WorldWideScience

Sample records for immortalized cell line

  1. Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line.

    Science.gov (United States)

    Klouwer, Femke C C; Koster, Janet; Ferdinandusse, Sacha; Waterham, Hans R

    2017-04-01

    The immortalized human hepatocyte (IHH) cell line is increasingly used for studies related to liver metabolism, including hepatic glucose, lipid, lipoprotein and triglyceride metabolism, and the effect of therapeutic interventions. To determine whether the IHH cell line is a good model to investigate hepatic peroxisomal metabolism, we measured several peroxisomal parameters in IHH cells and, for comparison, HepG2 cells and primary skin fibroblasts. This revealed a marked plasmalogen deficiency and a deficient fatty acid α-oxidation in the IHH cells, due to a defect of PEX7, a cytosolic receptor protein required for peroxisomal import of a subset of peroxisomal proteins. These abnormalities have consequences for the lipid homeostasis of these cells and thus should be taken into account for the interpretation of data previously generated by using this cell line and when considering using this cell line for future research.

  2. Network signatures of cellular immortalization in human lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sung-Mi; Jung, So-Young; Nam, Hye-Young; Kim, Hye-Ryun; Lee, Mee-Hee; Kim, Jun-Woo; Han, Bok-Ghee [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of); Jeon, Jae-Pil, E-mail: jaepiljeon@hanmail.net [Division of Brain Diseases, Center for Biomedical Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of)

    2013-11-15

    Highlights: •We identified network signatures of LCL immortalization from transcriptomic profiles. •More than 41% of DEGs are possibly regulated by miRNAs in LCLs. •MicroRNA target genes in LCLs are involved in apoptosis and immune-related functions. •This approach is useful to find functional miRNA targets in specific cell conditions. -- Abstract: Human lymphoblastoid cell line (LCL) has been used as an in vitro cell model in genetic and pharmacogenomic studies, as well as a good model for studying gene expression regulatory machinery using integrated genomic analyses. In this study, we aimed to identify biological networks of LCL immortalization from transcriptomic profiles of microRNAs and their target genes in LCLs. We first selected differentially expressed genes (DEGs) and microRNAs (DEmiRs) between early passage LCLs (eLCLs) and terminally differentiated late passage LCLs (tLCLs). The in silico and correlation analysis of these DEGs and DEmiRs revealed that 1098 DEG–DEmiR pairs were found to be positively (n = 591 pairs) or negatively (n = 507 pairs) correlated with each other. More than 41% of DEGs are possibly regulated by miRNAs in LCL immortalizations. The target DEGs of DEmiRs were enriched for cellular functions associated with apoptosis, immune response, cell death, JAK–STAT cascade and lymphocyte activation while non-miRNA target DEGs were over-represented for basic cell metabolisms. The target DEGs correlated negatively with miR-548a-3p and miR-219-5p were significantly associated with protein kinase cascade, and the lymphocyte proliferation and apoptosis, respectively. In addition, the miR-106a and miR-424 clusters located in the X chromosome were enriched in DEmiR–mRNA pairs for LCL immortalization. In this study, the integrated transcriptomic analysis of LCLs could identify functional networks of biologically active microRNAs and their target genes involved in LCL immortalization.

  3. Establishment and culture optimization of a new type of pituitary immortalized cell line

    Energy Technology Data Exchange (ETDEWEB)

    Kokubu, Yuko [Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8562 (Japan); Asashima, Makoto [Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8562 (Japan); Life Science Center of TARA, The University of Tsukuba, Ibaraki-ken 305-8577 (Japan); Kurisaki, Akira, E-mail: akikuri@hotmail.com [Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8562 (Japan); Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562 (Japan)

