WorldWideScience

Sample records for immortalized human corneal

  1. Establishment of a new immortalized human corneal epithelial cell line (iHCE-NY1) for use in evaluating eye irritancy by in vitro test methods.

    Science.gov (United States)

    Yamamoto, Naoki; Kato, Yoshinao; Sato, Atsushi; Hiramatsu, Noriko; Yamashita, Hiromi; Ohkuma, Mahito; Miyachi, Ei-Ichi; Horiguchi, Masayuki; Hirano, Koji; Kojima, Hajime

    2016-08-01

    In vitro test methods that use human corneal epithelial cells to evaluate the eye irritation potency of chemical substances do not use human corneal epithelium because it has been difficult to maintain more than four passages. In this study, we make a new cell line comprising immortalized human corneal epithelial cells (iHCE-NY1). The IC50 of iHCE-NY1 cells is slightly higher than that of Statens Seruminstitut Rabbit Cornea (SIRC) cells, which are currently used in some in vitro test methods. CDKN1A in iHCE-NY1 cells was used as a marker of gene expression to indicate cell cycle activity. This enabled us to evaluate cell recovery characteristics at concentrations lower than the IC50 of cytotoxic tests.

  2. Herpes simplex virus-1 infection or Simian virus 40-mediated immortalization of corneal cells causes permanent translocation of NLRP3 to the nuclei

    Directory of Open Access Journals (Sweden)

    Shu-Long Wang

    2015-01-01

    Full Text Available AIM: To investigate into the potential involvement of pyrin containing 3 gene (NLRP3, a member of the nucleotide-binding oligomerization domain-like receptors with cytosolic pattern recognition, in the host defense of corneas against viruses. METHODS: The herpes viral keratitis model was utilized in BALB/c mice with inoculation of herpes simplex virus-1 (HSV-1. Corneal tissues removed during therapy of patients with viral keratitis as well as a Simian vacuolating virus 40 (SV40-immortalized human corneal epithelial cell line were also examined. Immunohistochemistry was used to detect NLRP3 in these subjects, focusing on their distribution in tissue or cells. Western blot was used to measure the level of NLRP3 and another two related molecules in NLPR3 inflammasome, namely caspase-1 and IL-1β. RESULTS: The NLRP3 activation induced by HSV-1 infection in corneas was accompanied with redistribution of NLRP3 from the cytoplasm to the nucleus in both murine and human corneal epithelial cells. Furthermore, in the SV40-immortalized human corneal epithelial cells, NLRP3 was exclusively located in the nucleus, and treatment of the cells with high concentration of extracellular potassium (known as an inhibitor of NLRP3 activation effectively drove NLRP3 back to the cytoplasm as reflected by both immunohistochemistry and Western blot. CONCLUSION: It is proposed that herpes virus infection activates and causes redistribution of NLRP3 to nuclei. Whether this NLRP3 translocation occurs with other viral infections and in other cell types merit further study.

  3. Immortalization of human myogenic progenitor cell clone retaining multipotentiality

    International Nuclear Information System (INIS)

    Hashimoto, Naohiro; Kiyono, Tohru; Wada, Michiko R.; Shimizu, Shirabe; Yasumoto, Shigeru; Inagawa, Masayo

    2006-01-01

    Human myogenic cells have limited ability to proliferate in culture. Although forced expression of telomerase can immortalize some cell types, telomerase alone delays senescence of human primary cultured myogenic cells, but fails to immortalize them. In contrast, constitutive expression of both telomerase and the E7 gene from human papillomavirus type 16 immortalizes primary human myogenic cells. We have established an immortalized primary human myogenic cell line preserving multipotentiality by ectopic expression of telomerase and E7. The immortalized human myogenic cells exhibit the phenotypic characteristics of their primary parent, including an ability to undergo myogenic, osteogenic, and adipogenic terminal differentiation under appropriate culture conditions. The immortalized cells will be useful for both basic and applied studies aimed at human muscle disorders. Furthermore, immortalization by transduction of telomerase and E7 represents a useful method by which to expand human myogenic cells in vitro without compromising their ability to differentiate

  4. Staphylococcus aureus lipoproteins trigger human corneal epithelial innate response through toll-like receptor-2

    OpenAIRE

    Li, Qiong; Kumar, Ashok; Gui, Jian-Fang; Yu, Fu-Shin X.

    2007-01-01

    Bacterial lipoproteins (LP) are a family of cell wall components found in a wide variety of bacteria. In this study, we characterized the response of HUCL, a telomerase-immortalized human corneal epithelial cell (HCEC) line, to LP isolated from Staphylococcus (S) aureus. S. aureus LP (saLP) prepared by Triton X-114 extraction stimulated the activation of NF-κB, JNK, and P38 signaling pathways in HUCL cells. The extracts failed to stimulate NF-κB activation in HUCL cells after lipoprotein lipa...

  5. Immortalization of normal human fibroblasts by treatment with 4-nitroquinoline 1-oxide.

    Science.gov (United States)

    Bai, L; Mihara, K; Kondo, Y; Honma, M; Namba, M

    1993-02-01

    Normal human fibroblasts (the OUMS-24 strain), derived from a 6-week-old human embryo, were transformed (into the OUMS-24F line) and immortalized by repeated treatments (59 times) with 4-nitroquinoline 1-oxide (4NQO). Treatment began during primary culture and ended at the 51st population doubling level (PDL). At the 57th PDL (146 days after the last treatment), morphologically altered, epithelial-type cells appeared, began to grow and became immortal (now past the 100th PDL). However, the control fibroblasts, which were not treated with 4NQO, senesced at the 62nd PDL. The finding that extensive, repeated treatments with 4NQO are required for the immortalization of normal human cells, indicates that multiple mutational events are involved in the immortalization of human cells in general. In other words, immortalization itself seems to be a multi-step process. Karyotypic analysis showed that many cells were hypodiploid before immortalization, but that afterwards chromosomes were distributed broadly in the diploid to tetraploid regions. The immortalized cells showed amplification and enhanced expression of c-myc. Two-dimensional electrophoretic analysis showed that the number of disappearing cellular proteins was greater than the number of the newly appearing ones after the cells became immortalized. Since the immortalized cells showed neither anchorage-independent growth nor tumorigenicity, they are useful for studying factors that can contribute to multi-step carcinogenesis in human cells. In addition, genetically matched normal (OUMS-24) and immortalized (OUMS-24F) cells will be useful for analyzing the genes related to cellular mortality and immortalization.

  6. Generation and Characterization of an Immortalized Human Esophageal Myofibroblast Line.

    Directory of Open Access Journals (Sweden)

    Chao Niu

    Full Text Available Stromal cells with a myofibroblast phenotype present in the normal human esophagus are increased in individuals with gastro-esophageal reflux disease (GERD. We have previously demonstrated that myofibroblasts stimulated with acid and TLR4 agonists increase IL-6 and IL-8 secretion using primary cultures of myofibroblasts established from normal human esophagus. While primary cultures have the advantage of reflecting the in vivo environment, a short life span and unavoidable heterogeneity limits the usefulness of this model in larger scale in vitro cellular signaling studies. The major aim of this paper therefore was to generate a human esophageal myofibroblast line with an extended lifespan. In the work presented here we have generated and characterized an immortalized human esophageal myofibroblast line by transfection with a commercially available GFP-hTERT lentivirus. Immortalized human esophageal myofibroblasts demonstrate phenotypic, genotypic and functional similarity to primary cultures of esophageal myofibroblasts we have previously described. We found that immortalized esophageal myofibroblasts retain myofibroblast spindle-shaped morphology at low and high confluence beyond passage 80, and express α-SMA, vimentin, and CD90 myofibroblast markers. Immortalized human esophageal myofibroblasts also express the putative acid receptor TRPV1 and TLR4 and retain the functional capacity to respond to stimuli encountered in GERD with secretion of IL-6. Finally, immortalized human esophageal myofibroblasts also support the stratified growth of squamous esophageal epithelial cells in 3D organotypic cultures. This newly characterized immortalized human esophageal myofibroblast cell line can be used in future cellular signaling and co-culture studies.

  7. Telomere elongation in immortal human cells without detectable telomerase activity.

    Science.gov (United States)

    Bryan, T M; Englezou, A; Gupta, J; Bacchetti, S; Reddel, R R

    1995-09-01

    Immortalization of human cells is often associated with reactivation of telomerase, a ribonucleoprotein enzyme that adds TTAGGG repeats onto telomeres and compensates for their shortening. We examined whether telomerase activation is necessary for immortalization. All normal human fibroblasts tested were negative for telomerase activity. Thirteen out of 13 DNA tumor virus-transformed cell cultures were also negative in the pre-crisis (i.e. non-immortalized) stage. Of 35 immortalized cell lines, 20 had telomerase activity as expected, but 15 had no detectable telomerase. The 15 telomerase-negative immortalized cell lines all had very long and heterogeneous telomeres of up to 50 kb. Hybrids between telomerase-negative and telomerase-positive cells senesced. Two senescent hybrids demonstrated telomerase activity, indicating that activation of telomerase is not sufficient for immortalization. Some hybrid clones subsequently recommenced proliferation and became immortalized either with or without telomerase activity. Those without telomerase activity also had very long and heterogeneous telomeres. Taken together, these data suggest that the presence of lengthened or stabilized telomeres is necessary for immortalization, and that this may be achieved either by the reactivation of telomerase or by a novel and as yet unidentified mechanism.

  8. Possible involvement of loss of imprinting in immortalization of human fibroblasts.

    Science.gov (United States)

    Okamura, Kotaro; Ohno, Maki; Tsutsui, Takeki

    2011-04-01

    Disruption of the normal pattern of parental origin-specific gene expression is referred to as loss of imprinting (LOI), which is common in various cancers. To investigate a possible role of LOI in the early stage of human cell transformation, we studied LOI in 18 human fibroblast cell lines immortalized spontaneously, by viral oncogenes, by chemical or physical carcinogens, or by infection with a retrovirus vector encoding the human telomerase catalytic subunit, hTERT cDNA. LOI was observed in all the 18 immortal cell lines. The gene most commonly exhibiting LOI was NDN which displayed LOI in 15 of the 18 cell lines (83%). The other genes exhibiting LOI at high frequencies were PEG3 (50%), MAGE-L2 (61%) and ZNF 127 (50%). Expression of NDN that was lost in the immortal cell lines was restored by treatment with 5-aza-2'-deoxycytidine. The ratio of histone H3 lysine 9 methylation to histone H3 lysine 4 methylation of the chromatin containing the NDN promoter in the immortal WI-38VA13 cells was greater than that in the parental cells, suggesting chromatin structure-mediated regulation of NDN expression. We previously demonstrated that inactivation of the p16INK4a/pRb pathway is necessary for immortalization of human cells. Human fibroblasts in the pre-crisis phase and cells with an extended lifespan that eventually senesce, both of which have the normal p16INK4a/pRb pathway, did not show LOI at any imprinted gene examined. Although it is not clear if LOI plays a causal role in immortalization of human cells or is merely coincidental, these findings indicate a possible involvement of LOI in immortalization of human cells or a common mechanism involved in both processes.

  9. Genes involved in immortalization of human mammary cells

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2001-09-27

    Breast cancer progression is characterized by inappropriate cell growth. Normal cells cease growth after a limited number of cell divisions--a process called cellular senescence-while tumor cells may acquire the ability to proliferate indefinitely (immortality). Inappropriate expression of specific oncogenes in a key cellular signaling pathway (Ras, Raf) can promote tumorigenicity in immortal cells, while causing finite lifespan cells to undergo a rapid senescence-like arrest. We have studied when in the course of transformation of cultured human mammary epithelial cells (HMEC), the response to overexpressed oncogenic Raf changes from being tumor-suppressive to tumor enhancing, and what are the molecular underpinnings of this response. Our data indicate: (1) HMEC acquire the ability to maintain growth in the presence of oncogenic Raf not simply as a consequence of overcoming senescence, but as a result of a newly discovered step in the process of immortal transformation uncovered by our lab, termed conversion. Immortal cells that have not undergone conversion (e.g., cells immortalized by exogenous introduction of the immortalizing enzyme, telomerase) remain growth inhibited. (2) Finite lifespan HMEC growth arrest in response to oncogenic Raf using mediators of growth inhibition that are very different from those used in response to oncogenic Raf by rodent cells and certain other human cell types, including the connective tissue cells from the same breast tissue. While many diverse cell types appear to have in common a tumor-suppressive response to this oncogenic signal, they also have developed multiple mechanisms to elicit this response. Understanding how cancer cells acquire the crucial capacity to be immortal and to abrogate normal tumor-suppressive mechanisms may serve both to increase our understanding of breast cancer progression, and to provide new targets for therapeutic intervention. Our results indicate that normal HMEC have novel means of enforcing a Raf

  10. Construction of a human corneal stromal equivalent with non-transfected human corneal stromal cells and acellular porcine corneal stromata.

    Science.gov (United States)

    Diao, Jin-Mei; Pang, Xin; Qiu, Yue; Miao, Ying; Yu, Miao-Miao; Fan, Ting-Jun

    2015-03-01

    A tissue-engineered human corneal stroma (TE-HCS) has been developed as a promising equivalent to the native corneal stroma for replacement therapy. However, there is still a crucial need to improve the current approaches to render the TE-HCS equivalent more favorable for clinical applications. At the present study, we constructed a TE-HCS by incubating non-transfected human corneal stromal (HCS) cells in an acellular porcine corneal stromata (aPCS) scaffold in 20% fetal bovine serum supplemented DMEM/F12 (1:1) medium at 37 °C with 5% CO2in vitro. After 3 days of incubation, the constructed TE-HCS had a suitable tensile strength for transplantation, and a transparency that is comparable to native cornea. The TE-HCS had a normal histological structure which contained regularly aligned collagen fibers and differentiated HCS cells with positive expression of marker and functional proteins, mimicking a native HCS. After transplantation into rabbit models, the TE-HCS reconstructed normal corneal stroma in vivo and function well in maintaining corneal clarity and thickness, indicating that the completely biological TE-HCS could be used as a HCS equivalent. The constructed TE-HCS has promising potentials in regenerative medicine and treatment of diseases caused by corneal stromal disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Human corneal epithelial subpopulations

    DEFF Research Database (Denmark)

    Søndergaard, Chris Bath

    2013-01-01

    Corneal epithelium is being regenerated throughout life by limbal epithelial stem cells (LESCs) believed to be located in histologically defined stem cell niches in corneal limbus. Defective or dysfunctional LESCs result in limbal stem cell deficiency (LSCD) causing pain and decreased visual acuity...... subpopulations in human corneal epithelium using a combination of laser capture microdissection and RNA sequencing for global transcriptomic profiling. We compared dissociation cultures, using either expansion on γ-irradiated NIH/3T3 feeder cells in serum-rich medium or expansion directly on plastic in serum...

  12. C-terminal cleavage of DeltaNp63alpha is associated with TSA-induced apoptosis in immortalized corneal epithelial cells.

    Science.gov (United States)

    Robertson, Danielle M; Ho, Su-Inn; Cavanagh, H Dwight

    2010-08-01

    In the central human corneal epithelium, loss of DeltaNp63 occurs in all surface epithelial cells preparing to undergo desquamation, suggesting a potential role for DeltaNp63 isoforms in mediating surface cell apoptotic shedding. In this study, the authors investigated a role for DeltaNp63 isoforms in caspase-mediated apoptosis in a telomerase-immortalized corneal epithelial cell line. For in vitro studies, hTCEpi cells were cultured in KGM-2 serum-free culture media containing 0.15 mM calcium. To assess dynamic protein interactions among individual DeltaNp63 isoforms, DeltaNp63-EGFP expression plasmids were transiently expressed in hTCEpi cells and evaluated by FRAP. Trichostatin-A (TSA; 3.31 muM) was used to induce cell death as measured by caspase activity. Cleavage and loss of endogenous DeltaNp63alpha, DeltaNp63-EGFP expression plasmids, and p53 were assessed after treatment with TSA and siRNA. Transient expression of DeltaNp63-EGFP alpha and beta isoforms resulted in the formation of a smaller isoform similar in size to DeltaNp63gamma-EGFP. FRAP demonstrated that DeltaNp63alpha-EGFP has greater immobile fraction than beta or gamma. TSA induced caspase-mediated apoptotic pathways; caspase induction was accompanied by a decrease in endogenous DeltaNp63alpha and p53. TSA upregulated DeltaNp63-EGFP plasmid expression; this was accompanied by a selective increase in cleavage of DeltaNp63alpha-EGFP. siRNA knockdown of DeltaNp63alpha correlated with a reduction in p53 independently of TSA. DeltaNp63alpha is the dominant active isoform in corneal epithelial cell nuclei. Loss of DeltaNp63alpha occurs during apoptotic signaling by cleavage at the C terminus. The corresponding loss of p53 suggests that a significant relationship appears to exist between these two regulatory proteins.

  13. Staphylococcal superantigens stimulate immortalized human adipocytes to produce chemokines.

    Directory of Open Access Journals (Sweden)

    Bao G Vu

    Full Text Available BACKGROUND: Human adipocytes may have significant functions in wound healing and the development of diabetes through production of pro-inflammatory cytokines after stimulation by gram-negative bacterial endotoxin. Diabetic foot ulcers are most often associated with staphylococcal infections. Adipocyte responses in the area of the wound may play a role in persistence and pathology. We studied the effect of staphylococcal superantigens (SAgs on immortalized human adipocytes, alone and in the presence of bacterial endotoxin or staphylococcal α-toxin. METHODOLOGY/PRINCIPAL FINDINGS: Primary non-diabetic and diabetic human preadipocytes were immortalized by the reverse transcriptase component of telomerase (TERT and the E6/E7 genes of human papillomavirus. The immortal cells were demonstrated to have properties of non-immortalized pre-adipocytes and could be differentiated into mature and functional adipocytes. Differentiated adipocytes exposed to staphylococcal SAgs produced robust levels of cytokines IL-6 and IL-8, but there were no significant differences in levels between the non-diabetic and diabetic cells. Cytokine production was increased by co-incubation of adipocytes with SAgs and endotoxin together. In contrast, α-toxin alone was cytotoxic at high concentrations, but, at sub-cytotoxic doses, did not stimulate production of IL-6 and IL-8. CONCLUSIONS/SIGNIFICANCE: Endotoxin has been proposed to contribute to diabetes through enhanced insulin resistance after chronic exposure and stimulation of adipocytes to produce cytokines. Our data indicate staphylococcal SAgs TSST-1 and SEB alone and in combination with bacterial endotoxin also stimulate adipocytes to produce cytokines and thus may contribute to the inflammatory response found in chronic diabetic ulcers and in the systemic inflammation that is associated with the development and persistence of diabetes. The immortal human pre-adipocytes reported here will be useful for studies to

  14. Cytogenetic characterization and H-ras associated transformation of immortalized human mammary epithelial cells

    Directory of Open Access Journals (Sweden)

    Larivee Siobhan

    2006-05-01

    Full Text Available Abstract Introduction Immortalization is a key step in malignant transformation, but immortalization alone is insufficient for transformation. Human mammary epithelial cell (HMEC transformation is a complex process that requires additional genetic changes beyond immortalization and can be accomplished in vitro by accumulation of genetic changes and expression of H-ras. Methods HMEC were immortalized by serial passaging and transduction with the catalytic subunit of the human telomerase gene (hTERT. The immortalized cells were passaged in vitro and studied by a combination of G- banding and Spectral Karyotyping (SKY. H-ras transduced, hTERT immortalized cells were cloned in soft agar and injected into nude mice. Extensive analysis was performed on the tumors that developed in nude mice, including immunohistochemistry and western blotting. Results Immortal HMEC alone were not tumorigenic in γ-irradiated nude mice and could not grow in soft agar. Late passage hTERT immortalized HMEC from a donor transduced with a retroviral vector containing the mutant, autoactive, human H-ras61L gene acquired anchorage independent growth properties and the capacity for tumorigenic growth in vivo. The tumors that developed in the nude mice were poorly differentiated epithelial carcinomas that continued to overexpress ras. These cells were resistant to doxorubicin mediated G1/S phase arrest but were sensitive to treatment with a farnesyltransferase inhibitor. Conclusion Some of the cytogenetic changes are similar to what is observed in premalignant and malignant breast lesions. Despite these changes, late passage immortal HMEC are not tumorigenic and could only be transformed with overexpression of a mutant H-ras oncogene.

  15. Expression of S100B during the innate immune of corneal epithelium against fungi invasion

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2016-02-01

    Full Text Available AIM: To explore the expression of S100B in corneal epithelial cells under Aspergillus stimulation both in vivo and in vitro. METHODS: Immortalized human corneal epithelial cells (HCECs were exposed to inactive Aspergillus fumigatus (A. fumigatus conidia at 0, 4, 8, 12, 16, and 24h respectively. The corneas of Wistar rats were exposed to active A. fumigatus at 0, 12, 24, 48h and the normal rat corneas were used for normal control. The mRNA level of S100B was evaluated by real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR. S100B protein expression in cornea epithelium was detected by immunohistochemical/immunocytochemical staining (IHC/ICC. RESULTS: Histopathology revealed a significant inflammatory cell infiltration in fungal keratitis human and rat cornea. Corneal epithelial cells didn’t express or rarely express S100B at baseline. A. fumigatus significantly induced S100B mRNA expression in cultured corneal epithelial cells in a time depended manner in vitro, the mRNA began to rise significantly at 8h in vitro (P<0.05 and continue to rise as time prolonged (P<0.01. In vivo, S100B mRNA level was low in the normal corneas. However, it was increased in keratitis corneas from 12h after infection (P<0.05 and reached to a peak at 24h (P<0.001. Immunochemistry revealed an obvious staining in fungal keratitis corneas as well as immortalized HCECs compared to the normal ones respectively, indicating an increased expression of S100B protein. CONCLUSION: S100B exists in corneal epithelial cells and is over-expressed under A. fumigatus stimulation. S100B may play an important role in the innate immune response of the corneal epithelium during A. fumigatus infection.

  16. Expression of S100B during the innate immune of corneal epithelium against fungi invasion

    Science.gov (United States)

    Zhang, Jie; Zhao, Gui-Qiu; Qu, Jing; Che, Cheng-Ye; Lin, Jing; Jiang, Nan; Zhao, Han; Wang, Xue-Jun

    2016-01-01

    AIM To explore the expression of S100B in corneal epithelial cells under Aspergillus stimulation both in vivo and in vitro. METHODS Immortalized human corneal epithelial cells (HCECs) were exposed to inactive Aspergillus fumigatus (A. fumigatus) conidia at 0, 4, 8, 12, 16, and 24h respectively. The corneas of Wistar rats were exposed to active A. fumigatus at 0, 12, 24, 48h and the normal rat corneas were used for normal control. The mRNA level of S100B was evaluated by real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). S100B protein expression in cornea epithelium was detected by immunohistochemical/immunocytochemical staining (IHC/ICC). RESULTS Histopathology revealed a significant inflammatory cell infiltration in fungal keratitis human and rat cornea. Corneal epithelial cells didn't express or rarely express S100B at baseline. A. fumigatus significantly induced S100B mRNA expression in cultured corneal epithelial cells in a time depended manner in vitro, the mRNA began to rise significantly at 8h in vitro (P<0.05) and continue to rise as time prolonged (P<0.01). In vivo, S100B mRNA level was low in the normal corneas. However, it was increased in keratitis corneas from 12h after infection (P<0.05) and reached to a peak at 24h (P<0.001). Immunochemistry revealed an obvious staining in fungal keratitis corneas as well as immortalized HCECs compared to the normal ones respectively, indicating an increased expression of S100B protein. CONCLUSION S100B exists in corneal epithelial cells and is over-expressed under A. fumigatus stimulation. S100B may play an important role in the innate immune response of the corneal epithelium during A. fumigatus infection. PMID:26949634

  17. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements

    International Nuclear Information System (INIS)

    Band, V.; Zajchowski, D.; Kulesa, V.; Sager, R.

    1990-01-01

    Human papilloma virus (HPV) types 16 and 18 are most commonly associated with cervical carcinoma in patients and induce immortalization of human keratinocytes in culture. HPV has not been associated with breast cancer. This report describes the immortalization of normal human mammary epithelial cells (76N) by plasmid pHPV18 or pHPV16, each containing the linearized viral genome. Transfectants were grown continuously for more than 60 passages, whereas 76N cells senesce after 18-20 passages. The transfectants also differ from 76N cells in cloning in a completely defined medium called D2 and growing a minimally supplemented defined medium (D3) containing epidermal growth factor. All transfectant tested contain integrated HPV DNA, express HPV RNA, and produce HPV E7 protein. HPV transfectants do not form tumors in a nude mouse assay. It is concluded that products of the HPV genome induce immortalization of human breast epithelial cells and reduce their growth factor requirements. This result raises the possibility that HPV might be involved in breast cancer. Furthermore, other tissue-specific primary epithelial cells that are presently difficult to grown and investigate may also be immortalized by HPV

  18. A human beta cell line with drug inducible excision of immortalizing transgenes

    Science.gov (United States)

    Benazra, Marion; Lecomte, Marie-José; Colace, Claire; Müller, Andreas; Machado, Cécile; Pechberty, Severine; Bricout-Neveu, Emilie; Grenier-Godard, Maud; Solimena, Michele; Scharfmann, Raphaël; Czernichow, Paul; Ravassard, Philippe

    2015-01-01

    Objectives Access to immortalized human pancreatic beta cell lines that are phenotypically close to genuine adult beta cells, represent a major tool to better understand human beta cell physiology and develop new therapeutics for Diabetes. Here we derived a new conditionally immortalized human beta cell line, EndoC-βH3 in which immortalizing transgene can be efficiently removed by simple addition of tamoxifen. Methods We used lentiviral mediated gene transfer to stably integrate a tamoxifen inducible form of CRE (CRE-ERT2) into the recently developed conditionally immortalized EndoC βH2 line. The resulting EndoC-βH3 line was characterized before and after tamoxifen treatment for cell proliferation, insulin content and insulin secretion. Results We showed that EndoC-βH3 expressing CRE-ERT2 can be massively amplified in culture. We established an optimized tamoxifen treatment to efficiently excise the immortalizing transgenes resulting in proliferation arrest. In addition, insulin expression raised by 12 fold and insulin content increased by 23 fold reaching 2 μg of insulin per million cells. Such massive increase was accompanied by enhanced insulin secretion upon glucose stimulation. We further observed that tamoxifen treated cells maintained a stable function for 5 weeks in culture. Conclusions EndoC βH3 cell line represents a powerful tool that allows, using a simple and efficient procedure, the massive production of functional non-proliferative human beta cells. Such cells are close to genuine human beta cells and maintain a stable phenotype for 5 weeks in culture. PMID:26909308

  19. Immortalization of human foreskin keratinocytes by various human papillomavirus DNAs corresponds to their association with cervical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Woodworth, C.D.; Doniger, J.; DiPaolo, J.A.

    1989-01-01

    Normal human foreskin keratinocytes cotransfected with the neomycin resistance gene and recombinant human papillomavirus (HPV) DNAs (types 16, 18, 31, and 33) that have a high or moderate association with cervical malignancy acquired immortality and contained integrated and transcriptionally active viral genomes. Only transcripts from the intact E6 and E7 genes were detected in at least one cell line, suggesting that one or both of these genes are responsible for immortalization. Recombinant HPV DNAs with low or no oncogenic potential for cervical cancer (HPV1a, -5, -6b, and -11) induced small G418-resistant colonies that senesced as did the nontransfected cells. These colonies contained only episomal virus DNA; therefore, integration of HPV sequences is important for immortalization of keratinocytes. This study suggests that the virus-encoded immortalization function contributes to the pathogenesis of cervical carcinoma.

  20. Optimized human platelet lysate as novel basis for a serum-, xeno-, and additive-free corneal endothelial cell and tissue culture.

    Science.gov (United States)

    Thieme, Daniel; Reuland, Lynn; Lindl, Toni; Kruse, Friedrich; Fuchsluger, Thomas

    2018-02-01

    The expansion of donor-derived corneal endothelial cells (ECs) is a promising approach for regenerative therapies in corneal diseases. To achieve the best Good Manufacturing Practice standard the entire cultivation process should be devoid of nonhuman components. However, so far, there is no suitable xeno-free protocol for clinical applications. We therefore introduce a processed variant of a platelet lysate for the use in corneal cell and tissue culture based on a Good Manufacturing Practice-grade thrombocyte concentrate. This processed human platelet lysate (phPL), free of any animal components and of anticoagulants such as heparin with a physiological ionic composition, was used to cultivate corneal ECs in vitro and ex vivo in comparison to standard cultivation with fetal calf serum (FCS). Human donor corneas were cut in quarters while 2 quarters of each cornea were incubated with the respective medium supplement. Three fields of view per quarter were taken into account for the analysis. Evaluation of phPL as a medium supplement in cell culture of immortalized EC showed a superior viability compared with FCS control with reduced cell proliferation. Furthermore, the viability during the expansion of primary cells is significantly (3-fold ±0.5) increased with phPL compared with FCS standard medium. Quartering donor corneas was traumatic for the endothelium and therefore resulted in increased EC loss. Interestingly, however, cultivation of the quartered pieces for 2 weeks in 0.1-mg/ml pHPL in Biochrome I showed a 21 (±10) % EC loss compared with 67 (±12) % EC loss when cultivated in 2% FCS in Biochrome I. The cell culture protocol with pHPL as FCS replacement seems to be superior to the standard FCS protocols with respect to EC survival. It offers a xeno-free and physiological environment for corneal endothelial cells. This alternative cultivation protocol could facilitate the use of EC for human corneal cell therapy. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Immortalization of normal human embryonic fibroblasts by introduction of either the human papillomavirus type 16 E6 or E7 gene alone.

    Science.gov (United States)

    Yamamoto, Akito; Kumakura, Shin-ichi; Uchida, Minoru; Barrett, J Carl; Tsutsui, Takeki

    2003-09-01

    The ability of the human papillomavirus type 16 (HPV-16) E6 or E7 gene to induce immortalization of normal human embryonic fibroblast WHE-7 cells was examined. WHE-7 cells at 9 population doublings (PD) were infected with retrovirus vectors encoding either HPV-16 E6 or E7 alone or both E6 and E7 (E6/E7). One of 4 isolated clones carrying E6 alone became immortal and is currently at >445 PD. Four of 4 isolated clones carrying E7 alone escaped from crisis and are currently at >330 PD. Three of 5 isolated clones carrying E6/E7 were also immortalized and are currently at >268 PD. The immortal clone carrying E6 only and 2 of the 3 immortal clones carrying E6/E7 expressed a high level of E6 protein, and all the immortal clones carrying E7 alone and the other immortal clone carrying E6/E7 expressed a high level of E7 protein when compared to their mortal or precrisis clones. The immortal clones expressing a high level of E6 or E7 protein were positive for telomerase activity or an alternative mechanism of telomere maintenance, respectively, known as ALT (alternative lengthening of telomeres). All the mortal or precrisis clones were negative for both phenotypes. All the immortal clones exhibited abrogation of G1 arrest after DNA damage by X-ray irradiation. The expression of INK4a protein (p16(INK4a)) was undetectable in the E6-infected mortal and immortal clones, whereas Rb protein (pRb) was hyperphosphorylated only in the immortal clone. The p16(INK4a) protein was overexpressed in all the E7-infected immortal clones and their clones in the pre-crisis period as well as all the E6/E7-infected mortal and immortal clones, but the pRb expression was downregulated in all of these clones. These results demonstrate for the first time to our knowledge that HPV-16 E6 or E7 alone can induce immortalization of normal human embryonic fibroblasts. Inactivation of p16(INK4a)/pRb pathways in combination with activation of a telomere maintenance mechanism is suggested to be necessary for

  2. Immortalized human hepatocytes as a tool for the study of hepatocytic (de-)differentiation

    NARCIS (Netherlands)

    Schippers, IJ; Moshage, H; Roelofsen, H; Muller, M; Heymans, HSA; Ruiters, M; Kuipers, F

    Primary human hepatocytes were immortalized by stable transfection with a recombinant plasmid containing the early region of simian virus (SV) 40. The cells were cultured in serum-free, hormonally defined medium during the immortalization procedure. Foci of dividing cells were seen after 3 months.

  3. Human tears reveal insights into corneal neovascularization.

    Science.gov (United States)

    Zakaria, Nadia; Van Grasdorff, Sigi; Wouters, Kristien; Rozema, Jos; Koppen, Carina; Lion, Eva; Cools, Nathalie; Berneman, Zwi; Tassignon, Marie-José

    2012-01-01

    Corneal neovascularization results from the encroachment of blood vessels from the surrounding conjunctiva onto the normally avascular cornea. The aim of this study is to identify factors in human tears that are involved in development and/or maintenance of corneal neovascularization in humans. This could allow development of diagnostic tools for monitoring corneal neovascularization and combination monoclonal antibody therapies for its treatment. In an observational case-control study we enrolled a total of 12 patients with corneal neovascularization and 10 healthy volunteers. Basal tears along with reflex tears from the inferior fornix, superior fornix and using a corneal bath were collected along with blood serum samples. From all patients, ocular surface photographs were taken. Concentrations of the pro-angiogenic cytokines interleukin (IL)-6, IL-8, Vascular Endothelial Growth Factor (VEGF), Monocyte Chemoattractant Protein 1 (MCP-1) and Fas Ligand (FasL) were determined in blood and tear samples using a flow cytometric multiplex assay. Our results show that the concentration of pro-angiogenic cytokines in human tears are significantly higher compared to their concentrations in serum, with highest levels found in basal tears. Interestingly, we could detect a significantly higher concentration of IL- 6, IL-8 and VEGF in localized corneal tears of patients with neovascularized corneas when compared to the control group. This is the first study of its kind demonstrating a significant difference of defined factors in tears from patients with neovascularized corneas as compared to healthy controls. These results provide the basis for future research using animal models to further substantiate the role of these cytokines in the establishment and maintenance of corneal neovascularization.

  4. Universe, human immortality and future human evaluation

    CERN Document Server

    Bolonkin, Alexander

    2011-01-01

    This book debates the universe, the development of new technologies in the 21st century and the future of the human race. Dr Bolonkin shows that a human soul is only the information in a person's head. He offers a new unique method for re-writing the main brain information in chips without any damage to the human brain. This is the scientific prediction of the non-biological (electronic) civilization and immortality of the human being. Such a prognosis is predicated upon a new law, discovered by the author, for the development of complex systems. According to this law, every self-copying system tends to be more complex than the previous system, provided that all external conditions remain the same. The consequences are disastrous: humanity will be replaced by a new civilization created by intellectual robots (which Dr Bolonkin refers to as "E-humans" and "E-beings"). These creatures, whose intellectual and mechanical abilities will far exceed those of man, will require neither food nor oxygen to sustain their...

  5. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    Science.gov (United States)

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F.

    2017-01-01

    ABSTRACT Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. PMID:28188264

  6. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    Directory of Open Access Journals (Sweden)

    Ludovic Arandel

    2017-04-01

    Full Text Available Myotonic dystrophy type 1 (DM1 and type 2 (DM2 are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations.

  7. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds.

    Science.gov (United States)

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F; Furling, Denis

    2017-04-01

    Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. © 2017. Published by The Company of Biologists Ltd.

  8. Variation in the loss of O6-methylguanine-DNA methyltransferase during immortalization of human fibroblasts.

    Science.gov (United States)

    Green, M H; Karran, P; Lowe, J E; Priestley, A; Arlett, C F; Mayne, L

    1990-01-01

    We have examined O6-methylguanine-DNA methyltransferase (MT) activity in four human fibroblast cell lines during immortalization. Transfection of primary fibroblasts with the plasmid pSV3gpt or pSV3neo, which encode the SV40 large T antigen, confers a transformed phenotype but not immediate immortality. After a period of growth (pre-crisis) the cells enter a quiescent phase (crisis) from which an immortal clone of cells eventually grows out. From measurements of MT activity in extracts of cells taken at different defined stages of the immortalization process, we conclude that the establishment of a Mex- (MT-deficient) cell population is not specifically associated with cellular transformation or with any particular stage of immortalization. It appears that in different cell populations the change from Mex+ to Mex- may occur at different times during the immortalization process and that the change may be very abrupt.

  9. Amplification and overexpression of aurora kinase A (AURKA) in immortalized human ovarian epithelial (HOSE) cells.

    Science.gov (United States)

    Chung, C M; Man, C; Jin, Y; Jin, C; Guan, X Y; Wang, Q; Wan, T S K; Cheung, A L M; Tsao, S W

    2005-07-01

    Immortalization is an early and essential step of human carcinogenesis. Amplification of chromosome 20q has been shown to be a common event in immortalized cells and cancers. We have previously reported that gain and amplification of chromosome 20q is a non-random and common event in immortalized human ovarian surface epithelial (HOSE) cells. The chromosome 20q harbors genes including TGIF2 (20q11.2-q12), AIB1 (20q12), PTPN1 (20q13.1), ZNF217 (20q13.2), and AURKA (20q13.2-q13.3), which were previously reported to be amplified and overexpressed in ovarian cancers. Some of these genes may be involved in immortalization of HOSE cells and represent crucial premalignant changes in ovarian surface epithelium. Investigation of the involvement of these genes was examined in four pairs of pre-crisis (preimmortalized) and post-crisis (immortalized) HOSE cells. Overexpression of AURKA (Aurora kinase A), also known as BTAK and STK15, by both real time-quantitative polymerase chain reaction (RT-QPCR) and Western blotting was detected in all the four immortalized HOSE cells examined while overexpression of AIB1 and ZNF217 was observed in two of four immortalized HOSE cells examined. Overexpression of TGIF2 and PTPN1 was not significant in our immortalized HOSE cell systems. The degree of overexpression of AURKA was shown to be closely associated with the amplification of chromosome 20q in immortalized HOSE cells. Fluorescence in situ hybridization (FISH) with labeled P1 artificial clone (PAC) confirmed the amplification of the chromosomal region (20q13.2-13.3) where AURKA resides. DNA amplification of AURKA was also confirmed using semi-quantitative PCR. Our study showed that amplification and overexpression of AURKA is a common and significant event during immortalization of HOSE cells and may represent an important premalignant change in ovarian carcinogenesis. Copyright (c) 2005 Wiley-Liss, Inc.

  10. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation.

    Science.gov (United States)

    Shi, Long; Chen, Hongmei; Yu, Xiaoming; Wu, Xinyi

    2013-11-01

    Delayed healing of corneal epithelial wounds is a serious complication in diabetes. Advanced glycation end products (AGEs) are intimately associated with the diabetic complications and are deleterious to the wound healing process. However, the effect of AGEs on corneal epithelial wound healing has not yet been evaluated. In the present study, we investigated the effect of AGE-modified bovine serum albumin (BSA) on corneal epithelial wound healing and its underlying mechanisms. Our data showed that AGE-BSA significantly increased the generation of intracellular ROS in telomerase-immortalized human corneal epithelial cells. However, the generation of intracellular ROS was completely inhibited by antioxidant N-acetylcysteine (NAC), anti-receptor of AGEs (RAGE) antibodies, or the inhibitor of NADPH oxidase. Moreover, AGE-BSA increased NADPH oxidase activity and protein expression of NADPH oxidase subunits, p22phox and Nox4, but anti-RAGE antibodies eliminated these effects. Furthermore, prevention of intracellular ROS generation using NAC or anti-RAGE antibodies rescued AGE-BSA-delayed epithelial wound healing in porcine corneal organ culture. In conclusion, our results demonstrated that AGE-BSA impaired corneal epithelial wound healing ex vivo. AGE-BSA increased intracellular ROS generation through NADPH oxidase activation, which accounted for the delayed corneal epithelial wound healing. These results may provide better insights for understanding the mechanism of delayed healing of corneal epithelial wounds in diabetes.

  11. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells.

    Directory of Open Access Journals (Sweden)

    Ryo Kurita

    Full Text Available Transfusion of red blood cells (RBCs is a standard and indispensable therapy in current clinical practice. In vitro production of RBCs offers a potential means to overcome a shortage of transfusable RBCs in some clinical situations and also to provide a source of cells free from possible infection or contamination by microorganisms. Thus, in vitro production of RBCs may become a standard procedure in the future. We previously reported the successful establishment of immortalized mouse erythroid progenitor cell lines that were able to produce mature RBCs very efficiently. Here, we have developed a reliable protocol for establishing immortalized human erythroid progenitor cell lines that are able to produce enucleated RBCs. These immortalized cell lines produce functional hemoglobin and express erythroid-specific markers, and these markers are upregulated following induction of differentiation in vitro. Most importantly, these immortalized cell lines all produce enucleated RBCs after induction of differentiation in vitro, although the efficiency of producing enucleated RBCs remains to be improved further. To the best of our knowledge, this is the first demonstration of the feasibility of using immortalized human erythroid progenitor cell lines as an ex vivo source for production of enucleated RBCs.

  12. Multistep carcinogenesis of normal human fibroblasts. Human fibroblasts immortalized by repeated treatment with Co-60 gamma rays were transformed into tumorigenic cells with Ha-ras oncogenes.

    Science.gov (United States)

    Namba, M; Nishitani, K; Fukushima, F; Kimoto, T

    1988-01-01

    Two normal mortal human fibroblast cell strains were transformed into immortal cell lines, SUSM-1 and KMST-6, by treatment with 4-nitroquinoline 1-oxide (4NQO) and Co-60 gamma rays, respectively. These immortalized cell lines showed morphological changes of cells and remarkable chromosome aberrations, but neither of them grew in soft agar or formed tumors in nude mice. The immortal cell line, KMST-6, was then converted into neoplastic cells by treatment with Harvey murine sarcoma virus (Ha-MSV) or the c-Ha-ras oncogene derived from a human lung carcinoma. These neoplastically transformed cells acquired anchorage-independent growth potential and developed tumors when transplanted into nude mice. All the tumors grew progressively without regression until the animals died of tumors. In addition, the tumors were transplantable into other nude mice. Normal human fibroblasts, on the other hand, were not transformed into either immortal or tumorigenic cells by treatment with Ha-MSV or c-Ha-ras alone. Our present data indicate that (1) the chemical carcinogen, 4NQO, or gamma rays worked as an initiator of carcinogenesis in normal human cells, giving rise to immortality, and (2) the ras gene played a role in the progression of the immortally transformed cells to more malignant cells showing anchorage-independent growth and tumorigenicity. In other words, the immortalization process of human cells seems to be a pivotal or rate-limiting step in the carcinogenesis of human cells.

  13. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium.

    Directory of Open Access Journals (Sweden)

    Ryuhei Hayashi

    Full Text Available Induced pluripotent stem (iPS cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF-derived iPS cells (253G1 and human adult corneal limbal epithelial cells (HLEC-derived iPS cells (L1B41. We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA differentiation method, as Pax6(+/K12(+ corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.

  14. Immortalization of human neural stem cells with the c-myc mutant T58A.

    Directory of Open Access Journals (Sweden)

    Lidia De Filippis

    Full Text Available Human neural stem cells (hNSC represent an essential source of renewable brain cells for both experimental studies and cell replacement therapies. Their relatively slow rate of proliferation and physiological senescence in culture make their use cumbersome under some experimental and pre-clinical settings. The immortalization of hNSC with the v-myc gene (v-IhNSC has been shown to generate stem cells endowed with enhanced proliferative capacity, which greatly facilitates the study of hNSCs, both in vitro and in vivo. Despite the excellent safety properties displayed by v-IhNSCs--which do not transform in vitro and are not tumorigenic in vivo--the v-myc gene contains several mutations and recombination elements, whose role(s and effects remains to be elucidated, yielding unresolved safety concerns. To address this issue, we used a c-myc T58A retroviral vector to establish an immortal cell line (T-IhNSC from the same hNSCs used to generate the original v-IhNSCs and compared their characteristics with the latter, with hNSC and with hNSC immortalized using c-myc wt (c-IhNSC. T-IhNSCs displayed an enhanced self-renewal ability, with their proliferative capacity and clonogenic potential being remarkably comparable to those of v-IhNSC and higher than wild type hNSCs and c-IhNSCs. Upon growth factors removal, T-IhNSC promptly gave rise to well-differentiated neurons, astrocytes and most importantly, to a heretofore undocumented high percentage of human oligodendrocytes (up to 23%. Persistent growth-factor dependence, steady functional properties, lack of ability to generate colonies in soft-agar colony-forming assay and to establish tumors upon orthotopic transplantation, point to the fact that immortalization by c-myc T58A does not bring about tumorigenicity in hNSCs. Hence, this work describes a novel and continuous cell line of immortalized human multipotent neural stem cells, in which the immortalizing agent is represented by a single gene which, in

  15. Construction of Anterior Hemi-Corneal Equivalents Using Nontransfected Human Corneal Cells and Transplantation in Dog Models.

    Science.gov (United States)

    Xu, Bin; Song, Zhan; Fan, Tingjun

    2017-11-01

    Tissue-engineered human anterior hemi-cornea (TE-aHC) is a promising equivalent for treating anterior lamellar keratopathy to surmount the severe shortage of donated corneas. This study was intended to construct a functional TE-aHC with nontransfected human corneal stromal (ntHCS) and epithelial (ntHCEP) cells using acellular porcine corneal stromata (aPCS) as a carrier scaffold, and evaluate its biological functions in a dog model. To construct a TE-aHC, ntHCS cells were injected into an aPCS scaffold and cultured for 3 days; then, ntHCEP cells were inoculated onto the Bowman's membrane of the scaffold and cultured for 5 days under air-liquid interface condition. After its morphology and histological structure were characterized, the constructed TE-aHC was transplanted into dog eyes via lamellar keratoplasty. The corneal transparency, thickness, intraocular pressure, epithelial integrity, and corneal regeneration were monitored in vivo, and the histological structure and histochemical property were examined ex vivo 360 days after surgery, respectively. The results showed that the constructed TE-aHC was highly transparent and composed of a corneal epithelium of 7-8 layer ntHCEP cells and a corneal stroma of regularly aligned collagen fibers and well-preserved glycosaminoglycans with sparsely distributed ntHCS cells, mimicking a normal anterior hemi-cornea (aHC). Moreover, both ntHCEP and ntHCS cells maintained positive expression of their marker and functional proteins. After transplantation into dog eyes, the constructed TE-aHC acted naturally in terms of morphology, structure and inherent property, and functioned well in maintaining corneal clarity, thickness, normal histological structure, and composition in dog models by reconstructing a normal aHC, which could be used as a promising aHC equivalent in corneal regenerative medicine and aHC disorder therapy. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. Successful immortalization of mesenchymal progenitor cells derived from human placenta and the differentiation abilities of immortalized cells

    International Nuclear Information System (INIS)

    Zhang Xiaohong; Soda, Yasushi; Takahashi, Kenji; Bai, Yuansong; Mitsuru, Ayako; Igura, Koichi; Satoh, Hitoshi; Yamaguchi, Satoru; Tani, Kenzaburo; Tojo, Arinobu; Takahashi, Tsuneo A.

    2006-01-01

    We reported previously that mesenchymal progenitor cells derived from chorionic villi of the human placenta could differentiate into osteoblasts, adipocytes, and chondrocytes under proper induction conditions and that these cells should be useful for allogeneic regenerative medicine, including cartilage tissue engineering. However, similar to human mesenchymal stem cells (hMSCs), though these placental cells can be isolated easily, they are difficult to study in detail because of their limited life span in vitro. To overcome this problem, we attempted to prolong the life span of human placenta-derived mesenchymal cells (hPDMCs) by modifying hTERT and Bmi-1, and investigated whether these modified hPDMCs retained their differentiation capability and multipotency. Our results indicated that the combination of hTERT and Bmi-1 was highly efficient in prolonging the life span of hPDMCs with differentiation capability to osteogenic, adipogenic, and chondrogenic cells in vitro. Clonal cell lines with directional differentiation ability were established from the immortalized parental hPDMC/hTERT + Bmi-1. Interestingly, hPDMC/Bmi-1 showed extended proliferation after long-term growth arrest and telomerase was activated in the immortal hPDMC/Bmi-1 cells. However, the differentiation potential was lost in these cells. This study reports a method to extend the life span of hPDMCs with hTERT and Bmi-1 that should become a useful tool for the study of mesenchymal stem cells

  17. Successful transplantation of in vitro expanded human corneal endothelial precursors to corneal endothelial surface using a nanocomposite sheet

    Directory of Open Access Journals (Sweden)

    Parikumar P

    2011-01-01

    Full Text Available Background: Though the transplantation of in vitro expanded human corneal endothelial precursors in animal models of endothelial damage by injecting into the anterior chamber has been reported, the practical difficulties of accomplishing such procedure in human patients have been a hurdle to clinical translation. Here we report the successful transplantation of in vitro expanded human corneal precursor cells to an animal eye using a transparent Nano-composite sheet and their engraftment.Materials and Methods: Human Corneal endothelial cells (HCEC were isolated from human cadaver eyes with informed consent and expanded in the lab using a sphere forming assay in a novel Thermoreversible Gelation Polymer (TGP for 26 days. HCEC obtained by sphere forming assay were seeded in a novel Nano-composite sheet, which was made of PNIPA-NC gels by in-situ, free-radical polymerization of NIPA monomer in the presence of exfoliated clay (synthetic hectorite “Laponite XLG” uniformly dispersed in aqueous media. After a further seven days in vitro culture of HCEC in the Nano-composite sheet, cells were harvested and transplanted on cadaver-bovine eyes (n=3. The cells were injected between the corneal endothelial layer and the Nano-composite sheet that had been placed prior to the injection in close proximity to the endothelial layer. After three hours, the transplanted Nano-composite sheets were removed from the bovine eyes and subjected to microscopic examination. The corneas were subjected to Histo-pathological studies along with controls. Results: HCEC formed sphere like colonies in TGP which expressed relevant markers as confirmed by RT-PCR. Microscopic studies of the Nanosheets and histopathological studies of the cornea of the Bull’s eye revealed that the HCEC got engrafted to the corneal endothelial layer of the bovine eyes with no remnant cells in the Nanosheet. Conclusion: Transplantation of in vitro expanded donor human corneal endothelial cells

  18. Efficient Generation of Human Embryonic Stem Cell-Derived Corneal Endothelial Cells by Directed Differentiation.

    Directory of Open Access Journals (Sweden)

    Kathryn L McCabe

    Full Text Available To generate human embryonic stem cell derived corneal endothelial cells (hESC-CECs for transplantation in patients with corneal endothelial dystrophies.Feeder-free hESC-CECs were generated by a directed differentiation protocol. hESC-CECs were characterized by morphology, expression of corneal endothelial markers, and microarray analysis of gene expression.hESC-CECs were nearly identical morphologically to primary human corneal endothelial cells, expressed Zona Occludens 1 (ZO-1 and Na+/K+ATPaseα1 (ATPA1 on the apical surface in monolayer culture, and produced the key proteins of Descemet's membrane, Collagen VIIIα1 and VIIIα2 (COL8A1 and 8A2. Quantitative PCR analysis revealed expression of all corneal endothelial pump transcripts. hESC-CECs were 96% similar to primary human adult CECs by microarray analysis.hESC-CECs are morphologically similar, express corneal endothelial cell markers and express a nearly identical complement of genes compared to human adult corneal endothelial cells. hESC-CECs may be a suitable alternative to donor-derived corneal endothelium.

  19. The People Paradox: Self-Esteem Striving, Immortality Ideologies, and Human Response to Climate Change

    Directory of Open Access Journals (Sweden)

    Janis L. Dickinson

    2009-06-01

    Full Text Available In 1973, Ernest Becker, a cultural anthropologist cross-trained in philosophy, sociology, and psychiatry, invoked consciousness of self and the inevitability of death as the primary sources of human anxiety and repression. He proposed that the psychological basis of cooperation, competition, and emotional and mental health is a tendency to hold tightly to anxiety-buffering cultural world views or "immortality projects" that serve as the basis for self-esteem and meaning. Although he focused mainly on social and political outcomes like war, torture, and genocide, he was increasingly aware that materialism, denial of nature, and immortality-striving efforts to control, rather than sanctify, the natural world were problems whose severity was increasing. In this paper I review Becker's ideas and suggest ways in which they illuminate human response to global climate change. Because immortality projects range from belief in technology and materialism to reverence for nature or belief in a celestial god, they act both as barriers to and facilitators of sustainable practices. I propose that Becker's cross-disciplinary "science of man," and the predictions it generates for proximate-level determinants of social behavior, add significantly to our understanding of and potential for managing the people paradox, i.e., that the very things that bring us symbolic immortality often conflict with our prospects for survival. Analysis of immortality projects as one of the proximate barriers to addressing climate change is both cautionary and hopeful, providing insights that should be included in the cross-disciplinary quest to uncover new pathways toward rational, social change.

  20. Network signatures of cellular immortalization in human lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sung-Mi; Jung, So-Young; Nam, Hye-Young; Kim, Hye-Ryun; Lee, Mee-Hee; Kim, Jun-Woo; Han, Bok-Ghee [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of); Jeon, Jae-Pil, E-mail: jaepiljeon@hanmail.net [Division of Brain Diseases, Center for Biomedical Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of)

    2013-11-15

    Highlights: •We identified network signatures of LCL immortalization from transcriptomic profiles. •More than 41% of DEGs are possibly regulated by miRNAs in LCLs. •MicroRNA target genes in LCLs are involved in apoptosis and immune-related functions. •This approach is useful to find functional miRNA targets in specific cell conditions. -- Abstract: Human lymphoblastoid cell line (LCL) has been used as an in vitro cell model in genetic and pharmacogenomic studies, as well as a good model for studying gene expression regulatory machinery using integrated genomic analyses. In this study, we aimed to identify biological networks of LCL immortalization from transcriptomic profiles of microRNAs and their target genes in LCLs. We first selected differentially expressed genes (DEGs) and microRNAs (DEmiRs) between early passage LCLs (eLCLs) and terminally differentiated late passage LCLs (tLCLs). The in silico and correlation analysis of these DEGs and DEmiRs revealed that 1098 DEG–DEmiR pairs were found to be positively (n = 591 pairs) or negatively (n = 507 pairs) correlated with each other. More than 41% of DEGs are possibly regulated by miRNAs in LCL immortalizations. The target DEGs of DEmiRs were enriched for cellular functions associated with apoptosis, immune response, cell death, JAK–STAT cascade and lymphocyte activation while non-miRNA target DEGs were over-represented for basic cell metabolisms. The target DEGs correlated negatively with miR-548a-3p and miR-219-5p were significantly associated with protein kinase cascade, and the lymphocyte proliferation and apoptosis, respectively. In addition, the miR-106a and miR-424 clusters located in the X chromosome were enriched in DEmiR–mRNA pairs for LCL immortalization. In this study, the integrated transcriptomic analysis of LCLs could identify functional networks of biologically active microRNAs and their target genes involved in LCL immortalization.

  1. Random integration of SV40 in SV40-transformed, immortalized human fibroblasts.

    Science.gov (United States)

    Hara, H; Kaji, H

    1987-02-01

    We have studied the relationship between immortalization of SV40-transformed human embryonic fibroblasts and their SV40 integration sites. From several independently transformed cell pools, we have isolated clones which do not harbor unintegrated SV40 DNA. We have analysed whole-cell DNA from these clones, using the Southern blot method. Our results suggest that no specific integration sites in the cellular genome exist which are a prerequisite for the immortalization process. Although some integration sites were found to be predominant in pre-crisis clones, they could not be detected in the post-crisis clones. This suggests that none of these predominating sites is selected for during the crisis period.

  2. Immortalization of Human Fetal Hepatocyte by Ectopic Expression of Human Telomerase Reverse Transcriptase, Human Papilloma Virus (E7) and Simian Virus 40 Large T (SV40 T) Antigen Towards Bioartificial Liver Support.

    Science.gov (United States)

    Giri, Shibashish; Bader, Augustinus

    2014-09-01

    Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5-7 days. The remaining transfected hepatocytes persisted for 2-4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose consumption. We established a

  3. In vivo human corneal hydration control dynamics: A new model

    NARCIS (Netherlands)

    Odenthal, M.T.P.; Nieuwendaal, C.P.; Venema, H.W.; Oosting, J.; Kok, J.H.C.; Kijlstra, A.

    1999-01-01

    PURPOSE. To introduce a new model describing human in vivo corneal deswelling after hypoxic contact lens wear, based on a damped harmonic oscillator, which can describe an overshoot in corneal deswelling, to compare this new model with the currently used exponential model, and also to test whether a

  4. In vivo human corneal hydration control dynamics: a new model

    NARCIS (Netherlands)

    Odenthal, M. T.; Nieuwendaal, C. P.; Venema, H. W.; Oosting, J.; Kok, J. H. C.; Kijlstra, A.

    1999-01-01

    PURPOSE: To introduce a new model describing human in vivo corneal deswelling after hypoxic contact lens wear, based on a damped harmonic oscillator, which can describe an overshoot in corneal deswelling, to compare this new model with the currently used exponential model, and also to test whether a

  5. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    International Nuclear Information System (INIS)

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S.

    2006-01-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents

  6. Expression profile of senescence-associated beta-galactosidase and activation of telomerase in human ovarian surface epithelial cells undergoing immortalization.

    Science.gov (United States)

    Litaker, J R; Pan, J; Cheung, Y; Zhang, D K; Liu, Y; Wong, S C; Wan, T S; Tsao, S W

    1998-11-01

    Senescence is a specific physiological stage of cells characterized by long population doubling time. It accounts for the inability of normal somatic cells to undergo indefinite cell division. As the number of population doublings increase, cell cycle regulatory mechanisms come into play and signal cells to exit the cell cycle and become senescent. Senescence has been implicated in the aging process and may function as a tumor suppressor mechanism in human cells. The ability to measure the degree of cellular senescence is important in understanding the biological processes regulating cell aging and immortalization. Senescent cells exhibit an enzyme termed senescence-associated histochemical staining. Cells immortalized by viral oncogenes often enter a stage of crisis at the early phase of immortalization. The cells at crisis have a long population doubling time. Cells at the crisis stage resemble senescent cells and the expression of SA- beta-Gal may be used to monitor the process of immortalization. In this study the expression profile of SA-beta-Gal was examined in human ovarian surface epithelial cells (HOSE 6-3) undergoing immortalization by the human papilloma viral oncogene E6 and E7 (HPV E6 and E7). Our results showed a low percentage (12.0%) of HOSE 6-3 cells expressing SA-beta-Gal activity at the pre-crisis stage. The percentage of HOSE 6-3 cells expressing SA-beta-Gal activity was highest (39.2%) at the crisis stage. When HOSE 6-3 cells achieved immortalized status there was a sharp decrease in cells (1. 3%) expressing SA-beta-Gal activity. In addition, an inverse relationship between the expression of SA-beta-Gal activity and telomerase activity was noted in cells undergoing immortalization. The results confirm that the SA-beta-Gal enzyme is a good marker for monitoring the population of cells undergoing senescence at different stages of immortalization and that telomerase activation is a characteristic feature of post-crisis cells.

  7. Isolated corneal papilloma-like lesion associated with human papilloma virus type 6.

    Science.gov (United States)

    Park, Choul Yong; Kim, Eo-Jin; Choi, Jong Sun; Chuck, Roy S

    2011-05-01

    To report a case of a corneal papilloma-like lesion associated with human papilloma virus type 6. A 48-year-old woman presented with a 2-year history of ocular discomfort and gradual visual deterioration in her right eye. Ophthalmic examination revealed an elevated, semitranslucent, well-defined vascularized mass approximately 4 × 2.5 mm in size localized to the right cornea. The surface of the mass appeared smooth and many small, shallow, and irregular elevations were noted. An excisional biopsy was performed. The underlying cornea was markedly thinned, and fine ramifying vasculature was also noted on the exposed corneal stroma. Typical koilocytic change was observed on the histopathologic examination. Polymerase chain reaction revealed the existence of human papilloma virus type 6 DNA. Here we describe a case of an isolated corneal papilloma-like lesion. Although the corneal extension of the limbal or the conjunctival papillomas has been commonly observed, an isolated corneal papilloma-like lesion with underlying stromal destruction has only rarely been reported.

  8. Establishment of functioning human corneal endothelial cell line with high growth potential.

    Directory of Open Access Journals (Sweden)

    Tadashi Yokoi

    Full Text Available Hexagonal-shaped human corneal endothelial cells (HCEC form a monolayer by adhering tightly through their intercellular adhesion molecules. Located at the posterior corneal surface, they maintain corneal translucency by dehydrating the corneal stroma, mainly through the Na(+- and K(+-dependent ATPase (Na(+/K(+-ATPase. Because HCEC proliferative activity is low in vivo, once HCEC are damaged and their numbers decrease, the cornea begins to show opacity due to overhydration, resulting in loss of vision. HCEC cell cycle arrest occurs at the G1 phase and is partly regulated by cyclin-dependent kinase inhibitors (CKIs in the Rb pathway (p16-CDK4/CyclinD1-pRb. In this study, we tried to activate proliferation of HCEC by inhibiting CKIs. Retroviral transduction was used to generate two new HCEC lines: transduced human corneal endothelial cell by human papillomavirus type E6/E7 (THCEC (E6/E7 and transduced human corneal endothelial cell by Cdk4R24C/CyclinD1 (THCEH (Cyclin. Reverse transcriptase polymerase chain reaction analysis of gene expression revealed little difference between THCEC (E6/E7, THCEH (Cyclin and non-transduced HCEC, but cell cycle-related genes were up-regulated in THCEC (E6/E7 and THCEH (Cyclin. THCEH (Cyclin expressed intercellular molecules including ZO-1 and N-cadherin and showed similar Na(+/K(+-ATPase pump function to HCEC, which was not demonstrated in THCEC (E6/E7. This study shows that HCEC cell cycle activation can be achieved by inhibiting CKIs even while maintaining critical pump function and morphology.

  9. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha

    2008-01-01

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged...

  10. Coefficient of Friction of Human Corneal Tissue.

    Science.gov (United States)

    Wilson, Tawnya; Aeschlimann, Rudolf; Tosatti, Samuele; Toubouti, Youssef; Kakkassery, Joseph; Osborn Lorenz, Katherine

    2015-09-01

    A novel property evaluation methodology was used to determine the elusive value for the human corneal coefficient of friction (CoF). Using a microtribometer on 28 fresh human donor corneas with intact epithelia, the CoF was determined in 4 test solutions (≥5 corneas/solution): tear-mimicking solution (TMS) in borate-buffered saline (TMS-PS), TMS in phosphate-buffered saline (TMS-PBS), TMS with HEPES-buffered saline (TMS-HEPES), and tear-like fluid in PBS (TLF-PBS). Mean (SD) CoF values ranged from 0.006 to 0.015 and were 0.013 (0.010) in TMS-PS, 0.006 (0.003) in TMS-PBS, 0.014 (0.005) in TMS-HEPES, and 0.015 (0.009) in TLF-PBS. Statistically significant differences were shown for TMS-PBS versus TLF (P = 0.0424) and TMS-PBS versus TMS-HEPES (P = 0.0179), but not for TMS-PBS versus TMS-PS (P = 0.2389). Successful measurement of the fresh human corneal tissue CoF was demonstrated, with values differing in the evaluated buffer solutions, within this limited sample size.

  11. Immortality in the Christian Physicalistic Theology: A Critical Survey

    Directory of Open Access Journals (Sweden)

    Hasan Ahmadizade

    2017-07-01

    Full Text Available Physicalistic Theology is a term that has no exact definition in theologian views. In the 20th century some of Christian thinkers on theology, like Nancy Murphy and Peter van Inwagen, by accepting a Physicalistic approach on human being, tried to analyze the Christian beliefs about human identity and his immortality. This approach today is called Physicalistic Theology. According to this approach, human is not but this physical body itself and so we can simply analyze the immortality problem. In this article we try to by an analytic and descriptive method, analyze the immortality of human according to the view of Physicalistic Theology. We will analyze the most important reasoning of Physicalistic Theology that is: no-interaction between the material and the immaterial, interaction between the person and the body, and the physicalism in Christian beliefs. One of the conclusions of this article is that according to Physicalistic view, the person that at some time has not been in the world, must exists any time to destroyed forever because the Christians believe to things that cannot justify rationally. The problem of immortality is one of these matters. Physicalistic Theology try to prove the immortality based on the miracles and the absolute power of God.

  12. Polysaccharide coating of human corneal endothelium

    DEFF Research Database (Denmark)

    Schroder, H D; Sperling, S

    1977-01-01

    Electron microscopy revealed the presence of a 600-1500 A thick layer of polysaccharide on the surface of human corneal endothelial cells. The surface layer was visualized by combined fixation and staining in a mixture of ruthenium red and osmium tetroxide. The coating material was stable for at ...... for at least 39 h post mortem and was retained on disintegrating cells....

  13. Optimization of human corneal endothelial cell culture: density dependency of successful cultures in vitro.

    Science.gov (United States)

    Peh, Gary S L; Toh, Kah-Peng; Ang, Heng-Pei; Seah, Xin-Yi; George, Benjamin L; Mehta, Jodhbir S

    2013-05-03

    Global shortage of donor corneas greatly restricts the numbers of corneal transplantations performed yearly. Limited ex vivo expansion of primary human corneal endothelial cells is possible, and a considerable clinical interest exists for development of tissue-engineered constructs using cultivated corneal endothelial cells. The objective of this study was to investigate the density-dependent growth of human corneal endothelial cells isolated from paired donor corneas and to elucidate an optimal seeding density for their extended expansion in vitro whilst maintaining their unique cellular morphology. Established primary human corneal endothelial cells were propagated to the second passage (P2) before they were utilized for this study. Confluent P2 cells were dissociated and seeded at four seeding densities: 2,500 cells per cm2 ('LOW'); 5,000 cells per cm2 ('MID'); 10,000 cells per cm2 ('HIGH'); and 20,000 cells per cm2 ('HIGH(×2)'), and subsequently analyzed for their propensity to proliferate. They were also subjected to morphometric analyses comparing cell sizes, coefficient of variance, as well as cell circularity when each culture became confluent. At the two lower densities, proliferation rates were higher than cells seeded at higher densities, though not statistically significant. However, corneal endothelial cells seeded at lower densities were significantly larger in size, heterogeneous in shape and less circular (fibroblastic-like), and remained hypertrophic after one month in culture. Comparatively, cells seeded at higher densities were significantly homogeneous, compact and circular at confluence. Potentially, at an optimal seeding density of 10,000 cells per cm2, it is possible to obtain between 10 million to 25 million cells at the third passage. More importantly, these expanded human corneal endothelial cells retained their unique cellular morphology. Our results demonstrated a density dependency in the culture of primary human corneal endothelial

  14. Immortal ethics.

    Science.gov (United States)

    Harris, John

    2004-06-01

    This article draws on ideas published in my "Intimations of Immortality" essay in Science (Vol. 288, No. 5463, p. 59, April 7, 2000) and my "Intimations of Immortality-The Ethics and Justice of Life Extending Therapies" in editor Michael Freeman's Current Legal Problems (Oxford University Press 2002: 65-97). This article outlines the ethical issues involved in life-extending therapies. The arguments against life extension are examined and found wanting. The consequences of life extension are explored and found challenging but not sufficiently daunting to warrant regulation or control. In short, there is no doubt that immortality would be a mixed blessing, but we should be slow to reject cures for terrible diseases that may be an inextricable part of life-extending procedures even if the price we have to pay for those cures is increasing life expectancy and even creating immortals. Better surely to accompany the scientific race to achieve immortality with commensurate work in ethics and social policy to ensure that we know how to cope with the transition to parallel populations of mortals and immortals as envisaged in mythology.

  15. Corneal biomechanical properties from air-puff corneal deformation imaging

    Science.gov (United States)

    Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos

    2014-02-01

    The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.

  16. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.

    Science.gov (United States)

    Touat-Hamici, Zahia; Bulteau, Anne-Laure; Bianga, Juliusz; Jean-Jacques, Hélène; Szpunar, Joanna; Lobinski, Ryszard; Chavatte, Laurent

    2018-04-13

    Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. IL-8 and MCP Gene Expression and Production by LPS-Stimulated Human Corneal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Roni M. Shtein

    2012-01-01

    Full Text Available Purpose. To determine time course of effect of lipopolysaccharide (LPS on production of interleukin-8 (IL-8 and monocyte chemotactic protein (MCP by cultured human corneal stromal cells. Methods. Human corneal stromal cells were harvested from donor corneal specimens, and fourth to sixth passaged cells were used. Cell cultures were stimulated with LPS for 2, 4, 8, and 24 hours. Northern blot analysis of IL-8 and MCP gene expression and ELISA for IL-8 and MCP secretion were performed. ELISA results were analyzed for statistical significance using two-tailed Student's t-test. Results. Northern blot analysis demonstrated significantly increased IL-8 and MCP gene expression after 4 and 8 hours of exposure to LPS. ELISA for secreted IL-8 and MCP demonstrated statistically significant increases (P<0.05 after corneal stromal cell stimulation with LPS. Conclusions. This paper suggests that human corneal stromal cells may participate in corneal inflammation by secreting potent leukocyte chemotactic and activating proteins in a time-dependent manner when exposed to LPS.

  18. Immortalization of Werner syndrome and progeria fibroblasts

    International Nuclear Information System (INIS)

    Saito, H.; Moses, R.E.

    1991-01-01

    Human fibroblast cells from two different progeroid syndromes, Werner syndrome (WS) and progeria, were established as immortalized cell lines by transfection with plasmid DNA containing the SV40 early region. The lineage of each immortalized cell line was confirmed by VNTR analysis. Each of the immortalized cell lines maintained its original phenotype of slow growth. DNA repair ability of these cells was also studied by measuring sensitivity to killing by uv or the DNA-damaging drugs methyl methansulfonate, bleomycin, and cis-dichlorodiamine platinum. The results showed that both WS and progeria cells have normal sensitivity to these agents

  19. Human Bone Derived Collagen for the Development of an Artificial Corneal Endothelial Graft. In Vivo Results in a Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Natalia Vázquez

    Full Text Available Corneal keratoplasty (penetrating or lamellar using cadaveric human tissue, is nowadays the main treatment for corneal endotelial dysfunctions. However, there is a worldwide shortage of donor corneas available for transplantation and about 53% of the world's population have no access to corneal transplantation. Generating a complete cornea by tissue engineering is still a tough goal, but an endothelial lamellar graft might be an easier task. In this study, we developed a tissue engineered corneal endothelium by culturing human corneal endothelial cells on a human purified type I collagen membrane. Human corneal endothelial cells were cultured from corneal rims after corneal penetrating keratoplasty and type I collagen was isolated from remnant cancellous bone chips. Isolated type I collagen was analyzed by western blot, liquid chromatography -mass spectrometry and quantified using the exponentially modified protein abundance index. Later on, collagen solution was casted at room temperature obtaining an optically transparent and mechanically manageable membrane that supports the growth of human and rabbit corneal endothelial cells which expressed characteristic markers of corneal endothelium: zonula ocluddens-1 and Na+/K+ ATPase. To evaluate the therapeutic efficiency of our artificial endothelial grafts, human purified type I collagen membranes cultured with rabbit corneal endothelial cells were transplanted in New Zealand white rabbits that were kept under a minimal immunosuppression regimen. Transplanted corneas maintained transparency for as long as 6 weeks without obvious edema or immune rejection and maintaining the same endothelial markers that in a healthy cornea. In conclusion, it is possible to develop an artificial human corneal endothelial graft using remnant tissues that are not employed in transplant procedures. This artificial endothelial graft can restore the integrality of corneal endothelium in an experimental model of

  20. Aloe vera extract activity on human corneal cells.

    Science.gov (United States)

    Woźniak, Anna; Paduch, Roman

    2012-02-01

    Ocular diseases are currently an important problem in modern societies. Patients suffer from various ophthalmologic ailments namely, conjunctivitis, dry eye, dacryocystitis or degenerative diseases. Therefore, there is a need to introduce new treatment methods, including medicinal plants usage. Aloe vera [Aloe barbadensis Miller (Liliaceae)] possesses wound-healing properties and shows immunomodulatory, anti-inflammatory or antioxidant activities. NR uptake, MTT, DPPH• reduction, Griess reaction, ELISA and rhodamine-phalloidin staining were used to test toxicity, antiproliferative activity, reactive oxygen species (ROS) reduction, nitric oxide (NO) and cytokine level, and distribution of F-actin in cells, respectively. The present study analyzes the effect of Aloe vera extracts obtained with different solvents on in vitro culture of human 10.014 pRSV-T corneal cells. We found no toxicity of ethanol, ethyl acetate and heptane extracts of Aloe vera on human corneal cells. No ROS reducing activity by heptane extract and trace action by ethanol (only at high concentration 125 µg/ml) extract of Aloe vera was observed. Only ethyl acetate extract expressed distinct free radical scavenging effect. Plant extracts decreased NO production by human corneal cells as compared to untreated controls. The cytokine (IL-1β, IL-6, TNF-α and IL-10) production decreased after the addition of Aloe vera extracts to the culture media. Aloe vera contains multiple pharmacologically active substances which are capable of modulating cellular phenotypes and functions. Aloe vera ethanol and ethyl acetate extracts may be used in eye drops to treat inflammations and other ailments of external parts of the eye such as the cornea.

  1. Corneal regeneration by induced human buccal mucosa cultivated on an amniotic membrane following alkaline injury.

    Science.gov (United States)

    Man, Rohaina Che; Yong, Then Kong; Hwei, Ng Min; Halim, Wan Haslina Wan Abdul; Zahidin, Aida Zairani Mohd; Ramli, Roszalina; Saim, Aminuddin Bin; Idrus, Ruszymah Binti Hj

    2017-01-01

    Various clinical disorders and injuries, such as chemical, thermal, or mechanical injuries, may lead to corneal loss that results in blindness. PURPOSE : The aims of this study were to differentiate human buccal mucosa (BMuc) into corneal epithelial-like cells, to fabricate engineered corneal tissue using buccal mucosal epithelial cells, and to reconstruct a damaged corneal epithelium in a nude rat model. BMuc were subjected to 10 d of induction factors to investigate the potential of cells to differentiate into corneal lineages. Corneal stem cell markers β1-integrin, C/EBPδ, ABCG2, p63, and CK3 were upregulated in the gene expression analysis in induced BMuc, whereas CK3 and p63 showed significant protein expression in induced BMuc compared to the uninduced cells. BMuc were then left to reach 80% confluency after differential trypsinization. The cells were harvested and cultivated on a commercially available untreated air-dried amniotic membrane (AM) in a Transwell system in induction medium. The corneal constructs were fabricated and then implanted into damaged rat corneas for up to 8 weeks. A significant improvement was detected in the treatment group at 8 weeks post-implantation, as revealed by slit lamp biomicroscopy analysis. The structure and thickness of the corneal layer were also analyzed using histological staining and time-domain optical coherence tomography scans and were found to resemble a native corneal layer. The protein expression for CK3 and p63 were continuously detected throughout the corneal epithelial layer in the corneal construct. In conclusion, human BMuc can be induced to express a corneal epithelial-like phenotype. The addition of BMuc improves corneal clarity, prevents vascularization, increases corneal thickness and stromal alignment, and appears to have no adverse effect on the host after implantation.

  2. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    OpenAIRE

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Na?ra; Rau, Fr?d?rique; Jollet, Arnaud; Edom-Vovard, Fr?d?rique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois

    2017-01-01

    International audience; Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded rep...

  3. Immortalization protocols used in cell culture models of human breast morphogenesis

    DEFF Research Database (Denmark)

    Gudjonsson, T; Villadsen, R; Rønnov-Jessen, L

    2004-01-01

    of the tissue of origin. In recent years, we have sought to establish immortalized primary breast cells, which retain crucial characteristics of their original in situ tissue pattern. This review discusses various approaches to immortalization of breast-derived epithelial and stromal cells and the application...

  4. Adhesion and metabolic activity of human corneal cells on PCL based nanofiber matrices

    Energy Technology Data Exchange (ETDEWEB)

    Stafiej, Piotr; Küng, Florian [Department of Ophthalmology, Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen (Germany); Institute of Polymer Materials, Universität Erlangen-Nürnberg, Martensstraße 7, 91054 Erlangen (Germany); Thieme, Daniel; Czugala, Marta; Kruse, Friedrich E. [Department of Ophthalmology, Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen (Germany); Schubert, Dirk W. [Institute of Polymer Materials, Universität Erlangen-Nürnberg, Martensstraße 7, 91054 Erlangen (Germany); Fuchsluger, Thomas A., E-mail: thomas.fuchsluger@uk-erlangen.de [Department of Ophthalmology, Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen (Germany)

    2017-02-01

    In this work, polycaprolactone (PCL) was used as a basic polymer for electrospinning of random and aligned nanofiber matrices. Our aim was to develop a biocompatible substrate for ophthalmological application to improve wound closure in defects of the cornea as replacement for human amniotic membrane. We investigated whether blending the hydrophobic PCL with poly (glycerol sebacate) (PGS) or chitosan (CHI) improves the biocompatibility of the matrices for cell expansion. Human corneal epithelial cells (HCEp) and human corneal keratocytes (HCK) were used for in vitro biocompatibility studies. After optimization of the electrospinning parameters for all blends, scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and water contact angle were used to characterize the different matrices. Fluorescence staining of the F-actin cytoskeleton of the cells was performed to analyze the adherence of the cells to the different matrices. Metabolic activity of the cells was measured by cell counting kit-8 (CCK-8) for 20 days to compare the biocompatibility of the materials. Our results show the feasibility of producing uniform nanofiber matrices with and without orientation for the used blends. All materials support adherence and proliferation of human corneal cell lines with oriented growth on aligned matrices. Although hydrophobicity of the materials was lowered by blending PCL, no increase in biocompatibility or proliferation, as was expected, could be measured. All tested matrices supported the expansion of human corneal cells, confirming their potential as substrates for biomedical applications. - Highlights: • PCL was blended with chitosan and poly(glycerol sebacate) for electrospinning. • Biocompatibility was proven with two human corneal cell lines. • Both cell lines adhered and proliferated on random and aligned nanofiber matrices. • Cytoskeletal orientation is shown on aligned nanofiber matrices.

