to the activation of

  10. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity.

    Directory of Open Access Journals (Sweden)

    Manikandan Subramanian

    Full Text Available Obesity-induced inflammation in visceral adipose tissue (VAT is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.

  11. Mast cell activators as novel immune regulators.

    Science.gov (United States)

    Johnson-Weaver, Brandi; Choi, Hae Woong; Abraham, Soman N; Staats, Herman F

    2018-05-26

    Mast cells are an important cell type of the innate immune system that when activated, play a crucial role in generating protective innate host responses after bacterial and viral infection. Additionally, activated mast cells influence lymph node composition to regulate the induction of adaptive immune responses. The recognition that mast cells play a beneficial role in host responses to microbial infection and induction of adaptive immunity has provided the rationale to evaluate mast cell activators for use as antimicrobials or vaccine adjuvants. This review summarizes the role of mast cell activators in antimicrobial responses while also discussing the use of different classes of mast cell activators as potent vaccine adjuvants that enhance the induction of protective immune responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Systemic Immune Activation and HIV Shedding in the Female Genital Tract.

    Science.gov (United States)

    Spencer, LaShonda Y; Christiansen, Shawna; Wang, Chia-Hao H; Mack, Wendy J; Young, Mary; Strickler, Howard D; Anastos, Kathryn; Minkoff, Howard; Cohen, Mardge; Geenblatt, Ruth M; Karim, Roksana; Operskalski, Eva; Frederick, Toni; Homans, James D; Landay, Alan; Kovacs, Andrea

    2016-02-01

    Plasma HIV RNA is the most significant determinant of cervical HIV shedding. However, shedding is also associated with sexually transmitted infections (STIs) and cervical inflammation. The mechanism by which this occurs is poorly understood. There is evidence that systemic immune activation promotes viral entry, replication, and HIV disease progression. We hypothesized that systemic immune activation would be associated with an increase in HIV genital shedding. Clinical assessments, HIV RNA in plasma and genital secretions, and markers of immune activation (CD38(+)DR(+) and CD38(-)DR(-)) on CD4(+) and CD8(+) T cells in blood were evaluated in 226 HIV+ women enrolled in the Women's Interagency HIV Study. There were 569 genital evaluations of which 159 (28%) exhibited HIV RNA shedding, defined as HIV viral load >80 copies per milliliter. We tested associations between immune activation and shedding using generalized estimating equations with logit link function. In the univariate model, higher levels of CD4(+) and CD8(+) T-cell activation in blood were significantly associated with genital tract shedding. However, in the multivariate model adjusting for plasma HIV RNA, STIs, and genital tract infections, only higher levels of resting CD8(+) T cells (CD38(-)DR(-)) were significantly inversely associated with HIV shedding in the genital tract (odds ratios = 0.44, 95% confidence interval: 0.21 to 0.9, P = 0.02). The association of systemic immune activation with genital HIV shedding is multifactorial. Systemic T-cell activation is associated with genital tract shedding in univariate analysis but not when adjusting for plasma HIV RNA, STIs, and genital tract infections. In addition, women with high percentage of resting T cells are less likely to have HIV shedding compared with those with lower percentages. These findings suggest that a higher percentage of resting cells, as a result of maximal viral suppression with treatment, may decrease local genital activation, HIV

  13. Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity.

    Science.gov (United States)

    Kidani, Yoko; Bensinger, Steven J

    2012-09-01

    Lipid metabolism has emerged as an important modulator of innate and adaptive immune cell fate and function. The lipid-activated transcription factors peroxisome proliferator-activated receptor (PPAR) α, β/δ, γ and liver X receptor (LXR) are members of the nuclear receptor superfamily that have a well-defined role in regulating lipid homeostasis and metabolic diseases. Accumulated evidence over the last decade indicates that PPAR and LXR signaling also influence multiple facets of inflammation and immunity, thereby providing important crosstalk between metabolism and immune system. Herein, we provide a brief introduction to LXR and PPAR biology and review recent discoveries highlighting the importance of PPAR and LXR signaling in the modulation of normal and pathologic states of immunity. We also examine advances in our mechanistic understanding of how nuclear receptors impact immune system function and homeostasis. Finally, we discuss whether LXRs and PPARs could be pharmacologically manipulated to provide novel therapeutic approaches for modulation of the immune system under pathologic inflammation or in the context of allergic and autoimmune disease. © 2012 John Wiley & Sons A/S.

  14. Immune response to uv-induced tumors: transplantation immunity and lymphocyte populations exhibiting anti-tumor activity

    International Nuclear Information System (INIS)

    Streeter, P.R.

    1985-01-01

    Ultraviolet light-induced murine skin tumors were analyzed for their ability to induce tumor-specific and cross-protective transplantation immunity in immunocompetent syngeneic mice. These studies revealed that progressor UV-tumors, like regressor UV-tumors, possess tumor-specific transplantation antigens. Cross-protective transplantation immunity to UV-tumors, however, was associated with sensitization to the serum used to culture the tumor lines rather than to cross-reactive or common determinants on UV-tumors. An analysis of the cytolytic activity of lymphocytes from the spleens of mice immunized with either regressor or progressor UV-tumors revealed a striking difference between the two immune splenocyte populations. From regressor tumor-immune animals, cytolytic T (Tc) lymphocytes with specificity for the immunizing tumor were found. However, the analysis of splenic lymphocytes from progressor tumor immune animals revealed no such effector cells. To more effectively examine those lymphocytes exhibiting cytolytic activity in vitro, T lymphocyte cloning technology was used as a means of isolating homogeneous lymphocyte populations with the effector activities described above. The mechanisms where NK cells and other nonspecific effector cells could be induced in tumor-immune animals are discussed in the context of class II restricted immune responses

  15. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine.

    Science.gov (United States)

    Muyanja, Enoch; Ssemaganda, Aloysius; Ngauv, Pearline; Cubas, Rafael; Perrin, Helene; Srinivasan, Divya; Canderan, Glenda; Lawson, Benton; Kopycinski, Jakub; Graham, Amanda S; Rowe, Dawne K; Smith, Michaela J; Isern, Sharon; Michael, Scott; Silvestri, Guido; Vanderford, Thomas H; Castro, Erika; Pantaleo, Giuseppe; Singer, Joel; Gillmour, Jill; Kiwanuka, Noah; Nanvubya, Annet; Schmidt, Claudia; Birungi, Josephine; Cox, Josephine; Haddad, Elias K; Kaleebu, Pontiano; Fast, Patricia; Sekaly, Rafick-Pierre; Trautmann, Lydie; Gaucher, Denis

    2014-07-01

    Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. We showed that YF-17D-induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D-neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. Registration is not required for observational studies. This study was funded by Canada's Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases

  16. Cardiac allograft immune activation: current perspectives

    Directory of Open Access Journals (Sweden)

    Chang D

    2014-12-01

    Full Text Available David Chang, Jon Kobashigawa Cedars-Sinai Heart Institute, Los Angeles, CA, USA Abstract: Heart transplant remains the most durable option for end-stage heart disease. Cardiac allograft immune activation and heart transplant rejection remain among the main complications limiting graft and recipient survival. Mediators of the immune system can cause different forms of rejection post-heart transplant. Types of heart transplant rejection include hyperacute rejection, cellular rejection, antibody-mediated rejection, and chronic rejection. In this review, we will summarize the innate and adaptive immune responses which influence the post-heart transplant recipient. Different forms of rejection and their clinical presentation, detection, and immune monitoring will be discussed. Treatment of heart transplant rejection will be examined. We will discuss potential treatment strategies for preventing rejection post-transplant in immunologically high-risk patients with antibody sensitization. Keywords: heart transplant, innate immunity, adaptive immunity, rejection, immunosuppression

  17. Systemic activation of the immune system in HIV infection: The role of the immune complexes (hypothesis).

    Science.gov (United States)

    Korolevskaya, Larisa B; Shmagel, Konstantin V; Shmagel, Nadezhda G; Saidakova, Evgeniya V

    2016-03-01

    Currently, immune activation is proven to be the basis for the HIV infection pathogenesis and a strong predictor of the disease progression. Among the causes of systemic immune activation the virus and its products, related infectious agents, pro-inflammatory cytokines, and regulatory CD4+ T cells' decrease are considered. Recently microbial translocation (bacterial products yield into the bloodstream as a result of the gastrointestinal tract mucosal barrier integrity damage) became the most popular hypothesis. Previously, we have found an association between immune complexes present in the bloodstream of HIV infected patients and the T cell activation. On this basis, we propose a significantly modified hypothesis of immune activation in HIV infection. It is based on the immune complexes' participation in the immunocompetent cells' activation. Immune complexes are continuously formed in the chronic phase of the infection. Together with TLR-ligands (viral antigens, bacterial products coming from the damaged gut) present in the bloodstream they interact with macrophages. As a result macrophages are transformed into the type II activated forms. These macrophages block IL-12 production and start synthesizing IL-10. High level of this cytokine slows down the development of the full-scale Th1-response. The anti-viral reactions are shifted towards the serogenesis. Newly synthesized antibodies' binding to viral antigens leads to continuous formation of the immune complexes capable of interacting with antigen-presenting cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Merck Ad5/HIV induces broad innate immune activation that predicts CD8⁺ T-cell responses but is attenuated by preexisting Ad5 immunity.

    Science.gov (United States)

    Zak, Daniel E; Andersen-Nissen, Erica; Peterson, Eric R; Sato, Alicia; Hamilton, M Kristina; Borgerding, Joleen; Krishnamurty, Akshay T; Chang, Joanne T; Adams, Devin J; Hensley, Tiffany R; Salter, Alexander I; Morgan, Cecilia A; Duerr, Ann C; De Rosa, Stephen C; Aderem, Alan; McElrath, M Juliana

    2012-12-11

    To better understand how innate immune responses to vaccination can lead to lasting protective immunity, we used a systems approach to define immune signatures in humans over 1 wk following MRKAd5/HIV vaccination that predicted subsequent HIV-specific T-cell responses. Within 24 h, striking increases in peripheral blood mononuclear cell gene expression associated with inflammation, IFN response, and myeloid cell trafficking occurred, and lymphocyte-specific transcripts decreased. These alterations were corroborated by marked serum inflammatory cytokine elevations and egress of circulating lymphocytes. Responses of vaccinees with preexisting adenovirus serotype 5 (Ad5) neutralizing antibodies were strongly attenuated, suggesting that enhanced HIV acquisition in Ad5-seropositive subgroups in the Step Study may relate to the lack of appropriate innate activation rather than to increased systemic immune activation. Importantly, patterns of chemoattractant cytokine responses at 24 h and alterations in 209 peripheral blood mononuclear cell transcripts at 72 h were predictive of subsequent induction and magnitude of HIV-specific CD8(+) T-cell responses. This systems approach provides a framework to compare innate responses induced by vectors, as shown here by contrasting the more rapid, robust response to MRKAd5/HIV with that to yellow fever vaccine. When applied iteratively, the findings may permit selection of HIV vaccine candidates eliciting innate immune response profiles more likely to drive HIV protective immunity.

  19. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed.

    Science.gov (United States)

    Vainchtein, I D; Vinet, J; Brouwer, N; Brendecke, S; Biagini, G; Biber, K; Boddeke, H W G M; Eggen, B J L

    2014-10-01

    Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS) characterized by loss of myelin accompanied by infiltration of T-lymphocytes and monocytes. Although it has been shown that these infiltrates are important for the progression of MS, the role of microglia, the resident macrophages of the CNS, remains ambiguous. Therefore, we have compared the phenotypes of microglia and macrophages in a mouse model for MS, experimental autoimmune encephalomyelitis (EAE). In order to properly discriminate between these two cell types, microglia were defined as CD11b(pos) CD45(int) Ly-6C(neg) , and infiltrated macrophages as CD11b(pos) CD45(high) Ly-6C(pos) . During clinical EAE, microglia displayed a weakly immune-activated phenotype, based on the expression of MHCII, co-stimulatory molecules (CD80, CD86, and CD40) and proinflammatory genes [interleukin-1β (IL-1β) and tumour necrosis factor- α (TNF-α)]. In contrast, CD11b(pos) CD45(high) Ly-6C(pos) infiltrated macrophages were strongly activated and could be divided into two populations Ly-6C(int) and Ly-6C(high) , respectively. Ly-6C(high) macrophages contained less myelin than Ly-6C(int) macrophages and expression levels of the proinflammatory cytokines IL-1β and TNF-α were higher in Ly-6C(int) macrophages. Together, our data show that during clinical EAE, microglia are only weakly activated whereas infiltrated macrophages are highly immune reactive. © 2014 Wiley Periodicals, Inc.

  20. Active and passive immunity, vaccine types, excipients and licensing.

    Science.gov (United States)

    Baxter, David

    2007-12-01

    Abstract Immunity is the state of protection against infectious disease conferred either through an immune response generated by immunization or previous infection or by other non-immunological factors. This article reviews active and passive immunity and the differences between them: it also describes the four different commercially available vaccine types (live attenuated, killed/inactivated, subunit and toxoid): it also looks at how these different vaccines generate an adaptive immune response.

  1. Immune activation by casein dietary antigens in bipolar disorder

    NARCIS (Netherlands)

    Severance, E.G.; Dupont, D.; Dickerson, F.B.; Stallings, C.R.; Origoni, A.E.; Krivogorsky, B.; Yang, S.; Haasnoot, W.; Yolken, R.H.

    2010-01-01

    Objectives: Inflammation and other immune processes are increasingly linked to psychiatric diseases. Antigenic triggers specific to bipolar disorder are not yet defined. We tested whether antibodies to bovine milk caseins were associated with bipolar disorder, and whether patients recognized

  2. Glycogen synthase kinase 3β promotes liver innate immune activation by restraining AMP-activated protein kinase activation.

    Science.gov (United States)

    Zhou, Haoming; Wang, Han; Ni, Ming; Yue, Shi; Xia, Yongxiang; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan

    2018-02-13

    Glycogen synthase kinase 3β (Gsk3β [Gsk3b]) is a ubiquitously expressed kinase with distinctive functions in different types of cells. Although its roles in regulating innate immune activation and ischaemia and reperfusion injuries (IRIs) have been well documented, the underlying mechanisms remain ambiguous, in part because of the lack of cell-specific tools in vivo. We created a myeloid-specific Gsk3b knockout (KO) strain to study the function of Gsk3β in macrophages in a murine liver partial warm ischaemia model. Compared with controls, myeloid Gsk3b KO mice were protected from IRI, with diminished proinflammatory but enhanced anti-inflammatory immune responses in livers. In bone marrow-derived macrophages, Gsk3β deficiency resulted in an early reduction of Tnf gene transcription but sustained increase of Il10 gene transcription on Toll-like receptor 4 stimulation in vitro. These effects were associated with enhanced AMP-activated protein kinase (AMPK) activation, which led to an accelerated and higher level of induction of the novel innate immune negative regulator small heterodimer partner (SHP [Nr0b2]). The regulatory function of Gsk3β on AMPK activation and SHP induction was confirmed in wild-type bone marrow-derived macrophages with a Gsk3 inhibitor. Furthermore, we found that this immune regulatory mechanism was independent of Gsk3β Ser9 phosphorylation and the phosphoinositide 3-kinase-Akt signalling pathway. In vivo, myeloid Gsk3β deficiency facilitated SHP upregulation by ischaemia-reperfusion in liver macrophages. Treatment of Gsk3b KO mice with either AMPK inhibitor or SHP small interfering RNA before the onset of liver ischaemia restored liver proinflammatory immune activation and IRI in these otherwise protected hosts. Additionally, pharmacological activation of AMPK protected wild-type mice from liver IRI, with reduced proinflammatory immune activation. Inhibition of the AMPK-SHP pathway by liver ischaemia was demonstrated in tumour resection

  3. [Bone marrow stromal damage mediated by immune response activity].

    Science.gov (United States)

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  4. Innate immune recognition and activation during HIV infection

    Directory of Open Access Journals (Sweden)

    Larsen Carsten S

    2010-06-01

    Full Text Available Abstract The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis.

  5. PRENATAL INFECTION, MATERNAL IMMUNE ACTIVATION, AND RISK FOR SCHIZOPHRENIA.

    Science.gov (United States)

    Canetta, Sarah E; Brown, Alan S

    2012-12-01

    A body of epidemiological literature has suggested an association between prenatal infection, subsequent maternal immune activation (MIA), and later risk of schizophrenia. These epidemiological studies have inspired preclinical research using rodent and primate models of prenatal infection and MIA. The findings from these preclinical studies indicate that severe infection and immune activation during pregnancy can negatively impact offspring brain development and impair adult behavior. This review aims to summarize the major epidemiological and preclinical findings addressing the connection between prenatal infection and immune activation and later risk of developing schizophrenia, as well as the more limited literature addressing the mechanisms by which this gestational insult might affect offspring neurodevelopment. Finally, directions for future research will be discussed.

  6. Passive and active immunity against parvovirus infection in piglets ...

    African Journals Online (AJOL)

    On the basis of the given results, we conclude that colostral immunity to parvovirus infection in swine lasts for about one month and that antibodies found in the blood serum of piglets after the first month of life are a result of the activation of the immune system. Keywords: Porcine parvovirus, colostral immunity, reproductive ...

  7. A prospective study of the influence of a thalassaemia on morbidity from malaria and immune responses to defined Plasmodium falciparum antigens in Gambian children

    DEFF Research Database (Denmark)

    Allen, S J; Rowe, P; Allsopp, C E

    1993-01-01

    with the sickle cell trait alone. Specific antibody responses and cell-mediated immune responses in vitro to defined Plasmodium falciparum antigens were measured in children participating in the study. In general, there was no evidence of an increased prevalence or intensity of humoral or cell-mediated immune...

  8. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    International Nuclear Information System (INIS)

    Lee, Sang-Ik; Kim, Byoung-Soo; Kim, Kyoung-Shin; Lee, Samkeun; Shin, Kwang-Soo; Lim, Jong-Soon

    2008-01-01

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies

  9. Analyses of 123 Peripheral Human Immune Cell Subsets: Defining Differences with Age and between Healthy Donors and Cancer Patients Not Detected in Analysis of Standard Immune Cell Types

    Directory of Open Access Journals (Sweden)

    Lauren M. Lepone

    2016-03-01

    Full Text Available Recent advances in human immunology have led to the identification of novel immune cell subsets and the biological function of many of these subsets has now been identified. The recent US Food and Drug Administration approval of several immunotherapeutics for the treatment of a variety of cancer types and the results of ongoing immunotherapy clinical studies requires a more thorough interrogation of the immune system. We report here the use of flow cytometry-based analyses to identify 123 immune cell subsets of peripheral blood mononuclear cells. The use of these panels defines multiple differences in younger (< 40 years vs. older (≥ 40 years individuals and between aged-matched apparently healthy individuals and metastatic cancer patients, aspects not seen in the analysis of the following standard immune cell types: CD8, CD4, natural killer, natural killer-T, regulatory T, myeloid derived suppressor cells, conventional dendritic cells (DCs, plasmacytoid DCs and B cells. The use of these panels identifying 123 immune cell subsets may aid in the identification of patients who may benefit from immunotherapy, either prior to therapy or early in the immunotherapeutic regimen, for the treatment of cancer or other chronic or infectious diseases.

  10. Immune activation affects chemical sexual ornaments of male Iberian wall lizards

    Science.gov (United States)

    López, Pilar; Gabirot, Marianne; Martín, José

    2009-01-01

    Many animals use chemical signals in sexual selection, but it is not clear how these sexual traits might have evolved to signal honestly male condition. It is possible that there is a trade-off between maintaining the immune system and the elaboration of ornaments. We experimentally challenged the immune system of male Iberian wall lizards, Podarcis hispanica, with a bacterial antigen (lipopolysaccharide), without pathogenic effects, to explore whether the immune activation affected chemical ornaments. Immune activation resulted in decreased proportions of a major chemical in femoral secretions (cholesta-5,7-dien-3-ol = provitamin D3) known to be selected in scent of males by females and which active form (vitamin D) has a variety of important effects on immune system function. This result suggests the existence of a potential trade-off between physiological regulation of the immune system and the allocation of essential nutrients (vitamins) to sexual chemical ornaments in male lizards.

  11. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    International Nuclear Information System (INIS)

    Ahn, Brian J.; Pollack, Ian F.; Okada, Hideho

    2013-01-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas

  12. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Brian J. [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Pollack, Ian F. [Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Okada, Hideho, E-mail: okadah@upmc.edu [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States)

    2013-11-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  13. Single-cell systems level analysis of human Toll-Like-Receptor activation defines a chemokine signature in Systemic Lupus Erythematosus

    Science.gov (United States)

    O'Gorman, William E.; Hsieh, Elena W.Y.; Savig, Erica S.; Gherardini, Pier Federico; Hernandez, Joseph D.; Hansmann, Leo; Balboni, Imelda M.; Utz, Paul J.; Bendall, Sean C.; Fantl, Wendy J.; Lewis, David B.; Nolan, Garry P.; Davis, Mark M.

    2015-01-01

    Background Activation of Toll-Like Receptors (TLRs) induces inflammatory responses involved in immunity to pathogens and autoimmune pathogenesis, such as in Systemic Lupus Erythematosus (SLE). Although TLRs are differentially expressed across the immune system, a comprehensive analysis of how multiple immune cell subsets respond in a system-wide manner has previously not been described. Objective To characterize TLR activation across multiple immune cell subsets and individuals, with the goal of establishing a reference framework against which to compare pathological processes. Methods Peripheral whole blood samples were stimulated with TLR ligands, and analyzed by mass cytometry simultaneously for surface marker expression, activation states of intracellular signaling proteins, and cytokine production. We developed a novel data visualization tool to provide an integrated view of TLR signaling networks with single-cell resolution. We studied seventeen healthy volunteer donors and eight newly diagnosed untreated SLE patients. Results Our data revealed the diversity of TLR-induced responses within cell types, with TLR ligand specificity. Subsets of NK and T cells selectively induced NF-κB in response to TLR2 ligands. CD14hi monocytes exhibited the most polyfunctional cytokine expression patterns, with over 80 distinct cytokine combinations. Monocytic TLR-induced cytokine patterns were shared amongst a group of healthy donors, with minimal intra- and inter- individual variability. Furthermore, autoimmune disease altered baseline cytokine production, as newly diagnosed untreated SLE patients shared a distinct monocytic chemokine signature, despite clinical heterogeneity. Conclusion Mass cytometry analysis defined a systems-level reference framework for human TLR activation, which can be applied to study perturbations in inflammatory disease, such as SLE. PMID:26037552

  14. Active immunization against renin in normotensive marmoset

    International Nuclear Information System (INIS)

    Michel, J.B.; Guettier, C.; Philippe, M.; Galen, F.X.; Corvol, P.; Menard, J.

    1987-01-01

    Primate renins (human and monkey) are very similar. We used pure human renin to immunize marmosets (Callithrix jacchus) and thereby produce a chronic blockade of the renin-angiotensinogen reaction. After a control period of 2 months, five male marmosets, on their usual sodium-poor diet, were immunized against pure human renin by three subcutneous injections of 30 μg each, with complete and then incomplete Freund's adjuvant. Three marmosets were injected with adjuvant only and served as controls. Blood sampling and blood pressure measurements were performed weekly. After the third injection, the five marmosets immunized against renin developed a high titer of renin antibodies (50% binding of 125 I-labeled human renin at a dilution of ≥ 1:10,000). The antibodies inhibited the enzymatic activity of both marmoset and human renins. At the same time, systolic blood pressure decreased significantly. Plasma renin enzyme activity was undetectable in the animals. Plasma aldosterone decreased significantly. After 1-4 months with low blood pressure, a normal urinary output, and a normal plasma creatinine, the five marmosets became sick and died within one month. At autopsy an immunological renal disease, characterize by the presence of immunoglobulin and macrophage infiltration colocalized with renin, was found. No immunoglobulin was detectable in extrarenal vessels or in other organs. These experiments demonstrate that, in this primate, a chronic blockade of the renin-angiotensin system can be achieved by active immunization against homologous renin, but this blockade is associated with the development of an autoimmune disease localized in the kidney

  15. Immune Aspects of Female Infertility

    Directory of Open Access Journals (Sweden)

    Andrea Brazdova

    2016-05-01

    Full Text Available Immune infertility, in terms of reproductive failure, has become a serious health issue involving approximately 1 out of 5 couples at reproductive age. Semen that is defined as a complex fluid containing sperm, cellular vesicles and other cells and components, could sensitize the female genital tract. The immune rejection of male semen in the female reproductive tract is explained as the failure of natural tolerance leading to local and/or systemic immune response. Present active immune mechanism may induce high levels of anti-seminal/sperm antibodies. It has already been proven that iso-immunization is associated with infertility. Comprehensive studies with regards to the identification of antibody-targets and the determination of specific antibody class contribute to the development of effective immuno-therapy and, on the other hand, potential immuno-contraception, and then of course to complex patient diagnosis. This review summarizes the aspects of female immune infertility.

  16. Immunity to VHS virus in rainbow trout

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Olesen, Niels Jørgen; Koch, C.

    1999-01-01

    Viral hemorrhagic septicemia virus (VHSV) is the rhabdovirus that causes most disease problems in farmed rainbow trout in Europe. Survivors of infection are usually immune to reinfection but as with other fish viruses, development of a modern recombinant vaccine has been complicated by the limited...... knowledge of the immune mechanisms and antigens involved in induction of immunity. Neutralizing and protective monoclonal antibodies recognize the envelope glycoprotein (G protein) which is the only viral protein known to be present on the surface of the virus particle. Immunoblotting analyses...... with monoclonal antibodies as well as with sera from immunized trout have indicated that protein conformation plays an important role in neutralization epitopes. The virus neutralizing activity often found in sera from convalescent trout is highly dependent on a poorly defined complementing activity in normal...

  17. Pathogen-secreted proteases activate a novel plant immune pathway.

    Science.gov (United States)

    Cheng, Zhenyu; Li, Jian-Feng; Niu, Yajie; Zhang, Xue-Cheng; Woody, Owen Z; Xiong, Yan; Djonović, Slavica; Millet, Yves; Bush, Jenifer; McConkey, Brendan J; Sheen, Jen; Ausubel, Frederick M

    2015-05-14

    Mitogen-activated protein kinase (MAPK) cascades play central roles in innate immune signalling networks in plants and animals. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive. Here we report that pathogen-secreted proteases activate a previously unknown signalling pathway in Arabidopsis thaliana involving the Gα, Gβ, and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of an MAPK cascade. In this pathway, receptor for activated C kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G-protein signalling to downstream activation of an MAPK cascade. The protease-G-protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signalling pathways such as that elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to an MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the new protease-mediated immune signalling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems.

  18. Immune oncology, immune responsiveness and the theory of everything.

    Science.gov (United States)

    Turan, Tolga; Kannan, Deepti; Patel, Maulik; Matthew Barnes, J; Tanlimco, Sonia G; Lu, Rongze; Halliwill, Kyle; Kongpachith, Sarah; Kline, Douglas E; Hendrickx, Wouter; Cesano, Alessandra; Butterfield, Lisa H; Kaufman, Howard L; Hudson, Thomas J; Bedognetti, Davide; Marincola, Francesco; Samayoa, Josue

    2018-06-05

    Anti-cancer immunotherapy is encountering its own checkpoint. Responses are dramatic and long lasting but occur in a subset of tumors and are largely dependent upon the pre-existing immune contexture of individual cancers. Available data suggest that three landscapes best define the cancer microenvironment: immune-active, immune-deserted and immune-excluded. This trichotomy is observable across most solid tumors (although the frequency of each landscape varies depending on tumor tissue of origin) and is associated with cancer prognosis and response to checkpoint inhibitor therapy (CIT). Various gene signatures (e.g. Immunological Constant of Rejection - ICR and Tumor Inflammation Signature - TIS) that delineate these landscapes have been described by different groups. In an effort to explain the mechanisms of cancer immune responsiveness or resistance to CIT, several models have been proposed that are loosely associated with the three landscapes. Here, we propose a strategy to integrate compelling data from various paradigms into a "Theory of Everything". Founded upon this unified theory, we also propose the creation of a task force led by the Society for Immunotherapy of Cancer (SITC) aimed at systematically addressing salient questions relevant to cancer immune responsiveness and immune evasion. This multidisciplinary effort will encompass aspects of genetics, tumor cell biology, and immunology that are pertinent to the understanding of this multifaceted problem.

  19. Unraveling the relationship between microbial translocation and systemic immune activation in HIV infection

    Science.gov (United States)

    Shan, Liang; Siliciano, Robert F.

    2014-01-01

    Chronic immune activation is a key factor in HIV-1 disease progression. The translocation of microbial products from the intestinal lumen into the systemic circulation occurs during HIV-1 infection and is associated closely with immune activation; however, it has not been determined conclusively whether microbial translocation drives immune activation or occurs as a consequence of HIV-1 infection. In an important study in this issue of the JCI, Kristoff and colleagues describe the role of microbial translocation in producing immune activation in an animal model of HIV-1 infection, SIV infection of pigtailed macaques. Blocking translocation of intestinal bacterial LPS into the circulation dramatically reduced T cell activation and proliferation, production of proinflammatory cytokines, and plasma SIV RNA levels. This study directly demonstrates that microbial translocation promotes the systemic immune activation associated with HIV-1/SIV infection. PMID:24837427

  20. Characterization of innate immune activity in Phrynops geoffroanus (Testudines: Chelidae

    Directory of Open Access Journals (Sweden)

    Bruno O. Ferronato

    2009-12-01

    Full Text Available The innate immune activity of the freshwater turtle Phrynops geoffroanus (Schweigger, 1812 was investigated, using a sheep-red-blood cell hemolysis assay. The time- and concentration-dependent hemolytic activity of the turtle plasma was low compared to that reported for other reptiles. However the plasma of P. geoffroanus exhibited higher activity at elevated temperatures, resulting in temperature-dependent hemolysis. The sensitivity of turtle plasma to temperature could be interpreted as a mechanism by which freshwater turtles use basking behavior to elevate body temperature, thus enhancing the innate immune response. However, we cannot discard the possibility that environmental contaminants could be affecting the turtle's immune response, since the animals in this investigation were captured in a polluted watercourse.

  1. Physical activity influences the immune system of breast cancer patients

    Directory of Open Access Journals (Sweden)

    Thorsten Schmidt

    2017-01-01

    Full Text Available It has been suggested that physical activity in breast cancer patients can not only improve quality of life. Influences on physical and psychological levels have been evaluated, but effects on the immune system of breast cancer patients are hardly known. A PubMed search identified relevant trials and meta-analyses from 1970 to 2013. This review summarizes the results of international studies and the current discussion of effects of physical activity on the immune system of breast cancer patients. Highlighted are effects of physical activity on the immune system. Seven original articles and 14 reviews included in this review. Two original and the review articles includes other tumor entities besides breast cancer.Evaluated methods such as dose-response relationships for exercise in oncology, hardly exist. Increased immunological anti-cancer activity due to physical activity is probably mediated via an increase in number and cytotoxicity of monocytes and natural killer cells and cytokines.

  2. [Immune regulation activity and mechanism of Tibetan Kefir exopolysaccharide fractions].

    Science.gov (United States)

    Meng, Li; Zhang, Lanwei

    2009-12-01

    To investigate the effects and mechanism on immune regulation activity in mice of two Tibetan Kefir exoploysaccharides (EPS) with different molecular weight of 0.1 x 10(5) - 3 x 10(5) (fraction 1) and 1.8 x 10(3) (fraction 2). The immune regulation activity experiment was carried out in vitro based on the Functional Assessment Procedure and Test Methods of Health Food, which was issued by Ministry of Health of China. First, we treated mice subjects with EPS at doses of 40 mg/kg, 80 mg/kg, 120 mg/kg through ig. Then we detected the index of immune organs, the ability of antibody production (tested by HC50), activity of NK cell, delayed type hypersensitivity (DTH) and phagocytosis of macrophage in mice. Finally, we examined the expression of Erk protein in Macrophages by Western Blot assay. Fraction 1 could promote HC50, activity of NK cell and DTH in mice which low dose showed better. Fraction 2 could promote DTH, phagocytosis of macrophage which high dose showed better. The expression of Erk and COX-2 had the same trend with Phagocytic index. We verified the two fractions of Tibetan Kefir EPS could enhance immune functions in mice. Fraction 1 regulated immune function through NK cell and B cell while fraction 2 through macrophage cell and T cell. The effects to macrophage of Tibetan Kefir EPS in mice may realize through extra cellular signal-regulated kinase Erk pathway.

  3. Experiences from polio supplementary immunization activities in ...

    African Journals Online (AJOL)

    2014-05-31

    May 31, 2014 ... lessons from supplementary immunization activities (SIAs) conducted in the State that will be useful to ... Poliovirus invades the central nervous system and causes ..... The vaccine wastage rate of 6.6% was slightly higher.

  4. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    2008-09-01

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  5. Defining the Strategy of Nuclear Activity

    International Nuclear Information System (INIS)

    Racana, R.

    2006-01-01

    This article presents nuclear activity as defined within the field of the nuclear industry, which is studied from its capacity to generate electric power to its application in industry and medicine as well as a source for weapons of mass destruction. These fields of analysis introduce some problems that the nuclear activity itself must know how to confront employing action strategies aimed at becoming an activity to be kept in mind when making use of the benefits that its peaceful use contributes to human life. (Author)

  6. Reevaluation of immune activation in the era of cART and an aging HIV-infected population.

    Science.gov (United States)

    de Armas, Lesley R; Pallikkuth, Suresh; George, Varghese; Rinaldi, Stefano; Pahwa, Rajendra; Arheart, Kristopher L; Pahwa, Savita

    2017-10-19

    Biological aging is associated with immune activation (IA) and declining immunity due to systemic inflammation. It is widely accepted that HIV infection causes persistent IA and premature immune senescence despite effective antiretroviral therapy and virologic suppression; however, the effects of combined HIV infection and aging are not well defined. Here, we assessed the relationship between markers of IA and inflammation during biological aging in HIV-infected and -uninfected populations. Antibody response to seasonal influenza vaccination was implemented as a measure of immune competence and relationships between IA, inflammation, and antibody responses were explored using statistical modeling appropriate for integrating high-dimensional data sets. Our results show that markers of IA, such as coexpression of HLA antigen D related (HLA-DR) and CD38 on CD4+ T cells, exhibit strong associations with HIV infection but not with biological age. Certain variables that showed a strong relationship with aging, such as declining naive and CD38+ CD4 and CD8+ T cells, did so regardless of HIV infection. Interestingly, the variable of biological age was not identified in a predictive model as significantly impacting vaccine responses in either group, while distinct IA and inflammatory variables were closely associated with vaccine response in HIV-infected and -uninfected populations. These findings shed light on the most relevant and persistent immune defects during virological suppression with antiretroviral therapy.

  7. Activation of Innate Immunity by Bacterial Ligands of Toll-like Receptors

    Directory of Open Access Journals (Sweden)

    Nelli K. Akhmatova

    2014-03-01

    Full Text Available Tγδ and B1 lymphocytes are essential components of the mucosal immune system, activating different bacterial and viral ligands without costimulatory signals and preprocessing of other immune effectors. This ability enables the immune system to provide rapid protection against pathogens and contributes to the decoding mechanism of the sensitizing activity of mucosal antigens, because the interaction of these cells produces antibodies for immunoglobulin M (IgM and IgA, but not for IgE. We studied 3 routes of introducing antigens for opportunistic microorganisms to activate Tγδ and B1 lymphocytes: subcutaneous, intranasal, and oral. The subcutaneous and intranasal routes produced a significant increase of these cells in lymph nodes associated with the nasal cavity (NALT and in those associated with bronchial tissue (BALT. The oral route significantly increased levels of these cells in the spleen, in NALT, BALT, and in nodes associated with the gut (GALT. We found that mucosal application of the immunomodulator Immunovac-VP-4 (contains antigens of conditionally pathogenic microorganisms, in conjunction with the activation of Tγδ and B1, induces adaptive immune mechanisms not only in the lymphoid formations associated with the respiratory system and with GALT, but also in the spleen (increased expression of cluster of differentiation 3 [CD3], CD4, CD8, CD19, and CD25. This indicates that there is migration of lymphoid cells from the regional lymph nodes and mucosal lymphoid tissues via the lymph and blood to distant organs, lymphoid development, and both local and systemic immunity. Mucosal application of Immunovac-VP-4 in mice potentiates the cytotoxic activity of NK cells in the NALT, BALT and GALT. The highest cytotoxicity was observed in cells, derived from lymphoid tissue of the intestine after oral immunization. Although we found that cytokine production was increased by all 3 immunization routes, it was most intensive after subcutaneous

  8. Jungle Honey Enhances Immune Function and Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Miki Fukuda

    2011-01-01

    Full Text Available Jungle honey (JH is collected from timber and blossom by wild honey bees that live in the tropical forest of Nigeria. JH is used as a traditional medicine for colds, skin inflammation and burn wounds as well as general health care. However, the effects of JH on immune functions are not clearly known. Therefore, we investigated the effects of JH on immune functions and antitumor activity in mice. Female C57BL/6 mice were injected with JH (1 mg/mouse/day, seven times intra-peritoneal. After seven injections, peritoneal cells (PC were obtained. Antitumor activity was assessed by growth of Lewis Lung Carcinoma/2 (LL/2 cells. PC numbers were increased in JH-injected mice compared to control mice. In Dot Plot analysis by FACS, a new cell population appeared in JH-injected mice. The percent of Gr-1 surface antigen and the intensity of Gr-1 antigen expression of PC were increased in JH-injected mice. The new cell population was neutrophils. JH possessed chemotactic activity for neutrophils. Tumor incidence and weight were decreased in JH-injected mice. The ratio of reactive oxygen species (ROS producing cells was increased in JH-injected mice. The effective component in JH was fractionized by gel filtration using HPLC and had an approximate molecular weight (MW of 261. These results suggest that neutrophils induced by JH possess potent antitumor activity mediated by ROS and the effective immune component of JH is substrate of MW 261.

  9. Posttransplant Immune Activation: Innocent Bystander or Insidious Culprit of Posttransplant Accelerated Atherosclerosis.

    Science.gov (United States)

    Ducloux, Didier; Bamoulid, Jamal; Crepin, Thomas; Rebibou, Jean-Michel; Courivaud, Cecile; Saas, Philippe

    2017-09-01

    Cardiovascular disease is a major cause of morbidity, disability, and mortality in kidney transplant patients. Cumulative reports indicate that the excessive risk of cardiovascular events is not entirely explained by the increased prevalence of traditional cardiovascular risk factors. Atherosclerosis is a chronic inflammatory disease, and it has been postulated that posttransplant immune disturbances may explain the gap between the predicted and observed risks of cardiovascular events. Although concordant data suggest that innate immunity contributes to the posttransplant accelerated atherosclerosis, only few arguments plead for a role of adaptive immunity. We report and discuss here consistent data demonstrating that CD8 + T cell activation is a frequent posttransplant immune feature that may have pro-atherogenic effects. Expansion of exhausted/activated CD8 + T cells in kidney transplant recipients is stimulated by several factors including cytomegalovirus infections, lymphodepletive therapy (e.g., antithymocyte globulins), chronic allogeneic stimulation, and a past history of renal insufficiency. This is observed in the setting of decreased thymic activity, a process also found in elderly individuals and reflecting accelerated immune senescence.

  10. Metabolites related to renal function, immune activation, and carbamylation are associated with muscle composition in older adults.

    Science.gov (United States)

    Lustgarten, Michael S; Fielding, Roger A

    2017-12-15

    Reduced skeletal muscle density in older adults is associated with insulin resistance, decreased physical function, and an increased all-cause mortality risk. To elucidate mechanisms that may underlie the maintenance of skeletal muscle density, we conducted a secondary analysis of previously published muscle composition and serum metabolomic data in 73 older adults (average age, 78y). Multivariable-adjusted linear regression was used to examine associations between 321 metabolites with muscle composition, defined as the ratio between normal density (NDM) with low density (LDM) thigh muscle cross sectional area (NDM/LDM). Sixty metabolites were significantly (p≤0.05 and qMetabolites that were significantly associated with muscle composition were then tested for their association with circulating markers of renal function (blood urea nitrogen, creatinine, uric acid), and with the immune response (neutrophils/lymphocytes) and activation (kynurenine/tryptophan). 43 significant NDM/LDM metabolites (including urea) were co-associated with at least 1 marker of renal function; 23 of these metabolites have been previously identified as uremic solutes. The neutrophil/lymphocyte ratio was significantly associated with NDM/LDM (β±SE: -0.3±0.1, p=0.01, q=0.04). 35 significant NDM/LDM metabolites were co-associated with immune activation. Carbamylation (defined as homocitrulline/lysine) was identified as a pathway that may link renal function and immune activation with muscle composition, as 29 significant NDM/LDM metabolites were co-associated with homocitrulline/lysine, with at least 2 markers of renal function, and with kynurenine/tryptophan. When considering that elevated urea and uremic metabolites have been linked with an increased systemic microbial burden, that antimicrobial defense can be reduced in the presence of carbamylation, and that adipocytes can promote host defense, we propose the novel hypothesis that the age-related increase in adipogenesis within muscle

  11. Vaginal immunization to elicit primary T-cell activation and dissemination.

    Directory of Open Access Journals (Sweden)

    Elena Pettini

    Full Text Available Primary T-cell activation at mucosal sites is of utmost importance for the development of vaccination strategies. T-cell priming after vaginal immunization, with ovalbumin and CpG oligodeoxynucleotide adjuvant as model vaccine formulation, was studied in vivo in hormone-synchronized mice and compared to the one induced by the nasal route. Twenty-four hours after both vaginal or nasal immunization, antigen-loaded dendritic cells were detected within the respective draining lymph nodes. Vaginal immunization elicited a strong recruitment of antigen-specific CD4(+ T cells into draining lymph nodes that was more rapid than the one observed following nasal immunization. T-cell clonal expansion was first detected in iliac lymph nodes, draining the genital tract, and proliferated T cells disseminated towards distal lymph nodes and spleen similarly to what observed following nasal immunization. T cells were indeed activated by the antigen encounter and acquired homing molecules essential to disseminate towards distal lymphoid organs as confirmed by the modulation of CD45RB, CD69, CD44 and CD62L marker expression. A multi-type Galton Watson branching process, previously used for in vitro analysis of T-cell proliferation, was applied to model in vivo CFSE proliferation data in draining lymph nodes 57 hours following immunization, in order to calculate the probabilistic decision of a cell to enter in division, rest in quiescence or migrate/die. The modelling analysis indicated that the probability of a cell to proliferate was higher following vaginal than nasal immunization. All together these data show that vaginal immunization, despite the absence of an organized mucosal associated inductive site in the genital tract, is very efficient in priming antigen-specific CD4(+ T cells and inducing their dissemination from draining lymph nodes towards distal lymphoid organs.

  12. Influence of Physical Activity and Nutrition on Obesity-Related Immune Function

    Directory of Open Access Journals (Sweden)

    Chun-Jung Huang

    2013-01-01

    Full Text Available Research examining immune function during obesity suggests that excessive adiposity is linked to impaired immune responses leading to pathology. The deleterious effects of obesity on immunity have been associated with the systemic proinflammatory profile generated by the secretory molecules derived from adipose cells. These include inflammatory peptides, such as TNF-α, CRP, and IL-6. Consequently, obesity is now characterized as a state of chronic low-grade systemic inflammation, a condition considerably linked to the development of comorbidity. Given the critical role of adipose tissue in the inflammatory process, especially in obese individuals, it becomes an important clinical objective to identify lifestyle factors that may affect the obesity-immune system relationship. For instance, stress, physical activity, and nutrition have each shown to be a significant lifestyle factor influencing the inflammatory profile associated with the state of obesity. Therefore, the purpose of this review is to comprehensively evaluate the impact of lifestyle factors, in particular psychological stress, physical activity, and nutrition, on obesity-related immune function with specific focus on inflammation.

  13. Amyloid and immune homeostasis.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2018-03-01

    Extracellular amyloid deposition defines a range of amyloidosis and amyloid-related disease. Addition to primary and secondary amyloidosis, amyloid-related disease can be observed in different tissue/organ that sharing the common pathogenesis based on the formation of amyloid deposition. Currently, both Alzheimer's disease and type 2 diabetes can be diagnosed with certainly only based on the autopsy results, by which amyloidosis of the associative tissue/organ is observed. Intriguingly, since it demonstrated that amyloid deposits trigger inflammatory reaction through the activation of cascaded immune response, wherein several lines of evidence implies a protective role of amyloid in preventing autoimmunity. Furthermore, attempts for preventing amyloid formation and/or removing amyloid deposits from the brain have caused meningoencephalitis and consequent deaths among the subjects. Hence, it is important to note that amyloid positively participates in maintaining immune homeostasis and contributes to irreversible inflammatory response. In this review, we will focus on the interactive relationship between amyloid and the immune system, discussing the potential functional roles of amyloid in immune tolerance and homeostasis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. On the Discrete Kinetic Theory for Active Particles. Modelling the Immune Competition

    Directory of Open Access Journals (Sweden)

    I. Brazzoli

    2006-01-01

    Full Text Available This paper deals with the application of the mathematical kinetic theory for active particles, with discrete activity states, to the modelling of the immune competition between immune and cancer cells. The first part of the paper deals with the assessment of the mathematical framework suitable for the derivation of the models. Two specific models are derived in the second part, while some simulations visualize the applicability of the model to the description of biological events characterizing the immune competition. A final critical outlines some research perspectives.

  15. Mortality in Severe Human Immunodeficiency Virus-Tuberculosis Associates With Innate Immune Activation and Dysfunction of Monocytes.

    Science.gov (United States)

    Janssen, Saskia; Schutz, Charlotte; Ward, Amy; Nemes, Elisa; Wilkinson, Katalin A; Scriven, James; Huson, Mischa A; Aben, Nanne; Maartens, Gary; Burton, Rosie; Wilkinson, Robert J; Grobusch, Martin P; Van der Poll, Tom; Meintjes, Graeme

    2017-07-01

    Case fatality rates among hospitalized patients diagnosed with human immunodeficiency virus (HIV)-associated tuberculosis remain high, and tuberculosis mycobacteremia is common. Our aim was to define the nature of innate immune responses associated with 12-week mortality in this population. This prospective cohort study was conducted at Khayelitsha Hospital, Cape Town, South Africa. Hospitalized HIV-infected tuberculosis patients with CD4 counts tuberculosis blood cultures were performed in all. Ambulatory HIV-infected patients without active tuberculosis were recruited as controls. Whole blood was stimulated with Escherichia coli derived lipopolysaccharide, heat-killed Streptococcus pneumoniae, and Mycobacterium tuberculosis. Biomarkers of inflammation and sepsis, intracellular (flow cytometry) and secreted cytokines (Luminex), were assessed for associations with 12-week mortality using Cox proportional hazard models. Second, we investigated associations of these immune markers with tuberculosis mycobacteremia. Sixty patients were included (median CD4 count 53 cells/µL (interquartile range [IQR], 22-132); 16 (27%) died after a median of 12 (IQR, 0-24) days. Thirty-one (52%) grew M. tuberculosis on blood culture. Mortality was associated with higher concentrations of procalcitonin, activation of the innate immune system (% CD16+CD14+ monocytes, interleukin-6, tumour necrosis factor-ɑ and colony-stimulating factor 3), and antiinflammatory markers (increased interleukin-1 receptor antagonist and lower monocyte and neutrophil responses to bacterial stimuli). Tuberculosis mycobacteremia was not associated with mortality, nor with biomarkers of sepsis. Twelve-week mortality was associated with greater pro- and antiinflammatory alterations of the innate immune system, similar to those reported in severe bacterial sepsis. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  16. The lectin pathway of complement activation is a critical component of the innate immune response to pneumococcal infection

    DEFF Research Database (Denmark)

    Ali, Youssif M; Lynch, Nicholas J; Haleem, Kashif S

    2012-01-01

    The complement system plays a key role in host defense against pneumococcal infection. Three different pathways, the classical, alternative and lectin pathways, mediate complement activation. While there is limited information available on the roles of the classical and the alternative activation...... to pneumococcal infection and fail to opsonize Streptococcus pneumoniae in the none-immune host. This defect in complement opsonisation severely compromises pathogen clearance in the lectin pathway deficient host. Using sera from mice and humans with defined complement deficiencies, we demonstrate that mouse...... of C4. This study corroborates the essential function of MASP-2 in the lectin pathway and highlights the importance of MBL-independent lectin pathway activation in the host defense against pneumococci....

  17. Pre-transplant immune state defined by serum markers and alloreactivity predicts acute rejection after living donor kidney transplantation.

    Science.gov (United States)

    Vondran, Florian W R; Timrott, Kai; Kollrich, Sonja; Steinhoff, Ann-Kristin; Kaltenborn, Alexander; Schrem, Harald; Klempnauer, Juergen; Lehner, Frank; Schwinzer, Reinhard

    2014-09-01

    Acute rejection (AR) remains a major cause for long-term kidney allograft failure. Reliable immunological parameters suitable to define the pre-transplant immune state and hence the individual risk of graft rejection are highly desired to preferably adapt the immunosuppressive regimen in advance. Donor and third party alloreactivities were determined by mixed lymphocyte cultures. Soluble forms of CD25, CD30, and CD44 were detected in patients' serum by ELISA. Various lymphocyte subpopulations were measured using flow cytometry. All patients received triple immunosuppression (tacrolimus/mycophenolate mofetil/steroids) and were grouped according to biopsy results within the first year: rejection-free (RF, n = 13), borderline (BL, n = 5), or acute rejection (AR, n = 7). Patients with AR showed the highest pre-transplant alloreactivities and serum levels (sCD25/sCD30/sCD44) according to the pattern RF transplant frequencies of CD4(+) /CD8(+) T cells lacking CD28, but lower numbers of CD8(+) CD161(bright) T cells and NK cells than RF individuals. Pre-transplant immune state defined by alloreactivity, serum markers, and particular lymphocyte subsets seems to correlate with occurrence of graft rejection after kidney transplantation. A prognostic score based on pre-transplant serum levels has shown great potential for prediction of rejection episodes and should be further evaluated. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation.

    Science.gov (United States)

    Bald, Tobias; Landsberg, Jennifer; Lopez-Ramos, Dorys; Renn, Marcel; Glodde, Nicole; Jansen, Philipp; Gaffal, Evelyn; Steitz, Julia; Tolba, Rene; Kalinke, Ulrich; Limmer, Andreas; Jönsson, Göran; Hölzel, Michael; Tüting, Thomas

    2014-06-01

    Infiltration of human melanomas with cytotoxic immune cells correlates with spontaneous type I IFN activation and a favorable prognosis. Therapeutic blockade of immune-inhibitory receptors in patients with preexisting lymphocytic infiltrates prolongs survival, but new complementary strategies are needed to activate cellular antitumor immunity in immune cell-poor melanomas. Here, we show that primary melanomas in Hgf-Cdk4(R24C) mice, which imitate human immune cell-poor melanomas with a poor outcome, escape IFN-induced immune surveillance and editing. Peritumoral injections of immunostimulatory RNA initiated a cytotoxic inflammatory response in the tumor microenvironment and significantly impaired tumor growth. This critically required the coordinated induction of type I IFN responses by dendritic, myeloid, natural killer, and T cells. Importantly, antibody-mediated blockade of the IFN-induced immune-inhibitory interaction between PD-L1 and PD-1 receptors further prolonged the survival. These results highlight important interconnections between type I IFNs and immune-inhibitory receptors in melanoma pathogenesis, which serve as targets for combination immunotherapies. Using a genetically engineered mouse melanoma model, we demonstrate that targeted activation of the type I IFN system with immunostimulatory RNA in combination with blockade of immune-inhibitory receptors is a rational strategy to expose immune cell-poor tumors to cellular immune surveillance. ©2014 American Association for Cancer Research.

  19. Immune phenotypes predict survival in patients with glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Haouraa Mostafa

    2016-09-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM, a common primary malignant brain tumor, rarely disseminates beyond the central nervous system and has a very bad prognosis. The current study aimed at the analysis of immunological control in individual patients with GBM. Methods Immune phenotypes and plasma biomarkers of GBM patients were determined at the time of diagnosis using flow cytometry and ELISA, respectively. Results Using descriptive statistics, we found that immune anomalies were distinct in individual patients. Defined marker profiles proved highly relevant for survival. A remarkable relation between activated NK cells and improved survival in GBM patients was in contrast to increased CD39 and IL-10 in patients with a detrimental course and very short survival. Recursive partitioning analysis (RPA and Cox proportional hazards models substantiated the relevance of absolute numbers of CD8 cells and low numbers of CD39 cells for better survival. Conclusions Defined alterations of the immune system may guide the course of disease in patients with GBM and may be prognostically valuable for longitudinal studies or can be applied for immune intervention.

  20. Human Ebola virus infection results in substantial immune activation.

    Science.gov (United States)

    McElroy, Anita K; Akondy, Rama S; Davis, Carl W; Ellebedy, Ali H; Mehta, Aneesh K; Kraft, Colleen S; Lyon, G Marshall; Ribner, Bruce S; Varkey, Jay; Sidney, John; Sette, Alessandro; Campbell, Shelley; Ströher, Ute; Damon, Inger; Nichol, Stuart T; Spiropoulou, Christina F; Ahmed, Rafi

    2015-04-14

    Four Ebola patients received care at Emory University Hospital, presenting a unique opportunity to examine the cellular immune responses during acute Ebola virus infection. We found striking activation of both B and T cells in all four patients. Plasmablast frequencies were 10-50% of B cells, compared with less than 1% in healthy individuals. Many of these proliferating plasmablasts were IgG-positive, and this finding coincided with the presence of Ebola virus-specific IgG in the serum. Activated CD4 T cells ranged from 5 to 30%, compared with 1-2% in healthy controls. The most pronounced responses were seen in CD8 T cells, with over 50% of the CD8 T cells expressing markers of activation and proliferation. Taken together, these results suggest that all four patients developed robust immune responses during the acute phase of Ebola virus infection, a finding that would not have been predicted based on our current assumptions about the highly immunosuppressive nature of Ebola virus. Also, quite surprisingly, we found sustained immune activation after the virus was cleared from the plasma, observed most strikingly in the persistence of activated CD8 T cells, even 1 mo after the patients' discharge from the hospital. These results suggest continued antigen stimulation after resolution of the disease. From these convalescent time points, we identified CD4 and CD8 T-cell responses to several Ebola virus proteins, most notably the viral nucleoprotein. Knowledge of the viral proteins targeted by T cells during natural infection should be useful in designing vaccines against Ebola virus.

  1. Self-reported parenting style is associated with children's inflammation and immune activation.

    Science.gov (United States)

    Byrne, Michelle L; Badcock, Paul B; Simmons, Julian G; Whittle, Sarah; Pettitt, Adam; Olsson, Craig A; Mundy, Lisa K; Patton, George C; Allen, Nicholas B

    2017-04-01

    Family environments and parenting have been associated with inflammation and immune activation in children and adolescents; however, it remains unclear which specific aspects of parenting drive this association. In this study, we cross-sectionally examined the association between 5 discrete parenting styles and inflammation and immune activation in late childhood. Data were drawn from 102 families (55 with female children, mean age 9.50 years, SD = 0.34) participating in the Imaging Brain Development in the Childhood to Adolescence Transition Study. Children provided saliva samples from which inflammation (C-reactive protein) and immune competence/activation (secretory immunoglobulin A) were measured. Parents completed the Alabama Parenting Questionnaire, which measures 5 aspects of parenting style-positive parental involvement, positive disciplinary techniques, consistency in disciplinary techniques, corporal punishment, and monitoring and supervision. Results showed that higher scores on the poor parental monitoring scale were associated with higher levels of both inflammation and immune activation in children. This study highlights parental monitoring and supervision as a specific aspect of parenting behavior that may be important for children's physical and mental health. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Association of sex work with reduced activation of the mucosal immune system.

    Science.gov (United States)

    Lajoie, Julie; Kimani, Makubo; Plummer, Francis A; Nyamiobo, Francis; Kaul, Rupert; Kimani, Joshua; Fowke, Keith R

    2014-07-15

    Unprotected intercourse and seminal discharge are powerful activators of the mucosal immune system and are important risk factors for transmission of human immunodeficiency virus (HIV). This study was designed to determine if female sex work is associated with changes in the mucosal immunity. Cervicovaginal lavage and plasma from 122 HIV-uninfected female sex workers (FSW) and 44 HIV-uninfected low-risk non-FSW from the same socioeconomic district of Nairobi were analyzed for evidence of immune activation (IA). The cervico-mononuclear cells (CMC) were analyzed for cellular activation by flow cytometry. Lower IA was observed in FSW compared to the low-risk women as demonstrated by the lower level of MIP-3α (P sex work and increased with duration of sex work. This study showed that sex work is associated with important changes in the mucosal immune system. By analyzing chemokine/cytokine levels and CMC activation, we observed a lower mucosal IA in HIV-uninfected FSW compared to low-risk women. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Human immunodeficiency virus-like particles activate multiple types of immune cells

    International Nuclear Information System (INIS)

    Sailaja, Gangadhara; Skountzou, Ioanna; Quan, Fu-Shi; Compans, Richard W.; Kang, Sang-Moo

    2007-01-01

    The rapid spread of human immunodeficiency virus (HIV) worldwide makes it a high priority to develop an effective vaccine. Since live attenuated or inactivated HIV is not likely to be approved as a vaccine due to safety concerns, HIV virus like particles (VLPs) offer an attractive alternative because they are safe due to the lack of a viral genome. Although HIV VLPs have been shown to induce humoral and cellular immune responses, it is important to understand the mechanisms by which they induce such responses and to improve their immunogenicity. We generated HIV VLPs, and VLPs containing Flt3 ligand (FL), a dendritic cell growth factor, to target VLPs to dendritic cells, and investigated the roles of these VLPs in the initiation of adaptive immune responses in vitro and in vivo. We found that HIV-1 VLPs induced maturation of dendritic cells and monocyte/macrophage populations in vitro and in vivo, with enhanced expression of maturation markers and cytokines. Dendritic cells pulsed with VLPs induced activation of splenocytes resulting in increased production of cytokines. VLPs containing FL were found to increase dendritic cells and monocyte/macrophage populations in the spleen when administered to mice. Administration of VLPs induced acute activation of multiple types of cells including T and B cells as indicated by enhanced expression of the early activation marker CD69 and down-regulation of the homing receptor CD62L. VLPs containing FL were an effective form of antigen in activating immune cells via dendritic cells, and immunization with HIV VLPs containing FL resulted in enhanced T helper type 2-like immune responses

  4. Structural and functional analyses of DNA-sensing and immune activation by human cGAS.

    Science.gov (United States)

    Kato, Kazuki; Ishii, Ryohei; Goto, Eiji; Ishitani, Ryuichiro; Tokunaga, Fuminori; Nureki, Osamu

    2013-01-01

    The detection of cytosolic DNA, derived from pathogens or host cells, by cytosolic receptors is essential for appropriate host immune responses. Cyclic GMP-AMP synthase (cGAS) is a newly identified cytosolic DNA receptor that produces cyclic GMP-AMP, which activates stimulator of interferon genes (STING), resulting in TBK1-IRF3 pathway activation followed by the production of type I interferons. Here we report the crystal structure of human cGAS. The structure revealed that a cluster of lysine and arginine residues forms the positively charged DNA binding surface of human cGAS, which is important for the STING-dependent immune activation. A structural comparison with other previously determined cGASs and our functional analyses suggested that a conserved zinc finger motif and a leucine residue on the DNA binding surface are crucial for the DNA-specific immune response of human cGAS, consistent with previous work. These structural features properly orient the DNA binding to cGAS, which is critical for DNA-induced cGAS activation and STING-dependent immune activation. Furthermore, we showed that the cGAS-induced activation of STING also involves the activation of the NF-κB and IRF3 pathways. Our results indicated that cGAS is a DNA sensor that efficiently activates the host immune system by inducing two distinct pathways.

  5. Structural and functional analyses of DNA-sensing and immune activation by human cGAS.

    Directory of Open Access Journals (Sweden)

    Kazuki Kato

    Full Text Available The detection of cytosolic DNA, derived from pathogens or host cells, by cytosolic receptors is essential for appropriate host immune responses. Cyclic GMP-AMP synthase (cGAS is a newly identified cytosolic DNA receptor that produces cyclic GMP-AMP, which activates stimulator of interferon genes (STING, resulting in TBK1-IRF3 pathway activation followed by the production of type I interferons. Here we report the crystal structure of human cGAS. The structure revealed that a cluster of lysine and arginine residues forms the positively charged DNA binding surface of human cGAS, which is important for the STING-dependent immune activation. A structural comparison with other previously determined cGASs and our functional analyses suggested that a conserved zinc finger motif and a leucine residue on the DNA binding surface are crucial for the DNA-specific immune response of human cGAS, consistent with previous work. These structural features properly orient the DNA binding to cGAS, which is critical for DNA-induced cGAS activation and STING-dependent immune activation. Furthermore, we showed that the cGAS-induced activation of STING also involves the activation of the NF-κB and IRF3 pathways. Our results indicated that cGAS is a DNA sensor that efficiently activates the host immune system by inducing two distinct pathways.

  6. Review article: Associations between immune activation, intestinal permeability and the irritable bowel syndrome.

    Science.gov (United States)

    Matricon, J; Meleine, M; Gelot, A; Piche, T; Dapoigny, M; Muller, E; Ardid, D

    2012-12-01

    Irritable bowel syndrome (IBS), one of the most common gastrointestinal disorders, markedly impairing patients' quality of life. Drug development for IBS treatment has been hampered by the lack of understanding of IBS aetiology. In recent years, numerous data have emerged that suggest the involvement of immune activation in IBS, at least in a subset of patients. To determine whether immune activation and intestinal permeabilisation are more frequently observed in IBS patients compared with healthy controls. The scientific bibliography was searched using the following keywords: irritable bowel syndrome, inflammation, immune activation, permeabilisation, intestine, assay, histology and human. The retrieved studies, including blood, faecal and histological studies, were analysed to provide a comprehensive and structured overview of the available data including the type of assay, type of inflammatory marker investigated or intestinal segment studied. Immune activation was more frequently observed in IBS patients than in healthy controls. An increase in the number of mast cells and lymphocytes, an alteration in cytokine levels and intestinal permeabilisation were reported in IBS patients. No consistent changes in the numbers of B cells or enterochromaffin cells or in mucosal serotonin production were demonstrated. The changes observed were modest and often heterogeneous among the studied population. Only appropriate interventions improving irritable bowel syndrome symptoms could highlight and confirm the role of immune activation in this pathophysiology. © 2012 Blackwell Publishing Ltd.

  7. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Katarzyna A Radomska

    Full Text Available Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the immunogenicity and protective efficacy of a recombinant C. jejuni flagellin-based subunit vaccine with intrinsic adjuvant activity. Toll-like receptor activation assays demonstrated the purity and TLR5 stimulating (adjuvant activity of the vaccine. The antigen (20-40 μg was administered in ovo to 18 day-old chicken embryos. Serum samples and intestinal content were assessed for antigen-specific systemic and mucosal humoral immune responses. In ovo vaccination resulted in the successful generation of IgY and IgM serum antibodies against the flagellin-based subunit vaccine as determined by ELISA and Western blotting. Vaccination did not induce significant amounts of flagellin-specific secretory IgA in the chicken intestine. Challenge of chickens with C. jejuni yielded similar intestinal colonization levels for vaccinated and control animals. Our results indicate that in ovo delivery of recombinant C. jejuni flagellin subunit vaccine is a feasible approach to yield a systemic humoral immune response in chickens but that a mucosal immune response may be needed to reduce C. jejuni colonization.

  8. The role of rare innate immune cells in Type 2 immune activation against parasitic helminths.

    Science.gov (United States)

    Webb, Lauren M; Tait Wojno, Elia D

    2017-09-01

    The complexity of helminth macroparasites is reflected in the intricate network of host cell types that participate in the Type 2 immune response needed to battle these organisms. In this context, adaptive T helper 2 cells and the Type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 have been the focus of research for years, but recent work has demonstrated that the innate immune system plays an essential role. Some innate immune cells that promote Type 2 immunity are relatively abundant, such as macrophages and eosinophils. However, we now appreciate that more rare cell types including group 2 innate lymphoid cells, basophils, mast cells and dendritic cells make significant contributions to these responses. These cells are found at low frequency but they are specialized to their roles - located at sites such as the skin, lung and gut, where the host combats helminth parasites. These cells respond rapidly and robustly to worm antigens and worm-induced damage to produce essential cytokines, chemokines, eicosanoids and histamine to activate damaged epithelium and to recruit other effectors. Thus, a greater understanding of how these cells operate is essential to understand how the host protects itself during helminth infection.

  9. [Proteolytic activity of IgG-antibodies of mice, immunized by calf thymus histones].

    Science.gov (United States)

    Kit, Iu Ia; Korniĭ, N; Kril', I Ĭ; Mahorivs'ka, I B; Tkachenko, V; Bilyĭ, R O; Stoĭka, R S

    2014-01-01

    The main goal of the study was to determine the ability of histones to induce production of the proteolytically active IgG-antibodies in BALB/c mice. In order to perform this study 8 mice were immunized with the fraction of total calf thymus histones. IgGs were isolated from the serum of the immunized and not immunized animals by means of precipitation with 33% ammonium sulfate, followed by affinity chromatography on protein G-Sepharose column. Histones, myelin basic protein (MBP), lysozyme, BSA, ovalbumin, macroglobulin, casein and cytochrome c served as substrates for determining the proteolytic activity. It was found that IgGs from the blood serum of immunized mice are capable of hydrolyzing histone H1, core histone and MBP. On the contrary, the proteolytic activity of IgGs from the blood serum of not immunized mice was not detected. The absence of proteolytical enzymes in the fraction of IgGs was proven by HPLC chromatography. High levels of proteolytic activity toward histones have been also detected in affinity purified IgGs from blood serum of patients with rheumatoid arthritis, but not in healthy donors. These data indicate that eukaryotic histones may induce production of protabzymes in mammals. The possible origin of these protabzymes and their potential biological role in mammalians is discussed.

  10. Dynamics of immune reconstitution and activation markers in HIV+ treatment-naïve patients treated with raltegravir, tenofovir disoproxil fumarate and emtricitabine.

    Directory of Open Access Journals (Sweden)

    Nicholas T Funderburg

    Full Text Available The dynamics of CD4+ T cell reconstitution and changes in immune activation and inflammation in HIV-1 disease following initiation of antiretroviral therapy (ART are incompletely defined and their underlying mechanisms poorly understood.Thirty-nine treatment-naïve patients were treated with raltegravir, tenofovir DF and emtricitabine. Immunologic and inflammatory indices were examined in persons with sustained virologic control during 48 weeks of therapy.Initiation of ART increased CD4+ T cell numbers and decreased activation and cell cycle entry among CD4+ and CD8+ T cell subsets, and attenuated markers of coagulation (D-dimer levels and inflammation (IL-6 and TNFr1. These indices decayed at different rates and almost all remained elevated above levels measured in HIV-seronegatives through 48 weeks of viral control. Greater first and second phase CD4+ T cell restoration was related to lower T cell activation and cell cycling at baseline, to their decay with treatment, and to baseline levels of selected inflammatory indices, but less so to their changes on therapy.ART initiation results in dynamic changes in viral replication, T cell restoration, and indices of immune activation, inflammation, and coagulation. These findings suggest that determinants of T cell activation/cycling and inflammation/coagulation may have distinguishable impact on immune homeostasis.Clinicaltrials.gov NCT00660972.

  11. Immune defense of wild-caught Norway rats is characterized by increased levels of basal activity but reduced capability to respond to further immune stimulation.

    Science.gov (United States)

    Mirkov, Ivana; Popov Aleksandrov, Aleksandra; Subota, Vesna; Kataranovski, Dragan; Kataranovski, Milena

    2018-03-01

    Studies of wild animals' immunity often use comparison with laboratory-raised individuals. Using such an approach, various data were obtained concerning wild Norway rat's immunity. Lower or higher potential of immune system cells to respond to activation stimuli were shown, because of analysis of disparate parameters and/ or small number of analyzed individuals. Inconsistent differences between laboratory and wild rats were shown too, owing to great response variability in wild rats. We hypothesized that wild rats will express more intense immune activity compared to their laboratory counterparts which live in a less demanding environment. To test this, we analyzed the circulating levels of inflammatory cytokine interleukin-6 (IL-6), a mediator which has a central role in host immune defense. In addition, we examined the activity of the central immune organ, the spleen, including cell proliferation and production of pro-inflammatory cytokines interferon-γ (IFN-γ) and interleukin-17 (IL-17), which are major effectors of cellular adaptive immune response. In order to obtain reasonable insight into the immunity of wild Norway rats, analysis was conducted on a much larger number of individuals compared to other studies. Higher levels of plasma IL-6, higher spleen mass, cellularity and basal IFN-γ production concomitantly with lower basal production of anti-inflammatory cytokine interleukin-10 (IL-10) revealed more intense immune activity in the wild compared to laboratory rats. However, lower responsiveness of their spleen cells' proinflammatory cytokine production to concanavalin A (ConA) stimulation, along with preserved capacity of IL-10 response, might be perceived as an indication of wild rats' reduced capability to cope with incoming environmental stimuli, but also as a means to limit tissue damage. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  12. Regulatory T cells as suppressors of anti-tumor immunity: Role of metabolism.