    2015-08-07

    The pituitary gland is a center of the endocrine system that controls homeostasis in an organism by secreting various hormones. The glandular anterior pituitary consists of five different cell types, each expressing specific hormones. However, their regulation and the appropriate conditions for their in vitro culture are not well defined. Here, we report the immortalization of mouse pituitary cells by introducing TERT, E6, and E7 transgenes. The immortalized cell lines mainly expressed a thyrotroph-specific thyroid stimulating hormone beta (Tshb). After optimization of the culture conditions, these immortalized cells proliferated and maintained morphological characteristics similar to those of primary pituitary cells under sphere culture conditions in DMEM/F12 medium supplemented with N2, B27, basic FGF, and EGF. These cell lines responded to PKA or PKC pathway activators and induced the expression of Tshb mRNA. Moreover, transplantation of the immortalized cell line into subcutaneous regions and kidney capsules of mice further increased Tshb expression. These results suggest that immortalization of pituitary cells with TERT, E6, and E7 transgenes is a useful method for generating proliferating cells for the in vitro analysis of pituitary regulatory mechanisms. - Highlights: • Mouse pituitary cell lines were immortalized by introducing TERT, E6, and E7. • The immortalized cell lines mainly expressed thyroid stimulating hormone beta. • The cell lines responded to PKA or PKC pathway activators, and induced Tshb.

  4. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells.

    Directory of Open Access Journals (Sweden)

    Ryo Kurita

    Full Text Available Transfusion of red blood cells (RBCs is a standard and indispensable therapy in current clinical practice. In vitro production of RBCs offers a potential means to overcome a shortage of transfusable RBCs in some clinical situations and also to provide a source of cells free from possible infection or contamination by microorganisms. Thus, in vitro production of RBCs may become a standard procedure in the future. We previously reported the successful establishment of immortalized mouse erythroid progenitor cell lines that were able to produce mature RBCs very efficiently. Here, we have developed a reliable protocol for establishing immortalized human erythroid progenitor cell lines that are able to produce enucleated RBCs. These immortalized cell lines produce functional hemoglobin and express erythroid-specific markers, and these markers are upregulated following induction of differentiation in vitro. Most importantly, these immortalized cell lines all produce enucleated RBCs after induction of differentiation in vitro, although the efficiency of producing enucleated RBCs remains to be improved further. To the best of our knowledge, this is the first demonstration of the feasibility of using immortalized human erythroid progenitor cell lines as an ex vivo source for production of enucleated RBCs.

  5. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    Science.gov (United States)

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F.

    2017-01-01

    ABSTRACT Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. PMID:28188264

  6. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    Directory of Open Access Journals (Sweden)

    Ludovic Arandel

    2017-04-01

    Full Text Available Myotonic dystrophy type 1 (DM1 and type 2 (DM2 are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations.

  7. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds.

    Science.gov (United States)

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F; Furling, Denis

    2017-04-01

    Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. © 2017. Published by The Company of Biologists Ltd.

  8. Derivation and Osmotolerance Characterization of Three Immortalized Tilapia (Oreochromis mossambicus) Cell Lines

    Science.gov (United States)

    Gardell, Alison M.; Qin, Qin; Rice, Robert H.; Li, Johnathan; Kültz, Dietmar

    2014-01-01

    Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus) cell lines from brain (OmB) and lip epithelium (OmL), and compared them to a previously immortalized bulbus arteriosus (TmB) cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK) inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (≥ passage 5), we characterized the proteomes of the newly derived cell lines (OmB and OmL) using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg) was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg) on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish. PMID:24797371

  9. A human beta cell line with drug inducible excision of immortalizing transgenes

    Science.gov (United States)

    Benazra, Marion; Lecomte, Marie-José; Colace, Claire; Müller, Andreas; Machado, Cécile; Pechberty, Severine; Bricout-Neveu, Emilie; Grenier-Godard, Maud; Solimena, Michele; Scharfmann, Raphaël; Czernichow, Paul; Ravassard, Philippe