  5. Regulation of hTERT Expression and Function in Newly Immortalized p53(+) Human Mammary Epithelial Cell Lines

    Science.gov (United States)

    2007-06-01

    human mammary epithelial cell types by human papilloma virus 16 e6 or e7. Proc Nat Acad Sci USA 1995; 92:3687-91. 54. Shay JW, Pereira-Smith OM, Wright...Liu X-L, Chu Q, Gao Q, Band V. Immortalization of distinct human mammary epithelial cell types by human papilloma virus 16 e6 or e7. Proc Nat Acad

  6. Corneal densitometry and its correlation with age, pachymetry, corneal curvature, and refraction.

    Science.gov (United States)

    Garzón, Nuria; Poyales, Francisco; Illarramendi, Igor; Mendicute, Javier; Jáñez, Óscar; Caro, Pedro; López, Alfredo; Argüeso, Francisco

    2017-12-01

    To determine normative corneal densitometry values in relation to age, sex, refractive error, corneal thickness, and keratometry, measured using the Oculus Pentacam system. Three hundred and thirty-eight healthy subjects (185 men; 153 women) with no corneal disease underwent an exhaustive ocular examination. Corneal densitometry was expressed in standardized grayscale units (GSU). The mean corneal densitometry over the total area was 16.46 ± 1.85 GSU. The Pearson correlation coefficient for total densitometry was r = 0.542 (p  0.05). This is the first report of normative corneal densitometry values in relation to keratometry, corneal thickness, and spherical equivalent measured with the latest Oculus Pentacam software. Corneal densitometry increases with age, but corneal keratometry and refractive parameters do not affect light scattering in the human cornea.

  7. Staphylococcus aureus lipoproteins trigger human corneal epithelial innate response through toll-like receptor-2.

    Science.gov (United States)

    Li, Qiong; Kumar, Ashok; Gui, Jian-Fang; Yu, Fu-Shin X

    2008-05-01

    Bacterial lipoproteins (LP) are a family of cell wall components found in a wide variety of bacteria. In this study, we characterized the response of HUCL, a telomerase-immortalized human corneal epithelial cell (HCEC) line, to LP isolated from Staphylococcus (S) aureus. S. aureus LP (saLP) prepared by Triton X-114 extraction stimulated the activation of NF-kappaB, JNK, and P38 signaling pathways in HUCL cells. The extracts failed to stimulate NF-kappaB activation in HUCL cells after lipoprotein lipase treatment and in cell lines expressing TLR4 or TLR9, but not TLR2, indicating lipoprotein nature of the extracts. saLP induced the up-regulation of a variety of inflammatory cytokines and chemokines (IL-6, IL-8, ICAM-1), antimicrobial molecules (hBD-2, LL-37, and iNOS), and homeostasis genes (Mn-SOD) at both the mRNA level and protein level. Similar inflammatory response to saLP was also observed in primarily cultured HCECs using the production of IL-6 as readout. Moreover, TLR2 neutralizing antibody blocked the saLP-induced secretion of IL-6, IL-8 and hBD2 in HUCL cells. Our findings suggest that saLP activates TLR2 and triggers innate immune response in the cornea to S. aureus infection via production of proinflammatory cytokines and defense molecules.

  8. Efficient and safe gene delivery to human corneal endothelium using magnetic nanoparticles.

    Science.gov (United States)

    Czugala, Marta; Mykhaylyk, Olga; Böhler, Philip; Onderka, Jasmine; Stork, Björn; Wesselborg, Sebastian; Kruse, Friedrich E; Plank, Christian; Singer, Bernhard B; Fuchsluger, Thomas A

    2016-07-01

    To develop a safe and efficient method for targeted, anti-apoptotic gene therapy of corneal endothelial cells (CECs). Magnetofection (MF), a combination of lipofection with magnetic nanoparticles (MNPs; PEI-Mag2, SO-Mag5, PalD1-Mag1), was tested in human CECs and in explanted human corneas. Effects on cell viability and function were investigated. Immunocompatibility was assessed in human peripheral blood mononuclear cells. Silica iron-oxide MNPs (SO-Mag5) combined with X-tremeGENE-HP achieved high transfection efficiency in human CECs and explanted human corneas, without altering cell viability or function. Magnetofection caused no immunomodulatory effects in human peripheral blood mononuclear cells. Magnetofection with anti-apoptotic P35 gene effectively blocked apoptosis in CECs. Magnetofection is a promising tool for gene therapy of corneal endothelial cells with potential for targeted on-site delivery.

  9. Cultivation of Human Microvascular Endothelial Cells on Topographical Substrates to Mimic the Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Jie Shi Chua

    2013-03-01

    Full Text Available Human corneal endothelial cells have a limited ability to replicate in vivo and in vitro. Allograft transplantation becomes necessary when an accident or trauma results in excessive cell loss. The reconstruction of the cornea endothelium using autologous cell sources is a promising alternative option for therapeutic or in vitro drug testing applications. The native corneal endothelium rests on the Descemet’s membrane, which has nanotopographies of fibers and pores. The use of synthetic topographies mimics the native environment, and it is hypothesized that this can direct the behavior and growth of human microvascular endothelial cells (HMVECs to resemble the corneal endothelium. In this study, HMVECs are cultivated on substrates with micron and nano-scaled pillar and well topographies. Closely packed HMVEC monolayers with polygonal cells and well-developed tight junctions were formed on the topographical substrates. Sodium/potassium (Na+/K+ adenine triphosphatase (ATPase expression was enhanced on the microwells substrate, which also promotes microvilli formation, while more hexagonal-like cells are found on the micropillars samples. The data obtained suggests that the use of optimized surface patterning, in particular, the microtopographies, can induce HMVECs to adopt a more corneal endothelium-like morphology with similar barrier and pump functions. The mechanism involved in cell contact guidance by the specific topographical features will be of interest for future studies.

  10. Efficient immortalization of primary human cells by p16INK4a-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT.

    Science.gov (United States)

    Haga, Kei; Ohno, Shin-ichi; Yugawa, Takashi; Narisawa-Saito, Mako; Fujita, Masatoshi; Sakamoto, Michiie; Galloway, Denise A; Kiyono, Tohru

    2007-02-01

    Activation of telomerase is sufficient for immortalization of some types of human cells but additional factors may also be essential. It has been proposed that stress imposed by inadequate culture conditions induces senescence due to accumulation of p16(INK4a). Here, we present evidence that many human cell types undergo senescence by activation of the p16(INK4a)/Rb pathway, and that introduction of Bmi-1 can inhibit p16(INK4a) expression and extend the life span of human epithelial cells derived from skin, mammary gland and lung. Introduction of p16(INK4a)-specific short hairpin RNA, as well as Bmi-1, suppressed p16(INK4a) expression in human mammary epithelial cells without promoter methylation, and extended their life span. Subsequent introduction of hTERT, the telomerase catalytic subunit, into cells with low p16(INK4a) levels resulted in efficient immortalization of three cell types without crisis or growth arrest. The majority of the human mammary epithelial cells thus immortalized showed almost normal ploidy as judged by G-banding and spectral karyotyping analysis. Our data suggest that inhibition of p16(INK4a) and introduction of hTERT can immortalize many human cell types with little chromosomal instability.

  11. Analysis of proviral integration in human mammary epithelial cell lines immortalized by retroviral infection with a temperature-sensitive SV40 T-antigen construct.

    Science.gov (United States)

    Stamps, A C; Davies, S C; Burman, J; O'Hare, M J

    1994-06-15

    A panel of eight conditionally immortal lines derived by infection of human breast epithelial cells with an amphotropic retrovirus transducing a ts mutant of SV40 large T-antigen was analyzed with respect to individual retroviral integration patterns. Each line contained multiple integration sites which were clonal and stable over extended passage. Similar integration patterns were observed between individual lines arising separately from the same stock of pre-immortal cells, suggesting a common progenitor. Retroviral integration analysis of pre-immortal cells at different stages of pre-crisis growth showed changes indicative of a progressive transition from polyclonality to clonality as the cells approached crisis. Each of the immortal lines contained a sub-set of the integration sites of their pre-immortal progenitors, with individual combinations and copy numbers of sites. Since all the cell lines appeared to originate from single foci in separate flasks, it is likely that each set arose from a common clone of pre-immortal cells as the result of separate genetic events. There was no evidence from this analysis to suggest that specific integration sites played any part either in the selection of pre-crisis clones or in the subsequent establishment of immortal lines.

  12. Telomere dynamics, end-to-end fusions and telomerase activation during the human fibroblast immortalization process.

    Science.gov (United States)

    Ducray, C; Pommier, J P; Martins, L; Boussin, F D; Sabatier, L

    1999-07-22

    Loss of telomeric repeats during cell proliferation could play a role in senescence. It has been generally assumed that activation of telomerase prevents further telomere shortening and is essential for cell immortalization. In this study, we performed a detailed cytogenetic and molecular characterization of four SV40 transformed human fibroblastic cell lines by regularly monitoring the size distribution of terminal restriction fragments, telomerase activity and the associated chromosomal instability throughout immortalization. The mean TRF lengths progressively decreased in pre-crisis cells during the lifespan of the cultures. At crisis, telomeres reached a critical size, different among the cell lines, contributing to the peak of dicentric chromosomes, which resulted mostly from telomeric associations. We observed a direct correlation between short telomere length at crisis and chromosomal instability. In two immortal cell lines, although telomerase was detected, mean telomere length still continued to decrease whereas the number of dicentric chromosomes associated was stabilized. Thus telomerase could protect specifically telomeres which have reached a critical size against end-to-end dicentrics, while long telomeres continue to decrease, although at a slower rate as before crisis. This suggests a balance between elongation by telomerase and telomere shortening, towards a stabilized 'optimal' length.

  13. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.

    Science.gov (United States)

    Sorkio, Anni; Koch, Lothar; Koivusalo, Laura; Deiwick, Andrea; Miettinen, Susanna; Chichkov, Boris; Skottman, Heli

    2018-07-01

    There is a high demand for developing methods to produce more native-like 3D corneal structures. In the present study, we produced 3D cornea-mimicking tissues using human stem cells and laser-assisted bioprinting (LaBP). Human embryonic stem cell derived limbal epithelial stem cells (hESC-LESC) were used as a cell source for printing epithelium-mimicking structures, whereas human adipose tissue derived stem cells (hASCs) were used for constructing layered stroma-mimicking structures. The development and optimization of functional bioinks was a crucial step towards successful bioprinting of 3D corneal structures. Recombinant human laminin and human sourced collagen I served as the bases for the functional bioinks. We used two previously established LaBP setups based on laser induced forward transfer, with different laser wavelengths and appropriate absorption layers. We bioprinted three types of corneal structures: stratified corneal epithelium using hESC-LESCs, lamellar corneal stroma using alternating acellular layers of bioink and layers with hASCs, and finally structures with both a stromal and epithelial part. The printed constructs were evaluated for their microstructure, cell viability and proliferation, and key protein expression (Ki67, p63α, p40, CK3, CK15, collagen type I, VWF). The 3D printed stromal constructs were also implanted into porcine corneal organ cultures. Both cell types maintained good viability after printing. Laser-printed hESC-LESCs showed epithelial cell morphology, expression of Ki67 proliferation marker and co-expression of corneal progenitor markers p63α and p40. Importantly, the printed hESC-LESCs formed a stratified epithelium with apical expression of CK3 and basal expression of the progenitor markers. The structure of the 3D bioprinted stroma demonstrated that the hASCs had organized horizontally as in the native corneal stroma and showed positive labeling for collagen I. After 7 days in porcine organ cultures, the 3D bioprinted

  14. Transformation of SV40-immortalized human uroepithelial cells by 3-methylcholanthrene increases IFN- and Large T Antigen-induced transcripts

    Directory of Open Access Journals (Sweden)

    Easton Marilyn J

    2010-02-01

    Full Text Available Abstract Background Simian Virus 40 (SV40 immortalization followed by treatment of cells with 3-methylcholanthrene (3-MC has been used to elicit tumors in athymic mice. 3-MC carcinogenesis has been thoroughly studied, however gene-level interactions between 3-MC and SV40 that could have produced the observed tumors have not been explored. The commercially-available human uroepithelial cell lines were either SV40-immortalized (HUC or SV40-immortalized and then 3-MC-transformed (HUC-TC. Results To characterize the SV40 - 3MC interaction, we compared human gene expression in these cell lines using a human cancer array and confirmed selected changes by RT-PCR. Many viral Large T Antigen (Tag expression-related changes occurred in HUC-TC, and it is concluded that SV40 and 3-MC may act synergistically to transform cells. Changes noted in IFP 9-27, 2'-5' OAS, IF 56, MxA and MxAB were typical of those that occur in response to viral exposure and are part of the innate immune response. Because interferon is crucial to innate immune host defenses and many gene changes were interferon-related, we explored cellular growth responses to exogenous IFN-γ and found that treatment impeded growth in tumor, but not immortalized HUC on days 4 - 7. Cellular metabolism however, was inhibited in both cell types. We conclude that IFN-γ metabolic responses were functional in both cell lines, but IFN-γ anti-proliferative responses functioned only in tumor cells. Conclusions Synergism of SV40 with 3-MC or other environmental carcinogens may be of concern as SV40 is now endemic in 2-5.9% of the U.S. population. In addition, SV40-immortalization is a generally-accepted method used in many research materials, but the possibility of off-target effects in studies carried out using these cells has not been considered. We hope that our work will stimulate further study of this important phenomenon.

  15. Interference figures of polarimetric interferometry analysis of the human corneal stroma.

    Directory of Open Access Journals (Sweden)

    Rodolfo Mastropasqua

    Full Text Available A rotating polarimetric 90°-cross linear-filter interferometry system was used to detect the morphological characteristics and features of interference patterns produced in in-vivo corneal stroma in healthy human corneas of 23 subjects. The characteristic corneal isogyres presenting with an evident cross-shaped pattern, grossly aligned with the fixation axis, were observed in all patients with centers within the pupillary dark area, impeding the exact determination of the center point. During the rotational scan in 78.3% of the eyes the cross-shaped pattern of the isogyre gradually separated to form two distinct hyperbolic arcs in opposite quadrants, reaching their maximal separation at 45 degrees with respect to angle of cross-shaped pattern formation. The corneal cross and hyperbolic-pattern repeated every 90° throughout the 360° rotational scan. While the interpretation of the isogyres presents particular difficulties, two summary parameters can be extracted for each cornea: the presence/orientation of a single or two dark areas in post-processed images and isochromes. However, the development of dedicated software for semi-quantitative analysis of these parameters and enantiomorphism may become available in the near future. The possible application of polarimetric interferometry in the field of both corneal pathologies and corneal surgery may be of great interest for clinical purposes.

  16. Response of human corneal fibroblasts on silk film surface patterns.

    Science.gov (United States)

    Gil, Eun Seok; Park, Sang-Hyug; Marchant, Jeff; Omenetto, Fiorenzo; Kaplan, David L

    2010-06-11

    Transparent, biodegradable, mechanically robust, and surface-patterned silk films were evaluated for the effect of surface morphology on human corneal fibroblast (hCF) cell proliferation, orientation, and ECM deposition and alignment. A series of dimensionally different surface groove patterns were prepared from optically graded glass substrates followed by casting poly(dimethylsiloxane) (PDMS) replica molds. The features on the patterned silk films showed an array of asymmetric triangles and displayed 37-342 nm depths and 445-3 582 nm widths. hCF DNA content on all patterned films were not significantly different from that on flat silk films after 4 d in culture. However, the depth and width of the grooves influenced cell alignment, while the depth differences affected cell orientation; overall, deeper and narrower grooves induced more hCF orientation. Over 14 d in culture, cell layers and actin filament organization demonstrated that confluent hCFs and their cytoskeletal filaments were oriented along the direction of the silk film patterned groove axis. Collagen type V and proteoglycans (decorin and biglycan), important markers of corneal stromal tissue, were highly expressed with alignment. Understanding corneal stromal fibroblast responses to surface features on a protein-based biomaterial applicable in vivo for corneal repair potential suggests options to improve corneal tissue mimics. Further, the approaches provide fundamental biomaterial designs useful for bioengineering oriented tissue layers, an endemic feature in most biological tissue structures that lead to critical tissue functions.

  17. Change alone is eternal, perpetual, immortal : pharmacological immortality in science fiction

    OpenAIRE

    Grech, Victor E.; Vassallo, Clare; Callus, Ivan

    2012-01-01

    Immortality is a common feature in science-fiction (SF). This paper lists the ways in which the pharmacological induction of immortality has been depicted in SF, and the resultant outcomes. Immortality or extreme longevity are often melded with infertility in order to eliminate the overpopulation issues that would inevitably arise. This is only one way in which theoretical utopias which afford life extension become dystopias, cautionary tales that admonish against hubris. In this fashion, SF ...

  18. Elevated IGFBP3 levels in diabetic tears: a negative regulator of IGF-1 signaling in the corneal epithelium.

    Science.gov (United States)

    Wu, Yu-Chieh; Buckner, Benjamin R; Zhu, Meifang; Cavanagh, H Dwight; Robertson, Danielle M

    2012-04-01

    To determine the ratio of IGFBP3:IGF-1 in normal and diabetic human tears, and in telomerase-immortalized human corneal epithelial cells (hTCEpi) cultured under elevated glucose conditions and to correlate these changes with total and phosphorylated levels of IGF-1R. Tear samples were collected noninvasively from diabetic subjects and non-diabetic controls; corneal sensitivity was assessed using a Cochet-Bonnet Aesthesiometer. Conditioned media were collected following culture of hTCEpi cells in normal (5 mM) and elevated (25 mM) glucose conditions; mannitol was used as an osmotic control. IGFBP3, IGF-1, and phosphorylated IGF-1R levels were assessed by ELISA. IGFBP3 and IGF-1R mRNA were assessed by real-time polymerase chain reaction (PCR). Total and phosphorylated IGF-1R expression in whole cell lysates was assessed by western blot. There was a 2.8-fold increase in IGFBP3 in diabetic tears compared to non-diabetic controls (P=0.006); IGF-1 levels were not significantly altered. No difference in corneal sensitivity was detected between groups. The concentration of IGFBP3 in tears was independent of IGF-1. Consistent with human tear measurements in vivo, IGFBP3 secretion was increased 2.2 fold (Ptears compared to normal controls blocked phosphorylation of the IGF-1R by IGF-1 (Ptears may attenuate IGF-1R signaling in the diabetic cornea. A long-term increase in IGFBP3 may contribute to epithelial compromise and the pathogenesis of ocular surface complications reported in diabetes. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells.

    Science.gov (United States)

    Brzeszczynska, J; Samuel, K; Greenhough, S; Ramaesh, K; Dhillon, B; Hay, D C; Ross, J A

    2014-06-01

    It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular, the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory, the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel, provides a robust model of human development and in the future, may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally, we demonstrate that following continued cell culture, stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore, also offer an in vitro model of disease.

  20. Accumulation and altered localization of telomere-associated protein TRF2 in immortally transformed and tumor-derived human breast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nijjar, Tarlochan; Bassett, Ekaterina; Garbe, James; Takenaka, Yasuhiro; Stampfer, Martha R.; Gilley, David; Yaswen, Paul

    2004-12-23

    We have used cultured human mammary epithelial cells (HMEC) and breast tumor-derived lines to gain information on defects that occur during breast cancer progression. HMEC immortalized by a variety of agents (the chemical carcinogen benzo(a)pyrene, oncogenes c-myc and ZNF217, and/or dominant negative p53 genetic suppressor element GSE22) displayed marked up regulation (10-15 fold) of the telomere binding protein, TRF2. Up-regulation of TRF2 protein was apparently due to differences in post-transcriptional regulation, as mRNA levels remained comparable in finite life span and immortal HMEC. TRF2 protein was not up-regulated by the oncogenic agents alone in the absence of immortalization, nor by expression of exogenously introduced hTERT genes. We found TRF2 levels to be at least 2-fold higher than in control cells in 11/15 breast tumor cell lines, suggesting that elevated TRF2 levels are a frequent occurrence during the transformation of breast tumor cells in vivo. The dispersed distribution of TRF2 throughout the nuclei in some immortalized and tumor-derived cells indicated that not all the TRF2 was associated with telomeres in these cells. The process responsible for accumulation of TRF2 in immortalized HMEC and breast tumor-derived cell lines may promote tumorigenesis by contributing to the cells ability to maintain an indefinite life span.

  1. Generation of human cortical neurons from a new immortal fetal neural stem cell line

    International Nuclear Information System (INIS)

    Cacci, E.; Villa, A.; Parmar, M.; Cavallaro, M.; Mandahl, N.; Lindvall, O.; Martinez-Serrano, A.; Kokaia, Z.

    2007-01-01

    Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markers like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology

  2. UBIAD1 mutation alters a mitochondrial prenyltransferase to cause Schnyder corneal dystrophy.

    Directory of Open Access Journals (Sweden)

    Michael L Nickerson

    2010-05-01

    Full Text Available Mutations in a novel gene, UBIAD1, were recently found to cause the autosomal dominant eye disease Schnyder corneal dystrophy (SCD. SCD is characterized by an abnormal deposition of cholesterol and phospholipids in the cornea resulting in progressive corneal opacification and visual loss. We characterized lesions in the UBIAD1 gene in new SCD families and examined protein homology, localization, and structure.We characterized five novel mutations in the UBIAD1 gene in ten SCD families, including a first SCD family of Native American ethnicity. Examination of protein homology revealed that SCD altered amino acids which were highly conserved across species. Cell lines were established from patients including keratocytes obtained after corneal transplant surgery and lymphoblastoid cell lines from Epstein-Barr virus immortalized peripheral blood mononuclear cells. These were used to determine the subcellular localization of mutant and wild type protein, and to examine cholesterol metabolite ratios. Immunohistochemistry using antibodies specific for UBIAD1 protein in keratocytes revealed that both wild type and N102S protein were localized sub-cellularly to mitochondria. Analysis of cholesterol metabolites in patient cell line extracts showed no significant alteration in the presence of mutant protein indicating a potentially novel function of the UBIAD1 protein in cholesterol biochemistry. Molecular modeling was used to develop a model of human UBIAD1 protein in a membrane and revealed potentially critical roles for amino acids mutated in SCD. Potential primary and secondary substrate binding sites were identified and docking simulations indicated likely substrates including prenyl and phenolic molecules.Accumulating evidence from the SCD familial mutation spectrum, protein homology across species, and molecular modeling suggest that protein function is likely down-regulated by SCD mutations. Mitochondrial UBIAD1 protein appears to have a highly

  3. Cultivation of corneal endothelial cells on a pericellular matrix prepared from human decidua-derived mesenchymal cells.

    Directory of Open Access Journals (Sweden)

    Ryohei Numata

    Full Text Available The barrier and pump functions of the corneal endothelium are essential for the maintenance of corneal transparency. Although corneal transplantation is the only current therapy for treating corneal endothelial dysfunction, the potential of tissue-engineering techniques to provide highly efficient and less invasive therapy in comparison to corneal transplantation has been highly anticipated. However, culturing human corneal endothelial cells (HCECs is technically difficult, and there is no established culture protocol. The aim of this study was to investigate the feasibility of using a pericellular matrix prepared from human decidua-derived mesenchymal cells (PCM-DM as an animal-free substrate for HCEC culture for future clinical applications. PCM-DM enhanced the adhesion of monkey CECs (MCECs via integrin, promoted cell proliferation, and suppressed apoptosis. The HCECs cultured on the PCM-DM showed a hexagonal morphology and a staining profile characteristic of Na⁺/K⁺-ATPase and ZO-1 at the plasma membrane in vivo, whereas the control HCECs showed a fibroblastic phenotype. The cell density of the cultured HCECs on the PCM-DM was significantly higher than that of the control cells. These results indicate that PCM-DM provides a feasible xeno-free matrix substrate and that it offers a viable in vitro expansion protocol for HCECs while maintaining cellular functions for use as a subsequent clinical intervention for tissue-engineered based therapy of corneal endothelial dysfunction.

  4. Animal study on transplantation of human umbilical vein endothelial cells for corneal endothelial decompensation

    Directory of Open Access Journals (Sweden)

    Li Cui

    2014-06-01

    Full Text Available AIM: To explore the feasibility of culturing human umbilical vein endothelial cells(HUVECon acellular corneal stroma and performing the posterior lamellar endothelial keratoplasty(PLEKtreating corneal endothelial decompensation.METHODS: Thirty New-Zealand rabbits were divided into three groups randomly, 10 rabbits for experimental group, 10 for stroma group and 10 for control group. Corneal endothelial cells were removed to establish animal model of corneal endothelial failure. PLEK was performed on the rabbits of experimental group and stroma group, and nothing was transplantated onto the rabbits of control group with the deep layer excised only. Postoperative observation was taken for 3mo. The degree of corneal edema and central corneal thickness were recorded for statistical analysis.RESULTS: Corneas in experimental group were relieved in edema obviously compared with that in stroma group and the control group, and showed increased transparency 7d after the operation. The average density of endothelial cells was 2 026.4±129.3cells/mm2, and average central corneal thickness was 505.2±25.4μm in experimental group, while 1 535.6±114.5μm in stroma group and 1 493.5±70.2μm in control group 3mo after operation.CONCLUSION:We achieved preliminary success in our study that culturing HUVEC on acellular corneal stroma and performing PLEK for corneal endothelial decompensation. HUVEC transplanted could survive in vivo, and have normal biological function of keeping cornea transparent. This study provides a new idea and a new way clinically for the treatment of corneal endothelial diseases.

  5. Effects of hTERT immortalization on osteogenic and adipogenic differentiation of dental pulp stem cells

    Directory of Open Access Journals (Sweden)

    El-Ayachi Ikbale

    2016-03-01

    Full Text Available These data relate to the differentiation of human dental pulp stem cells (DPSC and DPSC immortalized by constitutively expressing human telomerase reverse transcriptase (hTERT through both osteogenic and adipogenic lineages (i.e. to make bone producing and fat producing cells from these dental pulp stem cells. The data augment another study to characterize immortalized DPSC for the study of neurogenetic “Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders” [1]. Two copies of one typical control cell line (technical replicates were used in this study. The data represent the differentiation of primary DPSC into osteoblast cells approximately 60% more effectively than hTERT immortalized DPSC. Conversely, both primary and immortalized DPSC are poorly differentiated into adipocytes. The mRNA expression levels for both early and late adipogenic and osteogenic gene markers are shown. Keywords: Stem cells, Osteogenic, Adipogenic, Immortalized, hTERT, DPSC

  6. Inefficiency in macromolecular transport of SCS-based microcapsules affects viability of primary human mesenchymal stem cells but not of immortalized cells

    DEFF Research Database (Denmark)

    Sanz-Nogués, Clara; Horan, Jason; Thompson, Kerry

    2015-01-01

    mesenchymal stem cells (hMSCs). Human MSCs are of interest in regenerative medicine applications due to pro-angiogenic, anti-inflammatory and immunomodulatory properties, which result from paracrine effects of this cell type. In the present work we have encapsulated primary hMSCs and hMSC-TERT immortalized...... nutrients and had a more detrimental effect on the viability of primary cell cultures compared to cell lines and immortalized cells. This article is protected by copyright. All rights reserved....

  7. New Details of the Human Corneal Limbus Revealed With Second Harmonic Generation Imaging.

    Science.gov (United States)

    Park, Choul Yong; Lee, Jimmy K; Zhang, Cheng; Chuck, Roy S

    2015-09-01

    To report novel findings of the human corneal limbus by using second harmonic generation (SHG) imaging. Corneal limbus was imaged by using an inverted two-photon excitation fluorescence microscope. Laser (Ti:Sapphire) was tuned at 850 nm for two-photon excitation. Backscatter signals of SHG and autofluorescence (AF) were collected through a 425/30-nm emission filter and a 525/45-emission filter, respectively. Multiple, consecutive, and overlapping image stacks (z-stack) were acquired for the corneal limbal area. Two novel collagen structures were revealed by SHG imaging at the limbus: an anterior limbal cribriform layer and presumed anchoring fibers. Anterior limbal cribriform layer is an intertwined reticular collagen architecture just beneath the limbal epithelial niche and is located between the peripheral cornea and Tenon's/scleral tissue. Autofluorescence imaging revealed high vascularity in this structure. Central to the anterior limbal cribriform layer, radial strands of collagen were found to connect the peripheral cornea to the limbus. These presumed anchoring fibers have both collagen and elastin and were found more extensively in the superficial layers than deep layer and were absent in very deep limbus near Schlemm's canal. By using SHG imaging, new details of the collagen architecture of human corneal limbal area were elucidated. High resolution images with volumetric analysis revealed two novel collagen structures.

  8. Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium.

    Directory of Open Access Journals (Sweden)

    Makiko Nakahara

    Full Text Available Healthy corneal endothelium is essential for maintaining corneal clarity, as the damage of corneal endothelial cells and loss of cell count causes severe visual impairment. Corneal transplantation is currently the only therapy for severe corneal disorders. The greatly limited proliferative ability of human corneal endothelial cells (HCECs, even in vitro, has challenged researchers to establish efficient techniques for the cultivating HCECs, a pivotal issue for clinical applications. The aim of this study was to evaluate conditioned medium (CM obtained from human bone marrow-derived mesenchymal stem cells (MSCs (MSC-CM for use as a consistent expansion protocol of HCECs. When HCECs were maintained in the presence of MSC-CM, cell morphology assumed a hexagonal shape similar to corneal endothelial cells in vivo, as opposed to the irregular cell shape observed in control cultures in the absence of MSC-CM. They also maintained the functional protein phenotypes; ZO-1 and Na(+/K(+-ATPase were localized at the intercellular adherent junctions and pump proteins of corneal endothelium were accordingly expressed. In comparison to the proliferative potential observed in the control cultures, HCECs maintained in MSC-CM were found to have more than twice as many Ki67-positive cells and a greatly increased incorporation of BrdU into DNA. MSC-CM further facilitated the cell migration of HCECs. Lastly, the mechanism of cell proliferation mediated by MSC-CM was investigated, and phosphorylation of Akt and ERK1/2 was observed in HCECs after exposure to MSC-CM. The inhibitor to PI 3-kinase maintained the level of p27(Kip1 for up to 24 hours and greatly blocked the expression of cyclin D1 and D3 during the early G1 phase, leading to the reduction of cell density. These findings indicate that MSC-CM not only stimulates the proliferation of HCECs by regulating the G1 proteins of the cell cycle but also maintains the characteristic differentiated phenotypes necessary

  9. VISUAL PERCEPTION BASED AUTOMATIC RECOGNITION OF CELL MOSAICS IN HUMAN CORNEAL ENDOTHELIUMMICROSCOPY IMAGES

    Directory of Open Access Journals (Sweden)

    Yann Gavet

    2011-05-01

    Full Text Available The human corneal endothelium can be observed with two types of microscopes: classical optical microscope for ex-vivo imaging, and specular optical microscope for in-vivo imaging. The quality of the cornea is correlated to the endothelial cell density and morphometry. Automatic methods to analyze the human corneal endothelium images are still not totally efficient. Image analysis methods that focus only on cell contours do not give good results in presence of noise and of bad conditions of acquisition. More elaborated methods introduce regional informations in order to performthe cell contours completion, thus implementing the duality contour-region. Their good performance can be explained by their connections with several basic principles of human visual perception (Gestalt Theory and Marr's computational theory.

  10. Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Gokhan Yildiz

    Full Text Available Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become "immortal" by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15

  11. Large-scale analysis of protein expression changes in human keratinocytes immortalized by human papilloma virus type 16 E6 and E7 oncogenes

    Directory of Open Access Journals (Sweden)

    Arnouk Hilal

    2009-08-01

    Full Text Available Abstract Background Infection with high-risk type human papilloma viruses (HPVs is associated with cervical carcinomas and with a subset of head and neck squamous cell carcinomas. Viral E6 and E7 oncogenes cooperate to achieve cell immortalization by a mechanism that is not yet fully understood. Here, human keratinocytes were immortalized by long-term expression of HPV type 16 E6 or E7 oncoproteins, or both. Proteomic profiling was used to compare expression levels for 741 discrete protein features. Results Six replicate measurements were performed for each group using two-dimensional difference gel electrophoresis (2D-DIGE. The median within-group coefficient of variation was 19–21%. Significance of between-group differences was tested based on Significance Analysis of Microarray and fold change. Expression of 170 (23% of the protein features changed significantly in immortalized cells compared to primary keratinocytes. Most of these changes were qualitatively similar in cells immortalized by E6, E7, or E6/7 expression, indicating convergence on a common phenotype, but fifteen proteins (~2% were outliers in this regulatory pattern. Ten demonstrated opposite regulation in E6- and E7-expressing cells, including the cell cycle regulator p16INK4a; the carbohydrate binding protein Galectin-7; two differentially migrating forms of the intermediate filament protein Cytokeratin-7; HSPA1A (Hsp70-1; and five unidentified proteins. Five others had a pattern of expression that suggested cooperativity between the co-expressed oncoproteins. Two of these were identified as forms of the small heat shock protein HSPB1 (Hsp27. Conclusion This large-scale analysis provides a framework for understanding the cooperation between E6 and E7 oncoproteins in HPV-driven carcinogenesis.

  12. The People Paradox: Self-Esteem Striving, Immortality Ideologies, and Human Response to Climate Change

    OpenAIRE

    Janis L. Dickinson

    2009-01-01

    In 1973, Ernest Becker, a cultural anthropologist cross-trained in philosophy, sociology, and psychiatry, invoked consciousness of self and the inevitability of death as the primary sources of human anxiety and repression. He proposed that the psychological basis of cooperation, competition, and emotional and mental health is a tendency to hold tightly to anxiety-buffering cultural world views or "immortality projects" that serve as the basis for self-esteem and meaning. Although he focused m...

  13. Effects of phthalates on the human corneal endothelial cell line B4G12

    DEFF Research Database (Denmark)

    Krüger, Tanja; Cao, Yi; Kjærgaard, Søren K.

    2012-01-01

    Phthalates are industrial chemicals used in many cosmetics. We evaluated an in vitro model for eye irritancy testing using the human corneal endothelial cell line B4G12. Cell proliferation and toxicity were assessed after exposing to di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2...... toxicity was observed for DBP and BBP. Upon DBP exposure at nontoxic concentrations, a significant increased gene expression and cytokine cell secretion were observed for interleukin-1ß (IL-1ß) and IL-8, and also an increased IL-6 secretion was observed. In conclusion, the human corneal endothelial cell...

  14. Cytogenetic and molecular genetic characterization of immortalized human ovarian surface epithelial cell lines: consistent loss of chromosome 13 and amplification of chromosome 20.

    Science.gov (United States)

    Jin, Yuesheng; Zhang, Hao; Tsao, Sai Wah; Jin, Charlotte; Lv, Mei; Strömbeck, Bodil; Wiegant, Joop; Wan, Thomas Shek Kong; Yuen, Po Wing; Kwong, Yok-Lam

    2004-01-01

    This study aimed at identifying the genetic events involved in immortalization of ovarian epithelial cells, which might be important steps in ovarian carcinogenesis. The genetic profiles of five human ovarian surface epithelial (HOSE) cell lines immortalized by retroviral transfection of the human papillomavirus (HPV) E6/E7 genes were thoroughly characterized by chromosome banding and fluorescence in situ hybridization (FISH), at various passages pre- and post-crisis. In pre-crisis, most cells had simple, non-clonal karyotypic changes. Telomere association was the commonest aberration, suggesting that tolermase dysfunction might be an important genetic event leading to cellular crisis. After immortalization post-crisis, however, the karyotypic patterns were non-random. Loss of genetic materials was a characteristic feature. The commonest numerical aberrations were -13, -14, -16, -17, -18, and +5. Among them, loss of chromosome 13 was common change observed in all lines. The only recurrent structural aberration was homogeneously staining regions (hsr) observed in three lines. FISH and combined binary ratio labeling (COBRA)-FISH showed in two cases that the hsrs were derived from chromosome 20. Clonal evolution was observed in four of the lines. In one line, hsr was the only change shared by all subclones, suggesting that it might be a primary event in cell immortalization. The results of the present study suggested that loss of chromosome 13 and the amplification of chromosome 20 might be early genetic events involved in ovarian cell immortalization, and might be useful targets for the study of genomic aberrations in ovarian carcinogenesis.

  15. Plastic compressed collagen as a novel carrier for expanded human corneal endothelial cells for transplantation.

    Directory of Open Access Journals (Sweden)

    Hannah J Levis

    Full Text Available Current treatments for reversible blindness caused by corneal endothelial cell failure involve replacing the failed endothelium with donor tissue using a one donor-one recipient strategy. Due to the increasing pressure of a worldwide donor cornea shortage there has been considerable interest in developing alternative strategies to treat endothelial disorders using expanded cell replacement therapy. Protocols have been developed which allow successful expansion of endothelial cells in vitro but this approach requires a supporting material that would allow easy transfer of cells to the recipient. We describe the first use of plastic compressed collagen as a highly effective, novel carrier for human corneal endothelial cells. A human corneal endothelial cell line and primary human corneal endothelial cells retained their characteristic cobblestone morphology and expression of tight junction protein ZO-1 and pump protein Na+/K+ ATPase α1 after culture on collagen constructs for up to 14 days. Additionally, ultrastructural analysis suggested a well-integrated endothelial layer with tightly opposed cells and apical microvilli. Plastic compressed collagen is a superior biomaterial in terms of its speed and ease of production and its ability to be manipulated in a clinically relevant manner without breakage. This method provides expanded endothelial cells with a substrate that could be suitable for transplantation allowing one donor cornea to potentially treat multiple patients.

  16. Artichoke compound cynarin differentially affects the survival, growth and stress response of normal, immortalized and cancerous human cells

    DEFF Research Database (Denmark)

    Gezer, Ceren; Yücecan, Sevinç; Rattan, Suresh Inder Singh

    2015-01-01

    of CYN on the proliferative potential, survival, morphology, and stress response (SR) markers haemoxygenase-1 (HO-1) and heat shock protein-70 (HSP70) in normal human skin fibroblasts (FSF-1), telomerase-immortalized mesenchymal stem cells (hTERT-MSC) and cervical cancer cells, HeLa. Effects of CYN...

  17. Small-Molecule Induction Promotes Corneal Epithelial Cell Differentiation from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Alexandra Mikhailova

    2014-02-01

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer unique opportunities for developing novel cell-based therapies and disease modeling. In this study, we developed a directed differentiation method for hiPSCs toward corneal epithelial progenitor cells capable of terminal differentiation toward mature corneal epithelial-like cells. In order to improve the efficiency and reproducibility of our method, we replicated signaling cues active during ocular surface ectoderm development with the help of two small-molecule inhibitors in combination with basic fibroblast growth factor (bFGF in serum-free and feeder-free conditions. First, small-molecule induction downregulated the expression of pluripotency markers while upregulating several transcription factors essential for normal eye development. Second, protein expression of the corneal epithelial progenitor marker p63 was greatly enhanced, with up to 95% of cells being p63 positive after 5 weeks of differentiation. Third, corneal epithelial-like cells were obtained upon further maturation.

  18. Transplantation with cultured stem cells derived from the human amniotic membrane for corneal alkali burns: an experimental study.

    Science.gov (United States)

    Zeng, Wei; Li, Yanwei; Zeng, Guangwei; Yang, Bo; Zhu, Yu

    2014-01-01

    Amniotic membranes (AM) have been used in a wide range of clinical applications. We successfully extracted mesenchymal stem cells (MSCs) from human AM, but little is known about the use and efficacy of human amniotic membrane-derived mesenchymal stem cells (hAM-dMSCs) for the treatment of alkali burns. We utilized hAM-dMSCs transplantation, AM grafting, and their combined use in the treatment of alkali burns. An experimental model in rabbits was devised to analyze the use of these techniques with immunocytochemistry and ELISA. The survival and migration of hAM-dMSCs labeled by SPION in the host were assessed with Prussian blue staining. Compared with the control group, the treated groups demonstrated faster reconstruction of the corneal epithelium, and lower levels of corneal opacification and neovascularization within corneal alkali burns. Furthermore, dark blue-stained particles were detected in the limbus corneae at day 28. These results demonstrated the ability of hAM-dMSCs to enhance epithelial healing and reduce corneal opacification and neovascularization in corneal alkali wounds.

  19. [The concept of cellular immortality, a myth or a reality. Example of "immortalized" articular chondrocytes].

    Science.gov (United States)

    Adolphe, M; Thenet, S

    1990-01-01

    The concept of cellular immortality, which arose from the historical studies of A. Carrel, is getting a new start with the progress of virology. However, the definition of cell immortalization is still ambiguous. Although scientists agree that cells regarded as immortal have acquired an infinite growth capacity, the relationship of this change with the first stages of transformation is difficult to clearly define. Immortalized cell lines have already been obtained from numerous cell types by using viral infection or transfection with viral and cellular genes. Immortalization of cells is interesting for three main reasons: it permits study of the steps in progression to transformation, allows establishment of cell lines for producing biological products, and permits various cell types to maintain a part of their differentiated functions. For example, hypothalamic neurosecretory cells, macrophages, astrocytes and intestinal epithelial cells have been immortalized and these lines can be used for understanding the balance between division and differentiation, and also for pharmacotoxicological studies. In our laboratory, we immortalized rabbit articular chondrocytes by transfection with SV40 large T and little t encoding genes. At the 9th subculture, when the control culture was senescent, clones of polygonal cells appeared in the transfected cell cultures. Three clones have been selected and have been maintained in culture for two years. Growth curves of normal and SV40-transfected chondrocytes were compared and displayed similar doubling times (approximately 20 hours). The exponential phase of growth was longer for immortalized cells resulting in a 2-fold higher saturation density. These cells appear to be not fully transformed and maintain some properties of differentiated chondrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line.

    Science.gov (United States)

    Klouwer, Femke C C; Koster, Janet; Ferdinandusse, Sacha; Waterham, Hans R

    2017-04-01

    The immortalized human hepatocyte (IHH) cell line is increasingly used for studies related to liver metabolism, including hepatic glucose, lipid, lipoprotein and triglyceride metabolism, and the effect of therapeutic interventions. To determine whether the IHH cell line is a good model to investigate hepatic peroxisomal metabolism, we measured several peroxisomal parameters in IHH cells and, for comparison, HepG2 cells and primary skin fibroblasts. This revealed a marked plasmalogen deficiency and a deficient fatty acid α-oxidation in the IHH cells, due to a defect of PEX7, a cytosolic receptor protein required for peroxisomal import of a subset of peroxisomal proteins. These abnormalities have consequences for the lipid homeostasis of these cells and thus should be taken into account for the interpretation of data previously generated by using this cell line and when considering using this cell line for future research.

  1. Correlations between corneal and total wavefront aberrations

    Science.gov (United States)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  2. The tissue-engineered human cornea as a model to study expression of matrix metalloproteinases during corneal wound healing.

    Science.gov (United States)

    Couture, Camille; Zaniolo, Karine; Carrier, Patrick; Lake, Jennifer; Patenaude, Julien; Germain, Lucie; Guérin, Sylvain L

    2016-02-01

    Corneal injuries remain a major cause of consultation in the ophthalmology clinics worldwide. Repair of corneal wounds is a complex mechanism that involves cell death, migration, proliferation, differentiation, and extracellular matrix (ECM) remodeling. In the present study, we used a tissue-engineered, two-layers (epithelium and stroma) human cornea as a biomaterial to study both the cellular and molecular mechanisms of wound healing. Gene profiling on microarrays revealed important alterations in the pattern of genes expressed by tissue-engineered corneas in response to wound healing. Expression of many MMPs-encoding genes was shown by microarray and qPCR analyses to increase in the migrating epithelium of wounded corneas. Many of these enzymes were converted into their enzymatically active form as wound closure proceeded. In addition, expression of MMPs by human corneal epithelial cells (HCECs) was affected both by the stromal fibroblasts and the collagen-enriched ECM they produce. Most of all, results from mass spectrometry analyses provided evidence that a fully stratified epithelium is required for proper synthesis and organization of the ECM on which the epithelial cells adhere. In conclusion, and because of the many characteristics it shares with the native cornea, this human two layers corneal substitute may prove particularly useful to decipher the mechanistic details of corneal wound healing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Viability of human corneal keratocytes during organ culture

    DEFF Research Database (Denmark)

    Møller-Pedersen, T; Møller, H J

    1996-01-01

    The viability of human corneal keratocytes was assessed during four weeks of 'closed system' organ culture at 31 degrees C. After 28 days of culturing, the entire keratocyte population was still alive and viable because all cells incorporated uridine; a parameter for RNA-synthesis. During the first...... of keratan sulphate proteoglycan suggested that approximately 1% of the total content was lost during the period. In conclusion, our current organ culture technique can maintain a viable keratocyte population for four weeks; a viable stroma can be grafted within this period....

  4. Anterior corneal profile with variable asphericity.

    Science.gov (United States)

    Rosales, Marco A; Juárez-Aubry, Montserrat; López-Olazagasti, Estela; Ibarra, Jorge; Tepichín, Eduardo

    2009-12-10

    We present a corneal profile in which the eccentricity, e(Q=-e(2)), has a nonlinear continuous variation from the center outwards. This nonlinear variation is intended to fit and reproduce our current experimental data in which the anterior corneal surface of the human eye exhibits different values of e at different diameters. According to our clinical data, the variation is similar to an exponential decay. We propose a linear combination of two exponential functions to describe the variation of e. We then calculate the corneal sagittal height by substituting e in the first-order aspherical surface equation to obtain the corneal profile. This corneal profile will be used as a reference to analyze the resultant profiles of the customized corneal ablation in refractive surgery.

  5. Microspectroscopy of spectral biomarkers associated with human corneal stem cells

    OpenAIRE

    Nakamura, Takahiro; Kelly, Jemma G.; Trevisan, J?lio; Cooper, Leanne J.; Bentley, Adam J.; Carmichael, Paul L.; Scott, Andrew D.; Cotte, Marine; Susini, Jean; Martin-Hirsch, Pierre L.; Kinoshita, Shigeru; Fullwood, Nigel J.; Martin, Francis L.

    2010-01-01

    Purpose Synchrotron-based radiation (SRS) Fourier-transform infrared (FTIR) microspectroscopy potentially provides novel biomarkers of the cell differentiation process. Because such imaging gives a ?biochemical-cell fingerprint? through a cell-sized aperture, we set out to determine whether distinguishing chemical entities associated with putative stem cells (SCs), transit-amplifying (TA) cells, or terminally-differentiated (TD) cells could be identified in human corneal epithelium. Methods D...

  6. Immortality versus resurrection in the Christian tradition.

    Science.gov (United States)

    Murphy, Nancey

    2011-10-01

    For those in contemporary society who believe in an afterlife, there are a number of views available. The most common may be based on belief in an immortal soul. However, the early Christian account was, instead, bodily resurrection. As Christianity moved throughout the Mediterranean world, apologists and theologians adapted their teaching on human nature and the afterlife to Greek and Roman philosophies. By the time of Augustine (d. 430), the doctrines of body-soul dualism and immortality of the soul were firmly entrenched in Christian teaching. The incorporation of the concept of an immortal soul into Christian accounts of life after death produced a hybrid account. The body dies, the soul (at least of those who were to be saved) travels to heaven. At the end of history, there would be a general resurrection, and the souls would be reunited with their bodies, although the bodies would be in a transformed, indestructible state. This hybrid account of life after death went largely uncontested until the twentieth century. In this essay, I describe this history and argue for a return to the early Christian view of humans as a unity, not a duality, and for belief in resurrection of the body as the appropriate expectation for eternal life. This would not only be truer to Christian sources, but, valuable, I believe, in focusing Christian attention on the need to care for the environment. © 2011 New York Academy of Sciences.

  7. Comparison of the biological features between human fetal hepatocyte and immortalized L-02 hepatocyte in vitro

    International Nuclear Information System (INIS)

    Kong Weiwei; Teng Gaojun

    2004-01-01

    Objective: To evaluate the feasibilities of the potential donors in liver cell transplantation using the human fetal hepatocytes and immortalized L-02 hepatocytes by comparing their biological features. Methods: Human fetal hepatocytes were isolated from aborted fetal livers (gestational ages from 14 w to 24 w) by an improved two-stage perfusion method and cultured in a conditioned medium without any growth factors. α-fetal protein (AFP) and albumin (ALB) were detected by radioimmunoassay (RIA) and cytokeratin-19 (CK-19 ) was identified by cellular immunochemistry study. Immortalized L-02 hepatocytes were cultured in the same condition and the characteristic proteins were detected by the same methods. Results: The viability of human fetal hepatocytes was approximately 95% using the perfusion method, and the maximum survival time of the cultured hepatocytes was 3 weeks. The expression of AFP, ALB, and CK19 was detected at the same time, especially during Day 3 to Day 7 in the culture. By comparison, the proliferation ability of L-02 hepatocyte was greater, although with a lower level of ALB secretion. The expression of AFP and CK19 was not detected. Furthermore, during the long culture, L-02 hepatocytes may undergo a morphologic change and fail to express ALB. Conclusion: Human fetal hepatocyte may be a practical donor for hepatocyte transplantation with its high-level protein expression and potential bi-differentiation ability. In view of the absent expression of ALB and the morphologic change in culture, although with better proliferation, L-02 hepatocyte seems not useful for hepatocyte transplantation

  8. Human Papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization

    Science.gov (United States)

    Vandermark, Erik R.; Deluca, Krysta A.; Gardner, Courtney R.; Marker, Daniel F.; Schreiner, Cynthia N.; Strickland, David A.; Wilton, Katelynn M.; Mondal, Sumona; Woodworth, Craig D.

    2012-01-01

    The NF-kB family of transcription factors regulates important biological functions including cell growth, survival and the immune response. We found that Human Papillomavirus type 16 (HPV-16) E7 and E6/E7 proteins inhibited basal and TNF-alpha-inducible NF-kB activity in human epithelial cells cultured from the cervical transformation zone, the anatomic region where most cervical cancers develop. In contrast, HPV-16 E6 regulated NF-kB in a cell type- and cell growth-dependent manner. NF-kB influenced immortalization of cervical cells by HPV16. Inhibition of NF-kB by an IkB alpha repressor mutant increased colony formation and immortalization by HPV-16. In contrast, activation of NF-kB by constitutive expression of p65 inhibited proliferation and immortalization. Our results suggest that inhibition of NF-kB by HPV-16 E6/E7 contributes to immortalization of cells from the cervical transformation zone. PMID:22284893

  9. Effects of organophosphorus flame retardant TDCPP on normal human corneal epithelial cells: Implications for human health.

    Science.gov (United States)

    Xiang, Ping; Liu, Rong-Yan; Li, Chao; Gao, Peng; Cui, Xin-Yi; Ma, Lena Q

    2017-11-01

    Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is one of the most detected organophosphorus flame retardants (OPFRs) in the environment, especially in indoor dust. Continuous daily exposure to TDCPP-containing dust may adversely impact human cornea. However, its detrimental effects on human corneal epithelium are largely unknown. In this study, we investigated the cell apoptosis in normal human corneal epithelial cells (HCECs) after TDCPP exposure and elucidated the underlying molecular mechanisms. Our data indicated a dose-dependent decrease of cell viability after TDCPP exposure with LC 50 at 202 μg/mL. A concentration-dependent apoptotic sign was observed in HCECs after exposing to ≥2 μg/mL TDCPP. Endoplasmic reticulum stress induction was evidenced by up-regulation of its biomarker genes (ATF-4, CHOP, BiP, and XBP1). Furthermore, alternation of Bcl-2/Bax expression, mitochondrial membrane potential loss, cellular ATP content decrease, and caspase-3 and -9 activity increase were observed after exposing to 2 or 20 μg/mL TDCPP. Taken together, the data implicated the involvement of endoplasmic reticulum stress in TDCPP-induced HCEC apoptosis, probably mediated by mitochondrial apoptotic pathway. Our findings showed TDCPP exposure induced toxicity to human cornea. Due to TDCPP's presence at high levels in indoor dust, further study is warranted to evaluate its health risk on human corneas. Published by Elsevier Ltd.

  10. Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells.

    Science.gov (United States)

    Bermudez, Maria A; Sendon-Lago, Juan; Eiro, Noemi; Treviño, Mercedes; Gonzalez, Francisco; Yebra-Pimentel, Eva; Giraldez, Maria Jesus; Macia, Manuel; Lamelas, Maria Luz; Saa, Jorge; Vizoso, Francisco; Perez-Fernandez, Roman

    2015-01-22

    To evaluate the effect of conditioned medium from human uterine cervical stem cells (CM-hUCESCs) on corneal epithelial healing in a rat model of dry eye after alkaline corneal epithelial ulcer. We also tested the bactericidal effect of CM-hUCESCs. Dry eye was induced in rats by extraocular lacrimal gland excision, and corneal ulcers were produced using NaOH. Corneal histologic evaluation was made with hematoxylin-eosin (H&E) staining. Real-time PCR was used to evaluate mRNA expression levels of proinflammatory cytokines. We also studied the bactericidal effect of CM-hUCESCs in vitro and on infected corneal contact lenses (CLs) using Escherichia coli and Staphylococcus epidermidis bacteria. In addition, in order to investigate proteins from CM-hUCESCs that could mediate these effects, we carried out a human cytokine antibody array. After injury, dry eyes treated with CM-hUCESCs significantly improved epithelial regeneration and showed reduced corneal macrophage inflammatory protein-1 alpha (MIP-1α) and TNF-α mRNA expression as compared to untreated eyes and eyes treated with culture medium or sodium hyaluronate ophthalmic drops. In addition, we found in CM-hUCESCs high levels of proteins, such as tissue inhibitors of metalloproteinases 1 and 2, fibroblast growth factor 6 and 7, urokinase receptor, and hepatocyte growth factor, that could mediate these effects. In vitro, CM-hUCESCs showed a clear bactericidal effect on both E. coli and S. epidermidis and CLs infected with S. epidermidis. Analyses of CM-hUCESCs showed elevated levels of proteins that could be involved in the bactericidal effect, such as the chemokine (C-X-C motif) ligands 1, 6, 8, 10, and the chemokine (C-C motif) ligands 5 and 20. Treatment with CM-hUCESCs improved wound healing of alkali-injured corneas and showed a strong bactericidal effect on CLs. Patients using CLs and suffering from dry eye, allergies induced by commercial solutions, or small corneal injuries could benefit from this treatment

  11. Development of a human corneal epithelium model utilizing a collagen vitrigel membrane and the changes of its barrier function induced by exposing eye irritant chemicals.

    Science.gov (United States)

    Takezawa, Toshiaki; Nishikawa, Kazunori; Wang, Pi-Chao

    2011-09-01

    The brief TEER (trans-epithelial electrical resistance) assay after exposing chemicals to corneal epithelium in vivo is known as a suitable method for evaluating corneal irritancy and permeability quantitatively and continuously. A collagen vitrigel membrane we previously developed is a thin (about 20 μm thick) and transparent membrane composed of high density collagen fibrils equivalent to connective tissues in vivo, e.g. corneal Bowman's membrane. To develop such a TEER assay system in vitro utilizing a human corneal epithelial model, HCE-T cells (a human corneal epithelial cell line) were cultured on the collagen vitrigel membrane substratum prepared in a Millicell chamber suitable for TEER measurement. Human corneal epithelium model possessing 5-6 cell layers sufficient for TEER assay was successfully reconstructed on the substratum in the Millicell chamber by culturing the cells in monolayer for 2 days and subsequently in air-liquid interface for 7 days. The exposure of chemicals to the model induced the time-dependent relative changes of TEER in response to the characteristic of each chemical within a few minutes. These results suggest that the TEER assay using the human corneal epithelial model is very useful for an ocular irritancy evaluation as an alternative to the Draize eye irritation test. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Periodicity and Immortality in Reversible Computing

    OpenAIRE

    Kari , Jarkko; Ollinger , Nicolas

    2008-01-01

    Additional material available on the web at http://www.lif.univ-mrs.fr/~nollinge/rec/gnirut/; We investigate the decidability of the periodicity and the immortality problems in three models of reversible computation: reversible counter machines, reversible Turing machines and reversible one-dimensional cellular automata. Immortality and periodicity are properties that describe the behavior of the model starting from arbitrary initial configurations: immortality is the property of having at le...

  13. Effects of conditioned media from human amniotic epithelial cells on corneal alkali injuries in rabbits

    Science.gov (United States)

    Kim, Tae-Hyun; Park, Young-Woo; Ahn, Jae-Sang; Ahn, Jeong-Taek; Kim, Se-Eun; Jeong, Man-Bok; Seo, Min-Su; Kang, Kyung-Sun

    2013-01-01

    This study was performed to evaluate the effects of conditioned media (CM) from human amniotic epithelial cells (HAECs) on the corneal wound healing process. Eighteen rabbits (36 eyes) were used and randomly assigned to three groups according treatment: CM from HAECs (group 1), vehicle alone (group 2), and saline (group 3). Corneal alkali injuries were induced with 1 N sodium hydroxide. Each reagent used for treatment evaluation was injected into the dorsal bulbar subconjunctiva and the area of the corneal epithelial defect was measured every other day. Two animals from each group were euthanized at a time on days 3, 7, and 15, and the cornea was removed for histological examination. The sum of the epithelial defect areas measured on day 0 to day 6 as well as day 0 to day 14 in group 1 was significantly smaller than those of other groups. Histological examination revealed that the group 1 corneas had less inflammatory cell infiltration and showed more intact epithelial features compared to the other groups. These results suggest that CM from HAECs promote corneal wound healing in rabbits. PMID:23388445

  14. The E7 protein of the cottontail rabbit papillomavirus immortalizes normal rabbit keratinocytes and reduces pRb levels, while E6 cooperates in immortalization but neither degrades p53 nor binds E6AP

    International Nuclear Information System (INIS)

    Ganzenmueller, Tina; Matthaei, Markus; Muench, Peter; Scheible, Michael; Iftner, Angelika; Hiller, Thomas; Leiprecht, Natalie; Probst, Sonja; Stubenrauch, Frank; Iftner, Thomas

    2008-01-01

    Human papillomaviruses (HPVs) cause cervical cancer and are associated with the development of non-melanoma skin cancer. A suitable animal model for papillomavirus-associated skin carcinogenesis is the infection of domestic rabbits with the cottontail rabbit papillomavirus (CRPV). As the immortalizing activity of CRPV genes in the natural target cells remains unknown, we investigated the properties of CRPV E6 and E7 in rabbit keratinocytes (RK) and their influence on the cell cycle. Interestingly, CRPV E7 immortalized RK after a cellular crisis but showed no such activity in human keratinocytes. Co-expressed CRPV E6 prevented cellular crisis. The HPV16 or CRPV E7 protein reduced rabbit pRb levels thereby causing rabbit p19 ARF induction and accumulation of p53 without affecting cellular proliferation. Both CRPV E6 proteins failed to degrade rabbit p53 in vitro or to bind E6AP; however, p53 was still inducible by mitomycin C. In summary, CRPV E7 immortalizes rabbit keratinocytes in a species-specific manner and E6 contributes to immortalization without directly affecting p53

  15. Conditionally immortalized human pancreatic stellate cell lines demonstrate enhanced proliferation and migration in response to IGF-I

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, Ann H., E-mail: ann.rosendahl@med.lu.se [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden); Lund University and Skåne University Hospital, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund (Sweden); Gundewar, Chinmay; Said Hilmersson, Katarzyna [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden); Ni, Lan; Saleem, Moin A. [University of Bristol, School of Clinical Sciences, Children' s Renal Unit and Academic Renal Unit, Bristol (United Kingdom); Andersson, Roland [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden)

    2015-01-15

    Pancreatic stellate cells (PSCs) play a key role in the dense desmoplastic stroma associated with pancreatic ductal adenocarcinoma. Studies on human PSCs have been minimal due to difficulty in maintaining primary PSC in culture. We have generated the first conditionally immortalized human non-tumor (NPSC) and tumor-derived (TPSC) pancreatic stellate cells via transformation with the temperature-sensitive SV40 large T antigen and human telomerase (hTERT). These cells proliferate at 33°C. After transfer to 37°C, the SV40LT is switched off and the cells regain their primary PSC phenotype and growth characteristics. NPSC contained cytoplasmic vitamin A-storing lipid droplets, while both NPSC and TPSC expressed the characteristic markers αSMA, vimentin, desmin and GFAP. Proteome array analysis revealed that of the 55 evaluated proteins, 27 (49%) were upregulated ≥3-fold in TPSC compared to NPSC, including uPA, pentraxin-3, endoglin and endothelin-1. Two insulin-like growth factor binding proteins (IGFBPs) were inversely expressed. Although discordant IGFBP-2 and IGFBP-3 levels, IGF-I was found to stimulate proliferation of both NPSC and TPSC. Both basal and IGF-I stimulated motility was significantly enhanced in TPSC compared to NPSC. In conclusion, these cells provide a unique resource that will facilitate further study of the active stroma compartment associated with pancreatic cancer. - Highlights: • Generation of human conditionally immortalized human pancreatic stellate cell lines. • Temperature-sensitive SV40LT allows switch to primary PSC phenotype characteristics. • Proteome profiling revealed distinct expression patterns between TPSC and NPSC. • Enhanced IGF-I-stimulated proliferation and motility by TPSC compared to NPSC.

  16. Intrastromal corneal ring implants for corneal thinning disorders: an evidence-based analysis.

    Science.gov (United States)

    2009-01-01

    surgeons in selecting ring segment size, number and position. Generally, two segments of equal thickness are placed superiorly and inferiorly to manage symmetrical patterns of corneal thinning whereas one segment may be placed to manage asymmetric thinning patterns. Following implantation, the major safety concerns are for potential adverse events including corneal perforation, infection, corneal infiltrates, corneal neovascularization, ring migration and extrusion and corneal thinning. Technical results can be unsatisfactory for several reasons. Treatment may result in an over or under-correction of refraction and may induce astigmatism or asymmetry of the cornea. Progression of the corneal cone with corneal opacities is also invariably an indication for progression to corneal transplant. Other reasons for treatment failure or patient dissatisfaction include foreign body sensation, unsatisfactory visual quality with symptoms such as double vision, fluctuating vision, poor night vision or visual side effects related to ring edge or induced or unresolved astigmatism. The literature search strategy employed keywords and subject headings to capture the concepts of 1) intrastromal corneal rings and 2) corneal diseases, with a focus on keratoconus, astigmatism, and corneal ectasia. The initial search was run on April 17, 2008, and a final search was run on March 6, 2009 in the following databases: Ovid MEDLINE (1996 to February Week 4 2009), OVID MEDLINE In-Process and Other Non-Indexed Citations, EMBASE (1980 to 2009 Week 10), OVID Cochrane Library, and the Centre for Reviews and Dissemination/International Agency for Health Technology Assessment. Parallel search strategies were developed for the remaining databases. Search results were limited to human and English-language published between January 2000 and April 17, 2008. The resulting citations were downloaded into Reference Manager, v.11 (ISI Researchsoft, Thomson Scientific, U.S.A), and duplicates were removed. The Web

  17. Human corneal endothelial cell transplantation using nanocomposite gel sheet in bullous keratopathy.

    Science.gov (United States)

    Parikumar, Periasamy; Haraguchi, Kazutoshi; Senthilkumar, Rajappa; Abraham, Samuel Jk

    2018-01-01

    Transplantation of in vitro expanded human corneal endothelial precursors (HCEP) cells using a nanocomposite (D25-NC) gel sheet as supporting material in bovine's cornea has been earlier reported. Herein we report the transplantation of HCEP cells derived from a cadaver donor cornea to three patients using the NC gel sheet. In three patients with bullous keratopathy, one after cataract surgery, one after trauma and another in the corneal graft, earlier performed for congenital corneal dystrophy, not amenable to medical management HCEP cells isolated from a human cadaver donor cornea in vitro expanded using a thermoreversible gelation polymer (TGP) for 26 days were divided into three equal portions and 1.6 × 10 5 HCEP cells were injected on to the endothelium of the affected eye in each patient using the D25-NC gel sheet as a supporting material. The sheets were removed after three days. The bullae in the cornea disappeared by the 3 rd -11 th post-operative day in all the three patients. Visual acuity improved from Perception of light (PL)+/Projection of rays (PR)+ to Hand movements (HM)+ in one of the patients by post-operative day 3 which was maintained at 18 months follow-up. At 18 months follow-up, in another patient the visual acuity had improved from HM+ to 6/60 while in the third patient, visual acuity remained HM+ as it was prior to HCEP transplantation. There were no adverse effects during the follow-up in any of the patients.

  18. Telomerase reverse transcriptase mediated immortalization of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Yong Teng

    2014-02-01

    Full Text Available Primary human bone marrow stromal cells (hMSCs were transfected with human telomerase reverse transcriptase (hTERT gene with lipofection method. The hTERT transfected hMSCs of passage 100 underwent chondrogenesis induction with dexamethasone, transforming the growth factor β and vitamin C, osteogenesis induction with dexamethasone, β glycerophosphoric acid and vitamin C, and cardiomyocyte induction with 5-azacytidine. After 7, 14, 21 and 28 days of induction, immunocytochemistry was performed to detect the expressions of type I and II collagen and osteocalcin, and alizarin red staining was performed to detect the bone nodule formation in osteogenesis induction. Immunocytochemistry was carried out to detect the striated muscle actin expression in cardiomyocytes. The hMSCs undergoing successful transfection were positive for the hTERT. The hTERT transfected cells were grown in vitro successfully and passaged for 136 generations. Results showed that these cells could be induced to differentiate into chondrocytes, bone and myocardial cells. Introduction of exogenous hTERT into hMSCs could achieve immortalized hMSCs with the potential of multi-directional differentiation. Thus, these cells could be applied as seed cells in tissue engineering.

  19. Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation

    International Nuclear Information System (INIS)

    Tátrai, Péter; Szepesi, Áron; Matula, Zsolt; Szigeti, Anna; Buchan, Gyöngyi; Mádi, András; Uher, Ferenc

    2012-01-01

    Highlights: ► We immortalized human adipose stromal cells (ASCs) with hTERT, Bmi-1, and SV40T. ► hTERT-only ASCs are prone to transformation, while Bmi-only ASCs become senescent. ► SV40T introduced along with hTERT abrogates proliferation control and multipotency. ► hTERT combined with Bmi-1 yields stable phenotype up to 140 population doublings. -- Abstract: Adipose tissue-derived stromal cells (ASCs) are increasingly being studied for their usefulness in regenerative medicine. However, limited life span and donor-dependent variation of primary cells such as ASCs present major hurdles to controlled and reproducible experiments. We therefore aimed to establish immortalized ASC cell lines that provide steady supply of homogeneous cells for in vitro work while retain essential features of primary cells. To this end, combinations of human telomerase reverse transcriptase (hTERT), murine Bmi-1, and SV40 large T antigen (SV40T) were introduced by lentiviral transduction into ASCs. The resulting cell lines ASC hTERT , ASC Bmi-1 , ASC Bmi-1+hTERT and ASC SV40T+hTERT were tested for transgene expression, telomerase activity, surface immunomarkers, proliferation, osteogenic and adipogenic differentiation, karyotype, tumorigenicity, and cellular senescence. All cell lines have maintained expression of characteristic surface immunomarkers, and none was tumorigenic. However, ASC Bmi-1 had limited replicative potential, while the rapidly proliferating ASC SV40T+hTERT acquired chromosomal aberrations, departed from MSC phenotype, and lost differentiation capacity. ASC hTERT and ASC hTERT+Bmi-1 , on the other hand, preserved all essential MSC features and did not senesce after 100 population doublings. Notably, a subpopulation of ASC hTERT also acquired aberrant karyotype and showed signs of transformation after long-term culture. In conclusion, hTERT alone was sufficient to extend the life span of human ASC, but ASC hTERT are prone to transformation during extensive

  20. Genetic effect of low dose rate radiation on human cells immortalized with the hTERT gene

    International Nuclear Information System (INIS)

    Nakamura, Hideaki; Fukami, Hiroko; Hayashi, Yuko; Kiyono, Tohru; Ishizaki, Kanji; Tachibana, Akira; Nakatsugawa, Shigekazu; Hamaguchi, Michinari

    2003-01-01

    We established immortal human cells by introducing the hTERT gene into skin fibroblast cells obtained from normal (SuSa) and ataxia telangiectasia (AT: AT1OS) individuals of Japanese origin. These immortalized cells showed the same characteristics as the original cells except expanded life span. We irradiated SuSa/T-n and AT1OS/T-n cells with low-dose-rate (LDR; 0.3 mGy/min) irradiation at confluent state in low-serum medium. Then, survival rate and micronucleus frequency of each cell line were analyzed. In SuSa/T-n cells, frequency of HPRT mutation induction was also determined by 6TG selection. In SuSa/T-n cells, survival rate and micronucleus frequency showed higher resistance after irradiation with LDR than high-dose-rate (HDR; 2 Gy/min) irradiation. In contrast, no significant difference was observed in survival and micronucleus induction in AT1OS/T-n cells between HDR and LDR irradiation, suggesting that AT1OS/T-n cells may have some defect in DNA repair activity. In SuSa/T-n cells, the frequency of HPRT mutation after LDR irradiation decreased to approximately one eighth that after HDR irradiation. (author)

  1. Sensitive Tumorigenic Potential Evaluation of Adult Human Multipotent Neural Cells Immortalized by hTERT Gene Transduction.

    Directory of Open Access Journals (Sweden)

    Kee Hang Lee

    Full Text Available Stem cells and therapeutic genes are emerging as a new therapeutic approach to treat various neurodegenerative diseases with few effective treatment options. However, potential formation of tumors by stem cells has hampered their clinical application. Moreover, adequate preclinical platforms to precisely test tumorigenic potential of stem cells are controversial. In this study, we compared the sensitivity of various animal models for in vivo stem cell tumorigenicity testing to identify the most sensitive platform. Then, tumorigenic potential of adult human multipotent neural cells (ahMNCs immortalized by the human telomerase reverse transcriptase (hTERT gene was examined as a stem cell model with therapeutic genes. When human glioblastoma (GBM cells were injected into adult (4-6-week-old Balb/c-nu, adult NOD/SCID, adult NOG, or neonate (1-2-week-old NOG mice, the neonate NOG mice showed significantly faster tumorigenesis than that of the other groups regardless of intracranial or subcutaneous injection route. Two kinds of ahMNCs (682TL and 779TL were primary cultured from surgical samples of patients with temporal lobe epilepsy. Although the ahMNCs were immortalized by lentiviral hTERT gene delivery (hTERT-682TL and hTERT-779TL, they did not form any detectable masses, even in the most sensitive neonate NOG mouse platform. Moreover, the hTERT-ahMNCs had no gross chromosomal abnormalities on a karyotype analysis. Taken together, our data suggest that neonate NOG mice could be a sensitive animal platform to test tumorigenic potential of stem cell therapeutics and that ahMNCs could be a genetically stable stem cell source with little tumorigenic activity to develop regenerative treatments for neurodegenerative diseases.

  2. Effect of different culture media and deswelling agents on survival of human corneal endothelial and epithelial cells in vitro.

    Science.gov (United States)

    Valtink, Monika; Donath, Patricia; Engelmann, Katrin; Knels, Lilla

    2016-02-01

    To examine the effects of media and deswelling agents on human corneal endothelial and epithelial cell viability using a previously developed screening system. The human corneal endothelial cell line HCEC-12 and the human corneal epithelial cell line HCE-T were cultured in four different corneal organ culture media (serum-supplemented: MEM +2 % FCS, CorneaMax®/CorneaJet®, serum-free: Human Endothelial-SFM, Stemalpha-2 and -3) with and without 6 % dextran T500 or 7 % HES 130/0.4. Standard growth media F99HCEC and DMEM/F12HCE-T served as controls. In additional controls, the stress inducers staurosporine or hydrogen peroxide were added. After 5 days in the test media, cell viability was assessed by flow cytometrically quantifying apoptotic and necrotic cells (sub-G1 DNA content, vital staining with YO-PRO-1® and propidium iodide) and intracellular reactive oxygen species (ROS). The MEM-based media were unable to support HCEC-12 and HCE-T survival under stress conditions, resulting in significantly increased numbers of apoptotic and necrotic cells. HCEC-12 survival was markedly improved in SFM-based media even under staurosporine or hydrogen peroxide. Likewise, HCE-T survival was improved in SFM with or without dextran. The media CorneaMax®, CorneaJet®, and CorneaMax® with HES supported HCEC-12 survival better than MEM-based media, but less well than SFM-based media. HCE-T viability was also supported by CorneaJet®, but not by CorneaMax® with or without HES. Stemalpha-based media were not suitable for maintaining viability of HCEC-12 or HCE-T in the applied cell culture system. The use of serum-supplemented MEM-based media for corneal organ culture should be discontinued in favour of serum-free media like SFM.

  3. Maintenance of vascular endothelial cell-specific properties after immortalization with an amphotrophic replication-deficient retrovirus containing human papilloma virus 16 E6/E7 DNA

    NARCIS (Netherlands)

    Fontijn, R.; Hop, C.; Brinkman, H. J.; Slater, R.; Westerveld, A.; van Mourik, J. A.; Pannekoek, H.

    1995-01-01

    Primary human vascular endothelial cells were immortalized by the integration of a single DNA copy of an amphotrophic, replication-deficient retrovirus containing the E6/E7 genes of human papilloma virus. To date, the resulting cell lines, designated EC-RF7 and EC-RF24, have been cultured for more

  4. Differentially expressed wound healing-related microRNAs in the human diabetic cornea.

    Science.gov (United States)

    Funari, Vincent A; Winkler, Michael; Brown, Jordan; Dimitrijevich, Slobodan D; Ljubimov, Alexander V; Saghizadeh, Mehrnoosh

    2013-01-01

    MicroRNAs are powerful gene expression regulators, but their corneal repertoire and potential changes in corneal diseases remain unknown. Our purpose was to identify miRNAs altered in the human diabetic cornea by microarray analysis, and to examine their effects on wound healing in cultured telomerase-immortalized human corneal epithelial cells (HCEC) in vitro. Total RNA was extracted from age-matched human autopsy normal (n=6) and diabetic (n=6) central corneas, Flash Tag end-labeled, and hybridized to Affymetrix® GeneChip® miRNA Arrays. Select miRNAs associated with diabetic cornea were validated by quantitative RT-PCR (Q-PCR) and by in situ hybridization (ISH) in independent samples. HCEC were transfected with human pre-miR™miRNA precursors (h-miR) or their inhibitors (antagomirs) using Lipofectamine 2000. Confluent transfected cultures were scratch-wounded with P200 pipette tip. Wound closure was monitored by digital photography. Expression of signaling proteins was detected by immunostaining and Western blot. Using microarrays, 29 miRNAs were identified as differentially expressed in diabetic samples. Two miRNA candidates showing the highest fold increased in expression in the diabetic cornea were confirmed by Q-PCR and further characterized. HCEC transfection with h-miR-146a or h-miR-424 significantly retarded wound closure, but their respective antagomirs significantly enhanced wound healing vs. controls. Cells treated with h-miR-146a or h-miR-424 had decreased p-p38 and p-EGFR staining, but these increased over control levels close to the wound edge upon antagomir treatment. In conclusion, several miRNAs with increased expression in human diabetic central corneas were found. Two such miRNAs inhibited cultured corneal epithelial cell wound healing. Dysregulation of miRNA expression in human diabetic cornea may be an important mediator of abnormal wound healing.

  5. Differentially expressed wound healing-related microRNAs in the human diabetic cornea.

    Directory of Open Access Journals (Sweden)

    Vincent A Funari

    Full Text Available MicroRNAs are powerful gene expression regulators, but their corneal repertoire and potential changes in corneal diseases remain unknown. Our purpose was to identify miRNAs altered in the human diabetic cornea by microarray analysis, and to examine their effects on wound healing in cultured telomerase-immortalized human corneal epithelial cells (HCEC in vitro. Total RNA was extracted from age-matched human autopsy normal (n=6 and diabetic (n=6 central corneas, Flash Tag end-labeled, and hybridized to Affymetrix® GeneChip® miRNA Arrays. Select miRNAs associated with diabetic cornea were validated by quantitative RT-PCR (Q-PCR and by in situ hybridization (ISH in independent samples. HCEC were transfected with human pre-miR™miRNA precursors (h-miR or their inhibitors (antagomirs using Lipofectamine 2000. Confluent transfected cultures were scratch-wounded with P200 pipette tip. Wound closure was monitored by digital photography. Expression of signaling proteins was detected by immunostaining and Western blot. Using microarrays, 29 miRNAs were identified as differentially expressed in diabetic samples. Two miRNA candidates showing the highest fold increased in expression in the diabetic cornea were confirmed by Q-PCR and further characterized. HCEC transfection with h-miR-146a or h-miR-424 significantly retarded wound closure, but their respective antagomirs significantly enhanced wound healing vs. controls. Cells treated with h-miR-146a or h-miR-424 had decreased p-p38 and p-EGFR staining, but these increased over control levels close to the wound edge upon antagomir treatment. In conclusion, several miRNAs with increased expression in human diabetic central corneas were found. Two such miRNAs inhibited cultured corneal epithelial cell wound healing. Dysregulation of miRNA expression in human diabetic cornea may be an important mediator of abnormal wound healing.