    Science.gov (United States)

    De Rosa, Veronica; Di Rella, Francesca; Di Giacomo, Antonio; Matarese, Giuseppe

    2017-06-01

    Novel concepts in immunometabolism support the hypothesis that glucose consumption is also used to modulate anti-tumor immune responses, favoring growth and expansion of specific cellular subsets defined in the past as suppressor T cells and currently reborn as regulatory T (Treg) cells. During the 1920s, Otto Warburg and colleagues observed that tumors consumed high amounts of glucose compared to normal tissues, even in the presence of oxygen and completely functioning mitochondria. However, the role of the Warburg Effect is still not completely understood, particularly in the context of an ongoing anti-tumor immune response. Current experimental evidence suggests that tumor-derived metabolic restrictions can drive T cell hyporesponsiveness and immune tolerance. For example, several glycolytic enzymes, deregulated in cancer, contribute to tumor progression independently from their canonical metabolic activity. Indeed, they can control apoptosis, gene expression and activation of specific intracellular pathways, thus suggesting a direct link between metabolic switches and pro-tumorigenic transcriptional programs. Focus of this review is to define the specific metabolic pathways controlling Treg cell immunobiology in the context of anti-tumor immunity and tumor progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Early infections by myxoma virus of young rabbits (Oryctolagus cuniculus) protected by maternal antibodies activate their immune system and enhance herd immunity in wild populations.

    Science.gov (United States)

    Marchandeau, Stéphane; Pontier, Dominique; Guitton, Jean-Sébastien; Letty, Jérôme; Fouchet, David; Aubineau, Jacky; Berger, Francis; Léonard, Yves; Roobrouck, Alain; Gelfi, Jacqueline; Peralta, Brigitte; Bertagnoli, Stéphane

    2014-03-04

    The role of maternal antibodies is to protect newborns against acute early infection by pathogens. This can be achieved either by preventing any infection or by allowing attenuated infections associated with activation of the immune system, the two strategies being based on different cost/benefit ratios. We carried out an epidemiological survey of myxomatosis, which is a highly lethal infectious disease, in two distant wild populations of rabbits to describe the epidemiological pattern of the disease. Detection of specific IgM and IgG enabled us to describe the pattern of immunity. We show that maternal immunity attenuates early infection of juveniles and enables activation of their immune system. This mechanism associated with steady circulation of the myxoma virus in both populations, which induces frequent reinfections of immune rabbits, leads to the maintenance of high immunity levels within populations. Thus, myxomatosis has a low impact, with most infections being asymptomatic. This work shows that infection of young rabbits protected by maternal antibodies induces attenuated disease and activates their immune system. This may play a major role in reducing the impact of a highly lethal disease when ecological conditions enable permanent circulation of the pathogen.

  14. Mechanisms and pathways of innate immune activation and regulation in health and cancer.

    Science.gov (United States)

    Cui, Jun; Chen, Yongjun; Wang, Helen Y; Wang, Rong-Fu

    2014-01-01

    Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.

  15. Dectin-1 Activation on Macrophages by Galectin-9 Promotes Pancreatic Carcinoma and Peritumoral Immune-Tolerance

    Science.gov (United States)

    Daley, Donnele; Mani, Vishnu R.; Mohan, Navyatha; Akkad, Neha; Ochi, Atsuo; Heindel, Daniel W.; Lee, Ki Buom; Zambirinis, Constantinos P.; Pandian, Gautam S.D. Balasubramania; Savadkar, Shivraj; Torres-Hernandez, Alejandro; Nayak, Shruti; Wang, Ding; Hundeyin, Mautin; Diskin, Brian; Aykut, Berk; Werba, Gregor; Barilla, Rocky M.; Rodriguez, Robert; Chang, Steven; Gardner, Lawrence; Mahal, Lara K.; Ueberheide, Beatrix; Miller, George

    2017-01-01

    The progression of pancreatic oncogenesis requires immune-suppressive inflammation in cooperation with oncogenic mutations. However, the drivers of intra-tumoral immune tolerance are uncertain. Dectin-1 is an innate immune receptor critical in anti-fungal immunity, but its role in sterile inflammation and oncogenesis is not well-defined. Further, non-pathogen-derived ligands for Dectin-1 have not been characterized. We found that Dectin-1 is highly expressed on macrophages in pancreatic ductal adenocarcinoma (PDA). Dectin-1 ligation accelerated PDA, whereas Dectin-1 deletion or blockade of its downstream signaling was protective. We found that Dectin-1 ligates the lectin Galectin-9 in the PDA tumor microenvironment resulting in tolerogenic macrophage programming and adaptive immune suppression. Upon interruption of the Dectin-1–Galectin-9 axis, CD4+ and CD8+ T cells – which are dispensable to PDA progression in hosts with an intact signaling axis – become reprogrammed into indispensable mediators of anti-tumor immunity. These data suggest that targeting Dectin-1 signaling is an attractive strategy for the immunotherapy of PDA. PMID:28394331

  16. Phenoloxidase activity in the infraorder Isoptera: unraveling life-history correlates of immune investment

    Science.gov (United States)

    Rosengaus, Rebeca B.; Reichheld, Jennifer L.

    2016-02-01

    Within the area of ecological immunology, the quantification of phenoloxidase (PO) activity has been used as a proxy for estimating immune investment. Because termites have unique life-history traits and significant inter-specific differences exist regarding their nesting and foraging habits, comparative studies on PO activity can shed light on the general principles influencing immune investment against the backdrop of sociality, reproductive potential, and gender. We quantified PO activity across four termite species ranging from the phylogenetically basal to the most derived, each with their particular nesting/foraging strategies. Our data indicate that PO activity varies across species, with soil-dwelling termites exhibiting significantly higher PO levels than the above-ground wood nester species which in turn have higher PO levels than arboreal species. Moreover, our comparative approach suggests that pathogenic risks can override reproductive potential as a more important driver of immune investment. No gender-based differences in PO activities were recorded. Although termite PO activity levels vary in accordance with a priori predictions made from life-history theory, our data indicate that nesting and foraging strategies (and their resulting pathogenic pressures) can supersede reproductive potential and other life-history traits in influencing investment in PO. Termites, within the eusocial insects, provide a unique perspective for inferring how different ecological pressures may have influenced immune function in general and their levels of PO activity, in particular.

  17. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    Science.gov (United States)

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  18. [Effect of immune modulation on immunogenic and protective activity of a live plague vaccine].

    Science.gov (United States)

    Karal'nik, B V; Ponomareva, T S; Deriabin, P N; Denisova, T G; Mel'nikova, N N; Tugambaev, T I; Atshabar, B B; Zakarian, S B

    2014-01-01

    Comparative evaluation of the effect of polyoxidonium and betaleukin on immunogenic and protective activity of a live plague vaccine in model animal experiments. Plague vaccine EV, polyoxidonium, betaleukin, erythrocytic antigenic diagnosticum for determination of F1 antibodies and immune reagents for detection of lymphocytes with F1 receptors (LFR) in adhesive test developed by the authors were used. The experiments were carried out in 12 rabbits and 169 guinea pigs. Immune modulation accelerated the appearance and disappearance of LFR (early phase) and ensured a more rapid and intensive antibody formation (effector phase). Activation by betaleukin is more pronounced than by polyoxidonium. The more rapid and intensive was the development of early phase, the more effective was antibody response to the vaccine. Immune modulation in the experiment with guinea pigs significantly increased protective activity of the vaccine. The use of immune modulators increased immunogenic (in both early and effector phases of antigen-specific response) and protective activity of the EV vaccine. A connection between the acceleration of the first phase of antigen-specific response and general intensity of effector phase of immune response to the EV vaccine was detected. ,

  19. Transforming growth factor beta-activated kinase 1 (TAK1)-dependent checkpoint in the survival of dendritic cells promotes immune homeostasis and function.

    Science.gov (United States)

    Wang, Yanyan; Huang, Gonghua; Vogel, Peter; Neale, Geoffrey; Reizis, Boris; Chi, Hongbo

    2012-02-07

    Homeostatic control of dendritic cell (DC) survival is crucial for adaptive immunity, but the molecular mechanism is not well defined. Moreover, how DCs influence immune homeostasis under steady state remains unclear. Combining DC-specific and -inducible deletion systems, we report that transforming growth factor beta-activated kinase 1 (TAK1) is an essential regulator of DC survival and immune system homeostasis and function. Deficiency of TAK1 in CD11c(+) cells induced markedly elevated apoptosis, leading to the depletion of DC populations, especially the CD8(+) and CD103(+) DC subsets in lymphoid and nonlymphoid tissues, respectively. TAK1 also contributed to DC development by promoting the generation of DC precursors. Prosurvival signals from Toll-like receptors, CD40 and receptor activator of nuclear factor-κB (RANK) are integrated by TAK1 in DCs, which in turn mediated activation of downstream NF-κB and AKT-Foxo pathways and established a gene-expression program. TAK1 deficiency in DCs caused a myeloid proliferative disorder characterized by expansion of neutrophils and inflammatory monocytes, disrupted T-cell homeostasis, and prevented effective T-cell priming and generation of regulatory T cells. Moreover, TAK1 signaling in DCs was required to prevent myeloid proliferation even in the absence of lymphocytes, indicating a previously unappreciated regulatory mechanism of DC-mediated control of myeloid cell-dependent inflammation. Therefore, TAK1 orchestrates a prosurvival checkpoint in DCs that affects the homeostasis and function of the immune system.

  20. Polysaccharides isolated from Açaí fruit induce innate immune responses.

    Directory of Open Access Journals (Sweden)

    Jeff Holderness

    2011-02-01

    Full Text Available The Açaí (Acai fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease.

  1. Stromal cell contributions to the homeostasis and functionality of the immune system.

    Science.gov (United States)

    Mueller, Scott N; Germain, Ronald N

    2009-09-01

    A defining characteristic of the immune system is the constant movement of many of its constituent cells through the secondary lymphoid tissues, mainly the spleen and lymph nodes, where crucial interactions that underlie homeostatic regulation, peripheral tolerance and the effective development of adaptive immune responses take place. What has only recently been recognized is the role that non-haematopoietic stromal elements have in many aspects of immune cell migration, activation and survival. In this Review, we summarize our current understanding of lymphoid compartment stromal cells, examine their possible heterogeneity, discuss how these cells contribute to immune homeostasis and the efficient initiation of adaptive immune responses, and highlight how targeting of these elements by some pathogens can influence the host immune response.

  2. Role of immune activation in CD4+ T-cell depletion in HIV-1 infected Indian patients.

    Science.gov (United States)

    Vajpayee, M; Kaushik, S; Sreenivas, V; Mojumdar, K; Mendiratta, S; Chauhan, N K

    2009-01-01

    The correlation of immune activation with CD4(+) depletion and HIV-1 disease progression has been evidenced by several studies involving mainly clade B virus. However, this needs to be investigated in developing countries such as India predominately infected with clade C virus. In a cross-sectional study of 68 antiretroviral treatment naïve, HIV-1 infected Indian patients, we studied the association between CD4(+) T cells, plasma HIV-1 RNA levels, and immune activation markers using unadjusted and adjusted correlative analyses. Significant negative correlations of higher magnitude were observed between the CD4(+) T cell percentages and plasma HIV-1 RNA levels in the study population when adjusted for the effects of immune activation markers. However, the negative association of CD4(+) T cells with immune activation markers remained unaffected when controlled for the effects of plasma HIV-1 RNA levels. Our results support the important role of immune activation in CD4(+) T cell depletion and disease progression during untreated HIV-1 infection.

  3. Corticosterone suppresses immune activity in territorial Galápagos marine iguanas during reproduction.

    Science.gov (United States)

    Berger, Silke; Martin, Lynn B; Wikelski, Martin; Romero, L Michael; Kalko, Elisabeth K V; Vitousek, Maren N; Rödl, Thomas

    2005-04-01

    Individuals that display elaborate sexually selected characters often show reduced immune function. According to the immunocompetence handicap hypothesis, testosterone (T) is responsible for this result as it drives the development and maintenance of sexual characters and causes immunosuppression. But glucocorticoids also have strong influences on immune function and may also be elevated in reproductively active males. Here, we compared immune activity using the phytohemagglutinin (PHA) skin test in three discrete groups of male marine iguanas (Amblyrhynchus cristatus): territorials, satellites, and bachelors. Males of these three reproductive phenotypes had indistinguishable T concentrations during the height of the breeding season, but their corticosterone (cort) concentrations, body condition and hematocrit were significantly different. Territorial males, the animals with the most elaborate sexual ornaments and behaviors, had lower immune responses and body condition but higher cort concentrations and hematocrit than satellites or bachelors. To test directly cort's immunosuppressive role, we elevated cort by either restraining animals or additionally injecting cort and compared their PHA swelling response with the response of free-roaming animals. Such experimental elevation of cort significantly decreased immune activity in both restrained and cort-injected animals. Our data show that cort can induce immunosuppression, but they do not support the immunocompetence handicap hypothesis in its narrow sense because T concentrations were not related to immunosuppression.

  4. Immune activation is associated with decreased thymic function in ...

    African Journals Online (AJOL)

    Background: Reduced thymic function causes poor immunological reconstitution in human immunodeficiency virus (HIV)-positive patients on combined antiretroviral therapy (cART). The association between immune activation and thymic function in asymptomatic HIVpositive treatment-naive individuals has thus far not been ...

  5. Influence of physical activity on the immune system in breast cancer patients during chemotherapy.

    Science.gov (United States)

    Schmidt, Thorsten; Jonat, Walter; Wesch, Daniela; Oberg, Hans-Heinrich; Adam-Klages, Sabine; Keller, Lisa; Röcken, Christoph; Mundhenke, Christoph

    2018-03-01

    Physical activity can impact the immune system in different ways, e.g. by alteration of the humoral and cellular immune response. Physical activity at medium intensity enhances numbers of cytotoxic T cells, NK cells and macrophages in healthy people. The aim of this study was to compare the effects of endurance and resistance training on the immune system in breast cancer patients during adjuvant chemotherapy. In a prospective, controlled and randomized intervention exploratory trial, 12-week supervised endurance or resistance training were compared with usual care twice a week. Endpoints were the absolute numbers of the immune cells such as CD3 + T lymphocytes including CD4 + - and CD8 + , αβ T cells, γδT cells, CD3 - /CD16 + /56 + NK cells and CD19 + B cells, before and after 12 weeks of treatment. Cell numbers were analyzed using fluorescence-activated cell sorting. Despite different physical interventions in all groups immune cell count decreased in CD3 T cells including TCR αβ and CD4 T cells, NK cells and CD19 B cells 12 weeks after initiation of chemotherapy and start of the physical intervention program, while the reduction of γδ T cells and CD8 T cells is less prominent in the RT and UC group. Chemotherapy led to a decrease in nearly all measured immune cells. In this study, physical intervention with endurance or resistance training did not suppress cellular immunity any further. Larger multicenter trials are needed to evaluate the exact impact of sports intervention on immune cell subpopulations.

  6. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    Science.gov (United States)

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance.

    Science.gov (United States)

    Daley, Donnele; Mani, Vishnu R; Mohan, Navyatha; Akkad, Neha; Ochi, Atsuo; Heindel, Daniel W; Lee, Ki Buom; Zambirinis, Constantinos P; Pandian, Gautam Sd Balasubramania; Savadkar, Shivraj; Torres-Hernandez, Alejandro; Nayak, Shruti; Wang, Ding; Hundeyin, Mautin; Diskin, Brian; Aykut, Berk; Werba, Gregor; Barilla, Rocky M; Rodriguez, Robert; Chang, Steven; Gardner, Lawrence; Mahal, Lara K; Ueberheide, Beatrix; Miller, George

    2017-05-01

    The progression of pancreatic oncogenesis requires immune-suppressive inflammation in cooperation with oncogenic mutations. However, the drivers of intratumoral immune tolerance are uncertain. Dectin 1 is an innate immune receptor crucial for anti-fungal immunity, but its role in sterile inflammation and oncogenesis has not been well defined. Furthermore, non-pathogen-derived ligands for dectin 1 have not been characterized. We found that dectin 1 is highly expressed on macrophages in pancreatic ductal adenocarcinoma (PDA). Dectin 1 ligation accelerated the progression of PDA in mice, whereas deletion of Clec7a-the gene encoding dectin 1-or blockade of dectin 1 downstream signaling was protective. We found that dectin 1 can ligate the lectin galectin 9 in mouse and human PDA, which results in tolerogenic macrophage programming and adaptive immune suppression. Upon disruption of the dectin 1-galectin 9 axis, CD4 + and CD8 + T cells, which are dispensable for PDA progression in hosts with an intact signaling axis, become reprogrammed into indispensable mediators of anti-tumor immunity. These data suggest that targeting dectin 1 signaling is an attractive strategy for developing an immunotherapy for PDA.

  8. Inorganic nanoparticles and the immune system: detection, selective activation and tolerance

    Science.gov (United States)

    Bastús, Neus G.; Sánchez-Tilló, Ester; Pujals, Silvia; Comenge, Joan; Giralt, Ernest; Celada, Antonio; Lloberas, Jorge; Puntes, Victor F.

    2012-03-01

    The immune system is the responsible for body integrity and prevention of external invasion. On one side, nanoparticles are no triggers that the immune system is prepared to detect, on the other side it is known that foreign bodies, not only bacteria, viruses and parasites, but also inorganic matter, can cause various pathologies such as silicosis, asbestosis or inflammatory reactions. Therefore, nanoparticles entering the body, after interaction with proteins, will be either recognized as self-agents or detected by the immune system, encompassing immunostimulation or immunosuppression responses. The nature of these interactions seems to be dictated not specially by the composition of the material but by modifications of NP coating (composition, surface charge and structure). Herein, we explore the use of gold nanoparticles as substrates to carry multifunctional ligands to manipulate the immune system in a controlled manner, from undetection to immunostimulation. Murine bone marrow macrophages can be activated with artificial nanometric objects consisting of a gold nanoparticle functionalized with peptides. In the presence of some conjugates, macrophage proliferation was stopped and pro-inflammatory cytokines were induced. The biochemical type of response depended on the type of conjugated peptide and was correlated with the degree of ordering in the peptide coating. These findings help to illustrate the basic requirements involved in medical NP conjugate design to either activate the immune system or hide from it, in order to reach their targets before being removed by phagocytes. Additionally, it opens up the possibility to modulate the immune response in order to suppress unwanted responses resulting from autoimmunity, or allergy or to stimulate protective responses against pathogens.

  9. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology.

    Science.gov (United States)

    Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N

    2015-08-18

    Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying

  10. Adaptation in the innate immune system and heterologous innate immunity.

    Science.gov (United States)

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  11. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  12. Activating transcription factor 3 regulates immune and metabolic homeostasis.

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek; Uhlirova, Mirka

    2012-10-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins.

  13. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression

    International Nuclear Information System (INIS)

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X.; Walterscheid, Jeffrey P.; Ullrich, Stephen E.

    2004-01-01

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependant manner. The release of biological response modifiers, particularly prostaglandin E 2 (PGE 2 ), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE 2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE 2 secretion. Jet fuel-induced PGE 2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin

  14. Stimulation of TLR7 with Gardiquimod Enhances Protection and Activation of Immune Cells from γ-Irradiation Exposure

    International Nuclear Information System (INIS)

    Yang, Young-Mi; Bang, Ji-Young; Lee, Suhl-Hyeong; Moon, Tae-Min; Jung, Yu-Jin

    2007-01-01

    Radiotherapy for cancer patients is based on the radiation-induced cell death, but high dose of radiation is able to cause break of immune system. Thus, protection of immune cells from radiation damage is required to enhance the efficiency and reduce the harmful side effects during cancer radiotherapy. Toll-like receptors (TLRs) are important not only in initiating innate immunity against microbial infection, but also inducing Th1-mediated immunity with producing cytokines and chemokines. Cell stimulation via TLRs leads to downstream activation of NF-kB and other transcription factors. Consequently, several genes encoding mediators and effector molecules of the innate as well as the adaptive immune response are transcribed. There are several previous findings that activated immune cells via TLR9 inducing pathways are resistant to chemical or radiation exposure. But it is not clear that the other TLRs also have the same abilities to protect immune cells against cellular damages including γ-irradiation. This research was performed to evaluate protective effect of immune cells from γ-irradiation through TLR-7 activation pathway

  15. Induction of antitumor immunity through xenoplacental immunization

    Directory of Open Access Journals (Sweden)

    Agadjanyan Michael G

    2006-05-01

    Full Text Available Abstract Historically cancer vaccines have yielded suboptimal clinical results. We have developed a novel strategy for eliciting antitumor immunity based upon homology between neoplastic tissue and the developing placenta. Placenta formation shares several key processes with neoplasia, namely: angiogenesis, activation of matrix metalloproteases, and active suppression of immune function. Immune responses against xenoantigens are well known to break self-tolerance. Utilizing xenogeneic placental protein extracts as a vaccine, we have successfully induced anti-tumor immunity against B16 melanoma in C57/BL6 mice, whereas control xenogeneic extracts and B16 tumor extracts where ineffective, or actually promoted tumor growth, respectively. Furthermore, dendritic cells were able to prime tumor immunity when pulsed with the placental xenoantigens. While vaccination-induced tumor regression was abolished in mice depleted of CD4 T cells, both CD4 and CD8 cells were needed to adoptively transfer immunity to naïve mice. Supporting the role of CD8 cells in controlling tumor growth are findings that only freshly isolated CD8 cells from immunized mice were capable of inducing tumor cell caspases-3 activation ex vivo. These data suggest feasibility of using xenogeneic placental preparations as a multivalent vaccine potently targeting not just tumor antigens, but processes that are essential for tumor maintenance of malignant potential.

  16. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and preeclampsia: shared disease mechanisms and translational opportunities.

    Science.gov (United States)

    Jafri, Salema; Ormiston, Mark L

    2017-12-01

    Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4 + helper T cell populations, defined by excessive Th17 responses and impaired T reg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8 + T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders. Copyright © 2017 the American Physiological Society.

  17. Serum bactericidal activity as indicator of innate immunity in pacu Piaractus mesopotamicus (Holmberg, 1887

    Directory of Open Access Journals (Sweden)

    J.D. Biller-Takahashi

    2013-12-01

    Full Text Available The immune system of teleost fish has mechanisms responsible for the defense against bacteria through protective proteins in several tissues. The protein action can be evaluated by serum bactericidal activity and this is an important tool to analyze the immune system. Pacu, Piaractus mesopotamicus, is one of the most important fish in national aquaculture. However there is a lack of studies on its immune responses. In order to standardize and assess the accuracy of the serum bactericidal activity assay, fish were briefly challenged with Aeromonas hydrophila and sampled one week after the challenge. The bacterial infection increased the concentration of protective proteins, resulting in a decrease of colony-forming unit values expressed as well as an enhanced serum bactericidal activity. The protocol showed a reliable assay, appropriate to determine the serum bactericidal activity of pacu in the present experimental conditions.

  18. Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity.

    Science.gov (United States)

    Peng, Yujun; van Wersch, Rowan; Zhang, Yuelin

    2018-04-01

    Plants use diverse immune receptors to sense pathogen attacks. Recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors localized on the plasma membrane leads to PAMP-triggered immunity (PTI). Detection of pathogen effectors by intracellular or plasma membrane-localized immune receptors results in effector-triggered immunity (ETI). Despite the large variations in the magnitude and duration of immune responses triggered by different PAMPs or pathogen effectors during PTI and ETI, plasma membrane-localized immune receptors activate similar downstream molecular events such as mitogen-activated protein kinase activation, oxidative burst, ion influx, and increased biosynthesis of plant defense hormones, indicating that defense signals initiated at the plasma membrane converge at later points. On the other hand, activation of ETI by immune receptors localized to the nucleus appears to be more directly associated with transcriptional regulation of defense gene expression. Here, we review recent progress in signal transductions downstream of different groups of plant immune receptors, highlighting the converging and diverging molecular events.

  19. Low-dose radiation induces drosophila innate immunity through toll pathway activation

    International Nuclear Information System (INIS)

    Seong, Ki Moon; Kim, Cha Soon; Lee, Byung-Sub; Nam, Seon Young; Yang, Kwang Hee; Kim, Ji-Young; Jin, Young-Woo; Park, Joong-Jean; Min, Kyung-Jin

    2012-01-01

    Numerous studies report that exposing certain organisms to low-dose radiation induces beneficial effects on lifespan, tumorigenesis, and immunity. By analyzing survival after bacterial infection and antimicrobial peptide gene expression in irradiated flies, we demonstrate that low-dose irradiation of Drosophila enhances innate immunity. Low-dose irradiation of flies significantly increased resistance against gram-positive and gram-negative bacterial infections, as well as expression of several antimicrobial peptide genes. Additionally, low-dose irradiation also resulted in a specific increase in expression of key proteins of the Toll signaling pathway and phosphorylated forms of p38 and N-terminal kinase (JNK). These results indicate that innate immunity is activated after low-dose irradiation through Toll signaling pathway in Drosophila. (author)

  20. Starvation stress affects the interplay among shrimp gut microbiota, digestion and immune activities.

    Science.gov (United States)

    Dai, Wen-Fang; Zhang, Jin-Jie; Qiu, Qiong-Fen; Chen, Jiong; Yang, Wen; Ni, Sui; Xiong, Jin-Bo

    2018-05-24

    Aquatic animals are frequently suffered from starvation due to restricted food availability or deprivation. It is currently known that gut microbiota assists host in nutrient acquisition. Thus, exploring the gut microbiota responses would improve our understanding on physiological adaptation to starvation. To achieve this, we investigated how the gut microbiota and shrimp digestion and immune activities were affected under starvation stress. The results showed that the measured digestion activities in starved shrimp were significantly lower than in normal cohorts; while the measured immune activities exhibited an opposite trend. A structural equation modeling (SEM) revealed that changes in the gut bacterial community were directly related to digestive and immune enzyme activities, which in turn markedly affected shrimp growth traits. Notably, several gut bacterial indicators that characterized the shrimp nutrient status were identified, with more abundant opportunistic pathogens in starved shrimp, although there were no statistical differences in the overall diversity and the structures of gut bacterial communities between starved and normal shrimp. Starved shrimp exhibited less connected and cooperative interspecies interaction as compared with normal cohorts. Additionally, the functional pathways involved in carbohydrate and protein digestion, glycan biosynthesis, lipid and enzyme metabolism remarkably decreased in starved shrimp. These attenuations could increase the susceptibility of starved shrimp to pathogens infection. In summary, this study provides novel insights into the interplay among shrimp digestion, immune activities and gut microbiota in response to starvation stress. Copyright © 2018. Published by Elsevier Ltd.

  1. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity.

    Science.gov (United States)

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver

    2015-03-17

    Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be

  2. Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice.

    Science.gov (United States)

    Wang, Cheng-Li; Lu, Chiu-Ying; Hsueh, Ying-Chao; Liu, Wen-Hsiung; Chen, Chun-Jen

    2014-11-01

    Fungi of the genus Ganoderma are basidiomycetes that have been used as traditional medicine in Asia and have been shown to exhibit various pharmacological activities. We recently found that PS-F2, a polysaccharide fraction purified from the submerged culture broth of Ganoderma formosanum, stimulates the maturation of dendritic cells and primes a T helper 1 (Th1)-polarized adaptive immune response in vivo. In this study, we investigated whether the immune adjuvant function of PS-F2 can stimulate antitumor immune responses in tumor-bearing mice. Continuous intraperitoneal or oral administration of PS-F2 effectively suppressed the growth of colon 26 (C26) adenocarcinoma, B16 melanoma, and sarcoma 180 (S180) tumor cells in mice without adverse effects on the animals' health. PS-F2 did not cause direct cytotoxicity on tumor cells, and it lost the antitumor effect in mice with severe combined immunodeficiency (SCID). CD4(+) T cells, CD8(+) T cells, and serum from PS-F2-treated tumor-bearing mice all exhibited antitumor activities when adoptively transferred to naïve animals, indicating that PS-F2 treatment stimulates tumor-specific cellular and humoral immune responses. These data demonstrate that continuous administration of G. formosanum polysaccharide PS-F2 can activate host immune responses against ongoing tumor growth, suggesting that PS-F2 can potentially be developed into a preventive/therapeutic agent for cancer immunotherapy.

  3. Neuroblastoma arginase activity creates an immunosuppressive microenvironment that impairs autologous and engineered immunity

    Science.gov (United States)

    Mussai, Francis; Egan, Sharon; Hunter, Stuart; Webber, Hannah; Fisher, Jonathan; Wheat, Rachel; McConville, Carmel; Sbirkov, Yordan; Wheeler, Kate; Bendle, Gavin; Petrie, Kevin; Anderson, John; Chesler, Louis; De Santo, Carmela

    2015-01-01

    Neuroblastoma is the most common extra cranial solid tumour of childhood, and survival remains poor for patients with advanced disease. Novel immune therapies are currently in development, but clinical outcomes have not matched preclinical results. Here, we describe key mechanisms in which neuroblastoma inhibits the immune response. We show that murine and human neuroblastoma tumour cells suppress T cell proliferation, through increased arginase activity. Arginase II is the predominant isoform expressed and creates an arginine deplete local and systemic microenvironment. Neuroblastoma arginase activity results in inhibition of myeloid cell activation and suppression of bone marrow CD34+ progenitor proliferation. Finally we demonstrate that the arginase activity of neuroblastoma impairs NY-ESO-1 specific TCR and GD2-specific CAR engineered T cell proliferation and cytotoxicity. High arginase II expression correlates with poor survival for neuroblastoma patients. The results support the hypothesis that neuroblastoma creates an arginase-dependent immunosuppressive microenvironment in both the tumour and blood that leads to impaired immune surveillance and sub-optimal efficacy of immunotherapeutic approaches. PMID:26054597

  4. HIV-induced immune activation - pathogenesis and clinical relevance

    Directory of Open Access Journals (Sweden)

    Stellbrink HJ

    2010-01-01

    Full Text Available Abstract This manuscript is communicated by the German AIDS Society (DAIG http://www.daignet.de. It summarizes a series of presentations and discussions during a workshop on immune activation due to HIV infection. The workshop was held on November 22nd 2008 in Hamburg, Germany. It was organized by the ICH Hamburg under the auspices of the German AIDS Society (DAIG e.V..

  5. Fluorescent dye labeled influenza virus mainly infects innate immune cells and activated lymphocytes and can be used in cell-mediated immune response assay

    OpenAIRE

    Xie, Dongxu

    2009-01-01

    Early results have recognized that influenza virus infects the innate and adaptive immune cells. The data presented in this paper demonstrated that influenza virus labeled with fluorescent dye not only retained the ability to infect and replicate in host cells, but also stimulated a similar human immune response as did unlabeled virus. Influenza virus largely infected the innate and activated adaptive immune cells. Influenza B type virus was different from that of A type virus. B type virus w...

  6. A key requirement for CD300f in innate immune responses of eosinophils in colitis.

    Science.gov (United States)

    Moshkovits, I; Reichman, H; Karo-Atar, D; Rozenberg, P; Zigmond, E; Haberman, Y; Ben Baruch-Morgenstern, N; Lampinen, M; Carlson, M; Itan, M; Denson, L A; Varol, C; Munitz, A

    2017-01-01

    Eosinophils are traditionally studied in the context of type 2 immune responses. However, recent studies highlight key innate immune functions for eosinophils especially in colonic inflammation. Surprisingly, molecular pathways regulating innate immune activities of eosinophil are largely unknown. We have recently shown that the CD300f is highly expressed by colonic eosinophils. Nonetheless, the role of CD300f in governing innate immune eosinophil activities is ill-defined. RNA sequencing of 162 pediatric Crohn's disease patients revealed upregulation of multiple Cd300 family members, which correlated with the presence of severe ulcerations and inflammation. Increased expression of CD300 family receptors was also observed in active ulcerative colitis (UC) and in mice following induction of experimental colitis. Specifically, the expression of CD300f was dynamically regulated in monocytes and eosinophils. Dextran sodium sulfate (DSS)-treated Cd300f -/- mice exhibit attenuated disease activity and histopathology in comparison with DSS-treated wild type (WT). Decreased disease activity in Cd300f -/- mice was accompanied with reduced inflammatory cell infiltration and nearly abolished production of pro-inflammatory cytokines. Monocyte depletion and chimeric bone marrow transfer experiments revealed a cell-specific requirement for CD300f in innate immune activation of eosinophils. Collectively, we uncover a new pathway regulating innate immune activities of eosinophils, a finding with significant implications in eosinophil-associated gastrointestinal diseases.

  7. [Immune mechanisms of the active ingredients of Chinese medicinal herbs for chronic prostatitis].

    Science.gov (United States)

    Wang, Hao; Zhou, Yu-chun; Xue, Jian-guo

    2016-01-01

    Chronic prostatitis is a common male disease, and its pathogenesis is not yet clear. Most scholars believe that oxidative stress and immune imbalance are the keys to the occurrence and progression of chronic prostatitis. Currently immunotherapy of chronic prostatitis remains in the exploratory stage. This article relates the active ingredients of 5 Chinese medicinal herbs (total glucosides of paeony, tripterigium wilfordii polglycosidium, curcumin, geniposide, and quercetin) for the treatment of chronic prostatitis and their possible action mechanisms as follows: 1) inhibiting the immune response and activation and proliferation of T-cells, and adjusting the proportion of Th1/Th2 cells; 2) upregulating the expression of Treg and enhancing the patient's tolerability; 3) suppressing the activation of the NF-kB factor, reducing the release of iNOS, and further decreasing the release of NO, IL-2 and other inflammatory cytokines, which contribute to the suppression of the immune response; 4) inhibiting the production of such chemokines as MCP-1 and MIP-1α in order to reduce their induction of inflammatory response. Studies on the immune mechanisms of Chinese medicinal herbs in the treatment of chronic prostatitis are clinically valuable for the development of new drugs for this disease.

  8. Immune activation in HIV-infected aging women on antiretrovirals--implications for age-associated comorbidities: a cross-sectional pilot study.

    Directory of Open Access Journals (Sweden)

    Maria L Alcaide

    Full Text Available Persistent immune activation and microbial translocation associated with HIV infection likely place HIV-infected aging women at high risk of developing chronic age-related diseases. We investigated immune activation and microbial translocation in HIV-infected aging women in the post-menopausal ages.Twenty-seven post-menopausal women with HIV infection receiving antiretroviral treatment with documented viral suppression and 15 HIV-negative age-matched controls were enrolled. Levels of immune activation markers (T cell immune phenotype, sCD25, sCD14, sCD163, microbial translocation (LPS and biomarkers of cardiovascular disease and impaired cognitive function (sVCAM-1, sICAM-1 and CXCL10 were evaluated.T cell activation and exhaustion, monocyte/macrophage activation, and microbial translocation were significantly higher in HIV-infected women when compared to uninfected controls. Microbial translocation correlated with T cell and monocyte/macrophage activation. Biomarkers of cardiovascular disease and impaired cognition were elevated in women with HIV infection and correlated with immune activation.HIV-infected antiretroviral-treated aging women who achieved viral suppression are in a generalized status of immune activation and therefore are at an increased risk of age-associated end-organ diseases compared to uninfected age-matched controls.

  9. Immune-Modulating Perspectives for Low Frequency Electromagnetic Fields in Innate Immunity

    Directory of Open Access Journals (Sweden)

    Maria Manuela Rosado

    2018-03-01

    Full Text Available In recent years, the effects of electromagnetic fields (EMFs on the immune system have received a considerable interest, not only to investigate possible negative health impact but also to explore the possibility to favorably modulate immune responses. To generate beneficial responses, the immune system should eradicate pathogens while “respecting” the organism and tolerating irrelevant antigens. According to the current view, damage-associated molecules released by infected or injured cells, or secreted by innate immune cells generate danger signals activating an immune response. These signals are also relevant to the subsequent activation of homeostatic mechanisms that control the immune response in pro- or anti-inflammatory reactions, a feature that allows modulation by therapeutic treatments. In the present review, we describe and discuss the effects of extremely low frequency (ELF-EMF and pulsed EMF on cell signals and factors relevant to the activation of danger signals and innate immunity cells. By discussing the EMF modulating effects on cell functions, we envisage the use of EMF as a therapeutic agent to regulate immune responses associated with wound healing.

  10. Transcriptional profiling provides insights into metronomic cyclophosphamide-activated, innate immune-dependent regression of brain tumor xenografts

    International Nuclear Information System (INIS)

    Doloff, Joshua C; Waxman, David J

    2015-01-01

    Cyclophosphamide treatment on a six-day repeating metronomic schedule induces a dramatic, innate immune cell-dependent regression of implanted gliomas. However, little is known about the underlying mechanisms whereby metronomic cyclophosphamide induces innate immune cell mobilization and recruitment, or about the role of DNA damage and cell stress response pathways in eliciting the immune responses linked to tumor regression. Untreated and metronomic cyclophosphamide-treated human U251 glioblastoma xenografts were analyzed on human microarrays at two treatment time points to identify responsive tumor cell-specific factors and their upstream regulators. Mouse microarray analysis across two glioma models (human U251, rat 9L) was used to identify host factors and gene networks that contribute to the observed immune and tumor regression responses. Metronomic cyclophosphamide increased expression of tumor cell-derived DNA damage, cell stress, and cell death genes, which may facilitate innate immune activation. Increased expression of many host (mouse) immune networks was also seen in both tumor models, including complement components, toll-like receptors, interferons, and cytolysis pathways. Key upstream regulators activated by metronomic cyclophosphamide include members of the interferon, toll-like receptor, inflammatory response, and PPAR signaling pathways, whose activation may contribute to anti-tumor immunity. Many upstream regulators inhibited by metronomic cyclophosphamide, including hypoxia-inducible factors and MAP kinases, have glioma-promoting activity; their inhibition may contribute to the therapeutic effectiveness of the six-day repeating metronomic cyclophosphamide schedule. Large numbers of responsive cytokines, chemokines and immune regulatory genes linked to innate immune cell recruitment and tumor regression were identified, as were several immunosuppressive factors that may contribute to the observed escape of some tumors from metronomic CPA

  11. Effect of balanced low pressure drying of curcuma longa leaf on skin immune activation activities.

    Science.gov (United States)

    Choi, Wooseok; Lim, Hye Won; Lee, Hyeon Yong

    2014-01-01

    The effect of balanced low pressure drying pretreatment associated with ultrasonication extraction (BU) on the enhancement of skin immune modulatory activities of Curcuma longa leaf was studied by comparing with conventional hot air drying (HE), freeze drying (FE) and balanced low pressure drying (BE) pretreatment processes. In considering skin immune activation activities such as the inhibition of hyaluronidase activity, the BU extract showed ca. 10% higher than those of HE, and even higher than that of the FE extract. Nitric oxide production from macrophage of the BU extract in adding 1.0 mg/mL was increased up to 16.5 μM. When measuring inhibition of IL-6 and TNF-a production from the human T lymphocytes (T cell), the BU extract also showed 53% and 78% of inhibition effect, respectively. It is found that the BU extract could effectively suppress the expression levels of skin inflammation related genes such as Cox-2 and iNOS, down to 80% and 85% compared to the control, respectively. Balanced low pressure drying process was especially active on dehydration of the leaves with minimizing the destruction and making easier elution of the bioactive substances, which resulted in higher extraction yield and better biological activities.

  12. Association of neopterin as a marker of immune system activation and juvenile rheumatoid arthritis activity

    Directory of Open Access Journals (Sweden)

    Mones M. Abu Shady

    2015-07-01

    Conclusion: The elevation of plasma neopterin concentrations in early JIA patients may indicate stimulation of immune response. Serum neopterin can be used as a sensitive marker for assaying background inflammation and disease activity score in JIA patients.

  13. Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways.

    Science.gov (United States)

    Yuen, Grace J; Ausubel, Frederick M

    2018-12-31

    The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection.

  14. Effect of glucocorticoids on melatonin receptor expression under T-cell activated immune response

    International Nuclear Information System (INIS)

    Tauschanova, P.; Georgiev, G.; Manchev, S.; Konakchieva, R.

    2007-01-01

    The present study was aimed to explore the stress response in rats under conditions of T-cell antigen-activated immune function and to investigate the specific melatonin (MEL) receptor binding in primary and secondary immune tissue of rats employing 2-( 125 I)-iodo melatonin autoradiography and in vitro ligand binding assay. The study revealed that melatonin receptor binding was specifically expressed in discrete areas of the lymphoid sheath of the spleen and in a network of interdigitating cells of the experimental rats. Demonstration of the modulation of MEL receptor binding in the course of a primary immune response under hypercorticalemic conditions indicate that the pineal hormone might interfere in the processes of glucocorticoid-dependent immune competency. (authors)

  15. Immunity by equilibrium.

    Science.gov (United States)

    Eberl, Gérard

    2016-08-01

    The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.

  16. Human innate responses and adjuvant activity of TLR ligands in vivo in mice reconstituted with a human immune system.

    Science.gov (United States)

    Cheng, Liang; Zhang, Zheng; Li, Guangming; Li, Feng; Wang, Li; Zhang, Liguo; Zurawski, Sandra M; Zurawski, Gerard; Levy, Yves; Su, Lishan

    2017-10-27

    TLR ligands (TLR-Ls) represent a class of novel vaccine adjuvants. However, their immunologic effects in humans remain poorly defined in vivo. Using a humanized mouse model with a functional human immune system, we investigated how different TLR-Ls stimulated human innate immune response in vivo and their applications as vaccine adjuvants for enhancing human cellular immune response. We found that splenocytes from humanized mice showed identical responses to various TLR-Ls as human PBMCs in vitro. To our surprise, various TLR-Ls stimulated human cytokines and chemokines differently in vivo compared to that in vitro. For example, CpG-A was most efficient to induce IFN-α production in vitro. In contrast, CpG-B, R848 and Poly I:C stimulated much more IFN-α than CpG-A in vivo. Importantly, the human innate immune response to specific TLR-Ls in humanized mice was different from that reported in C57BL/6 mice, but similar to that reported in nonhuman primates. Furthermore, we found that different TLR-Ls distinctively activated and mobilized human plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs) and monocytes in different organs. Finally, we showed that, as adjuvants, CpG-B, R848 and Poly I:C can all enhance antigen specific CD4 + T cell response, while only R848 and Poly I:C induced CD8 + cytotoxic T cells response to a CD40-targeting HIV vaccine in humanized mice, correlated with their ability to activate human mDCs but not pDCs. We conclude that humanized mice serve as a highly relevant model to evaluate and rank the human immunologic effects of novel adjuvants in vivo prior to testing in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. High T-cell immune activation and immune exhaustion among individuals with suboptimal CD4 recovery after 4 years of antiretroviral therapy in an African cohort

    Directory of Open Access Journals (Sweden)

    Colebunders Robert

    2011-02-01

    Full Text Available Abstract Background Antiretroviral therapy (ART partially corrects immune dysfunction associated with HIV infection. The levels of T-cell immune activation and exhaustion after long-term, suppressive ART and their correlation with CD4 T-cell count reconstitution among ART-treated patients in African cohorts have not been extensively evaluated. Methods T-cell activation (CD38+HLA-DR+ and immune exhaustion (PD-1+ were measured in a prospective cohort of patients initiated on ART; 128 patient samples were evaluated and subcategorized by CD4 reconstitution after long-term suppressive treatment: Suboptimal [median CD4 count increase 129 (-43-199 cells/μl], N = 34 ], optimal [282 (200-415 cells/μl, N = 64] and super-optimal [528 (416-878 cells/μl, N = 30]. Results Both CD4+ and CD8 T-cell activation was significantly higher among suboptimal CD4 T-cell responders compared to super-optimal responders. In a multivariate model, CD4+CD38+HLADR+ T-cells were associated with suboptimal CD4 reconstitution [AOR, 5.7 (95% CI, 1.4-23, P = 0.014]. T-cell exhaustion (CD4+PD1+ and CD8+PD1+ was higher among suboptimal relative to optimal (P P = 0.022]. Conclusion T-cell activation and exhaustion persist among HIV-infected patients despite long-term, sustained HIV-RNA viral suppression. These immune abnormalities were associated with suboptimal CD4 reconstitution and their regulation may modify immune recovery among suboptimal responders to ART.

  18. HIV-1 Reservoir Association with Immune Activation

    Directory of Open Access Journals (Sweden)

    Alejandro Vallejo

    2015-09-01

    Full Text Available In this issue of EBioMedicine, Ruggiero and colleagues describe immune activation biomarkers associated with the size of the HIV reservoir in a carefully designed cross-sectional study. The cohort consists of a homogeneous sample of HIV-1-infected patients with long-term plasma HIV-1 RNA suppression under antiretroviral treatment (ART. It is crucial to explore the potential utility of biomarkers that are easier (less labor intensive, less expensive to measure than integrated HIV DNA load, in order to quickly and accurately quantify cellular reservoirs of HIV.

  19. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.

    Science.gov (United States)

    Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C

    2014-03-07

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.

  20. Impact of antiretroviral therapy (ART) timing on chronic immune activation/inflammation and end-organ damage.

    Science.gov (United States)

    Rajasuriar, Reena; Wright, Edwina; Lewin, Sharon R

    2015-01-01

    The purpose of this review was to summarize recent studies on the effect of early antiretroviral therapy (ART) in HIV-infected patients on markers of immune activation/inflammation, viral persistence and serious non-AIDS events. Early ART, initiated within days to months of HIV infection, was associated with marked reduction in T-cell activation often reaching levels observed in HIV-uninfected individuals. However, the impact of early ART on markers of innate immune activation, microbial translocation and inflammation/coagulation was less clear. Early ART has also been associated with a significant reduction in the frequency of latently infected cells, which was greater if ART was initiated within days to weeks rather than months following infection. However, few studies have evaluated the relationship between immune activation and viral reservoirs, specifically following early ART. Early ART may potentially reduce serious non-AIDS events and associated mortality, but most of these studies have extrapolated from changes in surrogate markers, such as CD4 : CD8 ratio. Early ART was associated with beneficial effects on multiple markers of immune activation, inflammation and viral persistence. Longer term prospective studies are still needed to determine whether early ART translates to a significant reduction in serious non-AIDS events and mortality.

  1. Age-associated changes in monocyte and innate immune activation markers occur more rapidly in HIV infected women.

    Directory of Open Access Journals (Sweden)

    Genevieve E Martin

    Full Text Available Aging is associated with immune dysfunction and the related development of conditions with an inflammatory pathogenesis. Some of these immune changes are also observed in HIV infection, but the interaction between immune changes with aging and HIV infection are unknown. Whilst sex differences in innate immunity are recognized, little research into innate immune aging has been performed on women.This cross-sectional study of HIV positive and negative women used whole blood flow cytometric analysis to characterize monocyte and CD8(+ T cell subsets. Plasma markers of innate immune activation were measured using standard ELISA-based assays.HIV positive women exhibited elevated plasma levels of the innate immune activation markers CXCL10 (p<0.001, soluble CD163 (sCD163, p = 0.001, sCD14 (p = 0.022, neopterin (p = 0.029 and an increased proportion of CD16(+ monocytes (p = 0.009 compared to uninfected controls. Levels of the innate immune aging biomarkers sCD163 and the proportion of CD16(+ monocytes were equivalent to those observed in HIV negative women aged 14.5 and 10.6 years older, respectively. CXCL10 increased with age at an accelerated rate in HIV positive women (p = 0.002 suggesting a synergistic effect between HIV and aging on innate immune activation. Multivariable modeling indicated that age-related increases in innate immune biomarkers CXCL10 and sCD163 are independent of senescent changes in CD8(+ T lymphocytes.Quantifying the impact of HIV on immune aging reveals that HIV infection in women confers the equivalent of a 10-14 year increase in the levels of innate immune aging markers. These changes may contribute to the increased risk of inflammatory age-related diseases in HIV positive women.

  2. Age-associated changes in monocyte and innate immune activation markers occur more rapidly in HIV infected women.

    Science.gov (United States)

    Martin, Genevieve E; Gouillou, Maelenn; Hearps, Anna C; Angelovich, Thomas A; Cheng, Allen C; Lynch, Fiona; Cheng, Wan-Jung; Paukovics, Geza; Palmer, Clovis S; Novak, Richard M; Jaworowski, Anthony; Landay, Alan L; Crowe, Suzanne M

    2013-01-01

    Aging is associated with immune dysfunction and the related development of conditions with an inflammatory pathogenesis. Some of these immune changes are also observed in HIV infection, but the interaction between immune changes with aging and HIV infection are unknown. Whilst sex differences in innate immunity are recognized, little research into innate immune aging has been performed on women. This cross-sectional study of HIV positive and negative women used whole blood flow cytometric analysis to characterize monocyte and CD8(+) T cell subsets. Plasma markers of innate immune activation were measured using standard ELISA-based assays. HIV positive women exhibited elevated plasma levels of the innate immune activation markers CXCL10 (p<0.001), soluble CD163 (sCD163, p = 0.001), sCD14 (p = 0.022), neopterin (p = 0.029) and an increased proportion of CD16(+) monocytes (p = 0.009) compared to uninfected controls. Levels of the innate immune aging biomarkers sCD163 and the proportion of CD16(+) monocytes were equivalent to those observed in HIV negative women aged 14.5 and 10.6 years older, respectively. CXCL10 increased with age at an accelerated rate in HIV positive women (p = 0.002) suggesting a synergistic effect between HIV and aging on innate immune activation. Multivariable modeling indicated that age-related increases in innate immune biomarkers CXCL10 and sCD163 are independent of senescent changes in CD8(+) T lymphocytes. Quantifying the impact of HIV on immune aging reveals that HIV infection in women confers the equivalent of a 10-14 year increase in the levels of innate immune aging markers. These changes may contribute to the increased risk of inflammatory age-related diseases in HIV positive women.

  3. Long-Range Activation of Systemic Immunity through Peptidoglycan Diffusion in Drosophila

    Science.gov (United States)

    Gendrin, Mathilde; Welchman, David P.; Poidevin, Mickael; Hervé, Mireille; Lemaitre, Bruno

    2009-01-01

    The systemic immune response of Drosophila is known to be induced both by septic injury and by oral infection with certain bacteria, and is characterized by the secretion of antimicrobial peptides (AMPs) into the haemolymph. To investigate other possible routes of bacterial infection, we deposited Erwinia carotovora (Ecc15) on various sites of the cuticle and monitored the immune response via expression of the AMP gene Diptericin. A strong response was observed to deposition on the genital plate of males (up to 20% of a septic injury response), but not females. We show that the principal response to genital infection is systemic, but that some AMPs, particularly Defensin, are induced locally in the genital tract. At late time points we detected bacteria in the haemolymph of immune deficient RelishE20 flies, indicating that the genital plate can be a route of entry for pathogens, and that the immune response protects flies against the progression of genital infection. The protective role of the immune response is further illustrated by our observation that RelishE20 flies exhibit significant lethality in response to genital Ecc15 infections. We next show that a systemic immune response can be induced by deposition of the bacterial elicitor peptidoglycan (PGN), or its terminal monomer tracheal cytotoxin (TCT), on the genital plate. This immune response is downregulated by PGRP-LB and Pirk, known regulators of the Imd pathway, and can be suppressed by the overexpression of PGRP-LB in the haemolymph compartment. Finally, we provide strong evidence that TCT can activate a systemic response by crossing epithelia, by showing that radiolabelled TCT deposited on the genital plate can subsequently be detected in the haemolymph. Genital infection is thus an intriguing new model for studying the systemic immune response to local epithelial infections and a potential route of entry for naturally occurring pathogens of Drosophila. PMID:20019799

  4. Immune Repertoire Characteristics and Dynamics in Cancer

    DEFF Research Database (Denmark)

    Liu, Xiao

    The diversity of T and B cells in terms of their receptors is huge in the invertebrate’s immune system, to provide broad protection against the vast diversity of pathogens. Immune repertoire is defined as the sum of total subtypes that makes the organism’s immune system, either T cell receptor or...

  5. Neural circuitry and immunity

    Science.gov (United States)

    Pavlov, Valentin A.; Tracey, Kevin J.

    2015-01-01

    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuroimmune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases defines the emerging field of Bioelectronic Medicine. PMID:26512000

  6. Histone deacetylase inhibitors suppress immune activation in primary mouse microglia

    NARCIS (Netherlands)

    Kannan, Vishnu; Brouwer, Nieske; Hanisch, Uwe-Karsten; Regen, Tommy; Eggen, Bart J. L.; Boddeke, Hendrikus W. G. M.

    Neuroinflammation is required for tissue clearance and repair after infections or insults. To prevent excessive damage, it is crucial to limit the extent of neuroinflammation and thereby the activation of its principal effector cell, microglia. The two main major innate immune cell types in the CNS

  7. Intermittent Metronomic Drug Schedule Is Essential for Activating Antitumor Innate Immunity and Tumor Xenograft Regression

    Directory of Open Access Journals (Sweden)

    Chong-Sheng Chen

    2014-01-01

    Full Text Available Metronomic chemotherapy using cyclophosphamide (CPA is widely associated with antiangiogenesis; however, recent studies implicate other immune-based mechanisms, including antitumor innate immunity, which can induce major tumor regression in implanted brain tumor models. This study demonstrates the critical importance of drug schedule: CPA induced a potent antitumor innate immune response and tumor regression when administered intermittently on a 6-day repeating metronomic schedule but not with the same total exposure to activated CPA administered on an every 3-day schedule or using a daily oral regimen that serves as the basis for many clinical trials of metronomic chemotherapy. Notably, the more frequent metronomic CPA schedules abrogated the antitumor innate immune and therapeutic responses. Further, the innate immune response and antitumor activity both displayed an unusually steep dose-response curve and were not accompanied by antiangiogenesis. The strong recruitment of innate immune cells by the 6-day repeating CPA schedule was not sustained, and tumor regression was abolished, by a moderate (25% reduction in CPA dose. Moreover, an ~20% increase in CPA dose eliminated the partial tumor regression and weak innate immune cell recruitment seen in a subset of the every 6-day treated tumors. Thus, metronomic drug treatment must be at a sufficiently high dose but also sufficiently well spaced in time to induce strong sustained antitumor immune cell recruitment. Many current clinical metronomic chemotherapeutic protocols employ oral daily low-dose schedules that do not meet these requirements, suggesting that they may benefit from optimization designed to maximize antitumor immune responses.

  8. "The Impact of Mycobacterium tuberculosis Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" - Meeting report.

    Science.gov (United States)

    Boggiano, Cesar; Eichelberg, Katrin; Ramachandra, Lakshmi; Shea, Jaqueline; Ramakrishnan, Lalita; Behar, Samuel; Ernst, Joel D; Porcelli, Steven A; Maeurer, Markus; Kornfeld, Hardy

    2017-06-14

    Tuberculosis (TB) is the major cause of death from infectious diseases around the world, particularly in HIV infected individuals. TB vaccine design and development have been focused on improving Bacille Calmette-Guérin (BCG) and evaluating recombinant and viral vector expressed Mycobacterium tuberculosis (Mtb) proteins, for boosting BCG-primed immunity, but these approaches have not yet yielded significant improvements over the modest effects of BCG in protecting against infection or disease. On March 7-8, 2016, the National Institute of Allergy and Infectious Diseases (NIAID) convened a workshop on "The Impact of Mtb Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" with the goal of defining immune mechanisms that could be targeted through novel research approaches, to inform vaccine design and immune therapeutic interventions for prevention of TB. The workshop addressed early infection events, the impact of Mtb evolution on the development and maintenance of an adaptive immune response, and the factors that influence protection against and progression to active disease. Scientific gaps and areas of study to revitalize and accelerate TB vaccine design were discussed and prioritized. These included a comprehensive evaluation of innate and Mtb-specific adaptive immune responses in the lung at different stages of disease; determining the role of B cells and antibodies (Abs) during Mtb infection; development of better assays to measure Mtb burden following exposure, infection, during latency and after treatment, and approaches to improving current animal models to study Mtb immunogenicity, TB disease and transmission. Copyright © 2017.

  9. THE BIOTIC FACTOR OF TREMATOD OPISTHORHIS FELINEUS INVASION INFLUENCE ON HOST IMMUNE STATUS AND SOMATIC CELLS PROLIFERATIVE ACTIVITY

    Directory of Open Access Journals (Sweden)

    A. G. Rybka

    2016-01-01

    Full Text Available The paper confirms long-time opisthorhis invasion role as a risk factor of host immune system reconstitution as well as an important factor in holangiocarcinomas development. It was shown that opisthorhosis invasion primal stage induce host immune system reconstitution. Host immune B-cells system is activated by metacercaria antigens, while the same antigens inhibits T-cells activity. Opisthorhis metabolites stimulate proliferative mithogen-induced T-cells acti vity. Chronic opisthorchis invasion leads to immune system disbalance. It means: decrease of specific and non-speci fic natural killers activity, number of high proliferative activity T-lymphocytes and the shift of regulatory T-cells subset to suppressors prevalence. At the same time specific as well as non-specific T-suppressors functional ability is very low. It was shown T-cells helper-amplifier activation. Despite of circulating B-cells decrease the antibody produced cells number is spleen increases significantly at the same time with circulating immune complexes accumulation. Even 3–6 month after dehelmintisation the immune system disbalance decreases but lefts. In addition, chronic opisthorhis invasion leads to the proliferative processes activation in ductal epithelium, liver, lymph nodes and in other organs which leads to cancer proliferation. According to the results obtained the opisthorhis infected patients needs to be immunocorrected before as well as after dehelmintisation for holangiocancerogenesis profylaxis.

  10. Differential cellular recognition pattern to M. tuberculosis targets defined by IFN-γ and IL-17 production in blood from TB + patients from Honduras as compared to health care workers: TB and immune responses in patients from Honduras.

    Science.gov (United States)

    Alvarez-Corrales, Nancy; Ahmed, Raija K; Rodriguez, Carol A; Balaji, Kithiganahalli N; Rivera, Rebeca; Sompallae, Ramakrishna; Vudattu, Nalini K; Hoffner, Sven E; Zumla, Alimuddin; Pineda-Garcia, Lelany; Maeurer, Markus

    2013-03-06

    A better understanding of the quality of cellular immune responses directed against molecularly defined targets will guide the development of TB diagnostics and identification of molecularly defined, clinically relevant M.tb vaccine candidates. Recombinant proteins (n = 8) and peptide pools (n = 14) from M. tuberculosis (M.tb) targets were used to compare cellular immune responses defined by IFN-γ and IL-17 production using a Whole Blood Assay (WBA) in a cohort of 148 individuals, i.e. patients with TB + (n = 38), TB- individuals with other pulmonary diseases (n = 81) and individuals exposed to TB without evidence of clinical TB (health care workers, n = 29). M.tb antigens Rv2958c (glycosyltransferase), Rv2962c (mycolyltransferase), Rv1886c (Ag85B), Rv3804c (Ag85A), and the PPE family member Rv3347c were frequently recognized, defined by IFN-γ production, in blood from healthy individuals exposed to M.tb (health care workers). A different recognition pattern was found for IL-17 production in blood from M.tb exposed individuals responding to TB10.4 (Rv0288), Ag85B (Rv1886c) and the PPE family members Rv0978c and Rv1917c. The pattern of immune target recognition is different in regard to IFN-γ and IL-17 production to defined molecular M.tb targets in PBMCs from individuals frequently exposed to M.tb. The data represent the first mapping of cellular immune responses against M.tb targets in TB patients from Honduras.

  11. Tumor Necrosis Factor-Mediated Survival of CD169+ Cells Promotes Immune Activation during Vesicular Stomatitis Virus Infection

    DEFF Research Database (Denmark)

    Shinde, Prashant V; Xu, Haifeng C; Maney, Sathish Kumar

    2018-01-01

    Innate immune activation is essential to mount an effective antiviral response and to prime adaptive immunity. Although a crucial role of CD169(+) cells during vesicular stomatitis virus (VSV) infections is increasingly recognized, factors regulating CD169(+) cells during viral infections remain...... stomatitis virus infection, phagocytes produce tumor necrosis factor (TNF) which signals via TNFR1 and promote "enforced virus replication" in CD169(+) macrophages. Consequently, lack of TNF or TNFR1 resulted in defective immune activation and VSV clearance....

  12. Digital quantification of gene expression in sequential breast cancer biopsies reveals activation of an immune response.

    Directory of Open Access Journals (Sweden)

    Rinath M Jeselsohn

    Full Text Available Advancements in molecular biology have unveiled multiple breast cancer promoting pathways and potential therapeutic targets. Large randomized clinical trials remain the ultimate means of validating therapeutic efficacy, but they require large cohorts of patients and are lengthy and costly. A useful approach is to conduct a window of opportunity study in which patients are exposed to a drug pre-surgically during the interval between the core needle biopsy and the definitive surgery. These are non-therapeutic studies and the end point is not clinical or pathological response but rather evaluation of molecular changes in the tumor specimens that can predict response. However, since the end points of the non-therapeutic studies are biologic, it is critical to first define the biologic changes that occur in the absence of treatment. In this study, we compared the molecular profiles of breast cancer tumors at the time of the diagnostic biopsy versus the definitive surgery in the absence of any intervention using the Nanostring nCounter platform. We found that while the majority of the transcripts did not vary between the two biopsies, there was evidence of activation of immune related genes in response to the first biopsy and further investigations of the immune changes after a biopsy in early breast cancer seem warranted.

  13. Flg22-Triggered Immunity Negatively Regulates Key BR Biosynthetic Genes.

    Science.gov (United States)

    Jiménez-Góngora, Tamara; Kim, Seong-Ki; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-01-01

    In plants, activation of growth and activation of immunity are opposing processes that define a trade-off. In the past few years, the growth-promoting hormones brassinosteroids (BR) have emerged as negative regulators of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), promoting growth at the expense of defense. The crosstalk between BR and PTI signaling was described as negative and unidirectional, since activation of PTI does not affect several analyzed steps in the BR signaling pathway. In this work, we describe that activation of PTI by the bacterial PAMP flg22 results in the reduced expression of BR biosynthetic genes. This effect does not require BR perception or signaling, and occurs within 15 min of flg22 treatment. Since the described PTI-induced repression of gene expression may result in a reduction in BR biosynthesis, the crosstalk between PTI and BR could actually be negative and bidirectional, a possibility that should be taken into account when considering the interaction between these two pathways.

  14. Production of interferon-gamma by in vivo tumor-sensitized T cells: Association with active antitumor immunity

    International Nuclear Information System (INIS)

    Bursuker, I.; Pearce, M.T.

    1990-01-01

    The state of active immunity to Meth A fibrosarcoma in mice immunized with an admixture of Meth A cells and Propionibacterium acnes is associated with possession by the host of spleen cells capable of producing interferon-gamma (IFN-gamma) upon in vitro restimulation with irradiated tumor cells. The ability of spleen cells from immunized mice to produce IFN-gamma in response to irradiated Meth A cells decays as active antitumor immunity is replaced by a state of immunological memory. The IFN-producing cells are L3T4+Ly2+, cyclophosphamide-sensitive and radiosensitive T cells, as determined by their sensitivity to corresponding monoclonal antibodies and complement. The induction of IFN-gamma production by in vivo tumor-sensitized T cells is tumor specific, in that spleen cells from mice immunized against Meth A fibrosarcoma can produce IFN in response to irradiated Meth A cells but not in response to another syngeneic tumor M109 lung carcinoma

  15. Differential cellular recognition pattern to M. tuberculosis targets defined by IFN-γ and IL-17 production in blood from TB + patients from Honduras as compared to health care workers: TB and immune responses in patients from Honduras

    Science.gov (United States)

    2013-01-01

    Background A better understanding of the quality of cellular immune responses directed against molecularly defined targets will guide the development of TB diagnostics and identification of molecularly defined, clinically relevant M.tb vaccine candidates. Methods Recombinant proteins (n = 8) and peptide pools (n = 14) from M. tuberculosis (M.tb) targets were used to compare cellular immune responses defined by IFN-γ and IL-17 production using a Whole Blood Assay (WBA) in a cohort of 148 individuals, i.e. patients with TB + (n = 38), TB- individuals with other pulmonary diseases (n = 81) and individuals exposed to TB without evidence of clinical TB (health care workers, n = 29). Results M.tb antigens Rv2958c (glycosyltransferase), Rv2962c (mycolyltransferase), Rv1886c (Ag85B), Rv3804c (Ag85A), and the PPE family member Rv3347c were frequently recognized, defined by IFN-γ production, in blood from healthy individuals exposed to M.tb (health care workers). A different recognition pattern was found for IL-17 production in blood from M.tb exposed individuals responding to TB10.4 (Rv0288), Ag85B (Rv1886c) and the PPE family members Rv0978c and Rv1917c. Conclusions The pattern of immune target recognition is different in regard to IFN-γ and IL-17 production to defined molecular M.tb targets in PBMCs from individuals frequently exposed to M.tb. The data represent the first mapping of cellular immune responses against M.tb targets in TB patients from Honduras. PMID:23497342

  16. Effect of ionizing radiation on active thyroid immunity

    International Nuclear Information System (INIS)

    Ibrahim, I.I.; Abdelaal, A.E.; AL-Gachari, A.I.; Hindy, O.W.; Abdalla, M.I.; Said, M.M.; Shoucha, M.A.; and Salama, F.M.

    1988-01-01

    The present study was carried out to explore the effect of exposure to ionizing radiation on the immune system in cocks. A total number of 36 mature Fayoumi cocks were randomly assigned to: control, 300 R and 600 r groups. Whole body irradiation was carried out in co-60 unit 24 hours. Prior to induction of immunity. Thyroglobulin (T G) immunity was induced in all birds and sera were collected before, 1, 2, 4, 6, 8 and 16 weeks. After immunization. T G antibodies were evaluated by using radioisotopic techniques: i- Ammonium sulphate method, ii-polyethylene glycol method and iii-The circulating thyroid hormones. The results obtained indicated the formation of thyroglobulin antibodies in all immunized birds at 6 weeks. After immunization and thereafter, although it was detected in some birds at 4 weeks. after immunization. The antibody titer increased sharply after the sixth Th week reaching its peak value at the sixteenth week interval. The suppressive effect of ionizing radiation on the immune response was evident in the irradiated groups, particularly the 600 r group. Some birds in the 600 r group were not able to respond appropriately to the challenge and did not survive until the end of observation period

  17. The role of medicaments, exosomes and miRNA molecules in modulation of macrophage immune activity

    Directory of Open Access Journals (Sweden)

    Katarzyna Nazimek

    2015-01-01

    Full Text Available Macrophages play an important role in innate immunity, in induction and orchestration of acquired immune response as well as in the maintenance of tissue homeostasis. Macrophages as antigen presenting cells induce or inhibit the development of immune response and as effector cells play an important role in innate immunity to infectious agents and in delayed--type hypersensitivity as well. Thus, either up- or down-regulation of their activity leads to the impairment of different biological processes. This often results in the development of immunological diseases or inflammatory response associated with metabolic, cardiovascular or neuroendocrine disorders. Therefore, the possibility of modulation of macrophage function should allow for elaboration of new effective therapeutic strategies. Noteworthy, interaction of medicaments with macrophages may directly mediate their therapeutic activity or is an additional beneficial effect increasing efficacy of treatment. Further, macrophage differentiation is regulated by miRNA-223, while expression of miRNA-146 and miRNA-155 may modulate and/or be a result of the current cell phenotype. Present review is focused on the current knowledge about the action of medicaments, microRNA molecules, exosomes and related vesicles on macrophages leading to modulation of their biological activity.

  18. Prenatal programing: at the intersection of maternal stress and immune activation.

    Science.gov (United States)

    Howerton, Christopher L; Bale, Tracy L

    2012-08-01

    Exposure to prenatal insults such as maternal stress and pathogenic infections has been associated with an increased risk for neurodevelopmental disorders. The mechanisms by which these programing events occur likely involve complex interactions between the maternal hormonal milieu, the placenta, and the developing fetus, in addition to compounding factors such as fetal sex and gestational stage of development. Despite the diverse biological processes involved, examination of common pathways in maternal stress and immune activation offers intriguing possibilities for elucidation of mechanistic insight. Further, the endocrine and sex-specific placenta is a tissue poised to be a key mediator in fetal programing, located at the intersection of the maternal and embryonic environments. In this review, we will discuss the potential shared mechanisms of maternal stress and immune pathway activation, with a particular focus on the important contribution and role of the placenta. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Cross-serotype immunity induced by immunization with a conserved rhinovirus capsid protein.

    Directory of Open Access Journals (Sweden)

    Nicholas Glanville

    Full Text Available Human rhinovirus (RV infections are the principle cause of common colds and precipitate asthma and COPD exacerbations. There is currently no RV vaccine, largely due to the existence of ∼150 strains. We aimed to define highly conserved areas of the RV proteome and test their usefulness as candidate antigens for a broadly cross-reactive vaccine, using a mouse infection model. Regions of the VP0 (VP4+VP2 capsid protein were identified as having high homology across RVs. Immunization with a recombinant VP0 combined with a Th1 promoting adjuvant induced systemic, antigen specific, cross-serotype, cellular and humoral immune responses. Similar cross-reactive responses were observed in the lungs of immunized mice after infection with heterologous RV strains. Immunization enhanced the generation of heterosubtypic neutralizing antibodies and lung memory T cells, and caused more rapid virus clearance. Conserved domains of the RV capsid therefore induce cross-reactive immune responses and represent candidates for a subunit RV vaccine.