    2015-01-01

    Objectives Access to immortalized human pancreatic beta cell lines that are phenotypically close to genuine adult beta cells, represent a major tool to better understand human beta cell physiology and develop new therapeutics for Diabetes. Here we derived a new conditionally immortalized human beta cell line, EndoC-βH3 in which immortalizing transgene can be efficiently removed by simple addition of tamoxifen. Methods We used lentiviral mediated gene transfer to stably integrate a tamoxifen inducible form of CRE (CRE-ERT2) into the recently developed conditionally immortalized EndoC βH2 line. The resulting EndoC-βH3 line was characterized before and after tamoxifen treatment for cell proliferation, insulin content and insulin secretion. Results We showed that EndoC-βH3 expressing CRE-ERT2 can be massively amplified in culture. We established an optimized tamoxifen treatment to efficiently excise the immortalizing transgenes resulting in proliferation arrest. In addition, insulin expression raised by 12 fold and insulin content increased by 23 fold reaching 2 μg of insulin per million cells. Such massive increase was accompanied by enhanced insulin secretion upon glucose stimulation. We further observed that tamoxifen treated cells maintained a stable function for 5 weeks in culture. Conclusions EndoC βH3 cell line represents a powerful tool that allows, using a simple and efficient procedure, the massive production of functional non-proliferative human beta cells. Such cells are close to genuine human beta cells and maintain a stable phenotype for 5 weeks in culture. PMID:26909308

  10. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  11. Isolation, Characterization, and Establishment of Spontaneously Immortalized Cell Line HRPE-2S With Stem Cell Properties.

    Science.gov (United States)

    Shams Najafabadi, Hoda; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Ranaei Pirmardan, Ehsan; Masoumi, Maryam

    2017-10-01

    The retinal pigment epithelium is a monolayer of highly specialized pigmented cells located between the neural retina and the Bruch's membrane of the choroid. RPE cells play a crucial role in the maintenance and function of the underlying photoreceptors. This study introduces a spontaneously arising human retinal pigment epithelial cell line, HRPE-2S, which was isolated from primary RPE cell culture of 2 days old male donor. We characterized morphology and functional properties of the new cell line. The immortalized cell line was maintained in culture for more than 70 passages and 240 divisions. The average doubling time of the cells was approximately 22 h and got freezed at 26th passage. The cell line expressed RPE-specific markers RPE65 and cell junction protein ZO1 as an epithelial cell marker. It also expressed CHX10, PAX6, Nestin, SOX2 as stem and retinal progenitor cell markers. Ki67 as a marker of cell proliferation was expressed in all HRPE-2S cells. It represented typical epithelial cobblestone morphology and did not phenotypically change through several passages. Stem cell-like aggregations (neurospheres) were observed in SEM microscopy. The cells represented high mitotic index. They could be viable under hypoxic conditions and serum deprivation. According to functional studies, the cell line exhibited stem cell-like behaviors with particular emphasis on its self-renewal capacity. LDH isoenzymes expression pattern confirmed the same cellular source for both of the HRPE-2S cells and primary RPE cells. Characteristics of HRPE-2S cells promise it as an in vitro model for RPE stem cell-based researches. J. Cell. Physiol. 232: 2626-2640, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    OpenAIRE

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Na?ra; Rau, Fr?d?rique; Jollet, Arnaud; Edom-Vovard, Fr?d?rique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois

    2017-01-01

    International audience; Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded rep...

  13. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.

    Science.gov (United States)

    Touat-Hamici, Zahia; Bulteau, Anne-Laure; Bianga, Juliusz; Jean-Jacques, Hélène; Szpunar, Joanna; Lobinski, Ryszard; Chavatte, Laurent

    2018-04-13

    Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Isolation and characterization of conditionally immortalized mouse glomerular endothelial cell lines.