  6. The Golden Bough: Literature and the Idea of Immortality.

    Science.gov (United States)

    Klotz, Kenneth

    1979-01-01

    All works of literature reflect man's obsession with death and his creative attempts to evade or postpone it. Art cannot solve the problem, but within the limits of human capabilities, we come to art, whether as artists or audience, for our own small share in the "intimations of immortality." (Author/SJL)

  7. Towards Maturity in 1 Peter: Freedom, Holiness, Immortality

    Directory of Open Access Journals (Sweden)

    Paul B. Decock

    2016-11-01

    Full Text Available Growth towards maturity is dependent on the presence of freedom, holiness and immortality. These are presented as divine qualities that are utterly lacking in human beings. However, while human beings are ignorant and weak, sinful and mortal the addressees of 1 Peter1 are reminded that they have also been begotten anew by the imperishable seed of God’s Word, the Good News of Jesus Christ in order to share immortal life. This article looks first at human beings who as God’s creatures are ‘flesh’, but are also enabled to acknowledge their ‘fleshly’ state, to appreciate (‘desire’ and ‘taste’ (2:2–3 the Gospel and to submit to God. The second part considers the saving role of Christ as the powerful yet rejected ‘stone’ placed and offered by God as the model and means to transcend the ‘flesh’ in the flesh (4:1–2. A final part focuses on the new birth and the growth process in which the fleshly desires and ways of living give way to a manner of life, which is a witness to God’s saving power.

  8. Corneal Laceration

    Medline Plus

    Full Text Available ... Eye Health A-Z Symptoms Glasses & Contacts Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye ... Causes Corneal Laceration? Corneal Laceration Diagnosis Corneal Laceration Treatment What Is Corneal Laceration? Leer en Español: ¿Qué ...

  9. Universal mortality law and immortality

    Science.gov (United States)

    Azbel', Mark Ya.

    2004-10-01

    Well-protected human and laboratory animal populations with abundant resources are evolutionarily unprecedented. Physical approach, which takes advantage of their extensively quantified mortality, establishes that its dominant fraction yields the exact law, which is universal for all animals from yeast to humans. Singularities of the law demonstrate new kinds of stepwise adaptation. The law proves that universal mortality is an evolutionary by-product, which at any given age is reversible, independent of previous life history, and disposable. Life expectancy may be extended, arguably to immortality, by minor biological amendments in the animals. Indeed, in nematodes with a small number of perturbed genes and tissues it increased 6-fold (to 430 years in human terms), with no apparent loss in health and vitality. The law relates universal mortality to specific processes in cells and their genetic regulation.

  10. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    Science.gov (United States)

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  11. Krása a nesmrteľnosť. O plodení u Platóna a Shakespeara (Beauty and Immortality. On Procreation in Plato and Shakespeare

    Directory of Open Access Journals (Sweden)

    Anton Vydra

    2007-03-01

    Full Text Available There are two moments referred in this essay: (1 A human being, which desires for immortality, desires for to be alive in his child or in an artwork. (2 Full human being’s desire is related for beauty. Is a beauty the same thing as immortality? How looks the relation between them? Shakespeare’s Sonnets begin with the challenge to his friend to procreate the offspring, because this is a way for immortality of the friend’s beauty. And if it is not a child, than verse refused him before the death or the Lethe. Similarly, Plato’s Socrates says in Symposium about his meeting with Diotima of Mantineia. She told him the oration on real Beauty without accidents. To see real Beauty means to be immortal, likewise the gods. Thus, could be a human being immortal?

  12. Instillation of Sericin Enhances Corneal Wound Healing through the ERK Pathway in Rat Debrided Corneal Epithelium

    Directory of Open Access Journals (Sweden)

    Noriaki Nagai

    2018-04-01

    Full Text Available Sericin is a major constituent of silk produced by silkworms. We previously found that the instillation of sericin enhanced the proliferation of corneal epithelial cells, and acted to promote corneal wound healing in both normal and diabetic model rats. However, the mechanisms by which sericin promotes the proliferation of corneal cells have not been established. In this study, we investigated the effects of sericin on Akt and ERK activation in a human corneal epithelial cell line (HCE-T cells and rat debrided corneal epithelium. Although Akt phosphorylation was not detected following the treatment of HCE-T cells with sericin, ERK1/2 phosphorylation was enhanced. The growth of HCE-T cells treated with sericin was significantly increased, with the cell growth of sericin-treated HCE-T cells being 1.7-fold higher in comparison with vehicle-treated HCE-T cells. On the other hand, both of an ERK inhibitor U0126 (non-specific specific inhibitor and SCH772984 (specific inhibitor attenuated the enhanced cell growth by sericin, and the growth level in the case of co-treatment with sericin and ERK1/2 inhibitor was similar to that of cells treated with ERK1/2 inhibitor alone. In an in vivo study using rat debrided corneal epithelium, the corneal wound healing rate was enhanced by the instillation of sericin, and this enhancement was also attenuated by the instillation of U0126. In addition, the corneal wound healing rate in rats co-instilled with sericin and U0126 was similar to that following the instillation of U0126 alone. In conclusion, we found that the instillation of sericin enhanced cell proliferation via the activation of the MAPK/ERK pathway, resulting in the promotion of corneal wound healing in rat eyes. These findings provide significant information for designing further studies to develop potent corneal wound-healing drugs.

  13. Cell Homogeneity Indispensable for Regenerative Medicine by Cultured Human Corneal Endothelial Cells.

    Science.gov (United States)

    Hamuro, Junji; Toda, Munetoyo; Asada, Kazuko; Hiraga, Asako; Schlötzer-Schrehardt, Ursula; Montoya, Monty; Sotozono, Chie; Ueno, Morio; Kinoshita, Shigeru

    2016-09-01

    To identify the subpopulation (SP) among heterogeneous cultured human corneal endothelial cells (cHCECs) devoid of cell-state transition applicable for cell-based therapy. Subpopulation presence in cHCECs was confirmed via surface CD-marker expression level by flow cytometry. CD markers effective for distinguishing distinct SPs were selected by analyzing those on established cHCECs with a small cell area and high cell density. Contrasting features among three typical cHCEC SPs was confirmed by PCR array for extracellular matrix (ECM). Combined analysis of CD markers was performed to identify the SP (effector cells) applicable for therapy. ZO-1 and Na+/K+ ATPase, CD200, and HLA expression were compared among heterogeneous SPs. Flow cytometry analysis identified the effector cell expressing CD166+CD105-CD44-∼+/-CD26-CD24-, but CD200-, and the presence of other SPs with CD166+ CD105-CD44+++ (CD26 and CD24, either + or -) was confirmed. PCR array revealed three distinct ECM expression profiles. Some SPs expressed ZO-1 and Na+/K+ ATPase at comparable levels with effector cells, while only one SP expressed CD200, but not on effector cells. Human leukocyte antigen expression was most reduced in the effector SP. The proportion of effector cells (E-ratio) inversely paralleled donor age and decreased during prolonged culture passages. The presence of Rho-associated protein kinase (ROCK) inhibitor increased the E-ratio in cHCECs. The average area of effector cells was approximately 200∼220 μm2, and the density of cHCECs exceeded 2500 cells/mm2. A specified cultured effector cell population sharing the surface phenotypes with mature HCECs in corneal tissues may serve as an alternative to donor corneas for the treatment of corneal endothelial dysfunction.

  14. Spontaneous Corneal Hydrops in a Patient with a Corneal Ulcer

    Directory of Open Access Journals (Sweden)

    Hatim Batawi

    2016-01-01

    Full Text Available Purpose: We report the case of a 77-year-old man with no history of keratoconus or other ectatic disorders who presented with corneal hydrops in the setting of a corneal ulcer. The risk factors, pathogenesis and treatment options of corneal hydrops are discussed. Method: This is an observational case report study. Results: A 77-year-old man presented with a 1-day history of severe pain, redness, mucous discharge and photophobia in the right eye. A slit-lamp examination of the right eye showed an area of focal corneal edema and protrusion. Within the area of edema and protrusion, there was an infiltrate with an overlying epithelial defect consistent with an infectious corneal ulcer. The Seidel test showed no leakage, so a clinical diagnosis of corneal hydrops associated with nonperforated corneal ulcer was made. With appropriate antibiotic treatment, the corneal ulcer and hydrops both resolved over a 1-month period. Conclusion: Corneal hydrops can occur in the setting of corneal infections.

  15. Alternatives to eye bank native tissue for corneal stromal replacement.

    Science.gov (United States)

    Brunette, Isabelle; Roberts, Cynthia J; Vidal, François; Harissi-Dagher, Mona; Lachaine, Jean; Sheardown, Heather; Durr, Georges M; Proulx, Stéphanie; Griffith, May

    2017-07-01

    Corneal blindness is a major cause of blindness in the world and corneal transplantation is the only widely accepted treatment to restore sight in these eyes. However, it is becoming increasingly difficult for eye banks to meet the increasing demand for transplantable tissue, which is in part due to population aging. Donor tissue shortage is therefore a growing concern globally and there is a need for alternatives to human donor corneas. Biosynthetic corneal substitutes offer several significant advantages over native corneas: Large-scale production offers a powerful potential solution to the severe shortage of human donor corneas worldwide; Good manufacturing practices ensure sterility and quality control; Acellular corneal substitutes circumvent immune rejection induced by allogeneic cells; Optical and biomechanical properties of the implants can be adapted to the clinical need; and finally these corneal substitutes could benefit from new advances in biomaterials science, such as surface coating, functionalization and nanoparticles. This review highlights critical contributions from laboratories working on corneal stromal substitutes. It focuses on synthetic inert prostheses (keratoprostheses), acellular scaffolds with and without enhancement of endogenous regeneration, and cell-based replacements. Accent is put on the physical properties and biocompatibility of these biomaterials, on the functional and clinical outcome once transplanted in vivo in animal or human eyes, as well as on the main challenges of corneal stromal replacement. Regulatory and economic aspects are also discussed. All of these perspectives combined highlight the founding principles of the clinical application of corneal stromal replacement, a concept that has now become reality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Corneal Laceration

    Medline Plus

    Full Text Available ... Ophthalmology/Strabismus Ocular Pathology/Oncology Oculoplastics/Orbit Refractive ... Corneal Laceration Sections What Is Corneal Laceration? Corneal Laceration Symptoms What Causes ...

  17. Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation

    Energy Technology Data Exchange (ETDEWEB)

    Tatrai, Peter, E-mail: peter.tatrai@biomembrane.hu [Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Karolina ut 29, H-1113 Budapest (Hungary); Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Szepesi, Aron, E-mail: aron.szepesi@biomembrane.hu [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Matula, Zsolt, E-mail: matula.zsolt@gmail.com [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Szigeti, Anna, E-mail: anna.szigeti@biomembrane.hu [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Buchan, Gyoengyi, E-mail: buchan@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Madi, Andras, E-mail: madi@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Stem Cell, Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Uher, Ferenc, E-mail: uher@biomembrane.hu [Stem Cell Laboratory, Hungarian National Blood Transfusion Service, Dioszegi ut 64, H-1113 Budapest (Hungary); and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer We immortalized human adipose stromal cells (ASCs) with hTERT, Bmi-1, and SV40T. Black-Right-Pointing-Pointer hTERT-only ASCs are prone to transformation, while Bmi-only ASCs become senescent. Black-Right-Pointing-Pointer SV40T introduced along with hTERT abrogates proliferation control and multipotency. Black-Right-Pointing-Pointer hTERT combined with Bmi-1 yields stable phenotype up to 140 population doublings. -- Abstract: Adipose tissue-derived stromal cells (ASCs) are increasingly being studied for their usefulness in regenerative medicine. However, limited life span and donor-dependent variation of primary cells such as ASCs present major hurdles to controlled and reproducible experiments. We therefore aimed to establish immortalized ASC cell lines that provide steady supply of homogeneous cells for in vitro work while retain essential features of primary cells. To this end, combinations of human telomerase reverse transcriptase (hTERT), murine Bmi-1, and SV40 large T antigen (SV40T) were introduced by lentiviral transduction into ASCs. The resulting cell lines ASC{sup hTERT}, ASC{sup Bmi-1}, ASC{sup Bmi-1+hTERT} and ASC{sup SV40T+hTERT} were tested for transgene expression, telomerase activity, surface immunomarkers, proliferation, osteogenic and adipogenic differentiation, karyotype, tumorigenicity, and cellular senescence. All cell lines have maintained expression of characteristic surface immunomarkers, and none was tumorigenic. However, ASC{sup Bmi-1} had limited replicative potential, while the rapidly proliferating ASC{sup SV40T+hTERT} acquired chromosomal aberrations, departed from MSC phenotype, and lost differentiation capacity. ASC{sup hTERT} and ASC{sup hTERT+Bmi-1}, on the other hand, preserved all essential MSC features and did not senesce after 100 population doublings. Notably, a subpopulation of ASC{sup hTERT} also acquired aberrant karyotype and showed signs of transformation after long-term culture

  18. Hyaluronan protection of corneal endothelial cells against extracellular histones after phacoemulsification.

    Science.gov (United States)

    Kawano, Hiroki; Sakamoto, Taiji; Ito, Takashi; Miyata, Kazunori; Hashiguchi, Teruto; Maruyama, Ikuro

    2014-11-01

    To determine the effect of histones on corneal endothelial cells generated during cataract surgery. Kagoshima University Hospital, Kagoshima, Japan. Experimental study. Standard phacoemulsification was performed on enucleated pig eyes. Histones in the anterior segment of the eye were determined by immunohistochemistry. Cultured human corneal endothelial cells were exposed to histones for 18 hours, and cell viability was determined by 2-(2-methoxy-4-nitrophenyl)-3-(4-nitro-phenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt assay. The concentration of interleukin-6 (IL-6) in the culture medium of human corneal endothelial cells was measured using enzyme-linked immunosorbent assay. The effects of signal inhibitors U0126, SB203580, and SP600125 were evaluated. The protective effect of hyaluronan against histones was evaluated in human corneal endothelial cells with and without hyaluronan. Cellular debris containing histones was observed in the anterior chamber of pig eyes after phacoemulsification. Exposure of human corneal endothelial cells to 50 μg/mL of histones or more led to cytotoxic effects. The IL-6 concentration was significantly increased dose dependently after exposure of human corneal endothelial cells to histones (Phistone-induced IL-6 production was significantly decreased by extracellular signal-regulated kinases 1/2 and p-38 mitogen-activated protein kinase inhibitors (Phistones caused formation of histone aggregates, decreased the cytotoxic effects of the histones, and blocked the increase in IL-6 (PHistones were released extracellularly during phacoemulsification and exposure of human corneal endothelial cells to histones increased the IL-6 secretion. The intraoperative use of hyaluronan may decrease the cytotoxic effects of histones released during cataract surgery. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  19. Human cadaver retina model for retinal heating during corneal surgery with a femtosecond laser

    Science.gov (United States)

    Sun, Hui; Fan, Zhongwei; Yun, Jin; Zhao, Tianzhuo; Yan, Ying; Kurtz, Ron M.; Juhasz, Tibor

    2014-02-01

    Femtosecond lasers are widely used in everyday clinical procedures to perform minimally invasive corneal refractive surgery. The intralase femtosecond laser (AMO Corp. Santa Ana, CA) is a common example of such a laser. In the present study a numerical simulation was developed to quantify the temperature rise in the retina during femtosecond intracorneal surgery. Also, ex-vivo retinal heating due to laser irradiation was measured with an infrared thermal camera (Fluke Corp. Everett, WA) as a validation of the simulation. A computer simulation was developed using Comsol Multiphysics to calculate the temperature rise in the cadaver retina during femtosecond laser corneal surgery. The simulation showed a temperature rise of less than 0.3 degrees for realistic pulse energies for the various repetition rates. Human cadaver retinas were irradiated with a 150 kHz Intralase femtosecond laser and the temperature rise was measured withan infrared thermal camera. Thermal camera measurements are in agreement with the simulation. During routine femtosecond laser corneal surgery with normal clinical parameters, the temperature rise is well beneath the threshold for retina damage. The simulation predictions are in agreement with thermal measurements providing a level of experimental validation.

  20. Rapid, automated mosaicking of the human corneal subbasal nerve plexus.

    Science.gov (United States)

    Vaishnav, Yash J; Rucker, Stuart A; Saharia, Keshav; McNamara, Nancy A

    2017-11-27

    Corneal confocal microscopy (CCM) is an in vivo technique used to study corneal nerve morphology. The largest proportion of nerves innervating the cornea lie within the subbasal nerve plexus, where their morphology is altered by refractive surgery, diabetes and dry eye. The main limitations to clinical use of CCM as a diagnostic tool are the small field of view of CCM images and the lengthy time needed to quantify nerves in collected images. Here, we present a novel, rapid, fully automated technique to mosaic individual CCM images into wide-field maps of corneal nerves. We implemented an OpenCV image stitcher that accounts for corneal deformation and uses feature detection to stitch CCM images into a montage. The method takes 3-5 min to process and stitch 40-100 frames on an Amazon EC2 Micro instance. The speed, automation and ease of use conferred by this technique is the first step toward point of care evaluation of wide-field subbasal plexus (SBP) maps in a clinical setting.

  1. Role of corneal collagen fibrils in corneal disorders and related pathological conditions

    Directory of Open Access Journals (Sweden)

    Hong-Yan Zhou

    2017-05-01

    Full Text Available The cornea is a soft tissue located at the front of the eye with the principal function of transmitting and refracting light rays to precisely sense visual information. Corneal shape, refraction, and stromal stiffness are to a large part determined by corneal fibrils, the arrangements of which define the corneal cells and their functional behaviour. However, the modality and alignment of native corneal collagen lamellae are altered in various corneal pathological states such as infection, injury, keratoconus, corneal scar formation, and keratoprosthesis. Furthermore, corneal recuperation after corneal pathological change is dependent on the balance of corneal collagen degradation and contraction. A thorough understanding of the characteristics of corneal collagen is thus necessary to develop viable therapies using the outcome of strategies using engineered corneas. In this review, we discuss the composition and distribution of corneal collagens as well as their degradation and contraction, and address the current status of corneal tissue engineering and the progress of corneal cross-linking.

  2. A supporting role of Chinese National Immortalized Cell Bank in life science research.

    Science.gov (United States)

    Xu, Chong-feng; Duan, Zi-yuan

    2017-01-20

    A biorepository of human samples is essential to support the research of life science. Lymphoblastoid B cell line (LCL), which is easy to be prepared and can reproduce indefinitely, is a convenient form of sample preservation. LCLs are established from human B cells transformed by Epstein-Barr virus (EBV). Chinese National Immortalized Cell Bank has preserved human LCLs from different ethnic groups in China. As there are many studies on the nature of LCLs and public available resources with genome-wide data for LCLs, they have been widely applied in genetics, immunology, pharmacogenetics/genomics, regenerative medicine, cancer pathogenesis and immunotherapy, screening and generation of fully human neutralizing monoclonal antibodies and study on EBV pathogenesis. Here, we review the characteristics of LCLs and their contributions to scientific research, and introduce preserved samples in Chinese National Immortalized Cell Bank to the scientific community. We hope this bank can support more areas in the scientific research.

  3. Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans.

    Science.gov (United States)

    He, Zhiguo; Campolmi, Nelly; Gain, Philippe; Ha Thi, Binh Minh; Dumollard, Jean-Marc; Duband, Sébastien; Peoc'h, Michel; Piselli, Simone; Garraud, Olivier; Thuret, Gilles

    2012-11-01

    The control of corneal transparency depends on the integrity of its endothelial monolayer, which is considered nonregenerative in adult humans. In pathological situations, endothelial cell (EC) loss, not offset by mitosis, can lead to irreversible corneal edema and blindness. However, the hypothesis of a slow, clinically insufficient regeneration starting from the corneal periphery remains debatable. The authors have re-evaluated the microanatomy of the endothelium in order to identify structures likely to support this homeostasis model. Whole endothelia of 88 human corneas (not stored, and stored in organ culture) with mean donor age of 80 ± 12 years were analyzed using an original flat-mounting technique. In 61% of corneas, cells located at the extreme periphery (last 200 μm of the endothelium) were organized in small clusters with two to three cell layers around Hassall-Henle bodies. In 68% of corneas, peripheral ECs formed centripetal rows 830 ± 295 μm long, with Descemet membrane furrows visible by scanning electron microscopy. EC density was significantly higher in zones with cell rows. When immunostained, ECs in the extreme periphery exhibited lesser differentiation (ZO-1, Actin, Na/K ATPase, CoxIV) than ECs in the center of the cornea but preferentially expressed stem cell markers (Nestin, Telomerase, and occasionally breast cancer resistance protein) and, in rare cases, the proliferation marker Ki67. Stored corneas had fewer cell clusters but more Ki67-positive ECs. We identified a novel anatomic organization in the periphery of the human corneal endothelium, suggesting a continuous slow centripetal migration, throughout life, of ECs from specific niches. Copyright © 2012 AlphaMed Press.

  4. In vitro effects of three blood derivatives on human corneal epithelial cells.

    Science.gov (United States)

    Freire, Vanesa; Andollo, Noelia; Etxebarria, Jaime; Durán, Juan A; Morales, María-Celia

    2012-08-15

    We compared the effects of three blood derivatives, autologous serum (AS), platelet-rich plasma (PRP), and serum derived from plasma rich in growth factors (PRGF), on a human corneal epithelial (HCE) cell line to evaluate their potential as an effective treatment for corneal epithelial disorders. The concentrations of epidermal growth factor (EGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), and fibronectin were quantified by ELISA. The proliferation and viability of HCE cells were measured by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay. Cell morphology was assessed by phase-contrast microscopy. The patterns of expression of several connexin, involucrin, and integrin α6 genes were analyzed by real-time RT-PCR. We found significantly higher levels of EGF in PRGF compared to AS and PRP. However, AS and PRGF induced robust proliferation of HCE cells. In addition, PRGF cultured cells grew as heterogeneous colonies, exhibiting differentiated and non-differentiated cell phenotypes, whereas AS- and PRP-treated cultures exhibited quite homogeneous colonies. Finally, PRGF upregulated the expression of several genes associated with communication and cell differentiation, in comparison to AS or PRP. PRGF promotes biological processes required for corneal epithelialization, such as proliferation and differentiation. Since PRGF effects are similar to those associated with routinely used blood derivatives, the present findings warrant further research on PRGF as a novel alternative treatment for ocular surface diseases.

  5. Discovery of molecular markers to discriminate corneal endothelial cells in the human body

    NARCIS (Netherlands)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji; Clevers, J.C.; van de Wetering, M.L.

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant

  6. Discovery of Molecular Markers to Discriminate Corneal Endothelial Cells in the Human Body

    NARCIS (Netherlands)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji; Forrest, Alistair R. R.; Rehli, Michael; Baillie, J. Kenneth; de Hoon, Michiel J. L.; Haberle, Vanja; Lassmann, Timo; Kulakovskiy, Ivan V.; Lizio, Marina; Andersson, Robin; Mungall, Christopher J.; Meehan, Terrence F.; Schmeier, Sebastian; Bertin, Nicolas; Jørgensen, Mette; Dimont, Emmanuel; Arner, Erik; Schmidl, Christian; Schaefer, Ulf; Medvedeva, Yulia A.; Plessy, Charles; Vitezic, Morana; Severin, Jessica; Semple, Colin A.; Ishizu, Yuri; Francescatto, Margherita; Alam, Intikhab; Albanese, Davide; Altschuler, Gabriel M.; Archer, John A. C.; Arner, Peter; Babina, Magda; Baker, Sarah; Balwierz, Piotr J.; Beckhouse, Anthony G.; Pradhan-Bhatt, Swati; Blake, Judith A.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Geijtenbeek, Teunis B.

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant

  7. Immortality in view of Maimonides and Spinoza

    Directory of Open Access Journals (Sweden)

    Morteza Shajari

    2014-12-01

    Full Text Available Desire for immortality can be seen as the essential natural impulse. Therefore, different religions and thinkers have attempted to see the issue from different viewpoints. The great Jewish philosopher. Maimonides, due to deep fixation to Judaism, has tried to express their issues to be consistent with the Bible and his own community believes. He, in his discussion of resurrection, believed to three basic steps: The Messiah, the resurrection, and the world hereafter. His standpoint of eternity is dedicated to the hereafter. And we can be immortalized only by acting and teachings in accordance with the Bible and righteousness. Like Maimonides, Spinoza – the other Jewish philosopher - considered the immortality as Ultimate bliss through which the “immutable and eternal love of God" can be achieved. In his opinion, a person reaches this stage, when the lusts and emotions can reasonably be overcome, and also, when the power and anger and contempt and disregard others will respond with love and dignity. Thus, a man can be reached its proper perfection and immortality is reached. The difference between these two philosophers is that Maimonides believes through "actual intellect" -that is Emanation of the active intellect- can be immortalized but, for Spinoza, eternity can be reached through the adequate Ideas.

  8. Ibn Qayyim Al-Jawziyyah and Allameh Tabataba’i on Immortality in Hell

    Directory of Open Access Journals (Sweden)

    Janan Izadi

    2016-09-01

    Full Text Available The Immortality of the people of hell and their eternal torment is one of the most important and complex debates, preoccupying religious scholars of different religions and sects. Each of them has taken a different way based on their intellectual principles of belief to solve this problem and the questions thereof, including how the immortality of the inhabitants of hell hellions and their eternal torment is consistent with the mercy and justice of God. How is it reasonable to endure infinite torment for limited and finite sins? Does a Merciful God, born a sinful slave forever in the fire of the hereafter? Or  is this not the case and He punishes the sinful people for a limited period of time, whether it is short or long, and then releases them from  torture and provides them with  comfort. There is a difference of opinions on these problems in the works of Ibn Qayyim Al- Jawziyyah Al-Ash͑ari and Allameh Tabataba’i, the Shiite philosopher and commentator.Ibn Qayyim addresses widely and systematically the issue of the immortality of the inhabitants of hell. In fact, he interprets immortality (khulūd as a long time, so that the long fire and scourge annihilate the evil from the souls that evil has mixed in their being.  In his viewpoint God has created human monotheist. If the monotheistic nature of the person is changed by vices, these vices and the corrupted nature can be changed by torment and fire. He quotes in his works the ideas of the believers in immortality in torment and criticizes and rebuts them. Stating so many arguments, Ibn Qayyim Al-Jawziyya tries to deny the immortality and eternality in torment. Interpreting the verses of The Holy Quran on immortality of the inhabitants of hell in torment, Allameh Tabataba’i strongly asserts the immortality principle. He relates the happiness and misery, and good and evil among human beings to the development and appearance of the carnal states and habits they gained in the earthly

  9. Pharmacologic strategies in the prevention and treatment of corneal transplant rejection.

    Science.gov (United States)

    Tabbara, Khalid F

    2008-06-01

    Corneal transplantation remains one of the most successful organ transplantation procedures in humans. The unique structure of the cornea, with its absence of blood vessels and corneal lymphatic, allows the survival of corneal allograft. Recent advances in sutures, storage media, microsurgical instrumentation, and new pharmacological strategies have greatly improved the success of corneal transplantation and the prevention of corneal allograft rejection. Our strategies in the management and prevention of corneal graft rejection can modify and improve the survival of corneal allografts. Preoperative evaluation, understanding the risk factors, and management of ocular surface disorders may greatly improve the survival of the corneal transplant. Early recognition of corneal allograft rejection and aggressive treatment may improve the survival of the corneal graft. Furthermore, patients who undergo corneal transplantation should be maintained under close ophthalmic surveillance and patients should be informed to report immediately whenever symptoms of corneal graft rejection occur. The mainstay of therapy is topical corticosteroids. In severe cases, periocular, intravenous, and oral corticosteroids therapy can be rendered. New therapeutic modalities such as cyclosporine, tacrolimus, daclizumab, mycophenolate mofetil, leflunomide, rapamycin, and others may prove to be of help in the prevention and treatment of corneal graft rejection. Early recognition of corneal graft rejection and prompt treatment are mandatory for the successful survival of the corneal allograft.

  10. Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders

    Directory of Open Access Journals (Sweden)

    Nora Urraca

    2015-11-01

    Full Text Available A major challenge to the study and treatment of neurogenetic syndromes is accessing live neurons for study from affected individuals. Although several sources of stem cells are currently available, acquiring these involve invasive procedures, may be difficult or expensive to generate and are limited in number. Dental pulp stem cells (DPSCs are multipotent stem cells that reside deep the pulp of shed teeth. To investigate the characteristics of DPSCs that make them a valuable resource for translational research, we performed a set of viability, senescence, immortalization and gene expression studies on control DPSC and derived neurons. We investigated the basic transport conditions and maximum passage number for primary DPSCs. We immortalized control DPSCs using human telomerase reverse transcriptase (hTERT and evaluated neuronal differentiation potential and global gene expression changes by RNA-seq. We show that neurons from immortalized DPSCs share morphological and electrophysiological properties with non-immortalized DPSCs. We also show that differentiation of DPSCs into neurons significantly alters gene expression for 1305 transcripts. Here we show that these changes in gene expression are concurrent with changes in protein levels of the transcriptional repressor REST/NRSF, which is known to be involved in neuronal differentiation. Immortalization significantly altered the expression of 183 genes after neuronal differentiation, 94 of which also changed during differentiation. Our studies indicate that viable DPSCs can be obtained from teeth stored for ≥72 h, these can then be immortalized and still produce functional neurons for in vitro studies, but that constitutive hTERT immortalization is not be the best approach for long term use of patient derived DPSCs for the study of disease.

  11. Comparative analysis of human conjunctival and corneal epithelial gene expression with oligonucleotide microarrays.

    Science.gov (United States)

    Turner, Helen C; Budak, Murat T; Akinci, M A Murat; Wolosin, J Mario

    2007-05-01

    To determine global mRNA expression levels in corneal and conjunctival epithelia and identify transcripts that exhibit preferential tissue expression. cDNA samples derived from human conjunctival and corneal epithelia were hybridized in three independent experiments to a commercial oligonucleotide array representing more than 22,000 transcripts. The resultant signal intensities and microarray software transcript present/absent calls were used in conjunction with the local pooled error (LPE) statistical method to identify transcripts that are preferentially or exclusively expressed in one of the two tissues at significant levels (expression >1% of the beta-actin level). EASE (Expression Analysis Systematic Explorer software) was used to identify biological systems comparatively overrepresented in either epithelium. Immuno-, and cytohistochemistry was performed to validate or expand on selected results of interest. The analysis identified 332 preferential and 93 exclusive significant corneal epithelial transcripts. The corresponding numbers of conjunctival epithelium transcripts were 592 and 211, respectively. The overrepresented biological processes in the cornea were related to cell adhesion and oxiredox equilibria and cytoprotection activities. In the conjunctiva, the biological processes that were most prominent were related to innate immunity and melanogenesis. Immunohistochemistry for antigen-presenting cells and melanocytes was consistent with these gene signatures. The transcript comparison identified a substantial number of genes that have either not been identified previously or are not known to be highly expressed in these two epithelia, including testican-1, ECM1, formin, CRTAC1, and NQO1 in the cornea and, in the conjunctiva, sPLA(2)-IIA, lipocalin 2, IGFBP3, multiple MCH class II proteins, and the Na-Pi cotransporter type IIb. Comparative gene expression profiling leads to the identification of many biological processes and previously unknown genes that

  12. Exploring the motifs of death and immortality | Maina | Journal of ...

    African Journals Online (AJOL)

    felt threatened by the eventuality of death, inculcating in them a fear so great that all possible strategies are engaged in the search for an avenue that would prepare them for this eventuality. A careful exploration of human activities surrounding the issues of death and immortality reveals an obsession with the expression of ...

  13. 21 CFR 886.1450 - Corneal radius measuring device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corneal radius measuring device. 886.1450 Section 886.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... corneal size by superimposing the image of the cornea on a scale at the focal length of the lens of a...

  14. Diclofenac protects cultured human corneal epithelial cells against hyperosmolarity and ameliorates corneal surface damage in a rat model of dry eye.

    Science.gov (United States)

    Sawazaki, Ryoichi; Ishihara, Tomoaki; Usui, Shinya; Hayashi, Erika; Tahara, Kayoko; Hoshino, Tatsuya; Higuchi, Akihiro; Nakamura, Shigeru; Tsubota, Kazuo; Mizushima, Tohru

    2014-04-21

    Dry eye syndrome (DES) is characterized by an increase in tear osmolarity and induction of the expression and nuclear localization of an osmoprotective transcription factor (nuclear factor of activated T-cells 5 [NFAT5]) that plays an important role in providing protection against hyperosmotic tears. In this study, we screened medicines already in clinical use with a view of finding compounds that protect cultured human corneal epithelial cells against hyperosmolarity-induced cell damage. Viable cell number was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and cellular NFAT5 level was measured by immunoblotting. The rat model for DES was developed by removal of the lacrimal glands, with an assessment of corneal surface damage based on levels of fluorescein staining and epithelial apoptosis. Some nonsteroidal anti-inflammatory drugs (NSAIDs), including diclofenac sodium (diclofenac), were identified during the screening procedure. These NSAIDs were able to suppress hyperosmolarity-induced apoptosis and cell growth arrest. In contrast, other NSAIDs, including bromfenac sodium (bromfenac), did not exert such a protective action. Treatment of cells with diclofenac, but not bromfenac, stimulated both the nuclear localization and expression of NFAT5 under hyperosmotic conditions. In the rat model for DES, topical administration of diclofenac (but not bromfenac) to eyes reduced corneal surface damage without affecting the volume of tear fluid. Diclofenac appears to protect cells against hyperosmolarity-induced cell damage and NFAT5 would play an important role in this protective action. The findings reported here may also indicate that the topical administration of diclofenac to eyes may be therapeutically beneficial for DES patients.

  15. Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders.

    Science.gov (United States)

    Urraca, Nora; Memon, Rawaha; El-Iyachi, Ikbale; Goorha, Sarita; Valdez, Colleen; Tran, Quynh T; Scroggs, Reese; Miranda-Carboni, Gustavo A; Donaldson, Martin; Bridges, Dave; Reiter, Lawrence T

    2015-11-01

    A major challenge to the study and treatment of neurogenetic syndromes is accessing live neurons for study from affected individuals. Although several sources of stem cells are currently available, acquiring these involve invasive procedures, may be difficult or expensive to generate and are limited in number. Dental pulp stem cells (DPSCs) are multipotent stem cells that reside deep the pulp of shed teeth. To investigate the characteristics of DPSCs that make them a valuable resource for translational research, we performed a set of viability, senescence, immortalization and gene expression studies on control DPSC and derived neurons. We investigated the basic transport conditions and maximum passage number for primary DPSCs. We immortalized control DPSCs using human telomerase reverse transcriptase (hTERT) and evaluated neuronal differentiation potential and global gene expression changes by RNA-seq. We show that neurons from immortalized DPSCs share morphological and electrophysiological properties with non-immortalized DPSCs. We also show that differentiation of DPSCs into neurons significantly alters gene expression for 1305 transcripts. Here we show that these changes in gene expression are concurrent with changes in protein levels of the transcriptional repressor REST/NRSF, which is known to be involved in neuronal differentiation. Immortalization significantly altered the expression of 183 genes after neuronal differentiation, 94 of which also changed during differentiation. Our studies indicate that viable DPSCs can be obtained from teeth stored for ≥72 h, these can then be immortalized and still produce functional neurons for in vitro studies, but that constitutive hTERT immortalization is not be the best approach for long term use of patient derived DPSCs for the study of disease. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Corneal thickness: measurement and implications.

    Science.gov (United States)

    Ehlers, Niels; Hjortdal, Jesper

    2004-03-01

    The thickness of the cornea was reported in more than 100-year-old textbooks on physiological optics (Helmholtz, Gullstrand). Physiological interest was revived in the 1950s by David Maurice, and over the next 50 years, this 'simple' biological parameter has been studied extensively. Several techniques for its measurement have been described and physiological and clinical significance have been studied. In this review, the different methods and techniques of measurement are briefly presented (optical, ultrasound). While the corneal thickness of many animals are the same over a considerable part of the surface, in the human cornea anterior and posterior curvature are not concentric giving rise to a problem of definition. Based on this the precision and accuracy of determining the central corneal thickness are discussed. Changes in corneal thickness reflects changes in function of the boundary layers, in particular the endothelial barrier. The absolute value of thickness is of importance for the estimation of IOP but also in diagnosis of corneal and systemic disorders. Finally it is discussed to what extent the thickness is a biometric parameter of significance, e.g. in the progression of myopia or in the development of retinal detachment.

  17. Progress of research on corneal collagen cross-linking for corneal melting

    Directory of Open Access Journals (Sweden)

    Ke-Ren Xiao

    2016-06-01

    Full Text Available Corneal collagen cross-linking(CXLcould increase the mechanical strength, biological stability and halt ectasia progression due to covalent bond formed by photochemical reaction between ultraviolet-A and emulsion of riboflavin between collagen fibers in corneal stroma. Corneal melting is an autoimmune related noninfectious corneal ulcer. The mechanism of corneal melting, major treatment, the basic fundamental of ultraviolet-A riboflavin induced CXL and the clinical researches status and experiment in CXL were summarized in the study.

  18. Role of EGFR transactivation in preventing apoptosis in Pseudomonas aeruginosa-infected human corneal epithelial cells.

    Science.gov (United States)

    Zhang, Jing; Li, Hui; Wang, Jinzhao; Dong, Zheng; Mian, Shahzad; Yu, Fu-Shin X

    2004-08-01

    To determine the role of epidermal growth factor (EGF) receptor (EGFR)-mediated signaling pathways in preventing infection-induced apoptosis in human corneal epithelial cells (HCECs). Epithelial monolayers of a telomerase-immortalized HCEC line, HUCL, and primary culture of HCECs were infected with Pseudomonas aeruginosa in the presence of the EGFR inhibitor tyrphostin AG1478, the extracellular signal-regulated kinase (ERK) inhibitor U0126, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, the heparin-binding EGF-like growth factor (HB-EGF) antagonist CRM197, the HB-EGF neutralizing antibody, or the matrix metalloproteinase inhibitor GM6001. The activation of EGFR was analyzed by immunoprecipitation using EGFR antibodies, followed by Western blot analysis with phosphotyrosine antibody. Phosphorylation of ERK and Akt, a major substrate of PI3K, and generation of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) were determined by Western blot analysis. Apoptotic cells were characterized by positive staining of active caspase-3, loss of mitochondrial cytochrome c, and condensation of chromosomes. Apoptosis was also confirmed by measuring caspase-3 activity and assessing the generation of cleaved caspase-3 and PARP. P. aeruginosa infection of HUCL cells resulted in EGFR activation and EGFR-dependent ERK1/2 and PI3K phosphorylation. Inhibition of EGFR, ERK1/2, and PI3K activities with kinase-specific inhibitors (AG1478, U0126, and LY294002, respectively) resulted in an increase in the number of apoptotic cells, in elevated cellular caspase-3 activity, and/or in increased cleaved PARP in P. aeruginosa-infected HUCL cells or primary culture of HCECs. Blocking HB-EGF ectodomain shedding by inhibition of matrix metalloproteinase-mediated proteolysis, downregulation of HB-EGF, or neutralization of its activity retarded infection-induced EGFR transactivation and, as a consequence, increased infection-induced HUCL apoptosis. Bacterial infection of HCECs induces

  19. Role of EGFR Transactivation in Preventing Apoptosis in Pseudomonas aeruginosa–Infected Human Corneal Epithelial Cells

    Science.gov (United States)

    Zhang, Jing; Li, Hui; Wang, Jinzhao; Dong, Zheng; Mian, Shahzad; Yu, Fu-Shin X.

    2009-01-01

    PURPOSE To determine the role of epidermal growth factor (EGF) receptor (EGFR)–mediated signaling pathways in preventing infection-induced apoptosis in human corneal epithelial cells (HCECs). METHODS Epithelial monolayers of a telomerase-immortalized HCEC line, HUCL, and primary culture of HCECs were infected with Pseudomonas aeruginosa in the presence of the EGFR inhibitor tyrphostin AG1478, the extracellular signal-regulated kinase (ERK) inhibitor U0126, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, the heparin-binding EGF-like growth factor (HB-EGF) antagonist CRM197, the HB-EGF neutralizing antibody, or the matrix metalloproteinase inhibitor GM6001. The activation of EGFR was analyzed by immunoprecipitation using EGFR antibodies, followed by Western blot analysis with phosphotyrosine antibody. Phosphorylation of ERK and Akt, a major substrate of PI3K, and generation of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) were determined by Western blot analysis. Apoptotic cells were characterized by positive staining of active caspase-3, loss of mitochondrial cytochrome c, and condensation of chromosomes. Apoptosis was also confirmed by measuring caspase-3 activity and assessing the generation of cleaved caspase-3 and PARP. RESULTS P. aeruginosa infection of HUCL cells resulted in EGFR activation and EGFR-dependent ERK1/2 and PI3K phosphorylation. Inhibition of EGFR, ERK1/2, and PI3K activities with kinase-specific inhibitors (AG1478, U0126, and LY294002, respectively) resulted in an increase in the number of apoptotic cells, in elevated cellular caspase-3 activity, and/or in increased cleaved PARP in P. aeruginosa–infected HUCL cells or primary culture of HCECs. Blocking HB-EGF ectodomain shedding by inhibition of matrix metalloproteinase–mediated proteolysis, downregulation of HB-EGF, or neutralization of its activity retarded infection-induced EGFR transactivation and, as a consequence, increased infection-induced HUCL apoptosis

  20. Krása a nesmrteľnosť. O plodení u Platóna a Shakespeara (Beauty and Immortality. On Procreation in Plato and Shakespeare)

    OpenAIRE

    Anton Vydra

    2007-01-01

    There are two moments referred in this essay: (1) A human being, which desires for immortality, desires for to be alive in his child or in an artwork. (2) Full human being’s desire is related for beauty. Is a beauty the same thing as immortality? How looks the relation between them? Shakespeare’s Sonnets begin with the challenge to his friend to procreate the offspring, because this is a way for immortality of the friend’s beauty. And if it is not a child, than verse refused him before the de...

  1. Collagen VII deficient mice show morphologic and histologic corneal changes that phenotypically mimic human dystrophic epidermolysis bullosa of the eye.

    Science.gov (United States)

    Chen, Vicki M; Shelke, Rajani; Nyström, Alexander; Laver, Nora; Sampson, James F; Zhiyi, Cao; Bhat, Najma; Panjwani, Noorjahan

    2018-06-16

    Absence of collagen VII causes blistering of the skin, eyes and many other tissues. This disease is termed dystrophic epidermolysis bullosa (DEB). Corneal fibrosis occurs in up to 41% and vision loss in up to 64% of patients. Standard treatments are supportive and there is no cure. The immune-histologic and morphologic changes in the corneas of the mouse model for this disease have not been described in the literature. Our purpose is to characterize the eyes of these mice to determine if this is an appropriate model for study of human therapeutics. Western blot analysis (WB) and immunohistochemistry (IHC) were performed to assess the relative collagen VII protein levels and its location within the cornea. Additional IHC for inflammatory and fibrotic biomarkers alpha-smooth muscle actin (α-SMA), transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), proteinase 3, tenascin C and collagen III were performed. Clinical photographs documenting opacification of the corneas of animals of differing ages were assessed and scored independently by 2 examiners. Histology was then used to investigate morphologic changes. IHC and WB confirmed that these mice are deficient in collagen VII production at the level of the basement membrane when compared with wild-types. IHC showed anomalous deposition of collagen III throughout the stroma. Of the 5 biomarkers tested, TGF-β showed the strongest and most consistently staining. Photographs documented corneal opacities only in mice older than 10 weeks, opacities were not seen in younger animals. Histology showed multiple abnormalities, including epithelial hyperplasia, ulceration, fibrosis, edema, dysplasia, neovascularization and bullae formation. The collagen VII hypomorphic mouse shows reduced collagen VII production at the level of the corneal basement membrane. Corneal changes are similar to pathology seen in humans with this disease. The presence of anomalous stromal collagen III and TGF-β appear to be

  2. Intraocular pressure, corneal thickness, and corneal hysteresis in Steinert's myotonic dystrophy

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre de A. Garcia Filho

    2011-06-01

    Full Text Available PURPOSE: Low intraocular pressure (IOP measured by Goldmann applanation tonometry (GAT is one of the ocular manifestations of Steinert's myotonic dystrophy. The goal of this study was to evaluate the corneal-compensated IOP as well as corneal properties (central corneal thickness and corneal hysteresis in patients with myotonic dystrophy. METHODS: A total of 12 eyes of 6 patients with Steinert's myotonic dystrophy (dystrophy group and 12 eyes of 6 age-, race-, and gender-matched healthy volunteers (control group were included in the study. GAT, Dynamic Contour Tonometry (DCT-Pascal and Ocular Response Analyzer (ORA were used to assess the IOP. Central corneal thickness was obtained by ultrasound pachymetry, and corneal hysteresis was analyzed using the ORA device. In light of the multiplicity of tests performed, the significance level was set at 0.01 rather than 0.05. RESULTS: The mean (standard deviation [SD] GAT, DCT, and corneal-compensated ORA IOP in the dystrophy group were 5.4 (1.4 mmHg, 9.7 (1.5 mmHg, and 10.1 (2.6 mmHg, respectively. The mean (SD GAT, DCT, and corneal-compensated ORA IOP in the control group was 12.6 (2.9 mmHg, 15.5 (2.7 mmHg, and 15.8 (3.4 mmHg, respectively. There were significant differences in IOP values between dystrophy and control groups obtained by GAT (mean, -7.2 mmHg; 99% confidence interval [CI], -10.5 to -3.9 mmHg; P<0.001, DCT (mean, -5.9 mmHg; 99% CI, -8.9 to -2.8 mmHg; P<0.001, and corneal-compensated ORA measurements (mean, -5.7 mmHg; 99% CI, -10.4 to -1.0 mmHg; P=0.003. The mean (SD central corneal thickness was similar in the dystrophy (542 [31] µm and control (537 [11] µm groups (P=0.65. The mean (SD corneal hysteresis in the dystrophy and control groups were 11.2 (1.5 mmHg and 9.7 (1.2 mmHg, respectively (P=0.04. CONCLUSIONS: Patients with Steinert's myotonic dystrophy showed lower Goldmann and corneal-compensated IOP in comparison with healthy individuals. Since central corneal thickness and

  3. Generation of Femtosecond Laser-Cut Decellularized Corneal Lenticule Using Hypotonic Trypsin-EDTA Solution for Corneal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Man-Il Huh

    2018-01-01

    Full Text Available Purpose. To establish an optimized and standardized protocol for the development of optimal scaffold for bioengineering corneal substitutes, we used femtosecond laser to process human corneal tissue into stromal lenticules and studied to find the most efficient decellularization method among various reagents with different tonicities. Methods. The decellularization efficacy of several agents (0.1%, 0.25%, and 0.5% of Triton X-100, SDS, and trypsin-EDTA (TE, resp. with different tonicities was evaluated. Of all protocols, the decellularization methods, which efficiently removed nuclear materials examined as detected by immunofluorescent staining, were quantitatively tested for sample DNA and glycosaminoglycan (GAG contents, recellularization efficacy, and biocompatibilities. Results. 0.5% SDS in hypertonic and isotonic buffer, 0.25% TE in hypotonic buffer, and 0.5% TE in all tonicities completely decellularized the corneal lenticules. Of the protocols, decellularization with hypotonic 0.25 and 0.5% TE showed the lowest DNA contents, while the GAG content was the highest. Furthermore, the recellularization efficacy of the hypotonic TE method was better than that of the SDS-based method. Hypotonic TE-treated decellularized corneal lenticules (DCLs were sufficiently transparent and biocompatible. Conclusion. We generated an ideal protocol for DCLs using a novel method. Furthermore, it is possible to create a scaffold using a bioengineered corneal substitute.

  4. Intraoperative corneal thickness measurements during corneal collagen cross-linking with isotonic riboflavin solution without dextran in corneal ectasia.

    Science.gov (United States)

    Cınar, Yasin; Cingü, Abdullah Kürşat; Sahin, Alparslan; Türkcü, Fatih Mehmet; Yüksel, Harun; Caca, Ihsan

    2014-03-01

    Abstract Objective: To monitor the changes in corneal thickness during the corneal collagen cross-linking procedure by using isotonic riboflavin solution without dextran in ectatic corneal diseases. The corneal thickness measurements were obtained before epithelial removal, after epithelial removal, following the instillation of isotonic riboflavin solution without dextran for 30 min, and after 10 min of ultraviolet A irradiation. Eleven eyes of eleven patients with progressive keratoconus (n = 10) and iatrogenic corneal ectasia (n = 1) were included in this study. The mean thinnest pachymetric measurements were 391.82 ± 30.34 µm (320-434 µm) after de-epithelialization of the cornea, 435 ± 21.17 µm (402-472 µm) following 30 min instillation of isotonic riboflavin solution without dextran and 431.73 ± 20.64 µm (387-461 µm) following 10 min of ultraviolet A irradiation to the cornea. Performing corneal cross-linking procedure with isotonic riboflavin solution without dextran might not induce corneal thinning but a little swelling throughout the procedure.

  5. In vitro evaluation of the interactions between human corneal endothelial cells and extracellular matrix proteins

    International Nuclear Information System (INIS)

    Choi, Jin San; Kim, Eun Young; Kim, Min Jeong; Giegengack, Matthew; Khan, Faraaz A; Soker, Shay; Khang, Gilson

    2013-01-01

    The corneal endothelium is the innermost cell layer of the cornea and rests on Descemet's membrane consisting of various extracellular matrix (ECM) proteins which can directly affect the cellular behaviors such as cell adhesion, proliferation, polarity, morphogenesis and function. The objective of this study was to investigate the interactions between the ECM environment and human corneal endothelial cells (HCECs), with the ultimate goal to improve cell proliferation and function in vitro. To evaluate the interaction of HCECs with ECM proteins, cells were seeded on ECM-coated tissue culture dishes, including collagen type I (COL I), collagen type IV (COL IV), fibronectin (FN), FNC coating mix (FNC) and laminin (LM). Cell adhesion and proliferation of HCECs on each substratum and expression of CEC markers were studied. The results showed that HCECs plated on the COL I, COL IV, FN and FNC-coated plates had enhanced cell adhesion initially; the number for COL I, COL IV, FN and FNC was significantly higher than the control (P < 0.05). In addition, cells grown on ECM protein-coated dishes showed more compact cellular morphology and CEC marker expression compared to cells seeded on uncoated dishes. Collectively, our results suggest that an adequate ECM protein combination can provide a long-term culture environment for HCECs for corneal endothelium transplantation. (paper)

  6. Bioactive self-assembled peptide nanofibers for corneal stroma regeneration.

    Science.gov (United States)

    Uzunalli, G; Soran, Z; Erkal, T S; Dagdas, Y S; Dinc, E; Hondur, A M; Bilgihan, K; Aydin, B; Guler, M O; Tekinay, A B

    2014-03-01

    Defects in the corneal stroma caused by trauma or diseases such as macular corneal dystrophy and keratoconus can be detrimental for vision. Development of therapeutic methods to enhance corneal regeneration is essential for treatment of these defects. This paper describes a bioactive peptide nanofiber scaffold system for corneal tissue regeneration. These nanofibers are formed by self-assembling peptide amphiphile molecules containing laminin and fibronectin inspired sequences. Human corneal keratocyte cells cultured on laminin-mimetic peptide nanofibers retained their characteristic morphology, and their proliferation was enhanced compared with cells cultured on fibronectin-mimetic nanofibers. When these nanofibers were used for damaged rabbit corneas, laminin-mimetic peptide nanofibers increased keratocyte migration and supported stroma regeneration. These results suggest that laminin-mimetic peptide nanofibers provide a promising injectable, synthetic scaffold system for cornea stroma regeneration. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Isolation and Characterization of Exosome from Human Embryonic Stem Cell-Derived C-Myc-Immortalized Mesenchymal Stem Cells.

    Science.gov (United States)

    Lai, Ruenn Chai; Yeo, Ronne Wee Yeh; Padmanabhan, Jayanthi; Choo, Andre; de Kleijn, Dominique P V; Lim, Sai Kiang

    2016-01-01

    Mesenchymal stem cells (MSC) are currently the cell type of choice in many cell therapy trials. The number of therapeutic applications for MSCs registered as product IND submissions with the FDA and initiation of registered clinical trials has increased substantially in recent years, in particular between 2006 and 2012. However, defined mechanisms of action underpinning the therapeutic efficacy of MSCs are lacking, but they are increasingly attributed to MSC trophic secretion rather than their differentiation potential. A promising secreted therapeutic candidate is an extracellular vesicle (EV) known as the exosome. The use of exosomes instead of cells as a therapeutic agent provides several advantages. A critical advantage is the prospect of a conventional pharmaceutical manufacturing process that is highly scalable and amenable to the stringent manufacturing process. For example, MSCs used as producers of therapeutics, and not as therapeutics per se, could be immortalized to generate infinitely expansible clonal lines to enhance the reproducible production of therapeutic exosomes. In this chapter, we will describe the immortalization of MSCs, and the production, isolation, and characterization of exosomes from immortalized MSC.

  8. Clonal nature of spontaneously immortalized 3T3 cells.

    Science.gov (United States)

    Rittling, S R

    1996-11-25

    Mouse embryo fibroblasts (MEFs), when plated at appropriate densities, proliferate vigorously for several passages, and then the growth rate of the culture slows considerably. If the cells are plated at a high enough density and continuously passed, the cultures will eventually overcome this "crisis" period and resume rapid growth. Here, we have addressed the question of what the changes are that cells undergo in overcoming the growth restraints of crisis. Primary MEF cells were infected with a retrovirus which confers G418 resistance and selected in G418. The resultant pre-crisis population comprised cells which each contained a retrovirus integrated at a unique genomic location. These cells were then passed according to the 3T3 protocol until immortal, rapidly growing cells emerged. The integration pattern of the retrovirus in the immortal population was examined. In two independent experiments, the immortal population of cells grown in the presence of G418 comprised two independent clones of cells, with additional clones undetectable at the level of detection of the assays used. The integration pattern was also examined in parallel infected cultures grown in the absence of selection. In one experiment the unselected immortal population contained the same labeled clone that appeared in the sister infected culture, indicating that an immortal precursor was present in the precrisis population. These results are consistent with the idea that a mutation is responsible for the immortal phenotype.

  9. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF Factor on Corneal Epithelial Cells in Corneal Wound Healing Model.

    Directory of Open Access Journals (Sweden)

    Chang Rae Rho

    Full Text Available Granulocyte-macrophage colony-stimulating factor (GM-CSF is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs. We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF. An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml. MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration.

  10. Direct induction of hepatocyte-like cells from immortalized human bone marrow mesenchymal stem cells by overexpression of HNF4α

    International Nuclear Information System (INIS)

    Hu, Xiaojun; Xie, Peiyi; Li, Weiqiang; Li, Zhengran; Shan, Hong

    2016-01-01

    Hepatocytes from human bone marrow-derived mesenchymal stem cells (hBM-MSCs) are expected to be a useful source for cell transplantation. However, relatively low efficiency and repeatability of hepatic differentiation of human BM-MSCs remains an obstacle for clinical translation. Hepatocyte nuclear factor 4 alpha (HNF4α), a critical transcription factor, plays an essential role in the entire process of liver development. In this study, immortalized hBM-MSCs, UE7T-13 cells were transduced with a lentiviral vector containing HNF4α. The typical fibroblast-like morphology of the MSCs changed, and polygonal, epithelioid cells grew out after HNF4α transduction. In hepatocyte culture medium, HNF4α-transduced MSCs (E7-hHNF4α cells) strongly expressed the albumin (ALB), CYP2B6, alpha-1 antitrypsin (AAT), and FOXA2 mRNA and exhibited morphology markedly similar to that of mature hepatocytes. The E7-hHNF4α cells showed hepatic functions such as Indocyanine green (ICG) uptake and release, glycogen storage, urea production and ALB secretion. Approximately 28% of E7-hHNF4α cells expressed both ALB and AAT. Furthermore, these E7-hHNF4α cells via superior mesenteric vein (SMV) injection expressed human ALB in mouse chronic injured liver. In conclusion, this study represents a novel strategy by directly inducing hepatocyte-like cells from MSCs. - Highlights: • We overexpressed HNF4α in immortalized BM-MSCs by lentiviral transduction. • HNF4α-transduced MSCs transdifferentiated into hepatocytes with mature hepatic metabolic functions. • Our study represents a novel strategy by direct induction of hepatocyte-like cells from MSCs.

  11. Functional analysis of a novel human serotonin transporter gene promoter in immortalized raphe cells

    DEFF Research Database (Denmark)

    Mortensen, O V; Thomassen, M; Larsen, M B

    1999-01-01

    were found to possess the additional 379 bp fragment. The integrity of the promoter was furthermore confirmed by genomic Southern blotting. The promoter activity was analyzed by reporter gene assays in neuronal and non-neuronal serotonergic cell lines. In immortalized serotonergic raphe neurons, RN46A...

  12. Recovery of important physiological functions in 3D culture of immortal hepatocytes

    DEFF Research Database (Denmark)

    Wrzesinski, Krzysztof; Fey, S. J.

    2011-01-01

    to grow human liver cells in ‘3 dimensional’ cultures so that they behave very similar to the liver in our bodies. By growing the immortal hepatocytes in specially designed bioreactors they form small pieces of ‘pseudotissue’ which exhibit several of the functions seen in the adult liver. We have grown...

  13. PCB153 reduces telomerase activity and telomere length in immortalized human skin keratinocytes (HaCaT) but not in human foreskin keratinocytes (NFK)

    International Nuclear Information System (INIS)

    Senthilkumar, P.K.; Robertson, L.W.; Ludewig, G.

    2012-01-01

    Polychlorinated biphenyls (PCBs), ubiquitous environmental pollutants, are characterized by long term-persistence in the environment, bioaccumulation, and biomagnification in the food chain. Exposure to PCBs may cause various diseases, affecting many cellular processes. Deregulation of the telomerase and the telomere complex leads to several biological disorders. We investigated the hypothesis that PCB153 modulates telomerase activity, telomeres and reactive oxygen species resulting in the deregulation of cell growth. Exponentially growing immortal human skin keratinocytes (HaCaT) and normal human foreskin keratinocytes (NFK) were incubated with PCB153 for 48 and 24 days, respectively, and telomerase activity, telomere length, superoxide level, cell growth, and cell cycle distribution were determined. In HaCaT cells exposure to PCB153 significantly reduced telomerase activity, telomere length, cell growth and increased intracellular superoxide levels from day 6 to day 48, suggesting that superoxide may be one of the factors regulating telomerase activity, telomere length and cell growth compared to untreated control cells. Results with NFK cells showed no shortening of telomere length but reduced cell growth and increased superoxide levels in PCB153-treated cells compared to untreated controls. As expected, basal levels of telomerase activity were almost undetectable, which made a quantitative comparison of treated and control groups impossible. The significant down regulation of telomerase activity and reduction of telomere length by PCB153 in HaCaT cells suggest that any cell type with significant telomerase activity, like stem cells, may be at risk of premature telomere shortening with potential adverse health effects for the affected organism. -- Highlights: ► Human immortal (HaCaT) and primary (NFK) keratinocytes were exposed to PCB153. ► PCB153 significantly reduced telomerase activity and telomere length in HaCaT. ► No effect on telomere length and

  14. Locus of Control and Level of Conflict as Correlates of Immortality Orientation.

    Science.gov (United States)

    O'Dowd, William

    1985-01-01

    Assessed the orientation of 14 male professors toward immortality as a psychological motive. Results showed a generally low conscious concern with immortality issues; however, respondents who have accepted some sort of immortality show a more internal locus of control and better adjustment. (JAC)

  15. 3D cultured immortalized human hepatocytes useful to develop drugs for blood-borne HCV

    International Nuclear Information System (INIS)

    Aly, Hussein Hassan; Shimotohno, Kunitada; Hijikata, Makoto

    2009-01-01

    Due to the high polymorphism of natural hepatitis C virus (HCV) variants, existing recombinant HCV replication models have failed to be effective in developing effective anti-HCV agents. In the current study, we describe an in vitro system that supports the infection and replication of natural HCV from patient blood using an immortalized primary human hepatocyte cell line cultured in a three-dimensional (3D) culture system. Comparison of the gene expression profile of cells cultured in the 3D system to those cultured in the existing 2D system demonstrated an up-regulation of several genes activated by peroxisome proliferator-activated receptor alpha (PPARα) signaling. Furthermore, using PPARα agonists and antagonists, we also analyzed the effect of PPARα signaling on the modulation of HCV replication using this system. The 3D in vitro system described in this study provides significant insight into the search for novel anti-HCV strategies that are specific to various strains of HCV.

  16. Corneal surface reconstruction - a short review

    Directory of Open Access Journals (Sweden)

    Madhavan H N

    2009-01-01

    Full Text Available Cornea is the clear, dome-shaped surface that covers the front of the eye and when damage due to burns or injury and several other diseases, stem cells residing in its rim called "limbus" are stimulated to multiply to support growth of new epithelial cells over its surface. If this ready source of stem cells is damaged or destroyed the natural repair is not possible and such a condition is known as corneal limbal stem cell deficiency (CLSCD disease. Stem cell transplant helps such persons to regenerate the corneal surface. Human corneal limbal stem cell transplantation is at present an established procedure with reasonable good clinical outcome particularly when autologous limbal epithelial tissue from a fellow unaffected eye is used. 1, 2 A major concern related to the autograft is the possibility of CLSCD at the donor site, 3 techniques that allowed the expansion of a small limbal biopsy in the laboratory using cell cultures that could be then transplanted to the affected eye have been developed ,4, 5 Human amniotic membrane (HAM is used as a scaffold for both culturing the human limbal epithelial cells and for ocular surface reconstruction with the cultured limbal epithelial cells. 4-7 However, researchers have used alternative scaffolds like collagen 8, fibrin gel 9 and cross-linked gel of fibronectin and fibrin. 10 All these are biological materials and also need for animal 3T3 feeder layer for stem cell cultures. The properties of HAM are unique including antiadhesive effects, bacteriostatic effects, wound protection, pain reduction, and improvement of epithelialization and characteristically lacking imunogenicity. The use of amniotic membrane transplantation (AMT to treat ocular surface abnormalities was first reported by Graziella Pellegrini, chief of stem cell laboratory at Giovanni Paolo Hospital in Venice, Italy, who was the first to demonstrate the limbal stem cell transplant in 1997. Amniotic membrane has been successfully used in

  17. hTERT gene immortalized human adipose-derived stem cells and its multiple differentiations: a preliminary investigation.

    Science.gov (United States)

    Wang, L; Song, K; Qu, X; Wang, H; Zhu, H; Xu, X; Zhang, M; Tang, Y; Yang, X

    2013-03-01

    Human adipose-derived adult stem cells (hADSCs) can express human telomerase reverse transcriptase phenotypes under an appropriate culture condition. Because adipose tissue is abundant and easily accessible, hADSCs offer a promising source of stem cells for tissue engineering application and other cell-based therapies. However, the shortage of cells number and the difficulty to proliferate, known as the "Hayflick limit" in vitro, limit their further clinical application. Here, hADSCs were transfected with human telomerase reverse transcriptase (hTERT) gene by the lentiviral vector to prolong the lifespan of stem cells and even immortalize them. Following to this, the cellular properties and functionalities of the transfected cell lines were assayed. The results demonstrated that hADSCs had been successfully transfected with hTERT gene (hTERT-ADSCs). Then, hTERT-ADSCs were initially selected by G418 and subsequently expanded over 20 passages in vitro. Moreover, the qualitative and quantitative differentiation criteria for 20 passages of hTERT-ADSCs also demonstrated that hTERT-ADSCs could differentiate into osteogenesis, chondrogenesis, and adipogenesis phenotypes in lineage-specific differentiation media. These findings confirmed that this transfection could prolong the lifespan of hADSCs.

  18. A Rare Form of Corneal Opacity Associated with Spondyloepiphyseal Dysplasia Congenita

    Directory of Open Access Journals (Sweden)

    Yuichiro Ishida

    2018-02-01

    Full Text Available A 13-year-old Japanese female diagnosed with spondyloepiphyseal dysplasia congenita (SEDC was referred for ophthalmologic evaluation. Examination with slit-lamp and optical coherence tomography revealed bilateral thin cornea with diffuse corneal opacity which was localised at the posterior stromal depth in the central cornea. Unlike the two previously reported cases of diffuse and nodular patterns of corneal opacity in SEDC, the current case exhibited a rare form of corneal opacity. SEDC is one of the type II collagenopathies, characterised by dwarfism because the mutations in COL2A1 prevent bone growth. Although the existence of type II collagen has not been reported in the human corneal stroma, the aetiology of the opacity in the corneal stroma in SEDC type II collagenopathy is of interest.

  19. Equine corneal stromal abscesses

    DEFF Research Database (Denmark)

    Henriksen, M. D. L.; Andersen, P. H.; Plummer, C. E.

    2013-01-01

    The last 30 years have seen many changes in the understanding of the pathogenesis and treatment of equine corneal stromal abscesses (SAs). Stromal abscesses were previously considered an eye problem related to corneal bacterial infection, equine recurrent uveitis, corneal microtrauma and corneal....... Medical and surgical treatments are now directed towards elimination of fungal and bacterial infections, reduction and replacement of diseased corneal stroma, and suppression of iridocyclitis. If the abscess and anterior uveitis do not respond satisfactorily to medical therapy, full thickness or split...

  20. Regulation of Telomere Homeostasis during Epstein-Barr virus Infection and Immortalization.

    Science.gov (United States)

    Kamranvar, Siamak A; Masucci, Maria G

    2017-08-09

    The acquisition of unlimited proliferative potential is dependent on the activation of mechanisms for telomere maintenance, which counteracts telomere shortening and the consequent triggering of the DNA damage response, cell cycle arrest, and apoptosis. The capacity of Epstein Barr virus (EBV) to infect B-lymphocytes in vitro and transform the infected cells into autonomously proliferating immortal cell lines underlies the association of this human gamma-herpesvirus with a broad variety of lymphoid and epithelial cell malignancies. Current evidence suggests that both telomerase-dependent and -independent pathways of telomere elongation are activated in the infected cells during the early and late phases of virus-induced immortalization. Here we review the interaction of EBV with different components of the telomere maintenance machinery and the mechanisms by which the virus regulates telomere homeostasis in proliferating cells. We also discuss how these viral strategies may contribute to malignant transformation.

  1. Dynamic corneal deformation response and integrated corneal tomography

    Directory of Open Access Journals (Sweden)

    Marcella Q Salomão

    2018-01-01

    Full Text Available Measuring corneal biomechanical properties is still challenging. There are several clinical applications for biomechanical measurements, including the detection of mild or early forms of ectatic corneal diseases. This article reviews clinical applications for biomechanical measurements provided by the Corvis ST dynamic non contact tonometer

  2. Reconstituted human corneal epithelium: a new alternative to the Draize eye test for the assessment of the eye irritation potential of chemicals and cosmetic products.

    Science.gov (United States)

    Doucet, O; Lanvin, M; Thillou, C; Linossier, C; Pupat, C; Merlin, B; Zastrow, L

    2006-06-01

    The aim of this study was to evaluate the interest of a new three-dimensional epithelial model cultivated from human corneal cells to replace animal testing in the assessment of eye tolerance. To this end, 65 formulated cosmetic products and 36 chemicals were tested by means of this in vitro model using a simplified toxicokinetic approach. The chemicals were selected from the ECETOC data bank and the EC/HO International validation study list. Very satisfactory results were obtained in terms of concordance with the Draize test data for the formulated cosmetic products. Moreover, the response of the corneal model appeared predictive of human ocular response clinically observed by ophthalmologists. The in vitro scores for the chemicals tested strongly correlated with their respective scores in vivo. For all the compounds tested, the response of the corneal model to irritants was similar regardless of their chemical structure, suggesting a good robustness of the prediction model proposed. We concluded that this new three-dimensional epithelial model, developed from human corneal cells, could be promising for the prediction of eye irritation induced by chemicals and complex formulated products, and that these two types of materials should be tested using a similar protocol. A simple shortening of the exposure period was required for the chemicals assumed to be more aggressively irritant to the epithelial tissues than the cosmetic formulae.

  3. Ocular dimensions, corneal thickness, and corneal curvature in quarter horses with hereditary equine regional dermal asthenia.

    Science.gov (United States)

    Badial, Peres R; Cisneros-Àlvarez, Luis Emiliano; Brandão, Cláudia Valéria S; Ranzani, José Joaquim T; Tomaz, Mayana A R V; Machado, Vania M; Borges, Alexandre S

    2015-09-01

    The aim of this study was to compare ocular dimensions, corneal curvature, and corneal thickness between horses affected with hereditary equine regional dermal asthenia (HERDA) and unaffected horses. Five HERDA-affected quarter horses and five healthy control quarter horses were used. Schirmer's tear test, tonometry, and corneal diameter measurements were performed in both eyes of all horses prior to ophthalmologic examinations. Ultrasonic pachymetry was performed to measure the central, temporal, nasal, dorsal, and ventral corneal thicknesses in all horses. B-mode ultrasound scanning was performed on both eyes of each horse to determine the dimensions of the ocular structures and to calculate the corneal curvature. Each corneal region examined in this study was thinner in the affected group compared with the healthy control group. However, significant differences in corneal thickness were only observed for the central and dorsal regions. HERDA-affected horses exhibited significant increases in corneal curvature and corneal diameter compared with unaffected animals. The ophthalmologic examinations revealed mild corneal opacity in one eye of one affected horse and in both eyes of three affected horses. No significant between-group differences were observed for Schirmer's tear test, intraocular pressure, or ocular dimensions. Hereditary equine regional dermal asthenia-affected horses exhibit decreased corneal thickness in several regions of the cornea, increased corneal curvature, increased corneal diameter, and mild corneal opacity. Additional research is required to determine whether the increased corneal curvature significantly impacts the visual accuracy of horses with HERDA. © 2014 American College of Veterinary Ophthalmologists.

  4. The (not so) immortal strand hypothesis.

    Science.gov (United States)

    Tomasetti, Cristian; Bozic, Ivana

    2015-03-01

    Non-random segregation of DNA strands during stem cell replication has been proposed as a mechanism to minimize accumulated genetic errors in stem cells of rapidly dividing tissues. According to this hypothesis, an "immortal" DNA strand is passed to the stem cell daughter and not the more differentiated cell, keeping the stem cell lineage replication error-free. After it was introduced, experimental evidence both in favor and against the hypothesis has been presented. Using a novel methodology that utilizes cancer sequencing data we are able to estimate the rate of accumulation of mutations in healthy stem cells of the colon, blood and head and neck tissues. We find that in these tissues mutations in stem cells accumulate at rates strikingly similar to those expected without the protection from the immortal strand mechanism. Utilizing an approach that is fundamentally different from previous efforts to confirm or refute the immortal strand hypothesis, we provide evidence against non-random segregation of DNA during stem cell replication. Our results strongly suggest that parental DNA is passed randomly to stem cell daughters and provides new insight into the mechanism of DNA replication in stem cells. Copyright © 2015. Published by Elsevier B.V.

  5. A Cell Culture Approach to Optimized Human Corneal Endothelial Cell Function

    Science.gov (United States)

    Bartakova, Alena; Kuzmenko, Olga; Alvarez-Delfin, Karen; Kunzevitzky, Noelia J.; Goldberg, Jeffrey L.

    2018-01-01

    Purpose Cell-based therapies to replace corneal endothelium depend on culture methods to optimize human corneal endothelial cell (HCEC) function and minimize endothelial-mesenchymal transition (EnMT). Here we explore contribution of low-mitogenic media on stabilization of phenotypes in vitro that mimic those of HCECs in vivo. Methods HCECs were isolated from cadaveric donor corneas and expanded in vitro, comparing continuous presence of exogenous growth factors (“proliferative media”) to media without those factors (“stabilizing media”). Identity based on canonical morphology and expression of surface marker CD56, and function based on formation of tight junction barriers measured by trans-endothelial electrical resistance assays (TEER) were assessed. Results Primary HCECs cultured in proliferative media underwent EnMT after three to four passages, becoming increasingly fibroblastic. Stabilizing the cells before each passage by switching them to a media low in mitogenic growth factors and serum preserved canonical morphology and yielded a higher number of cells. HCECs cultured in stabilizing media increased both expression of the identity marker CD56 and also tight junction monolayer integrity compared to cells cultured without stabilization. Conclusions HCECs isolated from donor corneas and expanded in vitro with a low-mitogenic media stabilizing step before each passage demonstrate more canonical structural and functional features and defer EnMT, increasing the number of passages and total canonical cell yield. This approach may facilitate development of HCEC-based cell therapies. PMID:29625488

  6. Efficacy of Tectonic Corneal Patch Graft for Progressive Peripheral Corneal Thinning

    Directory of Open Access Journals (Sweden)

    Cafer Tanrıverdio

    2014-12-01

    Full Text Available Objectives: To report the results of tectonic corneal patch graft (TCPG in patients with progressive peripheral corneal thinning (PCT. Materials and Methods: In this study, we included 8 patients who underwent TCPG for PCT or perforated corneal ulceration at Ankara Training and Research Hospital. Results: We performed TCPG in 7 patients for PCT and in 1 patient for perforated corneal ulceration. Mean age was 57.2±16.7 (38- 82 years. Postoperative follow-up time ranged from 6 to 24 months (mean 13.9±6.7. Possible etiologies leading to progressive PCT were trachoma, infectious corneal ulcer, and rheumatoid arthritis-severe dry eye in 2 patients each. Other 2 patients had a progressive PCT following ocular surgery. One of the patients with infectious corneal ulcer also had a trauma caused by a scissor. Amnion membrane transplantation was performed in 3 patients prior to TCPG. While the anatomic success was achieved in all 8 patients, best-corrected visual acuity (BCVA was 0.1 or better in 4 patients (50%. Postoperative BCVA was better than preoperative BCVA in 6 patients (75%. Local peripheral anterior synechiae developed in two eyes. Conclusion: TCPG is a useful therapeutic option in selected cases of corneal thinning and perforations because it effectively restores the integrity of the globe and allows acceptable visual results. (Turk J Ophthalmol 2014; 44: 440-4

  7. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    International Nuclear Information System (INIS)

    Li Hongzhen; Zhou Jianjun; Miki, Jun; Furusato, Bungo; Gu Yongpeng; Srivastava, Shiv; McLeod, David G.; Vogel, Jonathan C.; Rhim, Johng S.

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin α2β1 hi and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 μg/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation

  8. Cytotoxicity of ophthalmic solutions with and without preservatives to human corneal endothelial cells, epithelial cells and conjunctival epithelial cells.

    Science.gov (United States)

    Ayaki, Masahiko; Yaguchi, Shigeo; Iwasawa, Atsuo; Koide, Ryohei

    2008-08-01

    The cytotoxicity of a range of commercial ophthalmic solutions in the presence and absence of preservatives was assessed in human corneal endothelial cells (HCECs), corneal epithelia and conjunctival epithelia using in vitro techniques. Cell survival was measured using the WST-1 assay for endothelial cells and the MTT assay for epithelial cells. Commercially available timolol, carteolol, cromoglicate, diclofenac, bromfenac and hyaluronic acid ophthalmic solutions were assessed for cytotoxicity in the presence and absence of preservatives. The preservatives benzalkonium, chlorobutanol and polysorbate were also tested. The survival of cells exposed to test ophthalmic solutions was expressed as a percentage of cell survival in the control solution (distilled water added to media) after 48 h exposure. HCEC survival was 20-30% in ophthalmic solutions diluted 10-fold. The survival of HCEC was significantly greater in all solutions in the absence of preservative than in the presence of preservative. The survival of corneal and conjunctival epithelia was consistent with that of HCECs for all test ophthalmic solutions. The preservatives polysorbate and benzalkonium were highly cytotoxic with cell survival decreasing to 20% at the concentration estimated in commercial ophthalmic solutions. By comparison, the survival of cells exposed to chlorobutanol was 80% or greater. The cytotoxicity of ophthalmic solutions to HCEC, corneal epithelia and conjunctival epithelia decreased in the absence of preservative.

  9. Life Beyond the Physical Body: The Possibilities of Digital Immortality

    OpenAIRE

    Galvão, Vinícius F.; Maciél, Cristiano; Garcia, Ana Cristina B.; Viterbo, José

    2017-01-01

    We are on the verge of a major shift in the way we perceive digital life, what may cause a significant impact to the real world. Gradually, through increasing knowledge in the areas of artificial intelligence, big data and machine learning, computers have been emulating deceased human beings and, symbolically, with the aid of technology, have been managing to conquer death. This article seeks to understand and problematize the ways in which digital immortality has manifested itself, particula...