  20. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish

    Directory of Open Access Journals (Sweden)

    Arunita Chatterjee

    2016-06-01

    Full Text Available Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual.

  1. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans

    NARCIS (Netherlands)

    Kox, M.; Eijk, L.T.G.J. van; Zwaag, J.; Wildenberg, J. van den; Sweep, F.C.; Hoeven, J.G. van der; Pickkers, P.

    2014-01-01

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot

  2. Modelling the Immune Response to Cancer: An Individual-Based Approach Accounting for the Difference in Movement Between Inactive and Activated T Cells.

    Science.gov (United States)

    Macfarlane, Fiona R; Lorenzi, Tommaso; Chaplain, Mark A J

    2018-06-01

    A growing body of experimental evidence indicates that immune cells move in an unrestricted search pattern if they are in the pre-activated state, whilst they tend to stay within a more restricted area upon activation induced by the presence of tumour antigens. This change in movement is not often considered in the existing mathematical models of the interactions between immune cells and cancer cells. With the aim to fill such a gap in the existing literature, in this work we present a spatially structured individual-based model of tumour-immune competition that takes explicitly into account the difference in movement between inactive and activated immune cells. In our model, a Lévy walk is used to capture the movement of inactive immune cells, whereas Brownian motion is used to describe the movement of antigen-activated immune cells. The effects of activation of immune cells, the proliferation of cancer cells and the immune destruction of cancer cells are also modelled. We illustrate the ability of our model to reproduce qualitatively the spatial trajectories of immune cells observed in experimental data of single-cell tracking. Computational simulations of our model further clarify the conditions for the onset of a successful immune action against cancer cells and may suggest possible targets to improve the efficacy of cancer immunotherapy. Overall, our theoretical work highlights the importance of taking into account spatial interactions when modelling the immune response to cancer cells.

  3. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Kee Hoon Sohn

    2014-10-01

    Full Text Available Plant nucleotide-binding leucine-rich repeat (NB-LRR disease resistance (R proteins recognize specific "avirulent" pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs. How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4 and RRS1 (resistance to Ralstonia solanacearum 1, function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1 mutant encodes an RRS1 allele (RRS1SLH1 with a single amino acid (leucine insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed

  4. Dietary Immunogen® modulated digestive enzyme activity and immune gene expression in Litopenaeus vannamei post larvae.

    Science.gov (United States)

    Miandare, Hamed Kolangi; Mirghaed, Ali Taheri; Hosseini, Marjan; Mazloumi, Nastaran; Zargar, Ashkan; Nazari, Sajad

    2017-11-01

    Pacific white shrimp Litopenaeus vannamei (Boone, 1931) is an important economical shrimp species worldwide, especially in the Middle East region, and farming activities of this species have been largely affected by diseases, mostly viral and bacterial diseases. Scientists have started to use prebiotics for bolstering the immune status of the animal. This study aimed to investigate the influence of Immunogen ® on growth, digestive enzyme activity and immune related gene expression of Litopenaeus vannamei post-larvae. All post-larvae were acclimated to the laboratory condition for 14 days. Upon acclimation, shrimps were fed on different levels of Immunogen ® (0, 0.5, 1 and 1.5 g kg -1 ) for 60 days. No significant differences were detected in weight gain, specific growth rate (SGR) and food conversion ratio (FCR) in shrimp post-larvae in which fed with different levels of Immunogen ® and control diet. The results showed that digestive enzymes activity including protease and lipase increased with different amounts of Immunogen ® in the shrimp diet. Protease activity increased with 1.5 g kg -1 Immunogen ® after 60 days and lipase activity increased with 1 and 1.5 g kg -1 Immunogen ® after 30 and 60 days of the trial respectively (P  0.05). The expression of immune related genes including, prophenoloxidase, crustin and g-type lysozyme increased with diet 1.5 g kg -1 Immunogen ® (P < 0.05) while expression of penaeidin gene increased only with experimental diet 1 g kg -1 of Immunogen ® . These results indicated that increase in digestive enzymes activity and expression of immune related genes could modulate the Immunogen ® in the innate immune system in L. vannamei in this study. Copyright © 2017. Published by Elsevier Ltd.

  5. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity.

    Science.gov (United States)

    Bowen, David G; Zen, Monica; Holz, Lauren; Davis, Thomas; McCaughan, Geoffrey W; Bertolino, Patrick

    2004-09-01

    Hepatic immunobiology is paradoxical: although the liver possesses unusual tolerogenic properties, it is also the site of effective immune responses against multiple pathogens and subject to immune-mediated pathology. The mechanisms underlying this dichotomy remain unclear. Following previous work demonstrating that the liver may act as a site of primary T cell activation, we demonstrate here that the balance between immunity and tolerance in this organ is established by competition for primary activation of CD8+ T cells between the liver and secondary lymphoid tissues, with the immune outcome determined by the initial site of activation. Using a transgenic mouse model in which antigen is expressed within both liver and lymph nodes, we show that while naive CD8+ T cells activated within the lymph nodes were capable of mediating hepatitis, cells undergoing primary activation within the liver exhibited defective cytotoxic function and shortened half-life and did not mediate hepatocellular injury. The implications of these novel findings may pertain not only to the normal maintenance of peripheral tolerance, but also to hepatic allograft tolerance and the immunopathogenesis of chronic viral hepatitis.

  6. Mycoplasma hyorhinis-Contaminated Cell Lines Activate Primary Innate Immune Cells via a Protease-Sensitive Factor.

    Directory of Open Access Journals (Sweden)

    Simon Heidegger

    Full Text Available Mycoplasma are a frequent and occult contaminant of cell cultures, whereby these prokaryotic organisms can modify many aspects of cell physiology, rendering experiments that are conducted with such contaminated cells problematic. Chronic Mycoplasma contamination in human monocytic cells lines has been associated with suppressed Toll-like receptor (TLR function. In contrast, we show here that components derived from a Mycoplasma hyorhinis-infected cell line can activate innate immunity in non-infected primary immune cells. Release of pro-inflammatory cytokines such as IL-6 by dendritic cells in response to Mycoplasma hyorhinis-infected cell components was critically dependent on the adapter protein MyD88 but only partially on TLR2. Unlike canonical TLR2 signaling that is triggered in response to the detection of Mycoplasma infection, innate immune activation by components of Mycoplasma-infected cells was inhibited by chloroquine treatment and sensitive to protease treatment. We further show that in plasmacytoid dendritic cells, soluble factors from Mycoplasma hyorhinis-infected cells induce the production of large amounts of IFN-α. We conclude that Mycoplasma hyorhinis-infected cell lines release protein factors that can potently activate co-cultured innate immune cells via a previously unrecognized mechanism, thus limiting the validity of such co-culture experiments.

  7. A systems biology approach reveals that tissue tropism to West Nile virus is regulated by antiviral genes and innate immune cellular processes.

    Directory of Open Access Journals (Sweden)

    Mehul S Suthar

    2013-02-01

    Full Text Available The actions of the RIG-I like receptor (RLR and type I interferon (IFN signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV. In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen and nonpermissive (liver tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs(-/- × Ifnar(-/- mice revealed the loss of expression of several key components within the natural killer (NK cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs(-/- × Ifnar(-/- infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue

  8. The most common friend first immunization

    International Nuclear Information System (INIS)

    Nian Fu-Zhong; Hu Cha-Sheng

    2016-01-01

    In this paper, a standard susceptible-infected-recovered-susceptible(SIRS) epidemic model based on the Watts–Strogatz (WS) small-world network model and the Barabsi–Albert (BA) scale-free network model is established, and a new immunization scheme — “the most common friend first immunization” is proposed, in which the most common friend’s node is described as being the first immune on the second layer protection of complex networks. The propagation situations of three different immunization schemes — random immunization, high-risk immunization, and the most common friend first immunization are studied. At the same time, the dynamic behaviors are also studied on the WS small-world and the BA scale-free network. Moreover, the analytic and simulated results indicate that the immune effect of the most common friend first immunization is better than random immunization, but slightly worse than high-risk immunization. However, high-risk immunization still has some limitations. For example, it is difficult to accurately define who a direct neighbor in the life is. Compared with the traditional immunization strategies having some shortcomings, the most common friend first immunization is effective, and it is nicely consistent with the actual situation. (paper)

  9. Season of birth shapes neonatal immune function

    DEFF Research Database (Denmark)

    Thysen, Anna Hammerich; Rasmussen, Morten Arendt; Kreiner-Møller, Eskil

    2016-01-01

    Birth season has been reported to be a risk factor for several immune-mediated diseases. We hypothesized that this association is mediated by differential changes in neonatal immune phenotype and function with birth season. We sought to investigate the influence of season of birth on cord blood...... immune cell subsets and inflammatory mediators in neonatal airways. Cord blood was phenotyped for 26 different immune cell subsets, and at 1 month of age, 20 cytokines and chemokines were quantified in airway mucosal lining fluid. Multivariate partial least squares discriminant analyses were applied...... to determine whether certain immune profiles dominate by birth season, and correlations between individual cord blood immune cells and early airway immune mediators were defined. We found a birth season-related fluctuation in neonatal immune cell subsets and in early-life airway mucosal immune function...

  10. The Scaffold Immune Microenvironment: Biomaterial-Mediated Immune Polarization in Traumatic and Nontraumatic Applications.

    Science.gov (United States)

    Sadtler, Kaitlyn; Allen, Brian W; Estrellas, Kenneth; Housseau, Franck; Pardoll, Drew M; Elisseeff, Jennifer H

    2017-10-01

    The immune system mediates tissue growth and homeostasis and is the first responder to injury or biomaterial implantation. Recently, it has been appreciated that immune cells play a critical role in wound healing and tissue repair and should thus be considered potentially beneficial, particularly in the context of scaffolds for regenerative medicine. In this study, we present a flow cytometric analysis of cellular recruitment to tissue-derived extracellular matrix scaffolds, where we quantitatively describe the infiltration and polarization of several immune subtypes, including macrophages, dendritic cells, neutrophils, monocytes, T cells, and B cells. We define a specific scaffold-associated macrophage (SAM) that expresses CD11b + F4/80 + CD11c +/- CD206 hi CD86 + MHCII + that are characteristic of an M2-like cell (CD206 hi ) with high antigen presentation capabilities (MHCII + ). Adaptive immune cells tightly regulate the phenotype of a mature SAM. These studies provide a foundation for detailed characterization of the scaffold immune microenvironment of a given biomaterial scaffold to determine the effect of scaffold changes on immune response and subsequent therapeutic outcome of that material.

  11. Adenosine can thwart antitumor immune responses elicited by radiotherapy. Therapeutic strategies alleviating protumor ADO activities

    Energy Technology Data Exchange (ETDEWEB)

    Vaupel, Peter [Klinikum rechts der Isar, Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Munich (Germany); Multhoff, Gabriele [Klinikum rechts der Isar, Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Munich (Germany); Helmholtz Zentrum Muenchen, Institute for innovative Radiotherapy (iRT), Experimental Immune Biology, Neuherberg (Germany)

    2016-05-15

    By studying the bioenergetic status we could show that the development of tumor hypoxia is accompanied, apart from myriad other biologically relevant effects, by a substantial accumulation of adenosine (ADO). ADO has been shown to act as a strong immunosuppressive agent in tumors by modulating the innate and adaptive immune system. In contrast to ADO, standard radiotherapy (RT) can either stimulate or abrogate antitumor immune responses. Herein, we present ADO-mediated mechanisms that may thwart antitumor immune responses elicited by RT. An overview of the generation, accumulation, and ADO-related multifaceted inhibition of immune functions, contrasted with the antitumor immune effects of RT, is provided. Upon hypoxic stress, cancer cells release ATP into the extracellular space where nucleotides are converted into ADO by hypoxia-sensitive, membrane-bound ectoenzymes (CD39/CD73). ADO actions are mediated upon binding to surface receptors, mainly A2A receptors on tumor and immune cells. Receptor activation leads to a broad spectrum of strong immunosuppressive properties facilitating tumor escape from immune control. Mechanisms include (1) impaired activity of CD4 + T and CD8 + T, NK cells and dendritic cells (DC), decreased production of immuno-stimulatory lymphokines, and (2) activation of Treg cells, expansion of MDSCs, promotion of M2 macrophages, and increased activity of major immunosuppressive cytokines. In addition, ADO can directly stimulate tumor proliferation and angiogenesis. ADO mechanisms described can thwart antitumor immune responses elicited by RT. Therapeutic strategies alleviating tumor-promoting activities of ADO include respiratory hyperoxia or mild hyperthermia, inhibition of CD39/CD73 ectoenzymes or blockade of A2A receptors, and inhibition of ATP-release channels or ADO transporters. (orig.) [German] Untersuchungen des bioenergetischen Status ergaben, dass Tumorhypoxie neben vielen anderen bedeutsamen biologischen Effekten zu einem starken

  12. Super-enhancers: Asset management in immune cell genomes.

    Science.gov (United States)

    Witte, Steven; O'Shea, John J; Vahedi, Golnaz

    2015-09-01

    Super-enhancers (SEs) are regions of the genome consisting of clusters of regulatory elements bound with very high amounts of transcription factors, and this architecture appears to be the hallmark of genes and noncoding RNAs linked with cell identity. Recent studies have identified SEs in CD4(+) T cells and have further linked these regions to single nucleotide polymorphisms (SNPs) associated with immune-mediated disorders, pointing to an important role for these structures in the T cell differentiation and function. Here we review the features that define SEs, and discuss their function within the broader understanding of the mechanisms that define immune cell identity and function. We propose that SEs present crucial regulatory hubs, coordinating intrinsic and extrinsic differentiation signals, and argue that delineating these regions will provide important insight into the factors and mechanisms that define immune cell identity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. In immune defense: redefining the role of the immune system in chronic disease.

    Science.gov (United States)

    Rubinow, Katya B; Rubinow, David R

    2017-03-01

    The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.

  14. Scavenging Iron: A Novel Mechanism of Plant Immunity Activation by Microbial Siderophores1[C][W

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W.G.; Rigault, Martine; Riache, Nassima; Joseph, Delphine; Desmaële, Didier; Mouille, Grégory; Boutet, Stéphanie; Soubigou-Taconnat, Ludivine; Renou, Jean-Pierre; Thomine, Sébastien; Expert, Dominique; Dellagi, Alia

    2014-01-01

    Siderophores are specific ferric iron chelators synthesized by virtually all microorganisms in response to iron deficiency. We have previously shown that they promote infection by the phytopathogenic enterobacteria Dickeya dadantii and Erwinia amylovora. Siderophores also have the ability to activate plant immunity. We have used complete Arabidopsis transcriptome microarrays to investigate the global transcriptional modifications in roots and leaves of Arabidopsis (Arabidopsis thaliana) plants after leaf treatment with the siderophore deferrioxamine (DFO). Physiological relevance of these transcriptional modifications was validated experimentally. Immunity and heavy-metal homeostasis were the major processes affected by DFO. These two physiological responses could be activated by a synthetic iron chelator ethylenediamine-di(o-hydroxyphenylacetic) acid, indicating that siderophores eliciting activities rely on their strong iron-chelating capacity. DFO was able to protect Arabidopsis against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. Siderophore treatment caused local modifications of iron distribution in leaf cells visible by ferrocyanide and diaminobenzidine-H2O2 staining. Metal quantifications showed that DFO causes a transient iron and zinc uptake at the root level, which is presumably mediated by the metal transporter iron regulated transporter1 (IRT1). Defense gene expression and callose deposition in response to DFO were compromised in an irt1 mutant. Consistently, plant susceptibility to D. dadantii was increased in the irt1 mutant. Our work shows that iron scavenging is a unique mechanism of immunity activation in plants. It highlights the strong relationship between heavy-metal homeostasis and immunity. PMID:24501001

  15. Multivalent Porous Silicon Nanoparticles Enhance the Immune Activation Potency of Agonistic CD40 Antibody

    Science.gov (United States)

    Gu, Luo; Ruff, Laura E.; Qin, Zhengtao; Corr, Maripat P.; Hedrick, Stephen M.; Sailor, Michael J.

    2012-01-01

    One of the fundamental paradigms in the use of nanoparticles to treat disease is to evade or suppress the immune system in order to minimize systemic side effects and deliver sufficient nanoparticle quantities to the intended tissues. However, the immune system is the body's most important and effective defense against diseases. It protects the host by identifying and eliminating foreign pathogens as well as selfmalignancies. Here we report a nanoparticle engineered to work with the immune system, enhancing the intended activation of antigen presenting cells (APCs). We show that luminescent porous silicon nanoparticles (LPSiNPs), each containing multiple copies of an agonistic antibody (FGK45) to the APC receptor CD40, greatly enhance activation of B cells. The cellular response to the nanoparticle-based stimulators is equivalent to a 30–40 fold larger concentration of free FGK45. The intrinsic near-infrared photoluminescence of LPSiNPs is used to monitor degradation and track the nanoparticles inside APCs. PMID:22689074

  16. Oxidized lipoproteins are associated with markers of inflammation and immune activation in HIV-1 infection

    Science.gov (United States)

    Kelesidis, T; Jackson, N; McComsey, GA; Wang, X; Elashoff, D; Dube, MP; Brown, TT; Yang, OO; Stein, JH; Currier, JS

    2016-01-01

    Objective The pathogenesis of immune dysfunction in chronic HIV-1 infection is unclear, and a potential role for oxidized lipids has been suggested. We hypothesize that both oxidized low- and high-density lipoproteins (HDLox, LDLox) contribute to HIV-1 related immune dysfunction. Study In the AIDS Clinical Trials Group (ACTG) A5260, 234 HIV-infected antiretroviral therapy (ART)-naïve participants were randomized to receive tenofovir-emtricitabine plus protease inhibitors or raltegravir and had HIV-1 RNA lipoproteins may contribute to persistent immune activation on ART. PMID:27603288

  17. Synthesis of a molecularly defined single-active site heterogeneous catalyst for selective oxidation of N-heterocycles.

    Science.gov (United States)

    Zhang, Yujing; Pang, Shaofeng; Wei, Zhihong; Jiao, Haijun; Dai, Xingchao; Wang, Hongli; Shi, Feng

    2018-04-13

    Generally, a homogeneous catalyst exhibits good activity and defined active sites but it is difficult to recycle. Meanwhile, a heterogeneous catalyst can easily be reused but its active site is difficult to reveal. It is interesting to bridge the gap between homogeneous and heterogeneous catalysis via controllable construction of a heterogeneous catalyst containing defined active sites. Here, we report that a molecularly defined, single-active site heterogeneous catalyst has been designed and prepared via the oxidative polymerization of maleimide derivatives. These polymaleimide derivatives can be active catalysts for the selective oxidation of heterocyclic compounds to quinoline and indole via the recycling of -C=O and -C-OH groups, which was confirmed by tracing the reaction with GC-MS using maleimide as the catalyst and by FT-IR analysis with polymaleimide as the catalyst. These results might promote the development of heterogeneous catalysts with molecularly defined single active sites exhibiting a comparable activity to homogeneous catalysts.

  18. Diversity and dialogue in immunity to helminths.

    Science.gov (United States)

    Allen, Judith E; Maizels, Rick M

    2011-06-01

    The vertebrate immune system has evolved in concert with a broad range of infectious agents, including ubiquitous helminth (worm) parasites. The constant pressure of helminth infections has been a powerful force in shaping not only how immunity is initiated and maintained, but also how the body self-regulates and controls untoward immune responses to minimize overall harm. In this Review, we discuss recent advances in defining the immune cell types and molecules that are mobilized in response to helminth infection. Finally, we more broadly consider how these immunological players are blended and regulated in order to accommodate persistent infection or to mount a vigorous protective response and achieve sterile immunity.

  19. Activation of immunity, immune response, antioxidant ability, and resistance against Vibrio alginolyticus in white shrimp Litopenaeus vannamei decrease under long-term culture at low pH.

    Science.gov (United States)

    Chen, Yu-Yuan; Chen, Jiann-Chu; Tseng, Kuei-Chi; Lin, Yong-Chin; Huang, Chien-Lun

    2015-10-01

    The growth, activation of immunity, immune parameters, and transcript levels of cytMnSOD, mtMnSOD, ecCuZnSOD, glutathione peroxidase (GPx), catalase, lysozyme, and penaeidin 3a were examined in white shrimp Litopenaeus vannamei reared at pH 6.8 and 8.1 after 24 weeks. No significant difference in growth was observed between the two groups. An in vitro study indicated that phenoloxidase activity and respiratory bursts (RB, release of the superoxide anion) were significantly higher in the haemocytes of pH 8.1 shrimp (shrimp reared at pH 8.1) than in pH 6.8 shrimp (shrimp reared at pH 6.8). An in vivo study indicated that the levels of immune parameters of pH 8.1 shrimp were significantly higher than in pH 6.8 shrimp, and the transcript levels of cytMnSOD, ecCuZnSOD, glutathione peroxidase, lysozyme, and penaeidin 3a were down-regulated in pH 6.8 shrimp. In another experiment, shrimp reared at pH 6.8 and 8.1 for 24 weeks were challenged with Vibrio alginolyticus. The mortality rate of pH 6.8 shrimp was significantly higher than in pH 8.1 shrimp over 12-168 h. Phagocytic activity, phagocytic index, and clearance efficiency to V. alginolyticus were significantly lower in pH 6.8 shrimp. We concluded that shrimp under long-term culture at pH 6.8 exhibited decreased resistance against V. alginolyticus as evidenced by reductions in the activation of immunity and immune parameters together with decreased transcript levels of cytMnSOD, ecCuZnSOD, GPx, lysozyme, and penaeidin 3a. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Protumor Activities of the Immune Response: Insights in the Mechanisms of Immunological Shift, Oncotraining, and Oncopromotion

    Directory of Open Access Journals (Sweden)

    G. K. Chimal-Ramírez

    2013-01-01

    Full Text Available Experimental and clinical studies indicate that cells of the innate and adaptive immune system have both anti- and pro-tumor activities. This dual role of the immune system has led to a conceptual shift in the role of the immune system’s regulation of cancer, in which immune-tumor cell interactions are understood as a dynamic process that comprises at least five phases: immunosurveillance, immunoselection, immunoescape, oncotraining, and oncopromotion. The tumor microenvironment shifts immune cells to perform functions more in tune with the tumor needs (oncotraining; these functions are related to chronic inflammation and tissue remodeling activities. Among them are increased proliferation and survival, increased angiogenesis and vessel permeability, protease secretion, acquisition of migratory mesenchymal characteristics, and self-renewal properties that altogether promote tumor growth and metastasis (oncopromotion. Important populations in all these pro-tumor processes are M2 macrophages, N2 neutrophils, regulatory T cells, and myeloid derived suppressor cells; the main effectors molecules are CSF-1, IL-6, metalloproteases, VEGF, PGE-2, TGF-β, and IL-10. Cancer prognosis correlates with densities and concentrations of protumoral populations and molecules, providing ideal targets for the intelligent design of directed preventive or anticancer therapies.

  1. Experimentally-induced immune activation in natural hosts of SIV induces significant increases in viral replication and CD4+ T cell depletion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Ruy M [Los Alamos National Laboratory

    2008-01-01

    Chronically SIVagm-infected African green monkeys (AGMs) have a remarkably stable non-pathogenic disease course, with levels of immune activation in chronic SIVagm infection similar to those observed in uninfected monkeys and stable viral loads (VLs) for long periods of time. In vivo administration of lipopolysaccharide (LPS) or an IL-2/diphtheria toxin fusion protein (Ontak) to chronically SIVagm-infected AGMs triggered increases in immune activation and subsequently of viral replication and depletion of intestinal CD4{sup +} T cells. Our study indicates that circulating microbial products can increase viral replication by inducing immune activation and increasing the number of viral target cells, thus demonstrating that immune activation and T cell prolifeation are key factors in AIDS pathogenesis.

  2. The effect of active immunization against vasoactive intestinal peptide (VIP) and inhibin on reproductive performance of aging White Leghorn roosters.

    Science.gov (United States)

    Avital-Cohen, N; Heiblum, R; Argov, N; Rosenstrauch, A; Chaiseha, Y; Mobarkey, N; Rozenboim, I

    2012-01-01

    Decreasing fertility in aging domestic roosters is a well-known phenomenon. Aging is manifested by a decrease in plasma testosterone level, testis function, and spermatogenesis, resulting in a low level of fertility. The roles of vasoactive intestinal peptide (VIP) and testicular inhibin in this aging process are not clear. The effects of active immunization against VIP, inhibin, or the combination of both hormones on the reproduction of aging White Leghorn (WL) roosters were assayed. In experiment 1a, 60 White Leghorn roosters (67 wk of age) were divided into 4 groups (n = 15/group). The first group was actively immunized against VIP, the second against inhibin, the third against VIP and inhibin, and the fourth served as a control. Active immunization against VIP decreased semen quality parameters, plasma steroid levels, and gene expression of gonadotropin-releasing hormone-I (GnRH-I), follicle-stimulating hormone (FSH), luteinizing hormone (LH), LH receptor, VIP, and prolactin (Prl). Immunization against inhibin increased some of the semen quality parameters and FSH mRNA gene expression but decreased inhibin gene expression. In experiment 1b, at 94 wk of age, we took the actively immunized against VIP group and the control group and divided them into 2 subgroups (n = 7 or 8): the first group was injected with 1 mg of ovine Prl (oPrl) daily for 7 d, and the second group served as a control. Administration of oPrl to previously VIP-immunized birds significantly elevated semen quality parameters. We suggest that VIP, Prl, and inhibin have an important effect on the reproductive axis in aging roosters. Active immunization against VIP-depressed reproductive activity and Prl administration restored their reproduction, indicating that both VIP and Prl are essential for reproduction in aging roosters. Immunization against inhibin improved FSH mRNA gene expression, suggesting a negative role of inhibin on FSH secretion in aging roosters. Not all semen quality parameters

  3. Immune System Activation and Depression: Roles of Serotonin in the Central Nervous System and Periphery.

    Science.gov (United States)

    Robson, Matthew J; Quinlan, Meagan A; Blakely, Randy D

    2017-05-17

    Serotonin (5-hydroxytryptamine, 5-HT) has long been recognized as a key contributor to the regulation of mood and anxiety and is strongly associated with the etiology of major depressive disorder (MDD). Although more known for its roles within the central nervous system (CNS), 5-HT is recognized to modulate several key aspects of immune system function that may contribute to the development of MDD. Copious amounts of research have outlined a connection between alterations in immune system function, inflammation status, and MDD. Supporting this connection, peripheral immune activation results in changes in the function and/or expression of many components of 5-HT signaling that are associated with depressive-like phenotypes. How 5-HT is utilized by the immune system to effect CNS function and ultimately behaviors related to depression is still not well understood. This Review summarizes the evidence that immune system alterations related to depression affect CNS 5-HT signaling that can alter MDD-relevant behaviors and that 5-HT regulates immune system signaling within the CNS and periphery. We suggest that targeting the interrelationships between immune and 5-HT signaling may provide more effective treatments for subsets of those suffering from inflammation-associated MDD.

  4. Using a Curricular Vision to Define Entrustable Professional Activities for Medical Student Assessment.

    Science.gov (United States)

    Hauer, Karen E; Boscardin, Christy; Fulton, Tracy B; Lucey, Catherine; Oza, Sandra; Teherani, Arianne

    2015-09-01

    The new UCSF Bridges Curriculum aims to prepare students to succeed in today's health care system while simultaneously improving it. Curriculum redesign requires assessment strategies that ensure that graduates achieve competence in enduring and emerging skills for clinical practice. To design entrustable professional activities (EPAs) for assessment in a new curriculum and gather evidence of content validity. University of California, San Francisco, School of Medicine. Nineteen medical educators participated; 14 completed both rounds of a Delphi survey. Authors describe 5 steps for defining EPAs that encompass a curricular vision including refining the vision, defining draft EPAs, developing EPAs and assessment strategies, defining competencies and milestones, and mapping milestones to EPAs. A Q-sort activity and Delphi survey involving local medical educators created consensus and prioritization for milestones for each EPA. For 4 EPAs, most milestones had content validity indices (CVIs) of at least 78 %. For 2 EPAs, 2 to 4 milestones did not achieve CVIs of 78 %. We demonstrate a stepwise procedure for developing EPAs that capture essential physician work activities defined by a curricular vision. Structured procedures for soliciting faculty feedback and mapping milestones to EPAs provide content validity.

  5. New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome.

    Science.gov (United States)

    Conti, H R; Baker, O; Freeman, A F; Jang, W S; Holland, S M; Li, R A; Edgerton, M; Gaffen, S L

    2011-07-01

    Oropharyngeal candidiasis (OPC, thrush) is an opportunistic infection caused by the commensal fungus Candida albicans. An understanding of immunity to Candida has recently begun to unfold with the identification of fungal pattern-recognition receptors such as C-type lectin receptors, which trigger protective T-helper (Th)17 responses in the mucosa. Hyper-IgE syndrome (HIES/Job's syndrome) is a rare congenital immunodeficiency characterized by dominant-negative mutations in signal transducer and activator of transcription 3, which is downstream of the Th17-inductive cytokines interleukin (IL)-6 and IL-23, and hence patients with HIES exhibit dramatic Th17 deficits. HIES patients develop oral and mucocutaneous candidiasis, supporting a protective role for Th17 cells in immunity to OPC. However, the Th17-dependent mechanisms of antifungal immunity in OPC are still poorly defined. An often unappreciated aspect of oral immunity is saliva, which is rich in antimicrobial proteins (AMPs) and exerts direct antifungal activity. In this study, we show that HIES patients show significant impairment in salivary AMPs, including β-defensin 2 and Histatins. This tightly correlates with reduced candidacidal activity of saliva and concomitantly elevated colonization with Candida. Moreover, IL-17 induces histatins in cultured salivary gland cells. This is the first demonstration that HIES is associated with defective salivary activity, and provides a mechanism for the severe susceptibility of these patients to OPC.

  6. Advantages of laparoscopic compared to conventional surgery are not related to an innate immune response of peritoneal immune activation: an animal study in rats.

    Science.gov (United States)

    Lingohr, Philipp; Dohmen, Jonas; Matthaei, Hanno; Schwandt, Timo; Stein, Kathy; Hong, Gun-Soo; Steitz, Julia; Longerich, Thomas; Bölke, Edwin; Wehner, Sven; Kalff, Jörg C

    2017-06-01

    Laparoscopic surgery (LS) has proved superior compared to conventional surgery (CS) regarding morbidity, length of hospital stay, rate of wound infection and time until recovery. An improved preservation of the postoperative immune function is assumed to contribute to these benefits though the role of the local peritoneal immune response is still poorly understood. Our study investigates the peritoneal immune response subsequent to abdominal surgery and compares it between laparoscopic and conventional surgery to find an immunological explanation for the clinically proven benefits of LS. Wistar rats (N = 140) underwent laparoscopic cecum resection (LCR; N = 28), conventional cecum resection (CCR; N = 28), laparoscopic sham operation (LSO; N = 28), conventional sham operation (CSO; N = 28), or no surgical treatment (CTRL; N = 28). Postoperatively, peritoneal lavages were performed, leukocytes isolated and analyzed regarding immune function and phagocytosis activity. Immune function was inhibited postoperatively in animals undergoing LCR or CCR compared to CTRL reflected by a lower TNF-α (CTRL 3956.65 pg/ml, LCR 2018.48 pg/ml (p = 0.023), CCR 2793.78 pg/ml (n.s.)) and IL-6 secretion (CTRL 625.84 pg/ml, LCR 142.84 pg/ml (p = 0.009), CCR 169.53 pg/ml (p = 0.01)). Phagocytosis was not affected in rats undergoing any kind of surgery compared to CTRL. Neither cytokine secretion nor phagocytosis activity differed significantly between laparoscopic and conventional surgery. According to our findings the benefits associated with LS compared to CS cannot be explained by differences in the postoperative peritoneal innate immune response. Further studies are needed to elucidate the causes for a more favorable postoperative outcome in patients after LS compared to CS.

  7. Metabolic signals and innate immune activation in obesity and exercise.

    Science.gov (United States)

    Ringseis, Robert; Eder, Klaus; Mooren, Frank C; Krüger, Karsten

    2015-01-01

    The combination of a sedentary lifestyle and excess energy intake has led to an increased prevalence of obesity which constitutes a major risk factor for several co-morbidities including type 2 diabetes and cardiovascular diseases. Intensive research during the last two decades has revealed that a characteristic feature of obesity linking it to insulin resistance is the presence of chronic low-grade inflammation being indicative of activation of the innate immune system. Recent evidence suggests that activation of the innate immune system in the course of obesity is mediated by metabolic signals, such as free fatty acids (FFAs), being elevated in many obese subjects, through activation of pattern recognition receptors thereby leading to stimulation of critical inflammatory signaling cascades, like IκBα kinase/nuclear factor-κB (IKK/NF- κB), endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and NOD-like receptor P3 (NLRP3) inflammasome pathway, that interfere with insulin signaling. Exercise is one of the main prescribed interventions in obesity management improving insulin sensitivity and reducing obesity- induced chronic inflammation. This review summarizes current knowledge of the cellular recognition mechanisms for FFAs, the inflammatory signaling pathways triggered by excess FFAs in obesity and the counteractive effects of both acute and chronic exercise on obesity-induced activation of inflammatory signaling pathways. A deeper understanding of the effects of exercise on inflammatory signaling pathways in obesity is useful to optimize preventive and therapeutic strategies to combat the increasing incidence of obesity and its comorbidities. Copyright © 2015 International Society of Exercise and Immunology. All rights reserved.

  8. Differential Effects of Naja naja atra Venom on Immune Activity

    Directory of Open Access Journals (Sweden)

    Jian-Qun Kou

    2014-01-01

    Full Text Available Previous studies reported that Naja naja atra venom (NNAV inhibited inflammation and adjuvant arthritis. Here we investigated the role of NNAV in regulation of immune responses in mice. Oral administration of NNAV to normal mice showed significant increase in natural killer cell activity, B lymphocyte proliferation stimulated by lipopolysaccharides, and antibody production in response to sheep red blood cells. Meanwhile, NNAV markedly decreased T lymphocyte proliferation stimulated by concanavalin A, arrested the cell cycle at G0/G1 phase, and suppressed CD4 and CD8 T cell divisions. Furthermore, NNAV inhibited the dinitrofluorobenzene-induced delayed-type hypersensitivity reaction. This modulation of immune responses may be partly attributed to the selective increase in Th1 and Th2 cytokines (IFN-γ, IL-4 secretion and inhibition of Th17 cytokine (IL-17 production. In dexamethasone-induced immunosuppressed mice, NNAV restored the concentration of serum IgG and IgM, while decreasing the percentage of CD4 and CD8 T-cell subsets. These results indicate that NNAV enhances the innate and humoral immune responses while inhibiting CD4 Th17 and CD8 T cell actions, suggesting that NNAV could be a potential therapeutic agent for autoimmune diseases.

  9. Systemic Immune Activation Leads to Neuroinflammation and Sickness Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Steven Biesmans

    2013-01-01

    Full Text Available Substantial evidence indicates an association between clinical depression and altered immune function. Systemic administration of bacterial lipopolysaccharide (LPS is commonly used to study inflammation-associated behavioral changes in rodents. In these experiments, we tested the hypothesis that peripheral immune activation leads to neuroinflammation and depressive-like behavior in mice. We report that systemic administration of LPS induced astrocyte activation in transgenic GFAP-luc mice and increased immunoreactivity against the microglial marker ionized calcium-binding adapter molecule 1 in the dentate gyrus of wild-type mice. Furthermore, LPS treatment caused a strong but transient increase in cytokine levels in the serum and brain. In addition to studying LPS-induced neuroinflammation, we tested whether sickness could be separated from depressive-like behavior by evaluating LPS-treated mice in a panel of behavioral paradigms. Our behavioral data indicate that systemic LPS administration caused sickness and mild depressive-like behavior. However, due to the overlapping time course and mild effects on depression-related behavior per se, it was not possible to separate sickness from depressive-like behavior in the present rodent model.

  10. Maternal immune activation during pregnancy in rats impairs working memory capacity of the offspring.

    Science.gov (United States)

    Murray, Brendan G; Davies, Don A; Molder, Joel J; Howland, John G

    2017-05-01

    Maternal immune activation during pregnancy is an environmental risk factor for psychiatric illnesses such as schizophrenia in the offspring. Patients with schizophrenia display an array of cognitive symptoms, including impaired working memory capacity. Rodent models have been developed to understand the relationship between maternal immune activation and the cognitive symptoms of schizophrenia. The present experiment was designed to test whether maternal immune activation with the viral mimetic polyinosinic:polycytidylic acid (polyI:C) during pregnancy affects working memory capacity of the offspring. Pregnant Long Evans rats were treated with either saline or polyI:C (4mg/kg; i.v.) on gestational day 15. Male offspring of the litters (2-3months of age) were subsequently trained on a nonmatching-to-sample task with odors. After a criterion was met, the rats were tested on the odor span task, which requires rats to remember an increasing span of different odors to receive food reward. Rats were tested using delays of approximately 40s during the acquisition of the task. Importantly, polyI:C- and saline-treated offspring did not differ in performance of the nonmatching-to-sample task suggesting that both groups could perform a relatively simple working memory task. In contrast, polyI:C-treated offspring had reduced span capacity in the middle and late phases of odor span task acquisition. After task acquisition, the rats were tested using the 40s delay and a 10min delay. Both groups showed a delay-dependent decrease in span, although the polyI:C-treated offspring had significantly lower spans regardless of delay. Our results support the validity of the maternal immune activation model for studying the cognitive symptoms of neurodevelopmental disorders such as schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A leukocyte activation test identifies food items which induce release of DNA by innate immune peripheral blood leucocytes.

    Science.gov (United States)

    Garcia-Martinez, Irma; Weiss, Theresa R; Yousaf, Muhammad N; Ali, Ather; Mehal, Wajahat Z

    2018-01-01

    Leukocyte activation (LA) testing identifies food items that induce a patient specific cellular response in the immune system, and has recently been shown in a randomized double blinded prospective study to reduce symptoms in patients with irritable bowel syndrome (IBS). We hypothesized that test reactivity to particular food items, and the systemic immune response initiated by these food items, is due to the release of cellular DNA from blood immune cells. We tested this by quantifying total DNA concentration in the cellular supernatant of immune cells exposed to positive and negative foods from 20 healthy volunteers. To establish if the DNA release by positive samples is a specific phenomenon, we quantified myeloperoxidase (MPO) in cellular supernatants. We further assessed if a particular immune cell population (neutrophils, eosinophils, and basophils) was activated by the positive food items by flow cytometry analysis. To identify the signaling pathways that are required for DNA release we tested if specific inhibitors of key signaling pathways could block DNA release. Foods with a positive LA test result gave a higher supernatant DNA content when compared to foods with a negative result. This was specific as MPO levels were not increased by foods with a positive LA test. Protein kinase C (PKC) inhibitors resulted in inhibition of positive food stimulated DNA release. Positive foods resulted in CD63 levels greater than negative foods in eosinophils in 76.5% of tests. LA test identifies food items that result in release of DNA and activation of peripheral blood innate immune cells in a PKC dependent manner, suggesting that this LA test identifies food items that result in release of inflammatory markers and activation of innate immune cells. This may be the basis for the improvement in symptoms in IBS patients who followed an LA test guided diet.

  12. Immune responses to mumps vaccine in adults who were vaccinated in childhood.

    Science.gov (United States)

    Hanna-Wakim, Rima; Yasukawa, Linda L; Sung, Phillip; Arvin, Ann M; Gans, Hayley A

    2008-06-15

    In a mumps outbreak in the United States, many infected individuals were adults who had received 2 doses of mumps vaccine. The persistence of cellular immunity to mumps vaccine has not been defined. This was an observational, nonrandomized cohort study evaluating cell-mediated and humoral immunity to mumps in 10 vaccinated and 10 naturally immune adults. Mumps-specific T cell activation and interferon (IFN)-gamma production were measured using lymphoproliferative and flow cytometry assays, and mumps immunoglobulin (Ig) G was measured using enzyme-linked immunosorbent assay. T cell immunity to mumps was high in both groups; 70% of vaccinated and 80% of naturally immune individuals had a positive (> or =3) stimulation index (SI) (P = 1.0). The mean percentages of mumps-specific CD4+ T cells that expressed CD69 and produced IFN-gamma were equivalent in the 2 groups: 0.06% and 0.12%, respectively (P = .11). The mean SIs in the groups were also equivalent, although IFN-gamma concentrations from cultures stimulated with mumps antigen were higher in naturally immune adults than in vaccinated adults (P < or = .01). All adults were positive for mumps IgG. T and B cell immunity to mumps was detected in adults at least 10 years after immunization. Except for IFN-gamma release, responses in vaccinated adults paralleled those observed in naturally immune individuals.

  13. Minocycline attenuates HIV-1 infection and suppresses chronic immune activation in humanized NOD/LtsZ-scidIL-2Rγnull mice

    Science.gov (United States)

    Singh, Maneesh; Singh, Pratibha; Vaira, Dolores; Amand, Mathieu; Rahmouni, Souad; Moutschen, Michel

    2014-01-01

    More than a quarter of a century of research has established chronic immune activation and dysfunctional T cells as central features of chronic HIV infection and subsequent immunodeficiency. Consequently, the search for a new immunomodulatory therapy that could reduce immune activation and improve T-cell function has been increased. However, the lack of small animal models for in vivo HIV study has hampered progress. In the current study, we have investigated a model of cord blood haematopoietic progenitor cells (CB-HPCs) -transplanted humanized NOD/LtsZ-scidIL-2Rγnull mice in which progression of HIV infection is associated with widespread chronic immune activation and inflammation. Indeed, HIV infection in humanized NSG mice caused up-regulation of several T-cell immune activation markers such as CD38, HLA-DR, CD69 and co-receptor CCR5. T-cell exhaustion markers PD-1 and CTLA-4 were found to be significantly up-regulated on T cells. Moreover, increased plasmatic levels of lipopolysaccharide, sCD14 and interleukin-10 were also observed in infected mice. Treatment with minocycline resulted in a significant decrease of expression of cellular and plasma immune activation markers, inhibition of HIV replication and improved T-cell counts in HIV-infected humanized NSG mice. The study demonstrates that minocycline could be an effective, low-cost adjunctive treatment to regulate chronic immune activation and replication of HIV. PMID:24409837

  14. Homing of immune cells: role in homeostasis and intestinal inflammation.

    Science.gov (United States)

    Hart, Ailsa L; Ng, Siew C; Mann, Elizabeth; Al-Hassi, Hafid Omar; Bernardo, David; Knight, Stella C

    2010-11-01

    Rather like a satellite navigation system directing a vehicle to a particular destination defined by post-code, immune cells have homing molecules or "immune post-codes" enabling them to be recruited to specific organs, such as the intestine or skin. An efficient system would be designed such that the site of entry of an antigen influences the homing of effector T cells back to the appropriate organ. For example, to mount an immune response against an intestinal pathogen, T cells with a propensity to home to the gut to clear the infection would be induced. In health, there is such a sophisticated and finely tuned system in operation, enabling an appropriate balance of immune activity in different anatomical compartments. In disease states such as inflammatory bowel disease (IBD), which is characterized by intestinal inflammation and often an inflammatory process involving other organs such as skin, joints, liver, and eye, there is accumulating evidence that there is malfunction of this immune cell trafficking system. The clinical importance of dysregulated immune cell trafficking in IBD is reflected in recently proven efficacious therapies that target trafficking pathways such as natalizumab, an α4 integrin antibody, and Traficet-EN, a chemokine receptor-9 (CCR9) antagonist. Here we review the mechanisms involved in the homing of immune cells to different tissues, in particular the intestine, and focus on alterations in immune cell homing pathways in IBD. Unraveling the mechanisms underlying the immune post-code system would assist in achieving the goal of tissue-specific immunotherapy.

  15. Local and systemic tumor immune dynamics

    Science.gov (United States)

    Enderling, Heiko

    Tumor-associated antigens, stress proteins, and danger-associated molecular patterns are endogenous immune adjuvants that can both initiate and continually stimulate an immune response against a tumor. In retaliation, tumors can hijack intrinsic immune regulatory programs that are intended to prevent autoimmune disease, thereby facilitating continued growth despite the activated antitumor immune response. In metastatic disease, this ongoing tumor-immune battle occurs at each site. Adding an additional layer of complexity, T cells activated at one tumor site can cycle through the blood circulation system and extravasate in a different anatomic location to surveil a distant metastasis. We propose a mathematical modeling framework that incorporates the trafficking of activated T cells between metastatic sites. We extend an ordinary differential equation model of tumor-immune system interactions to multiple metastatic sites. Immune cells are activated in response to tumor burden and tumor cell death, and are recruited from tumor sites elsewhere in the body. A model of T cell trafficking throughout the circulatory system can inform the tumor-immune interaction model about the systemic distribution and arrival of T cells at specific tumor sites. Model simulations suggest that metastases not only contribute to immune surveillance, but also that this contribution varies between metastatic sites. Such information may ultimately help harness the synergy of focal therapy with the immune system to control metastatic disease.

  16. Study of the immune response by antibodies against the Bothrops asper venom for the elaboration of a antiophidic vaccine for bovines

    International Nuclear Information System (INIS)

    Gonzalez Rojas, Katherine

    2014-01-01

    Active immunization has determined against Bothrops asper snake venom (tested in murine and bovine models) a induced response by antibody able to prevent in immunized animals. A coagulopathy or death is developed after of be administered with adequate doses of poison. The amount of B. asper venom has defined the poisoning induced in bovine and murine models. The plasmatic concentration of equine antibodies against B. asper venom is specified to prevent coagulopathy and lethality induced by this venom in murine and bovine models. Murine and bovine models have verified the active immunization reached in a concentration of antibodies against B. asper venom equal or greater to the maximum concentration achieved by intravenous administration of antivenoms from equine origin. The concentration of antibodies induced by the active immunization is evaluated against B. asper venom to prevent the development of coagulopathy and lethality induced by the venom in murine and bovine models [es

  17. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    2014-05-01

    Full Text Available Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses.

  18. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda L; McEwan, Deborah L; Conery, Annie L; Ausubel, Frederick M

    2014-05-01

    Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses.

  19. Physical Activities, Exercises, and Their Effects to the Immune System

    OpenAIRE

    Nurmasitoh, Titis

    2015-01-01

    Every systems in human body correlate to maintain homeostasis. One of those systems which contribute to maintain homeostasis is the immune system. The immune system defends physiological functions against foreign substances and cancer cells through a complex and multilayered mechanism. The ability to defend against foreign substances and abnormal cells is done by two types of immune system, which are Innate immune system and adaptive/acquired immune system. There are also certain factors that...

  20. Abnormal humoral immune response to influenza vaccination in pediatric type-1 human immunodeficiency virus infected patients receiving highly active antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Carlos J Montoya

    2007-06-01

    Full Text Available Given that highly active antiretroviral therapy (HAART has been demonstrated useful to restore immune competence in type-1 human immunodeficiency virus (HIV-1-infected subjects, we evaluated the specific antibody response to influenza vaccine in a cohort of HIV-1-infected children on HAART so as to analyze the quality of this immune response in patients under antiretroviral therapy. Sixteen HIV-1-infected children and 10 HIV-1 seronegative controls were immunized with a commercially available trivalent inactivated influenza vaccine containing the strains A/H1N1, A/H3N2, and B. Serum hemagglutinin inhibition (HI antibody titers were determined for the three viral strains at the time of vaccination and 1 month later. Immunization induced a significantly increased humoral response against the three influenza virus strains in controls, and only against A/H3N2 in HIV-1-infected children. The comparison of post-vaccination HI titers between HIV-1+ patients and HIV-1 negative controls showed significantly higher HI titers against the three strains in controls. In addition, post vaccination protective HI titers (defined as equal to or higher than 1:40 against the strains A/H3N2 and B were observed in a lower proportion of HIV-1+ children than in controls, while a similar proportion of individuals from each group achieved protective HI titers against the A/H1N1 strain. The CD4+ T cell count, CD4/CD8 T cells ratio, and serum viral load were not affected by influenza virus vaccination when pre- vs post-vaccination values were compared. These findings suggest that despite the fact that HAART is efficient in controlling HIV-1 replication and in increasing CD4+ T cell count in HIV-1-infected children, restoration of immune competence and response to cognate antigens remain incomplete, indicating that additional therapeutic strategies are required to achieve a full reconstitution of immune functions.

  1. Sovereign Immunity in a Constitutional Government: The Federal Employment Discrimination Cases

    Science.gov (United States)

    Abernathy, Charles F.

    1975-01-01

    Considers employment discrimination suits against federal officers where application of the sovereign immunity doctrine has generated considerable confusion and attendant injustice, and develops the separation of powers rationale for sovereign immunity, showing how the immunity principles adopted by the Supreme Court implicitly define the…

  2. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro

    Science.gov (United States)

    Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David

    2017-01-01

    Objective The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro. Methods In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors. Results Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3+ CD56− T lymphocytes, CD3+ CD56+ NKT cells, CD3−CD56+ NK cells, and also some cells within the CD3−CD56− non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response. Conclusion The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that important immunogenic cell wall components, such as lipoteichoic acid, are undamaged after the inactivation and retain the complex beneficial biological activities previously demonstrated for the cell walls

  3. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro.

    Science.gov (United States)

    Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David

    2017-01-01

    The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro. In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors. Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3 + CD56 - T lymphocytes, CD3 + CD56 + NKT cells, CD3 - CD56 + NK cells, and also some cells within the CD3 - CD56 - non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response. The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that important immunogenic cell wall components, such as lipoteichoic acid, are undamaged after the inactivation and retain the complex beneficial biological activities previously demonstrated for the cell walls from live B. coagulans GBI-30, 6086

  4. The Conservative Physiology of the Immune System. A Non-Metaphoric Approach to Immunological Activity

    Directory of Open Access Journals (Sweden)

    Nelson M. Vaz

    2006-01-01

    Full Text Available Historically, immunology emerged as a biomedical science, concerned with host defense and production of anti-infectious vaccines. In the late 50s, selective theories were proposed and from then on, immunology has been based in a close association with the neo-Darwinian principles, such as random generation of variants (lymphocyte clones, selection by extrinsic factors (antigens—and, more generally, on genetic determinism and functionalism. This association has had major consequences: (1 immunological jargon is full of “cognitive” metaphors, founded in the idea of “foreignness”; (2 the immune system is described with a random clonal origin, coupled to selection by random encounters; and (3 physiological events are virtually absent from immunological descriptions. In the present manuscript, we apply systemic notions to bring forth an explanation including systemic mechanisms able to generate immunological phenomena. We replace “randomness plus selection” and the notion of foreignness by a history of structural changes which are determined by the coherences of the system internal architecture at any given moment. The importance of this systemic way of seeing is that it explicitly attends to the organization that defines the immune system, within which it is possible to describe the conservative physiology of the immune system. Understanding immune physiology in a systemic way of seeing also suggests mechanisms underlying the origin of immunopathogeny and therefore suggests new insights to therapeutic approaches. However, if seriously acknowledged, this systemic/historic approach to immunology goes along with a global conceptual change which modifies virtually everything in the domain of biology, as suggested by Maturana.

  5. MiRNA-548ah, a Potential Molecule Associated with Transition from Immune Tolerance to Immune Activation of Chronic Hepatitis B

    Directory of Open Access Journals (Sweden)

    Tong-Jing Xing

    2014-08-01

    Full Text Available Objective: The present study aims to identify the differently expressed microRNA (miRNA molecules and target genes of miRNA in the immune tolerance (IT and immune activation (IA stages of chronic hepatitis B (CHB. Methods: miRNA expression profiles of peripheral blood mononuclear cells (PBMCs at the IT and IA stages of CHB were screened using miRNA microarrays and authenticated using a quantitative real-time polymerase chain reaction (RT-PCR. Gene ontology (GO and the Kyoto encyclopedia of genes and genomes (KEGG were used to analyze the significant functions and pathways of possible target genes of miRNAs. Assays of the gain and loss of function of the miRNAs were performed to verify the target genes in THP-1 cell lines. The luciferase reporter test was used on 293T cells as direct targets. Results: Significantly upregulated miR-548 and miR-4804 were observed in the miRNA microarrays and confirmed by RT-PCR in PBMCs at the IT and IA stages of CHB. GO and KEGG analysis revealed that MiR-548 and miR-4804 could be involved in numerous signaling pathways and protein binding activity. IFNγR1 was predicted as a target gene and validated as the direct gene of MiR-548. Significant negative correlation was found between the miR-548ah and mRNA levels of IFN-γR1 in CHB patients. Conclusions: The abnormal expression profiles of miRNA in PBMCs could be closely associated with immune activation of chronic HBV infection. miR-548, by targeting IFN-γR1, may represent a mechanism that can facilitate viral pathogenesis and help determine new therapeutic molecular targets.

  6. Molecular events by which dendritic cells promote Th2 immune protection in helmith infection.

    Science.gov (United States)

    Méndez-Samperio, Patricia

    2016-10-01

    Helminth parasites are a major cause of global infectious diseases, affecting nearly one quarter of the world's population. The common feature of helminth infections is to skew the immune system towards a T-helper 2 (Th2) response that helps to control disease. Dendritic cells (DCs), which are professional antigen-presenting cells, play a critical role for Th2 skewing against helminth parasites. However, the molecular mechanisms by which helminth antigens activate DCs for Th2 polarization have not yet been clearly defined. This review provides a focused update on the major role of DCs for inducing and/or enhancing Th2 immune responses in helminthic infection and will discuss the main signalling-dependent and independent mechanisms by which helminth antigens activate DCs for Th2 skewing.

  7. Innate immune response of alveolar macrophage to house dust mite allergen is mediated through TLR2/-4 co-activation.

    Directory of Open Access Journals (Sweden)

    Chia-Fang Liu

    Full Text Available House dust mite, Dermatophagoides pteronyssinus (Der p, is one of the major allergens responsible for allergic asthma. However, the putative receptors involved in the signalization of Der p to the innate immune cells are still poorly defined as well as the impact of their activation on the outcome of the allergen-induced cell response. We previously reported that the HDM activation of mouse alveolar macrophages (AM involves the TLR4/CD14 cell surface receptor complex. Here using a TLR ligand screening essay, we demonstrate that HDM protein extract engages the TLR2, in addition to the TLR4, in engineered TLR-transfected HEK cells but also in the MH-S mouse alveolar macrophage cell line model. Moreover we found that the concomitant recruitment of the MH-S cell's TLR2 and TLR4 receptors by the HDM extract activates the MyD88-dependent signaling pathway and leads to the secretion of the NF-κB regulated pro-inflammatory factors NO and TNF-α. However unlike with the canonical TLR4 ligand (i.e. the bacterial LPS mobilization of TLR4 by the HDM extract induces a reduced production of the IL-12 pro-inflammatory cytokine and fails to trigger the expression of the T-bet transcription factor. Finally we demonstrated that HDM extract down-regulates LPS induced IL-12 and T-bet expression through a TLR2 dependent mechanism. Therefore, we propose that the simultaneous engagement of the TLR2 and TLR4 receptors by the HDM extract results in a cross regulated original activation pattern of the AM which may contribute to the Th2 polarization of the allergen-induced immune response. The deciphering of these cross-regulation networks is of prime importance to open the way for original therapeutic strategies taking advantage of these receptors and their associated signaling pathways to treat allergic asthma.

  8. T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers.

    Science.gov (United States)

    Palma, Marzia; Gentilcore, Giusy; Heimersson, Kia; Mozaffari, Fariba; Näsman-Glaser, Barbro; Young, Emma; Rosenquist, Richard; Hansson, Lotta; Österborg, Anders; Mellstedt, Håkan

    2017-03-01

    Chronic lymphocytic leukemia is characterized by impaired immune functions largely due to profound T-cell defects. T-cell functions also depend on co-signaling receptors, inhibitory or stimulatory, known as immune checkpoints, including cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed death-1 (PD-1). Here we analyzed the T-cell phenotype focusing on immune checkpoints and activation markers in chronic lymphocytic leukemia patients (n=80) with different clinical characteristics and compared them to healthy controls. In general, patients had higher absolute numbers of CD3 + cells and the CD8 + subset was particularly expanded in previously treated patients. Progressive patients had higher numbers of CD4 + and CD8 + cells expressing PD-1 compared to healthy controls, which was more pronounced in previously treated patients ( P =0.0003 and P =0.001, respectively). A significant increase in antigen-experienced T cells was observed in patients within both the CD4 + and CD8 + subsets, with a significantly higher PD-1 expression. Higher numbers of CD4 + and CD8 + cells with intracellular CTLA-4 were observed in patients, as well as high numbers of proliferating (Ki67 + ) and activated (CD69 + ) CD4 + and CD8 + cells, more pronounced in patients with active disease. The numbers of Th1, Th2, Th17 and regulatory T cells were substantially increased in patients compared to controls ( P leukemia T cells display increased expression of immune checkpoints, abnormal subset distribution, and a higher proportion of proliferating cells compared to healthy T cells. Disease activity and previous treatment shape the T-cell profile of chronic lymphocytic leukemia patients in different ways. Copyright© Ferrata Storti Foundation.

  9. Female Choice Reveals Terminal Investment in Male Mealworm Beetles, Tenebrio molitor, after a Repeated Activation of the Immune System

    Science.gov (United States)

    Krams, I; Daukšte, J; Kivleniece, I; Krama, T; Rantala, MJ; Ramey, G; Šauša, L

    2011-01-01

    Increasing evidence suggests that secondary sexual traits reflect immunocompetence of males in many animal species. This study experimentally investigated whether a parasite-like immunological challenge via a nylon implant affects sexual attractiveness of males in Tenebrio molitor L. (Coleoptera: Tenebrionidae) Although a single immunological challenge significantly reduced sexual attractiveness and locomotor activity of males, it had no adverse effect on their survival. A second immune challenge of the same males increased their attractiveness. However, it was found that the repeated challenge significantly reduced locomotor activity of males and caused higher mortality. This result indicates terminal investment on sexual signaling, which is supposedly based on a trade-off between pheromone production and energy expenditures needed for such activities as recovery of immune system and locomotor activity. When the third implantation was carried out in the same group of males, melanization of nylon implants was found to be lower in more attractive than in less attractive males. This suggests that males that became sexually attractive after the second immune challenge did not invest in recovery of their immune system. PMID:21864151

  10. The immune complex CTA1-DD/IgG adjuvant specifically targets connective tissue mast cells through FcγRIIIA and augments anti-HPV immunity after nasal immunization.

    Science.gov (United States)

    Fang, Y; Zhang, T; Lidell, L; Xu, X; Lycke, N; Xiang, Z

    2013-11-01

    We have previously reported that CTA1-DD/IgG immune complexes augment antibody responses in a mast cell-dependent manner following intranasal (IN) immunizations. However, from a safety perspective, mast cell activation could preclude clinical use. Therefore, we have extended these studies and demonstrate that CTA1-DD/IgG immune complexes administered IN did not trigger an anaphylactic reaction. Importantly, CTA1-DD/IgE immune complexes did not activate mast cells. Interestingly, only connective tissue, but not mucosal, mast cells could be activated by CTA1-DD/IgG immune complexes. This effect was mediated by FcγRIIIA, only expressed on connective tissue mast cells, and found in the nasal submucosa. FcγRIIIA-deficient mice had compromised responses to immunization adjuvanted by CTA1-DD/IgG. Proof-of-concept studies revealed that IN immunized mice with human papillomavirus (HPV) type 16 L1 virus-like particles (VLP) and CTA1-DD/IgG immune complexes demonstrated strong and sustained specific antibody titers in serum and vaginal secretions. From a mast cell perspective, CTA1-DD/IgG immune complexes appear to be safe and effective mucosal adjuvants.

  11. The Role of the Immune System in Autism Spectrum Disorder.

    Science.gov (United States)

    Meltzer, Amory; Van de Water, Judy

    2017-01-01

    Autism is a neurodevelopmental disorder characterized by deficits in communication and social skills as well as repetitive and stereotypical behaviors. While much effort has focused on the identification of genes associated with autism, research emerging within the past two decades suggests that immune dysfunction is a viable risk factor contributing to the neurodevelopmental deficits observed in autism spectrum disorders (ASD). Further, it is the heterogeneity within this disorder that has brought to light much of the current thinking regarding the subphenotypes within ASD and how the immune system is associated with these distinctions. This review will focus on the two main axes of immune involvement in ASD, namely dysfunction in the prenatal and postnatal periods. During gestation, prenatal insults including maternal infection and subsequent immunological activation may increase the risk of autism in the child. Similarly, the presence of maternally derived anti-brain autoantibodies found in ~20% of mothers whose children are at risk for developing autism has defined an additional subphenotype of ASD. The postnatal environment, on the other hand, is characterized by related but distinct profiles of immune dysregulation, inflammation, and endogenous autoantibodies that all persist within the affected individual. Further definition of the role of immune dysregulation in ASD thus necessitates a deeper understanding of the interaction between both maternal and child immune systems, and the role they have in diagnosis and treatment.

  12. Circulatory Immune Cells in Cushing Syndrome: Bystanders or Active Contributors to Atherometabolic Injury? A Study of Adhesion and Activation of Cell Surface Markers

    Directory of Open Access Journals (Sweden)

    Gloria Aranda

    2017-01-01

    Full Text Available Glucocorticoids (GC induce cardiometabolic risk while atherosclerosis is a chronic inflammation involving immunity. GC are immune suppressors, and the adrenocorticotrophic hormone (ACTH has immune modulator activities. Both may act in atherothrombotic inflammation involving immune cells (IMNC. Aim. To investigate adhesion and activation surface cell markers (CDs of peripheral IMNC in endogenous Cushing syndrome (CS and the immune modulator role of ACTH. Material and Methods. 16 ACTH-dependent CS (ACTH-D, 10 ACTH-independent (ACTH-ID CS, and 16 healthy controls (C were included. Leukocytes (Leuc, monocytes (MN, lymphocytes (Lym, and neutrophils (N were analyzed by flow cytometry for atherosclerosis previously associated with CDs. Results. Leuc, N, and MN correlated with CS (p<0.05, WC (p<0.001, WHR (p=0.003, BMI (p<0.001, and hs-CRP (p<0.001. CD14++CD16+ (p=0.047; CD14+CD16++ (p=0.053 MN; CD15+ (p=0.027; CD15+CD16+ (p=0.008 N; and NK-Lym (p=0.019 were higher in CS. CD14+CD16++ MN were higher in ACTH-ID (8.9 ± 3.5% versus ACTH-D CS (4.2 ± 1.9% versus C (4.9 ± 2.3%. NK-Lym correlated with c-LDL (r = 0.433, p=0.039 and CD15+ N with hs-CRP (r = 0.446, p=0.037. In multivariate analysis, Leuc, N, and MN depended on BMI (p=0.021, WC (p=0.002, and WHR (p=0.014, while CD15+ and CD15+CD16+ N on hypercortisolism and CS (p=0.035. Conclusion. In CS, IMNC present changes in activation and adhesion CDs implicated in atherothrombotic inflammation. ACTH-IDCS presents a particular IMNC phenotype, possibly due to the absence of the immune modulator effect of ACTH.

  13. Establishing a small animal model for evaluating protective immunity against mumps virus.

    Directory of Open Access Journals (Sweden)

    Adrian Pickar

    Full Text Available Although mumps vaccines have been used for several decades, protective immune correlates have not been defined. Recently, mumps outbreaks have occurred in vaccinated populations. To better understand the causes of the outbreaks and to develop means to control outbreaks in mumps vaccine immunized populations, defining protective immune correlates will be critical. Unfortunately, no small animal model for assessing mumps immunity exists. In this study, we evaluated use of type I interferon (IFN alpha/beta receptor knockout mice (IFN-α/βR-/- for such a model. We found these mice to be susceptible to mumps virus administered intranasally and intracranially. Passive transfer of purified IgG from immunized mice protected naïve mice from mumps virus infection, confirming the role of antibody in protection and demonstrating the potential for this model to evaluate mumps immunity.

  14. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation.

    Directory of Open Access Journals (Sweden)

    Karen A O Martins

    Full Text Available Identifying safe and effective adjuvants is critical for the advanced development of protein-based vaccines. Pattern recognition receptor (PRR agonists are increasingly being explored as potential adjuvants, but there is concern that the efficacy of these molecules may be dependent on potentially dangerous levels of non-specific immune activation. The filovirus virus-like particle (VLP vaccine protects mice, guinea pigs, and nonhuman primates from viral challenge. In this study, we explored the impact of a stabilized dsRNA mimic, polyICLC, on VLP vaccination of C57BL/6 mice and Hartley guinea pigs. We show that at dose levels as low as 100 ng, the adjuvant increased the efficacy of the vaccine in mice. Antigen-specific, polyfunctional CD4 and CD8 T cell responses and antibody responses increased significantly upon inclusion of adjuvant. To determine whether the efficacy of polyICLC correlated with systemic immune activation, we examined serum cytokine levels and cellular activation in the draining lymph node. PolyICLC administration was associated with increases in TNFα, IL6, MCP1, MIP1α, KC, and MIP1β levels in the periphery and with the activation of dendritic cells (DCs, NK cells, and B cells. However, this activation resolved within 24 to 72 hours at efficacious adjuvant dose levels. These studies are the first to examine the polyICLC-induced enhancement of antigen-specific immune responses in the context of non-specific immune activation, and they provide a framework from which to consider adjuvant dose levels.

  15. Reinfection immunity in schistosomiasis

    International Nuclear Information System (INIS)

    Kamiya, Haruo

    1987-01-01

    Schistosomiasis is one of the most important parasitic diseases in the world, especially in endemic areas of developing countries. This situation has prompted parasitologist to attempt intensive researches on immune mechanisms, especially those of reinfection immunity associated with eliminating challenge infection. The current knowledge of reinfection immunity against Schistosoma spp. infection was therefore reviewed briefly and discussed with special reference to our data on protective immune responses induced by radiation-attenuated cercarial infection. A recently developed technique of compressed organ autoradiography (COA) has contributed to assessing parasite attrition in immune animals following challenge infection. Our study using COA has demonstrated that major attrition of schistosomula from challenge infection occurs in the skin of CBA/Ca mice vaccinated with 20 Krad gamma radiation-attenuated cercariae of S. mansoni, while in both lungs and liver of similarly vaccinated guinea pig model. Furthermore, gamma-irradiation to cercariae affected their migration potential and surface-antigen profiles. The immunizing stimuli of gamma radiation-attenuated cercariae profoundly affected the expression of responsiveness in vaccinated animals. The change in antigenic profiles and migration potential of those vaccinating population was discussed in relation to the kinetics of reinfection immunity induced in vaccinated amimal models. These works might provide a base line data to develop a practical vaccine for schistosomiasis using defined antigens. It must be emphasized that these vaccines could serve as a practical prophylactic measure for schistosomiasis in the endemic areas, even if the vaccines fail to induce sterilizing immunity. (author). 141 refs

  16. The role of basic leucine zipper transcription factor E4BP4 in the immune system and immune-mediated diseases.

    Science.gov (United States)

    Yin, Jinghua; Zhang, Jian; Lu, Qianjin

    2017-07-01

    Basic leucine zipper transcription factor E4BP4 (also known as NFIL3) has been implicated in the molecular and cellular mechanisms of functions and activities in mammals. The interactions between E4BP4 and major regulators of cellular processes have triggered significant interest in the roles of E4BP4 in the pathogenesis of certain chronic diseases. Indeed, novel discoveries have been emerging to illustrate the involvement of E4BP4 in multiple disorders. It is recognized that E4BP4 is extensively involved in some immune-mediated diseases, but the mechanisms of E4BP4 involvement in these complex diseases remain poorly defined. Here we review the regulatory mechanisms of E4BP4 engaging in not only the biological function but also the development of immune-mediated diseases, paving the way for future therapies. Copyright © 2017. Published by Elsevier Inc.