    Science.gov (United States)

    Rops, Angelique L; van der Vlag, Johan; Jacobs, Cor W; Dijkman, Henry B; Lensen, Joost F; Wijnhoven, Tessa J; van den Heuvel, Lambert P; van Kuppevelt, Toin H; Berden, Jo H

    2004-12-01

    The culture and establishment of glomerular cell lines has proven to be an important tool for the understanding of glomerular cell functions in glomerular physiology and pathology. Especially, the recent establishment of a conditionally immortalized visceral epithelial cell line has greatly boosted the research on podocyte biology. Glomeruli were isolated from H-2Kb-tsA58 transgenic mice that contain a gene encoding a temperature-sensitive variant of the SV40 large tumor antigen, facilitating proliferative growth at 33 degrees C and differentiation at 37 degrees C. Glomerular endothelial cells were isolated from glomerular outgrowth by magnetic beads loaded with CD31, CD105, GSL I-B4, and ULEX. Clonal cell lines were characterized by immunofluorescence staining with antibodies/lectins specific for markers of endothelial cells, podocytes, and mesangial cells. Putative glomerular endothelial cell lines were analyzed for (1) cytokine-induced expression of adhesion molecules; (2) tube formation on Matrigel coating; and (3) the presence of fenestrae. As judged by immunostaining for Wilms tumor-1, smooth muscle actin (SMA), podocalyxin, and von Willebrand factor (vWF), we obtained putative endothelial, podocyte and mesangial cell lines. The mouse glomerular endothelial cell clone #1 (mGEnC-1) was positive for vWF, podocalyxin, CD31, CD105, VE-cadherin, GSL I-B4, and ULEX, internalized acetylated-low-density lipoprotein (LDL), and showed increased expression of adhesion molecules after activation with proinflammatory cytokines. Furthermore, mGEnC-1 formed tubes and contained nondiaphragmed fenestrae. The mGEnC-1 represents a conditionally immortalized cell line with various characteristics of differentiated glomerular endothelial cells when cultured at 37 degrees C. Most important, mGEnC-1 contains nondiaphragmed fenestrae, which is a unique feature of glomerular endothelial cells.

  15. Generation of human cortical neurons from a new immortal fetal neural stem cell line

    International Nuclear Information System (INIS)

    Cacci, E.; Villa, A.; Parmar, M.; Cavallaro, M.; Mandahl, N.; Lindvall, O.; Martinez-Serrano, A.; Kokaia, Z.

    2007-01-01

    Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markers like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology

  16. Postirradiation expression of lethal mutations in an immortalized human keratinocyte cell line

    International Nuclear Information System (INIS)

    O'Reilly, S.; Mothersill, C.; Seymour, C.B.

    1994-01-01

    The quantification of the extent of delayed cell death and the rate and pattern of its occurrence in relation to the cell division cycle is important in radiotherapy and also in radiation transformation studies related to protection and dose limits. Here the numbers of lethal mutations occurring over 45 population doublings (clonal expansion to about 10 13 cells per cell originally surviving irradiation) was measured in an HPV 16 immortalized human keratinocyte cell lines used for transformation studies. The results showed that when postirradiation (dose range 1-6 Gy) growth curves were constructed, the difference in slopes could be accounted for entirely by correcting for the non-clonogenic fraction in the cell count, excluding a longer cell generation time as an explanation. When the cell loss was examined over the entire growth period of 6 weeks (about 45 doublings of the cell population), it was found to be dose dependent for the first two passages, but then to become more independent of dose. The results allow a time/cell generation dependent factor to be derived for the cell line and used in survival curve equations where effects of radiation are being measured at times distant from the original exposure. (author)

  17. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    International Nuclear Information System (INIS)

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S.

    2006-01-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents

  18. Establishment of immortalized B lymphoblastoid cell lines of old residents in high background radiation area in Guangdong, China

    International Nuclear Information System (INIS)