  10. Postirradiation expression of lethal mutations in an immortalized human keratinocyte cell line

    International Nuclear Information System (INIS)

    O'Reilly, S.; Mothersill, C.; Seymour, C.B.

    1994-01-01

    The quantification of the extent of delayed cell death and the rate and pattern of its occurrence in relation to the cell division cycle is important in radiotherapy and also in radiation transformation studies related to protection and dose limits. Here the numbers of lethal mutations occurring over 45 population doublings (clonal expansion to about 10 13 cells per cell originally surviving irradiation) was measured in an HPV 16 immortalized human keratinocyte cell lines used for transformation studies. The results showed that when postirradiation (dose range 1-6 Gy) growth curves were constructed, the difference in slopes could be accounted for entirely by correcting for the non-clonogenic fraction in the cell count, excluding a longer cell generation time as an explanation. When the cell loss was examined over the entire growth period of 6 weeks (about 45 doublings of the cell population), it was found to be dose dependent for the first two passages, but then to become more independent of dose. The results allow a time/cell generation dependent factor to be derived for the cell line and used in survival curve equations where effects of radiation are being measured at times distant from the original exposure. (author)

  11. Corneal Laceration

    Medline Plus

    Full Text Available ... Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye Health / Eye Health A-Z Corneal Laceration ... Laceration Treatment What Is Corneal Laceration? Leer en Español: ¿Qué es una laceración de la córnea? Written ...

  12. Introduction of a normal human chromosome 8 corrects abnormal phenotypes of Werner syndrome cells immortalized by expressing an hTERT gene

    International Nuclear Information System (INIS)

    Ariyoshi, Kentaro; Kodama, Seiji; Suzuki, Keiji; Goto, Makoto; Oshimura, Mitsuo; Ishizaki, Kanji; Watanabe, Masami

    2009-01-01

    Werner syndrome (WS) is an autosomal recessive disease characterized by premature aging and caused by mutations of the WRN gene mapped at 8p12. To examine functional complementation of WS phenotypes, we introduced a normal human chromosome 8 into a strain of WS fibroblasts (WS3RGB) immortalized by expressing a human telomerase reverse transcriptase subunit (hTERT) gene. Here, we demonstrate that the abnormal WS phenotypes including cellular sensitivities to 4-nitroquinoline-1-oxide (4NQO) and hydroxy urea (HU), and chromosomal radiosensitivity at G 2 phase are corrected by expression of the WRN gene mediated by introducing a chromosome 8. This indicates that those multiple abnormal WS phenotypes are derived from a primary, but not secondary, defect in the WRN gene. (author)

  13. Keratocyte apoptosis and corneal antioxidant enzyme activities after refractive corneal surgery.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Adiguzel, U; Sezer, C; Yis, O; Akyol, G; Hasanreisoglu, B

    2002-01-01

    Refractive corneal surgery induces keratocyte apoptosis and generates reactive oxygen radicals (ROS) in the cornea. The purpose of the present study is to evaluate the correlation between keratocyte apoptosis and corneal antioxidant enzyme activities after different refractive surgical procedures in rabbits. Rabbits were divided into six groups. All groups were compared with the control group (Group 1), after epithelial scraping (Group 2), epithelial scrape and photorefractive keratectomy (PRK) (traditional PRK: Group 3), transepithelial PRK (Group 4), creation of a corneal flap with microkeratome (Group 5) and laser-assisted in situ keratomileusis (LASIK, Group 6). Terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick-end labelling assay (to detect DNA fragmentation in situ) and light microscopy were used to detect apoptosis in rabbit eyes. Glutathione peroxidase (Gpx) and superoxide dismutase (SOD) activities of the corneal tissues were measured with spectrophotometric methods. Corneal Gpx and SOD activities decreased significantly in all groups when compared with the control group (P<0.05) and groups 2, 3 and 6 showed a significantly higher amount of keratocyte apoptosis (P<0.05). Not only a negative correlation was observed between corneal SOD activity and keratocyte apoptosis (cc: -0.3648) but Gpx activity also showed negative correlation with keratocyte apoptosis (cc: -0.3587). The present study illustrates the negative correlation between keratocyte apoptosis and corneal antioxidant enzyme activities. This finding suggests that ROS may be partly responsible for keratocyte apoptosis after refractive surgery.

  14. Validation of an immortalized human (hBMEC) in vitro blood-brain barrier model.

    Science.gov (United States)

    Eigenmann, Daniela Elisabeth; Jähne, Evelyn Andrea; Smieško, Martin; Hamburger, Matthias; Oufir, Mouhssin

    2016-03-01

    We recently established and optimized an immortalized human in vitro blood-brain barrier (BBB) model based on the hBMEC cell line. In the present work, we validated this mono-culture 24-well model with a representative series of drug substances which are known to cross or not to cross the BBB. For each individual compound, a quantitative UHPLC-MS/MS method in Ringer HEPES buffer was developed and validated according to current regulatory guidelines, with respect to selectivity, precision, and reliability. Various biological and analytical challenges were met during method validation, highlighting the importance of careful method development. The positive controls antipyrine, caffeine, diazepam, and propranolol showed mean endothelial permeability coefficients (P e) in the range of 17-70 × 10(-6) cm/s, indicating moderate to high BBB permeability when compared to the barrier integrity marker sodium fluorescein (mean P e 3-5 × 10(-6) cm/s). The negative controls atenolol, cimetidine, and vinblastine showed mean P e values < 10 × 10(-6) cm/s, suggesting low permeability. In silico calculations were in agreement with in vitro data. With the exception of quinidine (P-glycoprotein inhibitor and substrate), BBB permeability of all control compounds was correctly predicted by this new, easy, and fast to set up human in vitro BBB model. Addition of retinoic acid and puromycin did not increase transendothelial electrical resistance (TEER) values of the BBB model.

  15. Establishment and characterization of a spontaneously immortalized trophoblast cell line (HPT-8) and its hepatitis B virus-expressing clone.

    Science.gov (United States)

    Zhang, Lei; Zhang, Weilu; Shao, Chen; Zhang, Jingxia; Men, Ke; Shao, Zhongjun; Yan, Yongping; Xu, Dezhong

    2011-08-01

    Most trophoblast cell lines currently available to study vertical transmission of hepatitis B virus (HBV) are immortalized by viral transformation. Our goal was to establish and characterize a spontaneously immortalized human first-trimester trophoblast cell line and its HBV-expressing clone. Chorionic villi of Asian human first-trimester placentae were digested with trypsin and collagenase I to obtain the primary trophoblast cell culture. A spontaneously immortalized trophoblast cell line (HPT-8) was analyzed by scanning and transmission electron microscopy, cell cycle analysis, immunohistochemistry and immunofluorescence. HPT-8 cells were stably transfected with the adr subtype of HBV (HPT-8-HBV) and characterized by PCR and enzyme-linked immunosorbent assay. We obtained a clonal derivative of a spontaneously immortalized primary cell clone (HPT-8). HPT-8 cells were epithelioid and polygonal, and formed multinucleate, giant cells. They exhibited microvilli, distinct desmosomes between adjacent cells, abundant endoplasm, lipid inclusions and glycogen granules, which are all characteristic of cytotrophoblasts. HPT-8 cells expressed cytokeratin 7, cytokeratin 18, vimentin, cluster of differentiation antigen 9, epidermal growth factor receptor, stromal cell-derived factor 1 and placental alkaline phosphatase. They secreted prolactin, estradiol, progesterone and hCG, and were positive for HLA-G, a marker of extravillous trophoblasts. HPT-8-HBV cells were positive for HBV relaxed-circular, covalently closed circular DNA and pre-S sequence. HPT-8-HBV cells also produced and secreted HBV surface antigen and HBV e antigen. We established a trophoblast cell line, HPT-8 and its HBV-expressing clone which could be valuable in exploring the mechanism of HBV viral integration in human trophoblasts during intrauterine infection.

  16. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model.

    Science.gov (United States)

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000-1,800 nm wavelengths and excluded 1,400-1,500 nm wavelengths. A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm(2) irradiation (Psolar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both UV and NIR radiation may prevent changes in gene expression and in turn eye damage.

  17. A new 3D reconstituted human corneal epithelium model as an alternative method for the eye irritation test.

    Science.gov (United States)

    Jung, Kyoung-Mi; Lee, Su-Hyon; Ryu, Yang-Hwan; Jang, Won-Hee; Jung, Haeng-Sun; Han, Ju-Hee; Seok, Seung-Hyeok; Park, Jae-Hak; Son, Youngsook; Park, Young-Ho; Lim, Kyung-Min

    2011-02-01

    Many efforts are being made to develop new alternative in vitro test methods for the eye irritation test. Here we report a new reconstructed human corneal epithelial model (MCTT HCE model) prepared from primary-cultured human limbal epithelial cells as a new alternative in vitro eye irritation test method. In histological and immunohistochemical observation, MCTT HCE model displayed a morphology and biomarker expressions similar to intact human cornea. Moreover, the barrier function was well preserved as measured by high transepithelial electrical resistance, effective time-50 for Triton X-100, and corneal thickness. To employ the model as a new alternative method for eye irritation test, protocol refinement was performed and optimum assay condition was determined including treatment time, treatment volume, post-incubation time and rinsing method. Using the refined protocol, 25 reference chemicals with known eye irritation potentials were tested. With the viability cut-off value at 50%, chemicals were classified to irritant or non-irritant. When compared with GHS classification, the MCTT HCE model showed the accuracy of 88%, sensitivity of 100% and specificity of 77%. These results suggest that the MCTT HCE model might be useful as a new alternative eye irritation test method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha; Beisiegel, Ulrike; Heeren, Joerg

    2008-01-01

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor γ (PPARγ) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPARγ agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPARγ-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake

  19. Cellular toxicity of calf blood extract on human corneal epithelial cells in vitro.

    Science.gov (United States)

    Park, Young Min; Kim, Su Jin; Han, Young Sang; Lee, Jong Soo

    2015-01-01

    To investigate the biologic effects of the calf blood extract on corneal epithelial cells in vitro. The effects on corneal epithelial cells were evaluated after 1, 4, 12, and 24 h of exposure to various concentrations of calf blood extract (3, 5, 8 and 16%). The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay was performed to measure levels of cellular metabolic activity. The lactate dehydrogenase (LDH) assay was performed to determine the extent of cellular damage. Cellular morphology was examined using phase-contrast microscopy. The scratch wound assay was performed to quantify the migration of corneal epithelial cells. At the 3 and 5% concentrations of calf blood extract, MTT values were similar to those observed in the control group. However, at a concentration of 8 and 16%, cellular metabolic activity was significantly decreased after 4 h of exposure to calf blood extract. After 12 h of exposure to 8 and 16% concentrations of calf blood extract, LDH activity and cellular morphological damage to the corneal epithelial cells were significantly increased. There was no evidence of cellular migration after 12 h exposure to 5% or higher concentration of calf blood extract because of cellular toxicity. Compared with normal corneal epithelial cells, the cellular activity was decreased, and toxicity was increased after over 12 h of exposure to more than 5% concentration of calf blood extract. Further clinical studies will be necessary to determine the optimal concentration and exposure time for the topical application of eye drops containing calf blood extract.

  20. The theory and art of corneal cross-linking.

    Science.gov (United States)

    McQuaid, Rebecca; Cummings, Arthur B; Mrochen, Michael

    2013-08-01

    Before the discovery of corneal cross-linking (CXL), patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs) that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL) would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A) light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma.

  1. Immortalization of canine adipose-derived mesenchymal stem cells and their seminiferous tubule transplantation.

    Science.gov (United States)

    Fang, Jia; Wei, Yudong; Teng, Xin; Zhao, Shanting; Hua, Jinlian

    2018-04-01

    Adipose-derived mesenchymal stem cells (ADSCs) are proven to provide good effects in numerous tissue engineering application and other cell-based therapies. However, the difficulty in the proliferation of ADSCs, known as the "Hayflick limit" in vitro, limits their clinical application. Here, we immortalized canine ADSCs (cADSCs) with SV40 gene and transplanted them into busulfan-induced seminiferous tubules of infertile mice. The proliferation of these immortalized cells was improved significantly. Then, cellular differentiation assays showed that the immortalized cADSCs could differentiate into three-germ-layer cells, osteogenesis, chondrogenesis, adipogenesis phenotypes, and primordial germ cell-like cells (PGCLCs). In addition, the immortalized cADSCs can proliferate in the busulfan-induced seminiferous tubules of infertile mice. These findings confirmed that the immortalized cADSCs maintain the criteria of cADSCs. © 2017 Wiley Periodicals, Inc.

  2. Breakdown evaluation of corneal epithelial barrier caused by antiallergic eyedrops using an electrophysiologic method.

    Science.gov (United States)

    Nakashima, Mikiro; Nakamura, Tadahiro; Teshima, Mugen; To, Hideto; Uematsu, Masafumi; Kitaoka, Takashi; Taniyama, Kotaro; Nishida, Koyo; Nakamura, Junzo; Sasaki, Hitoshi

    2008-02-01

    The aim of this study was to examine the usefulness of an electrophysiologic method for predicting corneal epithelial breakdown by antiallergic eyedrops and comparing the results with those in other appraisal methods. Six kinds of antiallergic eyedrops, including benzalkonium chloride (BK) as an ophthalmic preservative and two kinds of BK-free antiallergic eyedrops, were used in this study. Eyedrops were applied to excise rabbit corneas and monitoring was performed according to an electrophysiologic method, using a commercially available chamber system to mimic human tear turnover. Changes in transepithelial electrical resistance (TEER) in the corneal surface were recorded. The cytotoxicity of each kind of eyedrops in a normal rabbit corneal epithelial (NRCE) cell line and a human endothelial cell line EA.hy926 was also examined. The extent of decrease in the corneal TEER after applying antiallergic eyedrops was dependent on the concentration of the BK included as a preservative, but it was also affected by the different kinds of drugs when the BK concentration was low. Higher cytotoxicity of the eyedrops against the NRCE and EA.hy926 cell lines was observed with a reduction of TEER. Monitoring changes in the corneal TEER, according to the electrophysiologic method with the application of antiallergic eyedrops, is useful for predicting corneal epithelial breakdown caused by their instillation.

  3. Characterization of a novel telomerase-immortalized human endometrial stromal cell line, St-T1b

    Directory of Open Access Journals (Sweden)

    Brosens Jan J

    2009-07-01

    Full Text Available Abstract Background Coordinated differentiation of the endometrial compartments in the second half of the menstrual cycle is a prerequisite for the establishment of pregnancy. Endometrial stromal cells (ESC decidualize under the influence of ovarian progesterone to accommodate implantation of the blastocyst and support establishment of the placenta. Studies into the mechanisms of decidualization are often hampered by the lack of primary ESC. Here we describe a novel immortalized human ESC line. Methods Primary ESC were immortalized by the transduction of telomerase. The resultant cell line, termed St-T1b, was characterized for its morphological and biochemical properties by immunocytochemistry, RT-PCR and immunoblotting. Its progestational response was tested using progesterone and medroxyprogesterone acetate with and without 8-Br-cAMP, an established inducer of decidualization in vitro. Results St-T1b were positive for the fibroblast markers vimentin and CD90 and negative for the epithelial marker cytokeratin-7. They acquired a decidual phenotype indistinguishable from primary ESC in response to cAMP stimulation. The decidual response was characterized by transcriptional activation of marker genes, such as PRL, IGFBP1, and FOXO1, and enhanced protein levels of the tumor suppressor p53 and the metastasis suppressor KAI1 (CD82. Progestins alone had no effect on St-T1b cells, but medroxyprogesterone acetate greatly enhanced the cAMP-stimulated expression of IGFBP-1 after 3 and 7 days. Progesterone, albeit more weakly, also augmented the cAMP-induced IGFBP-1 production but only after 7 days of treatment. The cell line remained stable in continuous culture for more than 150 passages. Conclusion St-T1b express the appropriate phenotypic ESC markers and their decidual response closely mimics that of primary cultures. Decidualization is efficiently induced by cAMP analog and enhanced by medroxyprogesterone acetate, and, to a lesser extent, by natural

  4. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model

    Directory of Open Access Journals (Sweden)

    Tanaka Y

    2016-08-01

    Full Text Available Yohei Tanaka,1,2 Jun Nakayama2 1Department of Plastic Surgery, Clinica Tanaka Plastic, Reconstructive Surgery and Anti-aging Center, 2Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan Background and objective: Humans are increasingly exposed to near-infrared (NIR radiation from both natural (eg, solar and artificial (eg, electrical appliances sources. Although the biological effects of sun and ultraviolet (UV exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues.Materials and methods: DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C. The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths.Results: A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05.Conclusion: We found that NIR irradiation induced the

  5. Corneal tissue welding with infrared laser irradiation after clear corneal incision.

    Science.gov (United States)

    Rasier, Rfat; Ozeren, Mediha; Artunay, Ozgür; Bahçecioğlu, Halil; Seçkin, Ismail; Kalaycoğlu, Hamit; Kurt, Adnan; Sennaroğlu, Alphan; Gülsoy, Murat

    2010-09-01

    The aim of this study was to investigate the potential of infrared lasers for corneal welding to seal corneal cuts done in an experimental animal model. Full-thickness corneal cuts on freshly enucleated bovine eyes were irradiated with infrared (809-nm diode, 980-nm diode, 1070-nm YLF, and 1980-nm Tm:YAP) lasers to get immediate laser welding. An 809-nm laser was used with the topical application of indocyanine green to enhance the photothermal interaction at the weld site. In total, 60 bovine eyes were used in this study; 40 eyes were used in the first part of the study for the determination of optimal welding parameters (15 eyes were excluded because of macroscopic carbonization, opacification, or corneal shrinkage; 2 eyes were used for control), and 20 eyes were used for further investigation of more promising lasers (YLF and Tm:YAP). Laser wavelength, irradiating power, exposure time, and spot size were the dose parameters, and optimal dose for immediate closure with minimal thermal damage was estimated through histological examination of welded samples. In the first part of the study, results showed that none of the applications was satisfactory. Full-thickness success rates were 28% (2 of 7) for 809-nm and for 980-nm diode lasers and 67% (2 of 3) for 1070-nm YLF and (4 of 6) for 1980-nm Tm:YAP lasers. In the second part of the study, YLF and Tm:YAP lasers were investigated with bigger sample size. Results were not conclusive but promising again. Five corneal incisions were full-thickness welded out of 10 corneas with 1070-nm laser, and 4 corneal incisions were partially welded out of 10 corneas with 1980-nm laser in the second part of the study. Results showed that noteworthy corneal welding could be obtained with 1070-nm YLF laser and 1980-nm Tm:YAP laser wavelengths. Furthermore, in vitro and in vivo studies will shed light on the potential usage of corneal laser welding technique.

  6. DNA methyl transferases are differentially expressed in the human anterior eye segment.

    Science.gov (United States)

    Bonnin, Nicolas; Belville, Corinne; Chiambaretta, Frédéric; Sapin, Vincent; Blanchon, Loïc

    2014-08-01

    DNA methylation is an epigenetic mark involved in the control of genes expression. Abnormal epigenetic events have been reported in human pathologies but weakly documented in eye diseases. The purpose of this study was to establish DNMT mRNA and protein expression levels in the anterior eye segment tissues and their related (primary or immortalized) cell cultures as a first step towards future in vivo and in vitro methylomic studies. Total mRNA was extracted from human cornea, conjunctiva, anterior lens capsule, trabeculum and related cell cultures (cornea epithelial, trabecular meshwork, keratocytes for primary cells; and HCE, Chang, B-3 for immortalized cells). cDNA was quantified by real-time PCR using specific primers for DNMT1, 2, 3A, 3B and 3L. Immunolocalization assays were carried out on human cornea using specific primary antibodies for DNMT1, 2 and 3A, 3B and 3L. All DNMT transcripts were detected in human cornea, conjunctiva, anterior lens capsule, trabeculum and related cells but showed statistically different expression patterns between tissues and cells. DNMT2 protein presented a specific and singular expression pattern in corneal endothelium. This study produced the first inventory of the expression patterns of DNMTs in human adult anterior eye segment. Our research highlights that DNA methylation cannot be ruled out as a way to bring new insights into well-known ocular diseases. In addition, future DNA methylation studies using various cells as experimental models need to be conducted with attention to approach the results analysis from a global tissue perspective. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  7. Caveolin-1 as a novel indicator of wound-healing capacity in aged human corneal epithelium.

    Science.gov (United States)

    Rhim, Ji Heon; Kim, Jae Hoon; Yeo, Eui-Ju; Kim, Jae Chan; Park, Sang Chul

    2010-01-01

    Excess caveolin-1 has been reported to play a role in age-dependent hyporesponsiveness to growth factors in vitro. Therefore, we hypothesized that caveolin-1-dependent hyporesponsiveness to growth factors in aged corneal epithelial cells might be responsible for delayed wound healing in vivo. To test this hypothesis, we evaluated corneal wound-healing time by vital staining using fluorescein after laser epithelial keratomileusis (LASEK). We compared wound-healing times in young, middle-aged and elderly patients. We also examined caveolin-1 levels and other aging markers, such as p53 and p21, in the corneal epithelium. Elderly patients generally had higher caveolin-1 levels in the corneal epithelia than young patients. There were, however, variations among individuals with increased caveolin-1 in some young patients and decreased levels in some elderly patients. Wound-healing time after LASEK correlated well with the corneal caveolin-1 status. Therefore, we suggest that caveolin-1 status might be responsible for delayed wound healing in elderly patients after LASEK. Caveolin-1 status might be a regulator for wound-healing capacity and a novel target for in vivo adjustment.

  8. 21 CFR 886.1220 - Corneal electrode.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corneal electrode. 886.1220 Section 886.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... to the cornea to provide data showing the changes in electrical potential in the retina after...

  9. Clinical applications of corneal confocal microscopy

    Directory of Open Access Journals (Sweden)

    Mitra Tavakoli

    2008-06-01

    Full Text Available Mitra Tavakoli1, Parwez Hossain2, Rayaz A Malik11Division of Cardiovascular Medicine, University of Manchester and Manchester Royal Infirmary, Manchester, UK; 2University of Southampton, Southampton Eye Unit, Southampton General Hospital, Southampton, UKAbstract: Corneal confocal microscopy is a novel clinical technique for the study of corneal cellular structure. It provides images which are comparable to in-vitro histochemical techniques delineating corneal epithelium, Bowman’s layer, stroma, Descemet’s membrane and the corneal endothelium. Because, corneal confocal microscopy is a non invasive technique for in vivo imaging of the living cornea it has huge clinical potential to investigate numerous corneal diseases. Thus far it has been used in the detection and management of pathologic and infectious conditions, corneal dystrophies and ecstasies, monitoring contact lens induced corneal changes and for pre and post surgical evaluation (PRK, LASIK and LASEK, flap evaluations and Radial Keratotomy, and penetrating keratoplasty. Most recently it has been used as a surrogate for peripheral nerve damage in a variety of peripheral neuropathies and may have potential in acting as a surrogate marker for endothelial abnormalities.Keywords: corneal confocal microscopy, cornea, infective keratitis, corneal dystrophy, neuropathy

  10. Neurotrophic corneal and conjunctival xerosis

    Directory of Open Access Journals (Sweden)

    Svetlana Gennadyevna Zhurova

    2014-03-01

    Full Text Available Purpose: to develop a method of surgical treatment of patients with corneal ulcers of xerotic etiology and evaluate its efficacy in different time periods after operation. Materials and methods: 68 patients (86 eyes with severe dry eye syndrome complicated by xerotic corneal ulcers were examined. In all patients, the ulcer defect was covered with conjunctiva and amniotic membrane. The operation was combined with an outer tarsorrhaphy and temporary blepharorraphy. Results: All 86 eyes (100% achieved total closure of the ulcer defect, sealing of any perforation and maintaining of corneal transparency beyond the ulcer defect. Conclusion: Surgical closure of corneal ulcers with conjunctiva is an effective method of treatment of xerotic corneal ulcers. It could be recommended in patients with corneal perforation and tendency of descemetocele formation.

  11. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice.

    Directory of Open Access Journals (Sweden)

    Hongshan Liu

    Full Text Available BACKGROUND: Keratoplasty is the most effective treatment for corneal blindness, but suboptimal medical conditions and lack of qualified medical personnel and donated cornea often prevent the performance of corneal transplantation in developing countries. Our study aims to develop alternative treatment regimens for congenital corneal diseases of genetic mutation. METHODOLOGY/PRINCIPAL FINDINGS: Human mesenchymal stem cells isolated from neonatal umbilical cords were transplanted to treat thin and cloudy corneas of lumican null mice. Transplantation of umbilical mesenchymal stem cells significantly improved corneal transparency and increased stromal thickness of lumican null mice, but human umbilical hematopoietic stem cells failed to do the same. Further studies revealed that collagen lamellae were re-organized in corneal stroma of lumican null mice after mesenchymal stem cell transplantation. Transplanted umbilical mesenchymal stem cells survived in the mouse corneal stroma for more than 3 months with little or no graft rejection. In addition, these cells assumed a keratocyte phenotype, e.g., dendritic morphology, quiescence, expression of keratocyte unique keratan sulfated keratocan and lumican, and CD34. Moreover, umbilical mesenchymal stem cell transplantation improved host keratocyte functions, which was verified by enhanced expression of keratocan and aldehyde dehydrogenase class 3A1 in lumican null mice. CONCLUSIONS/SIGNIFICANCE: Umbilical mesenchymal stem cell transplantation is a promising treatment for congenital corneal diseases involving keratocyte dysfunction. Unlike donated corneas, umbilical mesenchymal stem cells are easily isolated, expanded, stored, and can be quickly recovered from liquid nitrogen when a patient is in urgent need.

  12. The use of hTERT-immortalized cells in tissue engineering

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem; Yu, Zentao

    2004-01-01

    The use of human telomerase reverse transcriptase (hTERT)-immortalized cells in tissue engineering protocols is a potentially important application of telomere biology. Several human cell types have been created that overexpress the hTERT gene with enhanced telomerase activity, extended life span...... and maintained or even improved functional activities. Furthermore, some studies have employed the telomerized cells in tissue engineering protocols with very good results. However, high telomerase activity allows extensive cell proliferation that may be associated with genomic instability and risk for cell...... transformation. Thus, safety issues should be studied carefully before using the telomerized tissues in the clinic. Alternatively, the development of conditional or intermittent telomerase activation protocols is needed....

  13. Corneal topography measurements for biometric applications

    Science.gov (United States)

    Lewis, Nathan D.

    The term biometrics is used to describe the process of analyzing biological and behavioral traits that are unique to an individual in order to confirm or determine his or her identity. Many biometric modalities are currently being researched and implemented including, fingerprints, hand and facial geometry, iris recognition, vein structure recognition, gait, voice recognition, etc... This project explores the possibility of using corneal topography measurements as a trait for biometric identification. Two new corneal topographers were developed for this study. The first was designed to function as an operator-free device that will allow a user to approach the device and have his or her corneal topography measured. Human subject topography data were collected with this device and compared to measurements made with the commercially available Keratron Piccolo topographer (Optikon, Rome, Italy). A third topographer that departs from the standard Placido disk technology allows for arbitrary pattern illumination through the use of LCD monitors. This topographer was built and tested to be used in future research studies. Topography data was collected from 59 subjects and modeled using Zernike polynomials, which provide for a simple method of compressing topography data and comparing one topographical measurement with a database for biometric identification. The data were analyzed to determine the biometric error rates associated with corneal topography measurements. Reasonably accurate results, between three to eight percent simultaneous false match and false non-match rates, were achieved.

  14. Corneal markers of diabetic neuropathy.

    Science.gov (United States)

    Pritchard, Nicola; Edwards, Katie; Shahidi, Ayda M; Sampson, Geoff P; Russell, Anthony W; Malik, Rayaz A; Efron, Nathan

    2011-01-01

    Diabetic neuropathy is a significant clinical problem that currently has no effective therapy, and in advanced cases, leads to foot ulceration and lower limb amputation. The accurate detection, characterization and quantification of this condition are important in order to define at-risk patients, anticipate deterioration, monitor progression, and assess new therapies. This review evaluates novel corneal methods of assessing diabetic neuropathy. Two new noninvasive corneal markers have emerged, and in cross-sectional studies have demonstrated their ability to stratify the severity of this disease. Corneal confocal microscopy allows quantification of corneal nerve parameters and noncontact corneal esthesiometry, the functional correlate of corneal structure, assesses the sensitivity of the cornea. Both these techniques are quick to perform, produce little or no discomfort for the patient, and are suitable for clinical settings. Each has advantages and disadvantages over traditional techniques for assessing diabetic neuropathy. Application of these new corneal markers for longitudinal evaluation of diabetic neuropathy has the potential to reduce dependence on more invasive, costly, and time-consuming assessments, such as skin biopsy.

  15. Mutations in LOXHD1, a Recessive-Deafness Locus, Cause Dominant Late-Onset Fuchs Corneal Dystrophy

    Science.gov (United States)

    Riazuddin, S. Amer; Parker, David S.; McGlumphy, Elyse J.; Oh, Edwin C.; Iliff, Benjamin W.; Schmedt, Thore; Jurkunas, Ula; Schleif, Robert; Katsanis, Nicholas; Gottsch, John D.

    2012-01-01

    Fuchs corneal dystrophy (FCD) is a genetic disorder of the corneal endothelium and is the most common cause of corneal transplantation in the United States. Previously, we mapped a late-onset FCD locus, FCD2, on chromosome 18q. Here, we present next-generation sequencing of all coding exons in the FCD2 critical interval in a multigenerational pedigree in which FCD segregates as an autosomal-dominant trait. We identified a missense change in LOXHD1, a gene causing progressive hearing loss in humans, as the sole variant capable of explaining the phenotype in this pedigree. We observed LOXHD1 mRNA in cultured human corneal endothelial cells, whereas antibody staining of both human and mouse corneas showed staining in the corneal epithelium and endothelium. Corneal sections of the original proband were stained for LOXHD1 and demonstrated a distinct increase in antibody punctate staining in the endothelium and Descemet membrane; punctate staining was absent from both normal corneas and FCD corneas negative for causal LOXHD1 mutations. Subsequent interrogation of a cohort of >200 sporadic affected individuals identified another 15 heterozygous missense mutations that were absent from >800 control chromosomes. Furthermore, in silico analyses predicted that these mutations reside on the surface of the protein and are likely to affect the protein's interface and protein-protein interactions. Finally, expression of the familial LOXHD1 mutant allele as well as two sporadic mutations in cells revealed prominent cytoplasmic aggregates reminiscent of the corneal phenotype. All together, our data implicate rare alleles in LOXHD1 in the pathogenesis of FCD and highlight how different mutations in the same locus can potentially produce diverse phenotypes. PMID:22341973

  16. Topical thrombin-related corneal calcification.

    Science.gov (United States)

    Kiratli, Hayyam; Irkeç, Murat; Alaçal, Sibel; Söylemezoğlu, Figen

    2006-09-01

    To report a highly unusual case of corneal calcification after brief intraoperative use of topical thrombin. A 44-year-old man underwent sclerouvectomy for ciliochoroidal leiomyoma, during which 35 UNIH/mL lyophilized bovine thrombin mixed with 9 mL of diluent containing 1500 mmol/mL calcium chloride was used. From the first postoperative day, corneal and anterior lenticular capsule calcifications developed, and corneal involvement slightly enlarged thereafter. A year later, 2 corneal punch biopsies confirmed calcification mainly in the Bowman layer. Topical treatment with 1.5% ethylenediaminetetraacetic acid significantly restored corneal clarity. Six months later, a standard extracapsular cataract extraction with intraocular lens placement improved visual acuity to 20/60. This case suggests that topical thrombin drops with elevated calcium concentrations may cause acute corneal calcification in Bowman layer and on the anterior lens capsule.

  17. Validation of Na,K-ATPase pump function of corneal endothelial cells for corneal regenerative medicine.

    Science.gov (United States)

    Hatou, Shin; Higa, Kazunari; Inagaki, Emi; Yoshida, Satoru; Kimura, Erika; Hayashi, Ryuhei; Tsujikawa, Motokazu; Tsubota, Kazuo; Nishida, Kohji; Shimmura, Shigeto

    2013-12-01

    Tissue-engineering approaches to cultivate corneal endothelial cells (CECs) or induce CECs from stem cells are under investigation for the treatment of endothelial dysfunction. Before clinical application, a validation method to determine the quality of these cells is required. In this study, we quantified the endothelial pump function required for maintaining the corneal thickness using rabbit CECs (RCECs) and a human CEC line (B4G12). The potential difference of RCECs cultured on a permeable polyester membrane (Snapwell), B4G12 cells on Snapwell, or B4G12 cells on a collagen membrane (CM6) was measured by an Ussing chamber system, and the effect of different concentrations of ouabain (Na,K-ATPase specific inhibitor) was obtained. A mathematical equation derived from the concentration curve revealed that 2 mM ouabain decreases pump function of RCECs to 1.0 mV, and 0.6 mM ouabain decreases pump function of B4G12 on CM6 to 1.0 mV. Ouabain injection into the anterior chamber of rabbit eyes at a concentration of pump function >1.0 mV is required to maintain the corneal thickness. These results can be used for standardization of CEC pump function and validation of tissue-engineered CEC sheets for clinical use.

  18. Establishment and culture optimization of a new type of pituitary immortalized cell line

    Energy Technology Data Exchange (ETDEWEB)

    Kokubu, Yuko [Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8562 (Japan); Asashima, Makoto [Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8562 (Japan); Life Science Center of TARA, The University of Tsukuba, Ibaraki-ken 305-8577 (Japan); Kurisaki, Akira, E-mail: akikuri@hotmail.com [Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8562 (Japan); Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562 (Japan)

    2015-08-07

    The pituitary gland is a center of the endocrine system that controls homeostasis in an organism by secreting various hormones. The glandular anterior pituitary consists of five different cell types, each expressing specific hormones. However, their regulation and the appropriate conditions for their in vitro culture are not well defined. Here, we report the immortalization of mouse pituitary cells by introducing TERT, E6, and E7 transgenes. The immortalized cell lines mainly expressed a thyrotroph-specific thyroid stimulating hormone beta (Tshb). After optimization of the culture conditions, these immortalized cells proliferated and maintained morphological characteristics similar to those of primary pituitary cells under sphere culture conditions in DMEM/F12 medium supplemented with N2, B27, basic FGF, and EGF. These cell lines responded to PKA or PKC pathway activators and induced the expression of Tshb mRNA. Moreover, transplantation of the immortalized cell line into subcutaneous regions and kidney capsules of mice further increased Tshb expression. These results suggest that immortalization of pituitary cells with TERT, E6, and E7 transgenes is a useful method for generating proliferating cells for the in vitro analysis of pituitary regulatory mechanisms. - Highlights: • Mouse pituitary cell lines were immortalized by introducing TERT, E6, and E7. • The immortalized cell lines mainly expressed thyroid stimulating hormone beta. • The cell lines responded to PKA or PKC pathway activators, and induced Tshb.

  19. Corneal Transplantation

    DEFF Research Database (Denmark)

    Hjortdal, Jesper Østergaard

    with less risk of rejection episodes. Besides covering updated chapters on penetrating keratoplasty, and anterior and posterior lamellar procedures, this textbook also gives a thorough overview of the history of corneal transplantation and a detailed presentation of the microstructural components...... and to assist fellows and corneal surgeons in their advice and selection of patients for the best surgical procedure considering benefi ts and risks....

  20. The theory and art of corneal cross-linking

    Directory of Open Access Journals (Sweden)

    Rebecca McQuaid

    2013-01-01

    Full Text Available Before the discovery of corneal cross-linking (CXL, patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma.

  1. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane.

    Science.gov (United States)

    Rohaina, Che Man; Then, Kong Yong; Ng, Angela Min Hwei; Wan Abdul Halim, Wan Haslina; Zahidin, Aida Zairani Mohd; Saim, Aminuddin; Idrus, Ruszymah B H

    2014-03-01

    The cornea can be damaged by a variety of clinical disorders or chemical, mechanical, and thermal injuries. The objectives of this study were to induce bone marrow mesenchymal stem cells (BMSCs) to corneal lineage, to form a tissue engineered corneal substitute (TEC) using BMSCs, and to treat corneal surface defects in a limbal stem cell deficiency model. BMSCs were induced to corneal lineage using limbal medium for 10 days. Induced BMSCs demonstrated upregulation of corneal stem cell markers; β1-integrin, C/EBPδ, ABCG2, and p63, increased protein expression of CK3 and p63 significantly compared with the uninduced ones. For TEC formation, passage 1 BMSCs were trypsinized and seeded on amniotic membrane in a transwell co-culture system and were grown in limbal medium. Limbal stem cell deficiency models were induced by alkaline injury, and the TEC was implanted for 8 weeks. Serial slit lamp evaluation revealed remarkable improvement in corneal regeneration in terms of corneal clarity and reduced vascularization. Histologic and optical coherence tomography analyses demonstrated comparable corneal thickness and achieved stratified epithelium with a compact stromal layer resembling that of normal cornea. CK3 and p63 were expressed in the newly regenerated cornea. In conclusion, BMSCs can be induced into corneal epithelial lineage, and these cells are viable for the formation of TEC, to be used for the reconstruction of the corneal surface in the limbal stem cell deficient model. Copyright © 2014 Mosby, Inc. All rights reserved.

  2. Applications of corneal topography and tomography: a review.

    Science.gov (United States)

    Fan, Rachel; Chan, Tommy Cy; Prakash, Gaurav; Jhanji, Vishal

    2018-03-01

    Corneal imaging is essential for diagnosing and management of a wide variety of ocular diseases. Corneal topography is used to characterize the shape of the cornea, specifically, the anterior surface of the cornea. Most corneal topographical systems are based on Placido disc that analyse rings that are reflected off the corneal surface. The posterior corneal surface cannot be characterized using Placido disc technology. Imaging of the posterior corneal surface is useful for diagnosis of corneal ectasia. Unlike corneal topographers, tomographers generate a three-dimensional recreation of the anterior segment and provide information about the corneal thickness. Scheimpflug imaging is one of the most commonly used techniques for corneal tomography. The cross-sectional images generated by a rotating Scheimpflug camera are used to locate the anterior and posterior corneal surfaces. The clinical uses of corneal topography include, diagnosis of corneal ectasia, assessment of corneal astigmatism, and refractive surgery planning. This review will discuss the applications of corneal topography and tomography in clinical practice. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  3. Immortal DNA strand cosegregation requires p53/IMPDH-dependent asymmetric self-renewal associated with adult stem cells.

    Science.gov (United States)

    Rambhatla, Lakshmi; Ram-Mohan, Sumati; Cheng, Jennifer J; Sherley, James L

    2005-04-15

    Because they are long-lived and cycle continuously, adult stem cells (ASCs) are predicted as the most common precursor for cancers in adult mammalian tissues. Two unique attributes have been proposed to restrict the carcinogenic potential of ASCs. These are asymmetric self-renewal that limits their number and immortal DNA strand cosegregation that limits their accumulation of mutations due to DNA replication errors. Until recently, the molecular basis and regulation of these important ASC-specific functions were unknown. We developed engineered cultured cells that exhibit asymmetric self-renewal and immortal DNA strand cosegregation. These model cells were used to show that both ASC-specific functions are regulated by the p53 cancer gene. Previously, we proposed that IMP dehydrogenase (IMPDH) was an essential factor for p53-dependent asymmetric self-renewal. We now confirm this proposal and provide quantitative evidence that asymmetric self-renewal is acutely sensitive to even modest changes in IMPDH expression. These analyses reveal that immortal DNA strand cosegregation is also regulated by IMPDH and confirm the original implicit precept that immortal DNA strand cosegregation is specific to cells undergoing asymmetric self-renewal (i.e., ASCs). With IMPDH being the rate-determining enzyme for guanine ribonucleotide (rGNP) biosynthesis, its requirement implicates rGNPs as important regulators of ASC asymmetric self-renewal and immortal DNA strand cosegregation. An in silico analysis of global gene expression data from human cancer cell lines underscored the importance of p53-IMPDH-rGNP regulation for normal tissue cell kinetics, providing further support for the concept that ASCs are key targets for adult tissue carcinogenesis.

  4. Evolutionary dynamics of adult stem cells: comparison of random and immortal-strand segregation mechanisms.

    Science.gov (United States)

    Tannenbaum, Emmanuel; Sherley, James L; Shakhnovich, Eugene I

    2005-04-01

    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) "immortal DNA strand" co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.

  5. Higher 5-hydroxymethylcytosine identifies immortal DNA strand chromosomes in asymmetrically self-renewing distributed stem cells.

    Science.gov (United States)

    Huh, Yang Hoon; Cohen, Justin; Sherley, James L

    2013-10-15

    Immortal strands are the targeted chromosomal DNA strands of nonrandom sister chromatid segregation, a mitotic chromosome segregation pattern unique to asymmetrically self-renewing distributed stem cells (DSCs). By nonrandom segregation, immortal DNA strands become the oldest DNA strands in asymmetrically self-renewing DSCs. Nonrandom segregation of immortal DNA strands may limit DSC mutagenesis, preserve DSC fate, and contribute to DSC aging. The mechanisms responsible for specification and maintenance of immortal DNA strands are unknown. To discover clues to these mechanisms, we investigated the 5-methylcytosine and 5-hydroxymethylcytosine (5hmC) content on chromosomes in mouse hair follicle DSCs during nonrandom segregation. Although 5-methylcytosine content did not differ significantly, the relative content of 5hmC was significantly higher in chromosomes containing immortal DNA strands than in opposed mitotic chromosomes containing younger mortal DNA strands. The difference in relative 5hmC content was caused by the loss of 5hmC from mortal chromosomes. These findings implicate higher 5hmC as a specific molecular determinant of immortal DNA strand chromosomes. Because 5hmC is an intermediate during DNA demethylation, we propose a ten-eleven translocase enzyme mechanism for both the specification and maintenance of nonrandomly segregated immortal DNA strands. The proposed mechanism reveals a means by which DSCs "know" the generational age of immortal DNA strands. The mechanism is supported by molecular expression data and accounts for the selection of newly replicated DNA strands when nonrandom segregation is initiated. These mechanistic insights also provide a possible basis for another characteristic property of immortal DNA strands, their guanine ribonucleotide dependency.

  6. Effects of artificial tear treatment on corneal epithelial thickness and corneal topography findings in dry eye patients.

    Science.gov (United States)

    Çakır, B; Doğan, E; Çelik, E; Babashli, T; Uçak, T; Alagöz, G

    2018-05-01

    To investigate the effects of artificial tear treatment on central corneal epithelial thickness, and central, mid-peripheral and peripheral corneal thicknesses in patients with dry eye disease (DED). Patients with DED underwent ocular examinations, including Schirmer-2 test, slit lamp examination for tear break-up time (BUT), corneal topography (CT) for measuring mean central, mid-peripheral and peripheral corneal thickness values and anterior segment optic coherence tomography (AS-OCT) for obtaining central corneal epithelial thickness. After artificial tear treatment (carboxymethylcellulose and sodium hyaluronate formulations) for one month, patients were examined again at a second visit and the results were compared. Sixty-one eyes of 33 female dry eye patients (mean age: 38.3±5.7 years) were enrolled. The mean follow-up time was 36.4±3.3 days. The mean tear BUT and Schirmer-1 tests revealed significant improvement after treatment (P=0.000, P=0.000, respectively). Central corneal epithelium and mean mid-peripheral corneal thicknesses measured significantly higher after treatment (P=0.001, P=0.02). Changes in central and peripheral corneal thicknesses were not statistically significant. Artificial tear treatment in dry eye patients seems to increase central corneal epithelial and mid-peripheral corneal thicknesses. Measurement of corneal epithelial thickness can be a useful tool for evaluation of treatment response in dry eye patients. Further long-term prospective studies are needed to investigate this item. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Topical Drug Formulations for Prolonged Corneal Anesthesia

    Science.gov (United States)

    Wang, Liqiang; Shankarappa, Sahadev A.; Tong, Rong; Ciolino, Joseph B.; Tsui, Jonathan H.; Chiang, Homer H.; Kohane, Daniel S.

    2013-01-01

    Purpose Ocular local anesthetics (OLA’s) currently used in routine clinical practice for corneal anesthesia are short acting and their ability to delay corneal healing makes them unsuitable for long-term use. In this study, we examined the effect on the duration of corneal anesthesia of the site-1 sodium channel blocker tetrodotoxin (TTX), applied with either proparacaine or the chemical permeation enhancer OTAB. The effect of test solutions on corneal healing was also studied. Methods Solutions of TTX, proparacaine, and OTAB, singly or in combination were applied topically to the rat cornea. The blink response, an indirect measure of corneal sensitivity, was recorded using a Cochet-Bonnet esthesiometer, and the duration of corneal anesthesia calculated. The effect of test compounds on the rate of corneal epithelialization was studied in vivo following corneal debridement. Results Combination of TTX and proparacaine resulted in corneal anesthesia that was 8–10 times longer in duration than that from either drug administered alone, while OTAB did not prolong anesthesia. The rate of corneal healing was moderately delayed following co-administration of TTX and proparacaine. Conclusion Co-administration of TTX and proparacaine significantly prolonged corneal anesthesia but in view of delayed corneal re-epithelialization, caution is suggested in use of the combination. PMID:23615270

  8. Evaluation of intraocular pressure according to corneal thickness before and after excimer laser corneal ablation for myopia.

    Science.gov (United States)

    Hamed-Azzam, Shirin; Briscoe, Daniel; Tomkins, Oren; Shehedeh-Mashor, Raneen; Garzozi, Hanna

    2013-08-01

    Intraocular pressure is affected by corneal thickness and biomechanics. Following ablative corneal refractive surgery, corneal structural changes occur. The purpose of the study is to determine the relationship between the mean central corneal thickness (CCT) and the change in intraocular pressure measurements following various corneal ablation techniques, using different measurement methods. Two hundred myopic eyes undergoing laser in situ keratomileusis (LASIK) or photorefractive keratectomy (PRK) were enrolled into a prospective, non-randomized study. Corneal parameters examined included full ocular examination, measurement of CCT, corneal topography, corneal curvature and ocular refractivity. Intraocular pressure measurements were obtained using three different instruments-non-contact tonometer, Goldmann applanation tonometer and TonoPen XL (TonoPen-Central and TonoPen-Peripheral). All measurements were performed pre-operatively and 4 months post-operatively. Post-operative intraocular pressure was significantly lower than pre-operative values, with all instruments (p value tonometer and non-contact tonometer (p value < 0.001, ANOVA). Intraocular pressure readings are significantly reduced following corneal ablation surgery. We determined in our myopic patient cohort that the TonoPen XL intraocular pressure measurement method is the least affected following PRK and LASIK as compared to other techniques.

  9. Trifluoperazine: corneal endothelial phototoxicity

    International Nuclear Information System (INIS)

    Hull, D.S.; Csukas, S.; Green, K.

    1983-01-01

    Trifluoperazine is used for the treatment of psychiatric disorders. Perfusion of corneal endothelial cells with trifluoperazine-HC1 concurrent with exposure to long wavelength ultraviolet light resulted in a corneal swelling rate greater than that found in perfused corneas not exposed to ultraviolet light. Exposure of endothelial cells to 25 W incandescent light during perfusion with trifluoperazine-HC1 did not result in a higher corneal swelling rate compared to those perfused in the dark. The increased corneal swelling rate could be produced by pre-exposure of the trifluoperazine-HC1 perfusing solution to ultraviolet light suggesting the production of toxic photoproducts during exposure of trifluoperazine-HC1 to ultraviolet light. Perfusion of corneal endothelial cells with non-ultraviolet illuminated trifluoperazine-HC1 had no effect on endothelial cell membranes or ultrastructure. This is in contrast to cells perfused with trifluoperazine-HC1 that had been exposed to ultraviolet light in which there was an alteration of mitochondria and a loss of cytoplasmic homogeneity. The data imply that the trifluoperazine-HC1 photoproduct had an adverse effect on cellular transport mechanisms. The study also further demonstrates the value of the corneal endothelial cell model for identifying the physiological and anatomical changes occuring in photo-induced toxic reactions. (author)

  10. Corneal surface temperature change as the mode of stimulation of the non-contact corneal aesthesiometer.

    Science.gov (United States)

    Murphy, P J; Morgan, P B; Patel, S; Marshall, J

    1999-05-01

    The non-contact corneal aesthesiometer (NCCA) assesses corneal sensitivity by using a controlled pulse of air, directed at the corneal surface. The purpose of this paper was to investigate whether corneal surface temperature change was a component in the mode of stimulation. Thermocouple experiment: A simple model corneal surface was developed that was composed of a moistened circle of filter paper placed on a thermocouple and mounted on a glass slide. The temperature change produced by different stimulus pressures was measured for five different ambient temperatures. Thermal camera experiment: Using a thermal camera, the corneal surface temperature change was measured in nine young, healthy subjects after exposure to different stimulus air pulses. Pulse duration was set at 0.9 s but was varied in pressure from 0.5 to 3.5 millibars. Thermocouple experiment: An immediate drop in temperature was detected by the thermocouple as soon as the air flow was incident on the filter paper. A greater temperature change was produced by increasing the pressure of the incident air flow. A relationship was found and a calibration curve plotted. Thermal camera experiment: For each subject, a drop in surface temperature was detected at each stimulus pressure. Furthermore, as the stimulus pressure increased, the induced reduction in temperature also increased. A relationship was found and a calibration curve plotted. The NCCA air-pulse stimulus was capable of producing a localized temperature change on the corneal surface. The principal mode of corneal nerve stimulation, by the NCCA air pulse, was the rate of temperature change of the corneal surface.

  11. CONTACT LENS RELATED CORNEAL ULCER

    Directory of Open Access Journals (Sweden)

    AGARWAL P

    2010-01-01

    Full Text Available A corneal ulcer caused by infection is one of the major causes of blindness worldwide. One of the recent health concerns is the increasing incidence of corneal ulcers associated with contact lens user especially if the users fail to follow specific instruction in using their contact lenses. Risk factors associated with increased risk of contact lens related corneal ulcers are:overnight wear, long duration of continuous wear, lower socio-economic classes, smoking, dry eye and poor hygiene. The presenting symptoms of contact lens related corneal ulcers include eye discomfort, foreign body sensation and lacrimation. More serious symptoms are redness (especially circum-corneal injection, severe pain, photophobia, eye discharge and blurring of vision. The diagnosis is established by a thorough slit lamp microscopic examination with fluorescein staining and corneal scraping for Gram stain and culture of the infective organism. Delay in diagnosing and treatment can cause permanent blindness, therefore an early referral to ophthalmologist and commencing of antimicrobial therapy can prevent visual loss.

  12. Aneuploidy in immortalized human mesenchymal stem cells with non-random loss of chromosome 13 in culture.

    Science.gov (United States)

    Takeuchi, Masao; Takeuchi, Kikuko; Ozawa, Yutaka; Kohara, Akihiro; Mizusawa, Hiroshi

    2009-01-01

    Aneuploidy (an abnormal number of chromosomes) is commonly observed in most human cancer cells, highlighting the need to examine chromosomal instability in tumorigenesis. Previously, the immortalized human mesenchymal stem cell line UE6E7T-3 was shown to undergo a preferential loss of one copy of chromosome 13 after prolonged culture. Here, the loss of chromosome 13 was found to be caused by chromosome missegregation during mitosis, which involved unequal segregation, exclusion of the misaligned chromosome 13 on the metaphase plate, and trapping of chromosome 13 in the midbody region, as observed by fluorescence in situ hybridization. Near-diploid aneuploidy, not tetraploidy, was the direct result. The loss of chromosome 13 was non-random, and was detected by analysis of microsatellites and single nucleotide polymorphism-based loss of heterozygosity (LOH). Of the five microsatellite loci on chromosome 13, four loci showed microsatellite instability at an early stage in culture, and LOH was apparent at a late stage in culture. These results suggest that the microsatellite mutations cause changes in centromere integrity provoking loss of this chromosome in the UE6E7T-3 cell line. Thus, these results support the use of this cell line as a useful model for understanding the mechanism of aneuploid formation in cell cultures.

  13. Dynamic Corneal Surface Mapping with Electronic Speckle Pattern Interferometry

    Science.gov (United States)

    Iqbal, S.; Gualini, M. M. S.

    2013-06-01

    In view of the fast advancement in ophthalmic technology and corneal surgery, there is a strong need for the comprehensive mapping and characterization techniques for corneal surface. Optical methods with precision non-contact approaches have been found to be very useful for such bio measurements. Along with the normal mapping approaches, elasticity of corneal surface has an important role in its characterization and needs to be appropriately measured or estimated for broader diagnostics and better prospective surgical results, as it has important role in the post-op corneal surface reconstruction process. Use of normal corneal topographic devices is insufficient for any intricate analysis since these devices operate at relatively moderate resolution. In the given experiment, Pulsed Electronic Speckle Pattern Interferometry has been utilized along with an excitation mechanism to measure the dynamic response of the sample cornea. A Pulsed ESPI device has been chosen for the study because of its micron-level resolution and other advantages in real-time deformation analysis. A bovine cornea has been used as a sample in the subject experiment. The dynamic response has been taken on a chart recorder and it is observed that it does show a marked deformation at a specific excitation frequency, which may be taken as a characteristic elasticity parameter for the surface of that corneal sample. It was seen that outside resonance conditions the bovine cornea was not that much deformed. Through this study, the resonance frequency and the corresponding corneal deformations are mapped and plotted in real time. In these experiments, data was acquired and processed by FRAMES plus computer analysis system. With some analysis of the results, this technique can help us to refine a more detailed corneal surface mathematical model and some preliminary work was done on this. Such modelling enhancements may be useful for finer ablative surgery planning. After further experimentation

  14. A fully automated cell segmentation and morphometric parameter system for quantifying corneal endothelial cell morphology.

    Science.gov (United States)

    Al-Fahdawi, Shumoos; Qahwaji, Rami; Al-Waisy, Alaa S; Ipson, Stanley; Ferdousi, Maryam; Malik, Rayaz A; Brahma, Arun

    2018-07-01

    Corneal endothelial cell abnormalities may be associated with a number of corneal and systemic diseases. Damage to the endothelial cells can significantly affect corneal transparency by altering hydration of the corneal stroma, which can lead to irreversible endothelial cell pathology requiring corneal transplantation. To date, quantitative analysis of endothelial cell abnormalities has been manually performed by ophthalmologists using time consuming and highly subjective semi-automatic tools, which require an operator interaction. We developed and applied a fully-automated and real-time system, termed the Corneal Endothelium Analysis System (CEAS) for the segmentation and computation of endothelial cells in images of the human cornea obtained by in vivo corneal confocal microscopy. First, a Fast Fourier Transform (FFT) Band-pass filter is applied to reduce noise and enhance the image quality to make the cells more visible. Secondly, endothelial cell boundaries are detected using watershed transformations and Voronoi tessellations to accurately quantify the morphological parameters of the human corneal endothelial cells. The performance of the automated segmentation system was tested against manually traced ground-truth images based on a database consisting of 40 corneal confocal endothelial cell images in terms of segmentation accuracy and obtained clinical features. In addition, the robustness and efficiency of the proposed CEAS system were compared with manually obtained cell densities using a separate database of 40 images from controls (n = 11), obese subjects (n = 16) and patients with diabetes (n = 13). The Pearson correlation coefficient between automated and manual endothelial cell densities is 0.9 (p system, and the possibility of utilizing it in a real world clinical setting to enable rapid diagnosis and for patient follow-up, with an execution time of only 6 seconds per image. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Wenlin Zhang

    2017-02-01

    Full Text Available Corneal endothelium (CE is among the most metabolically active tissues in the body. This elevated metabolic rate helps the CE maintain corneal transparency by its ion and fluid transport properties, which when disrupted, leads to visual impairment. Here we demonstrate that glutamine catabolism (glutaminolysis through TCA cycle generates a large fraction of the ATP needed to maintain CE function, and this glutaminolysis is severely disrupted in cells deficient in NH3:H+ cotransporter Solute Carrier Family 4 Member 11 (SLC4A11. Considering SLC4A11 mutations leads to corneal endothelial dystrophy and sensorineural deafness, our results indicate that SLC4A11-associated developmental and degenerative disorders result from altered glutamine catabolism. Overall, our results describe an important metabolic mechanism that provides CE cells with the energy required to maintain high level transport activity, reveal a direct link between glutamine metabolism and developmental and degenerative neuronal diseases, and suggest an approach for protecting the CE during ophthalmic surgeries.

  16. Comparative human cellular radiosensitivity: Pt. 1

    International Nuclear Information System (INIS)

    Arlett, C.F.; Green, M.H.L.; Priestley, A.; Harcourt, S.A.; Mayne, L.V.

    1988-01-01

    The authors compared cell killing following 60 Co gamma irradiation in 22 primary human fibroblast strains, nine SV40-immortalized human fibroblast lines and seven SV40-transformed pre-crisis human fibroblast cultures from normal individuals, from ataxia-telangiectasia (A-T) patients and from A-T heterozygotes. They confirmed the greater sensitivity of A-T derived cells to gamma radiation. The distinction between A-T and normal cells is maintained in cells immortalized by SV40-virus but immortal cells are more gamma radiation resistant than corresponding primary fibroblasts. Cells transformed by plasmids (pSV3gpt and pSV3neo) expressing SV40 T-antigen, both pre- and post-crisis, show this increased resistance, indicating that expression of SV40 T-antigen, rather than immortalization per se is responsible for the change. (author)

  17. Corneal Toxicity Following Exposure to Asclepias Tuberosa.

    Science.gov (United States)

    Mikkelsen, Lauge Hjorth; Hamoudi, Hassan; Gül, Cigdem Altuntas; Heegaard, Steffen

    2017-01-01

    To present a case of corneal toxicity following exposure to milky plant latex from Asclepias tuberosa. A 70-year-old female presented with blurred vision and pain in her left eye after handling an Ascepias tuberosa . Clinical examination revealed a corneal stromal oedema with small epithelial defects. The corneal endothelium was intact and folds in Descemets membrane were observed. The oedema was treated with chloramphenicol, dexamethasone and scopolamine. The corneal oedema had appeared after corneal exposure to the plant, Asclepias tuberosa , whose latex contains cardenolides that inhibit the Na + / K + -ATPase in the corneal endothelium. The oedema resolved after 96 hours. After nine months the best corrected visual acuity was 20/20. Corneal toxicity has previously been reported for plants of the Asclepias family. This is a rare case describing severe corneal toxicity caused by exposure to latex from Asclepias tuberosa . Handling of plants of the Asclepias family should be kept as a differential diagnosis in cases of acute corneal toxicity.

  18. Distrofia corneal de Schnyder

    Directory of Open Access Journals (Sweden)

    Michel Guerra Almaguer

    Full Text Available La principal entidad hereditaria con depósitos de lípidos en el estroma corneal es la distrofia cristalina central, conocida como distrofia de Schnyder, quien la describió en Suiza en 1927. Se caracteriza por depósitos blanco-amarillentos en el estroma corneal central y superficial. Se presenta un paciente de 28 años, del sexo masculino y piel negra, con antecedente de salud anterior. Acudió a consulta y refirió una disminución de la visión y cambio de coloración progresiva de ambos ojos, de años de evolución. En la exploración oftalmológica de ambos ojos se apreciaron lesiones blanquecinas anulares a nivel del estroma corneal, con ligera turbidez corneal central. Los estudios refractivos realizados constataron un astigmatismo hipermetrópico simple. El resto del examen oftalmológico fue negativo. Para el diagnóstico de certeza se empleó el microscopio confocal. Se concluye que el caso presenta una distrofia corneal estromal de tipo cristalina, de Schnyder.

  19. History of corneal transplantation in Australia.

    Science.gov (United States)

    Coster, Douglas J

    2015-04-01

    Corneal transplantation is a triumph of modern ophthalmology. The possibility of corneal transplantation was first raised in 1797 but a century passed before Zirm achieved the first successful penetrating graft in 1905. Gibson reported the first corneal graft in Australia from Brisbane in 1940 and English established the first eye bank there a few years later. Corneal transplantation evolved steadily over the twentieth century. In the second half of the century, developments in microsurgery, including surgical materials such as monofilament nylon and strong topical steroid drops, accounted for improvements in outcomes. In 2013, approximately 1500 corneal transplants were done in Australia. Eye banking has evolved to cope with the rising demands for donor corneas. Australian corneal surgeons collaborated to establish and support the Australian Corneal Graft Registry in 1985. It follows the outcomes of their surgery and has become an important international resource for surgeons seeking further improvement with the procedure. © 2014 Royal Australian and New Zealand College of Ophthalmologists.

  20. Successful transplantation of in vitro expanded human cadaver corneal endothelial precursor cells on to a cadaver bovine's eye using a nanocomposite gel sheet.

    Science.gov (United States)

    Parikumar, Periyasamy; Haraguchi, Kazutoshi; Ohbayashi, Akira; Senthilkumar, Rajappa; Abraham, Samuel J K

    2014-05-01

    In vitro expansion of human corneal endothelial precursor (HCEP) cells has been reported via production of cell aggregated spheres. However, to translate this procedure in human patients warrants maintaining the position of the eyeballs facing down for 36 h, which is not feasible. In this study, we report a method using a nanocomposite (NC) gel sheet to accomplish the integration of HCEP cells to the endothelium of cadaver bovine's eyes. HCEP cells were isolated from the corneal endothelium of a cadaver human eye and then expanded using a thermoreversible gelation polymer (TGP) as reported earlier. For the study, three cadaver bovine eyes were used. The NC gel sheets were inserted into the bovine eyes', aligned and suture-fixed in position under the host endothelium. HCEP cells previously expanded in the TGP were harvested and injected using a 26-gauge syringe between the endothelium and the NC gel sheet. The eyes were left undisturbed for three hours following which the NC gel sheets were gently removed. The corneas were harvested and subjected to histopathological studies. Histopathological studies showed that all the three corneas used for NC gel sheet implantation showed the presence of engrafted HCEP cells, seen as multi-layered cells over the native endothelium of the bovine cornea. Examination of the NC gel sheets used for implantation showed that only very few corneal endothelial cells remained on the sheets amounting to what could be considered negligible. The use of the NC gel sheet makes HCEP cell transplantation feasible for human patients. Further in vitro basic studies followed by translational studies are necessary to bring this method for clinical application in appropriate indications.

  1. Glaucoma after corneal replacement.

    Science.gov (United States)

    Baltaziak, Monika; Chew, Hall F; Podbielski, Dominik W; Ahmed, Iqbal Ike K

    Glaucoma is a well-known complication after corneal transplantation surgery. Traditional corneal transplantation surgery, specifically penetrating keratoplasty, has been slowly replaced by the advent of new corneal transplantation procedures: primarily lamellar keratoplasties. There has also been an emergence of keratoprosthesis implants for eyes that are high risk of failure with penetrating keratoplasty. Consequently, there are different rates of glaucoma, pathogenesis, and potential treatment in the form of medical, laser, or surgical therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Turning the tide of corneal blindness

    Directory of Open Access Journals (Sweden)

    Matthew S Oliva

    2012-01-01

    Full Text Available Corneal diseases represent the second leading cause of blindness in most developing world countries. Worldwide, major investments in public health infrastructure and primary eye care services have built a strong foundation for preventing future corneal blindness. However, there are an estimated 4.9 million bilaterally corneal blind persons worldwide who could potentially have their sight restored through corneal transplantation. Traditionally, barriers to increased corneal transplantation have been daunting, with limited tissue availability and lack of trained corneal surgeons making widespread keratoplasty services cost prohibitive and logistically unfeasible. The ascendancy of cataract surgical rates and more robust eye care infrastructure of several Asian and African countries now provide a solid base from which to dramatically expand corneal transplantation rates. India emerges as a clear global priority as it has the world′s largest corneal blind population and strong infrastructural readiness to rapidly scale its keratoplasty numbers. Technological modernization of the eye bank infrastructure must follow suit. Two key factors are the development of professional eye bank managers and the establishment of Hospital Cornea Recovery Programs. Recent adaptation of these modern eye banking models in India have led to corresponding high growth rates in the procurement of transplantable tissues, improved utilization rates, operating efficiency realization, and increased financial sustainability. The widespread adaptation of lamellar keratoplasty techniques also holds promise to improve corneal transplant success rates. The global ophthalmic community is now poised to scale up widespread access to corneal transplantation to meet the needs of the millions who are currently blind.

  3. Analysis of the horizontal corneal diameter, central corneal thickness, and axial length in premature infants

    Directory of Open Access Journals (Sweden)

    Ozdemir Ozdemir

    2014-08-01

    Full Text Available Purpose: To determine the horizontal corneal diameter, central corneal thickness, and axial length in premature infants. Methods: Infants with a birth weight of less than 2,500 g or with a gestation period of less than 36 weeks were included in the study. Infants with retinopathy of prematurity (ROP were allocated to Group 1 (n=138, while those without ROP were allocated to Group 2 (n=236. All infants underwent a complete ophthalmologic examination, including corneal diameter measurements, pachymetry, biometry, and fundoscopy. Between-group comparisons of horizontal corneal diameter, central corneal thickness, and axial lengths were performed. Independent sample t-tests were used for statistical analysis. Results: Data was obtained from 374 eyes of 187 infants (102 female, 85 male. The mean gestational age at birth was 30.7 ± 2.7 weeks (range 25-36 weeks, the mean birth weight was 1,514 ± 533.3 g (range 750-1,970 g, and the mean postmenstrual age at examination was 40.0 ± 4.8 weeks. The mean gestational age and the mean birth weight of Group 1 were statistically lower than Group 2 (p0.05. Conclusions: The presence of ROP in premature infants does not alter the horizontal corneal diameter, central corneal thickness, or axial length.

  4. Corneal Toxicity Following Exposure to Asclepias Tuberosa

    DEFF Research Database (Denmark)

    Mikkelsen, Lauge Hjorth; Hamoudi, Hassan; Gül, Cigdem Altuntas

    2017-01-01

    PURPOSE: To present a case of corneal toxicity following exposure to milky plant latex from Asclepias tuberosa. METHODS: A 70-year-old female presented with blurred vision and pain in her left eye after handling an Ascepias tuberosa. Clinical examination revealed a corneal stromal oedema with small...... epithelial defects. The corneal endothelium was intact and folds in Descemets membrane were observed. The oedema was treated with chloramphenicol, dexamethasone and scopolamine. RESULTS: The corneal oedema had appeared after corneal exposure to the plant, Asclepias tuberosa, whose latex contains cardenolides...... that inhibit the Na+/ K+-ATPase in the corneal endothelium. The oedema resolved after 96 hours. After nine months the best corrected visual acuity was 20/20. CONCLUSION: Corneal toxicity has previously been reported for plants of the Asclepias family. This is a rare case describing severe corneal toxicity...

  5. Different cellular effects of four anti-inflammatory eye drops on human corneal epithelial cells: independent in active components

    OpenAIRE

    Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun

    2011-01-01

    Purpose To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. Methods The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were...

  6. Corneal collagen crosslinking and pigment dispersion syndrome.

    Science.gov (United States)

    LaHood, Benjamin R; Moore, Sacha

    2017-03-01

    We describe the case of a keratoconus patient with pigment dispersion syndrome (PDS) who was treated for progressive corneal ectasia with corneal collagen crosslinking (CXL). Pigment dispersion syndrome has been shown to have associated morphologic changes of the corneal endothelium. Corneal CXL has the potential to cause toxicity to the corneal endothelium, and adjacent pigment might increase the likelihood of damage. In this case, the presence of PDS had no detrimental effect on the outcome of treatment, and no complications were observed at 12 months follow-up, indicating that it may be safe to perform corneal CXL in the setting of PDS. This is an important observation as the number of indications for corneal CXL grows. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. The structural and optical properties of type III human collagen biosynthetic corneal substitutes

    Science.gov (United States)

    Hayes, Sally; Lewis, Phillip; Islam, M. Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M.

    2015-01-01

    The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2–9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. PMID:26159106

  8. Engineering of Corneal Tissue through an Aligned PVA/Collagen Composite Nanofibrous Electrospun Scaffold.

    Science.gov (United States)

    Wu, Zhengjie; Kong, Bin; Liu, Rui; Sun, Wei; Mi, Shengli

    2018-02-24

    Corneal diseases are the main reason of vision loss globally. Constructing a corneal equivalent which has a similar strength and transparency with the native cornea, seems to be a feasible way to solve the shortage of donated cornea. Electrospun collagen scaffolds are often fabricated and used as a tissue-engineered cornea, but the main drawback of poor mechanical properties make it unable to meet the requirement for surgery suture, which limits its clinical applications to a large extent. Aligned polyvinyl acetate (PVA)/collagen (PVA-COL) scaffolds were electrospun by mixing collagen and PVA to reinforce the mechanical strength of the collagen electrospun scaffold. Human keratocytes (HKs) and human corneal epithelial cells (HCECs) inoculated on aligned and random PVA-COL electrospun scaffolds adhered and proliferated well, and the aligned nanofibers induced orderly HK growth, indicating that the designed PVA-COL composite nanofibrous electrospun scaffold is suitable for application in tissue-engineered cornea.

  9. Corneal melanosis successfully treated using topical mitomycin-C and alcohol corneal epitheliectomy: a 3-year follow-up case report

    Directory of Open Access Journals (Sweden)

    Mehmet Balcı

    2015-08-01

    Full Text Available ABSTRACTWe report a case of primary acquired corneal melanosis without atypia associated with corneal haze in a patient with a history of limbal malignant melanoma and the effect of mitomycin-C. A 75-year-old woman with a history of limbal malignant melanoma presented with loss of vision in right eye. Corneal examination showed a patchy melanotic pigmentation with a central haze. Topical mitomycin-C improved visual acuity and corneal haze. However, the pigmented lesions persisted, and they were removed with alcohol corneal epitheliectomy. Histopathological examination demonstrated primary acquired melanosis without atypia. The lesions were successfully removed, and there were no recurrences during the follow-up period of 36 months. The association of conjunctival and corneal melanosis without atypia is a rare condition. In addition, co-existence of central corneal haze and melanosis may decrease visual acuity. Topical mitomycin-C and alcohol corneal epitheliectomy can be useful treatments in this condition.

  10. Healed corneal ulcer with keloid formation.

    Science.gov (United States)

    Alkatan, Hind M; Al-Arfaj, Khalid M; Hantera, Mohammed; Al-Kharashi, Soliman

    2012-04-01

    We are reporting a 34-year-old Arabic white female patient who presented with a white mass covering her left cornea following multiple ocular surgeries and healed corneal ulcer. The lesion obscured further view of the iris, pupil and lens. The patient underwent penetrating keratoplasty and the histopathologic study of the left corneal button showed epithelial hyperplasia, absent Bowman's layer and subepithelial fibrovascular proliferation. The histopathologic appearance was suggestive of a corneal keloid which was supported by further ultrastructural study. The corneal graft remained clear 6 months after surgery and the patient was satisfied with the visual outcome. Penetrating keratoplasty may be an effective surgical option for corneal keloids in young adult patients.

  11. Current status of accelerated corneal cross-linking

    Directory of Open Access Journals (Sweden)

    Michael Mrochen

    2013-01-01

    Full Text Available Corneal cross-linking with riboflavin is a technique to stabilize or reduce corneal ectasia, in diseases such as keratoconus and post-laser-assisted in situ keratomileusis (LASIK ectasia. There is an interest by patient as well as clinicians to reduce the overall treatment time. Especially, the introduction of corneal cross-linking in combination with corneal laser surgery demands a shorter treatment time to assure a sufficient patient flow. The principles and techniques of accelerated corneal cross-linking is discussed.

  12. Corneal Regeneration After Photorefractive Keratectomy: A Review

    Directory of Open Access Journals (Sweden)

    Javier Tomás-Juan

    2015-07-01

    Full Text Available Photorefractive keratectomy (PRK remodels corneal stroma to compensate refractive errors. The removal of epithelium and the ablation of stroma provoke the disruption of corneal nerves and a release of several peptides from tears, epithelium, stroma and nerves. A myriad of cytokines, growth factors, and matrix metalloproteases participate in the process of corneal wound healing. Their balance will determine if reepithelization and stromal remodeling are appropriate. The final aim is to achieve corneal transparency for restoring corneal function, and a proper visual quality. Therefore, wound-healing response is critical for a successful refractive surgery. Our goal is to provide an overview into how corneal wounding develops following PRK. We will also review the influence of intraoperative application of mitomycin C, bandage contact lenses, anti-inflammatory and other drugs in preventing corneal haze and post-PRK pain.

  13. Evaluation of subbasal nerve morphology and corneal sensation after accelerated corneal collagen cross-linking treatment on keratoconus.

    Science.gov (United States)

    Ozgurhan, Engin Bilge; Celik, Ugur; Bozkurt, Ercument; Demirok, Ahmet

    2015-05-01

    The aim of this study was to report on the evaluation of corneal nerve fiber density and corneal sensation after accelerated corneal collagen cross-linking on keratoconus patients. The study was performed on 30 keratoconus eyes (30 participants: 16 M, 14 F; 17-32 years old) treated with accelerated collagen cross-linking for disease stabilization. Mean outcome measures were corneal sensation evaluation by Cochet-Bonnet esthesiometry and subbasal nerve fiber density assessment by corneal in vivo confocal microscopy. All corneal measurements were performed using scanning slit confocal microscopy (ConfoScan 4, Nidek Technologies, Padova, Italy). The accelerated corneal collagen cross-linking procedure was performed on 30 eyes of 30 patients (19 right, 63.3%; 11 left, 27.7%). The mean age was 23.93 ± 4. The preoperative mean keratometry, apex keratometry and pachymetry values were 47.19 ± 2.82 D, 56.79 ± 5.39 and 426.1 ± 25.6 μm, respectively. Preoperative mean corneal sensation was 56.3 ± 5.4 mm (with a range from 40 to 60 mm), it was significantly decreased at 1st and 3rd month visit and increased to preoperative values after 6th month visit. Preoperative mean of subbasal nerve fiber density measurements was 22.8 ± 9.7 nerve fiber/mm(2) (with a range of 5-45 mm), it was not still at the preoperative values at 6th month (p = 0.0001), however reached to the preoperative values at 12th month (p = 0.914). Subbasal nerve fibers could reach the preoperative values at the 12th month after accelerated corneal collagen cross-linking treatment although the corneal sensation was improved at 6th month. These findings imply that the subjective healing process is faster than the objective evaluation of the keratoconus patients' cornea treated with accelerated corneal collagen cross-linking.

  14. Corneal Reinnervation and Sensation Recovery in Patients With Herpes Zoster Ophthalmicus: An In Vivo and Ex Vivo Study of Corneal Nerves.

    Science.gov (United States)

    Cruzat, Andrea; Hamrah, Pedram; Cavalcanti, Bernardo M; Zheng, Lixin; Colby, Kathryn; Pavan-Langston, Deborah

    2016-05-01

    To study corneal reinnervation and sensation recovery in Herpes zoster ophthalmicus (HZO). Two patients with HZO were studied over time with serial corneal esthesiometry and laser in vivo confocal microscopy (IVCM). A Boston keratoprosthesis type 1 was implanted, and the explanted corneal tissues were examined by immunofluorescence histochemistry for βIII-tubulin to stain for corneal nerves. The initial central corneal IVCM performed in each patient showed a complete lack of the subbasal nerve plexus, which was in accordance with severe loss of sensation (0 of 6 cm) measured by esthesiometry. When IVCM was repeated 2 years later before undergoing surgery, case 1 showed a persistent lack of central subbasal nerves and sensation (0 of 6). In contrast, case 2 showed regeneration of the central subbasal nerves (4786 μm/mm) with partial recovery of corneal sensation (2.5 of 6 cm). Immunostaining of the explanted corneal button in case 1 showed no corneal nerves, whereas case 2 showed central and peripheral corneal nerves. Eight months after surgery, IVCM was again repeated in the donor tissue around the Boston keratoprosthesis in both patients to study innervation of the corneal transplant. Case 1 showed no nerves, whereas case 2 showed new nerves growing from the periphery into the corneal graft. We demonstrate that regaining corneal innervation and corneal function are possible in patients with HZO as shown by corneal sensation, IVCM, and ex vivo immunostaining, indicating zoster neural damage is not always permanent and it may recover over an extended period of time.

  15. Symbiotic Plant Peptides Eliminate Candida albicans Both In Vitro and in an Epithelial Infection Model and Inhibit the Proliferation of Immortalized Human Cells

    Directory of Open Access Journals (Sweden)

    Lilla Ördögh

    2014-01-01

    Full Text Available The increasing number of multidrug-resistant microbes now emerging necessitates the identification of novel antimicrobial agents. Plants produce a great variety of antimicrobial peptides including hundreds of small, nodule-specific cysteine-rich NCR peptides that, in the legume Medicago truncatula, govern the differentiation of endosymbiotic nitrogen fixing bacteria and, in vitro, can display potent antibacterial activities. In this study, the potential candidacidal activity of 19 NCR peptides was investigated. Cationic NCR peptides having an isoelectric point above 9 were efficient in killing Candida albicans, one of the most common fungal pathogens of humans. None of the tested NCR peptides were toxic for immortalized human epithelial cells at concentrations that effectively killed the fungus; however, at higher concentrations, some of them inhibited the division of the cells. Furthermore, the cationic peptides successfully inhibited C. albicans induced human epithelial cell death in an in vitro coculture model. These results highlight the therapeutic potential of cationic NCR peptides in the treatment of candidiasis.