  17. Human neutrophils in auto-immunity.

    Science.gov (United States)

    Thieblemont, Nathalie; Wright, Helen L; Edwards, Steven W; Witko-Sarsat, Véronique

    2016-04-01

    Human neutrophils have great capacity to cause tissue damage in inflammatory diseases via their inappropriate activation to release reactive oxygen species (ROS), proteases and other tissue-damaging molecules. Furthermore, activated neutrophils can release a wide variety of cytokines and chemokines that can regulate almost every element of the immune system. In addition to these important immuno-regulatory processes, activated neutrophils can also release, expose or generate neoepitopes that have the potential to break immune tolerance and result in the generation of autoantibodies, that characterise a number of human auto-immune diseases. For example, in vasculitis, anti-neutrophil cytoplasmic antibodies (ANCA) that are directed against proteinase 3 or myeloperoxidase are neutrophil-derived autoantigens and activated neutrophils are the main effector cells of vascular damage. In other auto-immune diseases, these neutrophil-derived neoepitopes may arise from a number of processes that include release of granule enzymes and ROS, changes in the properties of components of their plasma membrane as a result of activation or apoptosis, and via the release of Neutrophil Extracellular Traps (NETs). NETs are extracellular structures that contain chromatin that is decorated with granule enzymes (including citrullinated proteins) that can act as neo-epitopes to generate auto-immunity. This review therefore describes the processes that can result in neutrophil-mediated auto-immunity, and the role of neutrophils in the molecular pathologies of auto-immune diseases such as vasculitis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We discuss the potential role of NETs in these processes and some of the debate in the literature regarding the role of this phenomenon in microbial killing, cell death and auto-immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. AIDS defining disease: Disseminated cryptococcosis

    Directory of Open Access Journals (Sweden)

    Roshan Anupama

    2006-01-01

    Full Text Available Disseminated cryptococcosis is one of the acquired immune deficiency syndrome defining criteria and the most common cause of life threatening meningitis. Disseminated lesions in the skin manifest as papules or nodules that mimic molluscum contagiosum (MC. We report here a human immunodeficiency virus positive patient who presented with MC like lesions. Disseminated cryptococcosis was confirmed by India ink preparation and histopathology. The condition of the patient improved with amphotercin B.

  19. Therapeutic Targets for Neurodevelopmental Disorders Emerging from Animal Models with Perinatal Immune Activation

    Directory of Open Access Journals (Sweden)

    Daisuke Ibi

    2015-11-01

    Full Text Available Increasing epidemiological evidence indicates that perinatal infection with various viral pathogens enhances the risk for several psychiatric disorders. The pathophysiological significance of astrocyte interactions with neurons and/or gut microbiomes has been reported in neurodevelopmental disorders triggered by pre- and postnatal immune insults. Recent studies with the maternal immune activation or neonatal polyriboinosinic polyribocytidylic acid models of neurodevelopmental disorders have identified various candidate molecules that could be responsible for brain dysfunction. Here, we review the functions of several candidate molecules in neurodevelopment and brain function and discuss their potential as therapeutic targets for psychiatric disorders.

  20. TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis.

    Science.gov (United States)

    Sun, Honghong; Gong, Shunyou; Carmody, Ruaidhri J; Hilliard, Anja; Li, Li; Sun, Jing; Kong, Li; Xu, Lingyun; Hilliard, Brendan; Hu, Shimin; Shen, Hao; Yang, Xiaolu; Chen, Youhai H

    2008-05-02

    Immune homeostasis is essential for the normal functioning of the immune system, and its breakdown leads to fatal inflammatory diseases. We report here the identification of a member of the tumor necrosis factor-alpha-induced protein-8 (TNFAIP8) family, designated TIPE2, that is required for maintaining immune homeostasis. TIPE2 is preferentially expressed in lymphoid tissues, and its deletion in mice leads to multiorgan inflammation, splenomegaly, and premature death. TIPE2-deficient animals are hypersensitive to septic shock, and TIPE2-deficient cells are hyper-responsive to Toll-like receptor (TLR) and T cell receptor (TCR) activation. Importantly, TIPE2 binds to caspase-8 and inhibits activating protein-1 and nuclear factor-kappaB activation while promoting Fas-induced apoptosis. Inhibiting caspase-8 significantly blocks the hyper-responsiveness of TIPE2-deficient cells. These results establish that TIPE2 is an essential negative regulator of TLR and TCR function, and its selective expression in the immune system prevents hyperresponsiveness and maintains immune homeostasis.

  1. Use of m-Health in polio eradication and other immunization activities in developing countries.

    Science.gov (United States)

    Kim, Sara S; Patel, Manish; Hinman, Alan

    2017-03-07

    Reaching the children that are chronically missed by routine immunization services has been a key pillar of success in achieving progress toward polio eradication. The rapid advancement and accessibility of mobile technology ("mHealth") in low and lower middle income countries provides an important opportunity to apply novel, innovative approaches to provide vaccine services. We sought to document the use and effectiveness of mHealth in immunization programs in low and lower middle income countries. We particularly focused on mHealth approaches used in polio eradication efforts by the Global Polio Eradication Initiative (GPEI) to leverage the knowledge and lessons learned that may be relevant for enhancing ongoing immunization services. In June 2016, the electronic database PubMed was searched for peer reviewed studies that focused on efforts to improve immunization programs (both ongoing immunization services and supplemental immunization activities or campaigns) through mobile technology in low and lower middle income countries. The search yielded 317 papers of which 25 met the inclusion criteria. One additional article was included from the hand searching process. mHealth was used for reminder and recall, monitoring and surveillance, vaccine acceptance, and campaign strategic planning. Mobile phones were the most common mobile device used. Of the 26 studies, 21 of 26 studies (80.8%) reported that mHealth improved immunization efforts. mHealth interventions can effectively enhance immunization services in low and lower middle income countries. With the growing capacity and access to mobile technology, mHealth can be a powerful and sustainable tool for enhancing the reach and impact of vaccine programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cetuximab Enhanced the Cytotoxic Activity of Immune Cells during Treatment of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2017-11-01

    Full Text Available Background/Aims: Cetuximab is a chimeric IgG1 monoclonal antibody which targets the extracellular domain of epidermal growth factor receptor. This antibody is widely used for colorectal cancer (CRC treatment but its influence on the immune system is incompletely understood. Methods: The immune influence of cetuximab therapy in CRC patients was investigated by analyzing peripheral blood mononuclear cells using flow cytometry. We undertook in vitro cytotoxicity and cytokine-profile assays to ascertain the immunomodulatory effect of cetuximab treatment. Results: The number of CD3+ T, CD8+ T, and natural killer (NK cells was increased significantly and T-regulatory cells reduced gradually after cetuximab treatment. Percentage of CD4+ T, natural killer T (NKT-like, invariant NKT, and dendritic cells was similar between baseline patients and cetuximab patients. Expression of CD137 on NK and CD8+ T cells was increased significantly after 4 weeks of cetuximab therapy. In vitro cetuximab treatment markedly increased expression of CD137 and CD107a on NK and CD8+ T cells. Cetuximab treatment promoted the cytotoxic activity of NK and CD8+ T cells against tumor cells. Conclusion: Cetuximab treatment promotes activation of the immune response but alleviates immunosuppression: this might be the underlying anti-CRC effect of cetuximab.

  3. [Local immune and oxidative status in exacerbated chronic apical periodontitis].

    Science.gov (United States)

    Konoplya, A I; Goldobin, D D; Loktionov, A L

    The aim of the study was to define local immune and oxidative changes in patients with exacerbated chronic apical periodontitis. These changes were assessed in saliva of 67 patients with the mean age of 31±2.5 before and after treatment. The study revealed disturbances in cytokines and complement system balance and activation of lipids peroxidation. Combination of Gepon or Vobenzim with Essentiale forte H and Kaskatol proved to be the most effective for correction of this imbalance.

  4. Immune Mechanisms in Myelodysplastic Syndrome

    DEFF Research Database (Denmark)

    Glenthøj, Andreas; Ørskov, Andreas Due; Hansen, Jakob Werner

    2016-01-01

    diseases are common in patients with MDS, fueling hypotheses of common etiological mechanisms. Both innate and adaptive immune pathways are overly active in the hematopoietic niche of MDS. Although supportive care, growth factors, and hypomethylating agents are the mainstay of MDS treatment, some patients......-especially younger low-risk patients with HLA-DR15 tissue type-demonstrate impressive response rates after immunosuppressive therapy. This is in contrast to higher-risk MDS patients, where several immune activating treatments, such as immune checkpoint inhibitors, are in the pipeline. Thus, the dual role of immune...... mechanisms in MDS is challenging, and rigorous translational studies are needed to establish the value of immune manipulation as a treatment of MDS....

  5. Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway

    Science.gov (United States)

    Pinsino, Annalisa; Russo, Roberta; Bonaventura, Rosa; Brunelli, Andrea; Marcomini, Antonio; Matranga, Valeria

    2015-01-01

    Titanium dioxide nanoparticles (TiO2NPs) are one of the most widespread-engineered particles in use for drug delivery, cosmetics, and electronics. However, TiO2NP safety is still an open issue, even for ethical reasons. In this work, we investigated the sea urchin Paracentrotus lividus immune cell model as a proxy to humans, to elucidate a potential pathway that can be involved in the persistent TiO2NP-immune cell interaction in vivo. Morphology, phagocytic ability, changes in activation/inactivation of a few mitogen-activated protein kinases (p38 MAPK, ERK), variations of other key proteins triggering immune response (Toll-like receptor 4-like, Heat shock protein 70, Interleukin-6) and modifications in the expression of related immune response genes were investigated. Our findings indicate that TiO2NPs influence the signal transduction downstream targets of p38 MAPK without eliciting an inflammatory response or other harmful effects on biological functions. We strongly recommend sea urchin immune cells as a new powerful model for nano-safety/nano-toxicity investigations without the ethical normative issue. PMID:26412401

  6. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects.

    Directory of Open Access Journals (Sweden)

    Ece A Mutlu

    2014-02-01

    Full Text Available HIV progression is characterized by immune activation and microbial translocation. One factor that may be contributing to HIV progression could be a dysbiotic microbiome. We therefore hypothesized that the GI mucosal microbiome is altered in HIV patients and this alteration correlates with immune activation in HIV. 121 specimens were collected from 21 HIV positive and 22 control human subjects during colonoscopy. The composition of the lower gastrointestinal tract mucosal and luminal bacterial microbiome was characterized using 16S rDNA pyrosequencing and was correlated to clinical parameters as well as immune activation and circulating bacterial products in HIV patients on ART. The composition of the HIV microbiome was significantly different than that of controls; it was less diverse in the right colon and terminal ileum, and was characterized by loss of bacterial taxa that are typically considered commensals. In HIV samples, there was a gain of some pathogenic bacterial taxa. This is the first report characterizing the terminal ileal and colonic mucosal microbiome in HIV patients with next generation sequencing. Limitations include use of HIV-infected subjects on HAART therapy.

  7. The Immune System: Basis of so much Health and Disease: 3. Adaptive Immunity.

    Science.gov (United States)

    Scully, Crispian; Georgakopoulou, Eleni A; Hassona, Yazan

    2017-04-01

    The immune system is the body’s primary defence mechanism against infections, and disturbances in the system can cause disease if the system fails in defence functions (in immunocompromised people), or if the activity is detrimental to the host (as in auto-immune and auto-inflammatory states). A healthy immune system is also essential to normal health of dental and oral tissues. This series presents the basics for the understanding of the immune system; this article covers adaptive immunity. Clinical relevance: Dental clinicians need a basic understanding of the immune system as it underlies health and disease.

  8. siRNA and innate immunity.

    Science.gov (United States)

    Robbins, Marjorie; Judge, Adam; MacLachlan, Ian

    2009-06-01

    Canonical small interfering RNA (siRNA) duplexes are potent activators of the mammalian innate immune system. The induction of innate immunity by siRNA is dependent on siRNA structure and sequence, method of delivery, and cell type. Synthetic siRNA in delivery vehicles that facilitate cellular uptake can induce high levels of inflammatory cytokines and interferons after systemic administration in mammals and in primary human blood cell cultures. This activation is predominantly mediated by immune cells, normally via a Toll-like receptor (TLR) pathway. The siRNA sequence dependency of these pathways varies with the type and location of the TLR involved. Alternatively nonimmune cell activation may also occur, typically resulting from siRNA interaction with cytoplasmic RNA sensors such as RIG1. As immune activation by siRNA-based drugs represents an undesirable side effect due to the considerable toxicities associated with excessive cytokine release in humans, understanding and abrogating this activity will be a critical component in the development of safe and effective therapeutics. This review describes the intracellular mechanisms of innate immune activation by siRNA, the design of appropriate sequences and chemical modification approaches, and suitable experimental methods for studying their effects, with a view toward reducing siRNA-mediated off-target effects.

  9. Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis.

    Science.gov (United States)

    Suárez-Fariñas, Mayte; Dhingra, Nikhil; Gittler, Julia; Shemer, Avner; Cardinale, Irma; de Guzman Strong, Cristina; Krueger, James G; Guttman-Yassky, Emma

    2013-08-01

    Atopic dermatitis (AD) is classified as extrinsic and intrinsic, representing approximately 80% and 20% of patients with the disease, respectively. Although sharing a similar clinical phenotype, only extrinsic AD is characterized by high serum IgE levels. Because most patients with AD exhibit high IgE levels, an "allergic"/IgE-mediated disease pathogenesis was hypothesized. However, current models associate AD with T-cell activation, particularly TH2/TH22 polarization, and epidermal barrier defects. We sought to define whether both variants share a common pathogenesis. We stratified 51 patients with severe AD into extrinsic AD (n = 42) and intrinsic AD (n = 9) groups (with similar mean disease activity/SCORAD scores) and analyzed the molecular and cellular skin pathology of lesional and nonlesional intrinsic AD and extrinsic AD by using gene expression (real-time PCR) and immunohistochemistry. A significant correlation between IgE levels and SCORAD scores (r = 0.76, P extrinsic AD. Marked infiltrates of T cells and dendritic cells and corresponding epidermal alterations (keratin 16, Mki67, and S100A7/A8/A9) defined lesional skin of patients with both variants. However, higher activation of all inflammatory axes (including TH2) was detected in patients with intrinsic AD, particularly TH17 and TH22 cytokines. Positive correlations between TH17-related molecules and SCORAD scores were only found in patients with intrinsic AD, whereas only patients with extrinsic AD showed positive correlations between SCORAD scores and TH2 cytokine (IL-4 and IL-5) levels and negative correlations with differentiation products (loricrin and periplakin). Although differences in TH17 and TH22 activation exist between patients with intrinsic AD and those with extrinsic AD, we identified common disease-defining features of T-cell activation, production of polarized cytokines, and keratinocyte responses to immune products. Our data indicate that a TH2 bias is not the sole cause of high Ig

  10. Characterizing complex polysera produced by antigen-specific immunization through the use of affinity-selected mimotopes.

    Directory of Open Access Journals (Sweden)

    Galina Denisova

    Full Text Available BACKGROUND: Antigen-based (as opposed to whole organism vaccines are actively being pursued for numerous indications. Even though different formulations may produce similar levels of total antigen-specific antibody, the composition of the antibody response can be quite distinct resulting in different levels of therapeutic activity. METHODOLOGY/PRINCIPAL FINDINGS: Using plasmid-based immunization against the proto-oncogene HER-2 as a model, we have demonstrated that affinity-selected epitope mimetics (mimotopes can provide a defined signature of a polyclonal antibody response. Further, using novel computer algorithms that we have developed, these mimotopes can be used to predict epitope targets. CONCLUSIONS/SIGNIFICANCE: By combining our novel strategy with existing methods of epitope prediction based on physical properties of an individual protein, we believe that this method offers a robust method for characterizing the breadth of epitope-specificity within a specific polyserum. This strategy is useful as a tool for monitoring immunity following vaccination and can also be used to define relevant epitopes for the creation of novel vaccines.

  11. Immune algorithm based active PID control for structure systems

    International Nuclear Information System (INIS)

    Lee, Young Jin; Cho, Hyun Cheol; Lee, Kwon Soon

    2006-01-01

    An immune algorithm is a kind of evolutional computation strategies, which is developed in the basis of a real immune mechanism in the human body. Recently, scientific or engineering applications using this scheme are remarkably increased due to its significant ability in terms of adaptation and robustness for external disturbances. Particularly, this algorithm is efficient to search optimal parameters against complicated dynamic systems with uncertainty and perturbation. In this paper, we investigate an immune algorithm embedded Proportional Integral Derivate (called I P ID) control, in which an optimal parameter vector of the controller is determined offline by using a cell-mediated immune response of the immunized mechanism. For evaluation, we apply the proposed control to mitigation of vibrations for nonlinear structural systems, cased by external environment load such as winds and earthquakes. Comparing to traditional controls under same simulation scenarios, we demonstrate the innovation control is superior especially in robustness aspect

  12. Gene networks specific for innate immunity define post-traumatic stress disorder.

    Science.gov (United States)

    Breen, M S; Maihofer, A X; Glatt, S J; Tylee, D S; Chandler, S D; Tsuang, M T; Risbrough, V B; Baker, D G; O'Connor, D T; Nievergelt, C M; Woelk, C H

    2015-12-01

    The molecular factors involved in the development of Post-Traumatic Stress Disorder (PTSD) remain poorly understood. Previous transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to apply an unsupervised gene-network based approach to a prospective experimental design using whole-transcriptome RNA-Seq gene expression from peripheral blood leukocytes of U.S. Marines (N=188), obtained both pre- and post-deployment to conflict zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD. We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N=96), further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD.

  13. Immune activation by histones: plusses and minuses in inflammation.

    Science.gov (United States)

    Pisetsky, David S

    2013-12-01

    Histones are highly cationic proteins that are essential components of the cell nucleus, interacting with DNA to form the nucleosome and regulating transcription. Histones, however, can transit from the cell nucleus during cell death and, once in an extracellular location, can serve as danger signals and activate immune cells. An article in this issue of the European Journal of Immunology [Eur. J. Immunol. 2013. 43: 3336-3342] reports that histones can activate monocyte-derived DCs via the NRLP3 inflammasome to induce the production of IL-1β. As such, histones, which can also stimulate TLRs, may drive events in the immunopathogenesis of a wide range of acute and chronic diseases marked by sterile inflammation. While the mechanism of this stimulation is not known, the positive charge of histones may provide a structural element to promote interaction with cells and activation of downstream signaling systems. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity

    OpenAIRE

    Bowen, David G.; Zen, Monica; Holz, Lauren; Davis, Thomas; McCaughan, Geoffrey W.; Bertolino, Patrick

    2004-01-01

    Hepatic immunobiology is paradoxical: although the liver possesses unusual tolerogenic properties, it is also the site of effective immune responses against multiple pathogens and subject to immune-mediated pathology. The mechanisms underlying this dichotomy remain unclear. Following previous work demonstrating that the liver may act as a site of primary T cell activation, we demonstrate here that the balance between immunity and tolerance in this organ is established by competition for prima...

  15. Early Subretinal Allograft Rejection Is Characterized by Innate Immune Activity.

    Science.gov (United States)

    Kennelly, Kevin P; Holmes, Toby M; Wallace, Deborah M; O'Farrelly, Cliona; Keegan, David J

    2017-06-09

    Successful subretinal transplantation is limited by considerable early graft loss despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a nonimmunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this. Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation, and the neutrophil chemoattractant KC/GRO/CINC was most significantly increased. Subretinal allografts of DH01 cells (C57BL/10 origin) into healthy, nonimmunosuppressed C57BL/6 murine eyes were harvested and fixed at 1, 3, 7, and 28 days postoperatively and subsequently cryosectioned and stained. Graft cells were detected using SV40 large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Sections were also immunolabeled for macrophage (CD11b and F4/80), neutrophil (Gr1 Ly-6G), and T-lymphocyte (CD3-ɛ) infiltration. Images captured with an Olympus FV1000 confocal microscope were analyzed using the Imaris software. The proportion of the subretinal bolus comprising graft cells (SV40T+) was significantly (p < 0.001) reduced between postoperative day (POD) 3 (90 ± 4%) and POD 7 (20 ± 7%). CD11b+, F4/80+, and Gr1 Ly-6G+ cells increased significantly (p < 0.05) from POD 1 and predominated over SV40T+ cells by POD 7. Colabeling confocal microscopic analysis demonstrated graft engulfment by neutrophils and macrophages at POD 7, and reconstruction of z-stacked confocal images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-ɛ was low and did not differ significantly between time points. By POD 28, no graft cells were detectable and few inflammatory cells remained. These studies reveal, for the first time, a critical role for innate immune mechanisms early in subretinal graft rejection. The future success

  16. CHRONOVAC VOYAGEUR: A study of the immune response to yellow fever vaccine among infants previously immunized against measles.

    Science.gov (United States)

    Goujon, Catherine; Gougeon, Marie-Lise; Tondeur, Laura; Poirier, Béatrice; Seffer, Valérie; Desprès, Philippe; Consigny, Paul-Henri; Vray, Muriel

    2017-10-27

    For administration of multiple live attenuated vaccines, the Advisory Committee on Immunization Practices recommends either simultaneous immunization or period of at least 28days between vaccines, due to a possible reduction in the immune response to either vaccine. The main objective of this study was to compare the immune response to measles (alone or combined with mumps and rubella) and yellow fever vaccines among infants aged 6-24months living in a yellow fever non-endemic country who had receivedmeasles and yellow fever vaccines before travelling to a yellow fever endemic area. A retrospective, multicenter case-control study was carried out in 7 travel clinics in the Paris area from February 1st 2011 to march 31, 2015. Cases were defined as infants immunized with the yellow fever vaccine and with the measles vaccine, either alone or in combination with mumps and rubella vaccine, with a period of 1-27days between each immunization. For each case, two controls were matched based on sex and age: a first control group (control 1) was defined as infants having received the measles vaccine and the yellow fever vaccine simultaneously; a second control group (control 2) was defined as infants who had a period of more than 27days between receiving the measles vaccine and yellow fever vaccine. The primary endpoint of the study was the percentage of infants with protective immunity against yellow fever, measured by the titer of neutralizing antibodies in a venous blood sample. One hundred and thirty-one infants were included in the study (62 cases, 50 infants in control 1 and 19 infants in control 2). Of these, 127 (96%) were shown to have a protective titer of yellow fever antibodies. All 4 infants without a protective titer of yellow fever antibodies were part of control group 1. The measles vaccine, alone or combined with mumps and rubella vaccines, appears to have no influence on humoral immune response to the yellow fever vaccine when administered between 1 and 27

  17. Immune activation by medium-chain triglyceride-containing lipid emulsions is not modulated by n-3 lipids or toll-like receptor 4

    NARCIS (Netherlands)

    Olthof, E.D.; Gulich, A.F.; Renne, M.F.; Landman, S.; Joosten, L.A.B.; Roelofs, H.M.; Wanten, G.J.A.

    2015-01-01

    BACKGROUND: Saturated medium-chain triglycerides (MCT) as part of the parenteral lipid regimen (50% MCT and 50% long chain triglycerides (LCT)) activate the immune system in vitro. Fish oil (FO)-derived n-3 fatty acids (FA) inhibit saturated FA-induced immune activation via a toll-like receptor

  18. Regulation of intestinal homeostasis by innate immune cells.

    Science.gov (United States)

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-12-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

  19. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  20. Immunization with Paracoccidioides brasiliensis radioattenuated yeast cells induces Th1 immune response in Balb/C mice

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Estefania M.N.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: estefaniabio@yahoo.com.br, e-mail: antero@cdtn.br; Resende, Maria Aparecida de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: maresend@mono.icb.ufmg.br; Reis, Bernardo S.; Goes, Alfredo M. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia], e-mail: goes@mono.icb.ufmg.br, e-mail: brsgarbi@mono.icb.ufmg.br

    2009-07-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent mycosis in Latin America. To date, there is no effective vaccine. In our laboratory yeast cells of P. brasiliensis were attenuated by gamma irradiation. We defined an absorbed dose in which the pathogen loses the reproductive ability, while retaining the morphology, the synthesis and secretion of proteins and the oxidative metabolism. The immunization with these cells was able to confer protection in BALB/c mice. The aim of the present work was evaluate the immune response pathway activated in mice immunized with P. brasiliensis radioattenuated yeast cells. The protector effect was evaluated in BALB/c mice groups immunized once or twice, respectively. Each group was divided in three sub groups that were challenge 30, 45 or 60 days after the immunization. These groups were called G1A, G1B and G1C in the group immunized once and G2A, G2B and G2C in the group immunized twice. Recovery of CFUs and cytokines determination (IFN - {gamma}, IL - 10 and IL IV 4) were performed three months post challenge. Quantitative RT-PCR was the method of choice used to quantify the expression of cytokines. The sera were collected weekly to evaluate the IgG antibody titers and the IgG1 and IgG2a pattern in the course of infection. A significant reduction in CFUs recovery was verified 90 days post challenge in mice submitted to one immunization: 73.0%, 96.0% and 76.3% for sub-groups G1A, G1B and G1C, respectively. In the group submitted to two immunizations, a remarkable increase in the protection was obtained. No CFUs was recovered from sub-groups G2B and G2C and very few CFUs (reduction of 98.6%) were recovered from the lungs of sub group G2A. In mice submitted to one immunization, Th1 and Th2 cytokines were simultaneously produced. In the group submitted to two immunizations, levels of IL-10 and IL-4 were very low, while IFN-{gamma} production was maintained indicating that a Th1 pattern was

  1. Immunization with Paracoccidioides brasiliensis radioattenuated yeast cells induces Th1 immune response in Balb/C mice

    International Nuclear Information System (INIS)

    Martins, Estefania M.N.; Andrade, Antero S.R.; Resende, Maria Aparecida de; Reis, Bernardo S.; Goes, Alfredo M.

    2009-01-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent mycosis in Latin America. To date, there is no effective vaccine. In our laboratory yeast cells of P. brasiliensis were attenuated by gamma irradiation. We defined an absorbed dose in which the pathogen loses the reproductive ability, while retaining the morphology, the synthesis and secretion of proteins and the oxidative metabolism. The immunization with these cells was able to confer protection in BALB/c mice. The aim of the present work was evaluate the immune response pathway activated in mice immunized with P. brasiliensis radioattenuated yeast cells. The protector effect was evaluated in BALB/c mice groups immunized once or twice, respectively. Each group was divided in three sub groups that were challenge 30, 45 or 60 days after the immunization. These groups were called G1A, G1B and G1C in the group immunized once and G2A, G2B and G2C in the group immunized twice. Recovery of CFUs and cytokines determination (IFN - γ, IL - 10 and IL IV 4) were performed three months post challenge. Quantitative RT-PCR was the method of choice used to quantify the expression of cytokines. The sera were collected weekly to evaluate the IgG antibody titers and the IgG1 and IgG2a pattern in the course of infection. A significant reduction in CFUs recovery was verified 90 days post challenge in mice submitted to one immunization: 73.0%, 96.0% and 76.3% for sub-groups G1A, G1B and G1C, respectively. In the group submitted to two immunizations, a remarkable increase in the protection was obtained. No CFUs was recovered from sub-groups G2B and G2C and very few CFUs (reduction of 98.6%) were recovered from the lungs of sub group G2A. In mice submitted to one immunization, Th1 and Th2 cytokines were simultaneously produced. In the group submitted to two immunizations, levels of IL-10 and IL-4 were very low, while IFN-γ production was maintained indicating that a Th1 pattern was dominant. For

  2. The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor

    NARCIS (Netherlands)

    Townsend, Philip D.; Dixon, Christopher H.; Slootweg, Erik J.; Sukarta, Octavina C.A.; Yang, Ally W.H.; Hughes, Timothy R.; Sharples, Gary J.; Palsson, Lars-Olof; Takken, Frank L.W.; Goverse, Aska; Cann, Martin J.

    2018-01-01

    Plant NLR proteins enable the immune system to recognise and respond to pathogen attack. An early consequence of immune activation is transcriptional reprogramming and some NLRs have been shown to act in the nucleus and interact with transcription factors. The Rx1 NLR protein of potato is further

  3. Regulation of intestinal immune responses through TLR activation: implications for pro- and prebiotics

    Directory of Open Access Journals (Sweden)

    Sander eDe Kivit

    2014-02-01

    Full Text Available The intestinal mucosa is constantly facing a high load of antigens including bacterial antigens derived from the microbiota and food. Despite this, the immune cells present in the gastrointestinal tract do not initiate a pro-inflammatory immune response. Toll-like receptors (TLRs are pattern recognition receptors expressed by various cells in the gastrointestinal tract, including intestinal epithelial cells (IEC and resident immune cells in the lamina propria. Many diseases, including chronic intestinal inflammation (e.g. inflammatory bowel disease, irritable bowel syndrome (IBS, allergic gastroenteritis (e.g. eosinophilic gastroenteritis and allergic IBS and infections are nowadays associated with a deregulated microbiota. The microbiota may directly interact with TLR. In addition, differences in intestinal TLR expression in health and disease may suggest that TLR play an essential role in disease pathogenesis and may be novel targets for therapy. TLR signaling in the gut is involved in either maintaining intestinal homeostasis or the induction of an inflammatory response. This mini review provides an overview of the current knowledge regarding the contribution of intestinal epithelial TLR signaling in both tolerance induction or promoting intestinal inflammation, with a focus on food allergy. We will also highlight a potential role of the microbiota in regulating gut immune responses, especially through TLR activation.

  4. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study

    Science.gov (United States)

    2012-01-01

    Background This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD). Methods In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Results Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I

  5. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study

    Directory of Open Access Journals (Sweden)

    Cribbs David H

    2012-07-01

    Full Text Available Abstract Background This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD. Methods In a well-powered microarray study of young (20 to 59 years, aged (60 to 99 years, and AD (74 to 95 years cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Results Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%. In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets, with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc receptors and human

  6. PPARγ Agonists in Adaptive Immunity: What Do Immune Disorders and Their Models Have to Tell Us?

    Directory of Open Access Journals (Sweden)

    Laurindo Ferreira da Rocha Junior

    2013-01-01

    Full Text Available Adaptive immunity has evolved as a very powerful and highly specialized tool of host defense. Its classical protagonists are lymphocytes of the T- and B-cell lineage. Cytokines and chemokines play a key role as effector mechanisms of the adaptive immunity. Some autoimmune and inflammatory diseases are caused by disturbance of the adaptive immune system. Recent advances in understanding the pathogenesis of autoimmune diseases have led to research on new molecular and therapeutic targets. PPARγ are members of the nuclear receptor superfamily and are transcription factors involved in lipid metabolism as well as innate and adaptive immunity. PPARγ is activated by synthetic and endogenous ligands. Previous studies have shown that PPAR agonists regulate T-cell survival, activation and T helper cell differentiation into effector subsets: Th1, Th2, Th17, and Tregs. PPARγ has also been associated with B cells. The present review addresses these issues by placing PPARγ agonists in the context of adaptive immune responses and the relation of the activation of these receptors with the expression of cytokines involved in adaptive immunity.

  7. Recent activation of the plaque immune response in coronary lesions underlying acute coronary syndromes

    NARCIS (Netherlands)

    van der Wal, A. C.; Piek, J. J.; de Boer, O. J.; Koch, K. T.; Teeling, P.; van der Loos, C. M.; Becker, A. E.

    1998-01-01

    OBJECTIVE: To discriminate between chronic inflammation and acute activation of the plaque immune response in culprit lesions of patients with acute coronary syndromes. DESIGN: Retrospective study. SETTING: Tertiary referral centre. SUBJECTS: 71 patients having coronary atherectomy were classified

  8. Structure of Human cGAS Reveals a Conserved Family of Second-Messenger Enzymes in Innate Immunity

    Directory of Open Access Journals (Sweden)

    Philip J. Kranzusch

    2013-05-01

    Full Text Available Innate immune recognition of foreign nucleic acids induces protective interferon responses. Detection of cytosolic DNA triggers downstream immune signaling through activation of cyclic GMP-AMP synthase (cGAS. We report here the crystal structure of human cGAS, revealing an unanticipated zinc-ribbon DNA-binding domain appended to a core enzymatic nucleotidyltransferase scaffold. The catalytic core of cGAS is structurally homologous to the RNA-sensing enzyme, 2′-5′ oligo-adenylate synthase (OAS, and divergent C-terminal domains account for specific ligand-activation requirements of each enzyme. We show that the cGAS zinc ribbon is essential for STING-dependent induction of the interferon response and that conserved amino acids displayed within the intervening loops are required for efficient cytosolic DNA recognition. These results demonstrate that cGAS and OAS define a family of innate immunity sensors and that structural divergence from a core nucleotidyltransferase enables second-messenger responses to distinct foreign nucleic acids.

  9. Heat and immunity: an experimental heat wave alters immune functions in three-spined sticklebacks (Gasterosteus aculeatus).

    Science.gov (United States)

    Dittmar, Janine; Janssen, Hannah; Kuske, Andra; Kurtz, Joachim; Scharsack, Jörn P

    2014-07-01

    Global climate change is predicted to lead to increased temperatures and more extreme climatic events. This may influence host-parasite interactions, immunity and therefore the impact of infectious diseases on ecosystems. However, little is known about the effects of rising temperatures on immune defence, in particular in ectothermic animals, where the immune system is directly exposed to external temperature change. Fish are ideal models for studying the effect of temperature on immunity, because they are poikilothermic, but possess a complete vertebrate immune system with both innate and adaptive immunity. We used three-spined sticklebacks ( Gasterosteus aculeatus) originating from a stream and a pond, whereby the latter supposedly were adapted to higher temperature variation. We studied the effect of increasing and decreasing temperatures and a simulated heat wave with subsequent recovery on body condition and immune parameters. We hypothesized that the immune system might be less active at low temperatures, but will be even more suppressed at temperatures towards the upper tolerable temperature range. Contrary to our expectation, we found innate and adaptive immune activity to be highest at a temperature as low as 13 °C. Exposure to a simulated heat wave induced long-lasting immune disorders, in particular in a stickleback population that might be less adapted to temperature variation in its natural environment. The results show that the activity of the immune system of an ectothermic animal species is temperature dependent and suggest that heat waves associated with global warming may immunocompromise host species, thereby potentially facilitating the spread of infectious diseases. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  10. Transcriptome profiling indicating canine parvovirus type 2a as a potential immune activator.

    Science.gov (United States)

    Fan, Xu-Xu; Gao, Yuan; Shu, Long; Wei, Yan-Quan; Yao, Xue-Ping; Cao, Sui-Zhong; Peng, Guang-Neng; Liu, Xiang-Tao; Sun, Shi-Qi

    2016-12-01

    Canine parvovirus type 2a (CPV-2a) is a variant of CPV-2, which is a highly contagious pathogen causing severe gastroenteritis and death in young dogs. However, how CPV-2 participates in cell regulation and immune response remains unknown. In this study, persistently infected MDCK cells were generated through culture passage of the CPV-2a-infected cells for ten generations. Our study showed that CPV-2a induces cell proliferation arrest and cell morphology alternation before the fourth generation, whereas, the cell morphology returns to normal after five times of passages. PCR detection of viral VP2 gene demonstrated that CPV-2a proliferate with cell passage. An immunofluorescence assay revealed that CPV-2a particles were mainly located in the cell nuclei of MDCK cell. Then transcriptome microarray revealed that gene expression pattern of MDCK with CPV-2a persistent infection is distinct compared with normal cells. Gene ontology annotation and Kyoto Encyclopedia of Genes and Genome pathway analysis demonstrated that CPV-2a infection induces a series of membrane-associated genes expression, including many MHC protein or MHC-related complexes. These genes are closely related to signaling pathways of virus-host interaction, including antigen processing and presentation pathway, intestinal immune network, graft-versus-host disease, and RIG-I-like helicases signaling pathway. In contrast, the suppressed genes mediated by CPV-2a showed low enrichment in any category, and were only involved in pathways linking to synthesis and metabolism of amino acids, which was confirmed by qPCR analysis. Our studies indicated that CPV-2a is a natural immune activator and has the capacity to activate host immune responses, which could be used for the development of antiviral strategy and biomaterial for medicine.

  11. The Potato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein*

    Science.gov (United States)

    Fenyk, Stepan; Townsend, Philip D.; Dixon, Christopher H.; Spies, Gerhard B.; de San Eustaquio Campillo, Alba; Slootweg, Erik J.; Westerhof, Lotte B.; Gawehns, Fleur K. K.; Knight, Marc R.; Sharples, Gary J.; Goverse, Aska; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2015-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR. PMID:26306038

  12. Immunity to Visceral Leishmaniasis Using Genetically Defined Live-Attenuated Parasites

    Directory of Open Access Journals (Sweden)

    Angamuthu Selvapandiyan

    2012-01-01

    Full Text Available Leishmaniasis is a protozoan parasitic disease endemic to the tropical and subtropical regions of the world, with three major clinical forms, self-healing cutaneous leishmaniasis (CL, mucocutaneous leishmaniasis (MCL, and visceral leishmaniasis (VL. Drug treatments are expensive and often result in the development of drug resistance. No vaccine is available against leishmaniasis. Subunit Leishmania vaccine immunization in animal models has shown some efficacy but little or none in humans. However, individuals who recover from natural infection are protected from reinfection and develop life-long protection, suggesting that infection may be a prerequisite for immunological memory. Thus, genetically altered live-attenuated parasites with controlled infectivity could achieve such memory. In this paper, we discuss development and characteristics of genetically altered, live-attenuated Leishmania donovani parasites and their possible use as vaccine candidates against VL. In addition, we discuss the challenges and other considerations in the use of live-attenuated parasites.

  13. Evaluation of an In Vitro of Human Immune Activation Induced by Freeze-Thaw Tissue Damage

    National Research Council Canada - National Science Library

    DuBose, D

    2002-01-01

    In training and in combat, soldiers are under the constant threat of injury. Injury that results in tissue necrosis can activate the immune system and ultimately enhance disturbances in organ function...

  14. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Lynch, Joseph W

    2010-01-01

    The ability to silence the electrical activity of defined neuronal populations in vivo is dramatically advancing our understanding of brain function. This technology may eventually be useful clinically for treating a variety of neuropathological disorders caused by excessive neuronal activity...... conductance, homomeric expression, and human origin may render the F207A/A288G alpha1 glycine receptor an improved silencing receptor for neuroscientific and clinical purposes. As all known highly ivermectin-sensitive GluClRs contain an endogenous glycine residue at the corresponding location, this residue...

  15. Active immunizations with peptide-DC vaccines and passive transfer with antibodies protect neutropenic mice against disseminated candidiasis.

    Science.gov (United States)

    Xin, Hong

    2016-01-04

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Active Immunizations with Peptide-DC Vaccines and Passive Transfer with Antibodies Protect Neutropenic Mice against Disseminated Candidiasis

    Science.gov (United States)

    Xin, Hong

    2015-01-01

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi. PMID:26620842

  17. The S(c)ensory Immune System Theory.

    Science.gov (United States)

    Veiga-Fernandes, Henrique; Freitas, António A

    2017-10-01

    Viewpoints on the immune system have evolved across different paradigms, including the clonal selection theory, the idiotypic network, and the danger and tolerance models. Herein, we propose that in multicellular organisms, where panoplies of cells from different germ layers interact and immune cells are constantly generated, the behavior of the immune system is defined by the rules governing cell survival, systems physiology and organismic homeostasis. Initially, these rules were imprinted at the single cell-protist level, but supervened modifications in the transition to multicellular organisms. This context determined the emergence of the 'sensory immune system', which operates in a s(c)ensor mode to ensure systems physiology, organismic homeostasis, and perpetuation of its replicating molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The influence of pregnancy on systemic immunity.

    Science.gov (United States)

    Pazos, Michael; Sperling, Rhoda S; Moran, Thomas M; Kraus, Thomas A

    2012-12-01

    Adaptations in maternal systemic immunity are presumed to be responsible for observed alterations in disease susceptibility and severity as pregnancy progresses. Epidemiological evidence as well as animal studies have shown that influenza infections are more severe during the second and third trimesters of pregnancy, resulting in greater morbidity and mortality, although the reason for this is still unclear. Our laboratory has taken advantage of 20 years of experience studying the murine immune response to respiratory viruses to address questions of altered immunity during pregnancy. With clinical studies and unique animal model systems, we are working to define the mechanisms responsible for altered immune responses to influenza infection during pregnancy and what roles hormones such as estrogen or progesterone play in these alterations.

  19. [Exosomes and Immune Cells].

    Science.gov (United States)

    Seo, Naohiro

    2017-05-01

    In addition to the cytokines and cytotoxic granules, exosomes have been known as the intercellular communicator and cytotoxic missile of immune cells for the past decade. It has been well known that mature dendritic cell(DC)-derived exosomes participate in the T cell and natural killer(NK)cell activation, while immature DCs secrete tolerogenic exosomes for regulatory T(Treg)cell generation. Treg cell-derived EVs act as a suppressor against pathogenic type-1 T helper(Th1)cell responses. CD8+ T cells produce tumoricidal exosomes for preventing tumor invasion and metastasis transiently after T cell receptor(TCR)-mediated stimulation. Thus, immune cells produce functional exosomes in the activation state- and/or differentiation stage-dependent manner. In this review, the role of immune cell-derived exosomes will be introduced, focusing mainly on immune reaction against tumor.

  20. Altered biomarkers of mucosal immunity and reduced vaginal Lactobacillus concentrations in sexually active female adolescents.

    Directory of Open Access Journals (Sweden)

    Rebecca Pellett Madan

    Full Text Available Genital secretions collected from adult women exhibit in vitro activity against herpes simplex virus (HSV and Escherichia coli (E. coli, but prior studies have not investigated this endogenous antimicrobial activity or its mediators in adolescent females.Anti-HSV and anti-E.coli activity were quantified from cervicovaginal lavage (CVL specimens collected from 20 sexually active adolescent females (15-18 years. Soluble immune mediators that may influence this activity were measured in CVL, and concentrations of Lactobacillus jensenii and crispatus were quantified by PCR from vaginal swabs. Results for adolescents were compared to those obtained from 54 healthy, premenopausal adult women. Relative to specimens collected from adults, CVL collected from adolescent subjects had significantly reduced activity against E. coli and diminished concentrations of protein, IgG, and IgA but significantly increased anti-HSV activity and concentrations of interleukin (IL-1α, IL-6 and IL-1 receptor antagonist. Vaginal swabs collected from adolescent subjects had comparable concentrations of L. crispatus but significantly reduced concentrations of L. jensenii, relative to adult swabs.Biomarkers of genital mucosal innate immunity may differ substantially between sexually active adolescents and adult women. These findings warrant further study and may have significant implications for prevention of sexually transmitted infections in adolescent females.

  1. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4

    Directory of Open Access Journals (Sweden)

    Bo Yoon Chang

    2015-10-01

    Full Text Available Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE. MFE stimulated the production of cytokines, nitric oxide (NO and tumor necrosis factor-α (TNF-α and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase and nuclear factor-κB (NF-κB signaling pathways downstream from toll-like receptor (TLR 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK cell activity, cytotoxic T lymphocyte (CTL activity and IFN-γ production. Immunoglobulin G (IgG antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent.

  2. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4.

    Science.gov (United States)

    Chang, Bo Yoon; Kim, Seon Beom; Lee, Mi Kyeong; Park, Hyun; Kim, Sung Yeon

    2015-10-13

    Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent.

  3. Immune activation by nucleic acids: A role in pregnancy complications.

    Science.gov (United States)

    Konečná, B; Lauková, L; Vlková, B

    2018-04-01

    Cell-free self-DNA or RNA may induce an immune response by activating specific sensing receptors. During pregnancy, placental nucleic acids present in the maternal circulation further activate these receptors due to the presence of unmethylated CpG islands. A higher concentration of cell-free foetal DNA is associated with pregnancy complications and a higher risk for foetal rejection. Cell-free foetal DNA originates from placental trophoblasts. It appears in different forms: free, bound to histones in nucleosomes, in neutrophil extracellular traps (NETs) and in extracellular vesicles (EVs). In several pregnancy complications, cell-free foetal DNA triggers the production of proinflammatory cytokines, and this production results in a cellular and humoral immune response. This review discusses preeclampsia, systemic lupus erythematosus, foetal growth restriction, gestational diabetes, rheumatoid arthritis and obesity in pregnancy from an immunological point of view and closely examines the different pathways that result in maternal inflammation. Understanding the role of cell-free nucleic acids, as well as the biogenesis of NETs and EVs, will help us to specify their functions or targets, which seem to be important in pregnancy complications. It is still not clear whether higher concentrations of cell-free nucleic acids in the maternal circulation are the cause or consequence of various complications. Therefore, further clinical studies and, even more importantly, animal experiments that focus on the involved immunological pathways are needed. © 2018 The Foundation for the Scandinavian Journal of Immunology.

  4. ALTERNATE MECHANISMS OF INITIAL PATTERN RECOGNITION DRIVE DIFFERENTIAL IMMUNE RESPONSES TO RELATED POXVIRUSES

    Science.gov (United States)

    O’Gorman, William E.; Sampath, Padma; Simonds, Erin F.; Sikorski, Rachel; O’Malley, Mark; Krutzik, Peter O.; Chen, Hannah; Panchanathan, Vijay; Chaudhri, Geeta; Karupiah, Gunasegaran; Lewis, David B.; Thorne, Steve H.; Nolan, Garry P.

    2010-01-01

    Summary Although vaccinia virus infection results in induction of a robust immunizing response, many closely related poxviruses such as variola (smallpox) and ectromelia (mousepox) are highly pathogenic in their natural hosts. We developed a strategy to map the activation of key signaling networks in vivo and applied this approach to define and compare the earliest signaling events elicited by poxvirus infections in mice. Vaccinia induced rapid TLR2-dependent responses leading to IL-6 production, which then initiated STAT3 signaling in dendritic cells and T cells. In contrast, ectromelia did not induce TLR2 activation and profound mouse strain-dependent responses were observed. In resistant C57BL/6 mice, the STAT1 and STAT3 pathways were rapidly activated, whereas in susceptible BALB/c mice, IL-6-dependent STAT3 activation did not occur. These results indicate that vaccination with vaccinia is dependent on rapid TLR2 and IL-6 driven responses and link the earliest immune signaling events to the outcome of infection. PMID:20709294

  5. Immune reconstitution inflammatory syndrome after initiating highly active antiretroviral therapy in HIV-infected children

    International Nuclear Information System (INIS)

    Kilborn, Tracy; Zampoli, Marco

    2009-01-01

    The outcome of HIV infection has improved since the widespread availability of highly active antiretroviral therapy (HAART). Some patients, however, develop a clinical and radiological deterioration following initiation of HAART due to either the unmasking of occult subclinical infection or an enhanced inflammatory response to a treated infection. This phenomenon is believed to result from the restored ability to mount an immune response and is termed immune reconstitution inflammatory syndrome (IRIS) or immune reconstitution disease. IRIS is widely reported in the literature in adult patients, most commonly associated with mycobacterial infections. There is, however, a paucity of data documenting the radiological findings of IRIS in children. Radiologists need to be aware of this entity. As a diagnosis of exclusion it is essential that the radiological findings be assessed in the context of the clinical presentation. This article reviews the common clinical and radiological manifestations of IRIS in HIV-infected children. (orig.)

  6. Experimental Salmonella typhimurium infections in rats. II. Active and passive immunization as protection against a lethal bacterial dose

    DEFF Research Database (Denmark)

    Hougen, H P; Jensen, E T; Klausen, B

    1990-01-01

    Immunization against a lethal dose of Salmonella typhimurium was studied in athymic and thymus-bearing LEW rats. Active immunization was performed with formalin-killed whole cell vaccine or sublethal infection prior to the lethal infection. After vaccination with killed bacteria the euthymic...... from immunized thymus grafted animals provided only limited protective effect, and treatment with cells from athymic animals had no effect. The study shows that although isogeneic thymus-grafted nude rats become resistent to reinfection with S. typhimurium, only large doses of spleen cells from...

  7. Engineering synthetic vaccines using cues from natural immunity

    Science.gov (United States)

    Irvine, Darrell J.; Swartz, Melody A.; Szeto, Gregory L.

    2013-11-01

    Vaccines aim to protect against or treat diseases through manipulation of the immune response, promoting either immunity or tolerance. In the former case, vaccines generate antibodies and T cells poised to protect against future pathogen encounter or attack diseased cells such as tumours; in the latter case, which is far less developed, vaccines block pathogenic autoreactive T cells and autoantibodies that target self tissue. Enormous challenges remain, however, as a consequence of our incomplete understanding of human immunity. A rapidly growing field of research is the design of vaccines based on synthetic materials to target organs, tissues, cells or intracellular compartments; to co-deliver immunomodulatory signals that control the quality of the immune response; or to act directly as immune regulators. There exists great potential for well-defined materials to further our understanding of immunity. Here we describe recent advances in the design of synthetic materials to direct immune responses, highlighting successes and challenges in prophylactic, therapeutic and tolerance-inducing vaccines.

  8. Cupping regulates local immunomodulation to activate neural-endocrine-immune worknet.

    Science.gov (United States)

    Guo, Yang; Chen, Bo; Wang, Dong-Qiang; Li, Ming-Yue; Lim, Calista Hui-Min; Guo, Yi; Chen, Zelin

    2017-08-01

    Research on cupping therapy is lacking at home and abroad. However, cupping and acupuncture therapy are both surface stimulation therapies. This paper suggests the mechanism of cupping therapy and proposes that the same mechanism underlies both cupping and acupuncture therapy. The microenvironment is changed when stimulating the surface of the skin, and physical signals transform into biological signals, which also interact with each other in the body. These signalling cascades activate the neuroendocrine-immune system, which produces the therapeutic effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fibroblast activation protein is dispensable in the anti-influenza immune response in mice.

    Directory of Open Access Journals (Sweden)

    Sioh-Yang Tan

    Full Text Available Fibroblast activation protein alpha (FAP is a unique dual peptidase of the S9B serine protease family, being capable of both dipeptidyl peptidase and endopeptidase activities. FAP is expressed at low level in healthy adult organs including the pancreas, cervix, uterus, submaxillary gland and the skin, and highly upregulated in embryogenesis, chronic inflammation and tissue remodelling. It is also expressed by cancer-associated stromal fibroblasts in more than 90% of epithelial tumours. FAP has enzymatic and non-enzymatic functions in the growth, immunosuppression, invasion and cell signalling of tumour cells. FAP deficient mice are fertile and viable with no gross abnormality, but little data exist on the role of FAP in the immune system. FAP is upregulated in association with microbial stimulation and chronic inflammation, but its function in infection remains unknown. We showed that major populations of immune cells including CD4+ and CD8+ T cells, B cells, dendritic cells and neutrophils are generated and maintained normally in FAP knockout mice. Upon intranasal challenge with influenza virus, FAP mRNA was increased in the lungs and lung-draining lymph nodes. Nonetheless, FAP deficient mice showed similar pathologic kinetics to wildtype controls, and were capable of supporting normal anti-influenza T and B cell responses. There was no evidence of compensatory upregulation of other DPP4 family members in influenza-infected FAP-deficient mice. FAP appears to be dispensable in anti-influenza adaptive immunity.

  10. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro

    Directory of Open Access Journals (Sweden)

    Jensen GS

    2017-08-01

    Full Text Available Gitte S Jensen,1 Howard A Cash,2 Sean Farmer,2 David Keller2 1NIS Labs, Esplanade, Klamath Falls, OR, USA, 2Ganeden Biotech Inc., Landerbrook Drive Suite, Mayfield Heights, OH, USA Objective: The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™ cells on human immune cells in vitro.Methods: In vitro cultures of human peripheral blood mononuclear cells (PBMC from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors.Results: Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3+ CD56− T lymphocytes, CD3+ CD56+ NKT cells, CD3−CD56+ NK cells, and also some cells within the CD3−CD56− non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response.Conclusion: The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that

  11. Are innate immune signaling pathways in plants and animals conserved?

    Science.gov (United States)

    Ausubel, Frederick M

    2005-10-01

    Although adaptive immunity is unique to vertebrates, the innate immune response seems to have ancient origins. Common features of innate immunity in vertebrates, invertebrate animals and plants include defined receptors for microbe-associated molecules, conserved mitogen-associated protein kinase signaling cascades and the production of antimicrobial peptides. It is commonly reported that these similarities in innate immunity represent a process of divergent evolution from an ancient unicellular eukaryote that pre-dated the divergence of the plant and animal kingdoms. However, at present, data suggest that the seemingly analogous regulatory modules used in plant and animal innate immunity are a consequence of convergent evolution and reflect inherent constraints on how an innate immune system can be constructed.

  12. Interrelation secretory activity of stomach and immunes changes of peripheral blood when ulcerogenesis stomach.

    Science.gov (United States)

    Matveeva, L V; Mosina, L M

    2016-01-01

    Incidence of gastric ulcer is high in almost all countries of the world. On the development and course of the disease affect the state acid- and enzymes production stomach, immune status. The purpose was to determine the presence and power of correlative links secretory activity of the stomach and immune changes in the peripheral blood during exacerbation of ulcer disease stomach. Surveyed in obtaining informed consent 42 patients with gastric ulcer in the acute phase prior to the eradication and antisecretory therapy and 40 healthy volunteers. On the state of function acid- and enzymes production of the gastric mucosa judged by the results of a 2-hour intragastric pH-metry and serum concentration pepsinogen, gastrin before the start of active treatment. Immunophenotype lymphocytes on CD-antigens (CD3, CD4, CD8, CD16, CD19, CD45, CD56) was measured by immunofluorescence, levels immunoglobulin isotype M, G, A, E - ELISA method. When short-term intragastric pH-metry of the stomach hyperacidity patients recorded 6.7 times more likely than healthy, normacidity - 12.3 times less. Reduction of acid production was observed up to 8.6 times more, indicating the development of mucosal atrophy. Basal pH in the antrum was lower by 54.5% than in the control group, with stimulation increased by 33.6%, but remained lower than the values of healthy individuals by 48.7%. When ELISA amount pepsinogen patients showed significant increase in serum levels of PG-I relative to the control group at 33.4%, PG-II - 52%. In assessing the immune status of patients were identified changes in system phagocytes, cellular and humoral links, most pronounced for severe current peptic ulcer disease. The results indicate the presence of positive and negative correlative links mild to moderate force between indicators of secretory activity of gastric mucosal innate and adaptive immunity in patients with acute exacerbation of peptic ulcer disease. The presence and nature of these relationships should

  13. Impact of Hot Environment on Fluid and Electrolyte Imbalance, Renal Damage, Hemolysis, and Immune Activation Postmarathon

    Directory of Open Access Journals (Sweden)

    Rodrigo Assunção Oliveira

    2017-01-01

    Full Text Available Previous studies have demonstrated the physiological changes induced by exercise exposure in hot environments. We investigated the hematological and oxidative changes and tissue damage induced by marathon race in different thermal conditions. Twenty-six male runners completed the São Paulo International Marathon both in hot environment (HE and in temperate environment (TE. Blood and urine samples were collected 1 day before, immediately after, 1 day after, and 3 days after the marathon to analyze the hematological parameters, electrolytes, markers of tissue damage, and oxidative status. In both environments, the marathon race promotes fluid and electrolyte imbalance, hemolysis, oxidative stress, immune activation, and tissue damage. The marathon runner’s performance was approximately 13.5% lower in HE compared to TE; however, in HE, our results demonstrated more pronounced fluid and electrolyte imbalance, renal damage, hemolysis, and immune activation. Moreover, oxidative stress induced by marathon in HE is presumed to be related to protein/purine oxidation instead of other oxidative sources. Fluid and electrolyte imbalance and protein/purine oxidation may be important factors responsible for hemolysis, renal damage, immune activation, and impaired performance after long-term exercise in HE. Nonetheless, we suggested that the impairment on performance in HE was not associated to the muscle damage and lipoperoxidation.

  14. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides

    Science.gov (United States)

    Song, Lin; Chen, Xiaolin; Liu, Xiaodong; Zhang, Fubo; Hu, Linfeng; Yue, Yang; Li, Kecheng; Li, Pengcheng

    2015-01-01

    Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV. PMID:26729137

  15. Immunological regulation of metabolism--a novel quintessential role for the immune system in health and disease.

    Science.gov (United States)

    Schaefer, Jeremy S; Klein, John R

    2011-01-01

    The hypothalamus-pituitary-thyroid (HPT) axis is an integrated hormone network that is essential for maintaining metabolic homeostasis. It has long been known that thyroid stimulating hormone (TSH), a central component of the HPT axis, can be made by cells of the immune system; however, the role of immune system TSH remains enigmatic and most studies have viewed it as a cytokine used to regulate immune function. Recent studies now indicate that immune system-derived TSH, in particular, a splice variant of TSHβ that is preferentially made by cells of the immune system, is produced by a subset of hematopoietic cells that traffic to the thyroid. On the basis of these and other findings, we propose the novel hypothesis that the immune system is an active participant in the regulation of basal metabolism. We further speculate that this process plays a critical role during acute and chronic infections and that it contributes to a wide range of chronic inflammatory conditions with links to thyroid dysregulation. This hypothesis, which is amenable to empirical analysis, defines a previously unknown role for the immune system in health and disease, and it provides a dynamic connection between immune-endocrine interactions at the organismic level.

  16. Immunization alters body odor.

    Science.gov (United States)

    Kimball, Bruce A; Opiekun, Maryanne; Yamazaki, Kunio; Beauchamp, Gary K

    2014-04-10

    Infections have been shown to alter body odor. Because immune activation accompanies both infection and immunization, we tested the hypothesis that classical immunization might similarly result in the alteration of body odors detectable by trained biosensor mice. Using a Y-maze, we trained biosensor mice to distinguish between urine odors from rabies-vaccinated (RV) and unvaccinated control mice. RV-trained mice generalized this training to mice immunized with the equine West Nile virus (WNV) vaccine compared with urine of corresponding controls. These results suggest that there are similarities between body odors of mice immunized with these two vaccines. This conclusion was reinforced when mice could not be trained to directly discriminate between urine odors of RV- versus WNV-treated mice. Next, we trained biosensor mice to discriminate the urine odors of mice treated with lipopolysaccharide (LPS; a general elicitor of innate immunological responses) from the urine of control mice. These LPS-trained biosensors could distinguish between the odors of LPS-treated mouse urine and RV-treated mouse urine. Finally, biosensor mice trained to distinguish between the odors of RV-treated mouse urine and control mouse urine did not generalize this training to discriminate between the odors of LPS-treated mouse urine and control mouse urine. From these experiments, we conclude that: (1) immunization alters urine odor in similar ways for RV and WNV immunizations; and (2) immune activation with LPS also alters urine odor but in ways different from those of RV and WNV. Published by Elsevier Inc.

  17. Exploring the Homeostatic and Sensory Roles of the Immune System.

    Science.gov (United States)

    Marques, Rafael Elias; Marques, Pedro Elias; Guabiraba, Rodrigo; Teixeira, Mauro Martins

    2016-01-01

    Immunology developed under the notion of the immune system exists to fight pathogens. Recently, the discovery of interactions with commensal microbiota that are essential to human health initiated a change in this old paradigm. Here, we argue that the immune system has major physiological roles extending far beyond defending the host. Immune and inflammatory responses share the core property of sensing, defining the immune system also as a sensory system. The inference with the immune system collects, interprets, and stores information, while creating an identity of self, places it in close relationship to the nervous system, which suggests that these systems may have a profound evolutionary connection.

  18. [The liver and the immune system].

    Science.gov (United States)

    Jakab, Lajos

    2015-07-26

    The liver is known to be the metabolic centre of the organism and is under the control of the central nervous system. It has a peculiar tissue structure and its anatomic localisation defines it as part of the immune system having an individual role in the defence of the organism. The determinant of its particular tissue build-up is the sinusoid system. In addition to hepatocytes, one cell row "endothelium", stellate cells close to the external surface, Kupffer cells tightly to its inner surface, as well as dendritic cells and other cell types (T and B lymphocytes, natural killer and natural killer T-cells, mast cells, granulocytes) are present. The multitudes and variety of cells make it possible to carry out the tasks according to the assignment of the organism. The liver is a member of the immune system having immune cells largely in an activated state. Its principal tasks are the assurance of the peripheral immune tolerance of the organism with the help of the haemopoetic cells and transforming growth factor-β. The liver takes part in the determination of the manner of the non-specific immune response of the organism. In addition to acute phase reaction of the organism, the liver has a role in the adaptive/specific immune response. These functions include retardation of the T and B lymphocytes and the defence against harmful pathogens. With the collaboration of transforming growth factor-β, immunoglobulins and their subclasses are inhibited just as the response of the T lymphocytes. The only exception is the undisturbed immunoglobulin A production. Particularly important is the intensive participation of the liver in the acute phase reaction of the organism, which is organised and guided by the coordinated functions of the cortico-hypothalamo-hypophysis-adrenal axis. Beside cellular elements, hormones, adhesion molecules, chemokines and cytokines are also involved in the cooperation with the organs. Acute phase reactants play a central role in these processes

  19. BgTEP: An Antiprotease Involved in Innate Immune Sensing in Biomphalaria glabrata

    Directory of Open Access Journals (Sweden)

    Anaïs Portet

    2018-05-01

    Full Text Available Insect thioester-containing protein (iTEP is the most recently defined group among the thioester-containing protein (TEP superfamily. TEPs are key components of the immune system, and iTEPs from flies and mosquitoes were shown to be major immune weapons. Initially characterized from insects, TEP genes homologous to iTEP were further described from several other invertebrates including arthropods, cniderians, and mollusks albeit with few functional characterizations. In the freshwater snail Biomphalaria glabrata, a vector of the schistosomiasis disease, the presence of a TEP protein (BgTEP was previously described in a well-defined immune complex involving snail lectins (fibrinogen-related proteins and schistosome parasite mucins (SmPoMuc. To investigate the potential role of BgTEP in the immune response of the snail, we first characterized its genomic organization and its predicted protein structure. A phylogenetic analysis clustered BgTEP in a well-conserved subgroup of mollusk TEP. We then investigated the BgTEP expression profile in different snail tissues and followed immune challenges using different kinds of intruders during infection kinetics. Results revealed that BgTEP is particularly expressed in hemocytes, the immune-specialized cells in invertebrates, and is secreted into the hemolymph. Transcriptomic results further evidenced an intruder-dependent differential expression pattern of BgTEP, while interactome experiments showed that BgTEP is capable of binding to the surface of different microbes and parasite either in its full length form or in processed forms. An immunolocalization approach during snail infection by the Schistosoma mansoni parasite revealed that BgTEP is solely expressed by a subtype of hemocytes, the blast-like cells. This hemocyte subtype is present in the hemocytic capsule surrounding the parasite, suggesting a potential role in the parasite clearance by encapsulation. Through this work, we report the first

  20. Immune adjuvant activity of the olive, soybean and corn oils

    Directory of Open Access Journals (Sweden)

    Ana Claudia Marinho da Silva

    2016-08-01

    Full Text Available In the last half of the century, a large amount of substances has been used as immune adjuvant. The immune adjuvant effect of olive, soybean and corn oils in Swiss mice immunized with ovalbumin (OVA plus aluminum hydroxide or emulsified in Marcol, soybean, olive or corn oils was evaluated through the OVA-specific antibodies determined by ELISA and Passive Cutaneous Anaphylaxis. In this work the comparison of the intensity of the immune response was established by the Bayesian analysis. The adjuvant effect of the vegetable oils was shown to be more effective than aluminium hydroxide. Regarding to OVA-specific IgE synthesis, olive oil had the slowest adjuvant effect of the three vegetable oils. Accordingly, olive oil was the most convenient among the vegetable oils to be used as immune adjuvant, since it stimulated a higher production of OVA-specific Ig and lower levels of anti-OVA IgE.

  1. Immune Mechanisms in Myelodysplastic Syndrome

    Directory of Open Access Journals (Sweden)

    Andreas Glenthøj

    2016-06-01

    Full Text Available Myelodysplastic syndrome (MDS is a spectrum of diseases, characterized by debilitating cytopenias and a propensity of developing acute myeloid leukemia. Comprehensive sequencing efforts have revealed a range of mutations characteristic, but not specific, of MDS. Epidemiologically, autoimmune diseases are common in patients with MDS, fueling hypotheses of common etiological mechanisms. Both innate and adaptive immune pathways are overly active in the hematopoietic niche of MDS. Although supportive care, growth factors, and hypomethylating agents are the mainstay of MDS treatment, some patients—especially younger low-risk patients with HLA-DR15 tissue type—demonstrate impressive response rates after immunosuppressive therapy. This is in contrast to higher-risk MDS patients, where several immune activating treatments, such as immune checkpoint inhibitors, are in the pipeline. Thus, the dual role of immune mechanisms in MDS is challenging, and rigorous translational studies are needed to establish the value of immune manipulation as a treatment of MDS.

  2. Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus

    Science.gov (United States)

    Behar, Samuel M.; Carpenter, Stephen M.; Booty, Matthew G.; Barber, Daniel L.; Jayaraman, Pushpa

    2014-01-01

    Despite the introduction almost a century ago of Mycobacterium bovis BCG (BCG), an attenuated form of M. bovis that is used as a vaccine against Mycobacterium tuberculosis, tuberculosis remains a global health threat and kills more than 1.5 million people each year. This is mostly because BCG fails to prevent pulmonary disease – the contagious form of tuberculosis. Although there have been significant advances in understanding how the immune system responds to infection, the qualities that define protective immunity against M. tuberculosis remain poorly characterized. The ability to predict who will maintain control over the infection and who will succumb to clinical disease would revolutionize our approach to surveillance, control, and treatment. Here we review the current understanding of pulmonary T cell responses following M. tuberculosis infection. While infection elicits a strong immune response that contains infection, M. tuberculosis evades eradication. Traditionally, its intracellular lifestyle and alteration of macrophage function are viewed as the dominant mechanisms of evasion. Now we appreciate that chronic inflammation leads to T cell dysfunction. While this may arise as the host balances the goals of bacterial sterilization and avoidance of tissue damage, it is becoming clear that T cell dysfunction impairs host resistance. Defining the mechanisms that lead to T cell dysfunction is crucial as memory T cell responses are likely to be subject to the same subject to the same pressures. Thus, success of T cell based vaccines is predicated on memory T cells avoiding exhaustion while at the same time not promoting overt tissue damage. PMID:25311810

  3. IMMUNE REGULATING ES-PRODUCTS IN PARASITIC NEMATODES

    DEFF Research Database (Denmark)

    Bahlool, Qusay Zuhair Mohammad; Buchmann, Kurt; Kania, Per Walter

    work elucidates the effect of ES substances on the fish immune system by measuring immune gene expression in spleen and liver of rainbow trout (Oncorhynchus mykiss) injected intraperitoneally with ES products isolated from A. simplex third stage larvae. The overall gene expression profile of exposed...... fish showed a generalized down-regulation of the immune genes tested, suggesting a role of ES proteins in minimizing the immune reaction of rainbow trout against invading nematodes. We also tested the enzymatic activity of the ES proteins and found that lipase, esterase lipase, valine and cysteine...... arylamidases, naphthol-AS-BI-phosphohydrolase and a-galactosidase activities were present in the ES solution. This type of hydrolytic enzyme activity may play a role in nematode penetration of host tissue. Based on the notion that A. simplex ES-proteins may have an immune-depressive effect, it could also...

  4. The Potato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein.

    Science.gov (United States)

    Fenyk, Stepan; Townsend, Philip D; Dixon, Christopher H; Spies, Gerhard B; de San Eustaquio Campillo, Alba; Slootweg, Erik J; Westerhof, Lotte B; Gawehns, Fleur K K; Knight, Marc R; Sharples, Gary J; Goverse, Aska; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2015-10-09

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Filoviral Immune Evasion Mechanisms

    Directory of Open Access Journals (Sweden)

    Christopher F. Basler

    2011-09-01

    Full Text Available The Filoviridae family of viruses, which includes the genera Ebolavirus (EBOV and Marburgvirus (MARV, causes severe and often times lethal hemorrhagic fever in humans. Filoviral infections are associated with ineffective innate antiviral responses as a result of virally encoded immune antagonists, which render the host incapable of mounting effective innate or adaptive immune responses. The Type I interferon (IFN response is critical for establishing an antiviral state in the host cell and subsequent activation of the adaptive immune responses. Several filoviral encoded components target Type I IFN responses, and this innate immune suppression is important for viral replication and pathogenesis. For example, EBOV VP35 inhibits the phosphorylation of IRF-3/7 by the TBK-1/IKKε kinases in addition to sequestering viral RNA from detection by RIG-I like receptors. MARV VP40 inhibits STAT1/2 phosphorylation by inhibiting the JAK family kinases. EBOV VP24 inhibits nuclear translocation of activated STAT1 by karyopherin-α. The examples also represent distinct mechanisms utilized by filoviral proteins in order to counter immune responses, which results in limited IFN-α/β production and downstream signaling.

  6. Agouron and immune response to commercialize remune immune-based treatment.

    Science.gov (United States)

    James, J S

    1998-06-19

    Agouron Pharmaceuticals agreed in June to collaborate with The Immune Response Corporation on the final development and marketing of an immune-based treatment for HIV. Remune, the vaccine developed by Dr. Jonas Salk, is currently in Phase III randomized trials with 2,500 patients, and the trials are expected to be completed in April 1999. Immune-based treatments have been difficult to test, as there is no surrogate marker, like viral load, to determine if the drug is working. Agouron agreed to participate in the joint venture after reviewing encouraging results from preliminary trials in which remune was taken in combination with highly active antiretroviral drugs.

  7. Identification of anti-CD98 antibody mimotopes for inducing antibodies with antitumor activity by mimotope immunization.