    Lu Xue; Feng Jiangbing; Chen Deqing; Liu Qingjie; Cha Yongru; Zou Jianming

    2008-01-01

    Objective: To establish the immortalized cell lines of peripheral blood lymphocytes for old male residents in high background radiation area (HBRA) in Guangdong, China, in order to preserve the specific genomic resources of residents in HBRA for the further genetic and molecular biological study on HBRA. Methods: The peripheral blood samples of 20 old male residents in HBRA were collected after informed consent. The immortalized B lymphoblastoid cell lines, 2 fox each resident, were established with Epstein-Barr virus. After being frozen and recovered, the cell viability, the contamination of bacterium and mycoplasma were analyzed. The stabilization of cell lines was decided by comparing the karyotypes of the peripheral blood lymphocytes and the cell lines. Results: 40 cell lines for 20 residents in HBRA were successfully established.. The recovery rate of cell lines after being frozen was 100% . All the cell viablity after recovery was higher than 90%, and no contamination of bacteria and mycoplasma occurred. The karyotypes of the 20th generation cell lines were not change. Conclusion: The immortalized cell lines established in this study could provide biological resources for further study on genetics and molecular biology in HBRA. (authors)

  19. Generation and characterization of the first immortalized alpaca cell line suitable for diagnostic and immunization studies.

    Directory of Open Access Journals (Sweden)

    Valentina Franceschi

    Full Text Available Raising of alpacas as exotic livestock for wool and meat production and as companion animals is growing in importance in the United States, Europe and Australia. Furthermore the alpaca, as well as the rest of the camelids, possesses the peculiarity of producing single-chain antibodies from which nanobodies can be generated. Nanobodies, due to their structural simplicity and reduced size, are very versatile in terms of manipulation and bio-therapeutic exploitation. In fact the biotech companies involved in nanobody production and application continue to grow in number and size. Hence, the development of reagents and tools to assist in the further growth of this new scientific and entrepreneurial reality is becoming a necessity. These are needed mainly to address alpaca disease diagnosis and prophylaxis, and to develop alpaca immunization strategies for nanobody generation. For instance an immortalized alpaca cell line would be extremely valuable. In the present work the first stabilized alpaca cell line from alpaca skin stromal cells (ASSCs was generated and characterized. This cell line was shown to be suitable for replication of viruses bovine herpesvirus-1, bovine viral diarrhea virus and caprine herpesvirus-1 and the endocellular parasite Neospora caninum. Moreover ASSCs were easy to transfect and transduce by several methods. These two latter characteristics are extremely useful when recombinant antigens need to be produced in a host homologous system. This work could be considered as a starting point for the expansion of the biotechnologies linked to alpaca farming and industry.

  20. Isolation and characterization of a spontaneously immortalized bovine retinal pigmented epithelial cell line

    Directory of Open Access Journals (Sweden)

    Griffiths T Daniel

    2009-05-01

    Full Text Available Abstract Background The Retinal Pigmented Epithelium (RPE is juxtaposed with the photoreceptor outer segments of the eye. The proximity of the photoreceptor cells is a prerequisite for their survival, as they depend on the RPE to remove the outer segments and are also influenced by RPE cell paracrine factors. RPE cell death can cause a progressive loss of photoreceptor function, which can diminish vision and, over time, blindness ensues. Degeneration of the retina has been shown to induce a variety of retinopathies, such as Stargardt's disease, Cone-Rod Dystrophy (CRD, Retinitis Pigmentosa (RP, Fundus Flavimaculatus (FFM, Best's disease and Age-related Macular Degeneration (AMD. We have cultured primary bovine RPE cells to gain a further understanding of the mechanisms of RPE cell death. One of the cultures, named tRPE, surpassed senescence and was further characterized to determine its viability as a model for retinal diseases. Results The tRPE cell line has been passaged up to 150 population doublings and was shown to be morphologically similar to primary cells. They have been characterized to be of RPE origin by reverse transcriptase PCR and immunocytochemistry using the RPE-specific genes RPE65 and CRALBP and RPE-specific proteins RPE65 and Bestrophin. The tRPE cells are also immunoreactive to vimentin, cytokeratin and zonula occludens-1 antibodies. Chromosome analysis indicates a normal diploid number. The tRPE cells do not grow in suspension or in soft agar. After 3H thymidine incorporation, the cells do not appear to divide appreciably after confluency. Conclusion The tRPE cells are immortal, but still exhibit contact inhibition, serum dependence, monolayer growth and secrete an extra-cellular matrix. They retain the in-vivo morphology, gene expression and cell polarity. Additionally, the cells endocytose exogenous melanin, A2E and purified lipofuscin granules. This cell line may be a useful in-vitro research model for retinal

  1. Establishment, characterization and immortalization of a fibroblast cell line from the Chinese red belly toad Bombina maxima skin.