  16. IκB kinase β regulates epithelium migration during corneal wound healing.

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2011-01-01

    Full Text Available The IKKβ is known to regulate transcription factor NF-κB activation leading to inflammatory responses. Recent gene knockout studies have shown that IKKβ can orchestrate local inflammatory responses and regulate homeostasis of epithelial tissues. To investigate whether IKKβ has an intrinsic role in epithelial cells, we established an in vivo system in the immune privileged corneal epithelium. We generated triple transgenic Krt12(rtTA/rtTAt/tet-O-Cre/Ikkβ(F/F (Ikkβ(ΔCE/ΔCE mice by crossing the Krt12-rtTA knock-in mice, which express the reverse tetracycline transcription activator in corneal epithelial cells, with the tet-O-Cre and Ikkβ(F/F mice. Doxycycline-induced IKKβ ablation occurred in corneal epithelial cells of triple transgenic Ikkβ(ΔCE/ΔCE mice, but loss of IKKβ did not cause ocular abnormalities in fetal development and postnatal maintenance. Instead, loss of IKKβ significantly delayed healing of corneal epithelial debridement without affecting cell proliferation, apoptosis or macrophage infiltration. In vitro studies with human corneal epithelial cells (HCEpi also showed that IKKβ was required for cytokine-induced cell migration and wound closure but was dispensable for cell proliferation. In both in vivo and in vitro settings, IKKβ was required for optimal activation of NF-κB and p38 signaling in corneal epithelial cells, and p38 activation is likely mediated through formation of an IKKβ-p38 protein complex. Thus, our studies in corneal epithelium reveal a previously un-recognized role for IKKβ in the control of epithelial cell motility and wound healing.

  17. Corneal Regeneration After Photorefractive Keratectomy: A Review.

    Science.gov (United States)

    Tomás-Juan, Javier; Murueta-Goyena Larrañaga, Ane; Hanneken, Ludger

    2015-01-01

    Photorefractive keratectomy (PRK) remodels corneal stroma to compensate refractive errors. The removal of epithelium and the ablation of stroma provoke the disruption of corneal nerves and a release of several peptides from tears, epithelium, stroma and nerves. A myriad of cytokines, growth factors, and matrix metalloproteases participate in the process of corneal wound healing. Their balance will determine if reepithelization and stromal remodeling are appropriate. The final aim is to achieve corneal transparency for restoring corneal function, and a proper visual quality. Therefore, wound-healing response is critical for a successful refractive surgery. Our goal is to provide an overview into how corneal wounding develops following PRK. We will also review the influence of intraoperative application of mitomycin C, bandage contact lenses, anti-inflammatory and other drugs in preventing corneal haze and post-PRK pain. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  18. Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Petr; Jensen, Taylor J.; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

    2009-04-20

    The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunction due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that mayprove useful in breast cancer risk assessment.

  19. The SULFs, extracellular sulfatases for heparan sulfate, promote the migration of corneal epithelial cells during wound repair.

    Directory of Open Access Journals (Sweden)

    Inna Maltseva

    Full Text Available Corneal epithelial wound repair involves the migration of epithelial cells to cover the defect followed by the proliferation of the cells to restore thickness. Heparan sulfate proteoglycans (HSPGs are ubiquitous extracellular molecules that bind to a plethora of growth factors, cytokines, and morphogens and thereby regulate their signaling functions. Ligand binding by HS chains depends on the pattern of four sulfation modifications, one of which is 6-O-sulfation of glucosamine (6OS. SULF1 and SULF2 are highly homologous, extracellular endosulfatases, which post-synthetically edit the sulfation status of HS by removing 6OS from intact chains. The SULFs thereby modulate multiple signaling pathways including the augmentation of Wnt/ß-catenin signaling. We found that wounding of mouse corneal epithelium stimulated SULF1 expression in superficial epithelial cells proximal to the wound edge. Sulf1⁻/⁻, but not Sulf2⁻/⁻, mice, exhibited a marked delay in healing. Furthermore, corneal epithelial cells derived from Sulf1⁻/⁻ mice exhibited a reduced rate of migration in repair of a scratched monolayer compared to wild-type cells. In contrast, human primary corneal epithelial cells expressed SULF2, as did a human corneal epithelial cell line (THCE. Knockdown of SULF2 in THCE cells also slowed migration, which was restored by overexpression of either mouse SULF2 or human SULF1. The interchangeability of the two SULFs establishes their capacity for functional redundancy. Knockdown of SULF2 decreased Wnt/ß-catenin signaling in THCE cells. Extracellular antagonists of Wnt signaling reduced migration of THCE cells. However in SULF2- knockdown cells, these antagonists exerted no further effects on migration, consistent with the SULF functioning as an upstream regulator of Wnt signaling. Further understanding of the mechanistic action of the SULFs in promoting corneal repair may lead to new therapeutic approaches for the treatment of corneal injuries.

  20. Corneal laceration caused by river crab

    Directory of Open Access Journals (Sweden)

    Vinuthinee N

    2015-01-01

    Full Text Available Naidu Vinuthinee,1,2 Anuar Azreen-Redzal,1 Jaafar Juanarita,1 Embong Zunaina2 1Department of Ophthalmology, Hospital Sultanah Bahiyah, Alor Setar, 2Department of Ophthalmology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia Abstract: A 5-year-old boy presented with right eye pain associated with tearing and photophobia of 1-day duration. He gave a history of playing with a river crab when suddenly the crab clamped his fingers. He attempted to fling the crab off, but the crab flew and hit his right eye. Ocular examination revealed a right eye corneal ulcer with clumps of fibrin located beneath the corneal ulcer and 1.6 mm level of hypopyon. At presentation, the Seidel test was negative, with a deep anterior chamber. Culture from the corneal scrapping specimen grew Citrobacter diversus and Proteus vulgaris, and the boy was treated with topical gentamicin and ceftazidime eyedrops. Fibrin clumps beneath the corneal ulcer subsequently dislodged, and revealed a full-thickness corneal laceration wound with a positive Seidel test and shallow anterior chamber. The patient underwent emergency corneal toileting and suturing. Postoperatively, he was treated with oral ciprofloxacin 250 mg 12-hourly for 1 week, topical gentamicin, ceftazidime, and dexamethasone eyedrops for 4 weeks. Right eye vision improved to 6/9 and 6/6 with pinhole at the 2-week follow-up following corneal suture removal. Keywords: corneal ulcer, pediatric trauma, ocular injury

  1. Role of Decorin Core Protein in Collagen Organisation in Congenital Stromal Corneal Dystrophy (CSCD.

    Directory of Open Access Journals (Sweden)

    Christina S Kamma-Lorger

    Full Text Available The role of Decorin in organising the extracellular matrix was examined in normal human corneas and in corneas from patients with Congenital Stromal Corneal Dystrophy (CSCD. In CSCD, corneal clouding occurs due to a truncating mutation (c.967delT in the decorin (DCN gene. Normal human Decorin protein and the truncated one were reconstructed in silico using homology modelling techniques to explore structural changes in the diseased protein. Corneal CSCD specimens were also examined using 3-D electron tomography and Small Angle X-ray diffraction (SAXS, to image the collagen-proteoglycan arrangement and to quantify fibrillar diameters, respectively. Homology modelling showed that truncated Decorin had a different spatial geometry to the normal one, with the truncation removing a major part of the site that interacts with collagen, compromising its ability to bind effectively. Electron tomography showed regions of abnormal stroma, where collagen fibrils came together to form thicker fibrillar structures, showing that Decorin plays a key role in the maintenance of the order in the normal corneal extracellular matrix. Average diameter of individual fibrils throughout the thickness of the cornea however remained normal.

  2. Noninvasive spectroscopic diagnosis of superficial ocular lesions and corneal infections

    Energy Technology Data Exchange (ETDEWEB)

    Mourant, J.R.; Bigio, I.J.; Johnson, T.; Shimada, T. [Los Alamos National Lab., NM (United States); Gritz, D.C.; Storey-Held, K. [Texas Univ. Health Science Center, San Antonio, TX (United States). Dept. of Ophthalmology

    1994-02-01

    The potential of a rapid noninvasive diagnostic system to detect tissue abnormalities on the surface of the eye has been investigated. The optical scatter signal from lesions and normal areas on the conjunctival sclera of the human eye were measured in vivo. It is possible to distinguish nonpigmented pingueculas from other lesions. The ability of the system to detect malignancies could not be tested because none of the measured and biopsied lesions were malignant. Optical scatter and fluorescence spectra of bacterial and fungal suspensions, and corneal irritations were also collected. Both scattering and fluorescence show potential for diagnosing corneal infections.

  3. Visual outcome after corneal transplantation for corneal perforation and iris prolapse in 37 horses

    DEFF Research Database (Denmark)

    Henriksen, Michala de Linde; Plummer, C. E.; Mangan, B.

    2012-01-01

    We wanted to investigate the visual outcome of horses presented with iris prolapse and treated with corneal transplantation.......We wanted to investigate the visual outcome of horses presented with iris prolapse and treated with corneal transplantation....

  4. Corneal iron ring after conductive keratoplasty.

    Science.gov (United States)

    Kymionis, George D; Naoumidi, Tatiana L; Aslanides, Ioannis M; Pallikaris, Ioannis G

    2003-08-01

    To report formation of corneal iron ring deposits after conductive keratoplasty. Observational case report. Case report. A 54-year-old woman underwent conductive keratoplasty for hyperopia. One year after conductive keratoplasty, iron ring pattern pigmentation was detected at the corneal epithelium of both eyes. This is the first report of the appearance of corneal iron ring deposits following conductive keratoplasty treatment in a patient. It is suggested that alterations in tear film stability, resulting from conductive keratoplasty-induced changes in corneal curvature, constitute the contributory factor for these deposits.

  5. Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy

    Directory of Open Access Journals (Sweden)

    Haiying Guo

    2018-01-01

    Full Text Available Dermal papilla (DP plays important roles in hair follicle regeneration. Long-term culture of mouse DP cells can provide enough cells for research and application of DP cells. We optimized the culture strategy for DP cells from three dimensions: stepwise dissection, collagen I coating, and optimized culture medium. Based on the optimized culture strategy, we immortalized primary DP cells with SV40 large T antigen, and established several immortalized DP cell strains. By comparing molecular expression and morphologic characteristics with primary DP cells, we found one cell strain named iDP6 was similar with primary DP cells. Further identifications illustrate that iDP6 expresses FGF7 and α-SMA, and has activity of alkaline phosphatase. During the process of characterization of immortalized DP cell strains, we also found that cells in DP were heterogeneous. We successfully optimized culture strategy for DP cells, and established an immortalized DP cell strain suitable for research and application of DP cells.

  6. Ex vivo expansion of bovine corneal endothelial cells in xeno-free medium supplemented with platelet releasate.

    Directory of Open Access Journals (Sweden)

    Ming-Li Chou

    Full Text Available Clinical-grade ex vivo expansion of corneal endothelial cells can increase the availability of corneal tissues for transplantation and treatment of corneal blindness. However, these cells have very limited proliferative capacity. Successful propagation has required so far to use very complex growth media supplemented with fetal bovine serum and other xenocomponents. We hypothesized that human platelet releasates rich in multiple growth factors, and in particular neurotrophins, could potentially be a useful supplement for ex vivo expansion of corneal endothelium cells due to their neural crest origin. Platelet releasates were prepared by calcium salt activation of apheresis platelet concentrates, subjected or not to complement inactivation by heat treatment at 56°C for 30 minutes. Platelet releasates were characterized for their content in proteins and were found to contain high amount of growth factors including platelet-derived growth factor-AB (30.56 to 39.08 ng/ml and brain-derived neurotrophic factor (30.57 to 37.11 ng/ml neurotrophins. We compared the growth and viability of corneal endothelium cells in DMEM-F12 medium supplemented with different combinations of components, including 2.5%∼10% of the platelet releasates. Corneal endothelium cells expanded in platelet releasates exhibited good adhesion and a typical hexagonal morphology. Their growth and viability were enhanced when using the complement-inactivated platelet releasate at a concentration of 10%. Immunostaining and Western blots showed that CECs maintained the expressions of four important membrane markers: Na-K ATPase α1, zona occludens-1, phospho-connexin 43 and N-cadherin. In conclusion, our study provides the first proof-of-concept that human platelet releasates can be used for ex vivo expansion of corneal endothelium cells. These findings open a new paradigm for ex vivo propagation protocols of corneal endothelium cells in compliance with good tissue culture practices

  7. Therapeutic effects of zerumbone in an alkali-burned corneal wound healing model.

    Science.gov (United States)

    Kim, Jong Won; Jeong, Hyuneui; Yang, Myeon-Sik; Lim, Chae Woong; Kim, Bumseok

    2017-07-01

    Cornea is an avascular transparent tissue. Ocular trauma caused by a corneal alkali burn induces corneal neovascularization (CNV), inflammation, and fibrosis, leading to vision loss. The purpose of this study was to examine the effects of Zerumbone (ZER) on corneal wound healing caused by alkali burns in mice. CNV was induced by alkali-burn injury in BALB/C female mice. Topical ZER (three times per day, 3μl each time, at concentrations of 5, 15, and 30μM) was applied to treat alkali-burned mouse corneas for 14 consecutive days. Histopathologically, ZER treatment suppressed alkali burn-induced CNV and decreased corneal epithelial defects induced by alkali burns. Corneal tissue treated with ZER showed reduced mRNA levels of pro-angiogenic genes, including vascular endothelial growth factor, matrix metalloproteinase-2 and 9, and pro-fibrotic factors such as alpha smooth muscle actin and transforming growth factor-1 and 2. Immunohistochemical analysis demonstrated that the infiltration of F4/80 and/or CCR2 positive cells was significantly decreased in ZER-treated corneas. ZER markedly inhibited the mRNA and protein levels of monocyte chemoattractant protein-1 (MCP-1) in human corneal fibroblasts and murine peritoneal macrophages. Immunoblot analysis revealed that ZER decreased the activation of signal transducer and activator of transcription 3 (STAT3), with consequent reduction of MCP-1 production by these cells. In conclusion, topical administration of ZER accelerated corneal wound healing by inhibition of STAT3 and MCP-1 production. Copyright © 2017. Published by Elsevier B.V.

  8. Explore the full thick layer of corneal transplantation in the treatment of pseudomonas aeruginosa corneal ulcer infection

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2015-02-01

    Full Text Available AIM: To explore the feasibility, safety and effect of the full-thickness lamellar keratoplasty for the treatment of pseudomonas aeruginosa corneal ulcer. METHODS: Based on a retrospective non-controlled study, 25 patients were given the full-thickness lamellar keratoplasty for clinical diagnosis of pseudomonas aeruginosa infection and corneal ulcer medication conventional anti-gram-negative bacteria. Routine follow-up were carried out at postoperative 1wk; 1, 3, 6, 12, 18mo to observe the situation of corneal epithelial healing, recurrent infection, immune rejection, graft transparency and best corrected visual acuity, etc. At the 6 and 12mo postoperative, corneal endothelial cell density was reexamined.RESULTS: No patients because of Descemet's membrane rupture underwent penetrating keratoplasty surgery: One only in cases of bacterial infection after 1mo, once again did not cultivate a culture of bacteria pseudomonas aeruginosa, and the remaining 24 cases average follow-up 14±6mo, corneal graft were transparent, the cure rate was 96%. At the sixth month after surgery, there were 16 cases of eye surgery best corrected visual acuity ≥4.5, of which 3 cases ≥4.8. At the sixth month after surgery, the average corneal endothelial cell density 2 425±278/mm2; At 12mo postoperatively, it was 2 257± 326/mm2.CONCLUSION: Full-thickness lamellar keratoplasty is an effective method of pseudomonas aeruginosa infection in the treatment of corneal ulcers, corneal drying material glycerol can be achieved by visual effects.

  9. Contact Lens Related Corneal Ulcer

    OpenAIRE

    Loh, KY; Agarwal, P

    2010-01-01

    A corneal ulcer caused by infection is one of the major causes of blindness worldwide. One of the recent health concerns is the increasing incidence of corneal ulcers associated with contact lens user especially if the users fail to follow specific instruction in using their contact lenses. Risk factors associated with increased risk of contact lens related corneal ulcers are: overnight wear, long duration of continuous wear, lower socio-economic classes, smoking, dry eye and poor hygiene. Th...

  10. Caveolin-1 as a Novel Indicator of Wound-Healing Capacity in Aged Human Corneal Epithelium

    OpenAIRE

    Rhim, Ji Heon; Kim, Jae Hoon; Yeo, Eui-Ju; Kim, Jae Chan; Park, Sang Chul

    2010-01-01

    Excess caveolin-1 has been reported to play a role in age-dependent hyporesponsiveness to growth factors in vitro. Therefore, we hypothesized that caveolin-1–dependent hyporesponsiveness to growth factors in aged corneal epithelial cells might be responsible for delayed wound healing in vivo. To test this hypothesis, we evaluated corneal wound-healing time by vital staining using fluorescein after laser epithelial keratomileusis (LASEK). We compared wound-healing times in young, middle-aged a...

  11. Riboflavin for corneal cross-linking.

    Science.gov (United States)

    O'Brart, D P S

    2016-06-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet A (UVA) radiation is the first therapeutic modality that appears to arrest the progression of keratoconus and other corneal ectasias. Riboflavin is central to the process, acting as a photosensitizer for the production of oxygen singlets and riboflavin triplets. These free radicals drive the CXL process within the proteins of the corneal stroma, altering its biomechanical properties. Riboflavin also absorbs the majority of the UVA radiation, which is potentially cytotoxic and mutagenic, within the anterior stroma, preventing damage to internal ocular structures, such as the corneal endothelium, lens and retina. Clinical studies report cessation of ectatic progression in over 90% of cases and the majority document significant improvements in visual, keratometric and topographic parameters. Clinical follow-up is limited to 5-10 years, but suggests sustained stability and enhancement in corneal shape. Sight-threatening complications are rare. The optimal stromal riboflavin dosage for CXL is as yet undetermined. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.

  12. Controlling human corneal stromal stem cell contraction to mediate rapid cell and matrix organization of real architecture for 3-dimensional tissue equivalents.

    Science.gov (United States)

    Mukhey, Dev; Phillips, James B; Daniels, Julie T; Kureshi, Alvena K

    2018-02-01

    The architecture of the human corneal stroma consists of a highly organized extracellular matrix (ECM) interspersed with keratocytes. Their progenitor cells; corneal stromal stem cells (CSSC) are located at the periphery, in the limbal stroma. A highly organized corneal ECM is critical for effective transmission of light but this structure may be compromised during injury or disease, resulting in loss of vision. Re-creating normal organization in engineered tissue equivalents for transplantation often involves lengthy culture times that are inappropriate for clinical use or utilisation of synthetic substrates that bring complications such as corneal melting. CSSC have great therapeutic potential owing to their ability to reorganize a disorganized matrix, restoring transparency in scarred corneas. We examined CSSC contractile behavior to assess whether this property could be exploited to rapidly generate cell and ECM organization in Real Architecture For 3D Tissues (RAFT) tissue equivalents (TE) for transplantation. Free-floating collagen gels were characterized to assess contractile behavior of CSSC and establish optimum cell density and culture times. To mediate cell and collagen organization, tethered collagen gels seeded with CSSC were cultured and subsequently stabilized with the RAFT process. We demonstrated rapid creation of biomimetic RAFT TE with tunable structural properties. These displayed three distinct regions of varying degrees of cellular and collagen organization. Interestingly, increased organization coincided with a dramatic loss of PAX6 expression in CSSC, indicating rapid differentiation into keratocytes. The organized RAFT TE system could be a useful bioengineering tool to rapidly create an organized ECM while simultaneously controlling cell phenotype. For the first time, we have demonstrated that human CSSC exhibit the phenomenon of cellular self-alignment in tethered collagen gels. We found this mediated rapid co-alignment of collagen fibrils

  13. Thermal and infrared-diode laser effects on indocyanine-green-treated corneal collagen

    Science.gov (United States)

    Timberlake, George T.; Patmore, Ann; Shallal, Assaad; McHugh, Dominic; Marshall, John

    1993-07-01

    It has been suggested that laser welds of collagenous tissues form by interdigitation and chemical bonding of thermally 'unraveled' collagen fibrils. We investigated this proposal by attempting to weld highly collagenous, avascular corneal tissue with an infrared (IR) diode laser as follows. First, the temperature at which corneal collagen shrinks and collagen fibrils 'split' into subfibrillary components was determined. Second, since use of a near-IR laser wavelength necessitated addition of an absorbing dye (indocyanine green (ICG) to the cornea, we measured absorption spectra of ICG-treated tissue to ensure that peak ICG absorbance did not change markedly when ICG was present in the cornea. Third, using gel electrophoresis of thermally altered corneal collagen, we searched for covalently crosslinked compounds predicted by the proposed welding mechanism. Finally, we attempted to weld partial thickness corneal incisions infused with ICG. Principal experimental findings were as follows: (1) Human corneal (type I) collagen splits into subfibrillary components at approximately 63 degree(s)C, the same temperature that produces collagen shrinkage. (2) Peak ICG absorption does not change significantly in corneal stroma or with laser heating. (3) No evidence was found for the formation of novel compounds or the loss of proteins as a result of tissue heating. All tissue treated with ICG, however, exhibited a novel 244 kD protein band indicating chemical activity between collagen and corneal stromal components. (4) Laser welding corneal incisions was unsuccessful possibly due to shrinkage of the sides of the incision, lack of incision compression during heating, or a less than optimal combination of ICG concentration and radiant exposure. In summary, these experiments demonstrate the biochemical and morphological complexity of ICG-enhanced IR laser-tissue welding and the need for further investigation of laser welding mechanisms.

  14. Chlorpromazine-induced corneal endothelial phototoxicity

    International Nuclear Information System (INIS)

    Hull, D.S.; Csukas, S.; Green, K.

    1982-01-01

    Chlorpromazine, which has been used extensively for the treatment of psychiatric disorders, is known to accumulate in the posterior corneal stroma, lens, and uveal tract. Because it is a phototoxic compound, the potential exists for it to cause cellular damage after light exposure. Specular microscopic perfusion of corneal endothelial cells in darkness with 0.5 mM chlorpromazine HCl resulted in a swelling rate of 18 +/- 2 micrometer/hr, whereas corneas exposed to long-wavelength ultraviolet light for 3 min in the presence of 0.5 mM chlorpromazine swelled at 37 +/- 9 micrometer/hr (p less than 0.01). Preirradiation of 0.5 mM chlorpromazine solution with ultraviolet light for 30 min and subsequent corneal perfusion with the solution resulted in a corneal swelling rate of 45 +/- 19 micrometer/hr. Cornea endothelial cells perfused with 0.5 mM chlorpromazine that was preirradiated with ultraviolet light showed marked swelling on scanning electron microscopic examination, whereas those perfused with nonirradiated chlorpromazine were flat and showed a normal mosaic pattern. Combining either 500 U/ml catalase or 290 U/ml superoxide dismutase with chlorpromazine did not alter photoinduction of corneal swelling. The data suggest that corneal endothelial chlorpromazine phototoxicity is secondary to cytotoxic products resulting from the photodynamically induced decomposition of chlorpromazine and is not caused by hydrogen peroxide or superoxide anion generated during the phototoxic reaction

  15. Corneal Neurotoxicity Due to Topical Benzalkonium Chloride

    OpenAIRE

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-01-01

    Topical application of benzalkonium chloride (BAK) to the eye causes dose-related corneal neurotoxicity. Corneal inflammation and reduction in aqueous tear production accompany neurotoxicity. Cessation of BAK treatment leads to recovery of corneal nerve density.

  16. Inactivation of p16INK4a, with retention of pRB and p53/p21cip1 function, in human MRC5 fibroblasts that overcome a telomere-independent crisis during immortalization.

    Science.gov (United States)

    Taylor, Lisa M; James, Alexander; Schuller, Christine E; Brce, Jesena; Lock, Richard B; Mackenzie, Karen L

    2004-10-15

    Recent investigations, including our own, have shown that specific strains of fibroblasts expressing telomerase reverse transcriptase (hTERT) have an extended lifespan, but are not immortal. We previously demonstrated that hTERT-transduced MRC5 fetal lung fibroblasts (MRC5hTERTs) bypassed senescence but eventually succumbed to a second mortality barrier (crisis). In the present study, 67 MRC5hTERT clones were established by limiting dilution of a mass culture. Whereas 39/67 clones had an extended lifespan, all 39 extended lifespan clones underwent crisis. 11 of 39 clones escaped crisis and were immortalized. There was no apparent relationship between the fate of clones at crisis and the level of telomerase activity. Telomeres were hyperextended in the majority of the clones analyzed. There was no difference in telomere length of pre-crisis compared with post-crisis and immortal clones, indicating that hyperextended telomeres were conducive for immortalization and confirming that crisis was independent of telomere length. Immortalization of MRC5hTERT cells was associated with repression of the cyclin-dependent kinase inhibitor p16INK4a and up-regulation of pRB. However, the regulation of pRB phosphorylation and the response of the p53/p21cip1/waf1 pathway were normal in immortal cells subject to genotoxic stress. Overexpression of oncogenic ras failed to de-repress p16INK4a in immortal cells. Furthermore, expression of ras enforced senescent-like growth arrest in p16INK4a-positive, but not p16INK4a-negative MRC5hTERT cells. Immortal cells expressing ras formed small, infrequent colonies in soft agarose, but were non-tumorigenic. Overall, these results implicate the inactivation of p16INK4a as a critical event for overcoming telomere-independent crisis, immortalizing MRC5 fibroblasts and overcoming ras-induced premature senescence.

  17. Long-term outcomes of wedge resection at the limbus for high irregular corneal astigmatism after repaired corneal laceration

    Directory of Open Access Journals (Sweden)

    Jun Du

    2016-06-01

    Full Text Available AIM: To evaluate the clinical value of wedge resection at corneal limbus in patients with traumatic corneal scarring and high irregular astigmatism. METHODS: Patients with traumatic corneal astigmatism received wedge resection at least 6mo after suture removal from corneal wound. The uncorrected distance visual acuities (UCVA and best corrected distance visual acuities (BCVA, pre- and post-operation astigmatism, spherical equivalent (SE, safety and complications were evaluated. RESULTS: Ten eyes (10 patients were enrolled in this study. Mean follow-up time after wedge resection was 37.8±15.4mo (range, 20-61mo. The mean UCVA improved from +1.07±0.55 logMAR to +0.43±0.22 logMAR (P=0.000 and the mean BCVA from +0.50±0.30 logMAR to +0.15±0.17 logMAR (P=0.000. The mean astigmatism power measured by retinoscopy was -2.03±2.27 D postoperatively and -2.83±4.52 D preoperatively (P=0.310. The mean SE was -0.74±1.61 D postoperatively and -0.64±1.89 D preoperatively (P=0.601. Two cases developed mild pannus near the sutures. No corneal perforation, infectious keratitis or wound gape occurred. CONCLUSION: Corneal-scleral limbal wedge resection with compression suture is a safe, effective treatment for poor patients with high irregular corneal astigmatism after corneal-scleral penetrating injury. Retinoscopy can prove particularly useful for high irregular corneal astigmatism when other measurements are not amenable.

  18. Telomerase levels control the lifespan of human T lymphocytes

    NARCIS (Netherlands)

    Roth, Alexander; Yssel, Hans; Pene, Jerome; Chavez, Elizabeth A.; Schertzer, Mike; Lansdorp, Peter M.; Spits, Hergen; Luiten, Rosalie M.

    2003-01-01

    The loss of telomeric DNA with each cell division contributes to the limited replicative lifespan of human T lymphocytes. Although telomerase is transiently expressed in T lymphocytes upon activation, it is insufficient to confer immortality. We have previously shown that immortalization of human

  19. Induction of corneal collagen cross-linking in experimental corneal alkali burns in rabbits

    Directory of Open Access Journals (Sweden)

    Marcello Colombo-Barboza

    2014-10-01

    Full Text Available Objective: To evaluate the effect of riboflavin-ultraviolet-A-induced cross-linking (CXL following corneal alkali burns in rabbits. Methods: The right corneas and limbi of ten rabbits were burned using a 1N solution of NaOH and the animals were then divided into two groups: a control group submitted to clinical treatment alone and an experimental group that was treated 1 h after injury with CXL, followed by the same clinical treatment as administered to the controls. Clinical parameters were evaluated post-injury at 1, 7, 15, and 30 days by two independent observers. Following this evaluation, the corneas were excised and examined histologically. Results: There were no statistically significant differences in clinical parameters, such as hyperemia, corneal edema, ciliary injection, limbal ischemia, secretion, corneal neovascularization, symblepharon, or blepharospasm, at any of the time-points evaluated. However, the size of the epithelial defect was significantly smaller in the CXL group (p<0.05 (day 15: p=0.008 and day 30: p=0.008 and the extent of the corneal injury (opacity lesion was also smaller (day 30: p=0.021. Histopathology showed the presence of collagen bridges linking the collagen fibers in only the CXL group. Conclusions: These results suggest that the use of CXL may improve the prognosis of acute corneal alkali burns.

  20. Corneal Toxicity Following Exposure to Asclepias Tuberosa

    OpenAIRE

    Mikkelsen, Lauge Hjorth; Hamoudi, Hassan; G?l, Cigdem Altuntas; Heegaard, Steffen

    2017-01-01

    PURPOSE: To present a case of corneal toxicity following exposure to milky plant latex from Asclepias tuberosa.METHODS: A 70-year-old female presented with blurred vision and pain in her left eye after handling an Ascepias tuberosa. Clinical examination revealed a corneal stromal oedema with small epithelial defects. The corneal endothelium was intact and folds in Descemets membrane were observed. The oedema was treated with chloramphenicol, dexamethasone and scopolamine.RESULTS: The corneal ...

  1. Corneal hydrops induced by Bell’s paralysis in a case of corneal ectasia

    Directory of Open Access Journals (Sweden)

    Lokman Aslan

    2017-09-01

    Full Text Available An 18-year-old male patient presented with suddenly decreased vision, itching, corneal edema and an inability to close the left eye. They had left Bell’s paralysis for two weeks and had used high diopter glasses for five years. The best corrected visual acuity was 0.4 in their right eye and counting fingers in the left eye. Biomicroscopic examination revealed thinning and steepening of the cornea in the right eye and anterior protrusion of the cornea, stromal edema and punctate disruption of the epithelium in the left eye. Topographic image of the right eye was consistent with keratoconus. Six months later, stromal edema gradually regressed and a corneal scar ensued. This case presentation emphasizes that Bell’s palsy may induce disease progression in a patient with preexisting corneal ectasia and results in corneal hydrops. [Arch Clin Exp Surg 2017; 6(3.000: 165-167

  2. The (not so immortal strand hypothesis

    Directory of Open Access Journals (Sweden)

    Cristian Tomasetti

    2015-03-01

    Significance: Utilizing an approach that is fundamentally different from previous efforts to confirm or refute the immortal strand hypothesis, we provide evidence against non-random segregation of DNA during stem cell replication. Our results strongly suggest that parental DNA is passed randomly to stem cell daughters and provides new insight into the mechanism of DNA replication in stem cells.

  3. Mimicking corneal stroma using keratocyte-loaded photopolymerizable methacrylated gelatin hydrogels.

    Science.gov (United States)

    Kilic Bektas, Cemile; Hasirci, Vasif

    2018-04-01

    Cell-laden methacrylated gelatin (GelMA) hydrogels with high (approximately 90%) transparency were prepared to mimic the natural form and function of corneal stroma. They were synthesized from GelMA with a methacrylation degree of 70% as determined by nuclear magnetic resonance. Hydrogels were strong enough to withstand handling. Stability studies showed that 87% of the GelMA hydrogels remained after 21 days in phosphate buffered saline (PBS). Cell viability in the first 2 days was over 90% for the human keratocytes loaded in the gels as determined with the live-dead analysis. Cells in the hydrogel elongated and connected to each other as observed by confocal laser scanning microscopy (CLSM) images and scanning electron microscope analysis after 3 weeks in the culture medium and cells were seen to be distributed throughout the hydrogel bulk. Cells were found to synthesize collagen Types I and V, decorin, and biglycan (representative collagens and proteoglycans of human corneal stroma, respectively) showing that keratocytes maintained their functions and preserved their phenotypes in the hydrogels. Transparency of cell-loaded and cell-free hydrogels after 21 days was found to be over 90% at all time points in the visible light range and was comparable to the transparency of the native cornea. The corneal stroma equivalent produced in this study that has cells entrapped in it leads to a product with homogenous distribution of cells. It was transparent at the very beginning and is expected to allow better vision than nontransparent substrates. It, therefore, has a significant potential to be used as an alternative to the current products used to treat corneal blindness. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Corneal modeling for analysis of photorefractive keratectomy

    Science.gov (United States)

    Della Vecchia, Michael A.; Lamkin-Kennard, Kathleen

    1997-05-01

    Procedurally, excimer photorefractive keratectomy is based on the refractive correction of composite spherical and cylindrical ophthalmic errors of the entire eye. These refractive errors are inputted for correction at the corneal plane and for the properly controlled duration and location of laser energy. Topography is usually taken to correspondingly monitor spherical and cylindrical corneorefractive errors. While a corneal topographer provides surface morphologic information, the keratorefractive photoablation is based on the patient's spherical and cylindrical spectacle correction. Topography is at present not directly part of the procedural deterministic parameters. Examination of how corneal curvature at each of the keratometric reference loci affect the shape of the resultant corneal photoablated surface may enhance the accuracy of the desired correction. The objective of this study was to develop a methodology to utilize corneal topography for construction of models depicting pre- and post-operative keratomorphology for analysis of photorefractive keratectomy. Multiple types of models were developed then recreated in optical design software for examination of focal lengths and other optical characteristics. The corneal models were developed using data extracted from the TMS I corneal modeling system (Computed Anatomy, New York, NY). The TMS I does not allow for manipulation of data or differentiation of pre- and post-operative surfaces within its platform, thus models needed to be created for analysis. The data were imported into Matlab where 3D models, surface meshes, and contour plots were created. The data used to generate the models were pre- and post-operative curvatures, heights from the corneal apes, and x-y positions at 6400 locations on the corneal surface. Outlying non-contributory points were eliminated through statistical operations. Pre- and post- operative models were analyzed to obtain the resultant changes in the corneal surfaces during PRK

  5. Vps35-deficiency impairs SLC4A11 trafficking and promotes corneal dystrophy.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available Vps35 (vacuolar protein sorting 35 is a major component of retromer that selectively promotes endosome-to-Golgi retrieval of transmembrane proteins. Dysfunction of retromer is a risk factor for the pathogenesis of Parkinson's disease (PD and Alzheimer's disease (AD. However, Vps35/retromer's function in the eye or the contribution of Vps35-deficiency to eye degenerative disorders remains to be explored. Here we provide evidence for a critical role of Vps35 in mouse corneal dystrophy. Vps35 is expressed in mouse and human cornea. Mouse cornea from Vps35 heterozygotes (Vps35+/- show features of dystrophy, such as loss of both endothelial and epithelial cell densities, disorganizations of endothelial, stroma, and epithelial cells, excrescences in the Descemet membrane, and corneal edema. Additionally, corneal epithelial cell proliferation was reduced in Vps35-deficient mice. Intriguingly, cell surface targeting of SLC4A11, a membrane transport protein (OH- /H+ /NH3 /H2O of corneal endothelium, whose mutations have been identified in patients with corneal dystrophy, was impaired in Vps35-deficient cells and cornea. Taken together, these results suggest that SLC4A11 appears to be a Vps35/retromer cargo, and Vps35-regulation of SLC4A11 trafficking may underlie Vps35/retromer regulation of corneal dystrophy.

  6. Late onset corneal ectasia after LASIK surgery.

    Science.gov (United States)

    Said, Ashraf; Hamade, Issam H; Tabbara, Khalid F

    2011-07-01

    To report late onset corneal ectasia following myopic LASIK. A retrospective cohort case series. Nineteen patients with late onset corneal ectasia following LASIK procedure were examined at The Eye Center, Riyadh, Saudi Arabia. Patients underwent LASIK for myopia with spherical equivalent ranging from -1.4 to -13.75 diopters. Age and gender, history of systemic or local diseases, and time of onset of corneal ectasia were recorded. Eye examination and corneal topographical analyses were done before and after LASIK surgery. Nineteen patients (29 eyes) with late onset corneal ectasia were identified from 1998 to 2008 in 13 male and six female patients. The mean follow-up period was 108 ± 23 months (range 72-144 months). No patient had pre-operative identifiable risk factors for corneal ectasia and the mean time of onset was 57 ± 24 months (range 24-120 months after LASIK). The pre-operative values included mean central pachymetry 553 ± 25 μm, mean keratometry reading of 42.9 ± 1.5 diopters, average oblique cylinder of 1.4 ± 1.2 diopters, posterior surface elevation of 26 ± 2.1 diopters, corneal flap thickness of 160 μm, mean spherical equivalent of -5.6 ± 3.6 diopters, and calculated residual corneal stromal bed thickness was 288 ± 35 μm. Three (5 eyes) patients developed ectasia after pregnancy. Three (4 eyes) patients developed corneal ectasia following severe adenoviral keratoconjunctivitis and had positive PCR for adenovirus type 8. Corneal ectasia may develop many years after LASIK surgery and symptoms could go undetected for some time. Pregnancy and adenoviral keratoconjunctivitis occurred post-operatively in six patients.

  7. Designing Hydrogel Adhesives for Corneal Wound Repair

    Science.gov (United States)

    Grinstaff, Mark W.

    2013-01-01

    Today, corneal wounds are repaired using nylon sutures. Yet there are a number of complications associated with suturing the cornea, and thus there is interest in an adhesive to replace or supplement sutures in the repair of corneal wounds. We are designing and evaluating corneal adhesives prepared from dendrimers – single molecular weight, highly branched polymers. We have explored two strategies to form these ocular adhesives. The first involves a photocrosslinking reaction and the second uses a peptide ligation reactions to couple the individual dendrimers together to from the adhesive. These adhesives were successfully used to repair corneal perforations, close the flap produced in a LASIK procedure, and secure a corneal transplant. PMID:17889330

  8. Granular corneal dystrophy Groenouw type I (GrI) and Reis-Bücklers' corneal dystrophy (R-B). One entity?

    Science.gov (United States)

    Møller, H U

    1989-12-01

    This paper maintains that Reis-Bücklers' corneal dystrophy and granular corneal dystrophy Groenouw type I are one and the same disease. Included are some of the technically best photographs of Reis-Bücklers' dystrophy found in the literature, and these are compared with photographs from patients with granular corneal dystrophy examined by the author. It is argued that most of the histological and ultrastructural findings on Reis Bücklers' dystrophy described in the literature are either congruent with what is found in granular corneal dystrophy or unspecific.

  9. Using corneal confocal microscopy to track changes in the corneal layers of dry eye patients after autologous serum treatment.

    Science.gov (United States)

    Mahelkova, Gabriela; Jirsova, Katerina; Seidler Stangova, Petra; Palos, Michalis; Vesela, Viera; Fales, Ivan; Jiraskova, Nada; Dotrelova, Dagmar

    2017-05-01

    In vivo corneal confocal microscopy allows the examination of each layer of the cornea in detail and the identification of pathological changes at the cellular level. The purpose of this study was to identify the possible effects of a three-month treatment with autologous serum eye-drops in different corneal layers of patients with severe dry eye disease using corneal confocal microscopy. Twenty-six patients with dry eye disease were included in the study. Corneal fluorescein staining was performed. The corneas of the right eyes were examined using in vivo corneal confocal microscopy before and after a three-month treatment with autologous serum drops. The densities of superficial and basal epithelial cells, Langerhans cells, the keratocytes and activated keratocytes, the density of endothelial cells and the status of the sub-basal nerve plexus fibres were evaluated. A significant decrease in corneal fluorescein staining was found after the three-month autologous serum treatment (p = 0.0006). The basal epithelial cell density decreased significantly (p = 0.001), while the density of superficial epithelial cells did not change significantly (p = 0.473) nor did the number of Langerhans cells or activated keratocytes (p = 0.223; p = 0.307, respectively). There were no differences in the other corneal cell layers or in the status of the nerve fibres. The results demonstrate the ability of corneal confocal microscopy to evaluate an improvement in the basal epithelial cell layer of the cornea after autologous serum treatment in patients with dry eye disease. More studies with longer follow-up periods are needed to elucidate the suitability of corneal confocal microscopy to follow the effect of autologous serum treatment on nerve fibres or other corneal layers in dry eye disease patients. © 2016 Optometry Australia.

  10. Discordance between bovine leukemia virus tax immortalization in vitro and oncogenicity in vivo.

    Science.gov (United States)

    Twizere, J C; Kerkhofs, P; Burny, A; Portetelle, D; Kettmann, R; Willems, L

    2000-11-01

    that can be drawn from in vitro immortalization assays and in vivo experiments. These observations could be of interest for other systems, such as the related human T-cell leukemia virus type 1, which currently lack animal models allowing the study of the leukemogenic process.

  11. Hevin plays a pivotal role in corneal wound healing.

    Directory of Open Access Journals (Sweden)

    Shyam S Chaurasia

    Full Text Available BACKGROUND: Hevin is a matricellular protein involved in tissue repair and remodeling via interaction with the surrounding extracellular matrix (ECM proteins. In this study, we examined the functional role of hevin using a corneal stromal wound healing model achieved by an excimer laser-induced irregular phototherapeutic keratectomy (IrrPTK in hevin-null (hevin(-/- mice. We also investigated the effects of exogenous supplementation of recombinant human hevin (rhHevin to rescue the stromal cellular components damaged by the excimer laser. METHODOLOGY/PRINCIPAL FINDINGS: Wild type (WT and hevin (-/- mice were divided into three groups at 4 time points- 1, 2, 3 and 4 weeks. Group I served as naïve without any treatment. Group II received epithelial debridement and underwent IrrPTK using excimer laser. Group III received topical application of rhHevin after IrrPTK surgery for 3 days. Eyes were analyzed for corneal haze and matrix remodeling components using slit lamp biomicroscopy, in vivo confocal microscopy, light microscopy (LM, transmission electron microscopy (TEM, immunohistochemistry (IHC and western blotting (WB. IHC showed upregulation of hevin in IrrPTK-injured WT mice. Hevin (-/- mice developed corneal haze as early as 1-2 weeks post IrrPTK-treatment compared to the WT group, which peaked at 3-4 weeks. They also exhibited accumulation of inflammatory cells, fibrotic components of ECM proteins and vascularized corneas as seen by IHC and WB. LM and TEM showed activated keratocytes (myofibroblasts, inflammatory debris and vascular tissues in the stroma. Exogenous application of rhHevin for 3 days reinstated inflammatory index of the corneal stroma similar to WT mice. CONCLUSIONS/SIGNIFICANCE: Hevin is transiently expressed in the IrrPTK-injured corneas and loss of hevin predisposes them to aberrant wound healing. Hevin (-/- mice develop early corneal haze characterized by severe chronic inflammation and stromal fibrosis that can be rescued

  12. Characterization of cryopreserved primary human corneal endothelial cells cultured in human serum-supplemented media

    Directory of Open Access Journals (Sweden)

    Lucas Monferrari Monteiro Vianna

    2016-02-01

    Full Text Available ABSTRACT Purpose: To compare cryopreserved human corneal endothelial cells (HCECs grown in human serum-supplemented media (HS-SM with cryopreserved HCECs grown in fetal bovine serum-supplemented media (FBS-SM. Methods: Three pairs of human corneas from donors aged 8, 28, and 31 years were obtained from the eye bank. From each pair, one cornea was used to start a HCEC culture using HS-SM; the other cornea was grown in FBS-SM. On reaching confluence, the six cell populations were frozen using 10% dimethyl sulfoxidecontaining medium. Thawed cells grown in HS-SM were compared with those grown in FBS-SM with respect to morphology, growth curves, immunohistochemistry, real time-reverse transcriptase polymerase chain reaction (RT-PCR for endothelial cell markers, and detachment time. Results: No difference in morphology was observed for cells grown in the two media before or after cryopreservation. By growth curves, cell counts after thawing were similar in both media, with a slight trend toward higher cell counts in FBS-SM. Cells grown in both the media demonstrated a similar expression of endothelial cell markers when assessed by immunohistochemistry, although HCEC marker gene expression was higher in cells grown in HS-SM than in those grown in FBS-SM as assessed by RT-PCR. With FBS-SM, there was a tendency of longer detachment time and lower cell passages. Conclusions: HS-SM was similar to FBS-SM for cryopreservation of cultured HCECs as assessed by analysis of cell morphology, proliferation, and protein expression, although marker gene expression was higher in cells grown in HS-SM than in those grown in FBS-SM. Detachment time was longer with FBS-SM and in lower passages.

  13. Anatomical characterization of central, apical and minimal corneal thickness

    Directory of Open Access Journals (Sweden)

    Federico Saenz-Frances

    2014-08-01

    Full Text Available AIM: To anatomically locate the points of minimum corneal thickness and central corneal thickness (pupil center in relation to the corneal apex.METHODS: Observational, cross-sectional study, 299 healthy volunteers. Thickness at the corneal apex (AT, minimum corneal thickness (MT and corneal thickness at the pupil center (PT were determined using the pentacam. Distances from the corneal apex to MT (MD and PT (PD were calculated and their quadrant position (taking the corneal apex as the reference determined:point of minimum thickness (MC and point of central thickness (PC depending on the quadrant position. Two multivariate linear regression models were constructed to examine the influence of age, gender, power of the flattest and steepest corneal axes, position of the flattest axis, corneal volume (determined using the Pentacam and PT on MD and PD. The effects of these variables on MC and PC were also determined in two multinomial regression models.RESULTS: MT was located at a mean distance of 0.909 mm from the apex (79.4% in the inferior-temporal quadrant. PT was located at a mean distance of 0.156 mm from the apex. The linear regression model for MD indicated it was significantly influenced by corneal volume (B=-0.024; 95%CI:-0.043 to -0.004. No significant relations were identified in the linear regression model for PD or the multinomial logistic regressions for MC and PC.CONCLUSION: MT was typically located at the inferior-temporal quadrant of the cornea and its distance to the corneal apex tended to decrease with the increment of corneal volume.

  14. Progress in corneal wound healing

    Science.gov (United States)

    Ljubimov, Alexander V.; Saghizadeh, Mehrnoosh

    2015-01-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and

  15. Preliminary study of the correlation between refractive error and corneal refractive power, corneal asphericity in myopic eye

    Directory of Open Access Journals (Sweden)

    Qi-Chao Han

    2014-05-01

    Full Text Available AIM: To investigate the correlation between myopic refractive error and relative factors, including the corneal refractive power, posterior refractive power, axial length, corneal asphericity coefficient Q value, central cornea thickness(CCTand intraocular pressure(IOP. METHODS:According to the degree of myopia measured by subjective refraction, 138 myopia patients were divided into three subgroups: mild group(-1.00D--3.00D, moderate group(-3.25D--6.00D, high group(>6.00D. The Pentacam anterior segment tomographer(Germany, Oculus Companywas used to measure the corneal refractive power, posterior refractive power, and corneal asphericity in the right eye. IOP, CCT and axial length were measured by a non-contact tonometer and A-scan ultrasonic, respectively. The data was analyzed with a Pearson correlation analysis and one-way ANOVA. RESULTS: The myopic refractive error was negatively correlated with the axial length(r=-0.682, Pr=0.009, P=0.925. The axial length was negatively correlated with corneal refractive power(r=-0.554, Pr=0.674, Pr=-0.375, P=0.01. There was no significantly correlation between the myopic refractive error and CCT, IOP(r=-0.138, P=0.141; r=-0.121, P=0.157. CONCLUSION:The corneal refractive power plays the role of emmetropization during the development of myopia. There is clinic significance for the correlation between Q value and refractive error, IOP to guide the corneal refractive surgery.

  16. Application of Novel Drugs for Corneal Cell Regeneration

    Directory of Open Access Journals (Sweden)

    Sang Beom Han

    2018-01-01

    Full Text Available Corneal transplantation has been the only treatment method for corneal blindness, which is the major cause of reversible blindness. However, despite the advancement of surgical techniques for corneal transplantation, demand for the surgery can never be met due to a global shortage of donor cornea. The development of bioengineering and pharmaceutical technology provided us with novel drugs and biomaterials that can be used for innovative treatment methods for corneal diseases. In this review, the authors will discuss the efficacy and safety of pharmacologic therapies, such as Rho-kinase (ROCK inhibitors, blood-derived products, growth factors, and regenerating agent on corneal cell regeneration. The promising results of these agents suggest that these can be viable options for corneal reconstruction and visual rehabilitation.

  17. A review of corneal diameter, curvature and thickness values and influencing factors*

    Directory of Open Access Journals (Sweden)

    K. P. Mashige

    2013-12-01

    Full Text Available The cornea is an important ocular structure involved in the mediation of visual perception. It is the principal refractive surface of the eye and vision can be significantly affected by relatively small changes in its structure and parameters. Measurement of corneal parameters is important in the diagnosis and management of ocular diseasessuch as keratoconus and glaucoma, and also in the fitting of contact lenses or with refractive surgery such as Laser-Assisted in situ Keratomileusis(LASIK and photorefractive keratectomy (PRK. The human corneal diameter, anterior curvature and centre thickness as well as factors influencing them are reviewed in this article. This review will be useful to eye care professionals who routinely measure these parameters when fitting contact lenses and assessing, diagnosing as well as managing corneal and other ocular conditions. (S Afr Optom 2013 72(4 185-194

  18. Confocal microscopy and electrophysiological study of single patient corneal endothelium cell cultures

    Science.gov (United States)

    Tatini, Francesca; Rossi, Francesca; Coppi, Elisabetta; Magni, Giada; Fusco, Irene; Menabuoni, Luca; Pedata, Felicita; Pugliese, Anna Maria; Pini, Roberto

    2016-04-01

    The characterization of the ion channels in corneal endothelial cells and the elucidation of their involvement in corneal pathologies would lead to the identification of new molecular target for pharmacological treatments and to the clarification of corneal physiology. The corneal endothelium is an amitotic cell monolayer with a major role in preserving corneal transparency and in regulating the water and solute flux across the posterior surface of the cornea. Although endothelial cells are non-excitable, they express a range of ion channels, such as voltage-dependent Na+ channels and K+ channels, L-type Ca2 channels and many others. Interestingly, purinergic receptors have been linked to a variety of conditions within the eye but their presence in the endothelium and their role in its pathophysiology is still uncertain. In this study, we were able to extract endothelial cells from single human corneas, thus obtaining primary cultures that represent the peculiarity of each donor. Corneas were from tissues not suitable for transplant in patients. We characterized the endothelial cells by confocal microscopy, both within the intact cornea and in the primary endothelial cells cultures. We also studied the functional role of the purinergic system (adenosine, ATP and their receptors) by means of electrophysiological recordings. The experiments were performed by patch clamp recordings and confocal time-lapse microscopy and our results indicate that the application of purinergic compounds modulates the amplitude of outward currents in the isolated endothelial cells. These findings may lead to the proposal of new therapies for endothelium-related corneal diseases.

  19. Assessment of the reliability of human corneal endothelial cell-density estimates using a noncontact specular microscope.

    Science.gov (United States)

    Doughty, M J; Müller, A; Zaman, M L

    2000-03-01

    We sought to determine the variance in endothelial cell density (ECD) estimates for human corneal endothelia. Noncontact specular micrographs were obtained from white subjects without any history of contact lens wear, or major eye disease or surgery; subjects were within four age groups (children, young adults, older adults, senior citizens). The endothelial image was scanned, and the areas from > or =75 cells measured from an overlay by planimetry. The cell-area values were used to calculate the ECD repeatedly so that the intra- and intersubject variation in an average ECD estimate could be made by using different numbers of cells (5, 10, 15, etc.). An average ECD of 3,519 cells/mm2 (range, 2,598-5,312 cells/mm2) was obtained of counts of 75 cells/ endothelium from individuals aged 6-83 years. Average ECD estimates in each age group were 4,124, 3,457, 3,360, and 3,113 cells/mm2, respectively. Analysis of intersubject variance revealed that ECD estimates would be expected to be no better than +/-10% if only 25 cells were measured per endothelium, but approach +/-2% if 75 cells are measured. In assessing the corneal endothelium by noncontact specular microscopy, cell count should be given, and this should be > or =75/ endothelium for an expected variance to be at a level close to that recommended for monitoring age-, stress-, or surgery-related changes.

  20. Corneal topography with an aberrometry-topography system.

    Science.gov (United States)

    Mülhaupt, Michael; Dietzko, Sven; Wolffsohn, James; Bandlitz, Stefan

    2018-05-07

    To investigate the agreement between the central corneal radii and corneal eccentricity measurements generated by the new Wave Analyzer 700 Medica (WAV) compared to the Keratograph 4 (KER) and to test the repeatability of the instruments. 20 subjects (10 male, mean age 29.1 years, range 21-50 years) were recruited from the students and staff of the Cologne School of Optometry. Central corneal radii for the flat (r c/fl ) and steep (r c/st ) meridian as well as corneal eccentricity for the nasal (e nas ), temporal (e temp ), inferior (e inf ) and superior (e sup ) directions were measured using WAV and KER by one examiner in a randomized order. Central radii of the flat (r c/fl ) and steep (r c/st ) meridian measured with both instruments were statically significantly correlated (r = 0.945 and r = 0.951; p  0.05). Limits of agreement (LoA) indicate a better repeatability for the KER compared to WAV. Corneal topography measurements captured with the WAV were strongly correlated with the KER. However, due to the differences in measured corneal radii and eccentricities, the devices cannot be used interchangeably. For corneal topography the KER demonstrated better repeatability. Copyright © 2018 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  1. An active artificial cornea with the function of inducing new corneal tissue generation in vivo-a new approach to corneal tissue engineering

    International Nuclear Information System (INIS)

    Huang Yaoxiong; Li Qinhua

    2007-01-01

    An active artificial cornea which can perform the function of inducing new cornea generation in vivo but does not need culture cells in vitro and which has similar optical and mechanical properties to those of the human cornea was constructed. An animal keratoplasty experiment using the artificial cornea as the implant showed that the animals' corneas could keep smooth surface and clear stroma postoperatively, and that the repopulation of the host's keratocytes, the degradation of the implant and new corneal tissue generation were completed at 5-6 months after surgery. Such an artificial cornea has several advantages over other corneal equivalents constructed in the typical way of tissue engineering: in having similar mechanical and optical properties to those of the human cornea and with no exogenetic cells, it can be used universally in different implantation surgeries without immunoreaction; it is easy to prepare and process into different shapes and sizes on a large scale, and suitable for long-distance transportation and long-term storage. All these characteristics make it a new approach to cornea tissue engineering having potential in many clinical applications

  2. Rechazo y retrasplante corneal Corneal rejection and re-transplantation

    Directory of Open Access Journals (Sweden)

    Miguel O Mokey Castellanos

    2007-06-01

    Full Text Available Se efectuó una investigación observacional análítica retrospectiva, sobre los transplantes corneales efectuados en el Servicio de Oftalmología del Hospital "Hermanos Ameijeiras. Rechazaron 76 pacientes, que se compararon con un control de 89 pacientes, que en un período similar no tuvieron rechazo. El queratocono fue la afección corneal que predominó. El primer lugar en los rechazos correspondió a queratoherpes (43,5 %. El menor índice de rechazo fue para el queratocono (8,8 %. Se analizó la multiplicidad de rechazos; y fue frecuente que se presentara un solo rechazo, aunque sí hubo congruencia entre el número de rechazos y la necesidad de retrasplantes. Se encontró que los resultados de la conducta médica o quirúrgica se relacionaban con la causa. Se calcula un índice de supervivencia (Kaplan-Meier, que concluye que en los primeros dos años existe menos posibilidad de aparición de rechazoAn retrospective observational analytical research was conducted on corneal transplants performed at Ophthalmological Service in “Hermanos Ameijeiras” hospital . Seventy six patients had graft rejection and were compared to a control group of 89 patients that did not present rejection in the same period of time. Keratoconus was the prevailing corneal problem. The highest rejection rate corresponded to keratoherpes (43,5% whereas the lowest rate was for keratoconus (8,8%. Multiplicity of rejections was analyzed and it was found that mostly one graft rejection occured, but number of rejections was associated with the need of re-transplantation. It was found that the results of medical or surgical performance were related to the cause of graft rejection. A survival index (Kaplan-Meier was estimated, which showed that occurence of graf rejection is less probable in the first two years

  3. Granular corneal dystrophy

    OpenAIRE

    Castillo Pérez, Alexeide de la C; Vilches Lescaille, Daysi; Noriega, Justo Luis; Martínez Balido, Daneel; León Balbón, Bárbaro Ramón; León Bernal, Danysleidi

    2015-01-01

    Las distrofias corneales constituyen un conjunto de enfermedades que presentan, en su mayoría, una baja incidencia y se caracterizan por acúmulo de material hialino o amiloide que disminuyen la transparencia corneal. La distrofia granular es una enfermedad autosómica dominante que presenta opacidades grises en el estroma superficial central de la córnea y se hacen visibles en la primera y segunda décadas de la vida, lo que provoca disminución de la visión más significativa cerca de los 40 año...

  4. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies

    OpenAIRE

    Eigenmann, Daniela E; Xue, Gongda; Kim, Kwang S; Moses, Ashlee V; Hamburger, Matthias; Oufir, Mouhssin

    2013-01-01

    Background: Reliable human in vitro blood brain barrier (BBB) models suitable for high throughput screening are urgently needed in early drug discovery and development for assessing the ability of promising bioactive compounds to overcome the BBB. To establish an improved human in vitro BBB model we compared four currently available and well characterized immortalized human brain capillary endothelial cell lines hCMEC/D3 hBMEC TY10 and BB19 with respect to barrier tightness and paracellular p...

  5. MicroRNA-4739 regulates osteogenic and adipocytic differentiation of immortalized human bone marrow stromal cells via targeting LRP3

    DEFF Research Database (Denmark)

    Elsafadi, Mona; Manikandan, Muthurangan; Alajez, Nehad M

    2017-01-01

    3 (LRP3) in regulating the osteogenic and adipogenic differentiation of immortalized hBMSCs. Gene expression profiling revealed significantly higher LRP3 levels in the highly osteogenic hBMSC clone imCL1 than in the less osteogenic clone imCL2, as well as a significant upregulation of LRP3 during...

  6. Interaction of CtBP with adenovirus E1A suppresses immortalization of primary epithelial cells and enhances virus replication during productive infection

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, T.; Zhao, Ling-jun; Chinnadurai, G., E-mail: chinnag@slu.edu

    2013-09-01

    Adenovirus E1A induces cell proliferation, oncogenic transformation and promotes viral replication through interaction with p300/CBP, TRRAP/p400 multi-protein complex and the retinoblastoma (pRb) family proteins through distinct domains in the E1A N-terminal region. The C-terminal region of E1A suppresses E1A/Ras co-transformation and interacts with FOXK1/K2, DYRK1A/1B/HAN11 and CtBP1/2 (CtBP) protein complexes. To specifically dissect the role of CtBP interaction with E1A, we engineered a mutation (DL→AS) within the CtBP-binding motif, PLDLS, and investigated the effect of the mutation on immortalization and Ras cooperative transformation of primary cells and viral replication. Our results suggest that CtBP–E1A interaction suppresses immortalization and Ras co-operative transformation of primary rodent epithelial cells without significantly influencing the tumorigenic activities of transformed cells in immunodeficient and immunocompetent animals. During productive infection, CtBP–E1A interaction enhances viral replication in human cells. Between the two CtBP family proteins, CtBP2 appears to restrict viral replication more than CtBP1 in human cells. - Highlights: • Adenovirus E1A C-terminal region suppresses E1A/Ras co-transformation. • This E1A region binds with FOXK, DYRK1/HAN11 and CtBP cellular protein complexes. • We found that E1A–CtBP interaction suppresses immortalization and transformation. • The interaction enhances viral replication in human cells.

  7. Corneal polarimetry after LASIK refractive surgery

    Science.gov (United States)

    Bueno, Juan M.; Berrio, Esther; Artal, Pablo

    2006-01-01

    Imaging polarimetry provides spatially resolved information on the polarization properties of a system. In the case of the living human eye, polarization could be related to the corneal biomechanical properties, which vary from the normal state as a result of surgery or pathologies. We have used an aberro-polariscope, which we recently developed, to determine and to compare the spatially resolved maps of polarization parameters across the pupil between normal healthy and post-LASIK eyes. The depolarization distribution is not uniform across the pupil, with post-surgery eyes presenting larger levels of depolarization. While retardation increases along the radius in normal eyes, this pattern becomes irregular after LASIK refractive surgery. The maps of slow axis also differ in normal and post-surgery eyes, with a larger disorder in post-LASIK eyes. Since these changes in polarization indicate subtle structural modifications of the cornea, this approach can be useful in a clinical environment to follow the biomechanical and optical changes of the cornea after refractive surgery or for the early diagnosis of different corneal pathologies.

  8. [Immortal time bias in pharmacoepidemiological studies: definition, solutions and examples].

    Science.gov (United States)

    Faillie, Jean-Luc; Suissa, Samy

    2015-01-01

    Among the observational studies of drug effects in chronic diseases, many of them have found effects that were exaggerated or wrong. Among bias responsible for these errors, the immortal time bias, concerning the definition of exposure and exposure periods, is relevantly important as it usually tends to wrongly attribute a significant benefit to the study drug (or exaggerate a real benefit). In this article, we define the mechanism of immortal time bias, we present possible solutions and illustrate its consequences through examples of pharmacoepidemiological studies of drug effects. © 2014 Société Française de Pharmacologie et de Thérapeutique.

  9. Prevalence and causes of corneal blindness.

    Science.gov (United States)

    Wang, Haijing; Zhang, Yaoguang; Li, Zhijian; Wang, Tiebin; Liu, Ping

    2014-04-01

    The study aimed to assess the prevalence and causes of corneal blindness in a rural northern Chinese population. Cross-sectional study. The cluster random sampling method was used to select the sample. This population-based study included 11 787 participants of all ages in rural Heilongjiang Province, China. These participants underwent a detailed interview and eye examination that included the measurement of visual acuity, slit-lamp biomicroscopy and direct ophthalmoscopy. An eye was considered to have corneal blindness if the visual acuity was blindness and low vision. Among the 10 384 people enrolled in the study, the prevalence of corneal blindness is 0.3% (95% confidence interval 0.2-0.4%). The leading cause was keratitis in childhood (40.0%), followed by ocular trauma (33.3%) and keratitis in adulthood (20.0%). Age and illiteracy were found to be associated with an increased prevalence of corneal blindness. Blindness because of corneal diseases in rural areas of Northern China is a significant public health problem that needs to be given more attention. © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  10. Two cases of corneal perforation after oral administration of nonsteroidal anti-inflammatory drugs: oral NSAID-induced corneal damage.

    Science.gov (United States)

    Masuda, Ikuya; Matsuo, Toshihiko; Okamoto, Kazuo; Matsushita, Kyoko; Ohtsuki, Hiroshi

    2010-01-01

    To report 2 cases of corneal perforation associated with the use of oral nonsteroidal anti-inflammatory drugs (NSAIDs). In a 62-year-old woman and a 79-year-old woman, corneal perforation occurred after 7 days and 5 months of oral NSAIDs administration, respectively. After NSAIDs were discontinued, the cornea epithelialized and the anterior chamber formed within 14 and 10 days, respectively. It is well known that topical NSAIDs cause corneal perforation. Observations in the present cases suggest that the oral administration of NSAIDs may also cause corneal damage, and hence, medical professionals should consider the risk of damage to the cornea when administering these drugs orally.

  11. Applanation optical coherence elastography: noncontact measurement of intraocular pressure, corneal biomechanical properties, and corneal geometry with a single instrument

    Science.gov (United States)

    Singh, Manmohan; Han, Zhaolong; Nair, Achuth; Schill, Alexander; Twa, Michael D.; Larin, Kirill V.

    2017-02-01

    Current clinical tools provide critical information about ocular health such as intraocular pressure (IOP). However, they lack the ability to quantify tissue material properties, which are potent markers for ocular tissue health and integrity. We describe a single instrument to measure the eye-globe IOP, quantify corneal biomechanical properties, and measure corneal geometry with a technique termed applanation optical coherence elastography (Appl-OCE). An ultrafast OCT system enabled visualization of corneal dynamics during noncontact applanation tonometry and direct measurement of micro air-pulse induced elastic wave propagation. Our preliminary results show that the proposed Appl-OCE system can be used to quantify IOP, corneal biomechanical properties, and corneal geometry, which builds a solid foundation for a unique device that can provide a more complete picture of ocular health.

  12. Risk factors for corneal ectasia after LASIK.

    Science.gov (United States)

    Tabbara, Khalid F; Kotb, Amgad A

    2006-09-01

    To establish a grading system that helps identify high-risk individuals who may experience corneal ectasia after LASIK. Retrospective, comparative, interventional case series. One hundred forty-eight consecutive patients (148 eyes) were included in this study. Thirty-seven patients who underwent LASIK at other refractive centers experienced corneal ectasia in 1 eye after LASIK. One hundred eleven eyes of 111 patients who underwent successful LASIK during the same period were age and gender matched and served as controls. All patients underwent preoperative and postoperative topographic analysis of the cornea. The follow-up period in both groups of patients ranged from 2 to 5 years, with a mean follow-up of 3.6 years. All patients underwent LASIK for myopia (spherical equivalent, -4.00 to -8.00 diopters). Corneal keratometry, oblique cylinder, pachymetry, posterior surface elevation, difference between the inferior and superior corneal diopteric power, and posterior best sphere fit (BSF) over anterior BSF were given a grade of 1 to 3 each. An ectasia grading system was established, and the cumulative risk score was assessed. Patients who had a grade of 7 or less showed no evidence of corneal ectasia, whereas 16 (59%) of 27 patients who had a grade of 8 to 12 had corneal ectasia. Twenty-one (100%) of 21 patients with a grade of more than 12 had corneal ectasia after LASIK (P<0.0001). A risk score may help in the prediction of patients who are at risk of experiencing corneal ectasia after LASIK. A prospective clinical study is needed to assess the validity of these risk factors.

  13. Customized toric intraocular lens implantation for correction of extreme corneal astigmatism due to corneal scarring

    Directory of Open Access Journals (Sweden)

    R Bassily

    2010-03-01

    Full Text Available R Bassily, J LuckOphthalmology Department, Royal United Hospital, Combe Park, Bath, UKAbstract: A 76-year-old woman presented with decreased visual function due to cataract formation. Twenty-five years prior she developed right sided corneal ulceration that left her with 10.8 diopters (D of irregular astigmatism at 71.8° (steep axis. Her uncorrected visual acuity was 6/24 and could only ever wear a balanced lens due to the high cylindrical error. Cataract surgery was planned with a custom designed toric intraocular lens (IOL with +16.0 D sphere inserted via a wound at the steep axis of corneal astigmatism. Postoperative refraction was -0.75/+1.50 × 177° with a visual acuity of 6/9 that has remained unchanged at six-week follow-up with no IOL rotation. This case demonstrates the value of high power toric IOLs for the correction of pathological corneal astigmatism.Keywords: intraocular lens, corneal ulceration, visual acuity, scarring

  14. Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium.

    Science.gov (United States)

    Ozcelik, Berkay; Brown, Karl D; Blencowe, Anton; Ladewig, Katharina; Stevens, Geoffrey W; Scheerlinck, Jean-Pierre Y; Abberton, Keren; Daniell, Mark; Qiao, Greg G

    2014-09-01

    Corneal endothelial cells (CECs) are responsible for maintaining the transparency of the human cornea. Loss of CECs results in blindness, requiring corneal transplantation. In this study, fabrication of biocompatible and biodegradable poly(ethylene glycol) (PEG)-based hydrogel films (PHFs) for the regeneration and transplantation of CECs is described. The 50-μm thin hydrogel films have similar or greater tensile strengths to human corneal tissue. Light transmission studies reveal that the films are >98% optically transparent, while in vitro degradation studies demonstrate their biodegradation characteristics. Cell culture studies demonstrate the regeneration of sheep corneal endothelium on the PHFs. Although sheep CECs do not regenerate in vivo, these cells proliferate on the films with natural morphology and become 100% confluent within 7 d. Implantation of the PHFs into live sheep corneas demonstrates the robustness of the films for surgical purposes. Regular slit lamp examinations and histology of the cornea after 28 d following surgery reveal minimal inflammatory responses and no toxicity, indicating that the films are benign. The results of this study suggest that PHFs are excellent candidates as platforms for the regeneration and transplantation of CECs as a result of their favorable biocompatibility, degradability, mechanical, and optical properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Study on the establishment of corneal alkali chemical injury on rats

    Directory of Open Access Journals (Sweden)

    Nan Hu

    2013-06-01

    Full Text Available AIM:To investigate the appropriate methods to establish corneal alkali chemical injury on rats. METHODS:The rats(n=87were randomly divided into three groups. Corneal alkali injury was induced by placing 1mol/L NaOH soaked filter paper on the limbus of right cornea for 20 seconds(group A, n=34or 40 seconds(group B, n=23, and on the central axis of the right cornea for 40 seconds(group C, n=30respectively. Corneal transparency, corneal ulceration, and corneal neovascularization were observed and recorded under slit- lamp biomicroscope on day 7 post-operation. RESULTS: Incidence of corneal ulceration, corneal perforation and positive rate of corneal fluorescein staining in limbal corneal injury groups(group A and Bwere significantly higher than that of central corneal injury group(group C(P<0.05. Incidence of corneal ulceration and corneal perforation in group B was significantly higher than group A(P<0.05. Corneal neovascularization was observed in all three groups. CONCLUSION: Corneal alkali burns induced by 3mm diameter central cornea injury are fit for the study of corneal neovascularization, while those induced by limbus injury for 20 seconds are fit for the study on limbal stem cells deficiency.

  16. Punctiform and Polychromatophilic Dominant Pre-Descemet Corneal Dystrophy.

    Science.gov (United States)

    Lagrou, Lisa; Midgley, Julian; Romanchuk, Kenneth Gerald

    2016-04-01

    To describe the slit-lamp appearance and corneal confocal microscopy of autosomal dominant punctiform and polychromatophilic pre-Descemet corneal dystrophy in 3 members of the same family. Slit-lamp examination of a 9-year-old boy showed bilateral polychromatophilic corneal opacities in a pre-Descemet membrane location evenly deposited limbus to limbus, both horizontally and vertically, with an intervening clear cornea. The corneal endothelium was normal on corneal confocal microscopy, with hyperreflective opacities of various sizes located pre-Descemet membrane. Slit-lamp examination of the patient's father and brother revealed identical crystalline deposition in the pre-Descemet corneal stroma. The remainders of the eye examinations were otherwise normal in all 3 individuals, and all were asymptomatic. The general physical examination and laboratory investigations of the patient were all normal, as were the laboratory investigations of the other 2 family members. There was no progression in the corneal findings over 6 months of follow-up. These patients likely illustrate a rare autosomal dominant pre-Descemet crystalline keratopathy that has been reported only once previously.

  17. Recovery of Corneal Endothelial Cells from Periphery after Injury.

    Directory of Open Access Journals (Sweden)

    Sang Ouk Choi

    Full Text Available Wound healing of the endothelium occurs through cell enlargement and migration. However, the peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium in endothelial injury.To investigate the recovery process of corneal endothelial cells (CECs from corneal endothelial injury.Three patients with unilateral chemical eye injuries, and 15 rabbit eyes with corneal endothelial chemical injuries were studied. Slit lamp examination, specular microscopy, and ultrasound pachymetry were performed immediately after chemical injury and 1, 3, 6, and 9 months later. The anterior chambers of eyes from New Zealand white rabbits were injected with 0.1 mL of 0.05 N NaOH for 10 min (NaOH group. Corneal edema was evaluated at day 1, 7, and 14. Vital staining was performed using alizarin red and trypan blue.Specular microscopy did not reveal any corneal endothelial cells immediately after injury. Corneal edema subsided from the periphery to the center, CEC density increased, and central corneal thickness decreased over time. In the animal study, corneal edema was greater in the NaOH group compared to the control at both day 1 and day 7. At day 1, no CECs were detected at the center and periphery of the corneas in the NaOH group. Two weeks after injury, small, hexagonal CECs were detected in peripheral cornea, while CECs in mid-periphery were large and non-hexagonal.CECs migrated from the periphery to the center of the cornea after endothelial injury. The peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium.

  18. Accelerated Development of Supramolecular Corneal Stromal-Like Assemblies from Corneal Fibroblasts in the Presence of Macromolecular Crowders.

    Science.gov (United States)

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Rochev, Yury; Rodriguez, Brian J; Gorelov, Alexander; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I

    2015-07-01

    Tissue engineering by self-assembly uses the cells' secretome as a regeneration template and biological factory of trophic factors. Despite the several advantages that have been witnessed in preclinical and clinical settings, the major obstacle for wide acceptance of this technology remains the tardy extracellular matrix formation. In this study, we assessed the influence of macromolecular crowding (MMC)/excluding volume effect, a biophysical phenomenon that accelerates thermodynamic activities and biological processes by several orders of magnitude, in human corneal fibroblast (HCF) culture. Our data indicate that the addition of negatively charged galactose derivative (carrageenan) in HCF culture, even at 0.5% serum, increases by 12-fold tissue-specific matrix deposition, while maintaining physiological cell morphology and protein/gene expression. Gene analysis indicates that a glucose derivative (dextran sulfate) may drive corneal fibroblasts toward a myofibroblast lineage. Collectively, these results indicate that MMC may be suitable not only for clinical translation and commercialization of tissue engineering by self-assembly therapies, but also for the development of in vitro pathophysiology models.

  19. Lack of evidence for protein AA reactivity in amyloid deposits of lattice corneal dystrophy and amyloid corneal degeneration.

    Science.gov (United States)

    Gorevic, P D; Rodrigues, M M; Krachmer, J H; Green, C; Fujihara, S; Glenner, G G

    1984-08-15

    Amyloid fibrils occurring in primary and myeloma-associated (AL), secondary (AA), and certain neuropathic hereditary forms of systemic amyloidosis can be distinguished biochemically or immunohistologically as being composed of immunoglobulin light chain, protein AA, or prealbumin respectively. All types of systemic and several localized forms of amyloidosis contain amyloid P component (protein AP). We studied formalin-fixed tissue from eight cases of lattice corneal dystrophy by the immunoperoxidase method using antisera to proteins AA and AP, to normal serum prealbumin and prealbumin isolated from a case of hereditary amyloidosis, and to light-chain determinants; additional cases were examined by indirect immunofluorescence of fresh-frozen material. We found weak (1:10 dilution) staining with anti-AP, but no reactivity with other antisera. Congo red staining was resistant to pretreatment of sections with potassium permanganate, a characteristic of non-AA amyloid. Two-dimensional gels of solubilized proteins from frozen tissue from two cases of lattice corneal dystrophy resembled those obtained from normal human cornea. Western blots of two cases of polymorphous amyloid degeneration and solubilized protein from normal cornea did not react with radioactive iodine-labeled anti-AA or anti-AP with purified protein AP and unfixed protein AA amyloid tissue as controls. We were unable to corroborate the presence of protein AA in the amyloid deposits of lattice corneal dystrophy. Although staining with antiserum to protein AP was demonstrable, the molecular configuration of this protein in stromal deposits remains to be defined.

  20. Evaluation of corneal symmetry after UV corneal crosslinking for keratoconus

    Directory of Open Access Journals (Sweden)

    Mofty H

    2017-11-01

    Full Text Available Hanan Mofty,1,2 Khaled Alzahrani,2 Fiona Carley,3 Sophie Harper,3 Arun Brahma,3 Leon Au,3 Debbie Morley,3 M Chantal Hillarby2 1Optometry Department, College of Applied Medical Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; 2Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3Manchester Royal Eye Hospital, Manchester, UK Purpose: The purpose of this study was to assess UV corneal crosslinking (CXL treatment outcomes for keratoconus by evaluating the corneal regularity in patients through follow-up using the Oculus Pentacam.Patients and methods: A total of 18 eyes from CXL patients with keratoconus were studied before and after CXL treatment, and six eyes from six patients who were not treated with CXL served as controls. Treated patients had Pentacam images taken before CXL treatment and regularly 3 months post treatment up to the 12th month. Controls were imaged during their first appointment and after 12 months. Symmetry and asphericity were evaluated and correlated with both best-corrected visual acuity (BCVA and maximum K-readings.Results: In the CXL-treated group, there was a significant improvement in the index of symmetrical variation (ISV and keratoconus index (KI at 3 months and in the index of height asymmetry (IHA and minimum radius of curvature (Rmin at 9 months post treatment. On the contrary, the untreated group’s indices showed some significant worsening in ISV, KI, central keratoconus index (CKI, and Rmin. A novel finding in our study was a slight positive shift of anterior asphericity in the 6 mm, 7 mm, and 8 mm 3 months after treatment, which had a correlation with BCVA (R2=0.390, p=0.053 and a strong correlation with maximum K-reading (R2=0.690, p=0.005. However, the untreated group had no significant changes after 1 year.Conclusion: The corneal asymmetrical shape is associated with the spherical aberration alteration

  1. Ski protein levels increase during in vitro progression of HPV16-immortalized human keratinocytes and in cervical cancer

    International Nuclear Information System (INIS)

    Chen, Yi; Pirisi, Lucia; Creek, Kim E.