    Science.gov (United States)

    Saito, Misa; Kondo, Masahiro; Ohshima, Motohiro; Deguchi, Kazuki; Hayashi, Hideki; Inoue, Kazuyuki; Tsuji, Daiki; Masuko, Takashi; Itoh, Kunihiko

    2014-04-01

    A mimotope is an antibody-epitope-mimicking peptide retrieved from a phage display random peptide library. Immunization with antitumor antibody-derived mimotopes is promising for inducing antitumor immunity in hosts. In this study, we isolated linear and constrained mimotopes from HBJ127, a tumor-suppressing anti-CD98 heavy chain mAb, and determined their abilities for induction of antitumor activity equal to that of the parent antibody. We detected elevated levels of antipeptide responses, but failed to detect reactivity against native CD98-expressing HeLa cells in sera of immunized mice. Phage display panning and selection of mimotope-immunized mouse spleen-derived antibody Fab library showed that HeLa cell-reactive Fabs were successfully retrieved from the library. This finding indicates that native antigen-reactive Fab clones represented an undetectable minor population in mimotope-induced antibody repertoire. Functional and structural analysis of retrieved Fab clones revealed that they were almost identical to the parent antibody. From these results, we confirmed that mimotope immunization was promising for retrieving antitumor antibodies equivalent to the parent antibody, although the co-administration of adjuvant compounds such as T-cell epitope peptides and Toll-like receptor 4 agonist peptides is likely to be necessary for inducing stronger antitumor immunity than mimotope injection alone. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  8. Immunity booster

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Titescu, Gheorghe; Tamaian, Radu; Haulica, Ion; Bild, Walther

    2002-01-01

    The immunity booster is, according to its patent description, microbiologically pure water with an D/(D+H) isotopic concentration of 100 ppm, with physical-chemical characteristics similar to those of distilled water. It is obtained by sterilization of a mixture of deuterium depleted water, with a 25 ppm isotopic concentration, with distilled water in a volume ratio of 4:6. Unlike natural immunity boosters (bacterial agents as Bacillus Chalmette-Guerin, Corynebacterium parvum; lipopolysaccharides; human immunoglobulin) or synthetical products (levamysol; isoprinosyne with immunostimulating action), which cause hypersensitivity and shocks, thrill, fever, sickness and the immunity complex disease, the water of 100 ppm D/(D + H) isotopic concentration is a toxicity free product. The testing for immune reaction of the immunity booster led to the following results: - an increase of cell action capacity in the first immunity shielding stage (macrophages), as evidenced by stimulation of a number of essential characterizing parameters, as well as of the phagocytosis capacity, bactericide capacity, and opsonic capacity of serum; - an increase of the number of leucocyte particularly of the granulocyte in peripheral blood, produced especially when medullar toxic agents like caryolysine are used; - it hinders the effect of lowering the number of erythrocytes in peripheral blood produced by experimentally induced chronic inflammation; - an increase of nonspecific immunity defence capacity against specific bacterial aggression of both Gram-positive bacteria (Streptococcus pneumoniae 558 ) and of the Gram-negative ones (Klebsiella pneumoniae 507 ); - an increase of immunity - stimulating activity (proinflamatory), like that of levamisole as evidenced by the test of stimulation of experimentally induced inflammation by means of carrageenan. The following advantages of the immunity booster are stressed: - it is toxicity free and side effect free; - can be orally administrated as

  9. Persistent hepatitis virus infection and immune homeostasis

    OpenAIRE

    ZHOU Yun

    2014-01-01

    Homeostasis between the host and viruses is naturally maintained. On the one hand, the immune system activates the immune response to kill or eliminate viruses; on the other hand, the immune system controls the immune response to maintain immune homeostasis. The cause of persistent infections with hepatitis viruses such as HBV and HCV is that viral molecules damage the immune system of the host and their variants escape immune clearance. Long-term coexistence of the host and viruses is the pr...

  10. The adaptor molecule RIAM integrates signaling events critical for integrin-mediated control of immune function and cancer progression.

    Science.gov (United States)

    Patsoukis, Nikolaos; Bardhan, Kankana; Weaver, Jessica D; Sari, Duygu; Torres-Gomez, Alvaro; Li, Lequn; Strauss, Laura; Lafuente, Esther M; Boussiotis, Vassiliki A

    2017-08-22

    Lymphocyte activation requires adhesion to antigen-presenting cells. This is a critical event linking innate and adaptive immunity. Lymphocyte adhesion is accomplished through LFA-1, which must be activated by a process referred to as inside-out integrin signaling. Among the few signaling molecules that have been implicated in inside-out integrin activation in hematopoietic cells are the small guanosine triphosphatase (GTPase) Rap1 and its downstream effector Rap1-interacting molecule (RIAM), a multidomain protein that defined the Mig10-RIAM-lamellipodin (MRL) class of adaptor molecules. Through its various domains, RIAM is a critical node of signal integration for activation of T cells, recruits monomeric and polymerized actin to drive actin remodeling and cytoskeletal reorganization, and promotes inside-out integrin signaling in T cells. As a regulator of inside-out integrin activation, RIAM affects multiple functions of innate and adaptive immunity. The effects of RIAM on cytoskeletal reorganization and integrin activation have implications in cell migration and trafficking of cancer cells. We provide an overview of the structure and interactions of RIAM, and we discuss the implications of RIAM functions in innate and adaptive immunity and cancer. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Histological chorioamnionitis shapes the neonatal transcriptomic immune response.

    Science.gov (United States)

    Weitkamp, Jörn-Hendrik; Guthrie, Scott O; Wong, Hector R; Moldawer, Lyle L; Baker, Henry V; Wynn, James L

    2016-07-01

    Histologic chorioamnionitis (HCA) is commonly associated with preterm birth and deleterious post-natal outcomes including sepsis and necrotizing enterocolitis. Transcriptomic analysis has been used to uncover gene signatures that permit diagnosis and prognostication, show new therapeutic targets, and reveal mechanisms that underlie differential outcomes with other complex disease states in neonates such as sepsis. To define the transcriptomic and inflammatory protein response in peripheral blood among infants with exposure to histologic chorioamnionitis. Prospective, observational study. Uninfected preterm neonates retrospectively categorized based on placental pathology with no HCA exposure (n=18) or HCA exposure (n=15). We measured the transcriptomic and inflammatory mediator response in prospectively collected whole blood. We found 488 significant (p<0.001), differentially expressed genes in whole blood samples among uninfected neonates with HCA exposure that collectively represented activated innate and adaptive immune cellular pathways and revealed a potential regulatory role for the pleotropic microRNA molecule miR-155. Differentially secreted plasma cytokines in patients with HCA exposure compared to patients without HCA included MCP-1, MPO, and MMP-9 (p<0.05). Exposure to HCA distinctively activates the neonatal immune system in utero with potentially long-term health consequences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Immune activity, body condition and human-associated environmental impacts in a wild marine mammal.

    Directory of Open Access Journals (Sweden)

    Patrick M Brock

    Full Text Available Within individuals, immunity may compete with other life history traits for resources, such as energy and protein, and the damage caused by immunopathology can sometimes outweigh the protective benefits that immune responses confer. However, our understanding of the costs of immunity in the wild and how they relate to the myriad energetic demands on free-ranging organisms is limited. The endangered Galapagos sea lion (Zalophus wollebaeki is threatened simultaneously by disease from domestic animals and rapid changes in food availability driven by unpredictable environmental variation. We made use of this unique ecology to investigate the relationship between changes in immune activity and changes in body condition. We found that during the first three months of life, changes in antibody concentration were negatively correlated with changes in mass per unit length, skinfold thickness and serum albumin concentration, but only in a sea lion colony exposed to anthropogenic environmental impacts. It has previously been shown that changes in antibody concentration during early Galapagos sea lion development were higher in a colony exposed to anthropogenic environmental impacts than in a control colony. This study allows for the possibility that these relatively large changes in antibody concentration are associated with negative impacts on fitness through an effect on body condition. Our findings suggest that energy availability and the degree of plasticity in immune investment may influence disease risk in natural populations synergistically, through a trade-off between investment in immunity and resistance to starvation. The relative benefits of such investments may change quickly and unpredictably, which allows for the possibility that individuals fine-tune their investment strategies in response to changes in environmental conditions. In addition, our results suggest that anthropogenic environmental impacts may impose subtle energetic costs on

  13. Immune-Neuroendocrine Interactions and Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Luis J. Jara

    2006-01-01

    Full Text Available The relationship between immune-neuroendocrine system is firmly established. The messengers of this connection are hormones, neuropeptides, neurotransmitters and cytokines. The immune-neuroendocrine system have the capacity to synthesize and release these molecules, which, in turn, can stimulate or suppress the activity of immune or neuroendocrine cells by binding to receptors. In fact, hormones, neuropeptides and neurotransmitters participate in innate and adaptive immune response.

  14. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    International Nuclear Information System (INIS)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas

    2011-01-01

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses

  15. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Energy Technology Data Exchange (ETDEWEB)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas, E-mail: tke@uams.edu [Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2011-11-11

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  16. A viral vectored prime-boost immunization regime targeting the malaria Pfs25 antigen induces transmission-blocking activity.

    Directory of Open Access Journals (Sweden)

    Anna L Goodman

    Full Text Available The ookinete surface protein Pfs25 is a macrogamete-to-ookinete/ookinete stage antigen of Plasmodium falciparum, capable of exerting high-level anti-malarial transmission-blocking activity following immunization with recombinant protein-in-adjuvant formulations. Here, this antigen was expressed in recombinant chimpanzee adenovirus 63 (ChAd63, human adenovirus serotype 5 (AdHu5 and modified vaccinia virus Ankara (MVA viral vectored vaccines. Two immunizations were administered to mice in a heterologous prime-boost regime. Immunization of mice with AdHu5 Pfs25 at week 0 and MVA Pfs25 at week 10 (Ad-MVA Pfs25 resulted in high anti-Pfs25 IgG titers, consisting of predominantly isotypes IgG1 and IgG2a. A single priming immunization with ChAd63 Pfs25 was as effective as AdHu5 Pfs25 with respect to ELISA titers at 8 weeks post-immunization. Sera from Ad-MVA Pfs25 immunized mice inhibited the transmission of P. falciparum to the mosquito both ex vivo and in vivo. In a standard membrane-feeding assay using NF54 strain P. falciparum, oocyst intensity in Anopheles stephensi mosquitoes was significantly reduced in an IgG concentration-dependent manner when compared to control feeds (96% reduction of intensity, 78% reduction in prevalence at a 1 in 5 dilution of sera. In addition, an in vivo transmission-blocking effect was also demonstrated by direct feeding of immunized mice infected with Pfs25DR3, a chimeric P. berghei line expressing Pfs25 in place of endogenous Pbs25. In this assay the density of Pfs25DR3 oocysts was significantly reduced when mosquitoes were fed on vaccinated as compared to control mice (67% reduction of intensity, 28% reduction in prevalence and specific IgG titer correlated with efficacy. These data confirm the utility of the adenovirus-MVA vaccine platform for the induction of antibodies with transmission-blocking activity, and support the continued development of this alternative approach to transmission-blocking malaria subunit

  17. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge.

    Science.gov (United States)

    Norden, Diana M; Trojanowski, Paige J; Villanueva, Emmanuel; Navarro, Elisa; Godbout, Jonathan P

    2016-02-01

    Activation of the peripheral immune system elicits a coordinated response from the central nervous system. Key to this immune to brain communication is that glia, microglia, and astrocytes, interpret and propagate inflammatory signals in the brain that influence physiological and behavioral responses. One issue in glial biology is that morphological analysis alone is used to report on glial activation state. Therefore, our objective was to compare behavioral responses after in vivo immune (lipopolysaccharide, LPS) challenge to glial specific mRNA and morphological profiles. Here, LPS challenge induced an immediate but transient sickness response with decreased locomotion and social interaction. Corresponding with active sickness behavior (2-12 h), inflammatory cytokine mRNA expression was elevated in enriched microglia and astrocytes. Although proinflammatory cytokine expression in microglia peaked 2-4 h after LPS, astrocyte cytokine, and chemokine induction was delayed and peaked at 12 h. Morphological alterations in microglia (Iba-1(+)) and astrocytes (GFAP(+)), however, were undetected during this 2-12 h timeframe. Increased Iba-1 immunoreactivity and de-ramified microglia were evident 24 and 48 h after LPS but corresponded to the resolution phase of activation. Morphological alterations in astrocytes were undetected after LPS. Additionally, glial cytokine expression did not correlate with morphology after four repeated LPS injections. In fact, repeated LPS challenge was associated with immune and behavioral tolerance and a less inflammatory microglial profile compared with acute LPS challenge. Overall, induction of glial cytokine expression was sequential, aligned with active sickness behavior, and preceded increased Iba-1 or GFAP immunoreactivity after LPS challenge. © 2015 Wiley Periodicals, Inc.

  18. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    Science.gov (United States)

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The mitogen-activated protein kinase (MAPK pathway: role in immune evasion by trypanosomatids

    Directory of Open Access Journals (Sweden)

    Mercedes Carolina Soares-Silva

    2016-02-01

    Full Text Available Leishmania spp and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas' disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae and are both obligate intracellular parasites that manipulate host signaling pathways to establish the infection, and also subvert the host innate immune system. Mitogen-activated protein kinases (MAPKs are serine and threonine protein kinases, highly conserved in eukaryotes, and are involved in signal transduction pathways that are related to modulation of physiological and pathophysiological cell responses. This mini-review highlights the current knowledge about the mechanisms that Leishmania spp and T. cruzi have evolved to target host MAPK signaling pathway, highjack immune response, and in this manner, promote parasite maintenance in the host.

  20. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature

    Science.gov (United States)

    Naik, Shruti; Bouladoux, Nicolas; Linehan, Jonathan L.; Han, Seong-Ji; Harrison, Oliver J.; Wilhelm, Christoph; Conlan, Sean; Himmelfarb, Sarah; Byrd, Allyson L.; Deming, Clayton; Quinones, Mariam; Brenchley, Jason M.; Kong, Heidi H.; Tussiwand, Roxanne; Murphy, Kenneth M.; Merad, Miriam; Segre, Julia A; Belkaid, Yasmine

    2015-01-01

    The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity1–4. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges5–7. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A+ CD8+ T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies. PMID:25539086

  1. Influence of immune activation and inflammatory response on cardiovascular risk associated with the human immunodeficiency virus

    Directory of Open Access Journals (Sweden)

    Beltrán LM

    2015-01-01

    Full Text Available Luis M Beltrán,1 Alfonso Rubio-Navarro,2 Juan Manuel Amaro-Villalobos,2 Jesús Egido,2–4 Juan García-Puig,1 Juan Antonio Moreno21Metabolic-Vascular Unit, Fundación IdiPAZ-Hospital Universitario La Paz, Madrid, Spain; 2Vascular, Renal, and Diabetes Research Lab, IIS-Fundación Jiménez Díaz, Madrid, Spain; 3Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM, Madrid, Spain; 4Fundación Renal Iñigo Alvarez de Toledo-Instituto Reina Sofía de Investigaciones Nefrológicas (FRIAT-IRSIN, Madrid, SpainAbstract: Patients infected with the human immunodeficiency virus (HIV have an increased cardiovascular risk. Although initially this increased risk was attributed to metabolic alterations associated with antiretroviral treatment, in recent years, the attention has been focused on the HIV disease itself. Inflammation, immune system activation, and endothelial dysfunction facilitated by HIV infection have been identified as key factors in the development and progression of atherosclerosis. In this review, we describe the epidemiology and pathogenesis of cardiovascular disease in patients with HIV infection and summarize the latest knowledge on the relationship between traditional and novel inflammatory, immune activation, and endothelial dysfunction biomarkers on the cardiovascular risk associated with HIV infection.Keywords: HIV, cardiovascular disease, immune activation, inflammation, antiretroviral therapy

  2. Central Nervous System and Innate Immune Mechanisms for Inflammation- and Cancer-induced Anorexia

    OpenAIRE

    Ruud, Johan

    2012-01-01

    Anyone who has experienced influenza or a bacterial infection knows what it means to be ill. Apart from feeling feverish, experiencing aching joints and muscles, you lose the desire to eat. Anorexia, defined as loss of appetite or persistent satiety leading to reduced energy intake, is a hallmark of acute inflammatory disease. The anorexia is part of the acute phase response, triggered as the result of activation of the innate immune system with concomitant release of inflammatory mediators, ...

  3. Hazard identification and risk assessment for biologics targeting the immune system.

    Science.gov (United States)

    Weir, Andrea B

    2008-01-01

    Biologic pharmaceuticals include a variety of products, such as monoclonal antibodies, fusion proteins and cytokines. Products in those classes include immunomodulatory biologics, which are intended to enhance or diminish the activity of the immune system. Immunomodulatory biologics have been approved by the U.S. FDA for a variety of indications, including cancer and inflammatory conditions. Prior to gaining approval for marketing, sponsoring companies for all types of products must demonstrate a product's safety in toxicology studies conducted in animals and show safety and efficacy in clinical trials conducted in patients. The overall goal of toxicology studies, which applies to immunomodulatory and other product types, is to identify the hazards that products pose to humans. Because biologics are generally highly selective for specific targets (receptors/epitopes), conducting toxicology studies in animal models with the target is essential. Such animals are referred to as pharmacologically relevant. Endpoints routinely included in toxicology studies, such as hematology, organ weight and histopathology, can be used to assess the effect of a product on the structure of the immune system. Additionally, specialized endpoints, such as immunophenotyping and immune function tests, can be used to define effects of immunomodulatory products on the immune system. Following hazard identification, risks posed to patients are assessed and managed. Risks can be managed through clinical trial design and risk communication, a practice that applies to immunomodulatory and other product types. Examples of risk management in clinical trial design include establishing a safe starting dose, defining the appropriate patient population and establishing appropriate patient monitoring. Risk communication starts during clinical trials and continues after product approval. A combination of hazard identification, risk assessment and risk management allows for drug development to proceed

  4. Rationale for combination of therapeutic antibodies targeting tumor cells and immune checkpoint receptors: Harnessing innate and adaptive immunity through IgG1 isotype immune effector stimulation.

    Science.gov (United States)

    Ferris, Robert L; Lenz, Heinz-Josef; Trotta, Anna Maria; García-Foncillas, Jesús; Schulten, Jeltje; Audhuy, François; Merlano, Marco; Milano, Gerard

    2018-02-01

    Immunoglobulin (Ig) G1 antibodies stimulate antibody-dependent cell-mediated cytotoxicity (ADCC). Cetuximab, an IgG1 isotype monoclonal antibody, is a standard-of-care treatment for locally advanced and recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN) and metastatic colorectal cancer (CRC). Here we review evidence regarding the clinical relevance of cetuximab-mediated ADCC and other immune functions and provide a biological rationale concerning why this property positions cetuximab as an ideal partner for immune checkpoint inhibitors (ICIs) and other emerging immunotherapies. We performed a nonsystematic review of available preclinical and clinical data involving cetuximab-mediated immune activity and combination approaches of cetuximab with other immunotherapies, including ICIs, in SCCHN and CRC. Indeed, cetuximab mediates ADCC activity in the intratumoral space and primes adaptive and innate cellular immunity. However, counterregulatory mechanisms may lead to immunosuppressive feedback loops. Accordingly, there is a strong rationale for combining ICIs with cetuximab for the treatment of advanced tumors, as targeting CTLA-4, PD-1, and PD-L1 can ostensibly overcome these immunosuppressive counter-mechanisms in the tumor microenvironment. Moreover, combining ICIs (or other immunotherapies) with cetuximab is a promising strategy for boosting immune response and enhancing response rates and durability of response. Cetuximab immune activity-including, but not limited to, ADCC-provides a strong rationale for its combination with ICIs or other immunotherapies to synergistically and fully mobilize the adaptive and innate immunity against tumor cells. Ongoing prospective studies will evaluate the clinical effect of these combination regimens and their immune effect in CRC and SCCHN and in other indications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Libregts, Sten F.W.M.; Nolte, Martijn A., E-mail: m.nolte@sanquin.nl

    2014-12-10

    Quiescence, self-renewal, lineage commitment and differentiation of hematopoietic stem cells (HSCs) towards fully mature blood cells are a complex process that involves both intrinsic and extrinsic signals. During steady-state conditions, most hematopoietic signals are provided by various resident cells inside the bone marrow (BM), which establish the HSC micro-environment. However, upon infection, the hematopoietic process is also affected by pathogens and activated immune cells, which illustrates an effective feedback mechanism to hematopoietic stem and progenitor cells (HSPCs) via immune-mediated signals. Here, we review the impact of pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), costimulatory molecules and pro-inflammatory cytokines on the quiescence, proliferation and differentiation of HSCs and more committed progenitors. As modulation of HSPC function via these immune-mediated signals holds an interesting parallel with the “three-signal-model” described for the activation and differentiation of naïve T-cells, we propose a novel “three-signal” concept for immune-driven hematopoiesis. In this model, the recognition of PAMPs and DAMPs will activate HSCs and induce proliferation, while costimulatory molecules and pro-inflammatory cytokines confer a second and third signal, respectively, which further regulate expansion, lineage commitment and differentiation of HSPCs. We review the impact of inflammatory stress on hematopoiesis along these three signals and we discuss whether they act independently from each other or that concurrence of these signals is important for an adequate response of HSPCs upon infection. - Highlights: • Inflammation and infection have a direct impact on hematopoiesis in the bone marrow. • We draw a striking parallel between immune-driven hematopoiesis and T cell activation. • We review how PAMPs and DAMPs, costimulation and cytokines influence HSPC function.

  6. Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow

    International Nuclear Information System (INIS)

    Libregts, Sten F.W.M.; Nolte, Martijn A.

    2014-01-01

    Quiescence, self-renewal, lineage commitment and differentiation of hematopoietic stem cells (HSCs) towards fully mature blood cells are a complex process that involves both intrinsic and extrinsic signals. During steady-state conditions, most hematopoietic signals are provided by various resident cells inside the bone marrow (BM), which establish the HSC micro-environment. However, upon infection, the hematopoietic process is also affected by pathogens and activated immune cells, which illustrates an effective feedback mechanism to hematopoietic stem and progenitor cells (HSPCs) via immune-mediated signals. Here, we review the impact of pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), costimulatory molecules and pro-inflammatory cytokines on the quiescence, proliferation and differentiation of HSCs and more committed progenitors. As modulation of HSPC function via these immune-mediated signals holds an interesting parallel with the “three-signal-model” described for the activation and differentiation of naïve T-cells, we propose a novel “three-signal” concept for immune-driven hematopoiesis. In this model, the recognition of PAMPs and DAMPs will activate HSCs and induce proliferation, while costimulatory molecules and pro-inflammatory cytokines confer a second and third signal, respectively, which further regulate expansion, lineage commitment and differentiation of HSPCs. We review the impact of inflammatory stress on hematopoiesis along these three signals and we discuss whether they act independently from each other or that concurrence of these signals is important for an adequate response of HSPCs upon infection. - Highlights: • Inflammation and infection have a direct impact on hematopoiesis in the bone marrow. • We draw a striking parallel between immune-driven hematopoiesis and T cell activation. • We review how PAMPs and DAMPs, costimulation and cytokines influence HSPC function

  7. Pharmacological evaluation for anticancer and immune activities of a novel polysaccharide isolated from Boletus speciosus Frost.

    Science.gov (United States)

    Hou, Yiling; Ding, Xiang; Hou, Wanru; Song, Bo; Wang, Ting; Wang, Fang; Li, Jian; Zeng, Yichun; Zhong, Jie; Xu, Ting; Zhu, Hongqing

    2014-04-01

    The fungal polysaccharides have been revealed to exhibit a variety of biological activities, including antitumor, immune-stimulation and antioxidation activities. In the present study, the immune and anticancer activities of a novel polysaccharide, BSF-A, isolated from Boletus speciosus Frost was investigated. The inhibitory rate of S180 tumors in mice treated with 40 mg/kg BSF-A reached 62.449%, which was the highest rate from the three doses administered; this may be comparable to mannatide. The antitumor activity of BSF-A is commonly considered to be a consequence of the stimulation of the cell-mediated immune response, as it may significantly promote the macrophage cells in the dose range of 100-400 µg/ml in vitro. The levels of the cytokines, IL-6, IL-1β and TNF-α, and nitric oxide, induced by BSF-A treatment at varying concentrations in the macrophage cells were similar to the levels in the cells treated with lipopolysaccharide. There was weak expression of the TNF-α, IL-6, IL-1β and inducible nitric oxide synthase mRNA in the untreated macrophages, but this increased significantly in a dose-dependent manner in the BSF-A-treated cells. BSF-A also had a time- and dose-dependent effect on the growth inhibition of the Hep-2 cells, with the concentration of 400 µg/ml having the highest inhibitory rate. A quantitative PCR array analysis of the gene expression profiles indicated that BSF-A had anticancer activities that affected cell apoptosis in the Hep-2 cells. The results obtained in the present study indicated that the purified polysaccharide of Boletus speciosus Frost is a potential source of natural anticancer substances.

  8. Blood-informative transcripts define nine common axes of peripheral blood gene expression.

    Directory of Open Access Journals (Sweden)

    Marcela Preininger

    Full Text Available We describe a novel approach to capturing the covariance structure of peripheral blood gene expression that relies on the identification of highly conserved Axes of variation. Starting with a comparison of microarray transcriptome profiles for a new dataset of 189 healthy adult participants in the Emory-Georgia Tech Center for Health Discovery and Well-Being (CHDWB cohort, with a previously published study of 208 adult Moroccans, we identify nine Axes each with between 99 and 1,028 strongly co-regulated transcripts in common. Each axis is enriched for gene ontology categories related to sub-classes of blood and immune function, including T-cell and B-cell physiology and innate, adaptive, and anti-viral responses. Conservation of the Axes is demonstrated in each of five additional population-based gene expression profiling studies, one of which is robustly associated with Body Mass Index in the CHDWB as well as Finnish and Australian cohorts. Furthermore, ten tightly co-regulated genes can be used to define each Axis as "Blood Informative Transcripts" (BITs, generating scores that define an individual with respect to the represented immune activity and blood physiology. We show that environmental factors, including lifestyle differences in Morocco and infection leading to active or latent tuberculosis, significantly impact specific axes, but that there is also significant heritability for the Axis scores. In the context of personalized medicine, reanalysis of the longitudinal profile of one individual during and after infection with two respiratory viruses demonstrates that specific axes also characterize clinical incidents. This mode of analysis suggests the view that, rather than unique subsets of genes marking each class of disease, differential expression reflects movement along the major normal Axes in response to environmental and genetic stimuli.

  9. Blood-informative transcripts define nine common axes of peripheral blood gene expression.

    Science.gov (United States)

    Preininger, Marcela; Arafat, Dalia; Kim, Jinhee; Nath, Artika P; Idaghdour, Youssef; Brigham, Kenneth L; Gibson, Greg

    2013-01-01

    We describe a novel approach to capturing the covariance structure of peripheral blood gene expression that relies on the identification of highly conserved Axes of variation. Starting with a comparison of microarray transcriptome profiles for a new dataset of 189 healthy adult participants in the Emory-Georgia Tech Center for Health Discovery and Well-Being (CHDWB) cohort, with a previously published study of 208 adult Moroccans, we identify nine Axes each with between 99 and 1,028 strongly co-regulated transcripts in common. Each axis is enriched for gene ontology categories related to sub-classes of blood and immune function, including T-cell and B-cell physiology and innate, adaptive, and anti-viral responses. Conservation of the Axes is demonstrated in each of five additional population-based gene expression profiling studies, one of which is robustly associated with Body Mass Index in the CHDWB as well as Finnish and Australian cohorts. Furthermore, ten tightly co-regulated genes can be used to define each Axis as "Blood Informative Transcripts" (BITs), generating scores that define an individual with respect to the represented immune activity and blood physiology. We show that environmental factors, including lifestyle differences in Morocco and infection leading to active or latent tuberculosis, significantly impact specific axes, but that there is also significant heritability for the Axis scores. In the context of personalized medicine, reanalysis of the longitudinal profile of one individual during and after infection with two respiratory viruses demonstrates that specific axes also characterize clinical incidents. This mode of analysis suggests the view that, rather than unique subsets of genes marking each class of disease, differential expression reflects movement along the major normal Axes in response to environmental and genetic stimuli.

  10. Leukocytes respiratory burst activity as indicator of innate immunity of pacu Piaractus mesopotamicus

    Directory of Open Access Journals (Sweden)

    JD Biller-Takahashi

    Full Text Available The present study evaluated the assay to quantify the respiratory burst activity of blood leukocytes of pacu as an indicator of the innate immune system, using the reduction of nitroblue tetrazolium (NBT to formazan as a measure of the production of reactive oxygen species (ROS. In order to assess the accuracy of the assay, fish were challenged by Aeromonas hydrophila and sampled one week after challenge. The A. hydrophila infection increased the leukocyte respiratory burst activity. The protocol showed a reliable and easy assay, appropriate to determine the respiratory burst activity of blood leukocytes of pacu, a neotropical fish, in the present experimental conditions.

  11. Mechanisms of virus immune evasion lead to development from chronic inflammation to cancer formation associated with human papillomavirus infection.

    Science.gov (United States)

    Senba, Masachika; Mori, Naoki

    2012-10-02

    Human papillomavirus (HPV) has developed strategies to escape eradication by innate and adaptive immunity. Immune response evasion has been considered an important aspect of HPV persistence, which is the main contributing factor leading to HPV-related cancers. HPV-induced cancers expressing viral oncogenes E6 and E7 are potentially recognized by the immune system. The major histocompatibility complex (MHC) class I molecules are patrolled by natural killer cells and CD8+ cytotoxic T lymphocytes, respectively. This system of recognition is a main target for the strategies of immune evasion deployed by viruses. The viral immune evasion proteins constitute useful tools to block defined stages of the MHC class I presentation pathway, and in this way HPV avoids the host immune response. The long latency period from initial infection to persistence signifies that HPV evolves mechanisms to escape the immune response. It has now been established that there are oncogenic mechanisms by which E7 binds to and degrades tumor suppressor Rb, while E6 binds to and inactivates tumor suppressor p53. Therefore, interaction of p53 and pRb proteins can give rise to an increased immortalization and genomic instability. Overexpression of NF-κB in cervical and penile cancers suggests that NF-κB activation is a key modulator in driving chronic inflammation to cancer. HPV oncogene-mediated suppression of NF-κB activity contributes to HPV escape from the immune system. This review focuses on the diverse mechanisms of the virus immune evasion with HPV that leads to chronic inflammation and cancer.

  12. Immune function in arctic mammals

    DEFF Research Database (Denmark)

    Desforges, Jean-Pierre; Jasperse, Lindsay; Jensen, Trine Hammer

    2018-01-01

    Natural killer (NK) cells are a vital part of the rapid and non-specific immune defense against invading pathogens and tumor cells. This study evaluated NK cell-like activity by flow cytometry for the first time in three ecologically and culturally important Arctic mammal species: polar bear (Ursus...... the effector:target cell ratio increased. Comparing NK activity between fresh and cryopreserved mouse lymphocytes revealed little to no difference in function, highlighting the applicability of cryopreserving cells in field studies. The evaluation of this important innate immune function in Arctic mammals can...... contribute to future population health assessments, especially as pollution-induced suppression of immune function may increase infectious disease susceptibility....

  13. Prevalence and risk factors of poor immune recovery among adult HIV patients attending care and treatment centre in northwestern Tanzania following the use of highly active antiretroviral therapy: a retrospective study.

    Science.gov (United States)

    Gunda, Daniel W; Kilonzo, Semvua B; Kamugisha, Erasmus; Rauya, Engelbert Z; Mpondo, Bonaventura C

    2017-06-08

    Highly Active Antiretroviral therapy (HAART) reverses the effect of Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome (HIV/AIDS) by durably suppressing viral replication. This allows CD4 gain to levels that are adequate enough to restore the body's capability to fight against opportunistic infections (OIs). Patients with poor immune recovery have been shown to have higher risk of developing both AIDS and non AIDS related clinical events. This study aimed at assessing the proportions and risk factors of poor immune recovery in adult HIV-infected patients on 48 months of HAART attending care and treatment center (CTC) in northwestern Tanzania. A retrospective analysis of adult HIV patients' data attending CTC at Sekou Toure hospital and who initiated HAART between February 2004 and January 2008 was done. Poor immune recovery was defined as a CD4 count less than 350 cells/µl on follow up as used in other studies. A total of 734 patients were included in the study. In this study 50.25% of patients attending CTC at Sekou Toure hospital were found to have poor immune recovery. The risk of developing inadequate immune recovery was independently associated with male gender, age older than 50 years, low baseline CD4 counts, and advanced World Health Organization (WHO) clinical stage. Poor immune recovery is prevalent among adult HIV patients attending CTC at Sekou Toure hospital in Northwestern part of Tanzania and opportunistic infections are common in this sub group of patients. Clinicians in resource limited countries need to identify these patients timely and plan them for targeted viral assessment and close clinical follow up to improve their long term clinical outcome.

  14. Innate immunity

    African Journals Online (AJOL)

    Ronnie Anderson is Director of the Medical Research Council Unit for Inflammation and Immunity. ... field have included macrophage, T cell, cytokine and cytokine activated killer cell interactions .... monocytes, mast cells, lymphocytes, eccrine.

  15. Study of the effects of breed on some innate immunity parameters in rams

    Directory of Open Access Journals (Sweden)

    Genova Krasimira

    2013-09-01

    Full Text Available Investigations were carried out on 26 rams from the breeds Karakachan and Copper-Red Shoumen. The non-specific immune parameters, phagocytic activity of leukocytes, bactericidal activity of phagocytes systems (oxygen-dependent and oxygen independent and total plasma protein level were evaluated. Phagocytic response was evaluated against S. aureus 209-P with a certain percentage of active phagocytes (phagocytic index and the number of absorbed particles per one phagocytic cells (phagocyte number. Phagocytosis completion index was defined as the percentage of the microbial cells that have been destroyed by phagocytes after incubation. State of the oxygen-dependent bactericidal systems of phagocytes was assessed in vitro using the NBT test, which reflects the ability of superoxide restore NBT in diphormazane. NBT test was evaluated by the degree of reduction in spontaneous and stimulated reactions, taking into account the intracellular deposits diphormazane. Our studies and results shows that the rams from the two local Bulgarian breeds have a high activity of innate immune parameters and that’s may be useful and important in the breeding programs as an indicator of resistance and highly tolerance to oxidative stress.

  16. High throughput protease profiling comprehensively defines active site specificity for thrombin and ADAMTS13.

    Science.gov (United States)

    Kretz, Colin A; Tomberg, Kärt; Van Esbroeck, Alexander; Yee, Andrew; Ginsburg, David

    2018-02-12

    We have combined random 6 amino acid substrate phage display with high throughput sequencing to comprehensively define the active site specificity of the serine protease thrombin and the metalloprotease ADAMTS13. The substrate motif for thrombin was determined by >6,700 cleaved peptides, and was highly concordant with previous studies. In contrast, ADAMTS13 cleaved only 96 peptides (out of >10 7 sequences), with no apparent consensus motif. However, when the hexapeptide library was substituted into the P3-P3' interval of VWF73, an exosite-engaging substrate of ADAMTS13, 1670 unique peptides were cleaved. ADAMTS13 exhibited a general preference for aliphatic amino acids throughout the P3-P3' interval, except at P2 where Arg was tolerated. The cleaved peptides assembled into a motif dominated by P3 Leu, and bulky aliphatic residues at P1 and P1'. Overall, the P3-P2' amino acid sequence of von Willebrand Factor appears optimally evolved for ADAMTS13 recognition. These data confirm the critical role of exosite engagement for substrates to gain access to the active site of ADAMTS13, and define the substrate recognition motif for ADAMTS13. Combining substrate phage display with high throughput sequencing is a powerful approach for comprehensively defining the active site specificity of proteases.

  17. Basic study on low dose radiation effect: SOD activity of immune organs and hemogram in rats

    International Nuclear Information System (INIS)

    Yamaoka, Kiyonori; Kaneko, Ichiro; Mizutani, Takeo; Nakano, Kazushiro; Edamatsu, Rei; Mori, Akitane.

    1989-01-01

    We examined the effect of low dose radiation on SOD activities of immune organs such as thymus, spleen, bone marrow in rats and hematological findings changes. Animals were exposed to radiation in a wholebody fashion, 4 hours before sacrifice. SOD activities in thymus and bone marrow cells from the rats X-ray irradiated at doses of 0.25∼0.50 Gy/10 min were enhanced in comparison with those of non-irradiated rats. The enhancement was also observed in spleen cells obtained from group of rats irradiated at 0.05 Gy/10 min. Radiation exposure with over 0.50 Gy/10 min gave rats inhibitory responses in those immune organs. The changes in homogram were not observed with γ-ray exposure of less than 0.10 Gy/10 min. (author)

  18. EFFECT OF POLYPHENOLIC COMPOUNDS ISOLATED FROM CARTHAMUS TINCTORIUS AND CALENDULA OFFICINALIS L., ON FUNCTIONAL ACTIVITY OF IMMUNE CELLS UNDER CONDITIONS OF CYTOSTATIC IMMUNOSUPPRESSION

    Directory of Open Access Journals (Sweden)

    N. V. Masnaya

    2013-01-01

    Full Text Available The purpose of the study – to study the effect of polyphenolic compounds extracted from the flowers of safflower oil and calendula, the functional activity of immune cells in cytotoxic immune suppression.Conventional methods determined the total number of splenocytes, relative (% and absolute (106, the number of antibody-forming cells (AFC in the spleen of mice by local hemolysis by Cunningham.Evaluated the effect of compounds of natural origin on the cellular immune response in the delayed-type hypersensitivity (DTH. Phagocytic activity of peritoneal macrophages was determined by the method based on the intensity of their capture ink particles. We studied the functional activity of peritoneal macrophages by NBT test (spontaneous and stimulated. Studies were conducted on male mice Category 1 (conventional linear mouse line CBA/CaLac aged 2–2.5 months, weighing 20–22 g. After the introduction mice line CBA/CaLac of polyphenolic compounds derived from flowers of Carthamus tinctorius and flowers of Calendula officinalis L. during the 5-day course in dose 50 mg/kg was observed stimulation of the humoral immune response (total number of splenocytes, the number of antibodies in the spleen cells and the functional activity of macrophages and Immunomodulating effect on the humoral immunity and the functional activity of macrophages after a single injection of cyclophosphamide in dose 250 mg/kg. Immunotropic activity of polyphenolic compounds is higher than that those of the reference product of tincture of Echinacea purpurea.

  19. Life-history dependent relationships between body condition and immunity, between immunity indices in male Eurasian tree sparrows.

    Science.gov (United States)

    Zhao, Yuliang; Li, Mo; Sun, Yanfeng; Wu, Wei; Kou, Guanqun; Guo, Lingling; Xing, Danning; Wu, Yuefeng; Li, Dongming; Zhao, Baohua

    2017-08-01

    In free-living animals, recent evidence indicates that innate, and acquired, immunity varies with annual variation in the demand for, and availability of, food resources. However, little is known about how animals adjust the relationships between immunity and body condition, and between innate and acquired immunity to optimize survival over winter and reproductive success during the breeding stage. Here, we measured indices of body condition (size-corrected mass [SCM], and hematocrit [Hct]), constitutive innate immunity (plasma total complement hemolysis activity [CH 50 ]) and acquired immunity (plasma immunoglobulin A [IgA]), plus heterophil/lymphocyte (H/L) ratios, in male Eurasian tree sparrows (Passer montanus) during the wintering and the breeding stages. We found that birds during the wintering stage had higher IgA levels than those from the breeding stage. Two indices of body condition were both negatively correlated with plasma CH 50 activities, and positively with IgA levels in wintering birds, but this was not the case in the breeding birds. However, there was no correlation between CH 50 activities and IgA levels in both stages. These results suggest that the relationships between body condition and immunity can vary across life-history stage, and there are no correlations between innate and acquired immunity independent of life-history stage, in male Eurasian tree sparrows. Therefore, body condition indices predict immunological state, especially during the non-breeding stage, which can be useful indicators of individual immunocompetences for understanding the variations in innate and acquired immunity in free-living animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Activation of immune functions via induction of glutathione of lymphocytes by low-dose, whole-body irradiation with gamma-rays

    International Nuclear Information System (INIS)

    Shuji Kojima; Hisatake Hayase; Mareyuki Takahashi

    2007-01-01

    Complete text of publication follows. We have recently found that low doses of radiation, unlike higher doses, do not always cause a decrease of cellular glutathione, but they can increase it, leading to an elevation of Con A-induced proliferation of splenocytes. In this study, we first examined whether the increase of glutathione level induced by low-dose gamma-ray irradiation is involved in the appearance of enhanced natural killer (NK) activity and antibody-dependent cellular cytotoxicity (ADCC), leading to delayed tumor growth in Ehrlich solid tumor (EST)-bearing mice. NK activity in ICR mouse splenocytes was significantly increased from 4 h to 6 h after a single whole-body gamma-ray irradiation at 0.5 Gy, and thereafter decreased almost to the zero-time level by 24 h post-irradiation. ADCC was also increased significantly in a similar way. Reduced glutathione exogenously added to splenocytes obtained from normal mice enhanced both NK activity and ADCC in a dose-dependent manner. The inhibitory effect of the radiation on tumor growth was then examined in EST-bearing mice. Repeated low-dose irradiation (0.5 Gy, four times, before and within an early time after the inoculation) significantly delayed the tumor growth. Finally, the effect of single low-dose (0.5 Gy), whole-body gamma-ray irradiation on immune balance (Th1/Th2) was examined in order to elucidate the mechanism underlying the anti-tumor immunity. Recent studies indicate that Th1/Th2 balance plays an important role in the immune responses involved in anti-tumor immunity. The activity of NK is hallmarks of cell-mediated immunity, and play key roles in anti-tumor immunity. The percentage of B cells in blood lymphocytes was selectively decreased after the radiation, concomitantly with an increase in that of helper T cell population, favoring Th1 polarization. The IFN-gamma level in splenocyte culture prepared from EST-bearing mice was significantly increased 48 h after the radiation, though the level of

  1. Francisella tularensis Catalase Restricts Immune Function by Impairing TRPM2 Channel Activity.

    Science.gov (United States)

    Shakerley, Nicole L; Chandrasekaran, Akshaya; Trebak, Mohamed; Miller, Barbara A; Melendez, J Andrés

    2016-02-19

    As an innate defense mechanism, macrophages produce reactive oxygen species that weaken pathogens and serve as secondary messengers involved in immune function. The Gram-negative bacterium Francisella tularensis utilizes its antioxidant armature to limit the host immune response, but the mechanism behind this suppression is not defined. Here we establish that F. tularensis limits Ca(2+) entry in macrophages, thereby limiting actin reorganization and IL-6 production in a redox-dependent fashion. Wild type (live vaccine strain) or catalase-deficient F. tularensis (ΔkatG) show distinct profiles in their H2O2 scavenging rates, 1 and 0.015 pm/s, respectively. Murine alveolar macrophages infected with ΔkatG display abnormally high basal intracellular Ca(2+) concentration that did not increase further in response to H2O2. Additionally, ΔkatG-infected macrophages displayed limited Ca(2+) influx in response to ionomycin, as a result of ionophore H2O2 sensitivity. Exogenously added H2O2 or H2O2 generated by ΔkatG likely oxidizes ionomycin and alters its ability to transport Ca(2+). Basal increases in cytosolic Ca(2+) and insensitivity to H2O2-mediated Ca(2+) entry in ΔkatG-infected cells are reversed by the Ca(2+) channel inhibitors 2-aminoethyl diphenylborinate and SKF-96365. 2-Aminoethyl diphenylborinate but not SKF-96365 abrogated ΔkatG-dependent increases in macrophage actin remodeling and IL-6 secretion, suggesting a role for H2O2-mediated Ca(2+) entry through the transient receptor potential melastatin 2 (TRPM2) channel in macrophages. Indeed, increases in basal Ca(2+), actin polymerization, and IL-6 production are reversed in TRPM2-null macrophages infected with ΔkatG. Together, our findings provide compelling evidence that F. tularensis catalase restricts reactive oxygen species to temper macrophage TRPM2-mediated Ca(2+) signaling and limit host immune function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Introduction and immunopathogenesis of acquired immune deficiency syndrome

    Directory of Open Access Journals (Sweden)

    Sudharshan S

    2008-01-01

    Full Text Available India has a large number of patients with acquired immune deficiency syndrome (AIDS, the third largest population of this group in the world. This disease was first described in patients with Pneumocystis pneumonia in 1981. Ocular lesions can occur at any stage of the disease but are more commonly seen at the late stages. Human immunodeficiency virus (HIV, the causative agent of AIDS is a retrovirus with RNA genome and a unique ′Reverse transcriptase enzyme′ and is of two types, HIV-1 and 2. Most human diseases are caused by HIV-1. The HIV-1 subtypes prevalent in India are A, B and C. They act predominantly by reducing the CD4+ cells and thus the patient becomes susceptible to opportunistic infections. High viral titers in the peripheral blood during primary infection lead to decrease in the number of CD4+ T lymphocytes. Onset of HIV-1-specific cellular immune response with synthesis of HIV-1 specific antibodies leads to the decline of plasma viral load and chronification of HIV-1 infection. However, the asymptomatic stage of infection may lead to persistent viral replication and a rapid turnover of plasma virions which is the clinical latency. During this period, there is further decrease in the CD4+ counts which makes the patient′s immune system incapable of controlling opportunistic pathogens and thus life-threatening AIDS-defining diseases emerge. Advent of highly active antiretroviral treatment (HAART has revolutionized the management of AIDS though there is associated increased development of immune recovery uveitis in a few of these patients.

  3. Differential activation behavior of dermal dendritic cells underlies the strain-specific Th1 responses to single epicutaneous immunization.

    Science.gov (United States)

    Lee, Chih-Hung; Chen, Jau-Shiuh; Chiu, Hsien-Ching; Hong, Chien-Hui; Liu, Ching-Yi; Ta, Yng-Cun; Wang, Li-Fang

    2016-12-01

    Epicutaneous immunization with allergens is an important sensitization route for atopic dermatitis. We recently showed in addition to the Th2 response following single epicutaneous immunization, a remarkable Th1 response is induced in B6 mice, but not in BALB/c mice, mimicking the immune response to allergens in human non-atopics and atopics. We investigated the underlying mechanisms driving this differential Th1 response between BALB/c and B6 mice. We characterized dermal dendritic cells by flow cytometric analysis. We measured the induced Th1/Th2 responses by measuring the IFN-γ/IL-13 contents of supernatants of antigen reactivation cultures of lymph node cells. We demonstrate that more dermal dendritic cells with higher activation status migrate into draining lymph nodes of B6 mice compared to BALB/c mice. Dermal dendritic cells of B6 mice have a greater ability to capture protein antigen than those of BALB/c mice. Moreover, increasing the activation status or amount of captured antigen in dermal dendritic cells induced a Th1 response in BALB/c mice. Further, differential activation behavior, but not antigen-capturing ability of dermal dendritic cells between BALB/c and B6 mice is dendritic cell-intrinsic. These results show that the differential activation behavior of dermal dendritic cells underlies the strain-specific Th1 responses following single epicutaneous immunization. Furthermore, our findings highlight the potential differences between human atopics and non-atopics and provide useful information for the prediction and prevention of atopic diseases. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Modulation of Immune Functions by Foods

    Directory of Open Access Journals (Sweden)

    Shuichi Kaminogawa

    2004-01-01

    Full Text Available Evidence is rapidly accumulating as to the beneficial effects of foods. However, it is not always clear whether the information is based on data evaluated impartially in a scientific fashion. Human research into whether foods modulate immune functions in either intervention studies or randomized controlled trials can be classified into three categories according to the physical state of subjects enrolled for investigation: (i studies examining the effect of foods in healthy individuals; (ii studies analyzing the effect of foods on patients with hypersensitivity; and (iii studies checking the effect of foods on immunocompromized subjects, including patients who had undergone surgical resection of cancer and newborns. The systematization of reported studies has made it reasonable to conclude that foods are able to modulate immune functions manifesting as either innate immunity (phagocytic activity, NK cell activity or acquired immunity (T cell response, antibody production. Moreover, improvement of immune functions by foods can normalize the physical state of allergic patients or cancer patients, and may reduce the risk of diseases in healthy individuals. Therefore, it is valuable to assess the immune-modulating abilities of foods by measuring at least one parameter of either innate or acquired immunity.

  5. Innate and Adaptive Immunity to Mucorales.

    Science.gov (United States)

    Ghuman, Harlene; Voelz, Kerstin

    2017-09-05

    Mucormycosis is an invasive fungal infection characterised by rapid filamentous growth, which leads to angioinvasion, thrombosis, and tissue necrosis. The high mortality rates (50-100%) associated with mucormycosis are reflective of not only the aggressive nature of the infection and the poor therapeutics currently employed, but also the failure of the human immune system to successfully clear the infection. Immune effector interaction with Mucorales is influenced by the developmental stage of the mucormycete spore. In a healthy immune environment, resting spores are resistant to phagocytic killing. Contrarily, swollen spores and hyphae are susceptible to damage and degradation by macrophages and neutrophils. Under the effects of immune suppression, the recruitment and efficacy of macrophage and neutrophil activity against mucormycetes is considerably reduced. Following penetration of the endothelial lining, Mucorales encounter platelets. Platelets adhere to both mucormycete spores and hyphae, and exhibit germination suppression and hyphal damage capacity in vitro. Dendritic cells are activated in response to Mucorales hyphae only, and induce adaptive immunity. It is crucial to further knowledge regarding our immune system's failure to eradicate resting spores under intact immunity and inhibit fungal growth under immunocompromised conditions, in order to understand mucormycosis pathogenicity and enhance therapeutic strategies for mucormycosis.

  6. The design and implementation of the immune epitope database and analysis resource

    DEFF Research Database (Denmark)

    Peters, B.; Sidney, J.; Bourne, P.

    2005-01-01

    Epitopes are defined as parts of antigens interacting with receptors of the immune system. Knowledge about their intrinsic structure and how they affect the immune response is required to continue development of techniques that detect, monitor, and fight diseases. Their scientific importance is r...

  7. Approaches Mediating Oxytocin Regulation of the Immune System.

    Science.gov (United States)

    Li, Tong; Wang, Ping; Wang, Stephani C; Wang, Yu-Feng

    2016-01-01

    The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine-immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic-pituitary-immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic-pituitary-immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine-immune network.

  8. Phospholipase C-β in immune cells.

    Science.gov (United States)

    Kawakami, Toshiaki; Xiao, Wenbin

    2013-09-01

    Great progress has recently been made in structural and functional research of phospholipase C (PLC)-β. We now understand how PLC-β isoforms (β1-β4) are activated by GTP-bound Gαq downstream of G protein-coupled receptors. Numerous studies indicate that PLC-βs participate in the differentiation and activation of immune cells that control both the innate and adaptive immune systems. The PLC-β3 isoform also interplays with tyrosine kinase-based signaling pathways, to inhibit Stat5 activation by recruiting the protein-tyrosine phosphatase SHP-1, with which PLC-β3 and Stat5 form a multi-molecular signaling platform, named SPS complex. The SPS complex has important regulatory roles in tumorigenesis and immune cell activation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro

    OpenAIRE

    Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David

    2017-01-01

    Gitte S Jensen,1 Howard A Cash,2 Sean Farmer,2 David Keller2 1NIS Labs, Esplanade, Klamath Falls, OR, USA, 2Ganeden Biotech Inc., Landerbrook Drive Suite, Mayfield Heights, OH, USA Objective: The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro.Methods: In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood do...

  10. Creating leptin-like biofunctions by active immunization against chicken leptin receptor in growing chickens.

    Science.gov (United States)

    Lei, M M; Wu, S Q; Shao, X B; Li, X W; Chen, Z; Ying, S J; Shi, Z D

    2015-01-01

    In this study, immunization against chicken leptin receptor (cLEPR) extracellular domain (ECD) was applied to investigate leptin regulation and LEPR biofunction in growing chicken pullets. A recombinant protein (cLEPR ECD) based on the cLEPR complemenary DNA sequence corresponding to the 582nd to 796th amino acid residues of cLEPR mature peptide was prepared and used as antigen. Immunization against cLEPR ECD in growing chickens increased anti-cLEPR ECD antibody titers in blood, enhanced proportions of phosphorylated janus kinase 2 (JAK2) and served as signal transducer and activator of transcription 3 (STAT3) protein in liver tissue. Chicken live weight gain and abdominal fat mass were significantly decreased (P chickens. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Dysregulation of TGFβ1 Activity in Cancer and Its Influence on the Quality of Anti-Tumor Immunity

    Directory of Open Access Journals (Sweden)

    Kristian M. Hargadon

    2016-08-01

    Full Text Available TGFβ1 is a pleiotropic cytokine that exhibits a variety of physiologic and immune regulatory functions. Although its influence on multiple cell types is critical for the regulation of numerous biologic processes in the host, dysregulation of both TGFβ1 expression and activity is frequently observed in cancer and contributes to various aspects of cancer progression. This review focuses on TGFβ1’s contribution to tumor immune suppression and escape, with emphasis on the influence of this regulatory cytokine on the differentiation and function of dendritic cells and T cells. Clinical trials targeting TGFβ1 in cancer patients are also reviewed, and strategies for future therapeutic interventions that build on our current understanding of immune regulation by TGFβ1 are discussed.

  12. Are self-report measures able to define individuals as physically active or inactive?

    NARCIS (Netherlands)

    Steene-Johannessen, J.; Anderssen, S.A.; Ploeg, H.P. van der; Hendriksen, I.J.M.; Donnelly, A.E.; Brage, S.; Ekelund, U.

    2016-01-01

    Purpose: Assess the agreement between commonly used self-report methods compared with objectively measured physical activity (PA) in defining the prevalence of individuals compliant with PA recommendations. Methods: Time spent in moderate and vigorous PA (MVPA) was measured at two time points in

  13. Association of neopterin as a marker of immune system activation and juvenile rheumatoid arthritis activity

    Directory of Open Access Journals (Sweden)

    Mones M. Abu Shady

    2015-08-01

    Full Text Available OBJECTIVE: To evaluate neopterin plasma concentrations in patients with active juvenile idiopathic arthritis (JIA and correlate them with disease activity.METHODS: Sixty patients diagnosed as active JIA, as well as another 60 apparently healthy age- and gender-matched children as controls, were recruited from the Pediatrics Allergy and Immunology Clinic, Ain Shams University. Disease activity was assessed by the Juvenile Arthritis Disease Activity Score 27 (JADAS-27. Laboratory investigations were performed for all patients, including determination of hemoglobin concentration (Hgb, erythrocyte sedimentation rate (ESR, and C-reactive protein. Serum concentrations of tumor necrosis factor-alpha (TNF-a, interleukin-6 (IL-6, monocyte chemoattractant protein-1 (MCP-1, and neopterin were measured.RESULTS: Significant differences were found between JIA patients and controls with regard to the mean levels of Hgb, ESR, TNF-a, IL-6, and MCP-1 (p 0.05. Multiple linear regression analysis showed that JADAS- 27 and ESR were the main variables associated with serum neopterin in JIA patients (p < 0.05.CONCLUSION: The elevation of plasma neopterin concentrations in early JIA patients may indicate stimulation of immune response. Serum neopterin can be used as a sensitive marker for assaying background inflammation and disease activity score in JIA patients.

  14. The effect of dermal benzophenone-2 administration on immune system activity, hypothalamic-pituitary-thyroid axis activity and hematological parameters in male Wistar rats.

    Science.gov (United States)

    Broniowska, Żaneta; Ślusarczyk, Joanna; Starek-Świechowicz, Beata; Trojan, Ewa; Pomierny, Bartosz; Krzyżanowska, Weronika; Basta-Kaim, Agnieszka; Budziszewska, Bogusława

    2018-04-13

    Benzophenones used as UV filters, in addition to the effects on the skin, can be absorbed into the blood and affect the function of certain organs. So far, their effects on the sex hormone receptors and gonadal function have been studied, but not much is known about their potential action on other systems. The aim of the present study was to determine the effect of benzophenone-2 (BP-2) on immune system activity, hypothalamic-pituitary-thyroid (HPT) axis activity and hematological parameters. BP-2 was administered dermally, twice daily at a dose of 100 mg/kg for 4-weeks to male Wistar rats. Immunological and hematological parameters and HPT axis activity were assayed 24 h after the last administration. It was found that BP-2 did not change relative weights of the thymus and spleen and did not exert toxic effect on tymocytes and splenocytes. However, this compound increased proliferative activity of splenocytes, enhanced metabolic activity of splenocytes and thymocytes and nitric oxide production of these cells. In animals exposed to BP-2, the HPT axis activity was increased, as evidenced by reduction in the thyroid stimulating hormone (TRH) level and increase in free fraction of triiodothyronine (fT3) and thyroxin (fT4) in blood. BP-2 had no effect on leukocyte, erythrocyte and platelet counts or on morphology and hemoglobin content in erythrocytes. The conducted research showed that dermal, sub-chronic BP-2 administration evoked hyperthyroidism, increased activity or function of the immune cells but did not affect hematological parameters. We suggest that topical administration of BP-2 leading to a prolonged elevated BP-2 level in blood causes hyperthyroidism, which in turn may be responsible for the increased immune cell activity or function. However, only future research can explain the mechanism and functional importance of the changes in thyroid hormones and immunological parameters observed after exposure to BP-2. Copyright © 2018 Elsevier B.V. All

  15. Chronic social stress induces peripheral and central immune activation, blunted mesolimbic dopamine function, and reduced reward-directed behaviour in mice

    Directory of Open Access Journals (Sweden)

    Giorgio Bergamini

    2018-02-01

    Full Text Available Psychosocial stress is a major risk factor for depression, stress leads to peripheral and central immune activation, immune activation is associated with blunted dopamine (DA neural function, DA function underlies reward interest, and reduced reward interest is a core symptom of depression. These states might be inter-independent in a complex causal pathway. Whilst animal-model evidence exists for some specific steps in the pathway, there is currently no animal model in which it has been demonstrated that social stress leads to each of these immune, neural and behavioural states. Such a model would provide important existential evidence for the complex pathway and would enable the study of causality and mediating mechanisms at specific steps in the pathway. Therefore, in the present mouse study we investigated for effects of 15-day resident-intruder chronic social stress (CSS on each of these states. Relative to controls, CSS mice exhibited higher spleen levels of granulocytes, inflammatory monocytes and T helper 17 cells; plasma levels of inducible nitric oxide synthase; and liver expression of genes encoding kynurenine pathway enzymes. CSS led in the ventral tegmental area to higher levels of kynurenine and the microglia markers Iba1 and Cd11b and higher binding activity of DA D1 receptor; and in the nucleus accumbens (NAcc to higher kynurenine, lower DA turnover and lower c-fos expression. Pharmacological challenge with DA reuptake inhibitor identified attenuation of DA stimulatory effects on locomotor activity and NAcc c-fos expression in CSS mice. In behavioural tests of operant responding for sucrose reward validated as sensitive assays for NAcc DA function, CSS mice exhibited less reward-directed behaviour. Therefore, this mouse study demonstrates that a chronic social stressor leads to changes in each of the immune, neural and behavioural states proposed to mediate between stress and disruption of DA-dependent reward processing. The

  16. CD95-CD95L: can the brain learn from the immune system?

    DEFF Research Database (Denmark)

    Becher, B; Barker, P A; Owens, T

    1998-01-01

    being recognized that CD95 signaling by immune cells mediates effects other than apoptosis, such as cell survival and under inflammatory conditions expression of this protein promotes neural-immune interactions. Both neuroscientists and immunologists can contribute to defining the mechanisms underlying...

  17. Balancing immune protection and immune pathology by CD8+ T cell responses to influenza infection

    Directory of Open Access Journals (Sweden)

    Susu eDuan

    2016-02-01

    Full Text Available Influenza A virus (IAV is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL-mediated immunity contributes to clearance of virus-infected cells; CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, their cytotoxicity, and the effects of produced pro-inflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL anti-viral immunity from those necessary to restrain CTL-mediated nonspecific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.

  18. Involvement of activation of PKR in HBx-siRNA-mediated innate immune effects on HBV inhibition.

    Directory of Open Access Journals (Sweden)

    Qiuju Han

    Full Text Available RNA interference (RNAi of virus-specific genes offers the possibility of developing a new anti-hepatitis B virus (anti-HBV therapy. Recent studies have revealed that siRNAs can induce an innate immune response in vitro and in vivo. Here, HBVx (HBx mRNA expression and HBV replication were significantly inhibited, followed by the enhancement of expression of type I interferons (IFNs, IFN-stimulated genes (ISG15 and ISG56 and proinflammatory cytokines after HepG2.2.15 cells were transfected with chemically synthesized HBx-siRNAs. Transfection with HBx-siRNAs also significantly increased expression of dsRNA-dependent protein kinase R (PKR in HepG2.2.15 cells, followed by activation of downstream signaling events such as eukaryotic initiation factor 2α (eIF2-α. In PKR-over-expressing HepG2.2.15 cells, HBx-siRNAs exerted more potent inhibitory effects on HBV replication and greater production of type I IFNs. By contrast, the inhibitory effect of HBx-siRNAs on HBV replication was attenuated when PKR was inhibited or silenced, demonstrating that HBx-siRNAs greatly promoted PKR activation, leading to the higher production of type I IFN. Therefore, we concluded that PKR is involved in the innate immune effects mediated by HBx-siRNAs and further contributes to HBV inhibition. The bifunctional siRNAs with both gene silencing and innate immune activation properties may represent a new potential strategy for treatment of HBV.

  19. A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system.

    Science.gov (United States)

    Zhang, Shenshen; Nie, Shaoping; Huang, Danfei; Feng, Yanling; Xie, Mingyong

    2014-02-19

    Ganoderma is a precious health-care edible medicinal fungus in China. A novel Ganoderma atrum polysaccharide (PSG-1) is the main bioactive component. We investigated the antitumor effect and molecular mechanisms of PSG-1. It exhibited no significant effect on cell proliferation directly. In contrast, administration of PSG-1 markedly suppressed tumor growth in CT26 tumor-bearing mice. It was observed that PSG-1 caused apoptosis in CT26 cells. Apoptosis was associated with loss of mitochondrial membrane potential, enhancement of mitochondrial cytochrome c release and intracellular ROS production, elevation of p53 and Bax expression, downregulation of Bcl-2, and the activation of caspase-9 and -3. Moreover, PSG-1 enhanced immune organ index and promoted lymphocyte proliferation as well as cytokine levels in serum. Taken together, our data indicate that PSG-1 has potential antitumor activity in vivo by inducing apoptosis via mitochondria-mediated apoptotic pathway and enhances host immune system function. Therefore, PSG-1 could be a safe and effective antitumor, bioactive agent or functional food.

  20. Controlling measles using supplemental immunization activities: a mathematical model to inform optimal policy.

    Science.gov (United States)

    Verguet, Stéphane; Johri, Mira; Morris, Shaun K; Gauvreau, Cindy L; Jha, Prabhat; Jit, Mark

    2015-03-03

    The Measles & Rubella Initiative, a broad consortium of global health agencies, has provided support to measles-burdened countries, focusing on sustaining high coverage of routine immunization of children and supplementing it with a second dose opportunity for measles vaccine through supplemental immunization activities (SIAs). We estimate optimal scheduling of SIAs in countries with the highest measles burden. We develop an age-stratified dynamic compartmental model of measles transmission. We explore the frequency of SIAs in order to achieve measles control in selected countries and two Indian states with high measles burden. Specifically, we compute the maximum allowable time period between two consecutive SIAs to achieve measles control. Our analysis indicates that a single SIA will not control measles transmission in any of the countries with high measles burden. However, regular SIAs at high coverage levels are a viable strategy to prevent measles outbreaks. The periodicity of SIAs differs between countries and even within a single country, and is determined by population demographics and existing routine immunization coverage. Our analysis can guide country policymakers deciding on the optimal scheduling of SIA campaigns and the best combination of routine and SIA vaccination to control measles. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response.

    Science.gov (United States)

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Tiwari, A K; Gandham, Ravi Kumar; Sahoo, A P

    2016-09-01

    The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.

  2. Differential and site specific impact of B cells in the protective immune response to Mycobacterium tuberculosis in the mouse.

    Directory of Open Access Journals (Sweden)

    Egídio Torrado

    Full Text Available Cell-mediated immune responses are known to be critical for control of mycobacterial infections whereas the role of B cells and humoral immunity is unclear. B cells can modulate immune responses by secretion of immunoglobulin, production of cytokines and antigen-presentation. To define the impact of B cells in the absence of secreted immunoglobulin, we analyzed the progression of Mycobacterium tuberculosis (Mtb infection in mice that have B cells but which lack secretory immunoglobulin (AID(-/-µS(-/-mice. AID(-/-µS(-/- mice accumulated a population of activated B cells in the lungs when infected and were more susceptible to aerosol Mtb when compared to wild type (C57BL/6 mice or indeed mice that totally lack B cells. The enhanced susceptibility of AID(-/-µS(-/- mice was not associated with defective T cell activation or expression of a type 1 immune response. While delivery of normal serum to AID(-/-µS(-/- mice did not reverse susceptibility, susceptibility in the spleen was dependent upon the presence of B cells and susceptibility in the lungs of AID(-/-µS(-/-mice was associated with elevated expression of the cytokines IL-6, GM-CSF, IL-10 and molecules made by alternatively activated macrophages. Blocking of IL-10 signaling resulted in reversal of susceptibility in the spleens and lungs of AID(-/-µS(-/- mice. These data support the hypothesis that B cells can modulate immunity to Mtb in an organ specific manner via the modulation of cytokine production and macrophage activation.

  3. Induced prion protein controls immune-activated retroviruses in the mouse spleen.

    Directory of Open Access Journals (Sweden)

    Marius Lötscher

    Full Text Available The prion protein (PrP is crucially involved in transmissible spongiform encephalopathies (TSE, but neither its exact role in disease nor its physiological function are known. Here we show for mice, using histological, immunochemical and PCR-based methods, that stimulation of innate resistance was followed by appearance of numerous endogenous retroviruses and ensuing PrP up-regulation in germinal centers of the spleen. Subsequently, the activated retroviruses disappeared in a PrP-dependent manner. Our results reveal the regular involvement of endogenous retroviruses in murine immune responses and provide evidence for an essential function of PrP in the control of the retroviral activity. The interaction between PrP and ubiquitous endogenous retroviruses may allow new interpretations of TSE pathophysiology and explain the evolutionary conservation of PrP.

  4. Exosomes and their roles in immune regulation and cancer.

    Science.gov (United States)

    Greening, David W; Gopal, Shashi K; Xu, Rong; Simpson, Richard J; Chen, Weisan

    2015-04-01

    Exosomes, a subset of extracellular vesicles (EVs), function as a mode of intercellular communication and molecular transfer. Exosomes facilitate the direct extracellular transfer of proteins, lipids, and miRNA/mRNA/DNAs between cells in vitro and in vivo. The immunological activities of exosomes affect immunoregulation mechanisms including modulating antigen presentation, immune activation, immune suppression, immune surveillance, and intercellular communication. Besides immune cells, cancer cells secrete immunologically active exosomes that influence both physiological and pathological processes. The observation that exosomes isolated from immune cells such as dendritic cells (DCs) modulate the immune response has enforced the way these membranous vesicles are being considered as potential immunotherapeutic reagents. Indeed, tumour- and immune cell-derived exosomes have been shown to carry tumour antigens and promote immunity, leading to eradication of established tumours by CD8(+) T cells and CD4(+) T cells, as well as directly suppressing tumour growth and resistance to malignant tumour development. Further understanding of these areas of exosome biology, and especially of molecular mechanisms involved in immune cell targeting, interaction and manipulation, is likely to provide significant insights into immunorecognition and therapeutic intervention. Here, we review the emerging roles of exosomes in immune regulation and the therapeutic potential in cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Anatomical localization of commensal bacteria in immune cell homeostasis and disease.

    Science.gov (United States)

    Fung, Thomas C; Artis, David; Sonnenberg, Gregory F

    2014-07-01

    The mammalian gastrointestinal (GI) tract is colonized by trillions of beneficial commensal bacteria that are essential for promoting normal intestinal physiology. While the majority of commensal bacteria are found in the intestinal lumen, many species have also adapted to colonize different anatomical locations in the intestine, including the surface of intestinal epithelial cells (IECs) and the interior of gut-associated lymphoid tissues. These distinct tissue localization patterns permit unique interactions with the mammalian immune system and collectively influence intestinal immune cell homeostasis. Conversely, dysregulated localization of commensal bacteria can lead to inappropriate activation of the immune system and is associated with numerous chronic infectious, inflammatory, and metabolic diseases. Therefore, regulatory mechanisms that control proper anatomical containment of commensal bacteria are essential to maintain tissue homeostasis and limit pathology. In this review, we propose that commensal bacteria associated with the mammalian GI tract can be anatomically defined as (i) luminal, (ii) epithelial-associated, or (iii) lymphoid tissue-resident, and we discuss the role and regulation of these microbial populations in health and disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Modification of glomerular immune complex deposition in mice by activation of the reticuloendothelial system.

    OpenAIRE

    Barcelli, U; Rademacher, R; Ooi, Y M; Ooi, B S

    1981-01-01

    To determine the effect of activation of the reticuloendothelial system on the localization of immune complexes in the kidney, a model of passive serum sickness nephritis in the mouse was used, with activation of the reticuloendothelial system with Corynebacterium parvum. Groups of mice, control and C. parvum-treated animals, were injected with BSA-125I-anti-BSA complexes containing 3 mg 125I-anti-BSA. Blood was obtained at 5 min, at 3 h, and at 12 h, when the animals were killed. Blood conce...