    Science.gov (United States)

    Xiang, Yang; Gao, Qian; Su, Weiting; Zeng, Lin; Wang, Jinhuan; Hu, Yi; Nie, Wenhui; Ma, Xutong; Zhang, Yong; Lee, Wenhui; Zhang, Yun

    2012-01-01

    The skin of the amphibian Bombina maxima is rich in biologically active proteins and peptides, most of which have mammalian analogues. The physiological functions of most of the mammalian analogues are still unknown. Thus, Bombina maxima skin may be a promising model to reveal the physiological role of these proteins and peptides because of their large capacity for secretion. To investigate the physiological role of these proteins and peptides in vitro, a fibroblast cell line was successfully established from Bombina maxima tadpole skin. The cell line grew to form a monolayer with cells of a uniform shape and abundant rough endoplasmic reticulum, which are typical characteristics of fibroblasts. Further identification at a molecular level revealed that they strongly expressed the fibroblast marker protein vimentin. The chromosome number of these cells is 2n = 28, and most of them were diploid. Growth property analysis showed that they grew well for 14 passages. However, cells showed decreased proliferative ability after passage 15. Thus, we tried to immortalize the cells through the overexpression of SV40 T antigen. After selecting by G418, cells stably expressed SV40 large T antigen and showed enhanced proliferative ability and increased telomerase activity. Signal transduction analysis revealed functional p42 mitogen-activated protein (MAP) kinase in immortalized Bombina maxima dermal fibroblasts. Primary fibroblast cells and the immortalized fibroblast cells from Bombina maxima cultured in the present study can be used to investigate the physiological role of Bombina maxima skin-secreted proteins and peptides. In addition, the methods for primary cell culturing and cell immortalization will be useful for culturing and immortalizing cells from other types of amphibians.

  2. Establishment and characterization of a spontaneously immortalized trophoblast cell line (HPT-8) and its hepatitis B virus-expressing clone.

    Science.gov (United States)

    Zhang, Lei; Zhang, Weilu; Shao, Chen; Zhang, Jingxia; Men, Ke; Shao, Zhongjun; Yan, Yongping; Xu, Dezhong

    2011-08-01

    Most trophoblast cell lines currently available to study vertical transmission of hepatitis B virus (HBV) are immortalized by viral transformation. Our goal was to establish and characterize a spontaneously immortalized human first-trimester trophoblast cell line and its HBV-expressing clone. Chorionic villi of Asian human first-trimester placentae were digested with trypsin and collagenase I to obtain the primary trophoblast cell culture. A spontaneously immortalized trophoblast cell line (HPT-8) was analyzed by scanning and transmission electron microscopy, cell cycle analysis, immunohistochemistry and immunofluorescence. HPT-8 cells were stably transfected with the adr subtype of HBV (HPT-8-HBV) and characterized by PCR and enzyme-linked immunosorbent assay. We obtained a clonal derivative of a spontaneously immortalized primary cell clone (HPT-8). HPT-8 cells were epithelioid and polygonal, and formed multinucleate, giant cells. They exhibited microvilli, distinct desmosomes between adjacent cells, abundant endoplasm, lipid inclusions and glycogen granules, which are all characteristic of cytotrophoblasts. HPT-8 cells expressed cytokeratin 7, cytokeratin 18, vimentin, cluster of differentiation antigen 9, epidermal growth factor receptor, stromal cell-derived factor 1 and placental alkaline phosphatase. They secreted prolactin, estradiol, progesterone and hCG, and were positive for HLA-G, a marker of extravillous trophoblasts. HPT-8-HBV cells were positive for HBV relaxed-circular, covalently closed circular DNA and pre-S sequence. HPT-8-HBV cells also produced and secreted HBV surface antigen and HBV e antigen. We established a trophoblast cell line, HPT-8 and its HBV-expressing clone which could be valuable in exploring the mechanism of HBV viral integration in human trophoblasts during intrauterine infection.