    2013-01-01

    We compared the levels of the Ski oncoprotein, an inhibitor of transforming growth factor-beta (TGF-β) signaling, in normal human keratinocytes (HKc), HPV16 immortalized HKc (HKc/HPV16), and differentiation resistant HKc/HPV16 (HKc/DR) in the absence and presence of TGF-β. Steady-state Ski protein levels increased in HKc/HPV16 and even further in HKc/DR, compared to HKc. TGF-β treatment of HKc, HKc/HPV16, and HKc/DR dramatically decreased Ski. TGF-β-induced Ski degradation was delayed in HKc/DR. Ski and phospho-Ski protein levels are cell cycle dependent with maximal Ski expression and localization to centrosomes and mitotic spindles during G2/M. ShRNA knock down of Ski in HKc/DR inhibited cell proliferation. More intense nuclear and cytoplasmic Ski staining and altered Ski localization were found in cervical cancer samples compared to adjacent normal tissue in a cervical cancer tissue array. Overall, these studies demonstrate altered Ski protein levels, degradation and localization in HPV16-transformed human keratinocytes and in cervical cancer. - Highlights: • Ski oncoprotein levels increase during progression of HPV16-transformed cells. • Ski and phospho-Ski protein levels are cell cycle dependent. • Ski knock-down in HPV16-transformed keratinocytes inhibited cell proliferation. • Cervical cancer samples overexpress Ski

  2. Non-invasive measurement of corneal hydration.

    Science.gov (United States)

    March, W F; Bauer, N J

    2001-01-01

    To investigate the feasibility of a confocal Raman spectroscopic technique for the noncontact assessment of corneal hydration in vivo in two legally blind subjects. A laser beam (632.8 nm; 15 mJ) was maintained on the cornea using a microscope objective lens (25x magnification, NA=0.5, f=10 mm) both for focusing the incident light as well as collecting the Raman backscattered light, in a 180 degrees backscatter configuration. An optical fiber, acting as the confocal pinhole for elimination of light from out-of-focus places, was coupled to a spectrometer that dispersed the collected light onto a sensitive array-detector for rapid spectral data acquisition over a range from 2,890 to 3,590 cm(-1). Raman spectra were recorded from the anterior 100 to 150 microm of the cornea over a period of time before and after topical application of a mild dehydrating solution. The ratio between the amplitudes of the signals at 3,400 cm(-1) (OH-vibrational mode of water) and 2,940 cm(-1) (CH-vibrational mode of proteins) was used as a measure of corneal hydration. High signal-to-noise ratio (SNR 25) Raman spectra were obtained from the human corneas using 15 mJ of laser light energy. Qualitative changes in the hydration of the anterior-most part of the corneas could be observed as a result of the dehydrating agent. Confocal Raman spectroscopy could potentially be applied clinically as a noncontact tool for the assessment of corneal hydration in vivo.

  3. Altered corneal stromal matrix organization is associated with mucopolysaccharidosis I, III and VI.

    Science.gov (United States)

    Alroy, J; Haskins, M; Birk, D E

    1999-05-01

    The presence of cloudy corneas is a prominent feature of mucopolysaccharidosis (MPS) types I and VI, but not MPS IIIA or IIIB. The cause of corneal cloudiness in MPS I and VI is speculative. Transparency of the cornea is dependent on the uniform diameter and the regular spacing and arrangement of the collagen fibrils within the stroma. Alterations in the spacing of collagen fibrils in a variety of conditions including corneal edema, scars, and macular corneal dystrophy is clinically manifested as corneal opacity. The purpose of this study was to compare the structural organization of the stromal extracellular matrix of normal corneas with that of MPS corneas. The size and arrangement of collagen fibrils in cloudy corneas from patients with MPS I were examined. The alterations observed were an increased mean fibril diameter with a broader distribution in the MPS corneas. The MPS I corneas also had altered fibril spacing and more irregular packing compared with normal control corneas. The clear corneas of patients with MPS IIIA and IIIB also showed increases in mean fibril diameter and fibril spacing. However, there was less variation indicating more regularity than seen in MPS I. In addition, corneas from cat models of certain MPS were compared to the human corneas. Cats with MPS I and VI, as well as normal control cats, were examined. Structural alterations comparable to those seen in human MPS corneas were seen in MPS I and VI cats relative to normal clear corneas. The findings suggest that cloudy corneas in MPS I and VI are in part a consequence of structural alterations in the corneal stroma, including abnormal spacing, size, and arrangement of collagen fibrils. Copyright 1999 Academic Press.

  4. Corneal Collagen Crosslinking Combined with Phototherapeutic Keratectomy and Photorefractive Keratectomy for Corneal Ectasia after Laser in situ Keratomileusis.

    Science.gov (United States)

    Zhu, Wei; Han, Yunfei; Cui, Changxia; Xu, Wenwen; Wang, Xuan; Dou, Xiaoxiao; Xu, Linlin; Xu, Yanyun; Mu, Guoying

    2018-01-01

    The aim of this study was to analyze the effects of corneal crosslinking (CXL) combined with phototherapeutic keratectomy (PTK) and photorefractive keratectomy (PRK) in halting the progression and improving the visual function of corneal ectasia after laser in situ keratomileusis (LASIK). PTK-PRK-CXL was performed on 14 eyes of 14 patients who developed corneal ectasia after LASIK. The visual acuity, spherical refraction and cylinder, corneal topography indices, thinnest corneal thickness (TCT), and endothelial cell count were evaluated at baseline and at 1, 3, 6, and 12 months postoperatively. The mean uncorrected visual acuity improved significantly from 0.64 ± 0.36 logMAR preoperatively to 0.19 ± 0.12 logMAR at 12 months of follow-up (p 0.05) beyond 6 months after treatment. PTK-PRK-CXL is a promising procedure to halt the progression of post-LASIK keratectasia with significant visual quality improvement. © 2018 S. Karger AG, Basel.

  5. A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique

    International Nuclear Information System (INIS)

    Liu, Yang; Ren, Li; Wang, Yingjun

    2014-01-01

    Highlights: • Collagen film with micro-rough surface is fabricated by freeze drying technique. • The film has suitable water uptake capability and toughness performance. • The film has good optical performance. • Human corneal epithelial cells studies confirmed the biocompatibility of the film. - Abstract: Corneal epithelial defect is a common disease and keratoplasty is a common treatment method. A collagen film with micro-rough surface was fabricated through a simple freeze drying technique in this study. Compared with the air-dried collagen film (AD-Col), this freeze-dried collagen film (FD-Col) has a more suitable water uptake capability (about 85.5%) and toughness performance. Both of the two films have good optical properties and the luminousness of them is higher than 80%. Besides, the adhesion and proliferation rate of human corneal epithelial cells on the micro-rough surface of FD-Col film is higher than that on the smooth surface of AD-Col film. The results indicate that this FD-Col film may have potential applications for corneal epithelial repair

  6. A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Ren, Li, E-mail: psliren@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wang, Yingjun, E-mail: imwangyj@163.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China)

    2014-05-01

    Highlights: • Collagen film with micro-rough surface is fabricated by freeze drying technique. • The film has suitable water uptake capability and toughness performance. • The film has good optical performance. • Human corneal epithelial cells studies confirmed the biocompatibility of the film. - Abstract: Corneal epithelial defect is a common disease and keratoplasty is a common treatment method. A collagen film with micro-rough surface was fabricated through a simple freeze drying technique in this study. Compared with the air-dried collagen film (AD-Col), this freeze-dried collagen film (FD-Col) has a more suitable water uptake capability (about 85.5%) and toughness performance. Both of the two films have good optical properties and the luminousness of them is higher than 80%. Besides, the adhesion and proliferation rate of human corneal epithelial cells on the micro-rough surface of FD-Col film is higher than that on the smooth surface of AD-Col film. The results indicate that this FD-Col film may have potential applications for corneal epithelial repair.

  7. Ibn Qayyim Al-Jawziyyah and Allameh Tabataba’i on Immortality in Hell

    OpenAIRE

    Janan Izadi; Majid Sadeqi Hasan Abadi; Fatemeh Yusefi kazaj

    2016-01-01

    The Immortality of the people of hell and their eternal torment is one of the most important and complex debates, preoccupying religious scholars of different religions and sects. Each of them has taken a different way based on their intellectual principles of belief to solve this problem and the questions thereof, including how the immortality of the inhabitants of hell hellions and their eternal torment is consistent with the mercy and justice of God. How is it reasonable to endure infinite...

  8. Research on mouse model of grade II corneal alkali burn

    Directory of Open Access Journals (Sweden)

    Jun-Qiang Bai

    2016-04-01

    Full Text Available AIM: To choose appropriate concentration of sodium hydroxide (NaOH solution to establish a stable and consistent corneal alkali burn mouse model in grade II. METHODS: The mice (n=60 were randomly divided into four groups and 15 mice each group. Corneal alkali burns were induced by placing circle filter paper soaked with NaOH solutions on the right central cornea for 30s. The concentrations of NaOH solutions of groups A, B, C, and D were 0.1 mol/L, 0.15 mol/L , 0.2 mol/L, and 1.0 mol/L respectively. Then these corneas were irrigated with 20 mL physiological saline (0.9% NaCl. On day 7 postburn, slit lamp microscope was used to observe corneal opacity, corneal epithelial sodium fluorescein staining positive rate, incidence of corneal ulcer and corneal neovascularization, meanwhile pictures of the anterior eyes were taken. Cirrus spectral domain optical coherence tomography was used to scan cornea to observe corneal epithelial defect and corneal ulcer. RESULTS: Corneal opacity scores ( were not significantly different between the group A and group B (P=0.097. Incidence of corneal ulcer in group B was significantly higher than that in group A (P=0.035. Incidence of corneal ulcer and perforation rate in group B was lower than that in group C. Group C and D had corneal neovascularization, and incidence of corneal neovascularization in group D was significantly higher than that in group C (P=0.000. CONCLUSION: Using 0.15 mol/L NaOH can establish grade II mouse model of corneal alkali burns.

  9. AAV Gene Therapy for MPS1-associated Corneal Blindness.

    Science.gov (United States)

    Vance, Melisa; Llanga, Telmo; Bennett, Will; Woodard, Kenton; Murlidharan, Giridhar; Chungfat, Neil; Asokan, Aravind; Gilger, Brian; Kurtzberg, Joanne; Samulski, R Jude; Hirsch, Matthew L

    2016-02-22

    Although cord blood transplantation has significantly extended the lifespan of mucopolysaccharidosis type 1 (MPS1) patients, over 95% manifest cornea clouding with about 50% progressing to blindness. As corneal transplants are met with high rejection rates in MPS1 children, there remains no treatment to prevent blindness or restore vision in MPS1 children. Since MPS1 is caused by mutations in idua, which encodes alpha-L-iduronidase, a gene addition strategy to prevent, and potentially reverse, MPS1-associated corneal blindness was investigated. Initially, a codon optimized idua cDNA expression cassette (opt-IDUA) was validated for IDUA production and function following adeno-associated virus (AAV) vector transduction of MPS1 patient fibroblasts. Then, an AAV serotype evaluation in human cornea explants identified an AAV8 and 9 chimeric capsid (8G9) as most efficient for transduction. AAV8G9-opt-IDUA administered to human corneas via intrastromal injection demonstrated widespread transduction, which included cells that naturally produce IDUA, and resulted in a >10-fold supraphysiological increase in IDUA activity. No significant apoptosis related to AAV vectors or IDUA was observed under any conditions in both human corneas and MPS1 patient fibroblasts. The collective preclinical data demonstrate safe and efficient IDUA delivery to human corneas, which may prevent and potentially reverse MPS1-associated cornea blindness.

  10. Pharmacological activities of an eye drop containing Matricaria chamomilla and Euphrasia officinalis extracts in UVB-induced oxidative stress and inflammation of human corneal cells.

    Science.gov (United States)

    Bigagli, Elisabetta; Cinci, Lorenzo; D'Ambrosio, Mario; Luceri, Cristina

    2017-08-01

    Ultraviolet B (UVB) exposure is a risk factor for corneal damage resulting in oxidative stress, inflammation and cell death. The aim of this study was to investigate the potential protective effects of a commercial eye drop (Dacriovis™) containing Matricaria chamomilla and Euphrasia officinalis extracts on human corneal epithelial cells (HCEC-12) against UVB radiation-induced oxidative stress and inflammation as well as the underlying mechanisms. The antioxidant potential of the eye drops was evaluated by measuring the ferric reducing antioxidant power and the total phenolic content by Folin-Ciocalteu reagent. HCEC-12 cells were exposed to UVB radiation and treated with the eye drops at various concentrations. Cell viability, wound healing assay, reactive oxygen species (ROS) levels, protein and lipid oxidative damage and COX-2, IL-1β, iNOS, SOD-2, HO-1 and GSS gene expression, were assessed. Eye drops were able to protect corneal epithelial cells from UVB-induced cell death and ameliorated the wound healing; the eye drops exhibited a strong antioxidant activity, decreasing ROS levels and protein and lipid oxidative damage. Eye drops also exerted anti-inflammatory activities by decreasing COX-2, IL-1β, iNOS expression, counteracted UVB-induced GSS and SOD-2 expression and restored HO-1 expression to control levels. These findings suggest that an eye drop containing Matricaria chamomilla and Euphrasia officinalis extracts exerts positive effects against UVB induced oxidative stress and inflammation and may be useful in protecting corneal epithelial cells from UVB exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Corneal Laceration

    Medline Plus

    Full Text Available ... to Full Corneal Transplantation Nov 29, 2016 Follow The Academy Professionals: Education Guidelines News Multimedia Public & Patients: Contact Us About the Academy Jobs at the Academy Financial Relationships with Industry ...

  12. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC) as a cellular alternative for in vitro ocular toxicity testing.

    Science.gov (United States)

    Aberdam, Edith; Petit, Isabelle; Sangari, Linda; Aberdam, Daniel

    2017-01-01

    Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests.

  13. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC as a cellular alternative for in vitro ocular toxicity testing.

    Directory of Open Access Journals (Sweden)

    Edith Aberdam

    Full Text Available Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests.

  14. Inhibition of corneal neovascularization by recombinant adenovirus-mediated sFlk-1 expression

    International Nuclear Information System (INIS)

    Yu Hui; Wu Jihong; Li Huiming; Wang Zhanli; Chen Xiafang; Tian Yuhua; Yi Miaoying; Ji Xunda; Ma Jialie; Huang Qian

    2007-01-01

    The interaction of vascular endothelial growth factor (VEGF) and its receptors (Flt-1, Flk-1/KDR) is correlated with neovascularization in the eyes. Therefore, blocking the binding of VEGF and the corresponding receptor has become critical for inhibiting corneal neovascularization. In this study, we have expressed the cDNA for sFlk-1 under the control of cytomegalovirus immediate-early promoter (CMV) from an E1/partial E3 deleted replication defective recombinant adenovirus, and Ad.sflk-1 expression was determined by Western blotting. We have shown that conditioned media from Ad.sflk-1-infected ARPE-19 cells significantly reduced VEGF-induced human umbilical vein endothelial cells (HUVEC) and murine endothelial cells (SVEC) proliferation in vitro compared with the control vector. In vivo, adenoviral vectors expressing green fluorescent protein alone (Ad.GFP) were utilized to monitor gene transfer to the cornea. Moreover, in the models of corneal neovascularization, the injection of Ad.sflk-1 (10 8 PFU) into the anterior chamber could significantly inhibit angiogenic changes compared with Ad.null-injected and vehicle-injected models. Immunohistochemical analysis showed that corneal endothelial cells and corneal stroma of cauterized rat eyes were efficiently transduced and expressed sFlk-1. These results not only support that adenoviral vectors are capable of high-level transgene expression but also demonstrate that Ad.sflk-1 gene therapy might be a feasible approach for inhibiting the development of corneal neovascularization

  15. Using corneal topography design personalized cataract surgery programs

    Directory of Open Access Journals (Sweden)

    Jin-Ou Huang

    2014-08-01

    Full Text Available AIM:To investigate how to design personalized cataract surgery programs to achieve surgical correction of preoperative corneal astigmatism with surgical astigmatism under the guidance of corneal topography, improve postoperative visual quality and reduce the cost of treatment. METHODS: Totally 202 cases(226 eyescataract patients were divided into randomized treatment group and individualized treatment group. According to the method and location of the incision, randomized treatment group were divided into 8 groups. Surgical astigmatism after different incision were calculated with the use of preoperative and postoperative corneal astigmatism through vector analysis method. Individualized treatment groups were designed personably for surgical method with reference of every surgically induced astigmatism, the surgical method chooses the type of surgical incision based on close link between preoperative corneal astigmatism and surgically induced astigmatism, and the incision was located in the steep meridian. The postoperative corneal astigmatism of individualized treatment group was observed. RESULTS: Postoperative corneal astigmatism of individualized treatment group were lower than that of 3.0mm clear corneal tunnel incision in the randomized treatment group, there were statistically significance difference, while with 3.0mm sclera tunnel incision group there were no statistically significance difference. After 55.8% of patients with the use of individualized surgical plan could undergo the operation of extracapsular cataract extraction with relatively low cost and rigid intraocular lens implantation, the per capita cost of treatment could be reduced. CONCLUSION: Personalized cataract surgery programs are designed to achieve surgical correction of preoperative corneal astigmatism under the use of corneal topography, improve postoperative visual quality and reduce the cost of treatment.

  16. Crystalline Subtype of Pre-Descemetic Corneal Dystrophy

    Directory of Open Access Journals (Sweden)

    Rosa Dolz-Marco

    2014-01-01

    Full Text Available Purpose: To report corneal findings in a familial case of the crystalline subtype of pre- Descemetic corneal dystrophy. Case Report: A 19-year-old girl and her 44-year-old mother were found to have asymptomatic, bilateral, punctiform and multi-colored crystalline opacities across the whole posterior layer of the corneas. Endothelial specular microscopy revealed the presence of white round flecks located at different levels anterior to the endothelium. No systemic abnormalities or medications could be related to account for these findings. Conclusion: To the best of our knowledge, this is the third familial report of this rare corneal disorder. Differential diagnosis may include Schnyder corneal dystrophy, cystinosis, Bietti΄s dystrophy and monoclonal gammopathy.

  17. Crystalline Subtype of Pre-Descemetic Corneal Dystrophy

    Science.gov (United States)

    Dolz-Marco, Rosa; Gallego-Pinazo, Roberto; Pinazo-Durán, María Dolores; Díaz-Llopis, Manuel

    2014-01-01

    Purpose To report corneal findings in a familial case of the crystalline subtype of pre-Descemetic corneal dystrophy. Case Report A 19-year-old girl and her 44-year-old mother were found to have asymptomatic, bilateral, punctiform and multi-colored crystalline opacities across the whole posterior layer of the corneas. Endothelial specular microscopy revealed the presence of white round flecks located at different levels anterior to the endothelium. No systemic abnormalities or medications could be related to account for these findings. Conclusion To the best of our knowledge, this is the third familial report of this rare corneal disorder. Differential diagnosis may include Schnyder corneal dystrophy, cystinosis, Bietti´s dystrophy and monoclonal gammopathy. PMID:25279130

  18. The high-risk corneal regraft model: a justification for tissue matching in humans

    Czech Academy of Sciences Publication Activity Database

    Vitova, A.; Kuffova, L.; Klaska, I.; Holáň, Vladimír; Cornall, R.J.; Forrester, J.V.

    2013-01-01

    Roč. 26, č. 4 (2013), s. 453-461 ISSN 0934-0874 Institutional support: RVO:68378050 Keywords : accelerated rejection * corneal transplantation * dendritic cell s * regraft * T- cell memory * transgenic mouse Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.120, year: 2013

  19. Protease-activated receptor 2 (PAR2) is upregulated by Acanthamoeba plasminogen activator (aPA) and induces proinflammatory cytokine in human corneal epithelial cells.

    Science.gov (United States)

    Tripathi, Trivendra; Abdi, Mahshid; Alizadeh, Hassan

    2014-05-29

    Acanthamoeba plasminogen activator (aPA) is a serine protease elaborated by Acanthamoeba trophozoites that facilitates the invasion of trophozoites to the host and contributes to the pathogenesis of Acanthamoeba keratitis (AK). The aim of this study was to explore if aPA stimulates proinflammatory cytokine in human corneal epithelial (HCE) cells via the protease-activated receptors (PARs) pathway. Acanthamoeba castellanii trophozoites were grown in peptone-yeast extract glucose for 7 days, and the supernatants were collected and centrifuged. The aPA was purified using the fast protein liquid chromatography system, and aPA activity was determined by zymography assays. Human corneal epithelial cells were incubated with or without aPA (100 μg/mL), PAR1 agonists (thrombin, 10 μM; TRAP-6, 10 μM), and PAR2 agonists (SLIGRL-NH2, 100 μM; AC 55541, 10 μM) for 24 and 48 hours. Inhibition of PAR1 and PAR2 involved preincubating the HCE cells for 1 hour with the antagonist of PAR1 (SCH 79797, 60 μM) and PAR2 (FSLLRY-NH2, 100 μM) with or without aPA. Human corneal epithelial cells also were preincubated with PAR1 and PAR2 antagonists and then incubated with or without PAR1 agonists (thrombin and TRAP-6) and PAR2 agonists (SLIGRL-NH2 and AC 55541). Expression of PAR1 and PAR2 was examined by quantitative RT-PCR (qRT-PCR), flow cytometry, and immunocytochemistry. Interleukin-8 expression was quantified by qRT-PCR and ELISA. Human corneal epithelial cells constitutively expressed PAR1 and PAR2 mRNA. Acanthamoeba plasminogen activator and PAR2 agonists significantly upregulated PAR2 mRNA expression (1- and 2-fold, respectively) (P aPA, and PAR2 agonists induced PAR2 mRNA expression in HCE cells (P aPA, significantly upregulated PAR1 mRNA expression, which was significantly inhibited by PAR1 antagonist in HCE cells. Acanthamoeba plasminogen activator and PAR2 agonists stimulated IL-8 mRNA expression and protein production, which is significantly diminished by PAR2 antagonist

  20. Topical Ranibizumab as a Treatment of Corneal Neovascularization

    Science.gov (United States)

    Ferrari, Giulio; Dastjerdi, Mohammad H.; Okanobo, Andre; Cheng, Sheng-Fu; Amparo, Francisco; Nallasamy, Nambi; Dana, Reza

    2014-01-01

    Purpose To examine the effect of topical ranibizumab on clinically stable corneal neovascularization (NV). Methods This was a prospective, open-label, monocentric, uncontrolled, non-comparative study. Ten eyes of 9 patients with corneal NV received topical ranibizumab (1%) 4 times a day for 3 weeks with a follow-up of 16 weeks. The main corneal neovascularization outcome measures were: neovascular area (NA), the area occupied by the corneal neovessels; vessel caliber (VC), the mean diameter of the corneal neovessels; and invasion area (IA), the fraction of the total cornea area covered by the vessels. This study was conducted at the Massachusetts Eye and Ear Infirmary, Boston, MA, USA. Results Statistically significant decreases in NA (55.3%, P<0.001), which lasted through 16 weeks, and VC (59%, P<0.001), which continued to improve up to week 16, were observed after treatment. No significant decrease was observed in IA (12.3%, P=0.49). There was no statistically significant change in visual acuity or intraocular pressure. No adverse events ascribed to the treatment were noted. Conclusions Topical application of ranibizumab is effective in reducing the severity of corneal NV in the context of established corneal NV, mostly through decrease in VC rather than IA. PMID:23407316

  1. Corneal changes with accommodation using dual Scheimpflug photography.

    Science.gov (United States)

    Sisó-Fuertes, Irene; Domínguez-Vicent, Alberto; del Águila-Carrasco, Antonio; Ferrer-Blasco, Teresa; Montés-Micó, Robert

    2015-05-01

    To assess whether corneal parameters and aberrations are affected by accommodation. Optics Department, University of Valencia, Valencia, Spain. Prospective cross-sectional study. The Galilei G4 dual Scheimpflug device was used to obtain data on the anterior and posterior axial curvatures, total corneal power (TCP), and corneal pachymetry from 3 corneal zones (central: 0.0 up to 4.0 mm; paracentral or mid: 4.0 up to 7.0 mm; peripheral: 7.0 up to 10.0 mm) in young emmetropic eyes in the unaccommodated and 4 accommodated states (from -1.0 to -4.0 diopters [D] in 1.0 D steps). The 2nd-, 3rd-, and 4th-order aberrations as well as the root mean square (RMS) were also determined for the entire cornea at the same accommodative demands. The study evaluated 7 subjects (12 eyes). No significant changes in any measured parameter were found during accommodation for any corneal zone (P > .05). Statistically significant differences were found in the various corneal zones when it was assumed they were constant with accommodation (P the high standard deviation values. Different parameters in various zones of the cornea as well as corneal aberrations were stable during accommodation. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  2. Corneal Biomechanics in Ectatic Diseases: Refractive Surgery Implications

    Science.gov (United States)

    Ambrósio, Jr, Renato; Correia, Fernando Faria; Lopes, Bernardo; Salomão, Marcella Q.; Luz, Allan; Dawson, Daniel G.; Elsheikh, Ahmed; Vinciguerra, Riccardo; Vinciguerra, Paolo; Roberts, Cynthia J.

    2017-01-01

    Background: Ectasia development occurs due to a chronic corneal biomechanical decompensation or weakness, resulting in stromal thinning and corneal protrusion. This leads to corneal steepening, increase in astigmatism, and irregularity. In corneal refractive surgery, the detection of mild forms of ectasia pre-operatively is essential to avoid post-operative progressive ectasia, which also depends on the impact of the procedure on the cornea. Method: The advent of 3D tomography is proven as a significant advancement to further characterize corneal shape beyond front surface topography, which is still relevant. While screening tests for ectasia had been limited to corneal shape (geometry) assessment, clinical biomechanical assessment has been possible since the introduction of the Ocular Response Analyzer (Reichert Ophthalmic Instruments, Buffalo, USA) in 2005 and the Corvis ST (Oculus Optikgeräte GmbH, Wetzlar, Germany) in 2010. Direct clinical biomechanical evaluation is recognized as paramount, especially in detection of mild ectatic cases and characterization of the susceptibility for ectasia progression for any cornea. Conclusions: The purpose of this review is to describe the current state of clinical evaluation of corneal biomechanics, focusing on the most recent advances of commercially available instruments and also on future developments, such as Brillouin microscopy. PMID:28932334

  3. Corneal biomechanical properties in healthy children measured by corneal visualization scheimpflug technology.

    Science.gov (United States)

    He, Miao; Ding, Hui; He, Hong; Zhang, Chi; Liu, Liangping; Zhong, Xingwu

    2017-05-17

    The aim of this study was to evaluate corneal biomechanical properties in a population of healthy children in China using corneal visualization Scheimpflug technology (CST). All children underwent complete bi-ocular examinations. CST provided intraocular pressure (IOP) and corneal biomechanical parameters, including time, velocity, length and deformation amplitude at first applanation (A1T, A1V, A1L, A1DA), at second applanation (A2T, A2V, A2L, A2DA), highest concavity time (HCT), maximum deformation amplitude (MDA), peak distance (PD), and radius of curvature (RoC). Pearson correlation analysis was used to assess the impacts of demographic factors, central corneal thickness (CCT), spherical equivalent (SE), and IOP on corneal biomechanics. One hundred eight subjects (32 girls and 76 boys) with the mean age of 10.80 ± 4.13 years (range 4 to18 years) were included in the final analyses. The right and left eyes were highly symmetrical in SE (p = 0.082), IOP (p = 0.235), or CCT (p = 0.210). Mean A1T of the right eyes was 7.424 ± 0.340 ms; the left eyes 7.451 ± 0.365 ms. MDA was 0.993 ± 0.102 mm in the right eyes and 0.982 ± 0.100 mm in the left eyes. Mean HCT of the right eyes was 16.675 ± 0.502 ms; the left eyes 16.735 ± 0.555 ms. All CST parameters of both eye were remarkably symmetrical with the exception of A2L (p = 0.006), A1DA (p = 0.025). The majority of CST parameters of both eyes were significantly correlated with CCT and IOP (p children eyes. Several CST biomechanical parameters in children are modified by CCT and IOP.

  4. Corneal Laceration

    Medline Plus

    Full Text Available ... by something sharp flying into the eye. It can also be caused by something striking the eye ... If the corneal laceration is deep enough it can cause a full thickness laceration. This is when ...

  5. Anti-inflammatory effect of topical administration of tofacitinib on corneal inflammation.

    Science.gov (United States)

    Sakimoto, Tohru; Ishimori, Akiko

    2016-04-01

    We evaluated an anti-inflammatory effect of topical administration of tofacitinib, janus kinase (JAK) blocker, on corneal inflammation. Topical instillation of either tofacitinib or PBS was applied after wounding BALB/c mice corneas with alkali burn. Topical instillation was performed until day 14 after injury and injured eye was analyzed. The vascularized area in the alkali burned cornea was significantly reduced in the tofacitinib group compared with that in the PBS group. The immunoreactivity of Gr-1, F4/80, IFN-γ, and phosphorylated STAT(signal transducer and activator of transcription)1 in corneal stroma was diminished significantly in the tofacitinib group. Using laser capture microdissection system and quantitative PCR array analysis, the expression levels of CXCL9, CXCL5, CCL7, CCL2, MMP(matrix metalloproteinase)-9, and STAT1 in corneal stroma were down-regulated in the tofacitinib group. In in vitro study, human fibroblast pretreated by IFN-γ showed phosphorylation of STAT1, and this phosphorylation was down-regulated by adding tofacitinib to the culture medium. These results indicate the topical application of JAK inhibitor causes down-regulation of JAK- or IFN-γ-related molecules. Therefore, we deduce that application of JAK inhibitor for topical instillation may contribute to the treatment of corneal inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. In Vivo Corneal Biomechanical Properties with Corneal Visualization Scheimpflug Technology in Chinese Population

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2016-01-01

    Full Text Available Purpose. To determine the repeatability of recalculated corneal visualization Scheimpflug technology (CorVis ST parameters and to study the variation of biomechanical properties and their association with demographic and ocular characteristics. Methods. A total of 783 healthy subjects were included in this study. Comprehensive ophthalmological examinations were conducted. The repeatability of the recalculated biomechanical parameters with 90 subjects was assessed by the coefficient of variation (CV and intraclass correlation coefficient (ICC. Univariate and multivariate linear regression models were used to identify demographic and ocular factors. Results. The repeatability of the central corneal thickness (CCT, deformation amplitude (DA, and first/second applanation time (A1/A2-time exhibited excellent repeatability (CV% ≤ 3.312% and ICC ≥ 0.929 for all measurements. The velocity in/out (Vin/out, highest concavity- (HC- radius, peak distance (PD, and DA showed a normal distribution. Univariate linear regression showed a statistically significant correlation between Vin, Vout, DA, PD, and HC-radius and IOP, CCT, and corneal volume, respectively. Multivariate analysis showed that IOP and CCT were negatively correlated with Vin, DA, and PD, while there was a positive correlation between Vout and HC-radius. Conclusion. The ICCs of the recalculated parameters, CCT, DA, A1-time, and A2-time, exhibited excellent repeatability. IOP, CCT, and corneal volume significantly influenced the biomechanical properties of the eye.

  7. X-ray induction of immortalization in primary rat embryo cells associated with and without tumorigenicity

    International Nuclear Information System (INIS)

    Sierra, E.; Oberley, L.W.; Guernsey, D.L.

    1985-01-01

    Cultures of primary rat embryo fibroblasts were irradiated with X-rays (3 Gy). After 14 days the majority of colonies in both irradiated and control plates had senesced. Surviving clones were ring isolated from irradiated and control plates and grown in culture. A phase of rapid proliferation after isolation was observed, followed by a decline (crisis) leading to senescence. Several clones from the irradiated plates were able to recover from this crisis and gave rise to continuous cell lines, while all colonies from control plates senesced. Three types of cells have been identified among the irradiated survivors: (1) immortal fully transformed, capable of growth in soft agar (Aga/sup +/) and tumor formation, (2) immortal normal, not able to grow in soft agar (Aga/sup -/) and nontumorigenic, and (3) immortal Aga/sup -/ cells which progressed to malignancy (Aga/sup +/, tumorigenicity) after further sub-culture. These data support the suggestion that X-rays can induce immortalization of mammalian cells in the absence of tumorigenicity, in addition to (and separate from) the fully tumorigenetic state

  8. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies.

    Science.gov (United States)

    Eigenmann, Daniela E; Xue, Gongda; Kim, Kwang S; Moses, Ashlee V; Hamburger, Matthias; Oufir, Mouhssin

    2013-11-22

    Reliable human in vitro blood-brain barrier (BBB) models suitable for high-throughput screening are urgently needed in early drug discovery and development for assessing the ability of promising bioactive compounds to overcome the BBB. To establish an improved human in vitro BBB model, we compared four currently available and well characterized immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, with respect to barrier tightness and paracellular permeability. Co-culture systems using immortalized human astrocytes (SVG-A cell line) and immortalized human pericytes (HBPCT cell line) were designed with the aim of positively influencing barrier tightness. Tight junction (TJ) formation was assessed by transendothelial electrical resistance (TEER) measurements using a conventional epithelial voltohmmeter (EVOM) and an automated CellZscope system which records TEER and cell layer capacitance (CCL) in real-time.Paracellular permeability was assessed using two fluorescent marker compounds with low BBB penetration (sodium fluorescein (Na-F) and lucifer yellow (LY)). Conditions were optimized for each endothelial cell line by screening a series of 24-well tissue culture inserts from different providers. For hBMEC cells, further optimization was carried out by varying coating material, coating procedure, cell seeding density, and growth media composition. Biochemical characterization of cell type-specific transmembrane adherens junction protein VE-cadherin and of TJ proteins ZO-1 and claudin-5 were carried out for each endothelial cell line. In addition, immunostaining for ZO-1 in hBMEC cell line was performed. The four cell lines all expressed the endothelial cell type-specific adherens junction protein VE-cadherin. The TJ protein ZO-1 was expressed in hCMEC/D3 and in hBMEC cells. ZO-1 expression could be confirmed in hBMEC cells by immunocytochemical staining. Claudin-5 expression was detected in hCMEC/D3, TY10, and at a very low level

  9. Alloimmunity and Tolerance in Corneal Transplantation.

    Science.gov (United States)

    Amouzegar, Afsaneh; Chauhan, Sunil K; Dana, Reza

    2016-05-15

    Corneal transplantation is one of the most prevalent and successful forms of solid tissue transplantation. Despite favorable outcomes, immune-mediated graft rejection remains the major cause of corneal allograft failure. Although low-risk graft recipients with uninflamed graft beds enjoy a success rate ∼90%, the rejection rates in inflamed graft beds or high-risk recipients often exceed 50%, despite maximal immune suppression. In this review, we discuss the critical facets of corneal alloimmunity, including immune and angiogenic privilege, mechanisms of allosensitization, cellular and molecular mediators of graft rejection, and allotolerance induction. Copyright © 2016 by The American Association of Immunologists, Inc.

  10. Role of 5'TG3'-interacting factors (TGIFs) in Vorinostat (HDAC inhibitor)-mediated Corneal Fibrosis Inhibition.

    Science.gov (United States)

    Sharma, Ajay; Sinha, Nishant R; Siddiqui, Saad; Mohan, Rajiv R

    2015-01-01

    We have previously reported that vorinostat, an FDA-approved, clinically used histone deacetylase (HDAC) inhibitor, attenuates corneal fibrosis in vivo in rabbits by blocking transforming growth factor β (TGFβ). The 5'TG3'-interacting factors (TGIFs) are transcriptional repressors of TGFβ1 signaling via the Smad pathway. The present study was designed to explore the expression of TGIFs in human corneal fibroblasts and to investigate their role in mediating the antifibrotic effect of vorinostat. Human corneal fibroblast cultures were generated from donor corneas. RNA isolation, cDNA preparation, and PCR were performed to detect the presence of TGIF1 and TGIF2 transcripts. The cultures were exposed to vorinostat (2.5 µM) to test its effect on TGIF mRNA and protein levels using qPCR and immunoblotting. Myofibroblast formation was induced with TGFβ1 (5 ng/ml) treatment under serum-free conditions. The changes in fibrosis parameters were quantified by measuring fibrosis marker α-smooth muscle actin (αSMA) mRNA and protein levels with qPCR, immunostaining, and immunoblotting. Smad2/3/4 and TGIF knockdowns were performed using pre-validated RNAi/siRNAs and a commercially available transfection reagent. Human corneal fibroblasts showed the expression of TGIF1 and TGIF2. Vorinostat (2.5 µM) caused a 2.8-3.3-fold increase in TGIF1 and TGIF2 mRNA levels and a 1.4-1.8-fold increase in TGIF1 and TGIF2 protein levels. Vorinostat treatment also caused a significant increase in acetylhistone H3 and acetylhistone H4. Vorinostat-induced increases in TGIF1 and TGIF2 were accompanied by a concurrent decrease in corneal fibrosis, as indicated by a decrease in αSMA mRNA by 83±7.7% and protein levels by 97±5%. The RNAi-mediated knockdown of Smad2, Smad3, and Smad4 markedly attenuated TGFβ1-evoked transdifferentiation of fibroblasts to myofibroblasts. The siRNA-mediated knockdown of TGIF1 and TGIF2 neutralized vorinostat-evoked decreases in αSMA mRNA by 31%-45% and protein

  11. Confocal microscopy evaluation of stromal fluorescence intensity after standard and accelerated iontophoresis-assisted corneal cross-linking.

    Science.gov (United States)

    Lanzini, Manuela; Curcio, Claudia; Spoerl, Eberhard; Calienno, Roberta; Mastropasqua, Alessandra; Colasante, Martina; Mastropasqua, Rodolfo; Nubile, Mario; Mastropasqua, Leonardo

    2017-02-01

    The aim of this study is to determine modifications in stromal fluorescence intensity after different corneal cross-linking (CXL) procedures and to correlate stromal fluorescence to corneal biomechanical resistance. For confocal microscopy study, 15 human cadaver corneas were examined. Three served as control (group 1), three were just soaked with iontophoresis procedure (group 2), three were treated with standard epi-off technique (group 3), and six underwent iontophoresis imbibition. Three of later six were irradiated for 30 min with 3 mW/cm 2 UVA (group 4) and three for 9 min at 10 mW/cm 2 UVA (group 5). Confocal microscopy was performed to quantify the fluorescence intensity in the cornea at different stromal depths. For biomechanical study, 30 human cadaver corneas were randomly divided into five groups and treated as previously described. Static stress-strain measurements of the corneas were performed. Iontophoresis imbibition followed by 10mW/cm 2 irradiation proved to increase stromal fluorescence into the corneal stroma and significant differences were revealed between group 3 and 5 both at 100 (p = 0.0171) and 250 µm (p = 0.0024), respectively. Biomechanical analysis showed an improvement of corneal resistance in group 5. Iontophoresis imbibition followed by accelerated irradiation increased the stromal fluorescence and is related to an improvement of biomechanical resistance. This approach may represent a new strategy to achieve greater concentrations of riboflavin without removing corneal epithelium and improve clinical results while reducing the side effects of CXL.

  12. Molecular mechanisms of anti-aging hormetic effects of mild heat stress on human cells

    DEFF Research Database (Denmark)

    Rattan, Suresh I S; Eskildsen-Helmond, Yvonne E G; Beedholm, Rasmus

    2004-01-01

    of cellular responsiveness to mild and severe heat stress. Furthermore, we are also undertaking comparative studies using non-aging immortal cell lines, such as SV40-transformed human fibroblasts, spontaneous osteosarcoma cells, and telomerase-immortalized human bone marrow cells for establishing differences...

  13. Milk as a symbol of immortality in the “Orphic” gold tablets from Thurii and Pelinna

    Directory of Open Access Journals (Sweden)

    Stian Sundell Torjussen

    2014-11-01

    Full Text Available This article offers an interpretation of the enigmatic “kid-in-milk” formula which appears in four of the “Orphic” gold tablets from Thurii and Pelinna. These tiny tablets accompanied the dead in their graves and contained texts of various lengths which were believed to help the deceased on his or her journey to the otherworld. Many see the tablets as Orphic texts, but this question has been highly debated during the last century. The four tablets in question, from two sites in southern Italy and Greece, tell how the deceased has suffered in life, but that he or she has attained immortality through initiation. The immortalization was referred to and summed up in the “kid-in-milk” formula, where, it is argued, milk was a direct reference to immortality. Thus milk in this eschatological context is a symbol of immortality which served as a focal point for both the text and the initates.

  14. Metaherpetic corneal disease in a dog associated with partial limbal stem cell deficiency and neurotrophic keratitis.

    Science.gov (United States)

    Ledbetter, Eric C; Marfurt, Carl F; Dubielzig, Richard R

    2013-07-01

    To describe clinical, in vivo confocal microscopic, histopathologic, and immunohistochemical features of a dog with metaherpetic corneal disease that developed subsequent to a protracted episode of canine herpesvirus-1 (CHV-1) dendritic ulcerative keratitis. A 7-year-old, spayed-female, Miniature Schnauzer was treated for bilateral CHV-1 dendritic ulcerative keratitis. Following resolution of ulcerative keratitis, sectoral peripheral superficial corneal gray opacification, vascularization, and pigmentation slowly migrated centripetally to the axial cornea of both eyes. Corneal sensitivity measured with a Cochet-Bonnet esthesiometer was dramatically and persistently reduced. In vivo corneal confocal microscopic examination revealed regions of epithelium with a conjunctival phenotype. In these areas, the surface epithelium was thin, disorganized, and composed of hyper-reflective epithelial cells. Goblet cells and Langerhans cells were frequent, and the subbasal nerve plexus was completely absent or markedly diminished. Histopathologic abnormalities in the globes were restricted to the superficial cornea and included sectoral corneal conjunctivalization, increased anterior stromal spindle cells, and vascularization. Immunohistochemical evaluation of the corneas with anti-neurotublin antibody demonstrated attenuation of the epithelial and subbasal nerve plexuses with marked stromal hyperinnervation and increased numbers of morphologically abnormal neurites. Similar to herpes simplex virus keratitis in humans, CHV-1 ulcerative keratitis may be associated with the development of chronic degenerative corneal disease in dogs. In the described dog, this chronic corneal disease included progressive corneal opacification because of partial limbal stem cell deficiency and neurotrophic keratitis. Long-term monitoring of dogs following resolution of active CHV-1 keratitis may be indicated, particularly when ulcerations persist for an extended period. © 2012 American College of

  15. Extended latanoprost release from commercial contact lenses: in vitro studies using corneal models.

    Directory of Open Access Journals (Sweden)

    Saman Mohammadi

    Full Text Available In this study, we compared, for the first time, the release of a 432 kDa prostaglandin F2a analogue drug, Latanoprost, from commercially available contact lenses using in vitro models with corneal epithelial cells. Conventional polyHEMA-based and silicone hydrogel soft contact lenses were soaked in drug solution (131 μg = ml solution in phosphate buffered saline. The drug release from the contact lens material and its diffusion through three in vitro models was studied. The three in vitro models consisted of a polyethylene terephthalate (PET membrane without corneal epithelial cells, a PET membrane with a monolayer of human corneal epithelial cells (HCEC, and a PET membrane with stratified HCEC. In the cell-based in vitro corneal epithelium models, a zero order release was obtained with the silicone hydrogel materials (linear for the duration of the experiment whereby, after 48 hours, between 4 to 6 μg of latanoprost (an amount well within the range of the prescribed daily dose for glaucoma patients was released. In the absence of cells, a significantly lower amount of drug, between 0.3 to 0.5 μg, was released, (p <0:001. The difference observed in release from the hydrogel lens materials in the presence and absence of cells emphasizes the importance of using an in vitro corneal model that is more representative of the physiological conditions in the eye to more adequately characterize ophthalmic drug delivery materials. Our results demonstrate how in vitro models with corneal epithelial cells may allow better prediction of in vivo release. It also highlights the potential of drug-soaked silicone hydrogel contact lens materials for drug delivery purposes.

  16. The Effect of a p38 Mitogen-Activated Protein Kinase Inhibitor on Cellular Senescence of Cultivated Human Corneal Endothelial Cells.

    Science.gov (United States)

    Hongo, Akane; Okumura, Naoki; Nakahara, Makiko; Kay, EunDuck P; Koizumi, Noriko

    2017-07-01

    We have begun a clinical trial of a cell-based therapy for corneal endothelial dysfunction in Japan. The purpose of this study was to investigate the usefulness of a p38 MAPK inhibitor for prevention cellular senescence in cultivated human corneal endothelial cells (HCECs). HCECs of 10 donor corneas were divided and cultured with or without SB203580 (a p38 MAPK inhibitor). Cell density and morphology were evaluated by phase-contrast microscopy. Expression of function-related proteins was examined by immunofluorescent staining. Cellular senescence was evaluated by SA-β-gal staining and Western blotting for p16 and p21. Senescence-associated factors were evaluated by membrane blotting array, quantitative PCR, and ELISA. Phase-contrast microscopy showed a significantly higher cell density for HCECs cultured with SB203580 than without SB203580 (2623 ± 657 cells/mm2 and 1752 ± 628 cells/mm2, respectively). The HCECs cultured with SB203580 maintained a hexagonal morphology and expressed ZO-1, N-cadherin, and Na+/K+-ATPase in the plasma membrane, whereas the control HCECs showed an altered staining pattern for these marker proteins. HCECs cultured without SB203580 showed high positive SA-β-gal staining, a low nuclear/cytoplasm ratio, and expression of p16 and p21. IL-6, IL-8, CCL2, and CXCL1 were observed at high levels in low cell density HCECs cultured without SB203580. Activation of p38 MAPK signaling due to culture stress might be a causative factor that induces cellular senescence; therefore, the use of p38 MAPK inhibitor to counteract senescence may achieve sufficient numbers of HCECs for tissue engineering therapy for corneal endothelial dysfunction.

  17. Treatment Results of Corneal Collagen Cross-Linking Combined with Riboflavin and 440 Nm Blue Light for Bacterial Corneal Ulcer in Rabbits.

    Science.gov (United States)

    Wei, Shufang; Zhang, Cuiying; Zhang, Shaoru; Xu, Yanyun; Mu, Guoying

    2017-10-01

    To study the treatment effect of corneal collagen cross-linking (CXL) combined with 440 nm blue light and riboflavin on bacterial corneal ulcer using animal experiments. A total of 21 New Zealand white rabbits that developed Staphylococcus aureus corneal ulcer were randomly divided into three groups. Seven rabbits were used as blank control groups; seven rabbits were treated with CXL combined with riboflavin and 440 nm blue light; and seven rabbits were treated with CXL combined with riboflavin and 370 nm ultraviolet A light. Necrotic tissues or secretions from the ulcer surface, eye secretions, conjunctival hyperemia, hypopyon, corneal infiltration, and pathological changes of the cornea were all observed. The 1st, 3th, and 7th day after CXL treatment, a statistically significant difference was found among the inflammation scores of the three groups. The scores of 440 and 370 groups decreased gradually, significantly lower than that of the control group. Bacterial cultures of 440 and 370 groups turned to be negative while that of the control group remained positive. After 1 day of CXL treatment, pathology pictures of the three groups all showed loss of corneal epithelia with many inflammatory cells in deep stroma. After 7 days of CXL treatment, abscess formed in almost all corneal area in the control group, while in 440 and 370 groups, multilayer healing of corneal epithelia, neovascularization, and many inflammatory cells within ulcers and proliferation of a small amount of fibroblast were seen. CXL combined with riboflavin and 440 nm blue light is effective in treating S. aureus corneal ulcer.

  18. On Persons and Immortality Symposium on Pedro Tabensky ...

    African Journals Online (AJOL)

    ... disadvantages associated with the immortal life, these are contingent rather than essential to the notion of being a person. In fact, we have very little idea of the boundaries of that concept. The paper concludes by looking at the consequences of Tabensky\\'s approach for issues surrounding moral vision and improvement, ...

  19. Clinical Validation of Point-Source Corneal Topography in Keratoplasty

    NARCIS (Netherlands)

    Vrijling, A C L; Braaf, B.; Snellenburg, J.J.; de Lange, F.; Zaal, M.J.W.; van der Heijde, G.L.; Sicam, V.A.D.P.

    2011-01-01

    Purpose. To validate the clinical performance of point-source corneal topography (PCT) in postpenetrating keratoplasty (PKP) eyes and to compare it with conventional Placido-based topography. Methods. Corneal elevation maps of the anterior corneal surface were obtained from 20 post-PKP corneas using

  20. Corneal wound healing promoted by 3 blood derivatives: an in vitro and in vivo comparative study.

    Science.gov (United States)

    Freire, Vanesa; Andollo, Noelia; Etxebarria, Jaime; Hernáez-Moya, Raquel; Durán, Juan A; Morales, María-Celia

    2014-06-01

    The aim of this study was to compare the effect on corneal wound healing of 3 differently manufactured blood derivatives [autologous serum (AS), platelet-rich plasma, and serum derived from plasma rich in growth factors (s-PRGF)]. Scratch wound-healing assays were performed on rabbit primary corneal epithelial cultures and human corneal epithelial cells. Additionally, mechanical debridement of rabbit corneal epithelium was performed. Wound-healing progression was assessed by measuring the denuded areas remaining over time after treatment with each of the 3 blood derivatives or a control treatment. In vitro data show statistically significant differences in the healing process with all the derivatives compared with the control, but 2 of them (AS and s-PRGF) induced markedly faster wound healing. In contrast, although the mean time required to complete in vivo reepithelization was similar to that of AS and s-PRGF treatment, only wounds treated with s-PRGF were significantly smaller in size from 2.5 days onward with respect to the control treatment. All 3 blood derivatives studied are promoters of corneal reepithelization. However, the corneal wound-healing progresses differently with each derivative, being faster in vitro under AS and s-PRGF treatment and producing in vivo the greatest decrease in wound size under s-PRGF treatment. These findings highlight that the manufacturing process of the blood derivatives may modulate the efficacy of the final product.

  1. Corneal donations in South Africa: A 15-year review.

    Science.gov (United States)

    York, Nicholas J; Tinley, Christopher

    2017-07-28

    Corneal pathology is one of the leading causes of preventable blindness in South Africa (SA). A corneal transplant can restore or significantly improve vision in most cases. However, in SA there is a gross shortage of corneal tissue available to ophthalmologists. Little has been published describing the magnitude of the problem. To describe trends in the number of corneal donors per year in SA, the number of corneal transplants performed each year, the origin of donors, the allocation of corneas to the public or private sector, and the demographics of donors. This was a retrospective review of all corneal donations to SA eye banks over the 15-year period 1 January 2002 - 31 December 2016. There was a progressive year-on-year decline in corneal donors over the study period, from 565 per year in 2002 to 89 in 2016. As a direct result, there has been an 85.5% decrease in the number of corneal transplants performed per year using locally donated corneas, from 1 049 in 2002 to 152 in 2016. Of the donors, 48.8% originated from mortuaries, 39.0% from private hospitals and 12.2% from government hospitals; donors from mortuaries showed the most significant decline over the 15-year period, decreasing by 94.8%. Of donated corneas, 79.3% were allocated to the private sector and 21.7% to the public sector. Males comprised 69.1% of donors, while 77.2% were white, 14.0% coloured, 6.3% black and 2.5% Indian/Asian. Donor age demonstrated a bimodal peak at 25 and 55 years. The number of corneal donations in SA has declined markedly, causing the burden of corneal disease requiring transplantation to rise steadily. Population groups with a low donor rate may have cultural and other objections to corneal donation, which should be a major focus of future research and initiatives aimed at reversing the current trends.

  2. Effect of Cycloplegia on Corneal Biometrics and Refractive State.

    Science.gov (United States)

    Bagheri, Abbas; Feizi, Mohadeseh; Shafii, Aliakbar; Faramarzi, Amir; Tavakoli, Mehdi; Yazdani, Shahin

    2018-01-01

    To determine changes in refractive state and corneal parameters after cycloplegia with cyclopentolate hydrochloride 1% using a dual Scheimpflug imaging system. In this prospective cross-sectional study patients aged 10 to 40 years who were referred for optometric evaluation enrolled and underwent autorefraction and corneal imaging with the Galilei dual Scheimpflug system before and 30 minutes after twice instillation of medication. Changes in refraction and astigmatism were investigated. Corneal biometrics including anterior and posterior corneal curvatures, total corneal power and corneal pachymetry were compared before and after cycloplegia. Two hundred and twelve eyes of 106 subjects with mean age of 28 ± 5 years including 201 myopic and 11 hyperopic eyes were evaluated. Mean spherical equivalent refractive error before cycloplegia was -3.4 ± 2.6 D. A mean hyperopic shift of 0.4 ± 0.5 D occurred after cycloplegia ( P biometrics should be considered before cataract and refractive surgeries.

  3. Surgically induced astigmatism after phacoemulsification by temporal clear corneal and superior clear corneal approach: a comparison

    Directory of Open Access Journals (Sweden)

    Nikose AS

    2018-01-01

    Full Text Available Archana Sunil Nikose, Dhrubojyoti Saha, Pradnya Mukesh Laddha, Mayuri Patil Department of Ophthalmology, N.K.P. Salve Institute and LMH, Nagpur, Maharashtra, India Introduction: Cataract surgery has undergone various advances since it was evolved from ancient couching to the modern phacoemulsification cataract surgery. Surgically induced astigmatism (SIA remains one of the most common complications. The introduction of sutureless clear corneal incision has gained increasing popularity worldwide because it offers several advantages over the traditional sutured limbal incision and scleral tunnel. A clear corneal incision has the benefit of being bloodless and having an easy approach, but SIA is still a concern.Purpose: In this study, we evaluated the SIA in clear corneal incisions with temporal approach and superior approach phacoemulsification. Comparisons between the two incisions were done using keratometric readings of preoperative and postoperative refractive status.Methodology: It was a hospital-based prospective interventional comparative randomized control trial of 261 patients conducted in a rural-based tertiary care center from September 2012 to August 2014. The visual acuity and detailed anterior segment and posterior segment examinations were done and the cataract was graded according to Lens Opacification Classification System II. Patients were divided for phacoemulsification into two groups, group A and group B, who underwent temporal and superior clear corneal approach, respectively. The patients were followed up on day 1, 7, 30, and 90 postoperatively. The parameters recorded were uncorrected visual acuity, best-corrected visual acuity, slit lamp examination, and keratometry. The mean difference of SIA between 30th and 90th day was statistically evaluated using paired t-test, and all the analyses were performed using SPSS 18.0 (SPSS Inc. software.Results: The mean postoperative SIA in group A was 0.998 D on the 30th day, which

  4. Novel nuclear localization and potential function of insulin-like growth factor-1 receptor/insulin receptor hybrid in corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Wu

    Full Text Available BACKGROUND: Type I insulin-like growth factor receptor (IGF-1R and insulin receptor (INSR are highly homologous molecules, which can heterodimerize to form an IGF-1R/INSR hybrid (Hybrid-R. The presence and biological significance of the Hybrid-R in human corneal epithelium has not yet been established. In addition, while nuclear localization of IGF-1R was recently reported in cancer cells and human corneal epithelial cells, the function and profile of nuclear IGF-1R is unknown. In this study, we characterized the nuclear localization and function of the Hybrid-R and the role of IGF-1/IGF-1R and Hybrid-R signaling in the human corneal epithelium. METHODOLOGY/PRINCIPLE FINDINGS: IGF-1-mediated signaling and cell growth were examined in a human telomerized corneal epithelial (hTCEpi cell line using co-immunoprecipitation, immunoblotting and cell proliferation assays. The presence of Hybrid-R in hTCEpi and primary cultured human corneal epithelial cells was confirmed by immunofluorescence and reciprocal immunoprecipitation of whole cell lysates. We found that IGF-1 stimulated Akt and promoted cell growth through IGF-1R activation, which was independent of the Hybrid-R. The presence of Hybrid-R, but not IGF-1R/IGF-1R, was detected in nuclear extracts. Knockdown of INSR by small interfering RNA resulted in depletion of the INSR/INSR and preferential formation of Hybrid-R. Chromatin-immunoprecipitation sequencing assay with anti-IGF-1R or anti-INSR was subsequently performed to identify potential genomic targets responsible for critical homeostatic regulatory pathways. CONCLUSION/SIGNIFICANCE: In contrast to previous reports on nuclear localized IGF-1R, this is the first report identifying the nuclear localization of Hybrid-R in an epithelial cell line. The identification of a nuclear Hybrid-R and novel genomic targets suggests that IGF-1R traffics to the nucleus as an IGF-1R/INSR heterotetrameric complex to regulate corneal epithelial homeostatic

  5. Depósitos corneales de ciprofloxacino Corneal deposits of ciprofloxacin

    Directory of Open Access Journals (Sweden)

    Taimi Cárdenas Díaz

    2010-01-01

    Full Text Available Las fluoroquinolonas son ampliamente utilizadas para el tratamiento de infecciones oculares bacterianas, ya que tienen actividad tanto para grampositivos, como para gramnegativos. Son fármacos seguros, pero se han descrito depósitos blancos cristalinianos en pacientes con administración frecuente y prolongada;en la mayoría de los casos, ellos resuelven de forma lenta al interrumpir el tratamiento. Si esto no ocurre, los depósitos se deben desbridar. Se ilustran 3 casos operados de catarata que llevaron tratamiento con ciprofloxacino en el posoperatorio, en los cuales se presentaron depósitos corneales y aunque disminuyó la agudeza visual, esta se recuperó después de la queratectomía.Fluoroquinolones are broadly used for the treatment of bacterial ocular infections, since they can act upon both grampositive and gramnegative bacteria. They are safe drugs, but white corneal deposits have been described in patients who frequently take this drug for a long period of time. In most of the cases, the deposits disappear slowly after the treatment is interrupted. If this does not happen, the deposits should be eliminated. Three cases operated on from cataract were presented, who had been taken ciprofloxacin in the postoperative stage and had corneal deposits. Although their visual acuity decreased, it recovered after keratectomy.

  6. The cytotoxic effect of oxybuprocaine on human corneal epithelial cells by inducing cell cycle arrest and mitochondria-dependent apoptosis.

    Science.gov (United States)

    Fan, W-Y; Wang, D-P; Wen, Q; Fan, T-J

    2017-08-01

    Oxybuprocaine (OBPC) is a widely used topical anesthetic in eye clinic, and prolonged and repeated usage of OBPC might be cytotoxic to the cornea, especially to the outmost corneal epithelium. In this study, we characterized the cytotoxic effect of OBPC on human corneal epithelial (HCEP) cells and investigated its possible cellular and molecular mechanisms using an in vitro model of non-transfected HCEP cells. Our results showed that OBPC at concentrations ranging from 0.025% to 0.4% had a dose- and time-dependent cytotoxicity to HCEP cells. Moreover, OBPC arrested the cells at S phase and induced apoptosis of these cells by inducing plasma membrane permeability, phosphatidylserine externalization, DNA fragmentation, and apoptotic body formation. Furthermore, OBPC could trigger the activation of caspase-2, -3, and -9, downregulate the expression of Bcl-xL, upregulate the expression of Bax along with the cytoplasmic amount of mitochondria-released apoptosis-inducing factor, and disrupt mitochondrial transmembrane potential. Our results suggest that OBPC has a dose- and time-dependent cytotoxicity to HCEP cells by inducing cell cycle arrest and cell apoptosis via a death receptor-mediated mitochondria-dependent proapoptotic pathway, and this novel finding provides new insights into the acute cytotoxicity and its toxic mechanisms of OBPC on HCEP cells.

  7. DNA asymmetry in stem cells - immortal or mortal?

    Science.gov (United States)

    Yadlapalli, Swathi; Yamashita, Yukiko M

    2013-09-15

    The immortal strand hypothesis proposes that stem cells retain a template copy of genomic DNA (i.e. an 'immortal strand') to avoid replication-induced mutations. An alternative hypothesis suggests that certain cells segregate sister chromatids non-randomly to transmit distinct epigenetic information. However, this area of research has been highly controversial, with conflicting data even from the same cell types. Moreover, historically, the same term of 'non-random sister chromatid segregation' or 'biased sister chromatid segregation' has been used to indicate distinct biological processes, generating a confusion in the biological significance and potential mechanism of each phenomenon. Here, we discuss the models of non-random sister chromatid segregation, and we explore the strengths and limitations of the various techniques and experimental model systems used to study this question. We also describe our recent study on Drosophila male germline stem cells, where sister chromatids of X and Y chromosomes are segregated non-randomly during cell division. We aim to integrate the existing evidence to speculate on the underlying mechanisms and biological relevance of this long-standing observation on non-random sister chromatid segregation.

  8. Effects of two different incision phacoemulsification on corneal astigmatism

    Directory of Open Access Journals (Sweden)

    Lu Huo

    2014-12-01

    Full Text Available AIM:To compare the effect of different incision in corneal astigmatism after phacoemulsification. METHODS: Totally 88 cases(122 eyeswith pure cataract were randomly divided into two groups. Forty cases(60 eyeswere clarity corneal incision in group A, and 48 cases(62 eyeswere sclera tunnel incision in group B. Mean corneal astigmatism, surgically induced astigmatism(SIA, uncorrected visual acuity(UCVAand best correct vision acuity(BCVAwere observed in pre- and post-operation at 1d; 1wk; 1mo.RESULTS: The mean astigmatism had statistically significant difference between two groups at 1d; 1wk; 1mo after operation(PPP>0.05. UCVA≥0.5 and BCVA≥0.8 had statistically significant difference at 1d; 1wk(PP>0.05.CONCLUSION: Phacoemulsification with scleral tunnel incision remove combined intraocular lens(IOLimplantation has small changes to corneal astigmatism. By selecting personalized corneal incision according to the corneal topography might be more beneficial.

  9. Sensing inhomogeneous mechanical properties of human corneal Descemet's membrane with AFM nano-indentation.

    Science.gov (United States)

    Di Mundo, Rosa; Recchia, Giuseppina; Parekh, Mohit; Ruzza, Alessandro; Ferrari, Stefano; Carbone, Giuseppe

    2017-10-01

    The paper describes a highly space-resolved characterization of the surface mechanical properties of the posterior human corneal layer (Descemet's membrane). This has been accomplished with Atomic Force Microscopy (AFM) nano-indentation by using a probe with a sharp tip geometry. Results indicate that the contact with this biological tissue in liquid occurs with no (or very low) adhesion. More importantly, under the same operating conditions, a broad distribution of penetration depth can be measured on different x-y positions of the tissue surface, indicating a high inhomogeneity of surface stiffness, not yet clearly reported in the literature. An important contribution to such inhomogeneity should be ascribed to the discontinuous nature of the collagen/proteoglycans fibers matrix tissue, as can be imaged by AFM when the tissue is semi-dry. Using classical contact mechanics calculations adapted to the specific geometry of the tetrahedral tip it has been found that the elastic modulus E of the material in the very proximity of the surface ranges from 0.23 to 2.6 kPa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Molecular mechanism of ocular surface damage: application to an in vitro dry eye model on human corneal epithelium.

    Science.gov (United States)

    Meloni, Marisa; De Servi, Barbara; Marasco, Daniela; Del Prete, Salvatore

    2011-01-12

    The present study was concerned with the development of a new experimental model of dry eye using human reconstructed in vitro corneal epithelium (HCE). The model is based on the use of adapted culture conditions that induce relevant modifications at the cellular and molecular level thus mimicking dry eye. The HCE model was maintained in a controlled environmental setting (relative humidity eye. The evolution of the dry eye condition was assessed by histology, immunohistochemistry staining, scanning electron microscopy, and gene expression by using TaqMan gene assay technology (mucin-4 [MUC4], matrix metallopeptidase-9 [MMP9], tumor necrosis factor-α [TNF-α], and defensin β-2 [DEFB2). The effects of different commercially available tear substitutes on the induced dry eye condition were tested. This in vitro dry eye HCE model, that was well established within 24 h, has the characteristic features of a dry eye epithelium and could be satisfactorily used for preliminary assessment of the protective activity of some artificial tears. The transcriptional study of selected biomarkers showed an increase in MUC4, MMP9, TNF-α, and hBD-2 (DEFB2) gene expression. By using a dynamic approach, we were able to define a biomarker gene signature of dry eye-induced effects that could be predictive of corneal damage in vivo and to discriminate the efficacy among different commercial artificial tears.

  11. Effect of transfer of donor corneal tissue from McCarey–Kaufmann medium to Optisol-GS on corneal endothelium

    Directory of Open Access Journals (Sweden)

    Neha Kapur

    2018-01-01

    Full Text Available Purpose: The purpose of this study is to evaluate the effect of transfer of donor corneal tissue from McCarey–Kaufmann (MK medium to Optisol-GS on corneal endothelium. Methods: This was a prospective, randomized comparative study. Twenty paired human donor corneal tissues of optical quality were retrieved. One tissue of the pair was preserved in Optisol-GS preservative medium (Group A and other tissue of the pair in MK medium (Group B at the time of corneoscleral disc excision. Within 12 h of retrieval, each cornea was evaluated using slit-lamp biomicroscopic examination and specular microscopic analysis. Group B corneas were transferred to Optisol-GS medium within 48–53 h of retrieval. Specular analysis of the paired corneas was repeated 3 h after transferring to Optisol-GS. On day 7 of storage, specular analysis of both the tissues was repeated. Results: The average age of the donor at the time of death was 29 years (16–68 years. The reduction in endothelial cell count, from baseline, in Groups A and B was 5.5% and 5.8% (P = 0.938 on the 3rd day and 8.2% and 12.6% (P = 0.025 on the 7th day, respectively, postretrieval. The coefficient of variation (CV increased by 36% (P = 0.021 and hexagonality reduced by 19% (P = 0.007 on day 7. All tissues retained an endothelial cell density higher than the accepted critical level for penetrating keratoplasty. Conclusion: Significant endothelial cell loss was noted while transferring tissues from one medium to another, necessitating the need for reevaluation of transferred tissues before utilization.

  12. Immortalized sheep microglial cells are permissive to a diverse range of ruminant viruses.

    Science.gov (United States)

    Stanton, James B; Swanson, Beryl; Orozco, Edith; Muñoz-Gutiérrez, Juan F; Evermann, James F; Ridpath, Julia F

    2017-12-01

    Ruminants, including sheep and goats (small ruminants), are key agricultural animals in many parts of the world. Infectious diseases, including many viral diseases, are significant problems to efficient production of ruminants. Unfortunately, reagents tailored to viruses of ruminants, and especially small ruminants, are lacking compared to other animals more typically used for biomedical research. The purpose of this study was to determine the permissibility of a stably immortalized, sheep microglial cell line to viruses that are reported to infect ruminants: bovine viral diarrhea virus (BVDV), bovine herpesvirus 1 (BoHV-1), small ruminant lentiviruses (SRLV), and bovine respiratory syncytial virus (BRSV). Sublines A and H of previously isolated, immortalized, and characterized (CD14-positive) ovine microglial cells were used. Bovine turbinate cells and goat synovial membrane cells were used for comparison. Cytopathic changes were used to confirm infection of individual wells, which were then counted and used to calculate the 50% tissue culture infectious dose. Uninoculated cells served as negative controls and confirmed that the cells were not previously infected with these viruses using polymerase chain reaction (PCR). Inoculation of the two microglial cell sublines with laboratory and field isolates of BVDV, BoHV-1, and BRSV resulted in viral infection in a manner similar to bovine turbinate cells. Immortalized microglia cells are also permissive to SRLV, similar to goat synovial membrane cells. These immortalized sheep microglial cells provide a new tool for the study of ruminant viruses in ruminant microglial cell line.

  13. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    International Nuclear Information System (INIS)

    Pan, Hong; Wu, Xinyi

    2012-01-01

    Highlights: ► Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-β. ► Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. ► Hypoxia inhibits Acanthamoeba-induced the activation of NF-κB and ERK1/2 in HCECs. ► Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. ► LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-β (IFN-β) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-β. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-κB and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88) MyD88 expression and NF-κB activation, confirming that hypoxia suppressed the LPS-induced inflammatory response by affecting TLR4 signaling. In conclusion

  14. Effects of genipin corneal crosslinking in rabbit corneas.

    Science.gov (United States)

    Avila, Marcel Y; Narvaez, Mauricio; Castañeda, Juan P

    2016-07-01

    To evaluate the effect of genipin, a natural crosslinking agent, in rabbit eyes. Department of Ophthalmology, Universidad Nacional de Colombia Centro de Tecnologia Oftalmica, Bogotá, Colombia. Experimental study. Ex vivo rabbit eyes (16; 8 rabbits) were treated with genipin 1.00%, 0.50%, and 0.25% for 5 minutes with a vacuum device to increase corneal permeability. Penetration was evaluated using Scheimpflug pachymetry (Pentacam). In the in vivo model (20 rabbits; 1 eye treated, 1 eye with vehicle), corneas were crosslinked with genipin as described. Corneal curvature, corneal pachymetry, and intraocular pressure (IOP) assessments as well as slitlamp examinations were performed 0, 7, 30, and 60 days after treatment. In the ex vivo model, Scheimpflug pachymetry showed deep penetration in the rabbit corneas with an increase in corneal density and a dose-dependent relationship. Corneal flattening was observed in treated eyes (mean 4.4 diopters ± 0.5 [SD]) compared with the control eyes. Pachymetry and IOP were stable in all evaluations. No eye showed toxicity in the anterior chamber or in the lens. Corneal crosslinking induced by genipin produced significant flattening of the cornea with no toxicity in rabbit eyes. This crosslinking could be useful in the treatment of corneal ectasia and in the modification of corneal curvature. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. Airbag induced corneal ectasia.

    Science.gov (United States)

    Mearza, Ali A; Koufaki, Fedra N; Aslanides, Ioannis M

    2008-02-01

    To report a case of airbag induced corneal ectasia. Case report. A patient 3 years post-LASIK developed bilateral corneal ectasia worse in the right eye following airbag deployment in a road traffic accident. At last follow up, best corrected vision was 20/40 with -4.00/-4.00 x 25 in the right eye and 20/25 with -1.25/-0.50 x 135 in the left eye. This is a rare presentation of trauma induced ectasia in a patient post-LASIK. It is possible that reduction in biomechanical integrity of the cornea from prior refractive surgery contributed to this presentation.

  16. The non-contact ("air puff") tonometer: variability and corneal staining.

    Science.gov (United States)

    Myers, K J; Scott, C A

    1975-01-01

    We investigated the possibility of significant corneal trauma (as revealed by slit lamp observation of the fluorescein instilled eye), and massage effects following determination of intraocular pressure with the A. O. Non-Contact tonometer (NCT). Fifteen different, normal human eyes were each applanated 150 successive times with the NCT; leading to the conclusion that only minor, superficial corneal epithelial defects sometimes resulted and that, in line with other studies, the initially higher readings (about 1 mm), obtained with the NCT, were most likely due to patient apprehension, while the subsequently lower readings represented patient acceptance of the process and were not a result of true aqueous massage. As in an earlier study, we found the instrument's variability to be about plus and minus 1 or plus and minus 2 mm and probably due to the subject's own cardiac cycle.

  17. Changes in corneal endothelial cell density and the cumulative risk of corneal decompensation after Ahmed glaucoma valve implantation.

    Science.gov (United States)

    Kim, Kyoung Nam; Lee, Sung Bok; Lee, Yeon Hee; Lee, Jong Joo; Lim, Hyung Bin; Kim, Chang-Sik

    2016-07-01

    To evaluate changes in the corneal endothelial cell density (ECD) and corneal decompensation following Ahmed glaucoma valve (AGV) implantation. This study was retrospective and observational case series. Patients with refractory glaucoma who underwent AGV implantation and were followed >5 years were consecutively enrolled. We reviewed the medical records, including the results of central corneal specular microscopy. Of the 127 enrolled patients, the annual change in ECD (%) was determined using linear regression for 72 eyes evaluated at least four times using serial specular microscopic examination and compared with 31 control eyes (fellow glaucomatous eyes under medical treatment). The main outcome measures were cumulative risk of corneal decompensation and differences in the ECD loss rates between subjects and controls. The mean follow-up after AGV implantation was 43.1 months. There were no cases of postoperative tube-corneal touch. The cumulative risk of corneal decompensation was 3.3%, 5 years after AGV implantation. There was a more rapid loss of ECD in the 72 subject eyes compared with the 31 controls (-7.0% and -0.1%/year, respectively; p<0.001). However, the rate of loss decreased over time and statistical significance compared with control eyes disappeared after 2 years postoperatively: -10.7% from baseline to 1 year (p<0.01), -7.0% from 1 year to 2 years (p=0.037), -4.2% from 2 years to 3 years (p=0.230) and -2.7% from 3 years to the final follow-up (p=0.111). In case of uncomplicated AGV implantation, the cumulative risk of corneal decompensation was 3.3%, 5 years after the operation. The ECD loss was statistically greater in eyes with AGV than in control eyes without AGV, but the difference was significant only up to 2 years post surgery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Derivation and Osmotolerance Characterization of Three Immortalized Tilapia (Oreochromis mossambicus) Cell Lines

    Science.gov (United States)

    Gardell, Alison M.; Qin, Qin; Rice, Robert H.; Li, Johnathan; Kültz, Dietmar

    2014-01-01

    Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus) cell lines from brain (OmB) and lip epithelium (OmL), and compared them to a previously immortalized bulbus arteriosus (TmB) cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK) inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (≥ passage 5), we characterized the proteomes of the newly derived cell lines (OmB and OmL) using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg) was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg) on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish. PMID:24797371

  19. Rearrangement of Upstream Sequences of the hTERT Gene During Cellular Immortalization

    Science.gov (United States)

    Zhao, Yuanjun; Wang, Shuwen; Popova, Evgenya Y.; Grigoryev, Sergei A.; Zhu, Jiyue

    2010-01-01

    Telomerase expression, resulting from transcriptional activation of the hTERT gene, allows cells to acquire indefinite proliferative potential during cellular immortalization and tumorigenesis. However, mechanisms of hTERT gene activation in many immortal cell lines and cancer cells are poorly understood. Here, we report our studies on hTERT activation using genetically related pairs of telomerase-negative (Tel−) and -positive (Tel+) fibroblast lines. First, whereas transiently transfected plasmid reporters did not recapitulate the endogenous hTERT promoter, the promoter in chromosomally integrated bacterial artificial chromosome (BAC) reporters was activated in a subset of Tel+ cells, indicating that activation of the hTERT promoter required native chromatin context and/or distal regulatory elements. Second, the hTERT gene, located near the telomere of chromosome 5p, was translocated in all three Tel+ cell lines but not in their parental pre-crisis cells and Tel− immortal siblings. The breakage points were mapped to regions upstream of the hTERT promoter, indicating that the hTERT gene was the target of these chromosomal rearrangements. In two Tel+ cell lines, translocation of the endogenous hTERT gene appeared to be the major mechanism of its activation as the activity of hTERT promoter in many chromosomally integrated BAC reporters, with intact upstream and downstream neighboring loci, remained relatively low. Therefore, our results suggest that rearrangement of upstream sequences is an important new mechanism of hTERT promoter activation during cellular immortalization. The chromosomal rearrangements likely occurred during cellular crisis and facilitated by telomere dysfunction. Such translocations allowed the hTERT promoter to escape from the native condensed chromatin environment. PMID:19672873

  20. Corneal manifestations in systemic diseases

    OpenAIRE

    Zarranz-Ventura, J.; Nova, E. De; Moreno-Montañés, J.

    2008-01-01

    Un gran número de enfermedades sistémicas presentan manifestaciones corneales dentro de su espectro de enfermedad. El estudio detallado de todos los cuadros que asocian patología corneal resulta inabarcable, por ello se presentan las enfermedades más prevalentes o características. Este estudio contempla las enfermedades pulmonares y conectivopatías (colagenosis, enfermedades reumatológicas y enfermedades inflamatorias idiopáticas), las enfermedades dermatológicas, cardiovasculares, hematológi...

  1. Acute corneal hydrops in keratoconus

    Directory of Open Access Journals (Sweden)

    Prafulla K Maharana

    2013-01-01

    Full Text Available Acute corneal hydrops is a condition characterized by stromal edema due to leakage of aqueous through a tear in descemet membrane. The patient presents with sudden onset decrease in vision, photophobia, and pain. Corneal thinning and ectasias combined with trivial trauma to the eye mostly by eye rubbing is considered as the underlying cause. With conservative approach self-resolution takes around 2 to 3 months. Surgical intervention is required in cases of non-resolution of corneal edema to avoid complications and for early visual rehabilitation. Intracameral injection of air or gas such as perflouropropane is the most common surgical procedure done. Recent investigative modality such as anterior segment optical coherence tomography is an extremely useful tool for diagnosis, surgical planning, and postoperative follow up. Resolution of hydrops may improve the contact lens tolerance and visual acuity but most cases require keratoplasty for visual rehabilitation.