  7. Variable activation of immune response by quinoa (Chenopodium quinoa Willd.) prolamins in celiac disease.

    Science.gov (United States)

    Zevallos, Victor F; Ellis, H Julia; Suligoj, Tanja; Herencia, L Irene; Ciclitira, Paul J

    2012-08-01

    Celiac disease is an enteropathy triggered by dietary gluten found in wheat, barley, and rye. The current treatment is a strict gluten-free diet. Quinoa is a highly nutritive plant from the Andes, with low concentrations of prolamins, that has been recommended as part of a gluten-free diet; however, few experimental data support this recommendation. We aimed to determine the amount of celiac-toxic prolamin epitopes in quinoa cultivars from different regions of the Andes and the ability of these epitopes to activate immune responses in patients with celiac disease. The concentration of celiac-toxic epitopes was measured by using murine monoclonal antibodies against gliadin and high-molecular-weight glutenin subunits. Immune response was assessed by proliferation assays of celiac small intestinal T cells/interferon-γ (IFN-γ) and production of IFN-γ/IL-15 after organ culture of celiac duodenal biopsy samples. Fifteen quinoa cultivars were tested: 4 cultivars had quantifiable concentrations of celiac-toxic epitopes, but they were below the maximum permitted for a gluten-free food. Cultivars Ayacuchana and Pasankalla stimulated T cell lines at levels similar to those for gliadin and caused secretion of cytokines from cultured biopsy samples at levels comparable with those for gliadin. Most quinoa cultivars do not possess quantifiable amounts of celiac-toxic epitopes. However, 2 cultivars had celiac-toxic epitopes that could activate the adaptive and innate immune responses in some patients with celiac disease. These findings require further investigation in the form of in vivo studies, because quinoa is an important source of nutrients for patients with celiac disease.

  8. Transposon mutagenesis of probiotic Lactobacillus casei identifies asnH, an asparagine synthetase gene involved in its immune-activating capacity.

    Science.gov (United States)

    Ito, Masahiro; Kim, Yun-Gi; Tsuji, Hirokazu; Takahashi, Takuya; Kiwaki, Mayumi; Nomoto, Koji; Danbara, Hirofumi; Okada, Nobuhiko

    2014-01-01

    Lactobacillus casei ATCC 27139 enhances host innate immunity, and the J1 phage-resistant mutants of this strain lose the activity. A transposon insertion mutant library of L. casei ATCC 27139 was constructed, and nine J1 phage-resistant mutants out of them were obtained. Cloning and sequencing analyses identified three independent genes that were disrupted by insertion of the transposon element: asnH, encoding asparagine synthetase, and dnaJ and dnaK, encoding the molecular chaperones DnaJ and DnaK, respectively. Using an in vivo mouse model of Listeria infection, only asnH mutant showed deficiency in their ability to enhance host innate immunity, and complementation of the mutation by introduction of the wild-type asnH in the mutant strain recovered the immuno-augmenting activity. AsnH protein exhibited asparagine synthetase activity when the lysozyme-treated cell wall extracts of L. casei ATCC 27139 was added as substrate. The asnH mutants lost the thick and rigid peptidoglycan features that are characteristic to the wild-type cells, indicating that AsnH of L. casei is involved in peptidoglycan biosynthesis. These results indicate that asnH is required for the construction of the peptidoglycan composition involved in the immune-activating capacity of L. casei ATCC 27139.

  9. Transposon mutagenesis of probiotic Lactobacillus casei identifies asnH, an asparagine synthetase gene involved in its immune-activating capacity.

    Directory of Open Access Journals (Sweden)

    Masahiro Ito

    Full Text Available Lactobacillus casei ATCC 27139 enhances host innate immunity, and the J1 phage-resistant mutants of this strain lose the activity. A transposon insertion mutant library of L. casei ATCC 27139 was constructed, and nine J1 phage-resistant mutants out of them were obtained. Cloning and sequencing analyses identified three independent genes that were disrupted by insertion of the transposon element: asnH, encoding asparagine synthetase, and dnaJ and dnaK, encoding the molecular chaperones DnaJ and DnaK, respectively. Using an in vivo mouse model of Listeria infection, only asnH mutant showed deficiency in their ability to enhance host innate immunity, and complementation of the mutation by introduction of the wild-type asnH in the mutant strain recovered the immuno-augmenting activity. AsnH protein exhibited asparagine synthetase activity when the lysozyme-treated cell wall extracts of L. casei ATCC 27139 was added as substrate. The asnH mutants lost the thick and rigid peptidoglycan features that are characteristic to the wild-type cells, indicating that AsnH of L. casei is involved in peptidoglycan biosynthesis. These results indicate that asnH is required for the construction of the peptidoglycan composition involved in the immune-activating capacity of L. casei ATCC 27139.

  10. FOXO-dependent regulation of innate immune homeostasis.

    Science.gov (United States)

    Becker, Thomas; Loch, Gerrit; Beyer, Marc; Zinke, Ingo; Aschenbrenner, Anna C; Carrera, Pilar; Inhester, Therese; Schultze, Joachim L; Hoch, Michael

    2010-01-21

    The innate immune system represents an ancient host defence mechanism that protects against invading microorganisms. An important class of immune effector molecules to fight pathogen infections are antimicrobial peptides (AMPs) that are produced in plants and animals. In Drosophila, the induction of AMPs in response to infection is regulated through the activation of the evolutionarily conserved Toll and immune deficiency (IMD) pathways. Here we show that AMP activation can be achieved independently of these immunoregulatory pathways by the transcription factor FOXO, a key regulator of stress resistance, metabolism and ageing. In non-infected animals, AMP genes are activated in response to nuclear FOXO activity when induced by starvation, using insulin signalling mutants, or by applying small molecule inhibitors. AMP induction is lost in foxo null mutants but enhanced when FOXO is overexpressed. Expression of AMP genes in response to FOXO activity can also be triggered in animals unable to respond to immune challenges due to defects in both the Toll and IMD pathways. Molecular experiments at the Drosomycin promoter indicate that FOXO directly binds to its regulatory region, thereby inducing its transcription. In vivo studies in Drosophila, but also studies in human lung, gut, kidney and skin cells indicate that a FOXO-dependent regulation of AMPs is evolutionarily conserved. Our results indicate a new mechanism of cross-regulation of metabolism and innate immunity by which AMP genes can be activated under normal physiological conditions in response to the oscillating energy status of cells and tissues. This regulation seems to be independent of the pathogen-responsive innate immunity pathways whose activation is often associated with tissue damage and repair. The sparse production of AMPs in epithelial tissues in response to FOXO may help modulating the defence reaction without harming the host tissues, in particular when animals are suffering from energy shortage

  11. Potential Role of Vδ2+ γδ T Cells in Regulation of Immune Activation in Primary HIV Infection

    Directory of Open Access Journals (Sweden)

    Nupur Bhatnagar

    2017-09-01

    Full Text Available Although conventional regulatory T cells (Tregs are sufficient in controlling low residual T-cell activation in ART-treated patients, they are not efficient in controlling exaggerated immune activation associated with high levels of HIV replication in primary HIV infection (PHI. Our previous data suggested that double negative (DN T cells including mainly γδ DN T cells play a role in the control of immune activation in PHI. Since γδ T cells are capable of exerting regulatory functions, we investigated their implication as Tregs in PHI as well as chronic HIV infection (CHI. In a cross-sectional study of 58 HIV-infected patients, in the primary and the chronic phase either ART-treated or untreated (UT, we analyzed phenotype and cytokine production of γδ T cells using flow cytometry. Cytokine production was assessed following in vitro stimulation with isopentenyl pyrophosphate or plate-bound anti-CD3/anti-CD28 monoclonal antibodies. We found that the proportion of γδ T cells negatively correlated with CD8 T-cell activation in PHI patients. Furthermore, we found that in these patients, the Vδ2 receptor bearing (Vδ2+ γδ T cells were strongly activated, exhibited low terminal differentiation, and produced the anti-inflammatory cytokine, TGF-β. In contrast, in UT-CHI, we observed a remarkable expansion of γδ T cells, where the Vδ2+ γδ T cells comprised of an elevated proportion of terminally differentiated cells producing high levels of IFN-γ but very low levels of TGF-β. We also found that this loss of regulatory feature of γδ T cells in CHI was a lasting impairment as we did not find recovery of TGF-β production even in ART-CHI patients successfully treated for more than 5 years. Our data therefore suggest that during the primary HIV infection, Vδ2+ γδ T cells may act as Tregs controlling immune activation through production of TGF-β. However, in CHI, γδ T cells transform from an anti-inflammatory into pro

  12. Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti.

    Science.gov (United States)

    Kokoza, V; Ahmed, A; Cho, W L; Jasinskiene, N; James, A A; Raikhel, A

    2000-08-01

    Progress in molecular genetics makes possible the development of alternative disease control strategies that target the competence of mosquitoes to transmit pathogens. We tested the regulatory region of the vitellogenin (Vg) gene of Aedes aegypti for its ability to express potential antipathogen factors in transgenic mosquitoes. Hermes-mediated transformation was used to integrate a 2.1-kb Vg-promoter fragment driving the expression of the Defensin A (DefA) coding region, one of the major insect immune factors. PCR amplification of genomic DNA and Southern blot analyses, carried out through the ninth generation, showed that the Vg-DefA transgene insertion was stable. The Vg-DefA transgene was strongly activated in the fat body by a blood meal. The mRNA levels reached a maximum at 24-h postblood meal, corresponding to the peak expression time of the endogenous Vg gene. High levels of transgenic defensin were accumulated in the hemolymph of bloodfed female mosquitoes, persisting for 20-22 days after a single blood feeding. Purified transgenic defensin showed antibacterial activity comparable to that of defensin isolated from bacterially challenged control mosquitoes. Thus, we have been able to engineer the genetically stable transgenic mosquito with an element of systemic immunity, which is activated through the blood meal-triggered cascade rather than by infection. This work represents a significant step toward the development of molecular genetic approaches to the control of vector competence in pathogen transmission.

  13. Effects of polio eradication activities on routine immunization: lessons from the 2013 outbreak response in Somali region of Ethiopia.

    Science.gov (United States)

    Tafesse, Belete; Tekle, Ephrem; Wondwossen, Liya; Bogale, Mengistu; Fiona, Braka; Nsubuga, Peter; Tomas, Karengera; Kassahun, Aron; Kathleen, Gallagher; Teka, Aschalew

    2017-01-01

    Ethiopia experienced several WPV importations with a total of 10 WPV1 cases confirmed during the 2013 outbreak alone before it is closed in 2015. We evaluated supplemental immunization activities (SIAs), including lessons learned for their effect on the routine immunization program during the 2013 polio outbreak in Somali regional state. We used descriptive study to review documents and analyse routine health information system reports from the polio outbreak affected Somali regional state. All data and technical reports of the 15 rounds of polio SIAs from June 2013 through June 2015 and routine immunization coverages for DPT-Hib-HepB 3 and measles were observed. More than 93% of the SIAs were having administrative coverage above 95%. The trend of routine immunization for the two antigens, over the five years (2011 through 2015) did not show a consistent pattern against the number of SIAs. Documentations showed qualitative positive impacts of the SIAs strengthening the routine immunization during all courses of the campaigns. The quantitative impact of polio SIAs on routine immunization remained not so impressive in this study. Clear planning, data consistencies and completeness issues need to be cleared for the impact assessment in quantitative terms, in polio legacy planning as well as for the introduction of injectable polio vaccine through the routine immunization.

  14. Does stress affect the joints? Daily stressors, stress vulnerability, immune and HPA axis activity, and short-term disease and symptom fluctuations in rheumatoid arthritis.

    Science.gov (United States)

    Evers, Andrea W M; Verhoeven, Elisabeth W M; van Middendorp, Henriët; Sweep, Fred C G J; Kraaimaat, Floris W; Donders, A Rogier T; Eijsbouts, Agnes E; van Laarhoven, Antoinette I M; de Brouwer, Sabine J M; Wirken, Lieke; Radstake, Timothy R D J; van Riel, Piet L C M

    2014-09-01

    Both stressors and stress vulnerability factors together with immune and hypothalamus-pituitary-adrenal (HPA) axis activity components have been considered to contribute to disease fluctuations of chronic inflammatory diseases, such as rheumatoid arthritis (RA). The aim of the present study was to investigate whether daily stressors and worrying as stress vulnerability factor as well as immune and HPA axis activity markers predict short-term disease activity and symptom fluctuations in patients with RA. In a prospective design, daily stressors, worrying, HPA axis (cortisol) and immune system (interleukin (IL)-1β, IL-6, IL-8, interferon (IFN)-γ, tumour necrosis factor α) markers, clinical and self-reported disease activity (disease activity score in 28 joints, RA disease activity index), and physical symptoms of pain and fatigue were monitored monthly during 6 months in 80 RA patients. Multilevel modelling indicated that daily stressors predicted increased fatigue in the next month and that worrying predicted increased self-reported disease activity, swollen joint count and pain in the next month. In addition, specific cytokines of IL-1β and IFN-γ predicted increased fatigue 1 month later. Overall, relationships remained relatively unchanged after controlling for medication use, disease duration and demographic variables. No evidence was found for immune and HPA axis activity markers as mediators of the stress-disease relationship. Daily stressors and the stress-vulnerability factor worrying predict indicators of the short-term course of RA disease activity and fatigue and pain, while specific cytokines predict short-term fluctuations of fatigue. These stress-related variables and immune markers seem to affect different aspects of disease activity or symptom fluctuations independently in RA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Natural selection on immune defense: A field experiment.

    Science.gov (United States)

    Langeloh, Laura; Behrmann-Godel, Jasminca; Seppälä, Otto

    2017-02-01

    Predicting the evolution of phenotypic traits requires an understanding of natural selection on them. Despite its indispensability in the fight against parasites, selection on host immune defense has remained understudied. Theory predicts immune traits to be under stabilizing selection due to associated trade-offs with other fitness-related traits. Empirical studies, however, report mainly positive directional selection. This discrepancy could be caused by low phenotypic variation in the examined individuals and/or variation in host resource level that confounds trade-offs in empirical studies. In a field experiment where we maintained Lymnaea stagnalis snails individually in cages in a lake, we investigated phenotypic selection on two immune defense traits, phenoloxidase (PO)-like activity and antibacterial activity, in hemolymph. We used a diverse laboratory population and manipulated snail resource level by limiting their food supply. For six weeks, we followed immune activity, growth, and two fitness components, survival and fecundity of snails. We found that PO-like activity and growth were under stabilizing selection, while antibacterial activity was under positive directional selection. Selection on immune traits was mainly driven by variation in survival. The form of selection on immune defense apparently depends on the particular trait, possibly due to its importance for countering the present parasite community. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  16. Effect of oral administration of Lactobacillus paracasei L9 on mouse systemic immunity and the immune response in the intestine

    Directory of Open Access Journals (Sweden)

    Zhu Yuanbo

    2016-01-01

    Full Text Available A probiotic strain Lactobacillus paracasei L9,which was isolated from human intestine, was investigated for its immunomodulatory activity in vivo. Results showed that L9 improved systemic immunity by enhancing the phagocytic activity of peritoneal macrophages, the proliferation ratio of splenocytes, the IgG level in the serum and the level of IgA in the mucosa. Further, L9induced theTh1-polarized immune response by elevating the IFN-γ/IL-4 ratio in the mucosa. This effect was confirmed by the enhanced IL-12-inducing activity of macrophages after in vitro stimulation of L9. Also detected was increased expression of TLR-2mRNA in the mucosa. We predict that L9 could enhance innate immunity by activating TLR-2 in the mucosa, and enhance acquired immunity by promoting Th1 polarization through induced production of IL-12 by macrophages.

  17. ROUTINE IMMUNIZATION IN INDIA: A PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    G Taneja

    2013-08-01

    Full Text Available The Universal Immunization Programme is possibly the longest and one of the biggest public health intervention measures undertaken in India. To improve immunization coverage in the country various initiatives have been undertaken since the inception of the programme in 1985; key inputs being strengthening and expanding the cold chain system, establishing a network of outreach immunization sites, alternate vaccine delivery model, capacity building of health functionaries and medical officers and intensified polio control measures. Introduction of new and underutilized vaccines, drafting of the national vaccine policy, tracking of beneficiaries through the Maternal and Child Tracking system are some of the recent developments. However in spite of more than 25 years since inception the programme is still adversely impacted by challenges across key thematic areas of programme management, cold chain and vaccine management, recording and reporting and injection safety. To further strengthen and improve service delivery 2012-13 has been declared as the “Year of Intensification of Routine Immunization” with the objective of improving immunization coverage rates across poor performing districts and states so as to attain Global Immunization Vision and Strategy goals of 90% coverage at national and more than 80% coverage at district level. Key activities planned during the year include sustained advocacy at all levels, improved communication and social mobilization, robust and regular program reviews, comprehensive microplanning, strengthening cold chain and vaccine logistics system, special catch up rounds through immunization weeks, piloting the teeka express, improved surveillance systems, strengthened partnerships and operational research activities. The current review pertains to the existing scenario of Universal Immunization Program in the country with impetus on the existing challenges, progress achieved till date as a result of various

  18. PF4-HIT antibody (KKO) complexes activate broad innate immune and inflammatory responses.

    Science.gov (United States)

    Haile, Lydia A; Rao, Roshni; Polumuri, Swamy K; Arepally, Gowthami M; Keire, David A; Verthelyi, Daniela; Sommers, Cynthia D

    2017-11-01

    Heparin-induced thrombocytopenia (HIT) is an immune-mediated complication of heparin anticoagulation therapy resulting in thrombocytopenia frequently accompanied by thrombosis. Current evidence suggests that HIT is associated with antibodies developed in response to multi-molecular complexes formed by platelet factor 4 (PF4) bound to heparin or cell surface glycosaminoglycans. These antibody complexes activate platelets and monocytes typically through FcγRIIA receptors increasing the production of PF4, inflammatory mediators, tissue factor and thrombin. The influence of underlying events in HIT including complex-induced pro-inflammatory cell activation and structural determinants leading to local inflammatory responses are not fully understood. The stoichiometry and complex component requirements were determined by incubating fresh peripheral blood mononuclear cells (PBMC) with different concentrations of unfractionated heparin (H), low molecular weight heparin (LMWH), PF4- and anti-PF4-H complex antibodies (KKO). Cytokine mRNA or protein were measured by qRT-PCR or Meso Scale Discovery technology, respectively. Gene expression profile analysis for 594 genes was performed using Nanostring technology and analyzed using Ingenuity Pathway Analysis software. The data show that antibodies magnify immune responses induced in PBMCs by PF4 alone or in complex with heparin or LMWH. We propose that following induction of HIT antibodies by heparin-PF4 complexes, binding of the antibodies to PF4 is sufficient to induce a local pro-inflammatory response which may play a role in the progression of HIT. In vitro assays using PBMCs may be useful in characterizing local inflammatory and innate immune responses induced by HIT antibodies in the presence of PF4 and different sources of heparins. The findings and conclusions in this article are solely the responsibility of the authors and are not being formally disseminated by the Food and Drug Administration. Thus, they should not be

  19. The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor.

    Science.gov (United States)

    Townsend, Philip D; Dixon, Christopher H; Slootweg, Erik J; Sukarta, Octavina C A; Yang, Ally W H; Hughes, Timothy R; Sharples, Gary J; Pålsson, Lars-Olof; Takken, Frank L W; Goverse, Aska; Cann, Martin J

    2018-03-02

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable the immune system to recognize and respond to pathogen attack. An early consequence of immune activation is transcriptional reprogramming, and some NLRs have been shown to act in the nucleus and interact with transcription factors. The Rx1 NLR protein of potato is further able to bind and distort double-stranded DNA. However, Rx1 host targets that support a role for Rx1 in transcriptional reprogramming at DNA are unknown. Here, we report a functional interaction between Rx1 and Nb Glk1, a Golden2-like transcription factor. Rx1 binds to Nb Glk1 in vitro and in planta. Nb Glk1 binds to known Golden2-like consensus DNA sequences. Rx1 reduces the binding affinity of Nb Glk1 for DNA in vitro. Nb Glk1 activates cellular responses to potato virus X, whereas Rx1 associates with Nb Glk1 and prevents its assembly on DNA in planta unless activated by PVX. This study provides new mechanistic insight into how an NLR can coordinate an immune signaling response at DNA following pathogen perceptions. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. An extracellular subtilase switch for immune priming in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Vicente Ramírez

    Full Text Available In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of immunological memory is not well known. We identified an extracellular subtilase from Arabidopsis, SBT3.3, the overexpression of which enhances innate immune responses while the loss of function compromises them. SBT3.3 expression initiates a durable autoinduction mechanism that promotes chromatin remodeling and activates a salicylic acid(SA-dependent mechanism of priming of defense genes for amplified response. Moreover, SBT3.3 expression-sensitized plants for enhanced expression of the OXI1 kinase gene and activation of MAP kinases following pathogen attack, providing additional clues for the regulation of immune priming by SBT3.3. Conversely, in sbt3.3 mutant plants pathogen-mediated induction of SA-related defense gene expression is drastically reduced and activation of MAP kinases inhibited. Moreover, chromatin remodeling of defense-related genes normally associated with activation of an immune priming response appear inhibited in sbt3.3 plants, further indicating the importance of the extracellular SBT3.3 subtilase in the establishment of immune priming. Our results also point to an epigenetic control in the regulation of plant immunity, since SBT3.3 is up-regulated and priming activated when epigenetic control is impeded. SBT3.3 represents a new regulator of primed immunity.

  1. DNA Damage Response and Immune Defence: Links and Mechanisms

    Directory of Open Access Journals (Sweden)

    Björn Schumacher

    2016-08-01

    Full Text Available DNA damage plays a causal role in numerous human pathologies including cancer, premature aging and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signalling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signalling. We highlight evidence gained into (i which molecular and cellular pathways of DDR activate immune signalling, (ii how DNA damage drives chronic inflammation, and (iii how chronic inflammation causes DNA damage and pathology in humans.

  2. Constitutive Activity of the Arabidopsis MAP Kinase 3 Confers Resistance to Pseudomonas syringae and Drives Robust Immune Responses

    KAUST Repository

    Lang, Julien

    2017-08-02

    Mitogen Activated Protein Kinases (MAPKs) are known to be important mediators of plant responses to biotic and abiotic stresses. In a recent report, we enlarged the understanding of the Arabidopsis thaliana MPK3 functions showing that the expression of a constitutively active (CA) form of the protein led to auto-immune phenotypes. CA-MPK3 plants are dwarf and display defense responses that are characterized by the accumulation of salicylic acid and phytoalexins as well as by the upregulation of several defense genes. Consistently with these data, we present here results demonstrating that, compared to wild type controls, CA-MPK3 plants are more resistant to the hemibiotrophic pathogen Pseudomonas syringae DC3000. Based on our previous work, we also discuss the mechanisms of robust plant immunity controlled by sustained MPK3 activity, focusing especially on the roles of disease resistance proteins.

  3. Complement anaphylatoxins as immune regulators in cancer.

    Science.gov (United States)

    Sayegh, Eli T; Bloch, Orin; Parsa, Andrew T

    2014-08-01

    The role of the complement system in innate immunity is well characterized. However, a recent body of research implicates the complement anaphylatoxins C3a and C5a as insidious propagators of tumor growth and progression. It is now recognized that certain tumors elaborate C3a and C5a and that complement, as a mediator of chronic inflammation and regulator of immune function, may in fact foster rather than defend against tumor growth. A putative mechanism for this function is complement-mediated suppression of immune effector cells responsible for immunosurveillance within the tumor microenvironment. This paradigm accords with models of immune dysregulation, such as autoimmunity and infectious disease, which have defined a pathophysiological role for abnormal complement signaling. Several types of immune cells express the cognate receptors for the complement anaphylatoxins, C3aR and C5aR, and demonstrate functional modulation in response to complement stimulation. In turn, impairment of antitumor immunity has been intimately tied to tumor progression in animal models of cancer. In this article, the literature was systematically reviewed to identify studies that have characterized the effects of the complement anaphylatoxins on the composition and function of immune cells within the tumor microenvironment. The search identified six studies based upon models of lymphoma and ovarian, cervical, lung, breast, and mammary cancer, which collectively support the paradigm of complement as an immune regulator in the tumor microenvironment. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  4. Activation of Plant Innate Immunity by Extracellular High Mobility Group Box 3 and Its Inhibition by Salicylic Acid.

    Directory of Open Access Journals (Sweden)

    Hyong Woo Choi

    2016-03-01

    Full Text Available Damage-associated molecular pattern molecules (DAMPs signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3 is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i MAPK activation, ii defense-related gene expression, iii callose deposition, and iv enhanced resistance to Botrytis cinerea. Infection by necrotrophic B. cinerea released HMGB3 into the extracellular space (apoplast. Silencing HMGBs enhanced susceptibility to B. cinerea, while HMGB3 injection into apoplast restored resistance. Like its human counterpart, HMGB3 binds salicylic acid (SA, which results in inhibition of its DAMP activity. An SA-binding site mutant of HMGB3 retained its DAMP activity, which was no longer inhibited by SA, consistent with its reduced SA-binding activity. These results provide cross-kingdom evidence that HMGB proteins function as DAMPs and that SA is their conserved inhibitor.

  5. Markers of immune activation and apoptosis in endomyocardial biopsies of individuals with recent-onset dilated cardiomyopathy

    Czech Academy of Sciences Publication Activity Database

    Kubánek, M.; Sramko, M.; Malušková, J.; Chudíčková, Milada; Holáň, Vladimír; Kautzner, J.

    2013-01-01

    Roč. 34, č. 1 (2013), s. 211-211 ISSN 0195-668X. [Congress of the European-Society-of- Cardiology (ESC). 31.08.2013-,04.09.2013, Amsterdam] Institutional support: RVO:68378041 Keywords : dilated cardiomyopathy * immune activation and apoptosis Subject RIV: EC - Immunology

  6. Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor.

    Science.gov (United States)

    Pols, Thijs W H; Puchner, Teresa; Korkmaz, H Inci; Vos, Mariska; Soeters, Maarten R; de Vries, Carlie J M

    2017-01-01

    Bile acids are established signaling molecules next to their role in the intestinal emulsification and uptake of lipids. We here aimed to identify a potential interaction between bile acids and CD4+ Th cells, which are central in adaptive immune responses. We screened distinct bile acid species for their potency to affect T cell function. Primary human and mouse CD4+ Th cells as well as Jurkat T cells were used to gain insight into the mechanism underlying these effects. We found that unconjugated lithocholic acid (LCA) impedes Th1 activation as measured by i) decreased production of the Th1 cytokines IFNγ and TNFαα, ii) decreased expression of the Th1 genes T-box protein expressed in T cells (T-bet), Stat-1 and Stat4, and iii) decreased STAT1α/β phosphorylation. Importantly, we observed that LCA impairs Th1 activation at physiological relevant concentrations. Profiling of MAPK signaling pathways in Jurkat T cells uncovered an inhibition of ERK-1/2 phosphorylation upon LCA exposure, which could provide an explanation for the impaired Th1 activation. LCA induces these effects via Vitamin D receptor (VDR) signaling since VDR RNA silencing abrogated these effects. These data reveal for the first time that LCA controls adaptive immunity via inhibition of Th1 activation. Many factors influence LCA levels, including bile acid-based drugs and gut microbiota. Our data may suggest that these factors also impact on adaptive immunity via a yet unrecognized LCA-Th cell axis.

  7. Autoimmunity in Arabidopsis acd11 is mediated by epigenetic regulation of an immune receptor.

    Directory of Open Access Journals (Sweden)

    Kristoffer Palma

    Full Text Available Certain pathogens deliver effectors into plant cells to modify host protein targets and thereby suppress immunity. These target modifications can be detected by intracellular immune receptors, or Resistance (R proteins, that trigger strong immune responses including localized host cell death. The accelerated cell death 11 (acd11 "lesion mimic" mutant of Arabidopsis thaliana exhibits autoimmune phenotypes such as constitutive defense responses and cell death without pathogen perception. ACD11 encodes a putative sphingosine transfer protein, but its precise role during these processes is unknown. In a screen for lazarus (laz mutants that suppress acd11 death we identified two genes, LAZ2 and LAZ5. LAZ2 encodes the histone lysine methyltransferase SDG8, previously shown to epigenetically regulate flowering time via modification of histone 3 (H3. LAZ5 encodes an RPS4-like R-protein, defined by several dominant negative alleles. Microarray and chromatin immunoprecipitation analyses showed that LAZ2/SDG8 is required for LAZ5 expression and H3 lysine 36 trimethylation at LAZ5 chromatin to maintain a transcriptionally active state. We hypothesize that LAZ5 triggers cell death in the absence of ACD11, and that cell death in other lesion mimic mutants may also be caused by inappropriate activation of R genes. Moreover, SDG8 is required for basal and R protein-mediated pathogen resistance in Arabidopsis, revealing the importance of chromatin remodeling as a key process in plant innate immunity.

  8. Next-Generation Immune Repertoire Sequencing as a Clue to Elucidate the Landscape of Immune Modulation by Host–Gut Microbiome Interactions

    Directory of Open Access Journals (Sweden)

    Tatsuo Ichinohe

    2018-04-01

    Full Text Available The human immune system is a fine network consisted of the innumerable numbers of functional cells that balance the immunity and tolerance against various endogenous and environmental challenges. Although advances in modern immunology have revealed a role of many unique immune cell subsets, technologies that enable us to capture the whole landscape of immune responses against specific antigens have been not available to date. Acquired immunity against various microorganisms including host microbiome is principally founded on T cell and B cell populations, each of which expresses antigen-specific receptors that define a unique clonotype. Over the past several years, high-throughput next-generation sequencing has been developed as a powerful tool to profile T- and B-cell receptor repertoires in a given individual at the single-cell level. Sophisticated immuno-bioinformatic analyses by use of this innovative methodology have been already implemented in clinical development of antibody engineering, vaccine design, and cellular immunotherapy. In this article, we aim to discuss the possible application of high-throughput immune receptor sequencing in the field of nutritional and intestinal immunology. Although there are still unsolved caveats, this emerging technology combined with single-cell transcriptomics/proteomics provides a critical tool to unveil the previously unrecognized principle of host–microbiome immune homeostasis. Accumulation of such knowledge will lead to the development of effective ways for personalized immune modulation through deeper understanding of the mechanisms by which the intestinal environment affects our immune ecosystem.

  9. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation.

    Science.gov (United States)

    Cox, D; Kerrigan, S W; Watson, S P

    2011-06-01

    It has become clear that platelets are not simply cell fragments that plug the leak in a damaged blood vessel; they are, in fact, also key components in the innate immune system, which is supported by the presence of Toll-like receptors (TLRs) on platelets. As the cells that respond first to a site of injury, they are well placed to direct the immune response to deal with any resulting exposure to pathogens. The response is triggered by bacteria binding to platelets, which usually triggers platelet activation and the secretion of antimicrobial peptides. The main platelet receptors that mediate these interactions are glycoprotein (GP)IIb-IIIa, GPIbα, FcγRIIa, complement receptors, and TLRs. This process may involve direct interactions between bacterial proteins and the receptors, or can be mediated by plasma proteins such as fibrinogen, von Willebrand factor, complement, and IgG. Here, we review the variety of interactions between platelets and bacteria, and look at the potential for inhibiting these interactions in diseases such as infective endocarditis and sepsis. © 2011 International Society on Thrombosis and Haemostasis.

  10. Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue

    International Nuclear Information System (INIS)

    Ogawa, Y.; Imanaka, K.; Ashida, C.; Takashima, H.; Imajo, Y.; Kimura, S.

    1983-01-01

    Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue was studied on the transplanted MM46 tumor of female C3H/He mice after radiotherapy. MM46 tumor cells were inoculated into the right hind paws of mice. On the 5th day, irradiation with the dose irradiated tumor tissue (2000 rad on the fifth day), were injected into the left hind paws of the tumor-bearing mice. Effectiveness of this active specific immunotherapy against tumor was evaluated by the regression of tumor and survival rate of mice. Tumor was markedly regressed and survival rate was significantly increased by the active specific immunitherapy

  11. Activity modulation of microbial enzymes by llama (Lama glama) heavy-chain polyclonal antibodies during in vivo immune responses.

    Science.gov (United States)

    Ferrari, A; Weill, F S; Paz, M L; Cela, E M; González Maglio, D H; Leoni, J

    2012-03-01

    Since they were first described in 1993, it was found that recombinant variable fragments (rVHHs) of heavy-chain antibodies (HCAbs) from Camelidae have unusual biophysical properties, as well as a special ability to interact with epitopes that are cryptic for conventional Abs. It has been assumed that in vivo raised polyclonal HCAbs (pHCAbs) should behave in a similar manner than rVHHs; however, this assumption has not been tested sufficiently. Furthermore, our own preliminary work on a single serum sample from a llama immunized with a β-lactamase, has suggested that pHCAbs have no special ability to down-modulate catalytic activity. In this work, we further explored the interaction of pHCAbs from four llamas raised against two microbial enzymes and analyzed it within a short and a long immunization plan. The relative contribution of pHCAbs to serum titer was found to be low compared with that of the most abundant conventional subisotype (IgG(1)), during the whole immunization schedule. Furthermore, pHCAbs not only failed to inhibit the enzymes, but also activated one of them. Altogether, these results suggest that raising high titer inhibitory HCAbs is not a straightforward strategy - neither as a biotechnological strategy nor in the biological context of an immune response against infection - as raising inhibitory rVHHs.

  12. Survival-associated heterogeneity of marker-defined perivascular cells in colorectal cancer

    DEFF Research Database (Denmark)

    Mezheyeuski, Artur; Lindh, Maja Bradic; Guren, Tormod Kyrre

    2016-01-01

    of vessel characteristics and PC, which was applied to two collections of human metastatic colorectal cancer (mCRC).Initial analyses identified marker-defined subsets of PC, including cells expressing PDGFR-β or α-SMA or both markers. PC subsets were largely independently expressed in a manner unrelated......Perivascular cells (PC) were recently implied as regulators of metastasis and immune cell activity. Perivascular heterogeneity in clinical samples, and associations with other tumor features and outcome, remain largely unknown.Here we report a novel method for digital quantitative analyses...... to vessel density and size. Association studies implied specific oncogenic mutations in malignant cells as determinants of PC status. Semi-quantitative and digital-image-analyses-based scoring of the NORDIC-VII cohort identified significant associations between low expression of perivascular PDGFR-α and -β...

  13. Surface Expression of TGF-β Docking Receptor GARP Promotes Oncogenesis and Immune Tolerance in Breast Cancer

    Science.gov (United States)

    Metelli, Alessandra; Wu, Bill X; Fugle, Caroline W; Rachidi, Saleh; Sun, Shaoli; Zhang, Yongliang; Wu, Jennifer; Tomlinson, Stephen; Howe, Philip; Yang, Yi; Garrett-Mayer, Elizabeth; Liu, Bei; Li, Zihai

    2016-01-01

    GARP encoded by the Lrrc32 gene is the cell surface docking receptor for latent TGF-β which is expressed naturally by platelets and regulatory T cells. Although Lrrc32 is amplified frequently in breast cancer, the expression and relevant functions of GARP in cancer have not been explored. Here we report that GARP exerts oncogenic effects, promoting immune tolerance by enriching and activating latent TGF-β in the tumor microenvironment. We found that human breast, lung and colon cancers expressed GARP aberrantly. In genetic studies in normal mammary gland epithelial and carcinoma cells, GARP expression increased TGF-β bioactivity and promoted malignant transformation in immune deficient mice. In breast carcinoma-bearing mice that were immune competent, GARP overexpression promoted Foxp3+ regulatory T cell activity, which in turn contributed to enhancing cancer progression and metastasis. Notably, administration of a panel of GARP-specific monoclonal antibodies limited metastasis in an orthotopic model of human breast cancer. Overall, these results define the oncogenic effects of the GARP-TGF-β axis in the tumor microenvironment and suggest mechanisms that might be exploited for diagnostic and therapeutic purposes. PMID:27913437

  14. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans.

    Science.gov (United States)

    Kox, Matthijs; van Eijk, Lucas T; Zwaag, Jelle; van den Wildenberg, Joanne; Sweep, Fred C G J; van der Hoeven, Johannes G; Pickkers, Peter

    2014-05-20

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot be voluntarily influenced. Herein, we evaluated the effects of a training program on the autonomic nervous system and innate immune response. Healthy volunteers were randomized to either the intervention (n = 12) or control group (n = 12). Subjects in the intervention group were trained for 10 d in meditation (third eye meditation), breathing techniques (i.a., cyclic hyperventilation followed by breath retention), and exposure to cold (i.a., immersions in ice cold water). The control group was not trained. Subsequently, all subjects underwent experimental endotoxemia (i.v. administration of 2 ng/kg Escherichia coli endotoxin). In the intervention group, practicing the learned techniques resulted in intermittent respiratory alkalosis and hypoxia resulting in profoundly increased plasma epinephrine levels. In the intervention group, plasma levels of the anti-inflammatory cytokine IL-10 increased more rapidly after endotoxin administration, correlated strongly with preceding epinephrine levels, and were higher. Levels of proinflammatory mediators TNF-α, IL-6, and IL-8 were lower in the intervention group and correlated negatively with IL-10 levels. Finally, flu-like symptoms were lower in the intervention group. In conclusion, we demonstrate that voluntary activation of the sympathetic nervous system results in epinephrine release and subsequent suppression of the innate immune response in humans in vivo. These results could have important implications for the treatment of conditions associated with excessive or persistent inflammation, such as autoimmune diseases.

  15. Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium.

    Science.gov (United States)

    Pukkila-Worley, Read; Ausubel, Frederick M

    2012-02-01

    Intestinal epithelial cells provide an essential line of defense for Caernohabditis elegans against ingested pathogens. Because nematodes consume microorganisms as their food source, there has presumably been selection pressure to evolve and maintain immune defense mechanisms within the intestinal epithelium. Here we review recent advances that further define the immune signaling network within these cells and suggest mechanisms used by the nematode to monitor for infection. In reviewing studies of pathogenesis that use this simple model system, we hope to illustrate some of the basic principles of epithelial immunity that may also be of relevance in higher order hosts. Copyright © 2012. Published by Elsevier Ltd.

  16. Incomplete immune recovery in HIV infection

    DEFF Research Database (Denmark)

    Gaardbo, Julie C; Hartling, Hans J; Gerstoft, Jan

    2012-01-01

    -infected patients do not achieve optimal immune reconstitution despite suppression of viral replication. These patients are referred to as immunological nonresponders (INRs). INRs present with severely altered immunological functions, including malfunction and diminished production of cells within lymphopoetic...... tissue, perturbed frequencies of immune regulators such as regulatory T cells and Th17 cells, and increased immune activation, immunosenescence, and apoptosis. Importantly, INRs have an increased risk of morbidity and mortality compared to HIV-infected patients with an optimal immune reconstitution....... Additional treatment to HAART that may improve immune reconstitution has been investigated, but results thus far have proved disappointing. The reason for immunological nonresponse is incompletely understood. This paper summarizes the known and unknown factors regarding the incomplete immune reconstitution...

  17. Zinc and immunity: An essential interrelation.

    Science.gov (United States)

    Maares, Maria; Haase, Hajo

    2016-12-01

    The significance of the essential trace element zinc for immune function has been known for several decades. Zinc deficiency affects immune cells, resulting in altered host defense, increased risk of inflammation, and even death. The micronutrient zinc is important for maintenance and development of immune cells of both the innate and adaptive immune system. A disrupted zinc homeostasis affects these cells, leading to impaired formation, activation, and maturation of lymphocytes, disturbed intercellular communication via cytokines, and weakened innate host defense via phagocytosis and oxidative burst. This review outlines the connection between zinc and immunity by giving a survey on the major roles of zinc in immune cell function, and their potential consequences in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Immune responses to metastases

    International Nuclear Information System (INIS)

    Herberman, R.B.; Wiltrout, R.H.; Gorelik, E.

    1987-01-01

    The authors present the changes in the immune system in tumor-bearing hosts that may influence the development of progression of metastases. Included are mononuclear cell infiltration of metastases; alterations in natural resistance mediated by natural killer cells and macrophages; development of specific immunity mediated by T-lymphocytes or antibodies; modulation of tumor-associated antigen expression; and the down-regulation of the immune response to the tumor by several suppressor mechanisms; the augmentation of the immune response and its potential for therapeutic application; includes the prophylaxis of metastases formation by NK cells; the therapy of metastases by augmentation NK-, macrophage-, or T-lymphocyte-mediated responses by biological response modifiers; and the transfer of anticancer activity by cytoxic T-lymphocytes or immunoconjugates of monoclonal antibodies with specificity for tumors

  19. Immunity to poliovirus after infection and vaccination

    NARCIS (Netherlands)

    Herremans, Martina Maria Petronella Theresia

    1999-01-01

    The aim of this thesis was defined as the study of the contribution of IPV vaccination to the induction of a) protection against poliovirus infection and b) mucosal immunity.We have described the development of new immunological tools for the rapid detection of poliovirus-specific antibodies and

  20. Innate immune signalling at the intestinal epithelium in homeostasis and disease

    Science.gov (United States)

    Pott, Johanna; Hornef, Mathias

    2012-01-01

    The intestinal epithelium—which constitutes the interface between the enteric microbiota and host tissues—actively contributes to the maintenance of mucosal homeostasis and defends against pathogenic microbes. The recognition of conserved microbial products by cytosolic or transmembrane pattern recognition receptors in epithelial cells initiates signal transduction and influences effector cell function. However, the signalling pathways, effector molecules and regulatory mechanisms involved are not yet fully understood, and the functional outcome is poorly defined. This review analyses the complex and dynamic role of intestinal epithelial innate immune recognition and signalling, on the basis of results in intestinal epithelial cell-specific transgene or gene-deficient animals. This approach identifies specific epithelial cell functions within the diverse cellular composition of the mucosal tissue, in the presence of the complex and dynamic gut microbiota. These insights have thus provided a more comprehensive understanding of the role of the intestinal epithelium in innate immunity during homeostasis and disease. PMID:22801555

  1. Roles of Zinc Signaling in the Immune System.

    Science.gov (United States)

    Hojyo, Shintaro; Fukada, Toshiyuki

    2016-01-01

    Zinc (Zn) is an essential micronutrient for basic cell activities such as cell growth, differentiation, and survival. Zn deficiency depresses both innate and adaptive immune responses. However, the precise physiological mechanisms of the Zn-mediated regulation of the immune system have been largely unclear. Zn homeostasis is tightly controlled by the coordinated activity of Zn transporters and metallothioneins, which regulate the transport, distribution, and storage of Zn. There is growing evidence that Zn behaves like a signaling molecule, facilitating the transduction of a variety of signaling cascades in response to extracellular stimuli. In this review, we highlight the emerging functional roles of Zn and Zn transporters in immunity, focusing on how crosstalk between Zn and immune-related signaling guides the normal development and function of immune cells.

  2. Pretreatment antigen-specific immunity and regulation - association with subsequent immune response to anti-tumor DNA vaccination.

    Science.gov (United States)

    Johnson, Laura E; Olson, Brian M; McNeel, Douglas G

    2017-07-18

    Immunotherapies have demonstrated clinical benefit for many types of cancers, however many patients do not respond, and treatment-related adverse effects can be severe. Hence many efforts are underway to identify treatment predictive biomarkers. We have reported the results of two phase I trials using a DNA vaccine encoding prostatic acid phosphatase (PAP) in patients with biochemically recurrent prostate cancer. In both trials, persistent PAP-specific Th1 immunity developed in some patients, and this was associated with favorable changes in serum PSA kinetics. In the current study, we sought to determine if measures of antigen-specific or antigen non-specific immunity were present prior to treatment, and associated with subsequent immune response, to identify possible predictive immune biomarkers. Patients who developed persistent PAP-specific, IFNγ-secreting immune responses were defined as immune "responders." The frequency of peripheral T cell and B cell lymphocytes, natural killer cells, monocytes, dendritic cells, myeloid derived suppressor cells, and regulatory T cells were assessed by flow cytometry and clinical laboratory values. PAP-specific immune responses were evaluated by cytokine secretion in vitro, and by antigen-specific suppression of delayed-type hypersensitivity to a recall antigen in an in vivo SCID mouse model. The frequency of peripheral blood cell types did not differ between the immune responder and non-responder groups. Non-responder patients tended to have higher PAP-specific IL-10 production pre-vaccination (p = 0.09). Responder patients had greater preexisting PAP-specific bystander regulatory responses that suppressed DTH to a recall antigen (p = 0.016). While our study population was small (n = 38), these results suggest that different measures of antigen-specific tolerance or regulation might help predict immunological outcome from DNA vaccination. These will be prospectively evaluated in an ongoing randomized, phase II trial.

  3. Aryl Hydrocarbon Receptor (AhR Modulates Cockroach Allergen-Induced Immune Responses through Active TGFβ1 Release

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2014-01-01

    Full Text Available Background. Aryl hydrocarbon receptor (AhR, a multifunctional regulator that senses and responds to environmental stimuli, plays a role in normal cell development and immune regulation. Recent evidence supports a significant link between environmental exposure and AhR in the development of allergic diseases. We sought to investigate whether AhR plays a role in mediating cockroach allergen-induced allergic immune responses. Methods. AhR expression in human lung fibroblasts from asthmatic and healthy individuals and in cockroach extract (CRE treated human lung fibroblasts (WI-38 was examined. The role of AhR in modulating CRE induced TGFβ1 production was investigated by using AhR agonist, TCDD, antagonist CH122319, and knockdown of AhR. The role of latent TGFβ1 binding protein-1 (LTBP1 in mediating TCDD induced active TGFβ1 release was also examined. Results. AhR expression was higher in airway fibroblasts from asthmatic subjects as compared to healthy controls. AhR in fibroblasts was activated by TCDD with an increased expression of cyp1a1 and cyp1b1. Increased AhR expression was observed in CRE-treated fibroblasts. Importantly, CRE induced TGFβ1 production in fibroblasts was significantly enhanced by TCDD but inhibited by CH122319. Reduced TGFβ1 production was further confirmed in fibroblasts with AhR knockdown. Moreover, AhR knockdown inhibited CRE induced fibroblast differentiation. Furthermore, TCDD induced active TGFβ1 release was significantly inhibited by LTBP1 knockdown. Conclusion. These results provide evidence for the role of AhR in modulating cockroach allergen-induced immune responses through controlling the active TGFβ1 release, suggesting a possible synergistic effect between exposure to allergens and environmental chemicals on the development of allergic diseases.

  4. The potential for castration of domestic animals by active immunization against GnRH

    International Nuclear Information System (INIS)

    Gonzalez, A.; Allen, A.F.; Murphy, B.D.; Mapletoft, R.J.; Cohen, R.

    1990-01-01

    Trials have been carried out in sheep and beef cattle in attempts to induce immunity against gonadotropin releasing hormone (GnRH), with the objective of using immunocastration as a replacement for surgical castration. Of the protein carriers used, ovalbumin and horse albumin yielded highest responses, with keyhole limpet haemocyanin (KLH) being a potent substitute for both. Different adjuvants were also used. In these trials, highest titre responses were obtained using Freund's complete (FCA) or Freund's incomplete (FIA) adjuvant in cattle and sheep. Although no adjuvant was found to yield as high a response as FCA and Alhydrogel, an aluminium hydroxide adjuvant generally yielded a high response in cattle and sheep. The results from the trials in beef calves indicate that active immunization against GnRH does not affect average daily gains, total body weight gain or carcass dressing percentage. The results suggest the potential of immunocastration as a substitute for surgical castration in cattle and sheep. (author). 30 refs, 8 figs, 2 tabs

  5. Substrate-dependent denitrification of abundant probe-defined denitrifying bacteria in activated sludge.

    Science.gov (United States)

    Morgan-Sagastume, Fernando; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer

    2008-11-01

    The denitrification capacity of different phylogenetic bacterial groups was investigated on addition of different substrates in activated sludge from two nutrient-removal plants. Nitrate/nitrite consumption rates (CRs) were calculated from nitrate and nitrite biosensor, in situ measurements. The nitrate/nitrite CRs depended on the substrate added, and acetate alone or combined with other substrates yielded the highest rates (3-6 mg N gVSS(-1) h(-1)). The nitrate CRs were similar to the nitrite CRs for most substrates tested. The structure of the active denitrifying population was investigated using heterotrophic CO2 microautoradiography (HetCO2-MAR) and FISH. Probe-defined denitrifiers appeared as specialized substrate utilizers despite acetate being preferentially used by most of them. Azoarcus and Accumulibacter abundance in the two different sludges was related to differences in their substrate-specific nitrate/nitrite CRs. Aquaspirillum-related bacteria were the most abundant potential denitrifiers (c. 20% of biovolume); however, Accumulibacter (3-7%) and Azoarcus (2-13%) may have primarily driven denitrification by utilizing pyruvate, ethanol, and acetate. Activated sludge denitrification was potentially conducted by a diverse, versatile population including not only Betaproteobacteria (Aquaspirillum, Thauera, Accumulibacter, and Azoarcus) but also some Alphaproteobacteria and Gammaproteobacteria, as indicated by the assimilation of 14CO2 by these probe-defined groups with a complex substrate mixture as an electron donor and nitrite as an electron acceptor in HetCO2-MAR-FISH tests.

  6. Diuretics Prime Plant Immunity in Arabidopsis thaliana

    Science.gov (United States)

    Noutoshi, Yoshiteru; Ikeda, Mika; Shirasu, Ken

    2012-01-01

    Plant activators are agrochemicals that activate the plant immune system, thereby enhancing disease resistance. Due to their prophylactic and durable effects on a wide spectrum of diseases, plant activators can provide synergistic crop protection when used in combination with traditional pest controls. Although plant activators have achieved great success in wet-rice farming practices in Asia, their use is still limited. To isolate novel plant activators applicable to other crops, we screened a chemical library using a method that can selectively identify immune-priming compounds. Here, we report the isolation and characterization of three diuretics, bumetanide, bendroflumethiazide and clopamide, as immune-priming compounds. These drugs upregulate the immunity-related cell death of Arabidopsis suspension-cultured cells induced with an avirulent strain of Pseudomonas syringae pv. tomato in a concentration-dependent manner. The application of these compounds to Arabidopsis plants confers disease resistance to not only the avirulent but also a virulent strain of the pathogen. Unlike salicylic acid, an endogenous phytohormone that governs disease resistance in response to biotrophic pathogens, the three diuretic compounds analyzed here do not induce PR1 or inhibit plant growth, showing potential as lead compounds in a practical application. PMID:23144763

  7. Growth versus immunity--a redirection of the cell cycle?

    Science.gov (United States)

    Eichmann, Ruth; Schäfer, Patrick

    2015-08-01

    Diseases caused by plant pathogens significantly reduce growth and yield in agricultural crop production. Raising immunity in crops is therefore a major aim in breeding programs. However, efforts to enhance immunity are challenged by the occurrence of growth inhibition triggered by immunity that can be as detrimental as diseases. In this review, we will propose molecular models to explain the inhibitory growth-immunity crosstalk. We will briefly discuss why the resource reallocation model might not represent the driving force for the observed growth-immunity trade-offs. We suggest a model in which immunity redirects and initiates hormone signalling activities that can impair plant growth by antagonising cell cycle regulation and meristem activities. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Alpha emitters activity measurement using the defined solid angle method

    International Nuclear Information System (INIS)

    Blanchis, P.

    1983-01-01

    The defined solid angle counting method can reach a very high accuracy, specially for heavy ions as alpha particles emitted by a radioactive source. The activity measurement of such sources with a relative uncertainty of the order of 0.01% is investigated. Such an accuracy is available only under suitable conditions: the radiation emitted by the source must be isotropic and all the particles emitted in the effective solid angle must be detected. The efficiency detection value must be equal to unity and phenomena such as absorption or scattering must be null. It is shown that corrections often become necessary. All parameters which can influence the measurements are studied [fr

  9. Effects of polio eradication activities on routine immunization: lessons from the 2013 outbreak response in Somali region of Ethiopia

    OpenAIRE

    Tafesse, Belete; Tekle, Ephrem; Wondwossen, Liya; Bogale, Mengistu; Fiona, Braka; Nsubuga, Peter; Tomas, Karengera; Kassahun, Aron; Kathleen, Gallagher; Teka, Aschalew

    2017-01-01

    Introduction Ethiopia experienced several WPV importations with a total of 10 WPV1 cases confirmed during the 2013 outbreak alone before it is closed in 2015. We evaluated supplemental immunization activities (SIAs), including lessons learned for their effect on the routine immunization program during the 2013 polio outbreak in Somali regional state. Methods We used descriptive study to review documents and analyse routine health information system reports from the polio outbreak affected Som...

  10. Changes in proHB-EGF expression after functional activation of the immune system cells

    Directory of Open Access Journals (Sweden)

    T. O. Chudina

    2017-12-01

    Full Text Available The level of proHB-EGF expression on J774, Raji, KG-1 cells derived from different types of human and mouse immune system cells under the standard in vitro culture conditions and during functional activation of these cells was investigated. Changes in the proHB-EGF expression on the cell surface were found to depend on the density of cell population, the content of fetal bovine serum in the culture medium, the effect of mitogenic factors – bacterial lipopolysaccharide, an inactive full-size form of diphtheria toxin (CRM197 and recombinant soluble HB-EGF – rsHB-EGF. The results obtained are important for the understanding of the functional role of proHB-EGF receptor on the surface of macrophage-like cells and B lymphocytes and indicate the involvement of this receptor in immune response regulation in an organism.

  11. Low-level radiation effects on immune cells

    International Nuclear Information System (INIS)

    Makinodan, T.

    1995-01-01

    The purpose of this study was to characterize the effects of chronic low-dose ionizing radiation (LDR) on murine immune cells. Previously, it had been reported that LDR enhances the proliferative activity of T cells in vitro and delays the growth of transplantable immunogenic tumors in vivo. This suggests that LDR eliminates immune suppressor cells, which downregulates immune response and/or adoptively upregulates the responsiveness of immune effector cells. It had also been reported that human lymphocytes become refractive to high dose radiation-induced chromosomal aberrations by pretreating mitotically active lymphocytes in vitro with very low doses of ionizing radiation, and the adaptive effect can be abrogated by cycloheximide. This suggests that protein synthesis is required for lymphocytes to respond adoptively to LDR

  12. Seasonality influences cuticle melanization and immune defense in a cricket: support for a temperature-dependent immune investment hypothesis in insects

    Energy Technology Data Exchange (ETDEWEB)

    Fedorka, K. M. [Univ. of Central Florida, Orlando, FL (United States); Copeland, E. K. [Univ. of Central Florida, Orlando, FL (United States); Winterhalter, W. E. [Univ. of Central Florida, Orlando, FL (United States)

    2013-07-18

    To improve thermoregulation in colder environments, insects are expected to darken their cuticles with melanin via the phenoloxidase cascade, a phenomenon predicted by the thermal melanin hypothesis. However, the phenoloxidase cascade also plays a significant role in insect immunity, leading to the additional hypothesis that the thermal environment indirectly shapes immune function via direct selection on cuticle color. Support for the latter hypothesis comes from the cricket Allonemobius socius, where cuticle darkness and immune-related phenoloxidase activity increase with latitude. However, thermal environments vary seasonally as well as geographically, suggesting that seasonal plasticity in immunity may also exist. Although seasonal fluctuations in vertebrate immune function are common (because of flux in breeding or resource abundance), seasonality in invertebrate immunity has not been widely explored. We addressed this possibility by rearing crickets in simulated summer and fall environments and assayed their cuticle color and immune function. Prior to estimating immunity, crickets were placed in a common environment to minimize metabolic rate differences. Individuals reared under fall-like conditions exhibited darker cuticles, greater phenoloxidase activity and greater resistance to the bacteria Serratia marcescens. These data support the hypothesis that changes in the thermal environment modify cuticle color, which indirectly shapes immune investment through pleiotropy. This hypothesis may represent a widespread mechanism governing immunity in numerous systems, considering that most insects operate in seasonally and geographically variable thermal environments.

  13. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors.

    Science.gov (United States)

    Bhattacharyya, Suchita; Zagórska, Anna; Lew, Erin D; Shrestha, Bimmi; Rothlin, Carla V; Naughton, John; Diamond, Michael S; Lemke, Greg; Young, John A T

    2013-08-14

    Upon activation by the ligands Gas6 and Protein S, Tyro3/Axl/Mer (TAM) receptor tyrosine kinases promote phagocytic clearance of apoptotic cells and downregulate immune responses initiated by Toll-like receptors and type I interferons (IFNs). Many enveloped viruses display the phospholipid phosphatidylserine on their membranes, through which they bind Gas6 and Protein S and engage TAM receptors. We find that ligand-coated viruses activate TAM receptors on dendritic cells (DCs), dampen type I IFN signaling, and thereby evade host immunity and promote infection. Upon virus challenge, TAM-deficient DCs display type I IFN responses that are elevated in comparison to wild-type cells. As a consequence, TAM-deficient DCs are relatively resistant to infection by flaviviruses and pseudotyped retroviruses, but infection can be restored with neutralizing type I IFN antibodies. Correspondingly, a TAM kinase inhibitor antagonizes the infection of wild-type DCs. Thus, TAM receptors are engaged by viruses in order to attenuate type I IFN signaling and represent potential therapeutic targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. The potential impact of low dose ionizing γ-radiation on immune response activity up-regulated by Ikaros in IM-9 B lymphocytes

    International Nuclear Information System (INIS)

    Kim Sung Jn; Jang, Seon A; Yang, Kwang Hee; Kim, Ji Young; Kim, Cha Soon; Nam, Seon Young; Jeong, Mee Seon; Jin, Young Woo

    2011-01-01

    The biological effects of low dose ionizing radiation (LDIR) remain insufficiently understood. We examined for the scientific evidence to show the biological effects of LDIR using radiation-sensitive immune cells. We found that Ikaros protein was responded to low dose-dependent effects of gamma radiation in IM-9 B lymphocytes. Ikaros encodes zinc finger transcription factors that is important regulators of a hematopoietic stem cells (HSCs) progression to the B lymphoid lineage development, differentiation and proliferation. In this study, we observed that cell proliferation was enhanced from 10% to 20% by LDIR (0.05 Gy) in IM-9 B lymphocytes. The Ikaros protein was phosphorylated in its serine/threonine (S/T) region and decreased its DNA binding activity in the cells exposed to LDIR. We found that Ikaros phosphorylation was up-regulated by CK2/AKT pathway and the residues of ser-304 and ser-306 in Ikaros was phosphorylated by LDIR. We also observed that Ikaros protein was localized from the nucleus to the cytoplasm after LDIR and bound with Autotaxin (ENPP2, ATX) protein, stimulating proliferation, migration and survival of immune cells. In addition, we found that the lysoPLD activity of ATX was dependent on Ikaros-ATX binding activity. These results indicate that the Ikaros is an important regulator of immune activation. Therefore, we suggest that low dose ionizing radiation can be considered as a beneficial effects, stimulating the activation of immune cells.

  15. The immune system in children with malnutrition - a systematic review

    DEFF Research Database (Denmark)

    Rytter, Maren Johanne Heilskov; Kolte, Lilian; Briend, André

    2014-01-01

    BACKGROUND: Malnourished children have increased risk of dying, with most deaths caused by infectious diseases. One mechanism behind this may be impaired immune function. However, this immune deficiency of malnutrition has not previously been systematically reviewed. OBJECTIVES: To review...... the scientific literature about immune function in children with malnutrition. METHODS: A systematic literature search was done in PubMed, and additional articles identified in reference lists and by correspondence with experts in the field. The inclusion criteria were studies investigating immune parameters...... in children aged 1-60 months, in relation to malnutrition, defined as wasting, underweight, stunting, or oedematous malnutrition. RESULTS: The literature search yielded 3402 articles, of which 245 met the inclusion criteria. Most were published between 1970 and 1990, and only 33 after 2003. Malnutrition...

  16. In Vitro Evaluation of Colloidal Silver on Immune Function: Antilymphoproliferative Activity

    Directory of Open Access Journals (Sweden)

    M. A. Franco-Molina

    2016-01-01

    Full Text Available Colloidal silver (AgC is currently used by humans and it can be internalized through inhalation, injection, ingestion, and dermal contact. However, there is limited information about immunological activity; more investigations using colloidal silver are needed. In the present study, the effects of AgC (17.5 ng/mL on immunological parameters (proliferation and immunophenotyping using human peripheral blood mononuclear cells (PBMC and macrophages (phagocytosis and cytotoxicity on leukemia and lymphoma cancer cell lines (1.75 to 17.5 ng/mL were investigated. AgC was observed to significantly (p<0.05 decrease interleukin-2 (IL-2 production and proliferation induced by phytohemagglutinin or concanavalin A in PBMC without affecting its cell viability but with cytotoxic effect on cancer cells. IL-2, IL-4, IL-6, IL-10, INF-γ, and IL-17A cytokines production and CD3+, CD3−CD19+, CD3+CD4+, CD3+CD8+, and CD16+CD56+ PBMC phenotypes were not affected by AgC. The present study demonstrates that colloidal silver is harmless and nontoxic to the immune system cells and its ability to interfere with the immune response by decreasing cell proliferation when stimulated with mitogens demonstrated the antilymphoproliferative potential of AgC.

  17. Innate and intrinsic antiviral immunity in skin.

    Science.gov (United States)

    Kawamura, Tatsuyoshi; Ogawa, Youichi; Aoki, Rui; Shimada, Shinji

    2014-09-01

    As the body's most exposed interface with the environment, the skin is constantly challenged by potentially pathogenic microbes, including viruses. To sense the invading viruses, various types of cells resident in the skin express many different pattern-recognition receptors (PRRs) such as C-type lectin receptors (CLRs), Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and cytosolic DNA sensors, that can detect the pathogen-associated molecular patterns (PAMPs) of the viruses. The detection of viral PAMPs initiates two major innate immune signaling cascades: the first involves the activation of the downstream transcription factors, such as interferon regulatory factors (IRFs), nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), which cooperate to induce the transcription of type I interferons and pro-inflammatory cytokines. The second signaling pathway involves the caspase-1-mediated processing of IL-1β and IL-18 through the formation of an inflammasome complex. Cutaneous innate immunity including the production of the innate cytokines constitutes the first line of host defence that limits the virus dissemination from the skin, and also plays an important role in the activation of adaptive immune response, which represents the second line of defence. More recently, the third immunity "intrinsic immunity" has emerged, that provides an immediate and direct antiviral defense mediated by host intrinsic restriction factors. This review focuses on the recent advances regarding the antiviral immune systems, highlighting the innate and intrinsic immunity against the viral infections in the skin, and describes how viral components are recognized by cutaneous immune systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. INDOLEAMINE 2,3-DIOXYGENASE (IDO AND IMMUNE TOLERANCE

    Directory of Open Access Journals (Sweden)

    Coma-del-Corral MJ

    2013-09-01

    Full Text Available SUMMARY: Indoleamine 2,3-dioxygenase (IDO is an intracellular and extrahepatic enzyme predominantly found in many cells, especially macrophages. Tryptophan degradation generates kynurenine, and this pathway of tryptophan metabolism is an effective mechanism for modulating the immune response. The IDO facilitates immune tolerance and is one of the main actors involved in the inhibition of cell proliferation, including activated T cells. IDO induces production of reactive oxygen species (ROS and nitric oxide (NO radicals. Several pathways involved in the regulation of immune response are regulated by redox mechanisms. Reactive oxygen and nitrogen species (ROS-RNS and other redox active molecules play key roles in immunity.

  19. Innate Immune Cytokines, Fibroblast Phenotypes, and Regulation of Extracellular Matrix in Lung.

    Science.gov (United States)

    Richards, Carl D

    2017-02-01

    Chronic inflammation can be caused by adaptive immune responses in autoimmune and allergic conditions, driven by a T lymphocyte subset balance (TH1, TH2, Th17, Th22, and/or Treg) and skewed cellular profiles in an antigen-specific manner. However, several chronic inflammatory diseases have no clearly defined adaptive immune mechanisms that drive chronicity. These conditions include those that affect the lung such as nonatopic asthma or idiopathic pulmonary fibrosis comprising significant health problems. The remodeling of extracellular matrix (ECM) causes organ dysfunction, and it is largely generated by fibroblasts as the major cell controlling net ECM. As such, these are potential targets of treatment approaches in the context of ECM pathology. Fibroblast phenotypes contribute to ECM and inflammatory cell accumulation, and they are integrated into chronic disease mechanisms including cancer. Evidence suggests that innate cytokine responses may be critical in nonallergic/nonautoimmune disease, and they enable environmental agent exposure mechanisms that are independent of adaptive immunity. Innate immune cytokines derived from macrophage subsets (M1/M2) and innate lymphoid cell (ILC) subsets can directly regulate fibroblast function. We also suggest that STAT3-activating gp130 cytokines can sensitize fibroblasts to the innate cytokine milieu to drive phenotypes and exacerbate existing adaptive responses. Here, we review evidence exploring innate cytokine regulation of fibroblast behavior.

  20. Innate immunity in vertebrates: an overview.

    Science.gov (United States)

    Riera Romo, Mario; Pérez-Martínez, Dayana; Castillo Ferrer, Camila

    2016-06-01

    Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation. © 2016 John Wiley & Sons Ltd.

  1. The flavonoid fisetin attenuates postischemic immune cell infiltration, activation and infarct size after transient cerebral middle artery occlusion in mice

    Science.gov (United States)

    Gelderblom, Mathias; Leypoldt, Frank; Lewerenz, Jan; Birkenmayer, Gabriel; Orozco, Denise; Ludewig, Peter; Thundyil, John; Arumugam, Thiruma V; Gerloff, Christian; Tolosa, Eva; Maher, Pamela; Magnus, Tim

    2012-01-01

    The development of the brain tissue damage in ischemic stroke is composed of an immediate component followed by an inflammatory response with secondary tissue damage after reperfusion. Fisetin, a flavonoid, has multiple biological effects, including neuroprotective and antiinflammatory properties. We analyzed the effects of fisetin on infarct size and the inflammatory response in a mouse model of stroke, temporary middle cerebral artery occlusion, and on the activation of immune cells, murine primary and N9 microglial and Raw264.7 macrophage cells and human macrophages, in an in vitro model of inflammatory immune cell activation by lipopolysaccharide (LPS). Fisetin not only protected brain tissue against ischemic reperfusion injury when given before ischemia but also when applied 3 hours after ischemia. Fisetin also prominently inhibited the infiltration of macrophages and dendritic cells into the ischemic hemisphere and suppressed the intracerebral immune cell activation as measured by intracellular tumor necrosis factor α (TNFα) production. Fisetin also inhibited LPS-induced TNFα production and neurotoxicity of macrophages and microglia in vitro by suppressing nuclear factor κB activation and JNK/Jun phosphorylation. Our findings strongly suggest that the fisetin-mediated inhibition of the inflammatory response after stroke is part of the mechanism through which fisetin is neuroprotective in cerebral ischemia. PMID:22234339

  2. PPARgamma in immunity and inflammation: cell types and diseases.

    Science.gov (United States)

    Széles, Lajos; Töröcsik, Dániel; Nagy, László

    2007-08-01

    The lipid activated transcription factor, PPARgamma appears to have multiple functions in the immune system. There are several cell types expressing the receptor, most prominently antigen presenting cells, such as macrophages and dendritic cells. The receptor's activation leads to primary transcriptional activation of many, mostly lipid metabolism-related genes. However, gene regulation also occurs on immunity and inflammation-related genes. Key questions are: in what way lipid metabolism and immune regulation are connected and how activation and/or repression of gene expression may modulate inflammatory and anti-inflammatory responses and in what way can these be utilized in therapy. Here we provide a cell type and disease centric review on the role of this lipid activated transcription factor in the various cells of the immune system it is expressed in, and in some major inflammatory diseases such as atherosclerosis, inflammatory bowel disease and rheumatoid arthritis.

  3. IL-22: An Evolutionary Missing-Link Authenticating the Role of the Immune System in Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Pawan Kumar, Kamalakannan Rajasekaran, Jeanne M Palmer, Monica S Thakar, Subramaniam Malarkannan

    2013-01-01

    Full Text Available Tissue regeneration is a critical component of organ maintenance. The ability of lymphocytes to kill pathogen-infected cells has been well-studied. However, the necessity for lymphocytes to participate in reconstruction of destroyed tissues has not been explored until recently. Interleukin (IL-22, a newly defined cytokine exclusively produced by subsets of lymphocytes, provides the strongest proof yet for the tissue regenerative potentials of the immune system. IL-22 plays an obligatory role in epithelial homeostasis in the gut, liver and lung. The receptor for IL-22 (IL-22R1 and IL-10R2 is predominantly expressed by epithelial cells. While the pro-inflammatory effect is questioned, the pro-constructive potential of IL-22 is well established. It is evident from the response to IL-22, that epithelial cells not only produce anti-microbial peptides but also actively proliferate. Aryl hydrocarbon receptor (AhR and retinoic acid-related orphan receptor (RORγt transcription factor are required for IL-22 generation from Lymphoid Tissue inducer cells LTi, Th22 and NK-like cells. However, IL-22 production from conventional NK cells is independent of AhR and RORγt. In this review, we present a case for a paradigm shift in how we define the function of the immune system. This would include tissue regeneration as a legitimate immune function.