  3. Analysis of proviral integration in human mammary epithelial cell lines immortalized by retroviral infection with a temperature-sensitive SV40 T-antigen construct.

    Science.gov (United States)

    Stamps, A C; Davies, S C; Burman, J; O'Hare, M J

    1994-06-15

    A panel of eight conditionally immortal lines derived by infection of human breast epithelial cells with an amphotropic retrovirus transducing a ts mutant of SV40 large T-antigen was analyzed with respect to individual retroviral integration patterns. Each line contained multiple integration sites which were clonal and stable over extended passage. Similar integration patterns were observed between individual lines arising separately from the same stock of pre-immortal cells, suggesting a common progenitor. Retroviral integration analysis of pre-immortal cells at different stages of pre-crisis growth showed changes indicative of a progressive transition from polyclonality to clonality as the cells approached crisis. Each of the immortal lines contained a sub-set of the integration sites of their pre-immortal progenitors, with individual combinations and copy numbers of sites. Since all the cell lines appeared to originate from single foci in separate flasks, it is likely that each set arose from a common clone of pre-immortal cells as the result of separate genetic events. There was no evidence from this analysis to suggest that specific integration sites played any part either in the selection of pre-crisis clones or in the subsequent establishment of immortal lines.

  4. A telomerase immortalized human proximal tubule cell line with a truncation mutation (Q4004X in polycystin-1.

    Directory of Open Access Journals (Sweden)

    Brittney-Shea Herbert

    Full Text Available Autosomal dominant polycystic kidney disease (ADPKD is associated with a variety of cellular phenotypes in renal epithelial cells. Cystic epithelia are secretory as opposed to absorptive, have higher proliferation rates in cell culture and have some characteristics of epithelial to mesenchymal transitions. In this communication we describe a telomerase immortalized cell line that expresses proximal tubule markers and is derived from renal cysts of an ADPKD kidney. These cells have a single detectable truncating mutation (Q4004X in polycystin-1. These cells make normal appearing but shorter cilia and fail to assemble polycystin-1 in the cilia, and less uncleaved polycystin-1 in membrane fractions. This cell line has been maintained in continuous passage for over 35 passages without going into senescence. Nephron segment specific markers suggest a proximal tubule origin for these cells and the cell line will be useful to study mechanistic details of cyst formation in proximal tubule cells.

  5. Immortalization of human myogenic progenitor cell clone retaining multipotentiality

    International Nuclear Information System (INIS)

    Hashimoto, Naohiro; Kiyono, Tohru; Wada, Michiko R.; Shimizu, Shirabe; Yasumoto, Shigeru; Inagawa, Masayo

    2006-01-01

    Human myogenic cells have limited ability to proliferate in culture. Although forced expression of telomerase can immortalize some cell types, telomerase alone delays senescence of human primary cultured myogenic cells, but fails to immortalize them. In contrast, constitutive expression of both telomerase and the E7 gene from human papillomavirus type 16 immortalizes primary human myogenic cells. We have established an immortalized primary human myogenic cell line preserving multipotentiality by ectopic expression of telomerase and E7. The immortalized human myogenic cells exhibit the phenotypic characteristics of their primary parent, including an ability to undergo myogenic, osteogenic, and adipogenic terminal differentiation under appropriate culture conditions. The immortalized cells will be useful for both basic and applied studies aimed at human muscle disorders. Furthermore, immortalization by transduction of telomerase and E7 represents a useful method by which to expand human myogenic cells in vitro without compromising their ability to differentiate

  6. In vitro culture of various species of microsporidia causing keratitis: Evaluation of three immortalized cell lines

    Directory of Open Access Journals (Sweden)