  2. Spontaneous Healing of Corneal Perforation after Temporary Discontinuation of Erlotinib Treatment

    Directory of Open Access Journals (Sweden)

    Naoyuki Morishige

    2014-01-01

    Full Text Available Purpose: To report a case of corneal perforation associated with oral administration of erlotinib and its spontaneous healing after temporary discontinuation of drug treatment. Case Report: A 65-year-old man with metastatic lung cancer was treated with erlotinib (150 mg/day, a specific tyrosine kinase inhibitor of the epidermal growth factor receptor. He was referred to our corneal service for the treatment of bilateral corneal disorders, diagnosed with mild aqueous-deficient dry eye, and treated by insertion of punctal plugs. His corneal epithelial disorders initially improved, but subsequently worsened, as manifested by the development of bilateral corneal ulceration with corneal perforation in the right eye. The oral administration of erlotinib was interrupted in preparation for tectonic keratoplasty, but 2 days later the corneal perforation of the right eye and the bilateral epithelial defects had healed spontaneously. Treatment with erlotinib was resumed at half the initial dose, and the cornea of both eyes has remained apparently healthy. Discussion: Erlotinib may be secreted into tear fluid and thereby adversely affect the corneal epithelium. The development of corneal epithelial disorders in patients receiving this drug may be reversed by reducing its dose.

  3. Management of corneal bee sting

    Directory of Open Access Journals (Sweden)

    Razmjoo H

    2011-12-01

    Full Text Available Hassan Razmjoo1,2, Mohammad-Ali Abtahi1,2,4, Peyman Roomizadeh1,3, Zahra Mohammadi1,2, Seyed-Hossein Abtahi1,3,41Medical School, Isfahan University of Medical Sciences (IUMS; 2Ophthalmology Ward, Feiz Hospital, IUMS; 3Isfahan Medical Students Research Center (IMSRC, IUMS; 4Isfahan Ophthalmology Research Center (IORC, Feiz Hospital, IUMS, Isfahan, IranAbstract: Corneal bee sting is an uncommon environmental eye injury that can result in various ocular complications with an etiology of penetrating, immunologic, and toxic effects of the stinger and its injected venom. In this study we present our experience in the management of a middle-aged male with a right-sided deep corneal bee sting. On arrival, the patient was complaining of severe pain, blurry vision with acuity of 160/200, and tearing, which he had experienced soon after the injury. Firstly, we administered conventional drugs for eye injuries, including topical antibiotic, corticosteroid, and cycloplegic agents. After 2 days, corneal stromal infiltration and edema developed around the site of the sting, and visual acuity decreased to 100/200. These conditions led us to remove the stinger surgically. Within 25 days of follow-up, the corneal infiltration decreased gradually, and visual acuity improved to 180/200. We suggest a two-stage management approach for cases of corneal sting. For the first stage, if the stinger is readily accessible or primary dramatic reactions, including infiltration, especially on the visual axis, exist, manual or surgical removal would be indicated. Otherwise, we recommend conventional treatments for eye injuries. Given this situation, patients should be closely monitored for detection of any worsening. If the condition does not resolve or even deteriorates, for the second stage, surgical removal of the stinger under local or generalized anesthesia is indicated.Keywords: bee sting, stinger, cornea, removal, management, surgery

  4. Quantitative analysis of corneal stromal riboflavin concentration without epithelial removal.

    Science.gov (United States)

    Rubinfeld, Roy S; Stulting, R Doyle; Gum, Glenwood G; Talamo, Jonathan H

    2018-02-01

    To compare the corneal stromal riboflavin concentration and distribution using 2 transepithelial corneal crosslinking (CXL) systems. Absorption Systems, San Diego, California, USA. Experimental study. The stromal riboflavin concentration of 2 transepithelial CXL systems was compared in rabbit eyes in vivo. The systems were the Paracel/Vibex Xtra, comprising riboflavin 0.25% solution containing TRIS and ethylenediaminetetraacetic acid and an isotonic solution of riboflavin 0.25%, (Group 1) and the CXLO system (Group 2). Manufacturers' Instructions For Use were followed. The intensity of riboflavin fluorescence by slitlamp observation 10, 15, and 20 minutes after instillation was graded on a scale of 0 to 5. The animals were humanely killed and the corneal stromal samples analyzed with liquid chromatography and mass spectrometry. The mean riboflavin fluorescence intensity grades in Group 1 (4 eyes) were 3.8, 4.8, and 4.8 at 10, 15, and 20 minutes, respectively. The mean grades in Group 2 (3 eyes) were 2.0, 2.3, and 2.0, respectively. The riboflavin distribution was uniform in Group 1 but not in Group 2. The mean riboflavin concentration by liquid chromatography and mass spectrometry was 27.0 μg/g stromal tissue in Group 1 and 6.7 μg/g in Group 2. A stromal riboflavin concentration theoretically adequate for CXL, 15 μg/g, was achieved in all eyes in Group 1 and no eyes in Group 2. Slitlamp grading correlated well with liquid chromatography and mass spectrometry concentration (R 2  = 0.940). The system used in Group 1 produced corneal riboflavin concentrations that were theoretically adequate for effective transepithelial CXL (≥15 μg/g), while the system in Group 2 did not. Slitlamp grading successfully estimated the corneal riboflavin concentration and can be used to ensure an adequate concentration of riboflavin in the cornea for transepithelial CXL. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  5. Impact of Facial Conformation on Canine Health: Corneal Ulceration

    Science.gov (United States)

    Packer, Rowena M. A.; Hendricks, Anke; Burn, Charlotte C.

    2015-01-01

    Concern has arisen in recent years that selection for extreme facial morphology in the domestic dog may be leading to an increased frequency of eye disorders. Corneal ulcers are a common and painful eye problem in domestic dogs that can lead to scarring and/or perforation of the cornea, potentially causing blindness. Exaggerated juvenile-like craniofacial conformations and wide eyes have been suspected as risk factors for corneal ulceration. This study aimed to quantify the relationship between corneal ulceration risk and conformational factors including relative eyelid aperture width, brachycephalic (short-muzzled) skull shape, the presence of a nasal fold (wrinkle), and exposed eye-white. A 14 month cross-sectional study of dogs entering a large UK based small animal referral hospital for both corneal ulcers and unrelated disorders was carried out. Dogs were classed as affected if they were diagnosed with a corneal ulcer using fluorescein dye while at the hospital (whether referred for this disorder or not), or if a previous diagnosis of corneal ulcer(s) was documented in the dogs’ histories. Of 700 dogs recruited, measured and clinically examined, 31 were affected by corneal ulcers. Most cases were male (71%), small breed dogs (mean± SE weight: 11.4±1.1 kg), with the most commonly diagnosed breed being the Pug. Dogs with nasal folds were nearly five times more likely to be affected by corneal ulcers than those without, and brachycephalic dogs (craniofacial ratio dogs. A 10% increase in relative eyelid aperture width more than tripled the ulcer risk. Exposed eye-white was associated with a nearly three times increased risk. The results demonstrate that artificially selecting for these facial characteristics greatly heightens the risk of corneal ulcers, and such selection should thus be discouraged to improve canine welfare. PMID:25969983

  6. Study on phototherapeutic keratotomy for bacterial corneal lesions in rabbit

    Directory of Open Access Journals (Sweden)

    Xin Zhou

    2018-05-01

    Full Text Available AIM: To study the effect of phototherapeutic keratectomy(PTKon rabbit bacterial corneal ulcer model and explore the clinical potential of this method. METHODS: Totally 48 eyes from all the 24 New Zealand rabbits were inoculated with Staphylococcus aureus and bacterial corneal ulcer model was established successfully. At 1d after inoculation, 48 eyes were given levofloxacin eye drops when corneal ulcer was confirmed. Then slit lamp inspection and optical coherence tomography(OCTwere performed to measure the central corneal ulcer depth. All the rabbits right eyes were treated with PTK, as an observation group, left eyes were not treated as a control group. The eye section were observed by slit lamp and central thickness of corneal ulcer was measured by OCT at 3 and 7d after this operation. Rabbits were sacrificed and the cornea was removed for pathological section 7d later. RESULTS: The corneal ulcers in both groups had a tendency to heal, showing a decrease in ulcer area and smoothness of the surface. There was no significant difference in the depth of corneal ulcer between the observation group and the control group before PTK(t=0.706, P=0.484. The difference between the two groups of eyes at 3 and 7d after PTK was obviously(PCONCLUSION: PTK can effectively cure rabbit Staphylococcus aureus corneal ulcer and promote ulcer wound healing, which may be used for clinical treatment of patients with bacterial corneal lesions.

  7. Crosslinking and corneal cryotherapy in acanthamoeba keratitis -- a histological study.

    Science.gov (United States)

    Hager, Tobias; Hasenfus, A; Stachon, T; Seitz, B; Szentmáry, N

    2016-01-01

    Acanthamoeba keratitis is rare, but difficult to treat. Penetrating keratoplasty is performed in therapy-resistant cases. Nevertheless, subsequent recurrences occur in 40 % of the cases. In addition to triple-topical therapy (polyhexamid, propamidinisoethionat, neomycin), treatment alternatives are corneal cryotherapy and/or crosslinking (CXL). The aim of our present histological study was to analyze the persistence of acanthamoebatrophozoites and cysts, the persistence of bacteria, and activation of keratocytes in corneas of acanthamoeba keratitis patients following corneal cryotherapy and/or CXL. We analyzed histologically corneal buttons (from penetrating keratoplasties) of nine patients with acanthamoeba keratitis, following corneal cryotherapy (two patients) or a combination of crosslinking and corneal cryotherapy (seven patients), using haematoxilin–eosin, periodic acid Schiff (PAS), Gram and alpha-smooth muscle actin (alpha-SMA) stainings. Acanthamoeba trophozoites persisted in three corneas after cryotherapy and CXL. Cysts persisted in one of two corneas following corneal cryotherapy and in six of seven corneas after a combination of CXL and cryotherapy. One cornea showed positive Gram staining, but there were no alpha-SMA positive keratocytes in any of the corneas. Crosslinking and corneal cryotherapy have only limited impact on killing of acanthamoeba trophozoites, cysts, or bacteria. Corneal cryotherapy and CXL did not stimulate myofibroblastic transformation of keratocytes.

  8. Corneal topography

    DEFF Research Database (Denmark)

    Andersen, J.; Koch-Jensen, P.; Østerby, Ole

    1993-01-01

    The central corneal zone is depicted on keratoscope photographs using a small target aperture and a large object distance. Information on the peripheral area is included by employing a hemispherical target with a dense circular and radial pattern. On a 16 mm (R = 8 mm) reference steel sphere the ...

  9. Corneal cell adhesion to contact lens hydrogel materials enhanced via tear film protein deposition.

    Directory of Open Access Journals (Sweden)

    Claire M Elkins

    Full Text Available Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS, borate buffered saline (BBS, or Sensitive Eyes Plus Saline Solution (Sensitive Eyes, either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo.

  10. Derivation of corneal endothelial cell-like cells from rat neural crest cells in vitro.

    Directory of Open Access Journals (Sweden)

    Chengqun Ju

    Full Text Available The aim of this study was to investigate the feasibility of inducing rat neural crest cells (NCC to differentiate to functional corneal endothelial cell (CEC-like cells in vitro. Rat NCC were induced with adult CEC-derived conditioned medium. Immunofluorescence, flow cytometry and real time RT-PCR assay were used to detect expression of the corneal endothelium differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2. CFDA SE-labeled CEC-like cells were transplanted to the corneal endothelium of a rat corneal endothelium deficiency model, and an eye-down position was maintained for 24 hours to allow cell attachment. The animals were observed for as long as 2 months after surgery and underwent clinical and histological examination. Spindle-like NCC turned to polygonal CEC-like after induction and expressed N-cadherin, FoxC1, Pitx2, zonula occludens-1 and sodium-potassium pump Na(+/K(+ ATPase. The corneas of the experimental group were much clearer than those of the control group and the mean corneal thickness in the experimental group was significantly less than in the control group7, 14, 21 and 28 days after surgery. Confocal microscopy through focusing and histological analysis confirmed that green fluorescence-positive CEC-like cells formed a monolayer covering the Descemet's membrane in the experimental group. In conclusion, CEC-like cells derived from NCCs displayed characters of native CEC, and the induction protocol provides guidance for future human CEC induction from NCC.

  11. Prevalence and associated factors of corneal blindness in Ningxia in northwest China

    Directory of Open Access Journals (Sweden)

    Xun-Lun Sheng

    2014-06-01

    Full Text Available AIM:To describe the prevalence and demographic characteristics of corneal blindness in an urban and rural region of Ningxia, located in the northwest part of China.METHODS:A stratified, randomized sampling procedure was employed in the study, including urban and rural area of all age group. Visual acuity, anterior segment and ocular fundus were checked. Related factor of corneal disease, including age, gender, education status, ethnic group, location and occupation, were identified according to uniform customized protocol. An eye was defined to be corneal blindness if the visual acuity was <20/400 due to a corneal disease.RESULTS:Three thousand individuals (1290 from urban area and 1710 from rural area participated in the investigation, with a response rate of 80.380%. The prevalence of corneal blindness was 0.023% in both eyes and 0.733% in at least one eye. The blindness in at least one eye with varied causes was present in 106 participants (3.533% and in bilateral eyes in 34 participants (1.133%. The corneal diseases accounted for 20.754% of blindness in at least one eye and 20.588% of bilateral blindness. The prevalence of corneal disease was higher in older and Han ethnic group, especially those who occupied in agriculture and outdoor work. People with corneal blindness were more likely to be older and lower education. Rural population were more likely to suffer from bilateral corneal blindness than the urban population in ≥59-year group (χ2=6.716, P=0.019. Infectious, trauma and immune corneal disease were the three leading causes of corneal disease. Trauma corneal disease was more likely leading to blindness in one eye. However, infectious and immune corneal diseases make more contribution to the bilateral corneal blindness.CONCLUSION: Corneal blindness is a significant burden of in Ningxia population, encompassing a variety of corneal infections and trauma; the majority of those were avoidable. Health promotion strategies and good

  12. Induction of chromosomal aberrations in human primary fibroblasts and immortalized cancer cells exposed to extremely-low-frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Seyyedi, S. S.; Mozdarani, H.; Rezaei Tavirani, M.; Heydari, S.

    2010-01-01

    Rapidly increasing possibilities of exposure to environmental extremely low-frequency electromagnetic fields have become a topic of worldwide investigation. Epidemiological and laboratory studies suggest that exposure to extremely low-frequency electromagnetic fields may increase cancer risk therefore assessment of chromosomal damage in various cell lines might be of predictive value for future risk estimation. Materials and Methods: Primary cultures of fibroblasts from human skin biopsy were exposed to continuous extremely low-frequency electromagnetic fields (3, 50 and 60 Hz, sinusoidal, 3h, and 4 m T). Also immortalized cell lines, SW480, MCF-7 and 1321N1 were exposed to continuous extremely low-frequency electromagnetic fields (50 Hz, sinusoidal, 3 h, 4 m T). Metaphase plates Were prepared according to standard methods and stained in 5% Giemsa solution. Chromosomal aberrations of both chromosome and chromatid types were scored to evaluate the effects of extremely low-frequency electromagnetic fields on primary or established cell lines. Results: Results indicate that by increasing the frequency of extremely low-frequency electromagnetic fields, chromosomal aberrations were increased up to 7-fold above background levels in primary human fibroblast cells. In addition, continuous exposure to a 50 Hz electromagnetic field led to a significant increase in chromosomal aberrations in SW480, MCF-7 and 1321N1 cell lines compared to sham control. Conclusion: Results obtained indicate that extremely low-frequency electromagnetic fields has the potential for induction of chromosomal aberrations in all cell types.

  13. Corneal Biomechanical Properties after FS-LASIK with Residual Bed Thickness Less Than 50% of the Original Corneal Thickness

    Directory of Open Access Journals (Sweden)

    Haixia Zhang

    2018-01-01

    Full Text Available Background. The changes in corneal biomechanical properties after LASIK remain an unknown but important topic for surgical design and prognostic evaluation. This study aims to observe the postoperative corneal biomechanical properties one month after LASIK with amount of corneal cutting (ACC greater than 50% of the central corneal thickness (CCT. Methods. FS-LASIK was performed in 10 left rabbit eyes with ACC being 60% (L60 and 65% (L65 of the CCT, while the right eyes (R were the control. After 4 weeks, rabbits were executed and corneal strip samples were prepared for uniaxial tensile tests. Results. At the same strain, the stresses of L65 and L60 were larger than those of R. The elastic moduli of L60 and L65 were larger than those of R when the stress was 0.02 MPa, while they began to be less than those of R when stress exceeds the low-stress region. After 10 s relaxation, the stress of specimens L65, L60, and R increased in turn. Conclusion. The elastic moduli of the cornea after FS-LASIK with ACC greater than 50% of the CCT do not become less under normal rabbit IOP. The limit stress grows with the rise of ACC when relaxation becomes stable.

  14. Corneal topographer based on the Hartmann test.

    Science.gov (United States)

    Mejía, Yobani; Galeano, Janneth C

    2009-04-01

    The purpose of this article is to show the performance of a topographer based on the Hartmann test for convex surfaces of F/# approximately 1. This topographer, called "Hartmann Test topographer (HT topographer)," is a prototype developed in the Physics Department of the Universidad Nacional de Colombia. From the Hartmann pattern generated by the surface under test, and by the Fourier analysis and the optical aberration theory we obtain the sagitta (elevation map) of the surface. Then, taking the first and the second derivatives of the sagitta in the radial direction we obtain the meridional curvature map. The method is illustrated with an example. To check the performance of the HT topographer a toric surface, a revolution aspherical surface, and two human corneas were measured. Our results are compared with those obtained with a Placido ring topographer (Tomey TMS-4 videokeratoscope), and we show that our curvature maps are similar to those obtained with the Placido ring topographer. The HT topographer is able to reconstruct the corneal topography potentially eradicating the skew ray problem, therefore, corneal defects can be visualized more. The results are presented by elevation and meridional curvature maps.

  15. Corneal photoablation in vivo with the erbium:YAG laser: first report

    Science.gov (United States)

    Jean, Benedikt J.; Bende, Thomas; Matallana, Michael; Kriegerowski, Martin

    1995-05-01

    As an alternative to far-UV lasers for corneal refractive surgery, the Erbium:YAG laser may be used in TEM00 mode. The resulting gaussian beam profile leads to a certain amount of myopic correction per laser pulse. Although animal data suggest that the clinical outcome should be comparable to the UV-lasers, no human data were available until now. We performed Erbium:YAG laser areal ablation in 5 blind human eyes. In TEM00 mode, the laser parameters were: effective diameter of laser spot equals 3.4 mm, fluence equals 380 mJ/cm2, pulse duration equals 250 microsecond(s) , Repetition rate equals 4 Hz, Number of applied laser pulses equals 15. Four patients with no light perception, one with intact light projection on one eye (some of them scheduled for enucleation) were treated under topical anaesthesia. Patient selection and informed consent were agreed to by the University's independent Ethics Committee. Prior to laser irradiation, corneal epithelium was removed. A postoperative silicone cast of the cornea was analyzed with a confocal laser micro-topometer for the ablation profile. The eyes were treated with antibiotic ointment until the epithelium was closed. Clinical appearance and, where possible, profilometry of the ablated area was observed. The ablation profile in cornea was gaussian shaped with a maximal depth of 30 micrometers . During laser treatment, the corneal surface becomes opaque, clearing in a matter of seconds. Epithelial healing and clinical appearance was similar to excimer laser treatment. However, during the first week, the irradiated area shows subepithelial irregularities, resembling small bubbles, disappearing thereafter.

  16. Role of 5′TG3′-interacting factors (TGIFs) in Vorinostat (HDAC inhibitor)-mediated Corneal Fibrosis Inhibition

    Science.gov (United States)

    Sharma, Ajay; Sinha, Nishant R.; Siddiqui, Saad

    2015-01-01

    Purpose We have previously reported that vorinostat, an FDA-approved, clinically used histone deacetylase (HDAC) inhibitor, attenuates corneal fibrosis in vivo in rabbits by blocking transforming growth factor β (TGFβ). The 5′TG3′-interacting factors (TGIFs) are transcriptional repressors of TGFβ1 signaling via the Smad pathway. The present study was designed to explore the expression of TGIFs in human corneal fibroblasts and to investigate their role in mediating the antifibrotic effect of vorinostat. Methods Human corneal fibroblast cultures were generated from donor corneas. RNA isolation, cDNA preparation, and PCR were performed to detect the presence of TGIF1 and TGIF2 transcripts. The cultures were exposed to vorinostat (2.5 µM) to test its effect on TGIF mRNA and protein levels using qPCR and immunoblotting. Myofibroblast formation was induced with TGFβ1 (5 ng/ml) treatment under serum-free conditions. The changes in fibrosis parameters were quantified by measuring fibrosis marker α-smooth muscle actin (αSMA) mRNA and protein levels with qPCR, immunostaining, and immunoblotting. Smad2/3/4 and TGIF knockdowns were performed using pre-validated RNAi/siRNAs and a commercially available transfection reagent. Results Human corneal fibroblasts showed the expression of TGIF1 and TGIF2. Vorinostat (2.5 µM) caused a 2.8–3.3-fold increase in TGIF1 and TGIF2 mRNA levels and a 1.4–1.8-fold increase in TGIF1 and TGIF2 protein levels. Vorinostat treatment also caused a significant increase in acetylhistone H3 and acetylhistone H4. Vorinostat-induced increases in TGIF1 and TGIF2 were accompanied by a concurrent decrease in corneal fibrosis, as indicated by a decrease in αSMA mRNA by 83±7.7% and protein levels by 97±5%. The RNAi-mediated knockdown of Smad2, Smad3, and Smad4 markedly attenuated TGFβ1-evoked transdifferentiation of fibroblasts to myofibroblasts. The siRNA-mediated knockdown of TGIF1 and TGIF2 neutralized vorinostat-evoked decreases in

  17. Temporary corneal stem cell dysfunction after radiation therapy

    International Nuclear Information System (INIS)

    Hiroshi, Fujishima; Kazuo, Tsubota

    1996-01-01

    Radiation therapy can cause corneal and conjuctival abnormalities that sometimes require surgical treatment. Corneal stem cell dysfunction is described, which recovered after the cessation of radiation. Methods - A 44-year-old man developed a corneal epithelial abnormality associated with conjuctival and corneal inflammation following radiation therapy for maxillary cancer. Examination of brush cytology samples showed goblet cells in the upper and lower parts of the cornea, which showed increased fluorescein permeability, and intraepithelial lymphocytes. Impression cytology showed goblet cells in the same part of the cornea. Specular microscopy revealed spindle type epithelial cells. Patient follow up included artificial tears and an antibiotic ophthalmic ointment. The corneal abnormalities resolved after 4 months with improved visual acuity without any surgical intervention, but the disappearance of the palisades of Vogt did not recover at 1 year after radiation. Radiation therapy in this patient caused temporary stem cell dysfunction which resulted in conjunctivalisation in a part of the cornea. Although limbal stem cell function did not fully recover, this rare case suggested that medical options should be considered before surgery. (Author)

  18. Husserl, the Monad and Immortality | MacDonald | Indo-Pacific ...

    African Journals Online (AJOL)

    In an Appendix to his Analyses Concerning Passive and Active Synthesis dating from the early 1920s, Husserl makes the startling assertion that, unlike the mundane ego, the transcendental ego is immortal. The present paper argues that this claim is an ineluctable consequence of Husserl's relentless pursuit of the ever ...

  19. Effects of Silicone Hydrogel Contact Lens Application on Corneal High-order Aberration and Visual Guality in Patients with Corneal Opacities

    Directory of Open Access Journals (Sweden)

    Sevda Aydın Kurna

    2012-03-01

    Full Text Available Pur po se: Evaluation of the corneal high-order aberrations and visual quality changes after application of silicone hydrogel contact lenses in patients with corneal opacities due to various etiologies. Ma te ri al and Met hod: Fifteen eyes of 13 patients with corneal opacities were included in the study. During the ophthalmologic examination before and after contact lens application, visual acuity was measured with Snellen acuity chart and contrast sensitivity - with Bailey-Lowie Charts in letters. Aberrations were measured with corneal aberrometer (NIDEK Magellan Mapper under a naturally dilated pupil. Spherical aberration, coma, trefoil, irregular astigmatism and total high-order root mean square (RMS values were recorded. Measurements were repeated with balafilcon A lenses (PureVision 2 HD, B&L on all patients. Re sults: Patient age varied between 23 and 50 years. Two eyes had subepithelial infiltrates due to adenoviral keratitis, 1 had nebulae due to previous infections or trauma, and 2 had Salzmann’s nodular degeneration. We observed a mean increase of 1 line in visual acuity and 5 letters in contrast sensitivity with contact lenses versus glasses in the patients. Mean RMS values of spherical aberration, irregular astigmatism and total high-order aberrations decreased significantly with contact lenses. Dis cus si on: Silicone hydrogel soft contact lenses may improve visual quality by decreasing the corneal aberrations in patients with corneal opacities. (Turk J Ophthalmol 2012; 42: 97-102

  20. Altered corneal biomechanical properties in children with osteogenesis imperfecta.

    Science.gov (United States)

    Lagrou, Lisa M; Gilbert, Jesse; Hannibal, Mark; Caird, Michelle S; Thomas, Inas; Moroi, Sayoko E; Bohnsack, Brenda L

    2018-04-07

    To evaluate biomechanical corneal properties in children with osteogenesis imperfecta (OI). A prospective, observational, case-control study was conducted on children 6-19 years of age diagnosed with OI. Patients with OI and healthy control subjects underwent complete ophthalmic examinations. Additional tests included Ocular Response Analyzer (ORA) and ultrasonic pachymetry. Primary outcomes were central corneal thickness (CCT), corneal hysteresis (CH), and corneal resistance factor (CRF). Intraocular pressure (IOP) was measured directly by either iCare or Goldmann applanation and indirectly by the ORA (Goldmann-correlated and corneal-compensated IOP). Statistically significant differences between OI and control groups were determined using independent samples t test. A total of 10 of 18 OI cases (mean age, 13 ± 4.37 years; 8 males) and 30 controls (mean age, 12.76 ± 2.62 years; 16 males) were able to complete the corneal biomechanics and pachymetry testing. Children with OI had decreased CH (8.5 ± 1.0 mm Hg vs 11.6 ± 1.2 mm Hg [P < 0.001]), CRF (9.0 ± 1.9 mm Hg vs 11.5 ± 1.5 [P < 0.001]) and CCT (449.8 ± 30.8 μm vs 568 ± 47.6 μm [P < 0.001]) compared to controls. The corneal-compensated IOP was significantly higher in OI cases (18.8 ± 3.1 mm Hg) than in controls (15.0 ± 1.6 mm Hg, P < 0.004), but there was no significant difference in Goldmann-correlated IOP (16.3 ± 4.2 mm Hg vs 15.8 ± 2.2 mm Hg). Collagen defects in OI alter corneal structure and biomechanics. Children with OI have decreased CH, CRF, and CCT, resulting in IOPs that are likely higher than measured by tonometry. These corneal alterations are present at a young age in OI. Affected individuals should be routinely screened for glaucoma and corneal pathologies. Copyright © 2018 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  1. Regulation of corneal stroma extracellular matrix assembly.

    Science.gov (United States)

    Chen, Shoujun; Mienaltowski, Michael J; Birk, David E

    2015-04-01

    The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Dextran Preserves Native Corneal Structure During Decellularization.

    Science.gov (United States)

    Lynch, Amy P; Wilson, Samantha L; Ahearne, Mark

    2016-06-01

    Corneal decellularization has become an increasingly popular technique for generating scaffolds for corneal regeneration. Most decellularization procedures result in tissue swelling, thus limiting their application. Here, the use of a polysaccharide, dextran, to reduce swelling and conserve the native corneal structure during decellularization was investigated. Corneas were treated with 1% Triton X-100, 0.5% sodium dodecyl sulfate, and nucleases under constant rotation followed by extensive washing. To reduce swelling, decellularization solutions were supplemented with 5% dextran either throughout the whole decellularization process or during the washing cycles only. Quantitative analysis of DNA content showed a 96% reduction after decellularization regardless of the addition of dextran. Dextran resulted in a significant reduction in swelling from 3.85 ± 0.43 nm without to 1.94 ± 0.29-2.01 ± 0.37 nm (p dextran must be present throughout the decellularization protocol to preserve the native corneal architecture, anisotropy analysis demonstrated comparable results (0.22 ± 0.03) to the native cornea (0.24 ± 0.02), p > 0.05. Dextran can counteract the detrimental effects of decellularizing agents on the biomechanical properties of the tissue resulting in similar compressive moduli (mean before decellularization: 5.40 ± 1.18 kPa; mean after decellularization with dextran: 5.64 ± 1.34 kPa, p > 0.05). Cells remained viable in the presence of decellularized scaffolds. The findings of this study indicate that dextran not only prevents significant corneal swelling during decellularization but also enhances the maintenance of the native corneal ultrastructure.

  3. Comparison of the Keratometric Corneal Astigmatic Power after Phacoemulsification: Clear Temporal Corneal Incision versus Superior Scleral Tunnel Incision

    Directory of Open Access Journals (Sweden)

    Yongqi He

    2009-01-01

    Full Text Available Objective. This is prospective randomized control trial to compare the mean keratometric corneal astigmatism diopter power (not surgical induced astigmatism among preop and one-month and three-month postop phacoemulcification of either a clear temporal corneal incision or a superior scleral tunnel Incision, using only keratometric astigmatic power reading to evaluate the difference between the two cataract surgery incisions. Methods. 120 patients (134 eyes underwent phacoemulcification were randomly assigned to two groups: Group A, the clear temporal corneal incision group, and Group B, the superior scleral tunnel incision group. SPSS11.5 Software was used for statistical analysis to compare the postsurgical changes of cornea astigmatism on keratometry. Results. The changes of corneal astigmatic diopter in Groups A and B after 3 month postop from keratometric reading were 1.04 + 0.76 and 0.94 + 0.27, respectively (=.84>.05, which showed no statistic significance difference. Conclusion. The incision through either temporal clear cornea or superior scleral tunnel in phacoemulcification shows no statistic difference in astigmatism change on keratometry 3-month postop.

  4. Analysis of corneal topography in patients with pure microphthalmia in Eastern China.

    Science.gov (United States)

    Hu, Pei-Hong; Gao, Gui-Ping; Yu, Yao; Pei, Chong-Gang; Zhou, Qiong; Huang, Xin; Zhang, Ying; Shao, Yi

    2015-12-01

    To determine the typical corneal changes in pure microphthalmia using a corneal topography system and identify characteristics that may assist in early diagnosis. Patients with pure microphthalmia and healthy control subjects underwent corneal topography analysis (Orbscan IIZ® Corneal Topography System; Bausch and Lomb, Bridgewater, NJ, USA) to determine degree of corneal astigmatism (mean A), simulation of corneal astigmatism (sim A), mean keratometry (mean K), simulated keratometry (sim K), irregularities in the 3 - and 5-mm zone, and mean thickness of nine distinct corneal regions. Patients with pure microphthalmia (n = 12) had significantly higher mean K, sim K, mean A, sim A, 3.0 mm irregularity and 5.0 mm irregularity, and exhibited significantly more false keratoconus than controls (n = 12). There was a significant between-group difference in the morphology of the anterior corneal surface and the central curvature of the cornea. Changes in corneal morphology observed in this study could be useful in borderline situations to confirm the diagnosis of pure microphthalmia. © The Author(s) 2015.

  5. Congenital Corneal Anesthesia and Neurotrophic Keratitis: Diagnosis and Management

    Directory of Open Access Journals (Sweden)

    Flavio Mantelli

    2015-01-01

    Full Text Available Neurotrophic keratitis (NK is a rare degenerative disease of the cornea caused by an impairment of corneal sensory innervation, characterized by decreased or absent corneal sensitivity resulting in epithelial keratopathy, ulceration, and perforation. The aetiopathogenesis of corneal sensory innervation impairment in children recognizes the same range of causes as adults, although they are much less frequent in the pediatric population. Some extremely rare congenital diseases could be considered in the aetiopathogenesis of NK in children. Congenital corneal anesthesia is an extremely rare condition that carries considerable diagnostic and therapeutic problems. Typically the onset is up to 3 years of age and the cornea may be affected in isolation or the sensory deficit may exist as a component of a congenital syndrome, or it may be associated with systemic somatic anomalies. Accurate diagnosis and recognition of risk factors is important for lessening long-term sequelae of this condition. Treatment should include frequent topical lubrication and bandage corneal or scleral contact lenses. Surgery may be needed in refractory cases. The purpose of this review is to summarize and update data available on congenital causes and treatment of corneal hypo/anesthesia and, in turn, on congenital NK.

  6. Analysis of corneal esthesia in patients undergoing photorefractive keratectomy

    Directory of Open Access Journals (Sweden)

    Elmar Torres Neto

    2015-12-01

    Full Text Available ABSTRACT Purpose: To quantitatively analyze corneal esthesia in patients undergoing photorefractive keratectomy (PRK surgery. Methods: Forty-five patients selected for PRK in one eye underwent corneal esthesia using a Cochet-Bonnet esthesiometer preoperatively and 30 and 90 days postoperatively. Patients with a refractive diopter error of 4 or greater received intraoperative 0.02% mitomycin C for 20 s. Results: Twenty-four (53.3% of the 45 eyes received intraoperative 0.02% mitomycin. Decreased sensitivity was observed on postoperative day 30. By postoperative day 90, corneal esthesia had normalized but remained 14.9% lower than preoperative levels. In the mitomycin group, no recovery of corneal esthesia to normal sensitivity levels was observed. The mean esthesiometer level was 39.2 mm on postoperative day 90 (P<0.001. Conclusions: The results of the present study demonstrate recovery of corneal esthesia to normal levels at 90 days postoperatively in patients who did not receive mitomycin C. In patients administered mitomycin C, a 23.59% reduction in the corneal touch threshold was observed compared with preoperative levels indicating a failure of recovery to normal levels.

  7. Corneal conjunctivalization management with high Dk RGP contact lenses.

    Science.gov (United States)

    Martin, Raul

    2009-06-01

    To describe the management of corneal conjunctivalization with a high Dk RGP contact lens (CL) fitting. A high Dk RGP CL (Menicon Z-alpha Dk=189, Japan) was fitted, after temporary suspension of CL wear (6 months and 3 weeks), in two patients (a 36-year-old female and a 38-year-old male) who had corneal conjunctivalization secondary to low Dk soft CL wear. Both patients had worn their soft CLs 12-14 h per day without symptoms for the previous 18-20 years. After 9-15 months of high Dk RGP wear, all signs of corneal conjunctivalization had disappeared (corneal vascularization, late fluorescein stain, etc.) and patients wore their RGP CL comfortably. Corneal conjunctivalization was resolved with non-invasive procedures (temporary discontinuation, preservative-free artificial tears and high Dk RGP CL fitting) and thus other treatments (topical or surgical treatments such as limbus transplantation, amniotic membrane transplant or others) were not necessary. Short temporary suspension of CL wear (3 weeks), preservative-free artificial tears and refitting with high oxygen permeability RGP CL may be an alternative for the management of corneal conjunctivalization secondary to CL wear.

  8. Immortality in view of Maimonides and Spinoza

    OpenAIRE

    Morteza Shajari; Yousef Nozohur; Abbas Fanni Asl

    2014-01-01

    Desire for immortality can be seen as the essential natural impulse. Therefore, different religions and thinkers have attempted to see the issue from different viewpoints. The great Jewish philosopher. Maimonides, due to deep fixation to Judaism, has tried to express their issues to be consistent with the Bible and his own community believes. He, in his discussion of resurrection, believed to three basic steps: The Messiah, the resurrection, and the world hereafter. His standpoint of eternity...

  9. Pirfenidone nanoparticles improve corneal wound healing and prevent scarring following alkali burn.

    Directory of Open Access Journals (Sweden)

    Sushovan Chowdhury

    Full Text Available To evaluate the effects of pirfenidone nanoparticles on corneal re-epithelialization and scarring, major clinical challenges after alkali burn.Effect of pirfenidone on collagen I and α-smooth muscle actin (α-SMA synthesis by TGFβ induced primary corneal fibroblast cells was evaluated by immunoblotting and immunocytochemistry. Pirfenidone loaded poly (lactide-co-glycolide (PLGA nanoparticles were prepared, characterized and their cellular entry was examined in primary corneal fibroblast cells by fluorescence microscopy. Alkali burn was induced in one eye of Sprague Dawley rats followed by daily topical treatment with free pirfenidone, pirfenidone nanoparticles or vehicle. Corneal re-epithelialization was assessed daily by flourescein dye test; absence of stained area indicated complete re-epithelialization and the time for complete re-epithelialization was determined. Corneal haze was assessed daily for 7 days under slit lamp microscope and graded using a standard method. After 7 days, collagen I deposition in the superficial layer of cornea was examined by immunohistochemistry.Pirfenidone prevented (P<0.05 increase in TGF β induced collagen I and α-SMA synthesis by corneal fibroblasts in a dose dependent manner. Pirfenidone could be loaded successfully within PLGA nanoparticles, which entered the corneal fibroblasts within 5 minutes. Pirfenidone nanoparticles but not free pirfenidone significantly (P<0.05 reduced collagen I level, corneal haze and the time for corneal re-epithelialization following alkali burn.Pirfenidone decreases collagen synthesis and prevents myofibroblast formation. Pirfenidone nanoparticles improve corneal wound healing and prevent fibrosis. Pirfenidone nanoparticles are of potential value in treating corneal chemical burns and other corneal fibrotic diseases.

  10. Corneal iron ring after hyperopic photorefractive keratectomy.

    Science.gov (United States)

    Bilgihan, K; Akata, F; Gürelik, G; Adigüzel, U; Akpinar, M; Hasanreisoğlu, B

    1999-05-01

    To report the incidence and course of corneal iron deposition after hyperopic photorefractive keratectomy (PRK). Gazi University, Medical School, Department of Ophthalmology, Ankara, Turkey. Between January 1995 and December 1997, 62 eyes had PRK to correct hyperopia. Nine eyes developed corneal iron ring 5 to 8 months (mean 6.25 months +/- 1.3 [SD]) after PRK for hyperopia. The rings persisted during the mean follow-up of 19 +/- 11.09 months. The ring-shaped iron deposition after PRK for hyperopia must be differentiated from the Fleischer ring. Our results suggest that the slitlamp findings of peripheral corneal iron deposition in hyperopic PRK patients correlate with achieved correction.

  11. Corneal collagen crosslinking for keratoconus. A review

    Directory of Open Access Journals (Sweden)

    M. M. Bikbov

    2014-10-01

    Full Text Available Photochemical crosslinking is widely applied in ophthalmology. Its biochemical effect is due to the release of singlet oxygen that promotes anaerobic photochemical reaction. Keratoconus is one of the most common corneal ectasia affecting 1 in 250 to 250 000 persons. Currently, the rate of iatrogenic ectasia following eximer laser refractive surgery increases due to biomechanical weakening of the cornea. Morphologically and biochemically, ectasia is characterized by corneal layers thinning, contact between the stroma and epithelium resulting from Bowman’s membrane rupture, chromatin fragmentation in keratocyte nuclei, phagocytosis, abnormal staining and arrangement of collagen fibers, enzyme system disorders, and keratocyte apoptosis. In corneal ectasia, altered enzymatic processes result in the synthesis of abnormal collagen. Collagen packing is determined by the activity of various extracellular matrix enzymes which bind amines and aldehydes of collagen fiber amino acids. In the late stage, morphological changes of Descemet’s membrane (i.e., rupture and detachment develop. Abnormal hexagonal-shaped keratocytes and their apoptosis are the signs of endothelial dystrophy. The lack of analogs in domestic ophthalmology encouraged the scientists of Ufa Eye Research Institute to develop a device for corneal collagen crosslinking. The parameters of ultraviolet (i.e., wavelength, exposure time, power to achieve the desired effect were identified. The specifics of some photosensitizers in the course of the procedure were studied. UFalink, a device for UV irradiation of cornea, and photosensitizer Dextralink were developed and adopted. Due to the high risk of endothelial damage, this treatment is contraindicated in severe keratoconus (CCT less than 400 microns. Major effects of corneal collagen crosslinking are the following: Young’s modulus (modulus of elasticity increase by 328.9 % (on average, temperature tolerance increase by 5

  12. [The status quo and expectation of corneal research in China].

    Science.gov (United States)

    Shi, Weiyun; Xie, Lixin

    2014-09-01

    In China, corneal disease is currently the second leading cause of blindness. Severe donor shortage, insufficient technique supports and promotion, and the lack of corneal disease specialists due to poor systematic training are all urgent problems to be resolved. The last 5 years have witnessed a considerable progress in basic and clinical researches of corneal disease. Investigations on the pathogenesis and treatment of fungal keratitis have won an international reputation. Results from the study of corneal reconstruction with tissue-engineered and acellular matrix corneas have been tested in clinical trials with good preliminary performance. Moreover, the clinical researches of corneal refractive surgery have kept pace with the latest international progresses. However, Descemet's membrane endothelial keratoplasty needs further promotion, and the development and application of keratoprosthesis remains a blank. Although keratoprosthesis and corneal collagen cross-linking have been widely applied in Europe with satisfactory clinical efficacy, they are still under assessment by China Food and Drug Administration for approval of use.

  13. Establishment of a tumor neovascularization animal model with biomaterials in rabbit corneal pouch.

    Science.gov (United States)

    Chu, Yu-Ping; Li, Hong-Chuan; Ma, Ling; Xia, Yang

    2018-06-01

    The present animal model of tumor neovascularization most often used by researchers is zebrafish. For studies on human breast cancer cell neovascularization, a new animal model was established to enable a more convenient study of tumor neovascularization. A sodium alginate-gelatin blend gel system was used to design the new animal model. The model was established using rabbit corneal pouch implantation. Then, the animal model was validated by human breast cancer cell lines MCF-7-Kindlin-2 and MCF-7-CMV. The experiment intuitively observed the relationship between tumor and neovascularization, and demonstrated the advantages of this animal model in the study of tumor neovascularization. The use of sodium alginate-gelatin blends to establish tumor neovascularization in a rabbit corneal pouch is a novel and ideal method for the study of neovascularization. It may be a better animal model for expanding the research in this area. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Corynebacterium macginleyi isolated from a corneal ulcer

    Directory of Open Access Journals (Sweden)

    Kathryn Ruoff

    2010-02-01

    Full Text Available We report the isolation of Corynebacterium macginleyi from the corneal ulcer culture of a patient, later enrolled in the Steroids for Corneal Ulcer Trial (SCUT. To our knowledge this is the first published report from North America of the recovery of C. macginleyi from a serious ocular infection.

  15. 21 CFR 886.4070 - Powered corneal burr.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4070 Powered corneal burr. (a) Identification. A powered corneal burr is an AC-powered or battery-powered device that is a motor and drilling tool intended to remove rust rings from the cornea of the eye. (b) Classification. Class I (general controls). When...

  16. Comparative analysis of corneal morphological changes after transversal and torsional phacoemulsification through 2.2 mm corneal incision.

    Science.gov (United States)

    Assaf, Ahmed; Roshdy, Maged Maher

    2013-01-01

    This paper compares and evaluates the corneal morphological changes occurring after cataract surgery through a 2.2 mm corneal incision. We use two platforms for comparison and evaluation, transversal and torsional phacoemulsification. This study includes 139 consecutive cataractous eyes (nuclear color 2-4, according to the Lens Opacities Classification System III [LOCSIII]) of 82 patients undergoing cataract surgery through a 2.2 mm corneal incision. Two different phacoemulsification platforms were used and assigned randomly: we used the WhiteStar Signature(®) system with the Ellips™ FX transversal continuous ultrasound (US) mode for group I (mean age: 65.33 ± 6.97 years), and we used the Infiniti(®) system with the OZil(®) Intelligent Phaco (IP) torsional US mode for group II (mean age: 64.02 ± 7.55 years). The corneal endothelium and pachymetry were evaluated preoperatively and at 1 month postoperatively. Incision size changes were also evaluated. All surgeries were uneventful. Before intraocular lens implantation, the mean incision size was 2.24 ± 0.06 mm in both groups (P = 0.75). In terms of corneal endothelial cell density, neither preoperative (I vs II: 2304.1 ± 122.5 cell/mm(2) vs 2315.6 ± 83.1 cell/mm(2), P = 0.80) nor postoperative (I vs II: 2264.1 ± 124.3 cell/mm(2) vs 2270.3 ± 89.9 cell/mm(2), P = 0.98) differences between the groups were statistically significant. The mean endothelial cell density loss was 1.7% ± 1.6% and 2.0% ± 1.4% in groups I and II, respectively. Furthermore, no significant differences between groups I and II were found preoperatively (P = 0.40) and postoperatively (P = 0.68) in central pachymetry. With surgery, the mean increase in central pachymetry was 28.1 ± 23.6 μm and 24.0 ± 24.0 μm in groups I and II, respectively (P = 0.1). Ellips™ FX transversal and OZil(®) IP torsional phacoemulsification modes are safe for performing cataract surgery, inducing minimal corneal thickness and endothelial changes.

  17. Effects of three blood derived products on equine corneal cells, an in vitro study.

    Science.gov (United States)

    Rushton, J O; Kammergruber, E; Tichy, A; Egerbacher, M; Nell, B; Gabner, S

    2018-05-01

    Despite advances in therapy of corneal ulcerative diseases in horses, a vast number of cases require surgical intervention, due to poor response to treatment. Topical application of serum has been used for many years, based on its anticollagenolytic properties and the presence of growth factors promoting corneal wound healing. However, although other blood derived products i.e. platelet rich plasma (PRP), plasma rich in growth factors (PRGF) have been widely used in equine orthopaedics and in human ophthalmology, no reports of the effects of these blood derived products exist in equine ophthalmology. To determine in vitro effects of PRGF and PRP on equine corneal cells compared with serum. Prospective controlled cohort study. Blood from 35 healthy horses was used to produce serum, PRGF (Endoret ® ), and PRP (E-PET™). Limbal- and stromal cells were isolated from healthy corneas of six horses and treated with 20% serum, 20% PRGF or 20% PRP. Proliferation rates and migration capacity were analysed in single cell cultures as well as co-culture systems. Cell proliferation increased with PRP treatment, remained constant in PRGF treated cells, and declined upon serum treatment over a period of 48 h. Migration capacity was significantly enhanced with PRP treatment, compared with PRGF treatment. Intact leucocytes, mainly eosinophils, were only detected in PRP. Due to the study design use of autologous blood products on corneal cells was not possible. The results demonstrate beneficial effects of PRP on proliferation as well as migration capacity of equine corneal cells in vitro. In vivo studies are warranted to determine further beneficial effects of PRP in horses with corneal ulcers. © 2017 EVJ Ltd.

  18. Kinetic analysis of the rate of corneal wound healing in Otsuka long-evans Tokushima Fatty rats, a model of type 2 diabetes mellitus.

    Science.gov (United States)

    Nagai, Noriaki; Murao, Takatoshi; Okamoto, Norio; Ito, Yoshimasa

    2010-01-01

    Diabetic keratopathy is a well-known ocular complication secondary to type 2 diabetes mellitus. In this study, we performed a kinetic analysis of corneal wound healing in Long-Evans rats (normal rat) and Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type 2 diabetes mellitus. Corneal wound healing in 7-week-old normal rats was mostly complete 24 h after corneal epithelial abrasion, and the process of corneal wound healing took place according to an equation with a first-order rate constant. The rate of corneal wound healing in normal rats decreased with aging. The process of corneal wound healing in 38- and 60-week-old normal and OLETF rats occurred in two phases with rate constants for the first and second phases represented as alpha and beta, respectively. The alpha and beta values in 38- and 60-week-old OLETF rats were lower than those in normal rats of the corresponding age. Furthermore, a close relationship was observed between the corneal wound healing rate constant and plasma glucose levels in OLETF rats. The present studies suggest the sequence of events that occur following damage to the corneal surface in OLETF rats as a model animal for a human type 2 diabetes mellitus.

  19. Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration.

    Science.gov (United States)

    Lin, Ko-Jo; Loi, Mei-Xue; Lien, Gi-Shih; Cheng, Chieh-Feng; Pao, Hsiang-Yin; Chang, Yun-Chuang; Ji, Andrea Tung-Qian; Ho, Jennifer Hui-Chun

    2013-06-14

    Topical administration of eye drops is the major route for drug delivery to the cornea. Orbital fat-derived stem cells (OFSCs) possess an in vitro corneal epithelial differentiation capacity. Both the safety and immunomodulatory ability of systemic OFSC transplantation were demonstrated in our previous work. In this study, we investigated the safety, therapeutic effect, and mechanism(s) of topical OFSC administration in an extensive alkali-induced corneal wound. Corneal injury was created by contact of a piece of 0.5 N NaOH-containing filter paper on the corneal surface of a male Balb/c mouse for 30 s. The area of the filter paper covered the central 70% or 100% of the corneal surface. OFSCs (2 × 10(5)) in 5 μl phosphate-buffered saline (PBS) were given by topical administration (T) twice a day or by two intralimbal (IL) injections in the right cornea, while 5 μl of PBS in the left cornea served as the control. Topical OFSCs promoted corneal re-epithelialization of both the limbal-sparing and limbal-involved corneal wounds. In the first three days, topical OFSCs significantly reduced alkali-induced corneal edema and stromal infiltration according to a histopathological examination. Immunohistochemistry and immunofluorescence staining revealed that transplanted cells were easily detectable in the corneal epithelium, limbal epithelium and stroma, but only some of transplanted cells at the limbal epithelium had differentiated into cytokeratin 3-expressing cells. OFSCs did not alter neutrophil (Ly6G) levels in the cornea, but significantly reduced macrophage (CD68) infiltration and inducible nitrous oxide synthetase (iNOS) production during acute corneal injury as quantified by a Western blot analysis. Continuous topical administration of OFSCs for seven days improved corneal transparency, and this was accompanied by diffuse stromal engraftment of transplanted cells and differentiation into p63-expressing cells at the limbal area. The therapeutic effect of the

  20. Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration

    Science.gov (United States)

    2013-01-01

    Introduction Topical administration of eye drops is the major route for drug delivery to the cornea. Orbital fat-derived stem cells (OFSCs) possess an in vitro corneal epithelial differentiation capacity. Both the safety and immunomodulatory ability of systemic OFSC transplantation were demonstrated in our previous work. In this study, we investigated the safety, therapeutic effect, and mechanism(s) of topical OFSC administration in an extensive alkali-induced corneal wound. Methods Corneal injury was created by contact of a piece of 0.5 N NaOH-containing filter paper on the corneal surface of a male Balb/c mouse for 30 s. The area of the filter paper covered the central 70% or 100% of the corneal surface. OFSCs (2 × 105) in 5 μl phosphate-buffered saline (PBS) were given by topical administration (T) twice a day or by two intralimbal (IL) injections in the right cornea, while 5 μl of PBS in the left cornea served as the control. Results Topical OFSCs promoted corneal re-epithelialization of both the limbal-sparing and limbal-involved corneal wounds. In the first three days, topical OFSCs significantly reduced alkali-induced corneal edema and stromal infiltration according to a histopathological examination. Immunohistochemistry and immunofluorescence staining revealed that transplanted cells were easily detectable in the corneal epithelium, limbal epithelium and stroma, but only some of transplanted cells at the limbal epithelium had differentiated into cytokeratin 3-expressing cells. OFSCs did not alter neutrophil (Ly6G) levels in the cornea, but significantly reduced macrophage (CD68) infiltration and inducible nitrous oxide synthetase (iNOS) production during acute corneal injury as quantified by a Western blot analysis. Continuous topical administration of OFSCs for seven days improved corneal transparency, and this was accompanied by diffuse stromal engraftment of transplanted cells and differentiation into p63-expressing cells at the limbal area. The

  1. The Correlation Analysis between Corneal Biomechanical Properties and the Surgically Induced Corneal High-Order Aberrations after Small Incision Lenticule Extraction and Femtosecond Laser In Situ Keratomileusis

    Directory of Open Access Journals (Sweden)

    Wenjing Wu

    2015-01-01

    Full Text Available Background. To investigate the correlation between corneal biomechanics and the surgically induced corneal high-order aberrations (HOAs after small incision lenticule extraction (SMILE and femtosecond laser in situ keratomileusis (FS-LASIK. Methods. A total of 150 right myopic eyes that underwent SMILE or FS-LASIK surgery were included in this retrospective study, 75 eyes in each group. The corneal hysteresis (CH and the corneal resistance factor (CRF with the corneal HOAs of the anterior, posterior, and total cornea were assessed preoperatively and three months postoperatively. Multivariate linear regression was applied to determine the correlations. Results. The preoperative CRF was significantly correlated with the induced 3rd–6th-order HOAs and spherical aberration of the anterior surface and the total cornea after SMILE and FS-LASIK surgeries (P<0.05, postoperatively. The CRF was significantly correlated with the induced vertical coma of the anterior and posterior surfaces and the total cornea after SMILE surgery (P<0.05. There was a significant correlation between the CRF and the induced posterior corneal horizontal coma after FS-LASIK surgery (P=0.013. Conclusions. The corneal biomechanics affect the surgically induced corneal HOAs after SMILE and FS-LASIK surgery, which may be meaningful for screening the patients preoperatively and optimizing the visual qualities postoperatively.

  2. Corneal graft reversal: Histopathologic report of two cases

    OpenAIRE

    Qahtani, Abdullah A.; Alkatan, Hind M.

    2014-01-01

    Graft reversal is a rare cause for failed PKP. In this case report we are presenting 2 graft failure cases in which the corneal grafts were reversed unintentionally. The onset of signs of graft failure, however was variable. We have included their clinical course and the histopathologic findings of the removed corneal grafts. A total of 6 cases including ours have been reported so far. The aim of this report is to attract the attention of corneal surgeons to an additional rare cause for faile...

  3. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J. [and others

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  4. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    International Nuclear Information System (INIS)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J.

    1995-01-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to α-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMVΒ vector; and (2) the antibiotic hygromycin-resistant transfected cells

  5. Contact lens rehabilitation following repaired corneal perforations

    Science.gov (United States)

    Titiyal, Jeewan S; Sinha, Rajesh; Sharma, Namrata; Sreenivas, V; Vajpayee, Rasik B

    2006-01-01

    Background Visual outcome following repair of post-traumatic corneal perforation may not be optimal due to presence of irregular keratometric astigmatism. We performed a study to evaluate and compare rigid gas permeable contact lens and spectacles in visual rehabilitation following perforating corneal injuries. Method Eyes that had undergone repair for corneal perforating injuries with or without lens aspiration were fitted rigid gas permeable contact lenses. The fitting pattern and the improvement in visual acuity by contact lens over spectacle correction were noted. Results Forty eyes of 40 patients that had undergone surgical repair of posttraumatic corneal perforations were fitted rigid gas permeable contact lenses for visual rehabilitation. Twenty-four eyes (60%) required aphakic contact lenses. The best corrected visual acuity (BCVA) of ≥ 6/18 in the snellen's acuity chart was seen in 10 (25%) eyes with spectacle correction and 37 (92.5%) eyes with the use of contact lens (p < 0.001). The best-corrected visual acuity with spectacles was 0.20 ± 0.13 while the same with contact lens was 0.58 ± 0.26. All the patients showed an improvement of ≥ 2 lines over spectacles in the snellen's acuity chart with contact lens. Conclusion Rigid gas permeable contact lenses are better means of rehabilitation in eyes that have an irregular cornea due to scars caused by perforating corneal injuries. PMID:16536877

  6. Indications for Corneal Transplantation at a Tertiary Referral Center in Tehran

    Directory of Open Access Journals (Sweden)

    Mohammad Zare

    2010-01-01

    Full Text Available Purpose: To report the indications and techniques of corneal transplantation at a tertiary referral center in Tehran over a 3-year period. Methods: Records of patients who had undergone any kind of corneal transplantation at Labbafinejad Medical Center, Tehran, Iran from March 2004 to March 2007 were reviewed to determine the indications and types of corneal transplantation. Results: During this period, 776 eyes of 756 patients (including 504 male subjects with mean age of 41.3±21.3 years underwent corneal transplantation. The most common indication was keratoconus (n=317, 40.8% followed by bullous keratopathy (n=90, 11.6%, non-herpetic corneal scars (n=62, 8.0%, infectious corneal ulcers (n=61, 7.9%, previously failed grafts (n=61, 7.9%, endothelial and stromal corneal dystrophies (n=28, 3.6%, and trachoma keratopathy (n=26, 3.3%. Other indications including Terrien′s marginal degeneration, post-LASIK keratectasia, trauma, chemical burns, and peripheral ulcerative keratitis constituted the rest of cases. Techniques of corneal transplantation included penetrating keratoplasty (n=607, 78.2%, deep anterior lamellar keratoplasty (n=108, 13.9%, conventional lamellar keratoplasty (n=44, 5.7%, automated lamellar therapeutic keratoplasty (n=8, 1.0%, and Descemet stripping endothelial keratoplasty (n=6, 0.8% in descending order. The remaining cases were endothelial keratoplasty and sclerokeratoplasty. Conclusion: In this study, keratoconus was the most common indication for penetrating keratoplasty which was the most prevalent technique of corneal transplantation. However, deep anterior lamellar keratoplasty is emerging as a growing alternative for corneal pathologies not involving the endothelium.

  7. Abnormal activity of corneal cold thermoreceptors underlies the unpleasant sensations in dry eye disease.

    Science.gov (United States)

    Kovács, Illés; Luna, Carolina; Quirce, Susana; Mizerska, Kamila; Callejo, Gerard; Riestra, Ana; Fernández-Sánchez, Laura; Meseguer, Victor M; Cuenca, Nicolás; Merayo-Lloves, Jesús; Acosta, M Carmen; Gasull, Xavier; Belmonte, Carlos; Gallar, Juana

    2016-02-01

    Dry eye disease (DED) affects >10% of the population worldwide, and it provokes an unpleasant sensation of ocular dryness, whose underlying neural mechanisms remain unknown. Removal of the main lachrymal gland in guinea pigs caused long-term reduction of basal tearing accompanied by changes in the architecture and density of subbasal corneal nerves and epithelial terminals. After 4 weeks, ongoing impulse activity and responses to cooling of corneal cold thermoreceptor endings were enhanced. Menthol (200 μM) first excited and then inactivated this augmented spontaneous and cold-evoked activity. Comparatively, corneal polymodal nociceptors of tear-deficient eyes remained silent and exhibited only a mild sensitization to acidic stimulation, whereas mechanonociceptors were not affected. Dryness-induced changes in peripheral cold thermoreceptor responsiveness developed in parallel with a progressive excitability enhancement of corneal cold trigeminal ganglion neurons, primarily due to an increase of sodium currents and a decrease of potassium currents. In corneal polymodal nociceptor neurons, sodium currents were enhanced whereas potassium currents remain unaltered. In healthy humans, exposure of the eye surface to menthol vapors or to cold air currents evoked unpleasant sensations accompanied by increased blinking frequency that we attributed to cold thermoreceptor stimulation. Notably, stimulation with menthol reduced the ongoing background discomfort of patients with DED, conceivably due to use-dependent inactivation of cold thermoreceptors. Together, these data indicate that cold thermoreceptors contribute importantly to the detection and signaling of ocular surface wetness, and develop under chronic eye dryness conditions an injury-evoked neuropathic firing that seems to underlie the unpleasant sensations experienced by patients with DED.

  8. Sensitivity of corneal biomechanical and optical behavior to material parameters using design of experiments method.

    Science.gov (United States)

    Xu, Mengchen; Lerner, Amy L; Funkenbusch, Paul D; Richhariya, Ashutosh; Yoon, Geunyoung

    2018-02-01

    The optical performance of the human cornea under intraocular pressure (IOP) is the result of complex material properties and their interactions. The measurement of the numerous material parameters that define this material behavior may be key in the refinement of patient-specific models. The goal of this study was to investigate the relative contribution of these parameters to the biomechanical and optical responses of human cornea predicted by a widely accepted anisotropic hyperelastic finite element model, with regional variations in the alignment of fibers. Design of experiments methods were used to quantify the relative importance of material properties including matrix stiffness, fiber stiffness, fiber nonlinearity and fiber dispersion under physiological IOP. Our sensitivity results showed that corneal apical displacement was influenced nearly evenly by matrix stiffness, fiber stiffness and nonlinearity. However, the variations in corneal optical aberrations (refractive power and spherical aberration) were primarily dependent on the value of the matrix stiffness. The optical aberrations predicted by variations in this material parameter were sufficiently large to predict clinically important changes in retinal image quality. Therefore, well-characterized individual variations in matrix stiffness could be critical in cornea modeling in order to reliably predict optical behavior under different IOPs or after corneal surgery.

  9. Characterization of elasticity and hydration of composite hydrogel based on collagen-iota carrageenan as a corneal tissue engineering

    Science.gov (United States)

    Rinawati, M.; Triastuti, J.; Pursetyo, K. T.

    2018-04-01

    The cornea is a refractive element of the eye that serves to continue the stimulation of light into the eye it has a clear, transparent, elastic and relatively thick tissue. Factors caused corneal blindness, are dystrophy, keratoconus, corneal scaring. Hydrogels can be made from polysaccharide derivatives that have gelation properties such as iota carrageenan. Therefore, it is a need to develop composite hydrogel based collagen-iota carragenan as an engineeried corneal tissue with high elasticity and hydration properties. Collagen hydrogel has a maximum water content an has equlibrium up to 40 %, less than the human cornea, 81 % and under normal hydration conditions, the human cornea can transmit 87 % of visible light. In addition, the refractive index on the surface of the cornea with air is 1.375-1.380. Based on this study, it is necessary to conduct research on the development and composition of hydrogel composite collagen-iota carrageen hydrogen based on. The best result was K5 (5:5) treatment, which has the equilibrium water content of 87.07 % and viscosity of 10.7346 Pa.s.

  10. Clinical correlates of common corneal neovascular diseases:a literature review

    Directory of Open Access Journals (Sweden)

    Nizar Saleh Abdelfattah

    2015-02-01

    Full Text Available A large subset of corneal pathologies involves the formation of new blood and lymph vessels (neovascularization, leading to compromised visual acuity. This article aims to review the clinical causes and presentations of corneal neovascularization (CNV by examining the mechanisms behind common CNV-related corneal pathologies, with a particular focus on herpes simplex stromal keratitis, contact lenses-induced keratitis and CNV secondary to keratoplasty. Moreover, we reviewed CNV in the context of different types of corneal transplantation and keratoprosthesis, and summarized the most relevant treatments available so far.

  11. The Steroids for Corneal Ulcers Trial

    Science.gov (United States)

    Srinivasan, Muthiah; Mascarenhas, Jeena; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Glidden, David V.; Ray, Kathryn J.; Hong, Kevin C.; Oldenburg, Catherine E.; Lee, Salena M.; Zegans, Michael E.; McLeod, Stephen D.; Lietman, Thomas M.; Acharya, Nisha R.

    2013-01-01

    Objectives To provide comprehensive trial methods and baseline data for the Steroids for Corneal Ulcers Trial and to present epidemiological characteristics such as risk factors, causative organisms, and ulcer severity. Methods Baseline data from a 1:1 randomized, placebo-controlled, double-masked clinical trial comparing prednisolone phosphate, 1%, with placebo as adjunctive therapy for the treatment of bacterial corneal ulcers. Eligible patients had a culture-positive bacterial corneal ulcer and had been taking moxifloxacin for 48 hours. The primary outcome for the trial is best spectacle-corrected visual acuity at 3 months from enrollment. This report provides comprehensive baseline data, including best spectacle-corrected visual acuity, infiltrate size, microbio-logical results, and patient demographics, for patients enrolled in the trial. Results Of 500 patients enrolled, 97% were in India. Two hundred twenty patients (44%) were agricultural workers. Median baseline visual acuity was 0.84 logMAR (Snellen, 20/125) (interquartile range, 0.36-1.7; Snellen, 20/50 to counting fingers). Baseline visual acuity was not significantly different between the United States and India. Ulcers in India had larger infiltrate/scar sizes (P=.04) and deeper infiltrates (P=.04) and were more likely to be localized centrally (P=.002) than ulcers enrolled in the United States. Gram-positive bacteria were the most common organisms isolated from the ulcers (n=366, 72%). Conclusions The Steroids for Corneal Ulcers Trial will compare the use of a topical corticosteroid with placebo as adjunctive therapy for bacterial corneal ulcers. Patients enrolled in this trial had diverse ulcer severity and on average significantly reduced visual acuity at presentation. PMID:21987581

  12. Specific locus mutagenesis of human mammary epithelial cells by ultraviolet radiation

    International Nuclear Information System (INIS)

    Eldridge, S.R.; Gould, M.N.

    1991-01-01

    Tissue and locus specificity of mutation induction was studied in human mammary epithelial cells (HMEC). Primary HMEC from normal tissue, and immortalized HMEC (184B5) derived from normal HMEC, were cultured under identical conditions and exposed to 10J/m 2 ultraviolet (UV) radiation (254 nm peak wavelength), which produced approximately 50% mean survival in all cell strains and lines tested. UV radiation was found to induce mutations at the Na + -K + ATPase locus as determined by ouabain-resistance in both normal and immortalized HMEC. Mutation frequencies measured in these cells following UV exposure were similar to those reported for human diploid fibroblasts. Mutation induction was investigated at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus in normal and immortalized HMEC. Induced mutations at the HPRT locus as determined by 6-thioguanine resistance in normal primary HMEC were not observed following UV radiation. Mutation induction was observed at this locus UV-exposed immortalized HMEC. (author)

  13. Corneal graft reversal: Histopathologic report of two cases.

    Science.gov (United States)

    Qahtani, Abdullah A; Alkatan, Hind M

    2014-10-01

    Graft reversal is a rare cause for failed PKP. In this case report we are presenting 2 graft failure cases in which the corneal grafts were reversed unintentionally. The onset of signs of graft failure, however was variable. We have included their clinical course and the histopathologic findings of the removed corneal grafts. A total of 6 cases including ours have been reported so far. The aim of this report is to attract the attention of corneal surgeons to an additional rare cause for failed penetrating keratoplasty (PKP) which is donor graft reversal.

  14. Fluorouracil as a treatment for corneal papilloma in a Malayan tapir.

    Science.gov (United States)

    Karpinski, Lorraine G; Miller, Christine L

    2002-09-01

    A 26-year-old, wild caught, male Malayan tapir at the Miami Metrozoo with bilateral corneal papillomas was serially immobilized and given subconjunctival injections of fluorouracil. Over the course of 17 weeks five bilateral injections of 25 mg fluorouracil were given. This treatment caused regression of the corneal lesions as evidenced by decreased lesion diameter, decreased corneal vascularity, increased corneal clarity, and improved visual function. No adverse drug effects were observed.

  15. Evaluation of corneal higher order aberrations in normal topographic patterns

    Directory of Open Access Journals (Sweden)

    Ali Mirzajani

    2016-06-01

    Conclusions: Based on results in this study, there were a good correlation between corneal topographic pattern and corneal HOAs in normal eyes. These results indicate that the corneal HOAs values are largely determined by the topographic patterns. A larger sample size would perhaps have been beneficial to yield in more accurate outcomes.

  16. Algorithm for Correcting the Keratometric Error in the Estimation of the Corneal Power in Keratoconus Eyes after Accelerated Corneal Collagen Crosslinking

    Directory of Open Access Journals (Sweden)

    David P. Piñero

    2017-01-01

    Full Text Available Purpose. To analyze the errors associated to corneal power calculation using the keratometric approach in keratoconus eyes after accelerated corneal collagen crosslinking (CXL surgery and to obtain a model for the estimation of an adjusted corneal refractive index nkadj minimizing such errors. Methods. Potential differences (ΔPc among keratometric (Pk and Gaussian corneal power (PcGauss were simulated. Three algorithms based on the use of nkadj for the estimation of an adjusted keratometric corneal power (Pkadj were developed. The agreement between Pk1.3375 (keratometric power using the keratometric index of 1.3375, PcGauss, and Pkadj was evaluated. The validity of the algorithm developed was investigated in 21 keratoconus eyes undergoing accelerated CXL. Results. Pk1.3375 overestimated corneal power between 0.3 and 3.2 D in theoretical simulations and between 0.8 and 2.9 D in the clinical study (ΔPc. Three linear equations were defined for nkadj to be used for different ranges of r1c. In the clinical study, differences between Pkadj and PcGauss did not exceed ±0.8 D nk=1.3375. No statistically significant differences were found between Pkadj and PcGauss (p>0.05 and Pk1.3375 and Pkadj (p<0.001. Conclusions. The use of the keratometric approach in keratoconus eyes after accelerated CXL can lead to significant clinical errors. These errors can be minimized with an adjusted keratometric approach.

  17. Ultraviolet induced lysosome activity in corneal epithelium

    International Nuclear Information System (INIS)

    Cullen, A.P.

    1980-01-01

    A 5.000 W Xe-Hg high pressure lamp and a double monochromator were used to produce a 3.3 nm half-bandpass ultraviolet radiation at 295 nm. Pigmented rabbit eyes were irradiated with radiant exposures from 140 Jm -2 to 10.000 Jm -2 and evaluated by slit-lamp biomicroscopy, light and electron microscopy. Corneal threshold (Hsub(c) was 200 Jm -2 and lens threshold (Hsub(L)) was 7.500 Jm -2 . The most repeatable and reliable corneal response to these levels of UV was the development of corneal epithelial granules. Histological changes included a loss of superficial epithelial cells and selective UV induced autolysis of the wing cells. It is suggested that the biomicroscopically observed granules are the clinical manifestation of the secondary lysosomes revealed by light and electron microscopy. It is proposed that UV breaks down the primary lysosome membranes to release hydrolytic enzymes which in turn form the secondary lysosomes during autolysis. Extreme levels of radiant exposure at 295 nm result in indiscriminate destruction of all layers of the corneal epithelium, but the posterior cornea was spared. (orig.) [de

  18. Alteraciones corneales en pacientes diabéticos

    Directory of Open Access Journals (Sweden)

    Iraisi Hormigó Puertas

    Full Text Available La diabetes mellitus, afección frecuente a nivel mundial, tiene gran impacto en la sociedad no solo por su alta prevalencia, sino por sus complicaciones crónicas y su alta mortalidad. Afecta a unos 180 millones de personas en el mundo. La prevalencia de la diabetes (tipos I y II se estima en el 13 % en pacientes mayores de 60 años. La estructura corneal sufre modificaciones en los pacientes diabéticos; la hiperglucemia afecta la hidratación de la córnea, y con esto varía el espesor corneal y aparecen cambios queratométricos visibles mediante topografía corneal. Las córneas de los pacientes con diabetes presentan alteraciones epiteliales, estromales y endoteliales. Además, existe una disminución de la permeabilidad endotelial durante la fase de hipoxia, que relacionan estos efectos de la diabetes en las células endoteliales. El objetivo de nuestro estudio es abordar las diferentes alteraciones corneales en los pacientes diabéticos.

  19. 'Immortal' energy systems and intergenerational justice

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1985-01-01

    Some critics of our technological society have asserted that we are leaving a legacy of problems for our descendants - in the shape, for example, of CO 2 pollution of the atmosphere and radioactive waste. The author argues that if some of our power generation systems turn out to be near 'immortal', with lives much longer than their book lives, on the contrary, great benefits may be bequeathed to our successors - in fully amortized plant with very low running costs. There are examples in history of similar benefits conferred by dams built hundreds of years ago but which still serve useful purposes today. (author)

  20. Evaluation of the cytotoxic effects of ophthalmic solutions containing benzalkonium chloride on corneal epithelium using an organotypic 3-D model.

    Science.gov (United States)

    Khoh-Reiter, Su; Jessen, Bart A

    2009-07-28

    Benzalkonium chloride (BAC) is a common preservative used in ophthalmic solutions. The aim of this study was to compare the cytotoxic effects of BAC-containing ophthalmic solutions with a BAC-free ophthalmic solution using an organotypic 3-dimensional (3-D) corneal epithelial model and to determine the effects of latanoprost ophthalmic solution and its BAC-containing vehicle on corneal thickness in a monkey model. The cytotoxicity of commercially available BAC-containing ophthalmic formulations of latanoprost (0.02% BAC) and olopatadine (0.01% BAC) was compared to that of BAC-free travoprost and saline in a corneal organotypic 3-D model using incubation times of 10 and 25 minutes. To compare the extent of differentiation of 3-D corneal cultures to monolayer transformed human corneal epithelial (HCE-T) cell cultures, expression levels (mRNA and protein) of the corneal markers epidermal growth factor receptor, transglutaminase 1 and involucrin were quantified. Finally, latanoprost ophthalmic solution or its vehicle was administered at suprapharmacologic doses (two 30 microL drops twice daily in 1 eye for 1 year) in monkey eyes, and corneal pachymetry was performed at baseline and at weeks 4, 13, 26 and 52. In the 3-D corneal epithelial culture assays, there were no significant differences in cytotoxicity between the BAC-containing latanoprost and olopatadine ophthalmic solutions and BAC-free travoprost ophthalmic solution at either the 10- or 25-minute time points. The 3-D cultures expressed higher levels of corneal epithelial markers than the HCE-T monolayers, indicating a greater degree of differentiation. There were no significant differences between the corneal thickness of monkey eyes treated with latanoprost ophthalmic solution or its vehicle (both containing 0.02% BAC) and untreated eyes. The lack of cytotoxicity demonstrated in 3-D corneal cultures and in monkey studies suggests that the levels of BAC contained in ophthalmic solutions are not likely to cause

  1. Evaluation of the cytotoxic effects of ophthalmic solutions containing benzalkonium chloride on corneal epithelium using an organotypic 3-D model

    Directory of Open Access Journals (Sweden)

    Jessen Bart A

    2009-07-01

    Full Text Available Abstract Background Benzalkonium chloride (BAC is a common preservative used in ophthalmic solutions. The aim of this study was to compare the cytotoxic effects of BAC-containing ophthalmic solutions with a BAC-free ophthalmic solution using an organotypic 3-dimensional (3-D corneal epithelial model and to determine the effects of latanoprost ophthalmic solution and its BAC-containing vehicle on corneal thickness in a monkey model. Methods The cytotoxicity of commercially available BAC-containing ophthalmic formulations of latanoprost (0.02% BAC and olopatadine (0.01% BAC was compared to that of BAC-free travoprost and saline in a corneal organotypic 3-D model using incubation times of 10 and 25 minutes. To compare the extent of differentiation of 3-D corneal cultures to monolayer transformed human corneal epithelial (HCE-T cell cultures, expression levels (mRNA and protein of the corneal markers epidermal growth factor receptor, transglutaminase 1 and involucrin were quantified. Finally, latanoprost ophthalmic solution or its vehicle was administered at suprapharmacologic doses (two 30 μL drops twice daily in 1 eye for 1 year in monkey eyes, and corneal pachymetry was performed at baseline and at weeks 4, 13, 26 and 52. Results In the 3-D corneal epithelial culture assays, there were no significant differences in cytotoxicity between the BAC-containing latanoprost and olopatadine ophthalmic solutions and BAC-free travoprost ophthalmic solution at either the 10- or 25-minute time points. The 3-D cultures expressed higher levels of corneal epithelial markers than the HCE-T monolayers, indicating a greater degree of differentiation. There were no significant differences between the corneal thickness of monkey eyes treated with latanoprost ophthalmic solution or its vehicle (both containing 0.02% BAC and untreated eyes. Conclusion The lack of cytotoxicity demonstrated in 3-D corneal cultures and in monkey studies suggests that the levels of BAC

  2. Effect of Viscous Agents on Corneal Density in Dry Eye Disease.

    Science.gov (United States)

    Wegener, Alfred R; Meyer, Linda M; Schönfeld, Carl-Ludwig

    2015-10-01

    To investigate the effect of the viscous agents, hydroxypropyl methylcellulose (HPMC), carbomer, povidone, and a combination of HPMC and povidone on corneal density in patients with dry eye disease. In total, 98 eyes of 49 patients suffering from dry eye and 65 eyes of 33 healthy age-matched individuals were included in this prospective, randomized study. Corneal morphology was documented with Scheimpflug photography and corneal density was analyzed in 5 anatomical layers (epithelium, bowman membrane, stroma, descemet's membrane, and endothelium). Corneal density was evaluated for the active ingredients HPMC, carbomer, povidone, and a combination of HPMC and povidone as the viscous agents contained in the artificial tear formulations used by the dry eye patients. Data were compared to the age-matched healthy control group without medication. Corneal density in dry eye patients was reduced in all 5 anatomical layers compared to controls. Corneal density was highest and very close to control in patients treated with HPMC containing ocular lubricants. Patients treated with lubricants, including carbomer as the viscous agent displayed a significant reduction of corneal density in layers 1 and 2 compared to control. HPMC containing ocular lubricants can help to maintain physiological corneal density and may be beneficial in the treatment of dry eye disease.