  4. The taktivine immune correction influence on the immune status of an irradiated organism

    International Nuclear Information System (INIS)

    Zhetpisbaev, B.A.; Mynzhanov, M.P.

    1996-01-01

    The taktivin immune correction action on irradiated organism immune system is studied. There were two series of experiments with 50 animals in each serial. The intacted and irradiated animals served as control ones. Irradiated animals have got the taktivin course 1,5-2,0 μg each 1 kg of mass intraperitoneally, during 3 days. Under tactivin action the immunity's T-sells quality and quantitative ability has been increased, and the lymphoid cells in the bone morrow and thymus have been normalized, and its quantity in spleen and small intestine's lymph nodes have been rise. The activation of energetic exchange within spleen has being carried out

  5. Cathelicidin-like helminth defence molecules (HDMs: absence of cytotoxic, anti-microbial and anti-protozoan activities imply a specific adaptation to immune modulation.

    Directory of Open Access Journals (Sweden)

    Karine Thivierge

    Full Text Available Host defence peptides (HDPs are expressed throughout the animal and plant kingdoms. They have multifunctional roles in the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs that exhibit similar structural and biochemical characteristics to the HDPs. Here, we have analyzed the functional activities of four HDMs derived from Schistosoma mansoni and Fasciola hepatica and compared them to human, mouse, bovine and sheep HDPs. Unlike the mammalian HDPs the helminth-derived HDMs show no antimicrobial activity and are non-cytotoxic to mammalian cells (macrophages and red blood cells. However, both the mammalian- and helminth-derived peptides suppress the activation of macrophages by microbial stimuli and alter the response of B cells to cytokine stimulation. Therefore, we hypothesise that HDMs represent a novel family of HDPs that evolved to regulate the immune responses of their mammalian hosts by retaining potent immune modulatory properties without causing deleterious cytotoxic effects.

  6. Immunization in pregnancy.

    Science.gov (United States)

    Gruslin, Andrée; Steben, Marc; Halperin, Scott; Money, Deborah M; Yudin, Mark H

    2009-11-01

    To review the evidence and provide recommendations on immunization in pregnancy. Outcomes evaluated include effectiveness of immunization, risks and benefits for mother and fetus. The Medline and Cochrane databases were searched for articles published up to June 2008 on the topic of immunization in pregnancy. The evidence obtained was reviewed and evaluated by the Infectious Diseases Committee of the Society of Obstetricians and Gynaecologists of Canada (SOGC) under the leadership of the principal authors, and recommendations were made according to guidelines developed by the Canadian Task Force on Preventive Health Care. Implementation of the recommendations in this guideline should result in more appropriate immunization of pregnant and breastfeeding women, decreased risk of contraindicated immunization, and better disease prevention. The quality of evidence reported in this document has been assessed using the evaluation of evidence criteria in the Report of the Canadian Task Force on Preventive Health Care (Table 1). (1) All women of childbearing age should be evaluated for the possibility of pregnancy before immunization. (III-A). (2) Health care providers should obtain a relevant immunization history from all women accessing prenatal care. (III-A). (3) In general, live and/or live-attenuated virus vaccines should not be administered during pregnancy, as there is a, largely theoretical, risk to the fetus. (II-3B). (4) Women who have inadvertently received immunization with live or live-attenuated vaccines during pregnancy should not be counselled to terminate the pregnancy because of a teratogenic risk. (II-2A). (5) Non-pregnant women immunized with a live or live-attenuated vaccine should be counselled to delay pregnancy for at least four weeks. (III-B). (6) Inactivated viral vaccines, bacterial vaccines, and toxoids can be used safely in pregnancy. (II-1A). (7) Women who are breastfeeding can still be immunized (passive-active immunization, live or killed

  7. Report on WHO meeting on immunization in older adults: Geneva, Switzerland, 22–23 March 2017

    Science.gov (United States)

    Aguado, M. Teresa; Barratt, Jane; Beard, John R.; Blomberg, Bonnie B.; Chen, Wilbur H.; Hickling, Julian; Hyde, Terri B.; Jit, Mark; Jones, Rebecca; Poland, Gregory A.; Ortiz, Justin R.

    2018-01-01

    Many industrialized countries have implemented routine immunization policies for older adults, but similar strategies have not been widely implemented in low- and middle-income countries (LMICs). In March 2017, the World Health Organization (WHO) convened a meeting to identify policies and activities to promote access to vaccination of older adults, specifically in LMICs. Participants included academic and industry researchers, funders, civil society organizations, implementers of global health interventions, and stakeholders from developing countries with adult immunization needs. These experts reviewed vaccine performance in older adults, the anticipated impact of adult vaccination programs, and the challenges and opportunities of building or strengthening an adult and older adult immunization platforms. Key conclusions of the meeting were that there is a need for discussion of new opportunities for vaccination of all adults as well as for vaccination of older adults, as reflected in the recent shift by WHO to a life-course approach to immunization; that immunization in adults should be viewed in the context of a much broader model based on an individual’s abilities rather than chronological age; and that immunization beyond infancy is a global priority that can be successfully integrated with other interventions to promote healthy ageing. As WHO is looking ahead to a global Decade of Healthy Ageing starting in 2020, it will seek to define a roadmap for interdisciplinary collaborations to integrate immunization with improving access to preventive and other healthcare interventions for adults worldwide. PMID:29336923

  8. Anti-viral drug treatment along with immune activator IL-2: a control-based mathematical approach for HIV infection

    Science.gov (United States)

    Nath Chatterjee, Amar; Roy, Priti Kumar

    2012-02-01

    Recent development in antiretroviral treatment against HIV can help AIDS patients to fight against HIV. But the question that whether the disease is to be partially or totally eradicated from HIV infected individuals still remains unsolved. Usually, the most effective treatment for the disease is HAART which can only control the disease progression. But as the immune system becomes weak, the patients can not fight against other diseases. Immune cells are activated and proliferated by IL-2 after the identification of antigen. IL-2 production is impaired in HIV positive patients and intermitted administration of immune activator IL-2 together with HAART which is a more effective treatment to fight against the disease. Thus, its expediency is essential and is yet to be explored. In this article we anticipated a mathematical model of the effect of IL-2 together with RTIs therapy in HIV positive patients. Our analytical as well as numerical study shows that the optimal schedule of treatment for best result is to be obtained by systematic drug therapy. But at the last stage of treatment, the infection level raises again due to minimisation of drug dosage. Thus we study the perfect adherence of the drugs and found out if RTIs are taken with sufficient interval then for fixed interval of IL-2 therapy, certain amount of drug dosages may be able to sustain the immune system at pre-infection stage and the infected CD4+T cells are going towards extinction.

  9. Stress-induced enhancement of leukocyte trafficking into sites of surgery or immune activation

    Science.gov (United States)

    Viswanathan, Kavitha; Dhabhar, Firdaus S.

    2005-04-01

    Effective immunoprotection requires rapid recruitment of leukocytes into sites of surgery, wounding, infection, or vaccination. In contrast to immunosuppressive chronic stressors, short-term acute stressors have immunoenhancing effects. Here, we quantify leukocyte infiltration within a surgical sponge to elucidate the kinetics, magnitude, subpopulation, and chemoattractant specificity of an acute stress-induced increase in leukocyte trafficking to a site of immune activation. Mice acutely stressed before sponge implantation showed 200-300% higher neutrophil, macrophage, natural killer cell, and T cell infiltration than did nonstressed animals. We also quantified the effects of acute stress on lymphotactin- (LTN; a predominantly lymphocyte-specific chemokine), and TNF-- (a proinflammatory cytokine) stimulated leukocyte infiltration. An additional stress-induced increase in infiltration was observed for neutrophils, in response to TNF-, macrophages, in response to TNF- and LTN, and natural killer cells and T cells in response to LTN. These results show that acute stress initially increases trafficking of all major leukocyte subpopulations to a site of immune activation. Tissue damage-, antigen-, or pathogen-driven chemoattractants subsequently determine which subpopulations are recruited more vigorously. Such stress-induced increases in leukocyte trafficking may enhance immunoprotection during surgery, vaccination, or infection, but may also exacerbate immunopathology during inflammatory (cardiovascular disease or gingivitis) or autoimmune (psoriasis, arthritis, or multiple sclerosis) diseases. chemokine | psychophysiological stress | surgical sponge | wound healing | lymphotactin

  10. Immune system alterations in amyotrophic lateral sclerosis

    DEFF Research Database (Denmark)

    Hovden, H; Frederiksen, J L; Pedersen, S W

    2013-01-01

    Amyotrophic lateral sclerosis is a disease of which the underlying cause and pathogenesis are unknown. Cumulatative data clearly indicates an active participation by the immune system in the disease. An increasingly recognized theory suggests a non-cell autonomous mechanism, meaning that multiple...... cells working together are necessary for the pathogenesis of the disease. Observed immune system alterations could indicate an active participation in this mechanism. Damaged motor neurons are able to activate microglia, astrocytes and the complement system, which further can influence each other...... and contribute to neurodegeneration. Infiltrating peripheral immune cells appears to correlate with disease progression, but their significance and composition is unclear. The deleterious effects of this collaborating system of cells appear to outweigh the protective aspects, and revealing this interplay might...

  11. The Immune System in Irritable Bowel Syndrome

    Science.gov (United States)

    Cremon, Cesare; Carini, Giovanni; Bellacosa, Lara; Zecchi, Lisa; De Giorgio, Roberto; Corinaldesi, Roberto; Stanghellini, Vincenzo

    2011-01-01

    The potential relevance of systemic and gastrointestinal immune activation in the pathophysiology and symptom generation in the irritable bowel syndrome (IBS) is supported by a number of observations. Infectious gastroenteritis is the strongest risk factor for the development of IBS and increased rates of IBS-like symptoms have been detected in patients with inflammatory bowel disease in remission or in celiac disease patients on a gluten free diet. The number of T cells and mast cells in the small and large intestine of patients with IBS is increased in a large proportion of patients with IBS over healthy controls. Mediators released by immune cells and likely from other non-immune competent cells impact on the function of enteric and sensory afferent nerves as well as on epithelial tight junctions controlling mucosal barrier of recipient animals, isolated human gut tissues or cell culture systems. Antibodies against microbiota antigens (bacterial flagellin), and increased levels of cytokines have been detected systemically in the peripheral blood advocating the existence of abnormal host-microbial interactions and systemic immune responses. Nonetheless, there is wide overlap of data obtained in healthy controls; in addition, the subsets of patients showing immune activation have yet to be clearly identified. Gender, age, geographic differences, genetic predisposition, diet and differences in the intestinal microbiota likely play a role and further research has to be done to clarify their relevance as potential mechanisms in the described immune system dysregulation. Immune activation has stimulated interest for the potential identification of biomarkers useful for clinical and research purposes and the development of novel therapeutic approaches. PMID:22148103

  12. An immune origin of type 2 diabetes?

    DEFF Research Database (Denmark)

    Kolb, H; Mandrup-Poulsen, Thomas

    2005-01-01

    Subclinical, low-grade systemic inflammation has been observed in patients with type 2 diabetes and in those at increased risk of the disease. This may be more than an epiphenomenon. Alleles of genes encoding immune/inflammatory mediators are associated with the disease, and the two major...... environmental factors the contribute to the risk of type 2 diabetes-diet and physical activity-have a direct impact on levels of systemic immune mediators. In animal models, targeting of immune genes enhanced or suppressed the development of obesity or diabetes. Obesity is associated with the infiltration...... and proinflammatory activity of macrophages in adipose tissue, and immune mediators may be important regulators of insulin resistance, mitochondrial function, ectopic lipid storage and beta cell dysfunction or death. Intervention studies targeting these pathways would help to determine the contribution...

  13. The immune-enhancing activity of Cervus nippon mantchuricus extract (NGE) in RAW264.7 macrophage cells and immunosuppressed mice.

    Science.gov (United States)

    Hong, Se Hyang; Ku, Jin Mo; In Kim, Hyo; Ahn, Chang-Won; Park, Soo-Hyun; Seo, Hye Sook; Shin, Yong Cheol; Ko, Seong-Gyu

    2017-09-01

    Chemotherapeutics are often used to inhibit the proliferation of cancer cells. However, they can also harm healthy cells and cause side effects such as immunosuppression. Especially traditional oriental medicines long used in Asia, may be beneficial candidates for the alleviation of immune diseases. Cervus nippon mantchuricus extract (NGE) is currently sold in the market as coffee and health drinks. However, NGE was not widely investigated and efficacy remain unclear and essentially nothing is known about their potential immune-regulatory properties. As a result, NGE induced the differentiation of RAW264.7 macrophage cells. NGE-stimulated RAW264.7 macrophage cells elevated cytokines levels and NO production. NGE-stimulated RAW264.7 macrophage cells activated MAPKs and NF-κB signaling pathways. NGE encouraged the immuno-enhancing effects in immunosuppressed short-term treated with NGE mice model. NGE or Red ginseng encouraged the immuno-enhancing effects in immunosuppressed long-term treated with NGE mice model. Our data clearly show that NGE contains immune-enhancing activity and can be used to treat immunodeficiency. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism.

    Science.gov (United States)

    Hasan, Maroof; Gonugunta, Vijay K; Dobbs, Nicole; Ali, Aktar; Palchik, Guillermo; Calvaruso, Maria A; DeBerardinis, Ralph J; Yan, Nan

    2017-01-24

    Three-prime repair exonuclease 1 knockout (Trex1 -/- ) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 -/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1 -/- background, and many metabolic defects persist in Trex1 -/- Irf3 -/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1 -/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1 -/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.

  15. Addiction, adolescence, and innate immune gene induction

    Directory of Open Access Journals (Sweden)

    Fulton T Crews

    2011-04-01

    Full Text Available Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g. negative affect-anxiety and loss of frontal cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy.

  16. Polysaccharide-Containing Macromolecules in a Kampo (Traditional Japanese Herbal Medicine, Hochuekkito: Dual Active Ingredients for Modulation of Immune Functions on Intestinal Peyer's Patches and Epithelial cells

    Directory of Open Access Journals (Sweden)

    Hiroaki Kiyohara

    2011-01-01

    Full Text Available A traditional Japanese herbal (Kampo medicine, Hochuekkito (Bu-Zhong-Yi-Qi-Tang in Chinese, TJ-41 is a well-known Kampo formula, and has been found to enhance antigen-specific antibody response in not only local mucosal immune system in upper respiratory tract, but also systemic immune system through upper respiratory mucosal immune system. Although this immunopharmacological effect has been proposed to express by modulation of intestinal immune system including Peyer's patches and intestinal epithelial cells, active ingredients are not known. TJ-41 directly affected the production of bone marrow cell-proliferative growth factors from murine Peyer's patch immunocompetent cells in vitro. Among low molecular, intermediate size and macromolecular weight fractions prepared from TJ-41, only fraction containing macromolecular weight ingredients showed Peyer's patch-mediated bone marrow cell-proliferation enhancing activity. Anion-exchange chromatography and gel filtration gave 17 subfractions comprising polysaccharides and lignins from the macromolecular weight fraction of TJ-41, and some of the subfractions showed significant enhancing activities having different degrees. Some of the subfractions also expressed stimulating activity on G-CSF-production from colonic epithelial cells, and statistically significant positive correlation was observed among enhancing activities of the subfractions against Peyer's patch immunocompetent cells and epithelial cells. Among the fractions from TJ-41 oral administration of macromolecular weight ingredient fraction to mice succeeded to enhance antigen-specific antibody response in systemic immune system through upper respiratory mucosal immune system, but all the separated fractions failed to enhance the in vivo antibody response in upper respiratory tract.

  17. Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor

    Science.gov (United States)

    Walterscheid, Jeffrey P.; Nghiem, Dat X.; Kazimi, Nasser; Nutt, Leta K.; McConkey, David J.; Norval, Mary; Ullrich, Stephen E.

    2006-01-01

    Exposure to UV radiation induces skin cancer and suppresses the immune response. To induce immune suppression, the electromagnetic energy of UV radiation must be absorbed by an epidermal photoreceptor and converted into a biologically recognizable signal. Two photoreceptors have been recognized: DNA and trans-urocanic acid (UCA). Trans-UCA is normally found in the outermost layer of skin and isomerizes to the cis isomer upon exposure to UV radiation. Although UCA was identified as a UV photoreceptor years ago, and many have documented its ability to induce immune suppression, its exact mode of action remains elusive. Particularly vexing has been the identity of the molecular pathway by which cis-UCA mediates immune suppression. Here we provide evidence that cis-UCA binds to the serotonin [5-hydroxytryptamine (5-HT)] receptor with relatively high affinity (Kd = 4.6 nM). Anti-cis-UCA antibody precipitates radiolabeled 5-HT, and the binding is inhibited by excess 5-HT and/or excess cis-UCA. Similarly, anti-5-HT antibody precipitates radiolabeled cis-UCA, and the binding is inhibited by excess 5-HT or excess cis-UCA. Calcium mobilization was activated when a mouse fibroblast line, stably transfected with the human 5-HT2A receptor, was treated with cis-UCA. Cis-UCA-induced calcium mobilization was blocked with a selective 5-HT2A receptor antagonist. UV- and cis-UCA-induced immune suppression was blocked by antiserotonin antibodies or by treating the mice with 5-HT2A receptor antagonists. Our findings identify cis-UCA as a serotonin receptor ligand and indicate that the immunosuppressive effects of cis-UCA and UV radiation are mediated by activation of the 5-HT2A receptor. PMID:17085585

  18. A microculture method for the generation of primary immune responses in vitro.

    Science.gov (United States)

    Pike, B L

    1975-11-01

    A microculture method for the generation and study of the primary immune response of murine spleen cells to defined antigens in vitro is described. Many of the variable parameters which occur in culture systems have been studied in an attempt to define the optimal culture conditions for this system. Cultures of 10(6) CBA spleen cells consistently produced an immune response of 300-600 hapten-specific plaque-forming cells after 3 days of incubation with the T cell-independent antigens DNP-POL and NIP-POL. Cultures were set up in Microtest II tissue culture plates in a volume of 0.2 ml of medium containing 10(-4) M 2-mercaptoethanol. The system described has the advantages of being highly efficient and reproducible and utilises small amounts of cells, medium and antigen. It provides a simple, economic and reliable approach for the systematic study of the immune response in vitro.

  19. Immune response to snake envenoming and treatment with antivenom; complement activation, cytokine production and mast cell degranulation.

    Directory of Open Access Journals (Sweden)

    Shelley F Stone

    Full Text Available BACKGROUND: Snake bite is one of the most neglected public health issues in poor rural communities worldwide. In addition to the clinical effects of envenoming, treatment with antivenom frequently causes serious adverse reactions, including hypersensitivity reactions (including anaphylaxis and pyrogenic reactions. We aimed to investigate the immune responses to Sri Lankan snake envenoming (predominantly by Russell's viper and antivenom treatment. METHODOLOGY/PRINCIPAL FINDINGS: Plasma concentrations of Interleukin (IL-6, IL-10, tumor necrosis factor α (TNFα, soluble TNF receptor I (sTNFRI, anaphylatoxins (C3a, C4a, C5a; markers of complement activation, mast cell tryptase (MCT, and histamine were measured in 120 Sri Lankan snakebite victims, both before and after treatment with antivenom. Immune mediator concentrations were correlated with envenoming features and the severity of antivenom-induced reactions including anaphylaxis. Envenoming was associated with complement activation and increased cytokine concentrations prior to antivenom administration, which correlated with non-specific systemic symptoms of envenoming but not with coagulopathy or neurotoxicity. Typical hypersensitivity reactions to antivenom occurred in 77/120 patients (64%, satisfying criteria for a diagnosis of anaphylaxis in 57/120 (48%. Pyrogenic reactions were observed in 32/120 patients (27%. All patients had further elevations in cytokine concentrations, but not complement activation, after the administration of antivenom, whether a reaction was noted to occur or not. Patients with anaphylaxis had significantly elevated concentrations of MCT and histamine. CONCLUSIONS/SIGNIFICANCE: We have demonstrated that Sri Lankan snake envenoming is characterized by significant complement activation and release of inflammatory mediators. Antivenom treatment further enhances the release of inflammatory mediators in all patients, with anaphylactic reactions characterised by high

  20. Chronic activation of the epithelial immune system of the fruit fly's salivary glands has a negative effect on organismal growth and induces a peculiar set of target genes

    Directory of Open Access Journals (Sweden)

    Abdelsadik Ahmed

    2010-04-01

    Full Text Available Abstract Background Epithelial and especially mucosal immunity represents the first line of defence against the plethora of potential pathogens trying to invade via the gastrointestinal tract. The salivary glands of the fruit fly are an indispensable part of the gastrointestinal tract, but their contribution to the mucosal immunity has almost completely been neglected. Our major goal was to elucidate if the fly's salivary glands are able to mount an immune response and what the major characteristics of this immune response are. Results Ectopic activation of the IMD-pathway within the salivary gland cells is able to induce an immune response, indicating that the salivary glands are indeed immune competent. This reaction is characterized by the concurrent expression of numerous antimicrobial peptide genes. In addition, ectopic activation of the salivary gland's immune response induces morphological changes such as dwarfism throughout all developmental stages and a significantly decreased length of the salivary glands themselves. DNA-microarray analyses of the reaction revealed a complex pattern of up- and downregulated genes. Gene ontology analyses of regulated genes revealed a significant increase in genes associated with ribosomal and proteasomal function. On the other hand, genes coding for peptide receptors and some potassium channels are downregulated. In addition, the comparison of the transcriptional events induced following IMD-activation in the trachea and the salivary glands shows also only a small overlap, indicating that the general IMD-activated core transcriptome is rather small and that the tissue specific component of this response is dominating. Among the regulated genes, those that code for signaling associated protease activity are significantly modulated. Conclusions The salivary glands are immune-competent and they contribute to the overall intestinal immune system. Although they produce antimicrobial peptides, their overall

  1. Involvement of CD244 in regulating CD4+ T cell immunity in patients with active tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bingfen Yang

    Full Text Available CD244 (2B4 is a member of the signaling lymphocyte activation molecule (SLAM family of immune cell receptors and it plays an important role in modulating NK cell and CD8(+ T cell immunity. In this study, we investigated the expression and function of CD244/2B4 on CD4(+ T cells from active TB patients and latent infection individuals. Active TB patients had significantly elevated CD244/2B4 expression on M. tuberculosis antigen-specific CD4(+ T cells compared with latent infection individuals. The frequencies of CD244/2B4-expressing antigen-specific CD4(+ T cells were significantly higher in retreatment active TB patients than in new active TB patients. Compared with CD244/2B4-dull and -middle CD4(+ T cells, CD244/2B4-bright CD4(+ T cell subset had significantly reduced expression of IFN-γ, suggesting that CD244/2B4 expression may modulate IFN-γ production in M. tuberculosis antigen-responsive CD4(+ T cells. Activation of CD244/2B4 signaling by cross-linking led to significantly decreased production of IFN-γ. Blockage of CD244/2B4 signaling pathway of T cells from patients with active TB resulted in significantly increased production of IFN-γ, compared with isotype antibody control. In conclusion, CD244/2B4 signaling pathway has an inhibitory role on M. tuberculosis antigen-specific CD4(+ T cell function.

  2. Report on WHO meeting on immunization in older adults: Geneva, Switzerland, 22-23 March 2017.

    Science.gov (United States)

    Teresa Aguado, M; Barratt, Jane; Beard, John R; Blomberg, Bonnie B; Chen, Wilbur H; Hickling, Julian; Hyde, Terri B; Jit, Mark; Jones, Rebecca; Poland, Gregory A; Friede, Martin; Ortiz, Justin R

    2018-02-08

    Many industrialized countries have implemented routine immunization policies for older adults, but similar strategies have not been widely implemented in low- and middle-income countries (LMICs). In March 2017, the World Health Organization (WHO) convened a meeting to identify policies and activities to promote access to vaccination of older adults, specifically in LMICs. Participants included academic and industry researchers, funders, civil society organizations, implementers of global health interventions, and stakeholders from developing countries with adult immunization needs. These experts reviewed vaccine performance in older adults, the anticipated impact of adult vaccination programs, and the challenges and opportunities of building or strengthening an adult and older adult immunization platforms. Key conclusions of the meeting were that there is a need for discussion of new opportunities for vaccination of all adults as well as for vaccination of older adults, as reflected in the recent shift by WHO to a life-course approach to immunization; that immunization in adults should be viewed in the context of a much broader model based on an individual's abilities rather than chronological age; and that immunization beyond infancy is a global priority that can be successfully integrated with other interventions to promote healthy ageing. As WHO is looking ahead to a global Decade of Healthy Ageing starting in 2020, it will seek to define a roadmap for interdisciplinary collaborations to integrate immunization with improving access to preventive and other healthcare interventions for adults worldwide. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. A Force-Activated Trip Switch Triggers Rapid Dissociation of a Colicin from Its Immunity Protein

    Science.gov (United States)

    Farrance, Oliver E.; Hann, Eleanore; Kaminska, Renata; Housden, Nicholas G.; Derrington, Sasha R.; Kleanthous, Colin; Radford, Sheena E.; Brockwell, David J.

    2013-01-01

    Colicins are protein antibiotics synthesised by Escherichia coli strains to target and kill related bacteria. To prevent host suicide, colicins are inactivated by binding to immunity proteins. Despite their high avidity (Kd≈fM, lifetime ≈4 days), immunity protein release is a pre-requisite of colicin intoxication, which occurs on a timescale of minutes. Here, by measuring the dynamic force spectrum of the dissociation of the DNase domain of colicin E9 (E9) and immunity protein 9 (Im9) complex using an atomic force microscope we show that application of low forces (force-triggered increase in off-rate a trip bond. Using mutational analysis, we elucidate the mechanism of this switch in affinity. We show that the N-terminal region of E9, which has sparse contacts with the hydrophobic core, is linked to an allosteric activator region in E9 (residues 21–30) whose remodelling triggers immunity protein release. Diversion of the force transduction pathway by the introduction of appropriately positioned disulfide bridges yields a force resistant complex with a lifetime identical to that measured by ensemble techniques. A trip switch within E9 is ideal for its function as it allows bipartite complex affinity, whereby the stable colicin:immunity protein complex required for host protection can be readily converted to a kinetically unstable complex whose dissociation is necessary for cellular invasion and competitor death. More generally, the observation of two force phenotypes for the E9:Im9 complex demonstrates that force can re-sculpt the underlying energy landscape, providing new opportunities to modulate biological reactions in vivo; this rationalises the commonly observed discrepancy between off-rates measured by dynamic force spectroscopy and ensemble methods. PMID:23431269

  4. Tumor necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance opposing TNF functions in infectious and inflammatory diseases

    DEFF Research Database (Denmark)

    Xanthoulea, Sofia; Pasparakis, Manolis; Kousteni, Stavroula

    2004-01-01

    Tumor necrosis factor (TNF) is a potent cytokine exerting critical functions in the activation and regulation of immune and inflammatory responses. Due to its pleiotropic activities, the amplitude and duration of TNF function must be tightly regulated. One of the mechanisms that may have evolved...... to modulate TNF function is the proteolytic cleavage of its cell surface receptors. In humans, mutations affecting shedding of the p55TNF receptor (R) have been linked with the development of the TNFR-associated periodic syndromes, disorders characterized by recurrent fever attacks and localized inflammation....... Here we show that knock-in mice expressing a mutated nonsheddable p55TNFR develop Toll-like receptor-dependent innate immune hyperreactivity, which renders their immune system more efficient at controlling intracellular bacterial infections. Notably, gain of function for antibacterial host defenses...

  5. Immunity of international organizations

    CERN Document Server

    Schrijver, Nico

    2015-01-01

    Immunity rules are part and parcel of the law of international organizations. It has long been accepted that international organizations and their staff need to enjoy immunity from the jurisdiction of national courts. However, it is the application of these rules in practice that increasingly causes controversy. Claims against international organizations are brought before national courts by those who allegedly suffer from their activities. These can be both natural and legal persons such as companies. National courts, in particular lower courts, have often been less willing to recognize the immunity of the organization concerned than the organization s founding fathers. Likewise, public opinion and legal writings frequently criticize international organizations for invoking their immunity and for the lack of adequate means of redress for claimants. It is against this background that an international conference was organized at Leiden University in June 2013. A number of highly qualified academics and practit...

  6. Extracts of Porphyra tenera (Nori Seaweed) Activate the Immune Response in Mouse RAW264.7 Macrophages via NF-κB Signaling.

    Science.gov (United States)

    Song, Ji-Hye; Kang, Hee-Bum; Park, Seung-Ho; Jeong, Ji-Hoon; Park, Jeongjin; You, Yanghee; Lee, Yoo-Hyun; Lee, Jeongmin; Kim, Eungpil; Choi, Kyung-Chul; Jun, Woojin

    2017-12-01

    Porphyra tenera, also known as nori, is a red algal species of seaweed. It is cultivated in Asia for culinary purposes. We report that P. tenera extract (PTE) enhances the immune response in mouse macrophages. We found that P. tenera extract regulates the NF-κB IκB kinase (IKK) signaling pathway, and we assessed the expression and translocation of p65, a subunit of NF-κB, in RAW264.7 mouse macrophage cells after treatment with PTE. We also investigated the effects of 10% ethanol PTE (PTE10) in RAW264.7 cells. The production of IL-10, IL-6, TNF-α, and IFN-γ was induced by PTE treatment of the macrophages, and PTE also enhanced p-IκB and p-AKT. PTE10 showed no cytotoxicity at 10-20 μg/mL in RAW264.7 cells. PTE10, in fact, increased cell viability at 24 h, stimulated macrophage cells, and induced the phosphorylation of Akt. Akt stimulates IKK activity through the phosphorylation of IKKα and enhances immune activity through the activation of NF-κB. In this study, NF-κB activation was induced by increasing p-NF-κB and p-IKK. A subunit of NF-κB, p65, was located in the nucleus and increased the expression of various cytokines. PTE thus enhanced the immune response through IκB-α immunostimulation signaling in RAW264.7 cells. PTE10 has potential therefore for development of future treatments requiring immune system stimulation.

  7. Immunization with PIII, a fraction of Schistosoma mansoni soluble adult worm antigenic preparation, affects nitric oxide production by murine spleen cells

    Directory of Open Access Journals (Sweden)

    Diana Magalhães de Oliveira

    1998-01-01

    Full Text Available Nitric oxide (NO is an important effector molecule involved in immune regulation and defense. NO produced by cytokine-activated macrophages was reported to be cytotoxic against the helminth Schistosoma mansoni. Identification and characterization of S. mansoni antigens that can provide protective immunity is crucial for understanding the complex immunoregulatory events that modulate the immune response in schistosomiasis. It is, then, essential to have available defined, purified parasite antigens. Previous work by our laboratory identified a fraction of S. mansoni soluble adult worm antigenic preparation (SWAP, named PIII, able to elicit significant in vitro cell proliferation and at the same time lower in vitro and in vivo granuloma formation when compared either to SEA (soluble egg antigen or to SWAP. In the present work we report the effect of different in vivo trials with mice on their spleen cells ability to produce NO. We demonstrate that PIII-immunization is able to significantly increase NO production by spleen cells after in vitro stimulation with LPS. These data suggest a possible role for NO on the protective immunity induced by PIII.

  8. Defining the activities of publicness for Korea's public community hospitals using the Delphi method.

    Science.gov (United States)

    Lee, Kunsei; Kim, Hyun Joo; You, Myoungsoon; Lee, Jin-Seok; Eun, Sang Jun; Jeong, Hyoseon; Ahn, Hye Mi; Lee, Jin Yong

    2017-03-01

    This study aims to identify which activities of a public community hospital (PHC) should be included in their definition of publicness and tries to achieve a consensus among experts using the Delphi method. We conduct 2 rounds of the Delphi process with 17 panel members using a developed draft of tentative activities for publicness including 5 main categories covering 27 items. The questions remain the same in both rounds and the applicability of each of the 27 items to publicness is measured on a 9-point scale. If the participants believe government funding is needed, we ask how much they think the government should support each item on a 0% to 100% scale. After conducting 2 rounds of the Delphi process, 22 out of the 27 items reached a consensus as activities defining the publicness of the PHCs. Among the 5 major categories, in category C, activities preventing market failure, all 10 items were considered activities of publicness. Nine of these were evaluated as items that should be compensated at 100% of total financial loss by the Korean government. Throughout results, we were able to define the activities of the PCH that encompassed its publicness and confirm that there are "good deficits" in the context of the PCHs. Thus, some PCH deficits are unavoidable and not wasted as these monies support a necessary role and function in providing public health. The Korean government should therefore consider taking actions such as exempting such "good deficits" or providing additional financial aid to reimburse the PHCs for "good deficits."

  9. Graphene and the immune system: Challenges and potentiality.

    Science.gov (United States)

    Orecchioni, Marco; Ménard-Moyon, Cécilia; Delogu, Lucia Gemma; Bianco, Alberto

    2016-10-01

    In the growing area of nanomedicine, graphene-based materials (GBMs) are some of the most recent explored nanomaterials. For the majority of GBM applications in nanomedicine, the immune system plays a fundamental role. It is necessary to well understand the complexity of the interactions between GBMs, the immune cells, and the immune components and how they could be of advantage for novel effective diagnostic and therapeutic approaches. In this review, we aimed at painting the current picture of GBMs in the background of the immune system. The picture we have drawn looks like a cubist image, a sort of Picasso-like portrait looking at the topic from all perspectives: the challenges (due to the potential toxicity) and the potentiality like the conjugation of GBMs to biomolecules to develop advanced nanomedicine tools. In this context, we have described and discussed i) the impact of graphene on immune cells, ii) graphene as immunobiosensor, and iii) antibodies conjugated to graphene for tumor targeting. Thanks to the huge advances on graphene research, it seems realistic to hypothesize in the near future that some graphene immunoconjugates, endowed of defined immune properties, can go through preclinical test and be successfully used in nanomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Interplay between behavioural thermoregulation and immune response in mealworms.

    Science.gov (United States)

    Catalán, Tamara P; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco

    2012-11-01

    Since the preferential body temperature should positively correlate with physiological performance, behavioural fever should enhance an organism's immune response under an immune challenge. Here we have studied the preferential body temperature (T(p)) and its consequences on immune response performance after an immune challenge in larvae of Tenebrio molitor. We evaluated T(p) and immune responses of larvae following a challenge with various concentrations of lipopolysaccharide (LPS), and we studied the correlation between T(p) and two immune traits, namely antibacterial and phenoloxidase (PO) activities. Larvae that were immune challenged with higher LPS concentrations (C(50) and C(100)) preferred in average, warmer temperatures than did larvae challenged with lower concentrations (C(0) and C(25)). T(p) of C(25)-C(100) (challenged)-mealworms was 2.3°C higher than of C(0) (control) larvae. At lower LPS concentration immune challenge (C(0) and C(25)) antibacterial activity correlated positively with T(p), but at C(50) and C(100) correlation was lose. PO activity was higher at higher LPS concentration, but its magnitude of response did not correlate with T(p) Our data suggest that behavioural fever may have a positive effect on host performance by enhancing antibacterial response under a low pathogen load situation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. big bang gene modulates gut immune tolerance in Drosophila.

    Science.gov (United States)

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.

  12. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies.

    Science.gov (United States)

    Sideras, K; Braat, H; Kwekkeboom, J; van Eijck, C H; Peppelenbosch, M P; Sleijfer, S; Bruno, M

    2014-05-01

    Traditional chemotherapeutics have largely failed to date to produce significant improvements in pancreatic cancer survival. One of the reasons for the resilience of pancreatic cancer towards intensive treatment is that the cancer is capable of high jacking the immune system: during disease progression the immune system is converted from a system that attacks tumor cells into a support structure for the cancer, exerting trophic actions on the cancer cells. This turn-around of immune system action is achieved through mobilization and activation of regulatory T cells, myeloid derived suppressor cells, tumor-associated macrophages and fibroblasts, all of which suppress CD8 T cells and NK cells. This immune suppression occurs both through the expression of tolerance-inducing cell surface molecules, such as PD-L1, as well as through the production of "tolerogenic" cytokines, such as IL-10 and TGF-β. Based on the accumulating insight into the importance of the immune system for the outcome of pancreatic cancer patients multiple new immunotherapeutic approaches against pancreatic cancer are being currently tested in clinical trials. In this review we give an overview of both the immune escaping mechanisms of pancreatic cancer as well as the new immune related therapeutic strategies currently being tested in pancreatic cancer clinical trials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Unique aspects of the perinatal immune system.

    Science.gov (United States)

    Zhang, Xiaoming; Zhivaki, Dania; Lo-Man, Richard

    2017-08-01

    The early stages of life are associated with increased susceptibility to infection, which is in part due to an ineffective immune system. In the context of infection, the immune system must be stimulated to provide efficient protection while avoiding insufficient or excessive activation. Yet, in early life, age-dependent immune regulation at molecular and cellular levels contributes to a reduced immunological fitness in terms of pathogen clearance and response to vaccines. To enable microbial colonization to be tolerated at birth, epigenetic immune cell programming and early life-specific immune regulatory and effector mechanisms ensure that vital functions and organ development are supported and that tissue damage is avoided. Advancement in our understanding of age-related remodelling of immune networks and the consequent tuning of immune responsiveness will open up new possibilities for immune intervention and vaccine strategies that are designed specifically for early life.

  14. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    Science.gov (United States)

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K.; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-09-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.

  15. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    Science.gov (United States)

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; Van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-01-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues1–3. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption4–6, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa)7 to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs. PMID:28854172

  16. The effects of early life adversity on the immune system.

    Science.gov (United States)

    Elwenspoek, Martha M C; Kuehn, Annette; Muller, Claude P; Turner, Jonathan D

    2017-08-01

    Early life adversity (ELA) is associated with a higher risk for diseases in adulthood. Although the pathophysiological effects of ELA are varied, there may be a unifying role for the immune system in all of the long-term pathologies such as chronic inflammatory disorders (autoimmune diseases, allergy, and asthma). Recently, significant efforts have been made to elucidate the long-term effects ELA has on immune function, as well as the mechanisms underlying these immune changes. In this review, we focus on data from human studies investigating immune parameters in relation to post-natal adverse experiences. We describe the current understanding of the 'ELA immune phenotype', characterized by inflammation, impairment of the cellular immune system, and immunosenescence. However, at present, data addressing specific immune functions are limited and there is a need for high-quality, well powered, longitudinal studies to unravel cause from effect. Besides the immune system, also the stress system and health behaviors are altered in ELA. We discuss probable underlying mechanisms based on epigenetic programming that could explain the ELA immune phenotype and whether this is a direct effect of immune programming or an indirect consequence of changes in behavior or stress reactivity. Understanding the underlying mechanisms will help define effective strategies to prevent or counteract negative ELA-associated outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Defining active progressive multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, Finn; Börnsen, Lars; Ammitzbøll, Cecilie

    2017-01-01

    BACKGROUND: It is unknown whether disease activity according to consensus criteria (magnetic resonance imaging activity or clinical relapses) associate with cerebrospinal fluid (CSF) changes in progressive multiple sclerosis (MS). OBJECTIVE: To compare CSF biomarkers in active and inactive...

  18. MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells.

    Science.gov (United States)

    Jones, Russell G; Pearce, Edward J

    2017-05-16

    Tissue-resident immune cells must balance survival in peripheral tissues with the capacity to respond rapidly upon infection or tissue damage, and in turn couple these responses with intrinsic metabolic control and conditions in the tissue microenvironment. The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) is a central integrator of extracellular and intracellular growth signals and cellular metabolism and plays important roles in both innate and adaptive immune responses. This review discusses the function of mTOR signaling in the differentiation and function of tissue-resident immune cells, with focus on the role of mTOR as a metabolic sensor and its impact on metabolic regulation in innate and adaptive immune cells. We also discuss the impact of metabolic constraints in tissues on immune homeostasis and disease, and how manipulating mTOR activity with drugs such as rapamycin can modulate immunity in these contexts. Copyright © 2017. Published by Elsevier Inc.

  19. Linear ubiquitination in immunity.

    Science.gov (United States)

    Shimizu, Yutaka; Taraborrelli, Lucia; Walczak, Henning

    2015-07-01

    Linear ubiquitination is a post-translational protein modification recently discovered to be crucial for innate and adaptive immune signaling. The function of linear ubiquitin chains is regulated at multiple levels: generation, recognition, and removal. These chains are generated by the linear ubiquitin chain assembly complex (LUBAC), the only known ubiquitin E3 capable of forming the linear ubiquitin linkage de novo. LUBAC is not only relevant for activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in various signaling pathways, but importantly, it also regulates cell death downstream of immune receptors capable of inducing this response. Recognition of the linear ubiquitin linkage is specifically mediated by certain ubiquitin receptors, which is crucial for translation into the intended signaling outputs. LUBAC deficiency results in attenuated gene activation and increased cell death, causing pathologic conditions in both, mice, and humans. Removal of ubiquitin chains is mediated by deubiquitinases (DUBs). Two of them, OTULIN and CYLD, are constitutively associated with LUBAC. Here, we review the current knowledge on linear ubiquitination in immune signaling pathways and the biochemical mechanisms as to how linear polyubiquitin exerts its functions distinctly from those of other ubiquitin linkage types. © 2015 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.

  20. Immune response to H pylori

    Science.gov (United States)

    Suarez, Giovanni; Reyes, Victor E; Beswick, Ellen J

    2006-01-01

    The gastric mucosa separates the underlying tissue from the vast array of antigens that traffic through the stomach lumen. While the extreme pH of this environment is essential in aiding the activation of enzymes and food digestion, it also renders the gastric epithelium free from bacterial colonization, with the exception of one important human pathogen, H pylori. This bacterium has developed mechanisms to survive the harsh environment of the stomach, actively move through the mucosal layer, attach to the epithelium, evade immune responses, and achieve persistent colonization. While a hallmark of this infection is a marked inflammatory response with the infiltration of various immune cells into the infected gastric mucosa, the host immune response is unable to clear the infection and may actually contribute to the associated pathogenesis. Here, we review the host responses involved during infection with H pylori and how they are influenced by this bacterium. PMID:17007009

  1. Depression and Anxiety are Common in Acute HIV Infection and Associate with Plasma Immune Activation.

    Science.gov (United States)

    Hellmuth, Joanna; Colby, Donn; Valcour, Victor; Suttichom, Duanghathai; Spudich, Serena; Ananworanich, Jintanat; Prueksakaew, Peeriya; Sailasuta, Napapon; Allen, Isabel; Jagodzinski, Linda L; Slike, Bonnie; Ochi, Derek; Paul, Robert

    2017-11-01

    This observational study of 123 Thai participants sought to determine the rate and severity of affective symptoms during acute HIV infection (AHI) and possible associations to disease mechanisms. At diagnosis, just prior to starting combination antiretroviral therapy (cART), AHI participants completed assessments of depression and anxiety symptoms that were repeated at 4, 12, and 24 weeks. Blood markers of HIV infection and immune activation were measured at study entry, with optional cerebrospinal fluid measures. A high frequency of participants reported symptoms that exceeded published thresholds supportive of depression (55.0%) and anxiety (65.8%) at diagnosis, with significant reductions after starting cART. Meeting a threshold for clinically relevant depressive symptoms at study entry was associated with higher baseline plasma HIV RNA (5.98 vs. 5.50, t = 2.46, p = 0.015), lower CD4 counts (328 vs. 436 cells/mm 3 , t = 3.46, p = 0.001), and higher plasma neopterin, a marker of macrophage activation (2694 vs. 1730 pg/mL, Mann-Whitney U = 152.5, p = 0.011). Controlling for plasma HIV RNA and CD4 count, higher baseline plasma neopterin correlated with worse initial depression and anxiety scores. Depression and anxiety symptoms are frequent in acute HIV infection, associate with plasma immune activation, and can improve concurrent with cART.

  2. Revised Household-Based Microplanning in Polio Supplemental Immunization Activities in Kano State, Nigeria. 2013-2014.

    Science.gov (United States)

    Gali, Emmanuel; Mkanda, Pascal; Banda, Richard; Korir, Charles; Bawa, Samuel; Warigon, Charity; Abdullahi, Suleiman; Abba, Bashir; Isiaka, Ayodeji; Yahualashet, Yared G; Touray, Kebba; Chevez, Ana; Tegegne, Sisay G; Nsubuga, Peter; Etsano, Andrew; Shuaib, Faisal; Vaz, Rui G

    2016-05-01

    Remarkable progress had been made since the launch of the Global Polio Eradication Initiative in 1988. However endemic wild poliovirus transmission in Nigeria, Pakistan, and Afghanistan remains an issue of international concern. Poor microplanning has been identified as a major contributor to the high numbers of chronically missed children. We assessed the contribution of the revised household-based microplanning process implemented in Kano State from September 2013 to April 2014 to the outcomes of subsequent polio supplemental immunization activities using used preselected planning and outcome indicators. There was a 38% increase in the number of settlements enumerated, a 30% reduction in the number of target households, and a 54% reduction in target children. The reported number of children vaccinated and the doses of oral polio vaccine used during subsequent polio supplemental immunization activities showed a decline. Postvaccination lot quality assurance sampling and chronically missed settlement reports also showed a progressive reduction in the number of children and settlements missed. We observed improvement in Kano State's performance based on the selected postcampaign performance evaluation indicators and reliability of baseline demographic estimates after the revised household-based microplanning exercise. © 2016 World Health Organization; licensee Oxford Journals.

  3. Friends and foes of tuberculosis: modulation of protective immunity.

    Science.gov (United States)

    Brighenti, Susanna; Joosten, Simone A

    2018-05-27

    Protective immunity in tuberculosis (TB) is subject of debate in the TB research community, as this is key to fully understand TB pathogenesis and to develop new promising tools for TB diagnosis and prognosis as well as a more efficient TB vaccine. IFN-γ producing CD4 + T cells are key in TB control, but may not be sufficient to provide protection. Additional subsets have been identified that contribute to protection such as multifunctional and cytolytic T cell subsets, including classical and non-classical T cells as well as novel innate immune cell subsets resulting from trained immunity. However, to define protective immune responses against TB, the complexity of balancing TB immunity also has to be considered. In this review, insights in effector cell immunity and how this is modulated by regulatory cells, associated comorbidities and the host microbiome is discussed. We systematically map how different suppressive immune cell subsets may affect effector cell responses at the local site of infection. We also dissect how common co-morbidities such as HIV, helminthes and diabetes may bias protective TB immunity towards pathogenic and regulatory responses. Finally, also the composition and diversity of the microbiome in the lung and gut could affect host TB immunity. Understanding these various aspects of the immunological balance in the human host is fundamental to prevent TB infection and disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity

    International Nuclear Information System (INIS)

    Meng Jie; Yang Man; Jia Fumin; Kong Hua; Zhang Weiqi; Xu Haiyan; Wang Chaoying; Xie Sishen; Xing Jianmin

    2010-01-01

    The immunological responses induced by oxidized water-soluble multi-walled carbon nanotubes on a hepatocarcinoma tumor-bearing mice model via a local administration of subcutaneous injection were investigated. Experimental results show that the subcutaneously injected carbon nanotubes induced significant activation of the complement system, promoted inflammatory cytokines' production and stimulated macrophages' phagocytosis and activation. All of these responses increased the general activity of the host immune system and inhibited the progression of tumor growth.

  5. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity

    Science.gov (United States)

    Meng, Jie; Yang, Man; Jia, Fumin; Kong, Hua; Zhang, Weiqi; Wang, Chaoying; Xing, Jianmin; Xie, Sishen; Xu, Haiyan

    2010-04-01

    The immunological responses induced by oxidized water-soluble multi-walled carbon nanotubes on a hepatocarcinoma tumor-bearing mice model via a local administration of subcutaneous injection were investigated. Experimental results show that the subcutaneously injected carbon nanotubes induced significant activation of the complement system, promoted inflammatory cytokines' production and stimulated macrophages' phagocytosis and activation. All of these responses increased the general activity of the host immune system and inhibited the progression of tumor growth.

  6. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity

    Energy Technology Data Exchange (ETDEWEB)

    Jie, Meng; Man, Yang; Fumin, Jia; Hua, Kong; Weiqi, Zhang; Haiyan, Xu [Department of Biomedical Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Chaoying, Wang; Sishen, Xie [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 8 Nan San Jie, Zhongguancun, Beijing100080 (China); Xing Jianmin, E-mail: xuhy@pumc.edu.cn [Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029 (China)

    2010-04-09

    The immunological responses induced by oxidized water-soluble multi-walled carbon nanotubes on a hepatocarcinoma tumor-bearing mice model via a local administration of subcutaneous injection were investigated. Experimental results show that the subcutaneously injected carbon nanotubes induced significant activation of the complement system, promoted inflammatory cytokines' production and stimulated macrophages' phagocytosis and activation. All of these responses increased the general activity of the host immune system and inhibited the progression of tumor growth.

  7. Neutrophils in Homeostasis, Immunity, and Cancer.

    Science.gov (United States)

    Nicolás-Ávila, José Ángel; Adrover, José M; Hidalgo, Andrés

    2017-01-17

    Neutrophils were among the first leukocytes described and visualized by early immunologists. Prominent effector functions during infection and sterile inflammation classically placed them low in the immune tree as rapid, mindless aggressors with poor regulatory functions. This view is currently under reassessment as we uncover new aspects of their life cycle and identify transcriptional and phenotypic diversity that endows them with regulatory properties that extend beyond their lifetime in the circulation. These properties are revealing unanticipated roles for neutrophils in supporting homeostasis, as well as complex disease states such as cancer. We focus this review on these emerging functions in order to define the true roles of neutrophils in homeostasis, immunity, and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Naturally acquired immunity to Plasmodium falciparum malaria in Africa

    DEFF Research Database (Denmark)

    Hviid, Lars

    2005-01-01

    Infection by Plasmodium falciparum parasites can lead to substantial protective immunity to malaria, and available evidence suggest that acquisition of protection against some severe malaria syndromes can be fairly rapid. Although these facts have raised hopes that the development of effective...... protective immunity to P. falciparum malaria is acquired following natural exposure to the parasites is beginning to emerge, not least thanks to studies that have combined clinical and epidemiological data with basic immunological research. This framework involves IgG with specificity for clonally variant...... antigens on the surface of the infected erythrocytes, can explain some of the difficulties in relating particular immune responses with specificity for well-defined antigenic targets to clinical protection, and suggests a radically new approach to controlling malaria-related morbidity and mortality...

  9. Boosting innate immunity to sustainably control diseases in crops.

    Science.gov (United States)

    Nicaise, Valerie

    2017-10-01

    Viruses cause epidemics in all major crops, threatening global food security. The development of efficient and durable resistance able to withstand viral attacks represents a major challenge for agronomy, and relies greatly on the understanding of the molecular dialogue between viral pathogens and their hosts. Research over the last decades provided substantial advances in the field of plant-virus interactions. Remarkably, the advent of studies of plant innate immunity has recently offered new strategies exploitable in the field. This review summarizes the recent breakthroughs that define the mechanisms underlying antiviral innate immunity in plants, and emphasizes the importance of integrating that knowledge into crop improvement actions, particularly by exploiting the insights related to immune receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Zinc Signals and Immunity.

    Science.gov (United States)

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  11. Broadly Neutralizing Activity of Zika Virus-Immune Sera Identifies a Single Viral Serotype

    Directory of Open Access Journals (Sweden)

    Kimberly A. Dowd

    2016-08-01

    Full Text Available Recent epidemics of Zika virus (ZIKV have been associated with congenital malformation during pregnancy and Guillain-Barré syndrome. There are two ZIKV lineages (African and Asian that share >95% amino acid identity. Little is known regarding the ability of neutralizing antibodies elicited against one lineage to protect against the other. We investigated the breadth of the neutralizing antibody response following ZIKV infection by measuring the sensitivity of six ZIKV strains to neutralization by ZIKV-confirmed convalescent human serum or plasma samples. Contemporary Asian and early African ZIKV strains were similarly sensitive to neutralization regardless of the cellular source of virus. Furthermore, mouse immune serum generated after infection with African or Asian ZIKV strains was capable of neutralizing homologous and heterologous ZIKV strains equivalently. Because our study only defines a single ZIKV serotype, vaccine candidates eliciting robust neutralizing antibody responses should inhibit infection of both ZIKV lineages, including strains circulating in the Americas.

  12. Tissue microenvironments in the nasal epithelium of rainbow trout (Oncorhynchus mykiss) define two distinct CD8α+ cell populations and establish regional immunity

    Science.gov (United States)

    Sepahi, Ali; Casadei, Elisa; Tacchi, Luca; Muñoz, Pilar; LaPatra, Scott E.; Salinas, Irene

    2016-01-01

    Mucosal surfaces require balancing different physiological roles and immune functions. In order to effectively achieve multifunctionality, mucosal epithelia have evolved unique microenvironments that create unique regional immune responses without impairing other normal physiological functions. Whereas examples of regional immunity are known in other mucosal epithelia, to date, no immune microenvironments have been described in the nasal mucosa, a site where the complex functions of olfaction and immunity need to be orchestrated. In this study we identified for the first time the presence of CD8α+ cells in the rainbow trout (Oncorhynchus mykiss) nasal epithelium. Nasal CD8α+ cells display a distinct phenotype suggestive of CD8+ T cells with high integrin β2 expression. Importantly, nasal CD8α+ cells are located in clusters at the mucosal tip of each olfactory lamella but scattered in the neuroepithelial region. The grouping of CD8α+ cells may be explained by the greater expression of CCL19, ICAM-1, and VCAM-1 in the mucosal tip compared to the neuroepithelium. Whilst viral antigen uptake occurred via both tip and lateral routes, tip resident MHC-II+ cells are located significantly closer to the lumen of the nasal cavity than their neuroepithelial counterparts, therefore having quicker access to invading pathogens. Our studies reveal for the first time compartmentalized mucosal immune responses within the nasal mucosa of a vertebrate species, a strategy that likely optimizes local immune responses while protecting olfactory sensory functions. PMID:27798156

  13. Training and natural immunity

    DEFF Research Database (Denmark)

    Pedersen, Bente Klarlund; Helge, Jørn Wulff; Richter, Erik

    2000-01-01

    these subjects were used to eliminate day-to-day variation in the immunological tests. Independently of diet, training increased the percentage of CD3-CD16+ CD56+ natural killer (NK) cells from [mean (SEM)] 14 (1) % to 20 (3) % (P = 0.05), whereas the NK-cell activity, either unstimulated or stimulated...... influence natural immunity, and suggest that ingestion of a fat-rich diet during training is detrimental to the immune system compared to the effect of a carbohydrate-rich diet....

  14. Association between discordant immunological response to highly active anti-retroviral therapy, regulatory T cell percentage, immune cell activation and very low-level viraemia in HIV-infected patients.

    Science.gov (United States)

    Saison, J; Ferry, T; Demaret, J; Maucort Boulch, D; Venet, F; Perpoint, T; Ader, F; Icard, V; Chidiac, C; Monneret, G

    2014-06-01

    The mechanisms sustaining the absence of complete immune recovery in HIV-infected patients upon long-term effective highly active anti-retroviral therapy (HAART) remain elusive. Immune activation, regulatory T cells (T(regs)) or very low-level viraemia (VLLV) have been alternatively suspected, but rarely investigated simultaneously. We performed a cross-sectional study in HIV-infected aviraemic subjects (mean duration of HAART: 12 years) to concomitantly assess parameters associated independently with inadequate immunological response. Patients were classified as complete immunological responders (cIR, n = 48) and inadequate immunological responders (iIR, n = 39), depending on the CD4(+) T cell count (> or response to long-term HAART, activation of CD4(+) and CD8(+) T cells, T(reg) percentages and very low-level viraemia. Causative interactions between T(regs) and CD4(+) T cells should now be explored prospectively in a large patients cohort. © 2014 British Society for Immunology.

  15. Immune evasion mechanisms and immune checkpoint inhibition in advanced merkel cell carcinoma.

    Science.gov (United States)

    Schadendorf, Dirk; Nghiem, Paul; Bhatia, Shailender; Hauschild, Axel; Saiag, Philippe; Mahnke, Lisa; Hariharan, Subramanian; Kaufman, Howard L

    2017-01-01

    Merkel cell carcinoma (MCC) is a rare skin cancer caused by Merkel cell polyomavirus (MCPyV) infection and/or ultraviolet radiation-induced somatic mutations. The presence of tumor-infiltrating lymphocytes is evidence that an active immune response to MCPyV and tumor-associated neoantigens occurs in some patients. However, inhibitory immune molecules, including programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1), within the MCC tumor microenvironment aid in tumor evasion of T-cell-mediated clearance. Unlike chemotherapy, treatment with anti-PD-L1 (avelumab) or anti-PD-1 (pembrolizumab) antibodies leads to durable responses in MCC, in both virus-positive and virus-negative tumors. As many tumors are established through the evasion of infiltrating immune-cell clearance, the lessons learned in MCC may be broadly relevant to many cancers.

  16. Dual role of delay effects in a tumour-immune system.

    Science.gov (United States)

    Yu, Min; Dong, Yueping; Takeuchi, Yasuhiro

    2017-08-01

    In this paper, a previous tumour-immune interaction model is simplified by neglecting a relatively weak direct immune activation by the tumour cells, which can still keep the essential dynamics properties of the original model. As the immune activation process is not instantaneous, we now incorporate one delay for the activation of the effector cells (ECs) by helper T cells (HTCs) into the model. Furthermore, we investigate the stability and instability regions of the tumour-presence equilibrium state of the delay-induced system with respect to two parameters, the activation rate of ECs by HTCs and the HTCs stimulation rate by the presence of identified tumour antigens. We show the dual role of this delay that can induce stability switches exhibiting destabilization as well as stabilization of the tumour-presence equilibrium. Besides, our results reveal that an appropriate immune activation time delay plays a significant role in control of tumour growth.

  17. Gut Mesenchymal Stromal Cells in Immunity

    Directory of Open Access Journals (Sweden)

    Valeria Messina

    2017-01-01

    Full Text Available Mesenchymal stromal cells (MSCs, first found in bone marrow (BM, are the structural architects of all organs, participating in most biological functions. MSCs possess tissue-specific signatures that allow their discrimination according to their origin and location. Among their multiple functions, MSCs closely interact with immune cells, orchestrating their activity to maintain overall homeostasis. The phenotype of tissue MSCs residing in the bowel overlaps with myofibroblasts, lining the bottom walls of intestinal crypts (pericryptal or interspersed within intestinal submucosa (intercryptal. In Crohn’s disease, intestinal MSCs are tightly stacked in a chronic inflammatory milieu, which causes their enforced expression of Class II major histocompatibility complex (MHC. The absence of Class II MHC is a hallmark for immune-modulator and tolerogenic properties of normal MSCs and, vice versa, the expression of HLA-DR is peculiar to antigen presenting cells, that is, immune-activator cells. Interferon gamma (IFNγ is responsible for induction of Class II MHC expression on intestinal MSCs. The reversal of myofibroblasts/MSCs from an immune-modulator to an activator phenotype in Crohn’s disease results in the formation of a fibrotic tube subverting the intestinal structure. Epithelial metaplastic areas in this context can progress to dysplasia and cancer.

  18. Modulation of the innate immune responses in the striped ...

    African Journals Online (AJOL)

    Thus, most of the innate non-specific immune responses are inducible though they are constitutive of fish immune system exhibiting a basal level of activity even in the absence of pathogen challenge. Keywords: Aeromonas hydrophila, Experimental challenge, Innate immune response, Striped snakehead murrel ...

  19. A neuro-immune model of Myalgic Encephalomyelitis/Chronic fatigue syndrome.

    Science.gov (United States)

    Morris, Gerwyn; Maes, Michael

    2013-12-01

    This paper proposes a neuro-immune model for Myalgic Encephalomyelitis/Chronic fatigue syndrome (ME/CFS). A wide range of immunological and neurological abnormalities have been reported in people suffering from ME/CFS. They include abnormalities in proinflammatory cytokines, raised production of nuclear factor-κB, mitochondrial dysfunctions, autoimmune responses, autonomic disturbances and brain pathology. Raised levels of oxidative and nitrosative stress (O&NS), together with reduced levels of antioxidants are indicative of an immuno-inflammatory pathology. A number of different pathogens have been reported either as triggering or maintaining factors. Our model proposes that initial infection and immune activation caused by a number of possible pathogens leads to a state of chronic peripheral immune activation driven by activated O&NS pathways that lead to progressive damage of self epitopes even when the initial infection has been cleared. Subsequent activation of autoreactive T cells conspiring with O&NS pathways cause further damage and provoke chronic activation of immuno-inflammatory pathways. The subsequent upregulation of proinflammatory compounds may activate microglia via the vagus nerve. Elevated proinflammatory cytokines together with raised O&NS conspire to produce mitochondrial damage. The subsequent ATP deficit together with inflammation and O&NS are responsible for the landmark symptoms of ME/CFS, including post-exertional malaise. Raised levels of O&NS subsequently cause progressive elevation of autoimmune activity facilitated by molecular mimicry, bystander activation or epitope spreading. These processes provoke central nervous system (CNS) activation in an attempt to restore immune homeostatsis. This model proposes that the antagonistic activities of the CNS response to peripheral inflammation, O&NS and chronic immune activation are responsible for the remitting-relapsing nature of ME/CFS. Leads for future research are suggested based on this

  20. Maternal immunization increases nestling energy expenditure, immune function, and fledging success in a passerine bird

    Directory of Open Access Journals (Sweden)

    Gary Burness

    2018-04-01

    Full Text Available Female birds transfer maternally derived antibodies (matAb to their nestlings, via the egg yolk. These antibodies are thought to provide passive protection, and allow nestlings to avoid the costs associated with mounting an innate immune response. To test whether there is an energetic benefit to nestlings from receiving matAb, we challenged adult female tree swallows (Tachycineta bicolor prior to clutch initiation with either lipopolysaccharide (LPS or saline (Control. Following hatching, one half of each female's nestlings were immunized on day 8 post-hatch with LPS or saline, and the 4-h post-immunization nestling metabolic rate (MR was measured. There was no difference in either LPS-reactive antibodies or total Ig levels between offspring of immunized and non-immunized mothers on day 6 or 14 post-hatch, possibly reflecting a relatively short half-life of matAbs in altricial birds. Additionally, we found no evidence that nestlings from LPS-immunized mothers could avoid the growth suppression that may result from activation of an inflammatory response. Unexpectedly, we found that control nestlings from LPS mothers had higher resting MR than control nestlings of control mothers. We attribute the increased MR to the costs associated with a general non-specific enhancement of immune function in nestlings from LPS-immunized mothers. Consistent with enhanced immune function, nestlings of immunized mothers had a more robust inflammatory response to phytohaemagglutinin and higher fledging success. Our results suggest that maternal antigen exposure pre-laying can result in increased fitness for both mothers and offspring, depending on food availability.

  1. Nutritional support for the infant's immune system

    NARCIS (Netherlands)

    Niers, L.; Stasse-Wolthuis, M.; Rombouts, F.M.; Rijkers, G.T.

    2007-01-01

    Newborn babies possess a functional but immature immune system as a defense against a world teeming with microorganisms. Breast milk contains a number of biological, active compounds that support the infant's immune system. These include secretory immunoglobulin A (IgA), which confers specific

  2. Constitutive Activity of the Arabidopsis MAP Kinase 3 Confers Resistance to Pseudomonas syringae and Drives Robust Immune Responses

    KAUST Repository

    Lang, Julien; Genot, Baptiste; Hirt, Heribert; Colcombet, Jean

    2017-01-01

    of a constitutively active (CA) form of the protein led to auto-immune phenotypes. CA-MPK3 plants are dwarf and display defense responses that are characterized by the accumulation of salicylic acid and phytoalexins as well as by the upregulation

  3. The Immune System, Cytokines, and Biomarkers in Autism Spectrum Disorder

    Institute of Scientific and Technical Information of China (English)

    Anne Masi; Nicholas Glozier; Russell Dale; Adam J.Guastella

    2017-01-01

    Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental condition characterized by variable impairments in communication and social interaction as well as restricted interests and repetitive behaviors.Heterogeneity of presentation is a hallmark.Investigations of immune system problems in ASD,including aberrations in cytokine profiles and signaling,have been increasing in recent times and are the subject of ongoing interest.With the aim of establishing whether cytokines have utility as potential biomarkers that may define a subgroup of ASD,or function as an objective measure of response to treatment,this review summarizes the role of the immune system,discusses the relationship between the immune system,the brain,and behavior,and presents previouslyidentified immune system abnormalities in ASD,specifically addressing the role of cytokines in these aberrations.The roles and identification of biomarkers are also addressed,particularly with respect to cytokine profiles in ASD.

  4. The Immune System, Cytokines, and Biomarkers in Autism Spectrum Disorder.

    Science.gov (United States)

    Masi, Anne; Glozier, Nicholas; Dale, Russell; Guastella, Adam J

    2017-04-01

    Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental condition characterized by variable impairments in communication and social interaction as well as restricted interests and repetitive behaviors. Heterogeneity of presentation is a hallmark. Investigations of immune system problems in ASD, including aberrations in cytokine profiles and signaling, have been increasing in recent times and are the subject of ongoing interest. With the aim of establishing whether cytokines have utility as potential biomarkers that may define a subgroup of ASD, or function as an objective measure of response to treatment, this review summarizes the role of the immune system, discusses the relationship between the immune system, the brain, and behavior, and presents previously-identified immune system abnormalities in ASD, specifically addressing the role of cytokines in these aberrations. The roles and identification of biomarkers are also addressed, particularly with respect to cytokine profiles in ASD.

  5. HIV-1-negative female sex workers sustain high cervical IFNɛ, low immune activation, and low expression of HIV-1-required host genes.

    Science.gov (United States)

    Abdulhaqq, S A; Zorrilla, C; Kang, G; Yin, X; Tamayo, V; Seaton, K E; Joseph, J; Garced, S; Tomaras, G D; Linn, K A; Foulkes, A S; Azzoni, L; VerMilyea, M; Coutifaris, C; Kossenkov, A V; Showe, L; Kraiselburd, E N; Li, Q; Montaner, L J

    2016-07-01

    Sex workers practicing in high HIV endemic areas have been extensively targeted to test anti-HIV prophylactic strategies. We hypothesize that in women with high levels of genital exposure to semen changes in cervico-vaginal mucosal and/or systemic immune activation will contribute to a decreased susceptibility to HIV-1 infection. To address this question, we assessed sexual activity and immune activation status (in peripheral blood), as well as cellular infiltrates and gene expression in ectocervical mucosa biopsies in female sex workers (FSWs; n=50), as compared with control women (CG; n=32). FSWs had low-to-absent HIV-1-specific immune responses with significantly lower CD38 expression on circulating CD4(+) or CD8(+) T-cells (both: PHIV-1 integration and replication. A correlative relationship between semen exposure and elevated type-1 IFN expression in FSWs was also established. Overall, our data suggest that long-term condomless sex work can result in multiple changes within the cervico-vaginal compartment that would contribute to sustaining a lower susceptibility for HIV-1 infection in the absence of HIV-specific responses.

  6. Immune activation induces immortalization of HTLV-1 LTR-Tax transgenic CD4+ T cells

    OpenAIRE

    Swaims, Alison Y.; Khani, Francesca; Zhang, Yingyu; Roberts, Arthur I.; Devadas, Satish; Shi, Yufang; Rabson, Arnold B.

    2010-01-01

    Infection with the human T-cell leukemia virus-1 (HTLV-1) results in a variety of diseases including adult T-cell leukemia/lymphoma (ATL). Although the pathogenesis of these disorders is poorly understood, it involves complex interactions with the host immune system. Activation of infected T cells may play an important role in disease pathogenesis through induction of the oncogenic HTLV-1 Tax transactivator protein. To test this hypothesis, we employed transgenic mice in which Tax is regulate...

  7. Defining behavioral and molecular differences between summer and migratory monarch butterflies

    Science.gov (United States)

    Zhu, Haisun; Gegear, Robert J; Casselman, Amy; Kanginakudru, Sriramana; Reppert, Steven M

    2009-01-01

    Background In the fall, Eastern North American monarch butterflies (Danaus plexippus) undergo a magnificent long-range migration. In contrast to spring and summer butterflies, fall migrants are juvenile hormone deficient, which leads to reproductive arrest and increased longevity. Migrants also use a time-compensated sun compass to help them navigate in the south/southwesterly direction en route for Mexico. Central issues in this area are defining the relationship between juvenile hormone status and oriented flight, critical features that differentiate summer monarchs from fall migrants, and identifying molecular correlates of behavioral state. Results Here we show that increasing juvenile hormone activity to induce summer-like reproductive development in fall migrants does not alter directional flight behavior or its time-compensated orientation, as monitored in a flight simulator. Reproductive summer butterflies, in contrast, uniformly fail to exhibit directional, oriented flight. To define molecular correlates of behavioral state, we used microarray analysis of 9417 unique cDNA sequences. Gene expression profiles reveal a suite of 40 genes whose differential expression in brain correlates with oriented flight behavior in individual migrants, independent of juvenile hormone activity, thereby molecularly separating fall migrants from summer butterflies. Intriguing genes that are differentially regulated include the clock gene vrille and the locomotion-relevant tyramine beta hydroxylase gene. In addition, several differentially regulated genes (37.5% of total) are not annotated. We also identified 23 juvenile hormone-dependent genes in brain, which separate reproductive from non-reproductive monarchs; genes involved in longevity, fatty acid metabolism, and innate immunity are upregulated in non-reproductive (juvenile-hormone deficient) migrants. Conclusion The results link key behavioral traits with gene expression profiles in brain that differentiate migratory

  8. Immunomodulator, immunosuppression of radiation and immune reconstruction

    International Nuclear Information System (INIS)

    Mao Jianping; Fang Jing; Zhou Ying; Cui Yufang; Jiang Zhujun; Du Li; Ma Qiong

    2010-01-01

    There is a refined and complicated regulatory network between immune cells, and between immune cells and secretory factors. The immune system is kept in a homeostasis and equilibrium by positive activation and negative inhibition. In recent years, the mechanisms of immunosuppression in depth for successful allograft transplantation were studied, and many immunosuppressants and immunosuppressive drugs have been developed for clinical use. Most of them are targeting T cell receptors and three kinds of singnal pathways. The receptors of the immunosuppression were either found highly expressed in immune cells after irradiation. To relieve the suppression by regulating the receptors could help the immune reconstruction out of radiation damage. Many new immunoenhancers have been discovered to improve the immune system function for radiation by Toll-like receptors. The search for new immunoenhancers and agents for relieving immunosuppression is of great importance to immune construction for radiation sickness. (authors)

  9. Innate Immune Activation Can Trigger Experimental Spondyloarthritis in HLA-B27/Huβ2m Transgenic Rats

    Directory of Open Access Journals (Sweden)

    Melissa N. van Tok

    2017-08-01

    Full Text Available Spondyloarthritis (SpA does not display the typical features of auto-immune disease. Despite the strong association with MHC class I, CD8+ T cells are not required for disease induction in the HLA-B27/Huβ2m transgenic rats. We used Lewis HLA-B27/Huβ2m transgenic rats [21-3 × 283-2]F1, HLA-B7/Huβ2m transgenic rats [120-4 × 283-2]F1, and wild-type rats to test our hypothesis that SpA may be primarily driven by the innate immune response. In vitro, splenocytes were stimulated with heat-inactivated Mycobacterium tuberculosis and cytokine expression and production was measured. In vivo, male and female rats were immunized with 30, 60, or 90 µg of heat-inactivated M. tuberculosis and clinically monitored for spondylitis and arthritis development. After validation of the model, we tested whether prophylactic and therapeutic TNF targeting affected spondylitis and arthritis. In vitro stimulation with heat-inactivated M. tuberculosis strongly induced gene expression of pro-inflammatory cytokines such as TNF, IL-6, IL-1α, and IL-1β, in the HLA-B27 transgenic rats compared with controls. In vivo immunization induced an increased spondylitis and arthritis incidence and an accelerated and synchronized onset of spondylitis and arthritis in HLA-B27 transgenic males and females. Moreover, immunization overcame the protective effect of orchiectomy. Prophylactic TNF targeting resulted in delayed spondylitis and arthritis development and reduced arthritis severity, whereas therapeutic TNF blockade did not affect spondylitis and arthritis severity. Collectively, these data indicate that innate immune activation plays a role in the initiation of HLA-B27-associated disease and allowed to establish a useful in vivo model to study the cellular and molecular mechanisms of disease initiation and progression.

  10. Beneficial autoimmunity at body surfaces - immune surveillance and rapid type 2 immunity regulate tissue homeostasis and cancer.

    Science.gov (United States)

    Dalessandri, Tim; Strid, Jessica

    2014-01-01

    Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress - a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis.

  11. Conventional dendritic cells at the crossroads between immunity and cholesterol homeostasis in atherosclerosis.

    Science.gov (United States)

    Gautier, Emmanuel L; Huby, Thierry; Saint-Charles, Flora; Ouzilleau, Betty; Pirault, John; Deswaerte, Virginie; Ginhoux, Florent; Miller, Elizabeth R; Witztum, Joseph L; Chapman, M John; Lesnik, Philippe

    2009-05-05

    Immunoinflammatory mechanisms are implicated in the atherogenic process. The polarization of the immune response and the nature of the immune cells involved, however, are major determinants of the net effect, which may be either proatherogenic or antiatherogenic. Dendritic cells (DCs) are central to the regulation of immunity, the polarization of the immune response, and the induction of tolerance to antigens. The potential role of DCs in atherosclerosis, however, remains to be defined. We created a mouse model in which the lifespan and immunogenicity of conventional DCs are enhanced by specific overexpression of the antiapoptotic gene hBcl-2 under the control of the CD11c promoter. When studied in either low-density lipoprotein receptor-deficient or apolipoprotein E-deficient backgrounds, DC-hBcl2 mice exhibited an expanded DC population associated with enhanced T-cell activation, a T-helper 1 and T-helper 17 cytokine expression profile, and elevated production of T-helper 1-driven IgG2c autoantibodies directed against oxidation-specific epitopes. This proatherogenic signature, however, was not associated with acceleration of atherosclerotic plaque progression, because expansion of the DC population was unexpectedly associated with an atheroprotective decrease in plasma cholesterol levels. Conversely, depletion of DCs in hyperlipidemic CD11c-diphtheria toxin receptor/apolipoprotein E-deficient transgenic mice resulted in enhanced cholesterolemia, thereby arguing for a close relationship between the DC population and plasma cholesterol levels. Considered together, the present data reveal that conventional DCs are central to the atherosclerotic process, because they are directly implicated in both cholesterol homeostasis and the immune response.

  12. The vagal innervation of the gut and immune homeostasis.

    Science.gov (United States)

    Matteoli, Gianluca; Boeckxstaens, Guy E

    2013-08-01

    The central nervous system interacts dynamically with the immune system to modulate inflammation through humoral and neural pathways. Recently, in animal models of sepsis, the vagus nerve (VN) has been proposed to play a crucial role in the regulation of the immune response, also referred to as the cholinergic anti-inflammatory pathway. The VN, through release of acetylcholine, dampens immune cell activation by interacting with α-7 nicotinic acetylcholine receptors. Recent evidence suggests that the vagal innervation of the gastrointestinal tract also plays a major role controlling intestinal immune activation. Indeed, VN electrical stimulation potently reduces intestinal inflammation restoring intestinal homeostasis, whereas vagotomy has the reverse effect. In this review, we will discuss the current understanding concerning the mechanisms and effects involved in the cholinergic anti-inflammatory pathway in the gastrointestinal tract. Deeper investigation on this counter-regulatory neuroimmune mechanism will provide new insights in the cross-talk between the nervous and immune system leading to the identification of new therapeutic targets to treat intestinal immune disease.

  13. Immune-related adverse effects of cancer immunotherapy- Implications for rheumatology

    OpenAIRE

    Cappelli, Laura C.; Shah, Ami A.; Bingham, Clifton O.

    2016-01-01

    Immune checkpoint inhibitors (ICIs) are being increasingly studied and used as therapy for a growing number of malignancies. ICIs work by blocking inhibitory pathways of T-cell activation, leading to an immune response directed against tumors. Such nonspecific immunologic activation can lead to immune-related adverse events (IRAE). Some IRAE including inflammatory arthritis, sicca syndrome, myositis and vasculitis are of special interest to rheumatologists. As use of ICIs increases, recogniti...

  14. State of immune system lesions eymeriozo turkey-invasions histomonoznoyu

    OpenAIRE

    CHARIV I.

    2011-01-01

    The immune system of animals and birds provides resistance against bacterial and viral infections. In the intestinal mucosa and eymeriyi histomonady produce metabolic products that are toxic to different systems and tissues of turkeys. They parasitizing in the intestine, suppress specific phase of immunity provided by antibodies (humoral type), reduce activity sensitized cells (cell type), slow phase of nonspecific immunity, which is represented by various immune cells.

  15. Roles of microRNA in the immature immune system of neonates.

    Science.gov (United States)

    Yu, Hong-Ren; Huang, Lien-Hung; Li, Sung-Chou

    2018-06-13

    Neonates have an immature immune system; therefore, their immune activities are different from the activities of adult immune systems. Such differences between neonates and adults are reflected by cell population constitutions, immune responses, cytokine production, and the expression of cellular/humoral molecules, which contribute to the specific neonatal microbial susceptibility and atopic properties. MicroRNAs (miRNAs) have been discovered to modulate many aspects of immune responses. Herein, we summarize the distinct manifestations of the neonatal immune system, including cellular and non-cellular components. We also review the current findings on the modulatory effects of miRNAs on the neonatal immune system. These findings suggest that miRNAs have the potential to be useful therapeutic targets for certain infection or inflammatory conditions by modulating the neonatal immune system. In the future, we need a more comprehensive understanding in regard to miRNAs and how they modulate specific immune cells in neonates. Copyright © 2018. Published by Elsevier B.V.

  16. Functions of innate immune cells and commensal bacteria in gut homeostasis.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2016-02-01

    The intestinal immune system remains unresponsive to beneficial microbes and dietary antigens while activating pro-inflammatory responses against pathogens for host defence. In intestinal mucosa, abnormal activation of innate immunity, which directs adaptive immune responses, causes the onset and/or progression of inflammatory bowel diseases. Thus, innate immunity is finely regulated in the gut. Multiple innate immune cell subsets have been identified in both murine and human intestinal lamina propria. Some innate immune cells play a key role in the maintenance of gut homeostasis by preventing inappropriate adaptive immune responses while others are associated with the pathogenesis of intestinal inflammation through development of Th1 and Th17 cells. In addition, intestinal microbiota and their metabolites contribute to the regulation of innate/adaptive immune responses. Accordingly, perturbation of microbiota composition can trigger intestinal inflammation by driving inappropriate immune responses. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  17. Studies of Cell-Mediated Immunity Against Immune Disorders Using Synthetic Peptides and Rotating Bioreactor System

    Science.gov (United States)

    Sastry, Jagannadha K.

    1997-01-01

    Our proposed experiments included: (1) immunzing mice with synthetic peptides; (2) preparing spleen and lymph node cells; (3) growing them under conventional conditions as well as in the rotatory vessel in appropriate medium reconstituting with synthetic peptides and/or cytokines as needed; and (4) comparing at regular time intervals the specific CTL activity as well as helper T-cell activity (in terms of both proliferative responses and cytokine production) using established procedures in my laboratory. We further proposed that once we demonstrated the merit of rotatory vessel technology to achieve desired results, these studies would be expanded to include immune cells from non-human primates (rhesus monkeys and chimpanzees) and also humans. We conducted a number of experiments to determine CTL induction by the synthetic peptides corresponding to antigenic proteins in HIV and HPV in different mouse strains that express MHC haplotypes H-2b or H-2d. We immunized mice with 100 ug of the synthetic peptide, suspended in sterile water, and emulsified in CFA (1:1). The immune lymph node cells obtained after 7 days were restimulated by culturing in T25 flask, HARV-10, or STLV-50, in the presence of the peptide at 20 ug/ml. The results from the 5'Cr-release assay consistently revealed complete abrogation of CTL activity of cells grown in the bioreactors (both HARV and STLV), while significant antigen-specific CTL activity was observed with cells cultured in tissue culture flasks. Thus, overall the data we generated in this study proved the usefulness of the NASA-developed developed technology for understanding the known immune deficiency during space travel. Additionally, this ex vivo microgravity technology since it mimics effectively the in vivo situation, it is also useful in understanding immune disorders in general. Thus, our proposed studies in TMC-NASA contract round II application benefit from data generated in this TMC-NASA contract round I study.

  18. Immune cells in term and preterm labor

    Science.gov (United States)

    Gomez-Lopez, Nardhy; StLouis, Derek; Lehr, Marcus A; Sanchez-Rodriguez, Elly N; Arenas-Hernandez, Marcia

    2014-01-01

    Labor resembles an inflammatory response that includes secretion of cytokines/chemokines by resident and infiltrating immune cells into reproductive tissues and the maternal/fetal interface. Untimely activation of these inflammatory pathways leads to preterm labor, which can result in preterm birth. Preterm birth is a major determinant of neonatal mortality and morbidity; therefore, the elucidation of the process of labor at a cellular and molecular level is essential for understanding the pathophysiology of preterm labor. Here, we summarize the role of innate and adaptive immune cells in the physiological or pathological activation of labor. We review published literature regarding the role of innate and adaptive immune cells in the cervix, myometrium, fetal membranes, decidua and the fetus in late pregnancy and labor at term and preterm. Accumulating evidence suggests that innate immune cells (neutrophils, macrophages and mast cells) mediate the process of labor by releasing pro-inflammatory factors such as cytokines, chemokines and matrix metalloproteinases. Adaptive immune cells (T-cell subsets and B cells) participate in the maintenance of fetomaternal tolerance during pregnancy, and an alteration in their function or abundance may lead to labor at term or preterm. Also, immune cells that bridge the innate and adaptive immune systems (natural killer T (NKT) cells and dendritic cells (DCs)) seem to participate in the pathophysiology of preterm labor. In conclusion, a balance between innate and adaptive immune cells is required in order to sustain pregnancy; an alteration of this balance will lead to labor at term or preterm. PMID:24954221

  19. Immune checkpoint blockade therapy: The 2014 Tang prize in biopharmaceutical science

    Directory of Open Access Journals (Sweden)

    Ya-Shan Chen

    2015-02-01

    Full Text Available The first Tang Prize for Biopharmaceutical Science has been awarded to Prof. James P. Allison and Prof. Tasuku Honjo for their contributions leading to an entirely new way to treat cancer by blocking the molecules cytotoxic T lymphocyte-associated antigen 4 (CTLA-4 and programmed cell death protein 1 (PD-1 that turn off immune response. The treatment, called "immune checkpoint blockade therapy," has opened a new therapeutic era. Here the discoveries of the immune checkpoints and how they contribute to the maintenance of self-tolerance, as well as how to protect tissues from the excess immune responses causing damage are reviewed. The efforts made by Prof. Allison and Prof. Honjo for developing the most promising approaches to activate therapeutic antitumor immunity are also summarized. Since these certain immune checkpoint pathways appear to be one of the major mechanisms resulting in immune escape of tumors, the presence of anti-CTLA-4 and/or anti-PD-1 should contribute to removal of the inhibition signals for T cell activation. Subsequently, it will enhance specific T cell activation and, therefore, strengthen antitumor immunity.

  20. In Vitro Evaluation of Colloidal Silver on Immune Function: Anti lymphoproliferative Activity

    International Nuclear Information System (INIS)

    Franco-Molina, M. A.; Mendoza-Gamboa, E.; Zarate-Trivino, D. G.; Coronado-Cerda, E.E.; Alcocer-Gonzalez, J. M.; Resendez-Perez, D.; Rodriguez-Salazar, M.C.; Rivera-Morales, L.G.; Tamez-Guerra, R.; Rodriguez-Padilla, C.

    2016-01-01

    Colloidal silver (AgC) is currently used by humans and it can be internalized through inhalation, injection, ingestion, and dermal contact. However, there is limited information about immunological activity; more investigations using colloidal silver are needed. In the present study, the effects of AgC (17.5 ng/m L) on immunological parameters (proliferation and immuno phenotyping) using human peripheral blood mononuclear cells (PBMC) and macrophages (phagocytosis) and cytotoxicity on leukemia and lymphoma cancer cell lines (1.75 to 17.5 ng/m L) were investigated. AgC was observed to significantly ρ) decrease interleukin-2 (I L-2) production and proliferation induced by phytohemagglutinin or concanavalin A in PBMC without affecting its cell viability but with cytotoxic effect on cancer cells. IL-2, IL-4, IL-6, IL-10, INF-γ, and IL_-17 A cytokines production and CD3"+, CD3"-CD19"+, CD3"+CD4"+, CD3"+CD8"+, and CD16"+CD56"+ PBMC phenotypes were not affected by AgC. The present study demonstrates that colloidal silver is harmless and nontoxic to the immune system cells and its ability to interfere with the immune response by decreasing cell proliferation when stimulated with mitogens demonstrated the anti lymphoproliferative potential of AgC

  1. First evidence of the possible implication of the 11-deoxycorticosterone (DOC) in immune activity of Eurasian perch (Perca fluviatilis, L.): comparison with cortisol.

    Science.gov (United States)

    Mathieu, Cédric; Milla, Sylvain; Mandiki, S N M; Douxfils, Jessica; Douny, Caroline; Scippo, Marie-Louise; De Pauw, Edwin; Kestemont, Patrick

    2013-06-01

    Cortisol, the main corticosteroid in fish, is frequently described as a modulator of fish immune system. Moreover, 11-deoxycorticosterone (DOC) was shown to bind and transcriptionally activate the mineralocorticoid receptor and may act as a mineralocorticoid in fish. Immune modulations induced by intraperitoneal injections of these two corticosteroids were assessed in Eurasian perch juveniles. Cortisol and DOC were injected at 0.8 mg kg(-1) and 0.08 mg kg(-1) body weight respectively. Cortisol increased plasma lysozyme activity 72 h post-injection, C-type lysozyme expression in spleen from 1 to 72 h post-injection, and favoured blood neutrophils at the expense of a mixture of lymphocytes and thrombocytes. Moreover, 6 h after injection, cortisol reduced expression levels of the pro-inflammatory cytokine TNF-α in spleen. DOC had no effects on the immune variables measured in plasma, but increased expression levels of C-type lysozyme and apolipoprotein A1 mRNA in both gills and spleen. Meanwhile, DOC stimulated its putative signalling pathway by increasing expression of mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase-2 in spleen. These results confirmed the role of cortisol as an innate, short term immune stimulator. For the first time, DOC is described as a possible immune stimulator in fish. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Increased intrahepatic apoptosis but reduced immune activation in HIV-HBV co-infected patients with advanced immunosuppression.

    Science.gov (United States)

    Iser, David M; Avihingsanon, Anchalee; Wisedopas, Naruemon; Thompson, Alexander J; Boyd, Alison; Matthews, Gail V; Locarnini, Stephen A; Slavin, John; Desmond, Paul V; Lewin, Sharon R

    2011-01-14

    to determine if intrahepatic immune activation is increased in HIV-hepatitis B virus (HBV) co-infected patients compared to HBV mono-infected patients and whether this reduced following HBV-active antiretroviral therapy (ART) in HIV-HBV co-infected patients. : Case-control observational study. we examined liver biopsies for markers of T-cell and monocyte infiltration and activation, natural killer cells, hepatic stellate cell (HSC) activation (staining for alpha smooth muscle actin) and apoptosis [using terminal dUTP nick-end labelling (TUNEL)] in treatment-naive Asian HIV-HBV co-infected (n = 16) and HBV mono-infected patients matched for age and HBV e-antigen status (n = 16). Liver biopsies from a subset of co-infected patients (n = 15) were also compared prior to and following 48 weeks of HBV-active ART. HIV-HBV co-infected patients had a median CD4 T-cell count of 25 cells/microl and lower alanine aminotransferase levels than HBV mono-infected patients (P = 0.03). In HIV-HBV co-infected patients, hepatocyte apoptosis was increased (P = 0.04) but there were fewer intrahepatic CD4 and CD8 T cells (P < 0.001), lower activation of intrahepatic T cells, Kupffer cells and HSC (P = 0.002, 0.008 and < 0.001, respectively). Following ART, there was a significant decrease in intrahepatic HBsAg staining (P = 0.04) and Kupffer cell activation (P = 0.003). we found no evidence of increased intrahepatic mononuclear and HSC activation in this cohort of HIV-HBV co-infected individuals with advanced immune suppression. An increase in intra-hepatic apoptosis in HIV-HBV co-infected individuals may potentially contribute to accelerated fibrosis in this setting. 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  3. NEW ASPECTS OF ANTI-INFECTION IMMUNITY

    Directory of Open Access Journals (Sweden)

    E. P. Kisseleva

    2011-01-01

    Full Text Available Abstract. Four types of adaptive immune response which are regulated by different T-cell populations, namely Th1, Th2, Th17 and T regs have been described. At the first time classification is based on the difference in transcription factors but not due to diversity of cytokines produced. Each population of T-lymphocytes possesses a set of unique transcription factors and directions of cell signaling. Each type of immune responses plays a key role in the protection against certain types of pathogens. The Th1-response is important against intracellular bacteria and fungi, the Th17 — against extracellular, the Th2 — against yeasts and protozoa. T-regulatory cells control all types of immune responses. Diversity of immune response mechanisms occurs due to involvement of different effector cells. The Th1-type of response is connected with macrophage activation, Th2-cells cooperate with B-lymphocytes as well as attract eosinophils and mast cells. Th17 lymphocytes stimulate neutrophils and epithelial cells. T-cell differentiation is directed by the cytokines produced by innate immune cells. Phagocytes recognize molecular patterns at the surface of pathogens via pattern-recognition receptors (PRR, become activated and synthesize cytokines. Pathogen plays important role in this process while instructing dendritic cells. Pathogen dials a special code from a number of phagocyte surface receptors, which is named as «combinatory» recognition. Phagocytes possess several different types of activation and synthesize different cytokines that direct T-lymphocytes to a certain type of differentiation.

  4. Involvement of Corticotropin-Releasing Factor and Receptors in Immune Cells in Irritable Bowel Syndrome

    Directory of Open Access Journals (Sweden)

    Mahanand Chatoo

    2018-02-01

    Full Text Available Irritable bowel syndrome (IBS is a common functional gastrointestinal disorder defined by ROME IV criteria as pain in the lower abdominal region, which is associated with altered bowel habit or defecation. The underlying mechanism of IBS is not completely understood. IBS seems to be a product of interactions between various factors with genetics, dietary/intestinal microbiota, low-grade inflammation, and stress playing a key role in the pathogenesis of this disease. The crosstalk between the immune system and stress in IBS mechanism is increasingly recognized. Corticotropin-releasing factor (CRF, a major mediator in the stress response, is involved in altered function in GI, including inflammatory processes, colonic transit time, contractile activity, defecation pattern, pain threshold, mucosal secretory function, and barrier functions. This mini review focuses on the recently establish local GI-CRF system, its involvement in modulating the immune response in IBS, and summarizes current IBS animal models and mapping of CRF, CRFR1, and CRFR2 expression in colon tissues. CRF and receptors might be a key molecule involving the immune and movement function via brain–gut axis in IBS.

  5. The people factor: An analysis of the human resources landscape for immunization supply chain management.

    Science.gov (United States)

    Kasonde, Musonda; Steele, Pamela

    2017-04-19

    Human resources is the backbone of any system and the key enabler for all other functions to effectively perform. This is no different with the Immunization Supply Chain, more so in todays' complex operating environment with the increasing strain caused by new vaccines and expanding immunization programmes (Source: WHO, UNICEF). In order to drive the change that is required for sustainability and continuous improvement, every immunization supply chain needs an effective leader. A dedicated and competent immunization supply chain leader with adequate numbers of skilled, accountable, motivated and empowered personnel at all levels of the health system to overcome existing and emerging immunization supply chain (ISC) challenges. Without an effective supply chain leader supported by capable and motivated staff, none of the interventions designed to strengthen the supply chain can be effective or sustainable (Source: Gavi Alliance SC Strategy 2014). This landscape analysis was preceded by an HR Evidence Review (March 2014) and has served to inform global partner strategies and country activities, as well as highlight where most support is required. The study also aimed to define the status quo in order to create some form of baseline against which to measure the impact of interventions related to HR going forward. The analysis was comprised of a comprehensive desk review, a survey of 40 respondents from 32 countries and consultations with ISC practitioners in several forums. The findings highlight key areas that should inform the pillars of a HR capacity development plan. At the same time, it revealed that there are some positive examples of where countries are actively addressing some of the issues identified and putting in place mechanisms and structures to optimize the SC function. Copyright © 2017. Published by Elsevier Ltd.

  6. Activation of cellular immunity and marked inhibition of liver cancer in a mouse model following gene therapy and tumor expression of GM-SCF, IL-21, and Rae-1.

    Science.gov (United States)

    Cheng, Mingrong; Zhi, Kangkang; Gao, Xiaoyan; He, Bing; Li, Yingchun; Han, Jiang; Zhang, Zhiping; Wu, Yan

    2013-12-18

    Cancer is both a systemic and a genetic disease. The pathogenesis of cancer might be related to dampened immunity. Host immunity recognizes nascent malignant cells - a process referred to as immune surveillance. Augmenting immune surveillance and suppressing immune escape are crucial in tumor immunotherapy. A recombinant plasmid capable of co-expressing granulocyte-macrophage colony- stimulating factor (GM-SCF), interleukin-21 (IL-21), and retinoic acid early transcription factor-1 (Rae-1) was constructed, and its effects determined in a mouse model of subcutaneous liver cancer. Serum specimens were assayed for IL-2 and INF-γ by ELISA. Liver cancer specimens were isolated for Rae-1 expression by RT-PCR and Western blot, and splenocytes were analyzed by flow cytometry. The recombinant plasmid inhibited the growth of liver cancer and prolonged survival of tumor-loaded mice. Activation of host immunity might have contributed to this effect by promoting increased numbers and cytotoxicity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL) following expression of GM-SCF, IL-21, and Rae-1. By contrast, the frequency of regulatory T cells was decreased, Consequently, activated CTL and NK cells enhanced their secretion of INF-γ, which promoted cytotoxicity of NK cells and CTL. Moreover, active CTL showed dramatic secretion of IL-2, which stimulates CTL. The recombinant expression plasmid also augmented Rae-1 expression by liver cancer cells. Rae-1 receptor expressing CTL and NK cells removed liver cancer. The recombinant expression plasmid inhibited liver cancer by a mechanism that involved activation of cell-mediated immunity and Rae-1 in liver cancer.

  7. Immune and genetic gardening of the intestinal microbiome

    Science.gov (United States)

    Jacobs, Jonathan P.; Braun, Jonathan

    2014-01-01

    The mucosal immune system – consisting of adaptive and innate immune cells as well as the epithelium – is profoundly influenced by its microbial environment. There is now growing evidence that the converse is also true, that the immune system shapes the composition of the intestinal microbiome. During conditions of health, this bidirectional interaction achieves a homeostasis in which inappropriate immune responses to nonpathogenic microbes are averted and immune activity suppresses blooms of potentially pathogenic microbes (pathobionts). Genetic alteration in immune/epithelial function can affect host gardening of the intestinal microbiome, contributing to the diversity of intestinal microbiota within a population and in some cases allowing for unfavorable microbial ecologies (dysbiosis) that confer disease susceptibility. PMID:24613921

  8. Atorvastatin reduces T-cell activation and exhaustion among HIV-infected cART-treated suboptimal immune responders in Uganda: a randomised crossover placebo-controlled trial.

    Science.gov (United States)

    Nakanjako, Damalie; Ssinabulya, Isaac; Nabatanzi, Rose; Bayigga, Lois; Kiragga, Agnes; Joloba, Moses; Kaleebu, Pontiano; Kambugu, Andrew D; Kamya, Moses R; Sekaly, Rafick; Elliott, Alison; Mayanja-Kizza, Harriet

    2015-03-01

    T-cell activation independently predicts mortality, poor immune recovery and non-AIDS illnesses during combination antiretroviral therapy (cART). Atorvastatin showed anti-immune activation effects among HIV-infected cART-naïve individuals. We investigated whether adjunct atorvastatin therapy reduces T-cell activation among cART-treated adults with suboptimal immune recovery. A randomised double-blind placebo-controlled crossover trial, of atorvastatin 80 mg daily vs. placebo for 12 weeks, was conducted among individuals with CD4 increase <295 cells/μl after seven years of suppressive cART. Change in T-cell activation (CD3 + CD4 + /CD8 + CD38 + HLADR+) and in T-cell exhaustion (CD3 + CD4 + /CD8 + PD1 + ) was measured using flow cytometry. Thirty patients were randomised, 15 to each arm. Atorvastatin resulted in a 28% greater reduction in CD4 T-cell activation (60% reduction) than placebo (32% reduction); P = 0.001. Atorvastatin also resulted in a 35% greater reduction in CD8-T-cell activation than placebo (49% vs. 14%, P = 0.0009), CD4 T-cell exhaustion (27% vs. 17% in placebo), P = 0.001 and CD8 T-cell exhaustion (27% vs. 16%), P = 0.004. There was no carry-over/period effect. Expected adverse events were comparable in both groups, and no serious adverse events were reported. Atorvastatin reduced T-cell immune activation and exhaustion among cART-treated adults in a Ugandan cohort. Atorvastatin adjunct therapy should be explored as a strategy to improve HIV treatment outcomes among people living with HIV in sub-Saharan Africa. © 2014 John Wiley & Sons Ltd.

  9. The Effects Radiation on Cellular Components of the Immune

    International Nuclear Information System (INIS)

    Zubaidah-Alatas

    2001-01-01

    The immune system describes the body's ability to defend itself against various foreign intruders named as antigens by calling on an immune mechanism. Antigens penetration into body activate the body's immune system that may be humoral response, cellular response, or both. The immune response is primarily mediated by two cell types, lymphocyte and macrophage. This paper will discuss the cellular component of immune system and the radiation effects on various cells involved in system. Moreover, the effects of radiation on humoral and cellular responses and the relation among immunity, cancer and radiotherapy are also described. (author)

  10. Active or passive immunization in unexplained recurrent miscarriage

    DEFF Research Database (Denmark)

    Christiansen, Ole B; Nielsen, Henriette Svarre; Pedersen, Bjorn

    2004-01-01

    placebo-controlled trials since 1986 in which greater doses than used in other trials have been administered, and both treatments are now used for routine therapy. Our results have convinced us that using the correct immunization protocols on the right subsets of RM patients is effective, but we admit...

  11. The influence of concentration/meditation on autonomic nervous system activity and the innate immune response: a case study.

    NARCIS (Netherlands)

    Kox, M.; Stoffels, M.; Smeekens, S.P.; Alfen, N. van; Gomes, M.E.R.; Eijsvogels, T.M.H.; Hopman, M.T.E.; Hoeven, J.G. van der; Netea, M.G.; Pickkers, P.

    2012-01-01

    OBJECTIVE: In this case study, we describe the effects of a particular individual's concentration/meditation technique on autonomic nervous system activity and the innate immune response. The study participant holds several world records with regard to tolerating extreme cold and claims that he can

  12. Immune Activation and Benefit From Avelumab in EBV-Positive Gastric Cancer.

    Science.gov (United States)

    Panda, Anshuman; Mehnert, Janice M; Hirshfield, Kim M; Riedlinger, Greg; Damare, Sherri; Saunders, Tracie; Kane, Michael; Sokol, Levi; Stein, Mark N; Poplin, Elizabeth; Rodriguez-Rodriguez, Lorna; Silk, Ann W; Aisner, Joseph; Chan, Nancy; Malhotra, Jyoti; Frankel, Melissa; Kaufman, Howard L; Ali, Siraj; Ross, Jeffrey S; White, Eileen P; Bhanot, Gyan; Ganesan, Shridar

    2018-03-01

    Response to immune checkpoint therapy can be associated with a high mutation burden, but other mechanisms are also likely to be important. We identified a patient with metastatic gastric cancer with meaningful clinical benefit from treatment with the anti-programmed death-ligand 1 (PD-L1) antibody avelumab. This tumor showed no evidence of high mutation burden or mismatch repair defect but was strongly positive for presence of Epstein-Barr virus (EBV) encoded RNA. Analysis of The Cancer Genome Atlas gastric cancer data (25 EBV+, 80 microsatellite-instable [MSI], 310 microsatellite-stable [MSS]) showed that EBV-positive tumors were MSS. Two-sided Wilcoxon rank-sum tests showed that: 1) EBV-positive tumors had low mutation burden (median = 2.07 vs 3.13 in log10 scale, P < 10-12) but stronger evidence of immune infiltration (median ImmuneScore 2212 vs 1295, P < 10-4; log2 fold-change of CD8A = 1.85, P < 10-6) compared with MSI tumors, and 2) EBV-positive tumors had higher expression of immune checkpoint pathway (PD-1, CTLA-4 pathway) genes in RNA-seq data (log2 fold-changes: PD-1 = 1.85, PD-L1 = 1.93, PD-L2 = 1.50, CTLA-4 = 1.31, CD80 = 0.89, CD86 = 1.31, P < 10-4 each), and higher lymphocytic infiltration by histology (median tumor-infiltrating lymphocyte score = 3 vs 2, P < .001) compared with MSS tumors. These data suggest that EBV-positive low-mutation burden gastric cancers are a subset of MSS gastric cancers that may respond to immune checkpoint therapy.

  13. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response.

    Directory of Open Access Journals (Sweden)

    Ana V García

    2010-07-01

    Full Text Available An important layer of plant innate immunity to host-adapted pathogens is conferred by intracellular nucleotide-binding/oligomerization domain-leucine rich repeat (NB-LRR receptors recognizing specific microbial effectors. Signaling from activated receptors of the TIR (Toll/Interleukin-1 Receptor-NB-LRR class converges on the nucleo-cytoplasmic immune regulator EDS1 (Enhanced Disease Susceptibility1. In this report we show that a receptor-stimulated increase in accumulation of nuclear EDS1 precedes or coincides with the EDS1-dependent induction and repression of defense-related genes. EDS1 is capable of nuclear transport receptor-mediated shuttling between the cytoplasm and nucleus. By enhancing EDS1 export from inside nuclei (through attachment of an additional nuclear export sequence (NES or conditionally releasing EDS1 to the nucleus (by fusion to a glucocorticoid receptor (GR in transgenic Arabidopsis we establish that the EDS1 nuclear pool is essential for resistance to biotrophic and hemi-biotrophic pathogens and for transcriptional reprogramming. Evidence points to post-transcriptional processes regulating receptor-triggered accumulation of EDS1 in nuclei. Changes in nuclear EDS1 levels become equilibrated with the cytoplasmic EDS1 pool and cytoplasmic EDS1 is needed for complete resistance and restriction of host cell death at infection sites. We propose that coordinated nuclear and cytoplasmic activities of EDS1 enable the plant to mount an appropriately balanced immune response to pathogen attack.

  14. Emerging roles for IL-15 in the activation and function of T-cells during immune stimulation

    Directory of Open Access Journals (Sweden)

    Anthony SM

    2015-02-01

    Full Text Available Scott M Anthony, Kimberly S Schluns Immunology Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: Interleukin (IL-15 is a cytokine that promotes the development and homeostasis of a group of lymphocytes; however, IL-15 is also significantly upregulated in response to pathogen infections and in autoimmune diseases. With its ability to promote T-cell proliferation and survival and influence migration and effector functions, elevated IL-15 can impact T-cell responses in numerous ways. Nonetheless, the importance of IL-15 during early infection and autoimmunity is unclear. Furthermore, the mechanisms regulating IL-15 responses in both inflammatory situations and during the steady state are still being elucidated. The mechanisms by which IL-15 mediate responses are unique among cytokines. IL-15 associates with IL-15Rα within cells where it can either be transpresented to neighboring cells or cleaved into a soluble cytokine/receptor complex. Increased production of soluble (sIL-15Rα/IL-15 complexes is seen upon different types of immune stimulation, suggesting that these are circumstance when sIL-15 complexes are most likely to act. How common this response is remains unclear, as the production of sIL-15 complexes has only been recently appreciated. This review sets out to emphasize how IL-15 is frequently increased in response to pathogen infections and during autoimmunity and inflammatory conditions. Since pathogen infections and inflammatory diseases share signaling pathways that induce sIL-15 complexes, including pattern recognition receptors and type I interferon, sIL-15 complexes may be generated in more situations than realized. While there are multiple cellular targets of IL-15, this review primarily focuses on how T-cells are likely affected by IL-15 during immune activation and describes evidence

  15. Tradeoffs between immune function and childhood growth among Amazonian forager-horticulturalists.

    Science.gov (United States)

    Urlacher, Samuel S; Ellison, Peter T; Sugiyama, Lawrence S; Pontzer, Herman; Eick, Geeta; Liebert, Melissa A; Cepon-Robins, Tara J; Gildner, Theresa E; Snodgrass, J Josh

    2018-04-24

    Immune function is an energetically costly physiological activity that potentially diverts calories away from less immediately essential life tasks. Among developing organisms, the allocation of energy toward immune function may lead to tradeoffs with physical growth, particularly in high-pathogen, low-resource environments. The present study tests this hypothesis across diverse timeframes, branches of immunity, and conditions of energy availability among humans. Using a prospective mixed-longitudinal design, we collected anthropometric and blood immune biomarker data from 261 Amazonian forager-horticulturalist Shuar children (age 4-11 y old). This strategy provided baseline measures of participant stature, s.c. body fat, and humoral and cell-mediated immune activity as well as subsample longitudinal measures of linear growth (1 wk, 3 mo, 20 mo) and acute inflammation. Multilevel analyses demonstrate consistent negative effects of immune function on growth, with children experiencing up to 49% growth reduction during periods of mildly elevated immune activity. The direct energetic nature of these relationships is indicated by ( i ) the manifestation of biomarker-specific negative immune effects only when examining growth over timeframes capturing active competition for energetic resources, ( ii ) the exaggerated impact of particularly costly inflammation on growth, and ( iii ) the ability of children with greater levels of body fat (i.e., energy reserves) to completely avoid the growth-inhibiting effects of acute inflammation. These findings provide evidence for immunologically and temporally diverse body fat-dependent tradeoffs between immune function and growth during childhood. We discuss the implications of this work for understanding human developmental energetics and the biological mechanisms regulating variation in human ontogeny, life history, and health.

  16. Fully immunized child: coverage, timing and sequencing of routine immunization in an urban poor settlement in Nairobi, Kenya.

    Science.gov (United States)

    Mutua, Martin Kavao; Kimani-Murage, Elizabeth; Ngomi, Nicholas; Ravn, Henrik; Mwaniki, Peter; Echoka, Elizabeth

    2016-01-01

    More efforts have been put in place to increase full immunization coverage rates in the last decade. Little is known about the levels and consequences of delaying or vaccinating children in different schedules. Vaccine effectiveness depends on the timing of its administration, and it is not optimal if given early, delayed or not given as recommended. Evidence of non-specific effects of vaccines is well documented and could be linked to timing and sequencing of immunization. This paper documents the levels of coverage, timing and sequencing of routine childhood vaccines. The study was conducted between 2007 and 2014 in two informal urban settlements in Nairobi. A total of 3856 children, aged 12-23 months and having a vaccination card seen were included in analysis. Vaccination dates recorded from the cards seen were used to define full immunization coverage, timeliness and sequencing. Proportions, medians and Kaplan-Meier curves were used to assess and describe the levels of full immunization coverage, vaccination delays and sequencing. The findings indicate that 67 % of the children were fully immunized by 12 months of age. Missing measles and third doses of polio and pentavalent vaccine were the main reason for not being fully immunized. Delays were highest for third doses of polio and pentavalent and measles. About 22 % of fully immunized children had vaccines in an out-of-sequence manner with 18 % not receiving pentavalent together with polio vaccine as recommended. Results show higher levels of missed opportunities and low coverage of routine childhood vaccinations given at later ages. New strategies are needed to enable health care providers and parents/guardians to work together to increase the levels of completion of all required vaccinations. In particular, more focus is needed on vaccines given in multiple doses (polio, pentavalent and pneumococcal conjugate vaccines).

  17. Viral subversion of the immune system

    International Nuclear Information System (INIS)

    Gillet, L.; Vanderplasschen, A.

    2005-01-01

    The continuous interactions between host and viruses during their co-evolution have shaped not only the immune system but also the countermeasures used by viruses. Studies in the last decade have described the diverse arrays of pathways and molecular targets that are used by viruses to elude immune detection or destruction, or both. These include targeting of pathways for major histocompatibility complex class I and class II antigen presentation, natural killer cell recognition, apoptosis, cytokine signalling, and complement activation. This paper provides an overview of the viral immune-evasion mechanisms described to date. It highlights the contribution of this field to our understanding of the immune system, and the importance of understanding this aspect of the biology of viral infection to develop efficacious and safe vaccines. (author)

  18. Immune-enhancing activities of low molecular weight β-glucan depolymerized by gamma irradiation

    Science.gov (United States)

    Sung, Nak-Yun; Byun, Eui-Hong; Kwon, Sun-Kyu; Song, Beom-Seok; Choi, Jong-il; Kim, Jae-Hun; Byun, Myung-Woo; Yoo, Young-Choon; Kim, Mee-Ree; Lee, Ju-Woon

    2009-07-01

    β-glucans are structural cell wall polymers of many microorganisms and cereals which possess immunomodulatory properties and have been used in the food, cosmetic and medical industry. In our previous study, β-glucan was depolymerized by gamma irradiation and leads to improve the solubility and viscosity. This study was carried out to evaluate the functional properties, mainly immune-enhancing activities of low molecular weight β-glucan fragmented by gamma irradiation. The results showed that RAW 264.7 macrophage cell stimulation activities of irradiated β-glucan were higher than that of non-irradiated β-glucan. In addition, the oral administration of gamma-irradiated β-glucan significantly increased the proliferation and cytokine (IFN-γ and IL-2) release of spleen and Peyer's patch cells compared with non-irradiated β-glucan. In conclusion, gamma irradiation could be used as an effective method for the production of depolymerized β-glucan improved functional property such as immunomodulatory activity.

  19. Immune-enhancing activities of low molecular weight β-glucan depolymerized by gamma irradiation

    International Nuclear Information System (INIS)

    Sung, Nak-Yun; Byun, Eui-Hong; Kwon, Sun-Kyu; Song, Beom-Seok; Choi, Jong-il; Kim, Jae-Hun; Byun, Myung-Woo; Yoo, Young-Choon; Kim, Mee-Ree; Lee, Ju-Woon

    2009-01-01

    β-glucans are structural cell wall polymers of many microorganisms and cereals which possess immunomodulatory properties and have been used in the food, cosmetic and medical industry. In our previous study, β-glucan was depolymerized by gamma irradiation and leads to improve the solubility and viscosity. This study was carried out to evaluate the functional properties, mainly immune-enhancing activities of low molecular weight β-glucan fragmented by gamma irradiation. The results showed that RAW 264.7 macrophage cell stimulation activities of irradiated β-glucan were higher than that of non-irradiated β-glucan. In addition, the oral administration of gamma-irradiated β-glucan significantly increased the proliferation and cytokine (IFN-γ and IL-2) release of spleen and Peyer's patch cells compared with non-irradiated β-glucan. In conclusion, gamma irradiation could be used as an effective method for the production of depolymerized β-glucan improved functional property such as immunomodulatory activity.

  20. Complement and innate immune evasion strategies of the human pathogenic fungus Candida albicans.

    Science.gov (United States)

    Luo, Shanshan; Skerka, Christine; Kurzai, Oliver; Zipfel, Peter F

    2013-12-15

    Candida albicans is a medically important fungus that can cause a wide range of diseases ranging from superficial infections to disseminated disease, which manifests primarily in immuno-compromised individuals. Despite the currently applied anti-fungal therapies, both mortality and morbidity caused by this human pathogenic fungus are still unacceptably high. Therefore new prophylactic and therapeutic strategies are urgently needed to prevent fungal infection. In order to define new targets for combating fungal disease, there is a need to understand the immune evasion strategies of C. albicans in detail. In this review, we summarize different sophisticated immune evasion strategies that are utilized by C. albicans. The description of the molecular mechanisms used for immune evasion does on one hand help to understand the infection process, and on the other hand provides valuable information to define new strategies and diagnostic approaches to fight and interfere with Candida infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Endogenous molecules released by haemocytes receiving Sargassum oligocystum extract lead to downstream activation and synergize innate immunity in white shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Shi, Yin-Ze; Chen, Jiann-Chu; Chen, Yu-Yuan; Kuo, Yi-Hsuan; Li, Hui-Fang

    2018-05-01

    White shrimp Litopenaeus vannamei haemocytes receiving immunostimulating Sargassum oligocystum extract (SE) caused necrosis in haemocyte cells, which released endogenous EM-SE molecules. This study examined the immune response of white shrimp L. vannamei receiving SE and EM-SE in vitro and in vivo. Shrimp haemocytes receiving SE exhibited degranulation, changes in cell size and cell viability, necrosis and a release of EM-SE. Shrimp haemocytes receiving SE, EM-SE, and the SE + EM-SE mixture (SE + EM-SE) increased their phenoloxidase (PO) activity which was significantly higher in shrimp haemocytes receiving the SE + EM-SE mixture. Furthermore, shrimp haemocytes receiving EM-SE showed degranulation and changes in cell size and cell viability. Shrimp receiving SE, EM-SE, and SE + EM-SE all increased their immune parameters, phagocytic activity, clearance efficiency and resistance to Vibrio alginolyticus, being significantly higher in shrimp receiving SE + EM-SE. Meanwhile, the recombinant lipopolysaccharide- and β-1,3-glucan binding protein of L. vannamei (rLvLGBP) was bound to SE, EM-SE, and SE + EM-SE. We conclude that in shrimp haemocytes receiving a non-self molecule, SE in dying cells released EM-SE which led to downstream activation and synergization of the immune response. This study demonstrated that the innate immunity of shrimp was elicited and enhanced by a mixture of endogenous molecules and exogenous substances (or immunostimulants). Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Thermodynamics as the driving principle behind the immune system

    Directory of Open Access Journals (Sweden)

    Eduardo Finger

    2012-09-01

    Full Text Available Over the last 120 years, few things contributed more to ourunderstanding of immune system than the study of its behavior inthe host/parasite relationship. Despite the advances though, a fewquestions remain, such as what drives the immune system? Whatare its guiding principles? If we ask these questions randomly, mostwill immediately answer “defend the body from external threats,” butwhat exactly do we defend ourselves from? How do these threatsharm us? What criteria define what constitutes a threat? On theother hand, if the immune system evolved to defend us againstexternal threats, how does its action against “internal” processes,such as neoplasms, qualify? Why do we die from cancer? Or frominfection? Or even, why do we die at all? These apparently obviousquestions are nor simple neither trivial, and the difficulty answeringthem reveals the complex reality that the immune system handles.The objective of this article is to articulate for the reader something that he instinctively already knows: that the decisions of the immune system are thermodynamically driven. Additionally, we will discuss how this apparent change in paradigm alters concepts such as health, disease, and therapeutics.

  3. Nutrition, Physical Activity, and Obesity - National Immunization Survey (Breastfeeding)

    Data.gov (United States)

    U.S. Department of Health & Human Services — This dataset includes breastfeeding data from the National Immunization Survey (NIS). This data is used for DNPAO's Data, Trends, and Maps database, which provides...

  4. A modified live canine parvovirus vaccine. II. Immune response.

    Science.gov (United States)

    Carmichael, L E; Joubert, J C; Pollock, R V

    1983-01-01

    The safety and efficacy of an attenuated canine parvovirus (A-CPV) vaccine was evaluated in both experimental and in field dogs. After parenteral vaccination, seronegative dogs developed hemagglutination-inhibition (HI) antibody titers as early as postvaccination (PV) day 2. Maximal titers occurred within 1 week. Immunity was associated with the persistence of HI antibody titers (titers greater than 80) that endured at least 2 years. Immune dogs challenged with virulent CPV did not shed virus in their feces. The A-CPV vaccine did not cause illness alone or in combination with living canine distemper (CD) and canine adenovirus type-2 (CAV-2) vaccines, nor did it interfere with the immune response to the other viruses. A high rate (greater than 98%) of immunity was engendered in seronegative pups. In contrast, maternal antibody interfered with the active immune response to the A-CPV. More than 95% of the dogs with HI titers less than 10 responded to the vaccine, but only 50% responded when titers were approximately 20. No animal with a titer greater than 80 at the time of vaccination became actively immunized. Susceptibility to virulent CPV during that period when maternal antibody no longer protects against infection, but still prevents active immunization, is the principal cause of vaccinal failure in breeding kennels where CPV is present. Reduction, but not complete elimination, of CPV disease in large breeding kennels occurred within 1-2 months of instituting an A-CPV vaccination program.

  5. Beneficial Autoimmunity at Body Surfaces – Immune Surveillance and Rapid Type 2 Immunity Regulate Tissue Homeostasis and Cancer

    Science.gov (United States)

    Dalessandri, Tim; Strid, Jessica

    2014-01-01

    Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress – a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis. PMID:25101088

  6. Modulation of inflammasome-mediated pulmonary immune activation by type I IFNs protects bone marrow homeostasis during systemic responses to Pneumocystis lung infection.

    Science.gov (United States)

    Searles, Steve; Gauss, Katherine; Wilkison, Michelle; Hoyt, Teri R; Dobrinen, Erin; Meissner, Nicole

    2013-10-01

    Although acquired bone marrow failure (BMF) is considered a T cell-mediated autoimmune disease, possible innate immune defects as a cause for systemic immune deviations in response to otherwise innocuous infections have not been extensively explored. In this regard, we recently demonstrated an important role of type I IFNs in protecting hematopoiesis during systemic stress responses to the opportunistic fungal pathogen Pneumocystis in lymphocyte-deficient mice. Mice deficient in both lymphocytes and type I IFN receptor (IFrag(-/-) mice) develop rapidly progressing BMF due to accelerated bone marrow (BM) cell apoptosis associated with innate immune deviations in the BM in response to Pneumocystis lung infection. However, the communication pathway between lung and BM eliciting the induction of BMF in response to this strictly pulmonary infection has been unclear. In this study, we report that absence of an intact type I IFN system during Pneumocystis lung infection not only causes BMF in lymphocyte-deficient mice but also transient BM stress in lymphocyte-competent mice. This is associated with an exuberant systemic IFN-γ response. IFN-γ neutralization prevented Pneumocystis lung infection-induced BM depression in type I IFN receptor-deficient mice and prolonged neutrophil survival time in BM from IFrag(-/-) mice. IL-1β and upstream regulators of IFN-γ, IL-12, and IL-18 were also upregulated in lung and serum of IFrag(-/-) mice. In conjunction, there was exuberant inflammasome-mediated caspase-1 activation in pulmonary innate immune cells required for processing of IL-18 and IL-1β. Thus, absence of type I IFN signaling during Pneumocystis lung infection may result in deregulation of inflammasome-mediated pulmonary immune activation, causing systemic immune deviations triggering BMF in this model.

  7. Activation of innate immune-response genes in little brown bats (Myotis lucifugus) infected with the fungus Pseudogymnoascus destructans.

    Science.gov (United States)

    Rapin, Noreen; Johns, Kirk; Martin, Lauren; Warnecke, Lisa; Turner, James M; Bollinger, Trent K; Willis, Craig K R; Voyles, Jamie; Misra, Vikram

    2014-01-01

    Recently bats have been associated with the emergence of diseases, both as reservoirs for several new viral diseases in humans and other animals and, in the northern Americas, as hosts for a devastating fungal disease that threatens to drive several bat species to regional extinction. However, despite these catastrophic events little Information is available on bat defences or how they interact with their pathogens. Even less is known about the response of bats to infection during torpor or long-term hibernation. Using tissue samples collected at the termination of an experiment to explore the pathogenesis of White Nose Syndrome in Little Brown Bats, we determined if hibernating bats infected with the fungus Pseudogymnoascus destructans could respond to infection by activating genes responsible for innate immune and stress responses. Lesions due to fungal infection and, in some cases, secondary bacterial infections, were restricted to the skin. However, we were unable to obtain sufficient amounts of RNA from these sites. We therefore examined lungs for response at an epithelial surface not linked to the primary site of infection. We found that bats responded to infection with a significant increase in lungs of transcripts for Cathelicidin (an anti-microbial peptide) as well as the immune modulators tumor necrosis factor alpha and interleukins 10 and 23. In conclusion, hibernating bats can respond to experimental P. destructans infection by activating expression of innate immune response genes.

  8. Inbred decorated crickets exhibit higher measures of macroparasitic immunity than outbred individuals.

    Science.gov (United States)

    Gershman, S N; Barnett, C A; Pettinger, A M; Weddle, C B; Hunt, J; Sakaluk, S K

    2010-09-01

    Inbreeding is assumed to have negative effects on fitness, including the reduced ability to withstand immune challenges. We examined the immunological consequences of inbreeding in decorated crickets, Gryllodes sigillatus, by comparing lytic activity, phenoloxidase (PO) activity, and encapsulation ability of crickets from eight inbred lines with that of crickets from the outbred founder population. Surprisingly, crickets from inbred lines had a greater encapsulation ability compared with crickets from the outbred population. We suggest that because inbred crickets have reduced reproductive effort, they may, therefore, have the option of devoting more resources to this form of immunity than outbred individuals. We also found that both inbred and outbred females had higher immunity than males in PO activity and implant darkness. This result supports the hypothesis that females should devote more effort to somatic maintenance and immunity than males. PO activity and implant darkness were heritable in both males and females, but lytic activity was only heritable in females. Males and females differed in the heritability of, and genetic correlations among, immune traits, suggesting that differences in selective pressures on males and females may have resulted in a sexual conflict over optimal immune trait values.

  9. Immune and hormonal activity in adults suffering from depression

    Directory of Open Access Journals (Sweden)

    S.O.V. Nunes

    2002-05-01

    Full Text Available An association between depression and altered immune and hormonal systems has been suggested by the results of many studies. In the present study we carried out immune and hormonal measurements in 40 non-medicated, ambulatory adult patients with depression determined by CID-10 criteria and compared with 34 healthy nondepressed subjects. The severity of the condition was determined with the Hamilton Depression Rating Scale. Of 40 depressed patients, 31 had very severe and 9 severe or moderate depression, 29 (72.5% were females and 11 (27.5% were males (2.6:1 ratio. The results revealed a significant reduction of albumin and elevation of alpha-1, alpha-2 and ß-globulins, and soluble IL-2 receptor in patients with depression compared to the values obtained for nondepressed subjects (P<0.05. The decrease lymphocyte proliferation in response to a mitogen was significantly lower in severely or moderately depressed patients when compared to control (P<0.05. These data confirm the immunological disturbance of acute phase proteins and cellular immune response in patients with depression. Other results may be explained by a variety of interacting factors such as number of patients, age, sex, and the nature, severity and/or duration of depression. Thus, the data obtained should be interpreted with caution and the precise clinical relevance of these findings requires further investigation.

  10. Immunity to sporozoite-induced malaria infection in mice. I. The effect of immunization of T and B cell-deficient mice

    International Nuclear Information System (INIS)

    Chen, D.H.; Tigelaar, R.E.; Weinbaum, F.I.

    1977-01-01

    The cellular basis of immunity to sporozoites was investigated by examining the effect of immunization of T and B cell-deficient C57BL/6N x BALB/c AnN F 1 (BLCF 1 ) mice compared to immunocompetent controls. Immunization of T cell-deficient (ATX-BM-ATS) BLCF 1 mice with x-irradiated sporozoites did not result in the generation of protective immunity. The same immunization protocols protected all immunocompetent controls. In contrast, B cell-deficient (μ-suppressed) BLCF 1 mice were protected by immunization in the majority of cases. The absence of detectable serum circumsporozoite precipitins or sporozoite neutralizing activity in the μ-suppressed mice that resisted a sporozoite challenge suggests a minor role for these humoral factors in protection. These data demonstrate a preeminent role for T cells in the induction of protective immunity in BLCF 1 mice against a P. berghei sporozoite infection

  11. [Induction of glutathione and activation of immune functions by low-dose, whole-body irradiation with gamma-rays].

    Science.gov (United States)

    Kojima, Shuji

    2006-10-01

    We first examined the relation between the induction of glutathione and immune functions in mice after low-dose gamma-ray irradiation. Thereafter, inhibition of tumor growth by radiation was confirmed in Ehrlich solid tumor (EST)-bearing mice. The total glutathione level of the splenocytes transiently increased soon after irradiation and reached a maximum at around 4 h postirradiation. Thereafter, the level reverted to the 0 h value by 24 h postirradiation. A significantly high splenocyte proliferative response was also recognized 4 h postirradiation. Natural killer (NK) activity was also increased significantly in a similar manner. The time at which the response reached the maximum coincided well with that of maximum total glutathione levels of the splenocytes in the gamma-ray-irradiated mice. Reduced glutathione exogenously added to splenocytes obtained from normal mice enhanced the proliferative response and NK activity in a dose-dependent manner. The inhibitory effects of radiation on tumor growth was then examined in EST-bearing mice. Repeated low-dose irradiation (0.5 Gy, four times, before and within an early time after inoculation) significantly delayed the tumor growth. Finally, the effect of single low-dose (0.5 Gy), whole-body gamma-ray irradiation on immune balance was examined to elucidate the mechanism underlying the antitumor immunity. The percentage of B cells in blood lymphocytes was selectively decreased after radiation, concomitant with an increase in that of the helper T cell population. The IFN-gamma level in splenocyte culture prepared from EST-bearing mice was significantly increased 48 h after radiation, although the level of IL-4 was unchanged. IL-12 secretion from macrophages was also enhanced by radiation. These results suggest that low-dose gamma-rays induce Th1 polarization and enhance the activities of tumoricidal effector cells, leading to an inhibition of tumor growth.

  12. Helminths as governors of immune-mediated inflammation.

    Science.gov (United States)

    Elliott, David E; Summers, Robert W; Weinstock, Joel V

    2007-04-01

    Immune-mediated diseases (e.g. inflammatory bowel disease, asthma, multiple sclerosis and autoimmune diabetes) are increasing in prevalence and emerge as populations adopt meticulously hygienic lifestyles. This change in lifestyles precludes exposure to helminths (parasitic worms). Loss of natural helminth exposure removes a previously universal Th2 and regulatory immune biasing imparted by these organisms. Helminths protect animals from developing immune-mediated diseases (colitis, reactive airway disease, encephalitis and diabetes). Clinical trials show that exposure to helminths can reduce disease activity in patients with ulcerative colitis or Crohn's disease. This paper summarises work by multiple groups demonstrating that colonization with helminths alters immune reactivity and protects against disease from dysregulated inflammation.

  13. Immune Humanization of Immunodeficient Mice Using Diagnostic Bone Marrow Aspirates from Carcinoma Patients

    Science.gov (United States)

    Werner-Klein, Melanie; Proske, Judith; Werno, Christian; Schneider, Katharina; Hofmann, Hans-Stefan; Rack, Brigitte; Buchholz, Stefan; Ganzer, Roman; Blana, Andreas; Seelbach-Göbel, Birgit; Nitsche, Ulrich

    2014-01-01

    Tumor xenografts in immunodeficient mice, while routinely used in cancer research, preclude studying interactions of immune and cancer cells or, if humanized by allogeneic immune cells, are of limited use for tumor-immunological questions. Here, we explore a novel way to generate cancer models with an autologous humanized immune system. We demonstrate that hematopoietic stem and progenitor cells (HSPCs) from bone marrow aspirates of non-metastasized carcinoma patients, which are taken at specialized centers for diagnostic purposes, can be used to generate a human immune system in NOD-scid IL2rγ(null) (NSG) and HLA-I expressing NSG mice (NSG-HLA-A2/HHD) comprising both, lymphoid and myeloid cell lineages. Using NSG-HLA-A2/HHD mice, we show that responsive and self-tolerant human T cells develop and human antigen presenting cells can activate human T cells. As critical factors we identified the low potential of bone marrow HSPCs to engraft, generally low HSPC numbers in patient-derived bone marrow samples, cryopreservation and routes of cell administration. We provide here an optimized protocol that uses a minimum number of HSPCs, preselects high-quality bone marrow samples defined by the number of initially isolated leukocytes and intra-femoral or intra-venous injection. In conclusion, the use of diagnostic bone marrow aspirates from non-metastasized carcinoma patients for the immunological humanization of immunodeficient mice is feasible and opens the chance for individualized analyses of anti-tumoral T cell responses. PMID:24830425

  14. Immune humanization of immunodeficient mice using diagnostic bone marrow aspirates from carcinoma patients.

    Directory of Open Access Journals (Sweden)

    Melanie Werner-Klein

    Full Text Available Tumor xenografts in immunodeficient mice, while routinely used in cancer research, preclude studying interactions of immune and cancer cells or, if humanized by allogeneic immune cells, are of limited use for tumor-immunological questions. Here, we explore a novel way to generate cancer models with an autologous humanized immune system. We demonstrate that hematopoietic stem and progenitor cells (HSPCs from bone marrow aspirates of non-metastasized carcinoma patients, which are taken at specialized centers for diagnostic purposes, can be used to generate a human immune system in NOD-scid IL2rγ(null (NSG and HLA-I expressing NSG mice (NSG-HLA-A2/HHD comprising both, lymphoid and myeloid cell lineages. Using NSG-HLA-A2/HHD mice, we show that responsive and self-tolerant human T cells develop and human antigen presenting cells can activate human T cells. As critical factors we identified the low potential of bone marrow HSPCs to engraft, generally low HSPC numbers in patient-derived bone marrow samples, cryopreservation and routes of cell administration. We provide here an optimized protocol that uses a minimum number of HSPCs, preselects high-quality bone marrow samples defined by the number of initially isolated leukocytes and intra-femoral or intra-venous injection. In conclusion, the use of diagnostic bone marrow aspirates from non-metastasized carcinoma patients for the immunological humanization of immunodeficient mice is feasible and opens the chance for individualized analyses of anti-tumoral T cell responses.

  15. Effects of low dose radiation on tumor growth and changes of erythrocyte immune function and activity of SOD in tumor-bearing mice

    International Nuclear Information System (INIS)

    Yu Hongsheng; Lu Yanda

    2001-01-01

    Objective: To study the effect of low dose radiation on tumor growth and changes of erythrocyte immune function and activity of SOD in the tumor-bearing mice. Methods: Kunming strain male mice were implanted with S 180 sarcoma cells in the right inguen subcutaneously as an experimental in situ animal model. Six hours before implantation the mice were given 75 mG whole-body X-ray irradiation and tumor-formation rate was counted 5 days late. From then, every two days the tumor volume was measured to draw a tumor growth curve. Fifteen days later, all mice were killed to measure the tumor weight, observe the necrosis area and the tumor-infiltration lymphoreticular cells (TIL) in the tumor pathologically. At the same time, erythrocyte immune function and activity of SOD were tested. Results: (1) The mice pre-exposed to low dose radiation had a lower tumor formation rate than those without a pre-exposed (P < 0.05). (2) The tumor growth slowed down significantly in mice receiving a low does irradiation; The average tumor weight in mice receiving a low dose irradiation was lighter too (P < 0.05). (3) The tumor necrosis areas were larger and TILs were more in the irradiation group than those of the control group. (4) The erythrocyte immune function and activity of SOD in the irradiation group were all higher significantly than those of the control group ( P < 0.05). Conclusion: Low dose radiation could markedly increase anti-tumor ability of the organism and improve the erythrocyte immune function and activity of SOD in red cells, suggesting it could be useful in clinical cancer treatment

  16. Immunity to community: what can immune pathways tell us about disease patterns in corals?

    Science.gov (United States)

    Mydlarz, L. D.; Fuess, L.; Pinzon, J. C.; Weil, E.

    2016-02-01

    Predicting species composition and abundances is one of the most fundamental questions in ecology. This question is even more pressing in marine ecology and coral reefs since communities are changing at a rapid pace due to climate-related changes. Increases in disease prevalence and severity are just some of the consequences of these environmental changes. Particularly in coral reef ecosystems, diseases are increasing and driving region-wide population collapses. It has become clear, however, that not all reefs or coral species are affected by disease equally. In fact, the Caribbean is a concentrated area for diseases. The patterns in which disease manifests itself on an individual reef are also proving interesting, as not all coral species are affected by disease equally. Some species are host to different diseases, but seem to successfully fight them reducing mortality. Other species are disproportionately infected on any given reef and experience high mortality due to disease. We are interested in the role immunity can play in directing these patterns and are evaluating coral immunity using several novel approaches. We exposed 4 species of corals with different disease susceptibilities to immune stimulators and quantified of coral immunity using a combination of full transcriptome sequencing and protein activity assays for gene to phenotype analysis. We also mapped gene expression changes onto immune pathways (i.e. melanin-cascade, antimicrobial peptide synthesis, complement cascade, lectin-opsonization) to evaluate expression of immune pathways between species. In our preliminary data we found many immune genes in the disease susceptible Orbicella faveolata underwent changes in gene expression opposite of the predictions and may disply `dysfunctional' patterns of expression. We will present expression data for 4 species of coral and assess how these transcriptional and protein immune responses are related to disease susceptibility in nature, thus scaling up

  17. Pulmonary Immune-Compartment-Specific Interferon Gamma Responses in HIV-Infected Individuals with Active Tuberculosis (TB in an Area of High TB Prevalence

    Directory of Open Access Journals (Sweden)

    S. Buldeo

    2012-01-01

    Full Text Available There is a paucity of data on the pulmonary immune-compartment interferon gamma (IFNγ response to M. tuberculosis, particularly in settings of high tuberculosis (TB prevalence and in HIV-coinfected individuals. This data is necessary to understand the diagnostic potential of commercially available interferon gamma release assays (IGRAs in both the pulmonary immune-compartment and peripheral blood. We used intracellular cytokine staining by flow cytometry to assess the IFNγ response to purified protein derivative (PPD and early secretory antigen 6 (ESAT6 in induced sputa (ISp and blood samples from HIV-infected, smear-negative, TB suspects. We found that individuals with active TB disease produced significantly less IFNγ in response to PPD in their induced sputa samples than individuals with non-active TB (control group. This difference was not reflected in the peripheral blood, even within the CD27− CD4+ memory T lymphocyte population. These findings suggest that progression to active TB disease may be associated with the loss of IFNγ secretion at the site of primary infection. Our findings highlight the importance of studying pulmonary immune-compartment M. tuberculosis specific responses to elucidate IFNγ secretion across the spectrum of TB disease.

  18. Activation/modulation of adaptive immunity emerges simultaneously after 17DD yellow fever first-time vaccination: is this the key to prevent severe adverse reactions following immunization?

    Science.gov (United States)

    Martins, M A; Silva, M L; Marciano, A P V; Peruhype-Magalhães, V; Eloi-Santos, S M; Ribeiro, j G L; Correa-Oliveira, R; Homma, A; Kroon, E G; Teixeira-Carvalho, A; Martins-Filho, O A

    2007-04-01

    Over past decades the 17DD yellow fever vaccine has proved to be effective in controlling yellow fever and promises to be a vaccine vector for other diseases, but the cellular and molecular mechanisms by which it elicits such broad-based immunity are still unclear. In this study we describe a detailed phenotypic investigation of major and minor peripheral blood lymphocyte subpopulations aimed at characterizing the kinetics of the adaptive immune response following primary 17DD vaccination. Our major finding is a decreased frequency of circulating CD19+ cells at day 7 followed by emerging activation/modulation phenotypic features (CD19+interleukin(IL)10R+/CD19+CD32+) at day 15. Increased frequency of CD4+human leucocyte antigen D-related(HLA-DR+) at day 7 and CD8+HLA-DR+ at day 30 suggest distinct kinetics of T cell activation, with CD4+ T cells being activated early and CD8+ T cells representing a later event following 17DD vaccination. Up-regulation of modulatory features on CD4+ and CD8+ cells at day 15 seems to be the key event leading to lower frequency of CD38+ T cells at day 30. Taken together, our findings demonstrate the co-existence of phenotypic features associated with activation events and modulatory pathways. Positive correlations between CD4+HLA-DR+ cells and CD4+CD25high regulatory T cells and the association between the type 0 chemokine receptor CCR2 and the activation status of CD4+ and CD8+ cells further support this hypothesis. We hypothesize that this controlled microenviroment seems to be the key to prevent the development of serious adverse events, and even deaths, associated with the 17DD vaccine reported in the literature.

  19. Defining relative humidity in terms of water activity. Part 1: definition

    Science.gov (United States)

    Feistel, Rainer; Lovell-Smith, Jeremy W.

    2017-08-01

    Relative humidity (RH) is a quantity widely used in various fields such as metrology, meteorology, climatology or engineering. However, RH is neither uniformly defined, nor do some definitions properly account for deviations from ideal-gas properties, nor is the application range of interest fully covered. In this paper, a new full-range definition of RH is proposed that is based on the thermodynamics of activities in order to include deviations from ideal-gas behaviour. Below the critical point of pure water, at pressures p  definition is consistent with de-facto standard RH definitions published previously and recommended internationally. Virial approximations are reported for estimating small corrections to the ideal-gas equations.

  20. Cellular and humoral immunity after vaccination or natural mumps infection.

    Science.gov (United States)

    Terada, Kihei; Hagihara, Kimiko; Oishi, Tomohiro; Miyata, Ippei; Akaike, Hiroto; Ogita, Satoko; Ohno, Naoki; Ouchi, Kazunobu

    2017-08-01

    This study measured cell-mediated immunity (CMI) and serum antibody to clarify the basis of breakthrough after vaccination and reinfection after mumps. From a pool of 54 college students, 17 seronegative subjects and 14 subjects with intermediate level of antibodies against mumps were vaccinated with a monovalent mumps vaccine, and CMI was assessed using interferon-γ release assay. CMI positivity according to pre-existing antibody level, defined as titer  0.05), respectively. Vaccination or even natural mumps infection did not always induce both cellular and humoral immunity. © 2017 Japan Pediatric Society.