  3. Healed corneal ulcer with keloid formation

    OpenAIRE

    Alkatan, Hind M.; Al-Arfaj, Khalid M.; Hantera, Mohammed; Al-Kharashi, Soliman

    2012-01-01

    We are reporting a 34-year-old Arabic white female patient who presented with a white mass covering her left cornea following multiple ocular surgeries and healed corneal ulcer. The lesion obscured further view of the iris, pupil and lens. The patient underwent penetrating keratoplasty and the histopathologic study of the left corneal button showed epithelial hyperplasia, absent Bowman’s layer and subepithelial fibrovascular proliferation. The histopathologic appearance was suggestive of a co...

  4. Hepatocyte nuclear factor 4A improves hepatic differentiation of immortalized adult human hepatocytes and improves liver function and survival.

    Science.gov (United States)

    Hang, Hua-Lian; Liu, Xin-Yu; Wang, Hai-Tian; Xu, Ning; Bian, Jian-Min; Zhang, Jian-Jun; Xia, Lei; Xia, Qiang

    2017-11-15

    Immortalized human hepatocytes (IHH) could provide an unlimited supply of hepatocytes, but insufficient differentiation and phenotypic instability restrict their clinical application. This study aimed to determine the role of hepatocyte nuclear factor 4A (HNF4A) in hepatic differentiation of IHH, and whether encapsulation of IHH overexpressing HNF4A could improve liver function and survival in rats with acute liver failure (ALF). Primary human hepatocytes were transduced with lentivirus-mediated catalytic subunit of human telomerase reverse transcriptase (hTERT) to establish IHH. Cells were analyzed for telomerase activity, proliferative capacity, hepatocyte markers, and tumorigenicity (c-myc) expression. Hepatocyte markers, hepatocellular functions, and morphology were studied in the HNF4A-overexpressing IHH. Hepatocyte markers and karyotype analysis were completed in the primary hepatocytes using shRNA knockdown of HNF4A. Nuclear translocation of β-catenin was assessed. Rat models of ALF were treated with encapsulated IHH or HNF4A-overexpressing IHH. A HNF4A-positive IHH line was established, which was non-tumorigenic and conserved properties of primary hepatocytes. HNF4A overexpression significantly enhanced mRNA levels of genes related to hepatic differentiation in IHH. Urea levels were increased by the overexpression of HNF4A, as measured 24h after ammonium chloride addition, similar to that of primary hepatocytes. Chromosomal abnormalities were observed in primary hepatocytes transfected with HNF4A shRNA. HNF4α overexpression could significantly promote β-catenin activation. Transplantation of HNF4A overexpressing IHH resulted in better liver function and survival of rats with ALF compared with IHH. HNF4A improved hepatic differentiation of IHH. Transplantation of HNF4A-overexpressing IHH could improve the liver function and survival in a rat model of ALF. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Corneal thickness changes during corneal collagen cross-linking with UV-A irradiation and hypo-osmolar riboflavin in thin corneas

    Directory of Open Access Journals (Sweden)

    Belquiz Amaral Nassaralla

    2013-06-01

    Full Text Available PURPOSE: To evaluate the thinnest corneal thickness changes during and after corneal collagen cross-linking treatment with ultraviolet-A irradiation, using hypo-osmolar riboflavin solution in thin corneas. METHODS: Eighteen eyes of 18 patients were included in this study. After epithelium removal, iso-osmolar 0.1% riboflavin solution was instilled to the cornea every 3 minutes for 30 minutes. Hypo-osmolar 0.1% riboflavin solution was then applied every 20 seconds for 5 minutes or until the thinnest corneal thickness reached 400 µm. Ultraviolet-A irradiation was performed for 30 minutes. During irradiation, iso-osmolar 0.1% riboflavin drops were applied every 5 minutes. Ultrasound pachymetry was performed at approximately the thinnest point of the cornea preoperatively, after epithelial removal, after iso-osmolar riboflavin instillation, after hypo-osmolar riboflavin instillation, after ultraviolet-A irradiation, and at 1, 6 and 12 months after treatment. RESULTS: Mean preoperative thinnest corneal thickness was 380 ± 11 µm. After epithelial removal it decreased to 341 ± 11 µm, and after 30 minutes of iso-osmolar 0.1% riboflavin drops, to 330 ± 7.6 µm. After hypo-osmolar 0.1% riboflavin drops, mean thinnest corneal thickness increased to 418 ± 11 µm. After UVA irradiation, it was 384 ± 10 µm. At 1, 6 and 12 months after treatment, it was 372 ± 10 µm, 381 ± 12.7, and 379 ± 15 µm, respectively. No intraoperative, early postoperative, or late postoperative complications were noted. CONCLUSIONS: Hypo-osmolar 0.1% riboflavin solution seems to be effective for swelling thin corneas. The swelling effect is transient and short acting. Corneal thickness should be monitored throughout the procedure. Larger sample sizes and longer follow-up are required in order to make meaningful conclusions regarding safety.

  6. CD147 required for corneal endothelial lactate transport.

    Science.gov (United States)

    Li, Shimin; Nguyen, Tracy T; Bonanno, Joseph A

    2014-06-26

    CD147/basigin is a chaperone for lactate:H(+) cotransporters (monocarboxylate transporters) MCT1 and MCT4. We tested the hypothesis that MCT1 and -4 in corneal endothelium contribute to lactate efflux from stroma to anterior chamber and that silencing CD147 expression would cause corneal edema. CD147 was silenced via small interfering ribonucleic acid (siRNA) transfection of rabbit corneas ex vivo and anterior chamber lenti-small hairpin RNA (shRNA) pseudovirus in vivo. CD147 and MCT expression was examined by Western blot, RT-PCR, and immunofluorescence. Functional effects were examined by measuring lactate-induced cell acidification, corneal lactate efflux, [lactate], central cornea thickness (CCT), and Azopt (a carbonic anhydrase inhibitor) sensitivity. In ex vivo corneas, 100 nM CD147 siRNA reduced CD147, MCT1, and MCT4 expression by 85%, 79%, and 73%, respectively, while MCT2 expression was unaffected. CD147 siRNA decreased lactate efflux from 3.9 ± 0.81 to 1.5 ± 0.37 nmol/min, increased corneal [lactate] from 19.28 ± 7.15 to 56.73 ± 8.97 nmol/mg, acidified endothelial cells (pHi = 6.83 ± 0.07 vs. 7.19 ± 0.09 in control), and slowed basolateral lactate-induced acidification from 0.0034 ± 0.0005 to 0.0012 ± 0.0005 pH/s, whereas apical acidification was unchanged. In vivo, CD147 shRNA increased CCT by 28.1 ± 0.9 μm at 28 days; Azopt increased CCT to 24.4 ± 3.12 vs. 12.0 ± 0.48 μm in control, and corneal [lactate] was 47.63 ± 6.29 nmol/mg in shCD147 corneas and 17.82 ± 4.93 nmol/mg in paired controls. CD147 is required for the expression of MCT1 and MCT4 in the corneal endothelium. Silencing CD147 slows lactate efflux, resulting in stromal lactate accumulation and corneal edema, consistent with lactate efflux as a significant component of the corneal endothelial pump. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  7. Case Report: Corneal Pyogenic Granuloma: Rare Complication of ...

    African Journals Online (AJOL)

    Slit lamp examination showed vascularized central corneal mass with surrounding stromal infiltrates. The mass was excised, and histopathological examination confirmed pyogenic granuloma of the cornea. Conclusion: Corneal pyogenic granuloma could be a rare complication of infectious keratitis. Therefore, it should be ...

  8. A STUDY ON PREVALENCE AND CAUSES OF CORNEAL BLINDNESS IN PAEDIATRIC AGE GROUP

    Directory of Open Access Journals (Sweden)

    E. Ramadevi

    2017-12-01

    Full Text Available BACKGROUND Corneal disease is responsible for less than 2% of blindness in children in industrialised countries. In poor countries of the world, corneal scarring occurs due to vitamin A deficiency, measles and ophthalmia neonatorum. Thus, corneal disease is an important cause of blindness among children living in developing nations, which already carry a major burden of blindness. The aim of the study is to study the1. Prevalence of corneal blindness in the paediatric age group. 2. Causes of corneal blindness in the paediatric age group. 3. Morbidity of corneal blindness in the paediatric age group. MATERIALS AND METHODS It was cross-sectional observational study. Study Period- December 2014 to August 2016. Study Done- Government General Hospital, Kakinada. Sample Size- 50 patients. Inclusion Criteria- Children of age group 6 to 12 years with corneal blindness who have attended the outpatient department during the study period. Exclusion Criteria- Children with childhood blindness other than corneal pathology. Study Tools- Predesigned, semi-structured questionnaire regarding age, sex and age of onset of visual loss, laterality, history of ocular injury, vitamin A immunisation, family history of consanguinity and place of residence and socioeconomic status was taken. Visual acuity was measured using an E optotype and Landolt broken C chart with best corrected vision. Visual loss was classified according to the WHO categories of visual impairment. Ophthalmic examination was done by slit lamp and B scan. RESULTS Ocular trauma and corneal ulcers are most common cause of corneal blindness. 84% of corneal blindness cases were preventable and curable. CONCLUSION Trauma was the commonest cause of corneal blindness followed by infectious keratitis. 84% of corneal blindness was preventable and curable. Most causes of corneal blindness were avoidable.

  9. Excimer laser corneal surgery and free oxygen radicals.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Akata, F; Hasanreisoğlu, B; Türközkan, N

    1996-01-01

    Corneal photoablation with 193 nm argon fluoride excimer laser is a new technique for the treatment of refractive errors and for removing corneal opacities and irregularities. Ultraviolet radiation and thermal injury induce free radical formation in the tissues. The aim of this study was to confirm the production of free radicals by excimer laser photoablation in rabbits. The thermal changes of the posterior corneal surface were recorded during excimer laser photoablation. The lipid peroxide (LPO) levels and superoxide dismutase (SOD) activities of aqueous humour were measured after excimer laser keratectomy. The aqueous LPO levels were not changed after excimer laser ablation, but both the thermal increase in the cornea during the photoablation and the decreased aqueous SOD activities suggest that free radicals are formed in the cornea during excimer laser keratectomy, and that they may be responsible for some of the complications of excimer laser corneal surgery.

  10. Distrofia corneal granular

    Directory of Open Access Journals (Sweden)

    Alexeide de la C Castillo Pérez

    Full Text Available Las distrofias corneales constituyen un conjunto de enfermedades que presentan, en su mayoría, una baja incidencia y se caracterizan por acúmulo de material hialino o amiloide que disminuyen la transparencia corneal. La distrofia granular es una enfermedad autosómica dominante que presenta opacidades grises en el estroma superficial central de la córnea y se hacen visibles en la primera y segunda décadas de la vida, lo que provoca disminución de la visión más significativa cerca de los 40 años de edad. Presentamos dos casos clínicos de distrofia granular en pacientes hermanos de diferentes sexos, quienes acudieron a la consulta y refirieron visión nublada. El estudio de la historia familiar nos ayuda en el correcto diagnóstico y la biomicroscopia constituye el elemento más importante.

  11. Tear production and intraocular pressure in canine eyes with corneal ulceration

    Directory of Open Access Journals (Sweden)

    David L. Williams

    2017-05-01

    Full Text Available This study aimed to evaluate changes in lacrimation and intraocular pressure (IOP in dogs with unilateral corneal ulceration using the Schirmer tear test (STT and rebound (TonoVet® tonometry. IOP and STT values were recorded in both ulcerated and non-ulcerated (control eyes of 100 dogs diagnosed with unilateral corneal ulceration. Dogs presented with other ocular conditions as their primary complaint were excluded from this study. The mean ± standard deviation for STT values in the ulcerated and control eyes were 20.2±4.6 mm/min and 16.7±3.5 mm/min respectively. The mean ± standard deviation for IOP in the ulcerated and control eyes were 11.9±3.1 mmHg and 16.7±2.6 mmHg respectively. STT values were significantly higher (p<0.000001 in the ulcerated eye compared to the control eye while IOP was significantly lower (p<0.0001. There is an increase in lacrimation and a decrease in IOP in canine eyes with corneal ulceration. The higher tear production in ulcerated eyes shows the importance of measuring STT in both eyes in cases of corneal ulceration, since this increased lacrimation may mask an underlying keratoconjunctivitis sicca only evident in the contralateral eye. The lower IOP in ulcerated eyes is likely to relate to mild uveitic change in the ulcerated eye with a concomitant increase in uveoscleral aqueous drainage. While these changes in tear production and IOP in ulcerated eyes are widely recognised in both human and veterinary ophthalmology, it appears that this is the first controlled documented report of these changes in a large number of individuals.

  12. Comparison of parametric methods for modeling corneal surfaces

    Science.gov (United States)

    Bouazizi, Hala; Brunette, Isabelle; Meunier, Jean

    2017-02-01

    Corneal topography is a medical imaging technique to get the 3D shape of the cornea as a set of 3D points of its anterior and posterior surfaces. From these data, topographic maps can be derived to assist the ophthalmologist in the diagnosis of disorders. In this paper, we compare three different mathematical parametric representations of the corneal surfaces leastsquares fitted to the data provided by corneal topography. The parameters obtained from these models reduce the dimensionality of the data from several thousand 3D points to only a few parameters and could eventually be useful for diagnosis, biometry, implant design etc. The first representation is based on Zernike polynomials that are commonly used in optics. A variant of these polynomials, named Bhatia-Wolf will also be investigated. These two sets of polynomials are defined over a circular domain which is convenient to model the elevation (height) of the corneal surface. The third representation uses Spherical Harmonics that are particularly well suited for nearly-spherical object modeling, which is the case for cornea. We compared the three methods using the following three criteria: the root-mean-square error (RMSE), the number of parameters and the visual accuracy of the reconstructed topographic maps. A large dataset of more than 2000 corneal topographies was used. Our results showed that Spherical Harmonics were superior with a RMSE mean lower than 2.5 microns with 36 coefficients (order 5) for normal corneas and lower than 5 microns for two diseases affecting the corneal shapes: keratoconus and Fuchs' dystrophy.

  13. Unilateral corneal leukoplakia without limbal involvement

    Directory of Open Access Journals (Sweden)

    Hirano K

    2015-05-01

    Full Text Available Koji Hirano,1 Mihoko Koide,2 Yoshikazu Mizoguchi,3 Yasuhiro Osakabe,4 Kaoru-Araki Sasaki5 1Department of Ophthalmology, Ban Buntane Hotokukai Hospital, School of Medicine, Fujita Health University, Nagoya, Japan; 2Koide Internal Medicine and Eye Clinic, Nagoya, Japan; 3Department of Pathology, Ban Buntane Hotokukai Hospital, School of Medicine, Fujita Health University, Nagoya, Japan; 4Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan; 5Department of Ophthalmology, Japan Health Care Organization, Hoshigaoka Medical Center, Hirakata, Japan Purpose: Leukoplakia is the term given to a white patch or plaque that is found mainly on the oral mucus membrane. It can occasionally be seen on the corneal surface. We report our clinical and histopathological findings in a case of unilateral corneal leukoplakia. Methods: A 26-year-old woman was referred to our hospital because of a white patch on her right cornea that continued to expand. She first noticed the white patch when she was 20 years old, and the white patch had expanded to cover the pupillary area affecting her vision. After plastic surgery on both eyelids for bilateral entropion to alleviate the pain caused by the eyelashes rubbing the cornea, the white corneal patch decreased in size. Because of this reduction, we performed surgery to remove the patch with microforceps under topical anesthesia. The plaque was removed easily and completely, and submitted for histopathological examination. Results: Histopathological examination showed that the specimen had characteristics of epidermis with a basal cell layer, spinous cell layer, granular cell layer, and horny layer with hyperkeratosis. She was diagnosed with leukoplakia of the corneal surface. The basic structure of the squamous cell layer was preserved, and there were no signs of metaplasia. Six months after the removal of the leukoplakia, no recurrence was seen and her corrected decimal visual acuity recovered to 1

  14. Influence of eye biometrics and corneal micro-structure on noncontact tonometry.

    Directory of Open Access Journals (Sweden)

    Danilo A Jesus

    Full Text Available Tonometry is widely used as the main screening tool supporting glaucoma diagnosis. Still, its accuracy could be improved if full knowledge about the variation of the corneal biomechanical properties was available. In this study, Optical Coherence Tomography (OCT speckle statistics are used to infer the organisation of the corneal micro-structure and hence, to analyse its influence on intraocular pressure (IOP measurements.Fifty-six subjects were recruited for this prospective study. Macro and micro-structural corneal parameters as well as subject age were considered. Macro-structural analysis included the parameters that are associated with the ocular anatomy, such as central corneal thickness (CCT, corneal radius, axial length, anterior chamber depth and white-to-white corneal diameter. Micro-structural parameters which included OCT speckle statistics were related to the internal organisation of the corneal tissue and its physiological changes during lifetime. The corneal speckle obtained from OCT was modelled with the Generalised Gamma (GG distribution that is characterised with a scale parameter and two shape parameters.In macro-structure analysis, only CCT showed a statistically significant correlation with IOP (R2 = 0.25, p<0.001. The scale parameter and the ratio of the shape parameters of GG distribution showed statistically significant correlation with IOP (R2 = 0.19, p<0.001 and R2 = 0.17, p<0.001, respectively. For the studied group, a weak, although significant correlation was found between age and IOP (R2 = 0.053, p = 0.04. Forward stepwise regression showed that CCT and the scale parameter of the Generalised Gamma distribution can be combined in a regression model (R2 = 0.39, p<0.001 to study the role of the corneal structure on IOP.We show, for the first time, that corneal micro-structure influences the IOP measurements obtained from noncontact tonometry. OCT speckle statistics can be employed to learn about the corneal micro

  15. Influence of eye biometrics and corneal micro-structure on noncontact tonometry.

    Science.gov (United States)

    Jesus, Danilo A; Majewska, Małgorzata; Krzyżanowska-Berkowska, Patrycja; Iskander, D Robert

    2017-01-01

    Tonometry is widely used as the main screening tool supporting glaucoma diagnosis. Still, its accuracy could be improved if full knowledge about the variation of the corneal biomechanical properties was available. In this study, Optical Coherence Tomography (OCT) speckle statistics are used to infer the organisation of the corneal micro-structure and hence, to analyse its influence on intraocular pressure (IOP) measurements. Fifty-six subjects were recruited for this prospective study. Macro and micro-structural corneal parameters as well as subject age were considered. Macro-structural analysis included the parameters that are associated with the ocular anatomy, such as central corneal thickness (CCT), corneal radius, axial length, anterior chamber depth and white-to-white corneal diameter. Micro-structural parameters which included OCT speckle statistics were related to the internal organisation of the corneal tissue and its physiological changes during lifetime. The corneal speckle obtained from OCT was modelled with the Generalised Gamma (GG) distribution that is characterised with a scale parameter and two shape parameters. In macro-structure analysis, only CCT showed a statistically significant correlation with IOP (R2 = 0.25, p<0.001). The scale parameter and the ratio of the shape parameters of GG distribution showed statistically significant correlation with IOP (R2 = 0.19, p<0.001 and R2 = 0.17, p<0.001, respectively). For the studied group, a weak, although significant correlation was found between age and IOP (R2 = 0.053, p = 0.04). Forward stepwise regression showed that CCT and the scale parameter of the Generalised Gamma distribution can be combined in a regression model (R2 = 0.39, p<0.001) to study the role of the corneal structure on IOP. We show, for the first time, that corneal micro-structure influences the IOP measurements obtained from noncontact tonometry. OCT speckle statistics can be employed to learn about the corneal micro-structure and

  16. Corneal elastosis within lattice dystrophy lesions.

    Science.gov (United States)

    Pe'er, J; Fine, B S; Dixon, A; Rothberg, D S

    1988-01-01

    Corneal buttons of two patients with lattice corneal dystrophy were studied by light and electron microscopy. They showed elastotic degeneration within the amyloid deposits. The amyloid deposits displayed characteristic staining; the elastotic material (elastin) within the deposits stained positive with Verhoeff-van Gieson and Movat pentachrome stains and showed autofluorescence. The characteristic ultrastructural findings of amyloid and elastotic material were also demonstrated. The possibility of the associations of these two materials in the cornea is discussed. Images PMID:3258531

  17. Changes in the corneal Na-K ATPase levels in eyes stored in moist chamber at 4°C

    Directory of Open Access Journals (Sweden)

    Devi B

    1996-01-01

    Full Text Available This report deals with a chronological measurement of Na-K ATPase enzyme activity in human and bovine corneas stored in a moist chamber at 4°C. Paired human and bovine eyes were sterilized by the standard eye bank procedure and stored up to 6 days. At the desired time, the corneal endothelium was assayed for Na-K ATPase activity. The protein content of each tissue sample was also determined. In a parallel set of experiments, the viability of identical stored corneas was determined by trypan blue and alizarin red staining technique, and morphometric analysis was done to quantify the extent of the corneal endothelial damage. The human corneas showed that there was a significant progressive decrease in the Na-K ATPase activity as the storage time increased. The decrease was related to morphological endothelial damage.

  18. VIP and VIP gene silencing modulation of differentiation marker N-cadherin and cell shape of corneal endothelium in human corneas ex vivo.

    Science.gov (United States)

    Koh, Shay-Whey M; Chandrasekara, Krish; Abbondandolo, Cara J; Coll, Timothy J; Rutzen, Allan R

    2008-08-01

    Vasoactive intestinal peptide (VIP) is expressed by corneal endothelial (CE) cells and is present in the aqueous humor, which bathes CE cells in vivo. This study demonstrated the role of CE cell VIP in maintaining the expression level of a CE differentiation marker, N-cadherin, and the hexagonal cell shape. To determine the most effective VIP concentration, bovine corneoscleral explants were treated with 0 (control) and 10(-12) to 10(-6) M VIP. Paired human corneas (nine donors) from an eye bank were used as control; the other corneas were treated with VIP. To silence endogenous VIP, paired fresh human donor corneas (from seven cadavers) were transduced with VIP shRNA or the control lentiviral particles and then bisected/quartered for quantitative analysis by semiquantitative RT-PCR (for mRNA) and Western blot analysis/immunocytochemistry (for protein), whereas alizarin red S staining revealed CE cell shape. VIP concentration dependently increased bovine CE cell N-cadherin mRNA levels, with the maximal effect observed between 10(-10) (1.47 +/- 0.06-fold; P = 0.002) and 10(-8) M VIP (1.48 +/- 0.18-fold; P = 0.012). VIP (10(-8) M) treatment increased N-cadherin protein levels in bovine and human CE cells to 1.98 +/- 0.28-fold (P = 0.005) and 1.17 +/- 0.10 (range, 0.91-1.87)-fold (P = 0.050) of their respective controls. VIP antagonist (SN)VIPhyb diminished the VIP effect. VIP silencing resulted in deterioration of the hexagonal cell shape and decreased levels of VIP protein and mRNA, N-cadherin (but not connexin-43) mRNA and protein, and the antiapoptotic Bcl-2 protein. Through its autocrine VIP, CE cells play an active role in maintaining the differentiated state and suppressing apoptosis in the corneal endothelium in situ.

  19. Do topical antibiotics help corneal epithelial trauma?

    OpenAIRE

    King, J. W.; Brison, R. J.

    1993-01-01

    Topical antibiotics are routinely used in emergency rooms to treat corneal trauma, although no published evidence supports this treatment. In a noncomparative clinical trial, 351 patients with corneal epithelial injuries were treated without antibiotics. The infection rate was 0.7%, suggesting that such injuries can be safely and effectively managed without antibiotics. A comparative clinical trial is neither warranted nor feasible.

  20. Applications of biomaterials in corneal wound healing

    Directory of Open Access Journals (Sweden)

    I-Lun Tsai

    2015-04-01

    Full Text Available Disease affecting the cornea is a common cause of blindness worldwide. To date, the amniotic membrane (AM is the most widely used clinical method for cornea regeneration. However, donor-dependent differences in the AM may result in variable clinical outcomes. To overcome this issue, biomaterials are currently under investigation for corneal regeneration in vitro and in vivo. In this article, we highlight the recent advances in hydrogels, bioengineered prosthetic devices, contact lenses, and drug delivery systems for corneal regeneration. In clinical studies, the therapeutic effects of biomaterials, including fibrin and collagen-based hydrogels and silicone contact lenses, have been demonstrated in damaged cornea. The combination of cells and biomaterials may provide potential treatment in corneal wound healing in the future.

  1. Corneal protection with high-molecular-weight hyaluronan against in vitro and in vivo sodium lauryl sulfate-induced toxic effects.

    Science.gov (United States)

    Pauloin, Thierry; Dutot, Mélody; Liang, Hong; Chavinier, Emilie; Warnet, Jean-Michel; Rat, Patrice

    2009-10-01

    The aim of this study was to investigate high-molecular-weight hyaluronan (HA-HMW) corneal protection against sodium lauryl sulfate (SLS)-induced toxic effects with in vitro and in vivo experimental approaches. In vitro experiments consisted of a human corneal epithelial cell line incubated with HA-HMW, rinsed, and incubated with SLS. Cell viability, oxidative stress, chromatin condensation, caspase-3, -8, -9, and P2X7 cell death receptor activation, interleukin-6, and interleukin-8 production were investigated. In vivo experiments consisted of 36 New Zealand white rabbits treated for 3 days, 3 times per day, with HA-HMW or phosphate-buffered salt solution. At day 4, eyes were treated with SLS. Clinical observation and in vivo confocal microscopy using the Rostock Cornea Module of the Heidelberg Retina Tomograph-II were performed to evaluate and to compare SLS-induced toxicity between eyes treated with HA-HMW and eyes treated with phosphate-buffered salt solution. In vitro data indicate that exposure of human corneal epithelial cells to HA-HMW significantly decreased SLS-induced oxidative stress, apoptosis, and inflammation cytokine production. In vivo data indicate that SLS cornea injuries, characterized by damaged corneal epithelium, damaged anterior stroma, and inflammatory infiltrations, were attenuated with HA-HMW treatment. A good correlation was seen between in vitro and in vivo findings showing that HA-HMW decreases SLS-induced toxic effects and protects cornea.

  2. Corneal topometry by fringe projection: limits and possibilities

    Science.gov (United States)

    Windecker, Robert; Tiziani, Hans J.; Thiel, H.; Jean, Benedikt J.

    1996-01-01

    A fast and accurate measurement of corneal topography is an important task especially since laser induced corneal reshaping has been used for the correction of ametropia. The classical measuring system uses Placido rings for the measurement and calculation of the topography or local curvatures. Another approach is the projection of a known fringe map to be imaged onto the surface under a certain angle of incidence. We present a set-up using telecentric illumination and detection units. With a special grating we get a synthetic wavelength with a nearly sinusoidal profile. In combination with a very fast data acquisition the topography can be evaluated using as special selfnormalizing phase evaluation algorithm. It calculates local Fourier coefficients and corrects errors caused by imperfect illumination or inhomogeneous scattering by fringe normalization. The topography can be determined over 700 by 256 pixel. The set-up is suitable to measure optically rough silicon replica of the human cornea as well as the cornea in vivo over a field of 8 mm and more. The resolution is mainly limited by noise and is better than two micrometers. We discuss the principle benefits and the drawbacks compared with standard Placido technique.

  3. Comparative analysis of corneal morphological changes after transversal and torsional phacoemulsification through 2.2 mm corneal incision

    Directory of Open Access Journals (Sweden)

    Assaf A

    2013-01-01

    Full Text Available Ahmed Assaf, Maged Maher RoshdyOphthalmology Department, Ain Shams University, Cairo, EgyptPurpose: This paper compares and evaluates the corneal morphological changes occurring after cataract surgery through a 2.2 mm corneal incision. We use two platforms for comparison and evaluation, transversal and torsional phacoemulsification.Patients and methods: This study includes 139 consecutive cataractous eyes (nuclear color 2–4, according to the Lens Opacities Classification System III [LOCSIII] of 82 patients undergoing cataract surgery through a 2.2 mm corneal incision. Two different phacoemulsification platforms were used and assigned randomly: we used the WhiteStar Signature® system with the Ellips™ FX transversal continuous ultrasound (US mode for group I (mean age: 65.33 ± 6.97 years, and we used the Infiniti® system with the OZil® Intelligent Phaco (IP torsional US mode for group II (mean age: 64.02 ± 7.55 years. The corneal endothelium and pachymetry were evaluated preoperatively and at 1 month postoperatively. Incision size changes were also evaluated.Results: All surgeries were uneventful. Before intraocular lens implantation, the mean incision size was 2.24 ± 0.06 mm in both groups (P = 0.75. In terms of corneal endothelial cell density, neither preoperative (I vs II: 2304.1 ± 122.5 cell/mm2 vs 2315.6 ± 83.1 cell/mm2, P = 0.80 nor postoperative (I vs II: 2264.1 ± 124.3 cell/mm2 vs 2270.3 ± 89.9 cell/mm2, P = 0.98 differences between the groups were statistically significant. The mean endothelial cell density loss was 1.7% ± 1.6% and 2.0% ± 1.4% in groups I and II, respectively. Furthermore, no significant differences between groups I and II were found preoperatively (P = 0.40 and postoperatively (P = 0.68 in central pachymetry. With surgery, the mean increase in central pachymetry was 28.1 ± 23.6 µm and 24.0 ± 24.0 µm in groups I and II, respectively (P = 0.1.Conclusion: Ellips™ FX transversal and OZil® IP torsional

  4. Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available The chicken is an important agricultural animal and model for developmental biology, immunology and virology. Excess fat accumulation continues to be a serious problem for the chicken industry. However, chicken adipogenesis and obesity have not been well investigated, because no chicken preadipocyte cell lines have been generated thus far. Here, we successfully generated two immortalized chicken preadipocyte cell lines through transduction of either chicken telomerase reverse transcriptase (chTERT alone or in combination with chicken telomerase RNA (chTR. Both of these cell lines have survived >100 population doublings in vitro, display high telomerase activity and have no sign of replicative senescence. Similar to primary chicken preadipocytes, these two cell lines display a fibroblast-like morphology, retain the capacity to differentiate into adipocytes, and do not display any signs of malignant transformation. Isoenzyme analysis and PCR-based analysis confirmed that these two cell lines are of chicken origin and are free from inter-species contamination. To our knowledge, this is the first report demonstrating the generation of immortal chicken cells by introduction of chTERT and chTR. Our established chicken preadipocyte cell lines show great promise as an in vitro model for the investigation of chicken adipogenesis, lipid metabolism, and obesity and its related diseases, and our results also provide clues for immortalizing other avian cell types.

  5. Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR

    Science.gov (United States)

    Wang, Wei; Zhang, Tianmu; Wu, Chunyan; Wang, Shanshan; Wang, Yuxiang; Wang, Ning

    2017-01-01

    The chicken is an important agricultural animal and model for developmental biology, immunology and virology. Excess fat accumulation continues to be a serious problem for the chicken industry. However, chicken adipogenesis and obesity have not been well investigated, because no chicken preadipocyte cell lines have been generated thus far. Here, we successfully generated two immortalized chicken preadipocyte cell lines through transduction of either chicken telomerase reverse transcriptase (chTERT) alone or in combination with chicken telomerase RNA (chTR). Both of these cell lines have survived >100 population doublings in vitro, display high telomerase activity and have no sign of replicative senescence. Similar to primary chicken preadipocytes, these two cell lines display a fibroblast-like morphology, retain the capacity to differentiate into adipocytes, and do not display any signs of malignant transformation. Isoenzyme analysis and PCR-based analysis confirmed that these two cell lines are of chicken origin and are free from inter-species contamination. To our knowledge, this is the first report demonstrating the generation of immortal chicken cells by introduction of chTERT and chTR. Our established chicken preadipocyte cell lines show great promise as an in vitro model for the investigation of chicken adipogenesis, lipid metabolism, and obesity and its related diseases, and our results also provide clues for immortalizing other avian cell types. PMID:28486516

  6. Inhibition of Corneal Neovascularization by Topical and Subconjunctival Tigecycline

    Directory of Open Access Journals (Sweden)

    Sertan Goktas

    2014-01-01

    Full Text Available Objective. To investigate the effects of topical and subconjunctival tigecycline on the prevention of corneal neovascularization. Materials and Methods. Following chemical burn, thirty-two rats were treated daily with topical instillation of 1 mg/mL tigecycline (group 1 or subconjunctival instillation of 1 mg/mL tigecycline (group 3 for 7 days. Control rats received topical (group 2 or subconjunctival (group 4 0.9% saline. Digital photographs of the cornea were taken on the eighth day after treatment and analyzed to determine the percentage area of the cornea covered by neovascularization. Corneal sections were analyzed histopathologically. Results. The median percentages of corneal neovascularization in groups 1 and 3 were 48% (95% confidence interval (CI, 44.2–55.8% and 33.5% (95% CI, 26.6–39.2%, respectively. The median percentages of corneal neovascularization of groups 1 and 3 were significantly lower than that of the control group (P=0.03 and P<0.001, resp.. Histologic examination of samples from groups 1 and 3 showed lower vascularity than that of control groups. Conclusion. Topical and subconjunctival administration of tigecycline seems to be showing promising therapeutic effects on the prevention of corneal neovascularization. Furthermore, subconjunctival administration of tigecycline is more potent than topical administration in the inhibition of corneal neovascularization.

  7. Thick keratoconic cornea associated with posterior polymorphous corneal dystrophy.

    Science.gov (United States)

    Zaarour, K; Slim, E; Antoun, J; Waked, N

    2017-03-01

    We herein report a case of bilateral unusually thick non-edematous keratoconic corneas with associated endothelial features of posterior polymorphous corneal dystrophy (PPCD). We report the case of a 27-year-old myopic woman who presented for refractive surgery. Slit lamp exam showed bilateral corneal protrusion with diffuse deep stromal and endothelial vesicular opacities and small paracentral bands. Topography showed generalized advanced corneal steepening in both eyes with increased anterior and posterior central corneal elevations in comparison to the best fit sphere. Ultrasound pachymetry showed central corneal thickness of 605μm (RE) and 612μm (LE). On specular biomicroscopy, cell density of 2503 cells/mm 2 RE and 1526 cells/mm 2 LE with significant cellular pleomorphism and polymegathism were noted. Clinical and paraclinical findings together suggest the presence of simultaneous keratoconus and PPCD. The literature has suggested an association between PPCD and steep cornea. Moreover, many reports have also described cases of associated PPCD and keratoconus with characteristic thinning and ectasia, in comparison to the unusual thick corneas noted in our patient, despite the absence of edema. Identification of genetics factors is further needed to clarify this association. This case describes a patient whose corneas present features of both keratoconus and PPCD and is unique due to the presence of increased corneal thickness despite the absence of edema. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Influence of different phacoemulsification incision on postoperative corneal astigmatism for cataract patients

    Directory of Open Access Journals (Sweden)

    Zhao-Rong Zeng

    2014-05-01

    Full Text Available AIM: To compare the effect of different phacoemulsification incision on postoperative corneal astigmatism for cataract patients. METHODS: The cataract patients were selected in our hospital. The patients were divided into control group(corneal limbus opposite curved scleral tunnel incision groupand observation group(above the top of cornea or temporal transparent corneal incision grouprandomly. At 1wk; 1 and 3mo after surgery, the change of corneal astigmatism and vision of the patients in two groups were compared and analyzed. RESULTS:Compared with control group, 1wk; 1 and 3mo after surgery, the average corneal astigmatism and surgically induced corneal astigmatism of the patients in observation group were decreased significantly. The visual acuity and corrected visual acuity were increased significantly. There was statistically significant(PPCONCLUSION: Center distance and small incision corneal phacoemulsification can reduce postoperative astigmatism and improve postoperative visual acuity for cataract patients. It provides guarantee for further strengthen the clinical treated effect for cataract patients.

  9. An experimental model of mycobacterial infection under corneal flaps

    Directory of Open Access Journals (Sweden)

    C.B.D. Adan

    2004-07-01

    Full Text Available In order to develop a new experimental animal model of infection with Mycobacterium chelonae in keratomileusis, we conducted a double-blind prospective study on 24 adult male New Zealand rabbits. One eye of each rabbit was submitted to automatic lamellar keratotomy with the automatic corneal shaper under general anesthesia. Eyes were immunosuppressed by a single local injection of methyl prednisolone. Twelve animals were inoculated into the keratomileusis interface with 1 µl of 10(6 heat-inactivated bacteria (heat-inactivated inoculum controls and 12 with 1 µl of 10(6 live bacteria. Trimethoprim drops (0.1%, w/v were used as prophylaxis for the surgical procedure every 4 h (50 µl, qid. Animals were examined by 2 observers under a slit lamp on the 1st, 3rd, 5th, 7th, 11th, 16th, and 23rd postoperative days. Slit lamp photographs were taken to document clinical signs. Animals were sacrificed when corneal disease was detected and corneal samples were taken for microbiological analysis. Eleven of 12 experimental rabbits developed corneal disease, and M. chelonae could be isolated from nine rabbits. Eleven of the 12 controls receiving a heat-inactivated inoculum did not develop corneal disease. M. chelonae was not isolated from any of the control rabbits receiving a heat-inactivated inoculum, or from the healthy cornea of control rabbits. Corneal infection by M. chelonae was successfully induced in rabbits submitted to keratomileusis. To our knowledge, this is the first animal model of M. chelonae infection following corneal flaps for refractive surgery to be described in the literature and can be used for the analysis of therapeutic responses.

  10. The Favorable Effect of Mesenchymal Stem Cell Treatment on the Antioxidant Protective Mechanism in the Corneal Epithelium and Renewal of Corneal Optical Properties Changed after Alkali Burns

    Science.gov (United States)

    Cejka, Cestmir; Holan, Vladimir; Trosan, Peter; Zajicova, Alena; Javorkova, Eliska; Cejkova, Jitka

    2016-01-01

    The aim of this study was to examine whether mesenchymal stem cells (MSCs) and/or corneal limbal epithelial stem cells (LSCs) influence restoration of an antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. The injured rabbit corneas (with 0.25 N NaOH) were untreated or treated with nanofiber scaffolds free of stem cells, with nanofiber scaffolds seeded with bone marrow MSCs (BM-MSCs), with adipose tissue MSCs (Ad-MSCs), or with LSCs. On day 15 following the injury, after BM-MSCs or LSCs nanofiber treatment (less after Ad-MSCs treatment) the expression of antioxidant enzymes was restored in the regenerated corneal epithelium and the expressions of matrix metalloproteinase 9 (MMP9), inducible nitric oxide synthase (iNOS), α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), and vascular endothelial factor (VEGF) were low. The central corneal thickness (taken as an index of corneal hydration) increased after the injury and returned to levels before the injury. In injured untreated corneas the epithelium was absent and numerous cells revealed the expressions of iNOS, MMP9, α-SMA, TGF-β1, and VEGF. In conclusion, stem cell treatment accelerated regeneration of the corneal epithelium, restored the antioxidant protective mechanism, and renewed corneal optical properties. PMID:27057279

  11. The Favorable Effect of Mesenchymal Stem Cell Treatment on the Antioxidant Protective Mechanism in the Corneal Epithelium and Renewal of Corneal Optical Properties Changed after Alkali Burns.

    Science.gov (United States)

    Cejka, Cestmir; Holan, Vladimir; Trosan, Peter; Zajicova, Alena; Javorkova, Eliska; Cejkova, Jitka

    2016-01-01

    The aim of this study was to examine whether mesenchymal stem cells (MSCs) and/or corneal limbal epithelial stem cells (LSCs) influence restoration of an antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. The injured rabbit corneas (with 0.25 N NaOH) were untreated or treated with nanofiber scaffolds free of stem cells, with nanofiber scaffolds seeded with bone marrow MSCs (BM-MSCs), with adipose tissue MSCs (Ad-MSCs), or with LSCs. On day 15 following the injury, after BM-MSCs or LSCs nanofiber treatment (less after Ad-MSCs treatment) the expression of antioxidant enzymes was restored in the regenerated corneal epithelium and the expressions of matrix metalloproteinase 9 (MMP9), inducible nitric oxide synthase (iNOS), α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), and vascular endothelial factor (VEGF) were low. The central corneal thickness (taken as an index of corneal hydration) increased after the injury and returned to levels before the injury. In injured untreated corneas the epithelium was absent and numerous cells revealed the expressions of iNOS, MMP9, α-SMA, TGF-β1, and VEGF. In conclusion, stem cell treatment accelerated regeneration of the corneal epithelium, restored the antioxidant protective mechanism, and renewed corneal optical properties.

  12. The Favorable Effect of Mesenchymal Stem Cell Treatment on the Antioxidant Protective Mechanism in the Corneal Epithelium and Renewal of Corneal Optical Properties Changed after Alkali Burns

    Directory of Open Access Journals (Sweden)

    Cestmir Cejka

    2016-01-01

    Full Text Available The aim of this study was to examine whether mesenchymal stem cells (MSCs and/or corneal limbal epithelial stem cells (LSCs influence restoration of an antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. The injured rabbit corneas (with 0.25 N NaOH were untreated or treated with nanofiber scaffolds free of stem cells, with nanofiber scaffolds seeded with bone marrow MSCs (BM-MSCs, with adipose tissue MSCs (Ad-MSCs, or with LSCs. On day 15 following the injury, after BM-MSCs or LSCs nanofiber treatment (less after Ad-MSCs treatment the expression of antioxidant enzymes was restored in the regenerated corneal epithelium and the expressions of matrix metalloproteinase 9 (MMP9, inducible nitric oxide synthase (iNOS, α-smooth muscle actin (α-SMA, transforming growth factor-β1 (TGF-β1, and vascular endothelial factor (VEGF were low. The central corneal thickness (taken as an index of corneal hydration increased after the injury and returned to levels before the injury. In injured untreated corneas the epithelium was absent and numerous cells revealed the expressions of iNOS, MMP9, α-SMA, TGF-β1, and VEGF. In conclusion, stem cell treatment accelerated regeneration of the corneal epithelium, restored the antioxidant protective mechanism, and renewed corneal optical properties.

  13. Ultraviolet induced lysosome activity in corneal epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, A.P.

    1980-01-01

    A 5.000 W Xe-Hg high pressure lamp and a double monochromator were used to produce a 3.3 nm half-bandpass ultraviolet radiation at 295 nm. Pigmented rabbit eyes were irradiated with radiant exposures from 140 Jm/sup -2/ to 10.000 Jm/sup -2/ and evaluated by slit-lamp biomicroscopy, light and electron microscopy. Corneal threshold (Hsub(c) was 200 Jm/sup -2/ and lens threshold (Hsub(L)) was 7.500 Jm/sup -2/. The most repeatable and reliable corneal response to these levels of UV was the development of corneal epithelial granules. Histological changes included a loss of superficial epithelial cells and selective UV induced autolysis of the wing cells. It is suggested that the biomicroscopically observed granules are the clinical manifestation of the secondary lysosomes revealed by light and electron microscopy. It is proposed that UV breaks down the primary lysosome membranes to release hydrolytic enzymes which in turn form the secondary lysosomes during autolysis. Extreme levels of radiant exposure at 295 nm result in indiscriminate destruction of all layers of the corneal epithelium, but the posterior cornea was spared.

  14. BVES regulates EMT in human corneal and colon cancer cells and is silenced via promoter methylation in human colorectal carcinoma.

    Science.gov (United States)

    Williams, Christopher S; Zhang, Baolin; Smith, J Joshua; Jayagopal, Ashwath; Barrett, Caitlyn W; Pino, Christopher; Russ, Patricia; Presley, Sai H; Peng, DunFa; Rosenblatt, Daniel O; Haselton, Frederick R; Yang, Jin-Long; Washington, M Kay; Chen, Xi; Eschrich, Steven; Yeatman, Timothy J; El-Rifai, Wael; Beauchamp, R Daniel; Chang, Min S

    2011-10-01

    The acquisition of a mesenchymal phenotype is a critical step in the metastatic progression of epithelial carcinomas. Adherens junctions (AJs) are required for suppressing this epithelial-mesenchymal transition (EMT) but less is known about the role of tight junctions (TJs) in this process. Here, we investigated the functions of blood vessel epicardial substance (BVES, also known as POPDC1 and POP1), an integral membrane protein that regulates TJ formation. BVES was found to be underexpressed in all stages of human colorectal carcinoma (CRC) and in adenomatous polyps, indicating its suppression occurs early in transformation. Similarly, the majority of CRC cell lines tested exhibited decreased BVES expression and promoter DNA hypermethylation, a modification associated with transcriptional silencing. Treatment with a DNA-demethylating agent restored BVES expression in CRC cell lines, indicating that methylation represses BVES expression. Reexpression of BVES in CRC cell lines promoted an epithelial phenotype, featuring decreased proliferation, migration, invasion, and anchorage-independent growth; impaired growth of an orthotopic xenograft; and blocked metastasis. Conversely, interfering with BVES function by expressing a dominant-negative mutant in human corneal epithelial cells induced mesenchymal features. These biological outcomes were associated with changes in AJ and TJ composition and related signaling. Therefore, BVES prevents EMT, and its epigenetic silencing may be an important step in promoting EMT programs during colon carcinogenesis.

  15. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.

    Science.gov (United States)

    Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum

    2016-04-01

    Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration. © 2015 Wiley Periodicals, Inc.

  16. Effect of corneal cross-linking on contact lens tolerance in keratoconus.

    Science.gov (United States)

    Ünlü, Metin; Yüksel, Erdem; Bilgihan, Kamil

    2017-07-01

    The aim was to investigate changes in corneal sensation and rigid gas-permeable (RGP) contact lens tolerance after corneal cross-linking (CXL) on patients with keratoconus. Thirty eyes of 30 patients, who were RGP lens intolerant, were treated with CXL. The main outcome measures were corneal sensation evaluation by Cochet-Bonnet esthesiometry, sub-basal nerve fibre assessment by corneal in vivo confocal microscopy and RGP contact lens tolerance evaluation with the Likert scale and wearing time. All eyes were evaluated preoperatively and post-operatively at one, three and six months after CXL procedure. The mean age was 25.3 ± 6.2 years. Preoperatively, the maximum keratometry (Kmax) in study eyes was 56.89 ± 4.60 D. Six months after CXL, it reduced to 56.03 ± 4.85 D (p = 0.01). Preoperative mean corneal sensation was 0.44 ± 0.05 g/mm 2 , (range: 0.40 to 0.55); it was significantly decreased at the first month and increased to preoperative values after six months. The sub-basal nerve plexus could not be visualised in 90 per cent of the patients by confocal microscopy at one month post-operatively. Gradual restoration of corneal innervation with almost similar preoperative levels at post-operative month six was noted. There were significant differences in Likert scores between preoperative and third and sixth months after CXL. Likert scale scores correlated significantly with corneal sensitivity. It can be concluded that increased RGP contact lens tolerance after CXL may be associated with the potential role of decreased corneal sensitivity and corneal flattening after CXL. © 2016 Optometry Australia.

  17. Transepithelial Riboflavin Absorption in an Ex Vivo Rabbit Corneal Model.

    Science.gov (United States)

    Gore, Daniel M; O'Brart, David; French, Paul; Dunsby, Chris; Allan, Bruce D

    2015-07-01

    To measure depth-specific riboflavin concentrations in corneal stroma using two-photon fluorescence microscopy and compare commercially available transepithelial corneal collagen cross-linking (CXL) protocols. Transepithelial CXL riboflavin preparations--MedioCross TE, Ribocross TE, Paracel plus VibeX Xtra, and iontophoresis with Ricrolin+--were applied to the corneal surface of fresh postmortem rabbit eyes in accordance with manufacturers' recommendations for clinical use. Riboflavin 0.1% (VibeX Rapid) was applied after corneal epithelial debridement as a positive control. After riboflavin application, eyes were snap frozen in liquid nitrogen. Corneal cross sections 35-μm thick were cut on a cryostat, mounted on a slide, and imaged by two-photon fluorescence microscopy. Mean (SD) concentrations were calculated from five globes tested for each protocol. Peak riboflavin concentration of 0.09% (± 0.01) was observed within the most superficial stroma (stromal depth 0-10 μm) in positive controls (epithelium-off). At the same depth, peak stromal riboflavin concentrations for MedioCross TE, Ricrolin+, Paracel/Xtra, and Ribocross TE were 0.054% (± 0.01), 0.031% (0.003), 0.021% (± 0.001), and 0.015% (± 0.004), respectively. At a depth of 300 μm (within the demarcation zone commonly seen after corneal cross-linking), the stromal concentration in epithelium-off positive controls was 0.075% (± 0.006), while at the same depth MedioCross TE and Ricrolin+ achieved 0.018% (± 0.006) and 0.016% (0.002), respectively. None of the remaining transepithelial protocols achieved concentrations above 0.005% at this same 300-μm depth. Overall, MedioCross TE was the best-performing transepithelial formulation. Corneal epithelium is a significant barrier to riboflavin absorption into the stroma. Existing commercial transepithelial CXL protocols achieve relatively low riboflavin concentrations in the anterior corneal stroma when compared to gold standard epithelium-off absorption

  18. Mortal Ancestors, Immortal Images: Zhang Dai’s Biographical Portraits

    Directory of Open Access Journals (Sweden)

    Duncan M. Campbell

    2012-11-01

    Full Text Available Towards the end of his long life, the prolific late-Ming historian and essayist Zhang Dai 張岱 (1597-?1684 completed a book that he had been working on for many years. Entitled Portraits of the Eminent and Worthy Immortals of Zhejiang During the Ming Dynasty (You Ming yuyue san bu xiu tuzan 有明於越三不朽名賢圖贊 the book included the short biographies (with poetic panegyrics and portraits of 109 men and women of Zhang Dai’s hometown of Shaoxing, one of the epicentres of China’s élite cultural life. The book was organised according to the “Three Immortalities of Life”: moral force, meritorious service, and wise words. Zhang also included a number of his own friends and family members in this collection. This paper discusses aspects the relationship between text and image in this late-imperial Chinese work, both in the context of Zhang Dai’s practice as a biographer who had a strong visual sense and in regard to his particular historical plight as someone who had survived the collapse of one dynasty and who had lived on under its successor regime.

  19. Selective corneal optical aberration (SCOA) for customized ablation

    Science.gov (United States)

    Jean, Benedikt J.; Bende, Thomas

    2001-06-01

    Wavefront analysis still have some technical problems which may be solved within the next years. There are some limitations to use wavefront as a diagnostic tool for customized ablation alone. An ideal combination would be wavefront and topography. Meanwhile Selective Corneal Aberration is a method to visualize the optical quality of a measured corneal surface. It is based on a true measured 3D elevation information of a video topometer. Thus values can be interpreted either using Zernike polynomials or visualized as a so called color coded surface quality map. This map gives a quality factor (corneal aberration) for each measured point of the cornea.

  20. Hexavalent chromium induces chromosome instability in human urothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Sandra S. [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Radiation Oncology, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215 (United States); Liou, Louis [Department of Pathology, Boston University School of Medicine, 670 Albany St., Boston, MA 02118 (United States); Adam, Rosalyn M. [Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Wise, John Pierce Sr., E-mail: john.wise@louisville.edu [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States)

    2016-04-01

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. - Highlights: • Hexavalent chromium is genotoxic to human urothelial cells. • Hexavalent chromium induces aneuploidy in human urothelial cells. • hTERT-immortalized human urothelial cells model the effects seen in primary urothelial cells. • Hexavalent chromium has a strong likelihood of being carcinogenic for bladder tissue.

  1. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    Directory of Open Access Journals (Sweden)

    Cara L Sherwood

    Full Text Available Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE cell model we found that both micromolar (3.9 μM and submicromolar (0.8 μM arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-. We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  2. Nerve growth factor regulates neurolymphatic remodeling during corneal inflammation and resolution.

    Directory of Open Access Journals (Sweden)

    Darci M Fink

    Full Text Available The cellular and physiologic mechanisms that regulate the resolution of inflammation remain poorly defined despite their widespread importance in improving inflammatory disease outcomes. We studied the resolution of two cardinal signs of inflammation-pain and swelling-by investigating molecular mechanisms that regulate neural and lymphatic vessel remodeling during the resolution of corneal inflammation. A mouse model of corneal inflammation and wound recovery was developed to study this process in vivo. Administration of nerve growth factor (NGF increased pain sensation and inhibited neural remodeling and lymphatic vessel regression processes during wound recovery. A complementary in vivo approach, the corneal micropocket assay, revealed that NGF-laden pellets stimulated lymphangiogenesis and increased protein levels of VEGF-C. Adult human dermal lymphatic endothelial cells did not express canonical NGF receptors TrkA and p75NTR or activate downstream MAPK- or Akt-pathway effectors in the presence of NGF, although NGF treatment increased their migratory and tubulogenesis capacities in vitro. Blockade of the VEGF-R2/R3 signaling pathway ablated NGF-mediated lymphangiogenesis in vivo. These findings suggest a hierarchical relationship with NGF functioning upstream of the VEGF family members, particularly VEGF-C, to stimulate lymphangiogenesis. Taken together, these studies show that NGF stimulates lymphangiogenesis and that NGF may act as a pathogenic factor that negatively regulates the normal neural and lymphatic vascular remodeling events that accompany wound recovery.

  3. [Corneal manifestations in systemic diseases].

    Science.gov (United States)

    Zarranz Ventura, J; De Nova, E; Moreno-Montañés, J

    2008-01-01

    Systemic diseases affecting the cornea have a wide range of manifestations. The detailed study of all pathologies that cause corneal alteration is unapproachable, so we have centered our interest in the most prevalent or characteristic of them. In this paper we have divided these pathologies in sections to facilitate their study. Pulmonar and conective tissue (like colagen, rheumatologic and idiopathic inflamatory diseases), dermatologic, cardiovascular, hematologic, digestive and hepatopancreatic diseases with corneal alteration are described. Endocrine and metabolic diseases, malnutrition and carential states are also studied, as well as some otorhinolaryngologic and genetic diseases that affect the cornea. Finally, a brief report of ocular toxicity induced by drugs is referred.

  4. Excimer laser-assisted anterior lamellar keratoplasty for keratoconus, corneal problems after laser in situ keratomileusis, and corneal stromal opacities.

    Science.gov (United States)

    Bilgihan, Kamil; Ozdek, Sengül C; Sari, Ayça; Hasanreisoğlu, Berati

    2006-08-01

    To evaluate excimer laser-assisted anterior lamellar keratoplasty to augment thin corneas as in keratoconus ( .05). This technique presents a different modality for the treatment of keratoconus, post-LASIK corneal problems, and other corneal stromal opacities with anterior lamellar keratoplasty. Additional studies with more patients and longer follow-up will help determine the role of this technique as a substitute for penetrating keratoplasty in these patients.

  5. Research on inhibition of corneal neovascularization

    Directory of Open Access Journals (Sweden)

    Zhang-Hui Yang

    2015-12-01

    Full Text Available Corneal transparency is the basis of the normal physiological functions.However, corneal neovascularization(CNVmay occur in the infection, mechanical and chemical injury or under other pathological conditions,which make the cornea lose original transparency and severe visual impairment. In recent years, along with the development of immunology, molecular biology, biochemistry and other disciplines, there is more in-depth understanding on the CNV, and clinical treatment of CNV has made new breakthroughs. This article provides an overview of the inhibition of CNV.

  6. Differentiation of mild keratoconus from corneal warpage according to topographic inferior steepening based on corneal tomography data

    Directory of Open Access Journals (Sweden)

    Lia Florim Patrão

    Full Text Available ABSTRACT We report two cases of suspicious asymmetric bow tie and inferior steepening on topographic evaluations with reflection (Placido and projection (Scheimpflug. Rotating Scheimpflug corneal and anterior segment tomography (Oculus Pentacam HR, Wetzlar, Germany® was performed in the first case, with a maximal keratometric value (Kmax of 43.2 D and an overall deviation value from the Belin/Ambrósio Enhanced Ectasia Display (BAD-D of 1.76, which was observed in the study eye (OD. BAD-D was 6.59 in the fellow eye, which had clinical findings that were consistent with keratoconus stage 2. The second case presented with a Kmax of 45.3 D and BAD-D of 0.76 in OD and 1.01 in OS. This patient had discontinued wearing soft contact lens less than 1 day prior to examination. Corneal tomographic data enabled us to distinguish mild or forme fruste keratoconus from contact lens-induced corneal warpage, and similar findings were observed on curvature maps.

  7. Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties

    Directory of Open Access Journals (Sweden)

    Renato Ambrósio Jr

    2013-04-01

    Full Text Available OBJECTIVE: To describe a novel technique for clinical characterization of corneal biomechanics using non-invasive dynamic imaging. METHODS: Corneal deformation response during non contact tonometry (NCT is monitored by ultra-high-speed (UHS photography. The Oculus Corvis ST (Scheimpflug Technology; Wetzlar, Germany has a UHS Scheimpflug camera, taking over 4,300 frames per second and of a single 8mm horizontal slit, for monitoring corneal deformation response to NCT. The metered collimated air pulse or puff has a symmetrical configuration and fixed maximal internal pump pressure of 25 kPa. The bidirectional movement of the cornea in response to the air puff is monitored. RESULTS: Measurement time is 30ms, with 140 frames acquired. Advanced algorithms for edge detection of the front and back corneal contours are applied for every frame. IOP is calculated based on the first applanation moment. Deformation amplitude (DA is determined as the highest displacement of the apex in the highest concavity (HC moment. Applanation length (AL and corneal velocity (CVel are recorded during ingoing and outgoing phases. CONCLUSION: Corneal deformation can be monitored during non contact tonometry. The parameters generated provide clinical in vivo characterization of corneal biomechanical properties in two dimensions, which is relevant for different applications in Ophthalmology.

  8. Reactivation of Herpes Zoster Keratitis With Corneal Perforation After Zoster Vaccination.

    Science.gov (United States)

    Jastrzebski, Andre; Brownstein, Seymour; Ziai, Setareh; Saleh, Solin; Lam, Kay; Jackson, W Bruce

    2017-06-01

    We present a case of reactivated herpes zoster keratouveitis of 6 years duration with corneal perforation requiring penetrating keratoplasty shortly after inoculation with herpes zoster vaccine (Zostavax, Merck, Quebec, Canada). Retrospective case report. A 67-year-old woman with a 5-year history of recurrent unilateral herpes zoster keratouveitis in her right eye presented with another recurrence 2 weeks after Zostavax vaccination. Three months later, she developed descemetocele and 2 months afterward, corneal perforation, which was managed by penetrating keratoplasty. Immunohistopathological examination disclosed positive staining for varicella zoster virus in most of the keratocytes adjacent to the descemetocele and perforation, most vividly in the deeper two-thirds of the stroma where the keratocytes were most dense, but not in corneal epithelium or endothelium. Electron microscopic examination showed universally severely degenerated corneal keratocytes in the corneal stroma adjacent to the perforation with variable numbers of herpes virus capsids present in half of these cells. Only a rare normal-appearing keratocyte was identified in the more peripheral corneal stroma. We present a case of reactivation of herpes keratouveitis shortly after vaccination with Zostavax in a patient with previous herpes zoster ophthalmicus. We demonstrate, for the first time, ultrastructural evidence consistent with inactive virus capsids in diffusely degenerated keratocytes in the extracted corneal tissue.

  9. Evaluation of corneal changes after myopic LASIK using the Pentacam®

    Directory of Open Access Journals (Sweden)

    Khairat YM

    2013-09-01

    Full Text Available Yehia M Khairat, Yasser H Mohamed, Ismail ANO Moftah, Narden N Fouad Department of Ophthalmology, Faculty of Medicine, El-Minya University, Egypt Background: In this study, we used a Pentacam® device to evaluate the corneal changes that occur after laser-assisted in situ keratomileusis (LASIK. Methods: Our study included 60 eyes of 32 patients. All patients were treated for myopia and myopic astigmatism using LASIK. The eyes were examined preoperatively and 3 months postoperatively using a Pentacam to assess corneal changes with regard to curvature, elevation, and asphericity of the cornea. Results: A statistically significant decrease in mean keratometric power of the anterior corneal surface (P = 0.001 compared with its pre-LASIK value was detected after 3 months, but there was no significant change in keratometric power of the posterior surface (P = 0.836. Asphericity (Q-value of the anterior and posterior surfaces increased significantly after LASIK (P = 0.001. A significant forward bulge of the anterior corneal surface 4 mm and 7 mm from the central zone was detected 3 months post-LASIK (P = 0.001 for both, but there was no significant increase in posterior elevation at 4 mm and 7 mm from the center (P = 0.637 and P = 0.26, respectively. No cases of post-LASIK ectasia were detected. Correlation between different parameters of the corneal surface revealed an indirect relation between changes in pachymetry and anterior corneal elevation at 4 mm and 7 mm from the central zone (r = −0.27, P = 0.13, and r = −0.37, P = 0.04, respectively, and a direct proportion between changes in pachymetry and mean keratometric power of the anterior and posterior corneal surfaces (r = 0.7, P = 0.001 and r = 0.4, P = 0.028, respectively. Conclusion: LASIK causes significant changes at the anterior corneal surface but the effect is subtle and insignificant at the posterior surface. Keywords: LASIK, laser-assisted in situ keratomileusis, Pentacam®, corneal

  10. A Clinical Microbiological Study of Corneal Ulcer Patients at Western Gujarat, India

    Directory of Open Access Journals (Sweden)

    Nilesh Dhanjibhai Patel

    2013-06-01

    Full Text Available Corneal ulcer is a major cause of blindness throughout the world. When the cornea is injured by foreign particles, there are chances of infection by the organism and development of ulcer. Bacterial infection in the cornea is invariably an alteration of the defense mechanism of the outer eye. It is essential to determine the local etiology within a given region when planning a corneal ulcer management strategy. Laboratory evaluation is necessary to establish the diagnosis and to guide the antibiotic therapy. One hundred corneal ulcer patients were studied by collecting their corneal scraping samples and processing at Clinical Microbiology department of Shree Meghaji Petharaj Shah Medical College, Jamnagar, Gujarat, India during a period of 17 months. All clinical microbiology laboratory procedures followed standard protocols described in the literature. 40 (40% patients from the age group of 20-70 years had been confirmed as - any organism culture positive - within the corneal ulcer patient population. Fungi were isolated from 26 (26% corneal ulcer patients. The bacterial etiology was confirmed in 14 (14% corneal ulcer patients. The major risk factors for mycotic keratitis were vegetative injury (16, (62%, followed by conjunctivitis (4, (15%, and blunt trauma (3, (11%. Pseudomonas aeruginosa was the most commonly isolated bacterium (6, (43%, followed by Proteus spp. (4, (29%. Corneal Infections due to bacteria and filamentous fungi are a frequent cause of corneal damage. Microbiological investigation is an essential tool in the diagnosis of these infections. The frequency of fungal keratitis has risen over the past 20 to 30 years. Prognosis of bacterial corneal infection has improved since the introduction of specific antibacterial therapy.

  11. A clinical microbiological study of corneal ulcer patients at western Gujarat, India.

    Directory of Open Access Journals (Sweden)

    Rajesh Somabhai Katara

    2013-06-01

    Full Text Available Corneal ulcer is a major cause of blindness throughout the world. When the cornea is injured by foreign particles, there are chances of infection by the organism and development of ulcer. Bacterial infection in the cornea is invariably an alteration of the defense mechanism of the outer eye. It is essential to determine the local etiology within a given region when planning a corneal ulcer management strategy. Laboratory evaluation is necessary to establish the diagnosis and to guide the antibiotic therapy. One hundred corneal ulcer patients were studied by collecting their corneal scraping samples and processing at Clinical Microbiology department of Shree Meghaji Petharaj Shah Medical College, Jamnagar, Gujarat, India during a period of 17 months. All clinical microbiology laboratory procedures followed standard protocols described in the literature. 40 (40% patients from the age group of 20-70 years had been confirmed as - any organism culture positive - within the corneal ulcer patient population. Fungi were isolated from 26 (26% corneal ulcer patients. The bacterial etiology was confirmed in 14 (14% corneal ulcer patients. The major risk factors for mycotic keratitis were vegetative injury (16, (62%, followed by conjunctivitis (4, (15%, and blunt trauma (3, (11%. Pseudomonas aeruginosa was the most commonly isolated bacterium (6, (43%, followed by Proteus spp. (4, (29%. Corneal Infections due to bacteria and filamentous fungi are a frequent cause of corneal damage. Microbiological investigation is an essential tool in the diagnosis of these infections. The frequency of fungal keratitis has risen over the past 20 to 30 years. Prognosis of bacterial corneal infection has improved since the introduction of specific antibacterial therapy.

  12. Effect of amniotic fluid on the in vitro culture of human corneal endothelial cells.

    Science.gov (United States)

    Feizi, Sepehr; Soheili, Zahra-Soheila; Bagheri, Abouzar; Balagholi, Sahar; Mohammadian, Azam; Rezaei-Kanavi, Mozhgan; Ahmadieh, Hamid; Samiei, Shahram; Negahban, Kambiz

    2014-05-01

    The present study was designed to evaluate the effects of human amniotic fluid (HAF) on the growth of human corneal endothelial cells (HCECs) and to establish an in vitro method for expanding HCECs. HCECs were cultured in DMEM-F12 supplemented with 20% fetal bovine serum (FBS). Confluent monolayer cultures were trypsinized and passaged using either FBS- or HAF-containing media. Cell proliferation and cell death ELISA assays were performed to determine the effect of HAF on cell growth and viability. The identity of the cells cultured in 20% HAF was determined using immunocytochemistry (ICC) and real-time reverse transcription polymerase chain reaction (RT-PCR) techniques to evaluate the expression of factors that are characteristic of HCECs, including Ki-67, Vimentin, Na+/K+-ATPase and ZO-1. HCEC primary cultures were successfully established using 20% HAF-containing medium, and these cultures demonstrated rapid cell proliferation according to the cell proliferation and death ELISA assay results. The ICC and real time RT-PCR results indicated that there was a higher expression of Na+/K+-ATPase and ZO-1 in the 20% HAF cell cultures compared with the control (20% FBS) (P < 0.05). The 20% HAF-containing medium exhibited a greater stimulatory effect on HCEC growth and could represent a potential enriched supplement for HCEC regeneration studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Corneal complications and visual impairment in vernal keratoconjunctivitis patients

    International Nuclear Information System (INIS)

    Arif, A.S.; Aaqil, B.; Siddiqui, A.; Nazneen, Z.; Farooq, U.

    2017-01-01

    Vernal kerato-conjunctivitis (VKC) is an infrequent but serious form of allergic conjunctivitis common in warm and humid areas where air is rich in allergens. It affects both eyes asymmetrically. Although VKC is a self-limiting disease but visions affecting corneal complications influence the quality of life in school children. The aim of this study was to list the corneal complications due to this condition and to find out the extent of visual impairment among VKC patients. Methods: This cross-sectional study was conducted in the department of Ophthalmology, Benazir Bhutto Shaheed Hospital on 290 eyes of diagnosed cases of VKC. The diagnosis of VKC was made on the basis of history and examination. Visual acuity was recorded using Snellen's notation and visual impairment was classified according to World Health Organization classification for visual disabilities. Results: The mean age of presentation was 10.83+-6.13 years. There were 207 (71.4%) males and 83 (28.6%) females. Corneal scarring was observed in 59 (20.3%) eyes. Keratoconus was found to be in 17 (5.9%) eyes. Shield ulcer was detected in 09 (3.1%) eyes while 07 (2.4%) eyes had corneal neovascularization. Majority of the patients with visual loss had corneal scarring and the complication that led to severe visual loss in most of the eyes was Keratoconus. Conclusion: Vernal kerato-conjunctivitis in the presence of corneal complications is a sight threatening disease and can lead to severe visual impairment. (author)

  14. Corneal biomechanical properties after laser-assisted in situ keratomileusis and photorefractive keratectomy

    Directory of Open Access Journals (Sweden)

    Hwang ES

    2017-10-01

    Full Text Available Eileen S Hwang,1 Brian C Stagg,1 Russell Swan,1 Carlton R Fenzl,1 Molly McFadden,2 Valliammai Muthappan,1 Luis Santiago-Caban,1 Mark D Mifflin,1 Majid Moshirfar1,3 1Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, 2Department of Internal Medicine, University of Utah, Salt Lake City, 3HDR Research Center, Hoopes Vision, Draper, UT, USA Background: The purpose of this study was to evaluate the effects of laser-assisted in situ keratomileusis (LASIK and photorefractive keratectomy (PRK on corneal biomechanical properties.Methods: We used the ocular response analyzer to measure corneal hysteresis (CH and corneal resistance factor (CRF before and after refractive surgery.Results: In all, 230 eyes underwent LASIK and 115 eyes underwent PRK without mitomycin C (MMC. Both procedures decreased CH and CRF from baseline. When MMC was used after PRK in 20 eyes, it resulted in lower corneal biomechanical properties at 3 months when compared to the other procedures, but all three procedures had similar values at 12 months.Conclusion: Significant but similar decreases in corneal biomechanical properties after LASIK, PRK without MMC, and PRK with MMC were noted. Keywords: corneal biomechanics, photorefractive keratectomy, laser-assisted in situ keratomileusis, corneal hysteresis, corneal resistance factor, mitomycin C

  15. Changes in corneal sensitivity following cross-linking for progressive early-stage keratoconus

    Directory of Open Access Journals (Sweden)

    Anelise de Medeiros Lago

    2014-04-01

    Full Text Available Purpose: To evaluate changes in corneal sensitivity following corneal cross-linking (CXL in patients with progressive earlier stage keratoconus. Methods: Thirty-eight eyes of 19 patients (11 women, 8 men were included in a prospective, nonrandomized clinical study. The mean patient age was 22 years (range, 18-26 years. Inclusion criteria were early stage bilateral progressive keratoconus, a transparent cornea, and a thickness of ≥440 µm in the thinnest area of the cornea. Using the Cochet-Bonnet esthesiometer, central corneal sensitivity was measured before surgery, 7 days after surgery, and once a month thereafter until recovery of baseline preoperative levels. Central corneal sensitivity >40 mm was considered normal. Results: Corneal sensitivity gradually returned to preoperative levels in all treated eyes. The mean central corneal sensitivity was 52.2, 24.0, 38.2, 42.5, 50.0, and 52.5 mm before surgery, 7 days after surgery, and at 1, 2, 3, and 4 months after surgery, respectively. Normal levels of corneal sensation, but not baseline (preoperative levels, were observed 2 months after surgery. The preoperative levels were observed 3 months after surgery. Conclusions: Our results suggest that central corneal sensitivity can be decreased for as long as 3 months after CXL for progressive earlier stage keratoconus.

  16. Femtosecond laser-assisted keratoplasty in a child with corneal opacity:case report

    Directory of Open Access Journals (Sweden)

    E. Yu. Markova

    2014-01-01

    Full Text Available Corneal opacities are the fourth cause of blindness world-wide. Over the past two centuries, various corneal transplantation (i.e., keratoplasty methods have been developed and improved. Nowadays, femtolaserssisted keratoplasty is one of most promising techniques. Femtosecond laser have several advantages that provide additional surgical benefits. Among them, no thermal injury, the ability to cut deeply on a single plane and to perform various corneal profiles should be mentioned. In children, corneal disorders are of special importance while femtosecondassisted keraatoplasty case reports are rare. Here, we describe femtosecond laserssisted penetrating keratoplasty in a girl with a rough central corneal opacity.

  17. Hopelessly mortal: The role of mortality salience, immortality and trait self-esteem in personal hope.

    Science.gov (United States)

    Wisman, Arnaud; Heflick, Nathan A

    2016-08-01

    Do people lose hope when thinking about death? Based on Terror Management Theory, we predicted that thoughts of death (i.e., mortality salience) would reduce personal hope for people low, but not high, in self-esteem, and that this reduction in hope would be ameliorated by promises of immortality. In Studies 1 and 2, mortality salience reduced personal hope for people low in self-esteem, but not for people high in self-esteem. In Study 3, mortality salience reduced hope for people low in self-esteem when they read an argument that there is no afterlife, but not when they read "evidence" supporting life after death. In Study 4, this effect was replicated with an essay affirming scientific medical advances that promise immortality. Together, these findings uniquely demonstrate that thoughts of mortality interact with trait self-esteem to cause changes in personal hope, and that literal immortality beliefs can aid psychological adjustment when thinking about death. Implications for understanding personal hope, trait self-esteem, afterlife beliefs and terror management are discussed.

  18. The Role of Titanium Surface Microtopography on Adhesion, Proliferation, Transformation, and Matrix Deposition of Corneal Cells.

    Science.gov (United States)

    Zhou, Chengxin; Lei, Fengyang; Chodosh, James; Paschalis, Eleftherios I

    2016-04-01

    Titanium (Ti) is an excellent implantable biomaterial that can be further enhanced by surface topography optimization. Despite numerous data from orthopedics and dentistry, the effect of Ti surface topography on ocular cells is still poorly understood. In light of the recent adaptation of Ti in the Boston Keratoprosthesis artificial cornea, we attempted to perform an extended evaluation of the effect of Ti surface topography on corneal cell adhesion, proliferation, cytotoxicity, transformation, and matrix deposition. Different surface topographies were generated on medical grade Ti-6Al-4V-ELI (extra-low interstitial), with linearly increased roughness (polished to grit blasted). Biological response was evaluated in vitro using human corneal limbal epithelial (HCLE) cells, stromal fibroblasts (HCF), and endothelial cells (HCEnC). None of the Ti surface topographies caused cytotoxicity to any of the three corneal cell types. However, rough Ti surface inhibited HCLE and HCF cell adhesion and proliferation, while HCEnC proliferation was unaffected. Long-term experiments with HCF revealed that rough Ti surface with R(a) (the arithmetic average of the profile height from the mean line) ≥ 1.15 μm suppressed HCF focal adhesion kinase phosphorylation, changed fibroblast morphology, and caused less aligned and reduced deposition of collagen matrix as compared to smooth Ti (R(a) ≤ 0.08 μm). In the presence of transforming growth factor β1 (TGFβ1) stimulation, rough Ti inhibited alpha-smooth muscle actin (α-SMA) expression and collagen deposition, leading to decreased myofibroblast transformation and disorganization of the collagen fibrils as compared to smooth Ti. This study suggests that Ti surface topography regulates corneal cell behavior in a tissue-dependent manner that varies across the corneal strata. Contrary to the accepted paradigm, smooth surface topography can enhance cell adhesion and proliferation and increase matrix deposition by corneal cells.

  19. Edge detection and mathematic fitting for corneal surface with Matlab software.

    Science.gov (United States)

    Di, Yue; Li, Mei-Yan; Qiao, Tong; Lu, Na

    2017-01-01

    To select the optimal edge detection methods to identify the corneal surface, and compare three fitting curve equations with Matlab software. Fifteen subjects were recruited. The corneal images from optical coherence tomography (OCT) were imported into Matlab software. Five edge detection methods (Canny, Log, Prewitt, Roberts, Sobel) were used to identify the corneal surface. Then two manual identifying methods (ginput and getpts) were applied to identify the edge coordinates respectively. The differences among these methods were compared. Binomial curve (y=Ax 2 +Bx+C), Polynomial curve [p(x)=p1x n +p2x n-1 +....+pnx+pn+1] and Conic section (Ax 2 +Bxy+Cy 2 +Dx+Ey+F=0) were used for curve fitting the corneal surface respectively. The relative merits among three fitting curves were analyzed. Finally, the eccentricity (e) obtained by corneal topography and conic section were compared with paired t -test. Five edge detection algorithms all had continuous coordinates which indicated the edge of the corneal surface. The ordinates of manual identifying were close to the inside of the actual edges. Binomial curve was greatly affected by tilt angle. Polynomial curve was lack of geometrical properties and unstable. Conic section could calculate the tilted symmetry axis, eccentricity, circle center, etc . There were no significant differences between 'e' values by corneal topography and conic section ( t =0.9143, P =0.3760 >0.05). It is feasible to simulate the corneal surface with mathematical curve with Matlab software. Edge detection has better repeatability and higher efficiency. The manual identifying approach is an indispensable complement for detection. Polynomial and conic section are both the alternative methods for corneal curve fitting. Conic curve was the optimal choice based on the specific geometrical properties.

  20. Interaction of CtBP with adenovirus E1A suppresses immortalization of primary epithelial cells and enhances virus replication during productive infection.

    Science.gov (United States)

    Subramanian, T; Zhao, Ling-Jun; Chinnadurai, G

    2013-09-01

    Adenovirus E1A induces cell proliferation, oncogenic transformation and promotes viral replication through interaction with p300/CBP, TRRAP/p400 multi-protein complex and the retinoblastoma (pRb) family proteins through distinct domains in the E1A N-terminal region. The C-terminal region of E1A suppresses E1A/Ras co-transformation and interacts with FOXK1/K2, DYRK1A/1B/HAN11 and CtBP1/2 (CtBP) protein complexes. To specifically dissect the role of CtBP interaction with E1A, we engineered a mutation (DL→AS) within the CtBP-binding motif, PLDLS, and investigated the effect of the mutation on immortalization and Ras cooperative transformation of primary cells and viral replication. Our results suggest that CtBP-E1A interaction suppresses immortalization and Ras co-operative transformation of primary rodent epithelial cells without significantly influencing the tumorigenic activities of transformed cells in immunodeficient and immunocompetent animals. During productive infection, CtBP-E1A interaction enhances viral replication in human cells. Between the two CtBP family proteins, CtBP2 appears to restrict viral replication more than CtBP1 in human cells. Copyright © 2013 Elsevier Inc. All rights reserved.