    Joseph J

    2009-01-01

    Full Text Available Being intracellular parasites, microsporidia can only be propagated in cell culture systems. This study evaluated three cell lines to determine the most suitable host-parasite In vitro system. Confluent monolayers of vero, SIRC, and HeLa cell lines, grown in 24-well tissue culture plates, were inoculated with varying concentrations (1 x 10 4 to 1 x 10 8 spores/mL of Vittaforma corneae, Encephalitozoon hellem, Encephalitozoon cuniculi, and Encephalitozoon intestinalis spores. Growth was compared quantitatively at weekly intervals. Encephalitozoon species showed the highest amount of growth when cultured in vero cell line, while there was no significant difference in their growth in SIRC and HeLa cell lines. In comparison, V. corneae showed the highest growth in SIRC cells, followed by vero cells. The analytical sensitivity was found to be 1 x 10 4 spores/mL for vero cell line compared to 1 x 10 5 spores/mL for SIRC cell line and 1 x 10 7 spores/mL for HeLa cell line. HeLa cells also showed rapid disruption of cells, and the spores could not be easily distinguished from cell debris. This is the first report of the comparison of vero, SIRC, and HeLa for the propagation of microsporidial spores. Vero cell line was found to be more sensitive than SIRC and HeLa cells, and we believe that the inclusion of vero cell line in the routine culture protocols of ocular parasitology laboratories would result in a significant increase in the diagnostic yield.

  7. Determination of Drug Toxicity Using 3D Spheroids Constructed From an Immortal Human Hepatocyte Cell Line

    Science.gov (United States)

    Fey, Stephen J.; Wrzesinski, Krzysztof

    2012-01-01

    Numerous publications have documented that the immortal cells grown in three-dimensional (3D) cultures possess physiological behavior, which is more reminiscent of their parental organ than when the same cells are cultivated using classical two-dimensional (2D) culture techniques. The goal of this study was to investigate whether this observation could be extended to the determination of LD50 values and whether 3D data could be correlated to in vivo observations. We developed a noninvasive means to estimate the amount of protein present in a 3D spheroid from it is planar area (± 21%) so that a precise dose can be provided in a manner similar to in vivo studies. This avoided correction of the actual dose given based on a protein determination after treatment (when some cells may have lysed). Conversion of published in vitro LC50 data (mM) for six common drugs (acetaminophen, amiodarone, diclofenac, metformin, phenformin, and valproic acid) to LD50 data (mg compound/mg cellular protein) showed that the variation in LD50 values was generally less than that suggested by the original LC50 data. Toxicological analysis of these six compounds in 3D spheroid culture (either published or presented here) demonstrated similar LD50 values. Although in vitro 2D HepG2 data showed a poor correlation, the primary hepatocyte and 3D spheroid data resulted in a much higher degree of correlation with in vivo lethal blood plasma levels. These results corroborate that 3D hepatocyte cultures are significantly different from 2D cultures and are more representative of the liver in vivo. PMID:22454432

  8. Conditionally immortalized human pancreatic stellate cell lines demonstrate enhanced proliferation and migration in response to IGF-I

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, Ann H., E-mail: ann.rosendahl@med.lu.se [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden); Lund University and Skåne University Hospital, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund (Sweden); Gundewar, Chinmay; Said Hilmersson, Katarzyna [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden); Ni, Lan; Saleem, Moin A. [University of Bristol, School of Clinical Sciences, Children' s Renal Unit and Academic Renal Unit, Bristol (United Kingdom); Andersson, Roland [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden)

    2015-01-15

    Pancreatic stellate cells (PSCs) play a key role in the dense desmoplastic stroma associated with pancreatic ductal adenocarcinoma. Studies on human PSCs have been minimal due to difficulty in maintaining primary PSC in culture. We have generated the first conditionally immortalized human non-tumor (NPSC) and tumor-derived (TPSC) pancreatic stellate cells via transformation with the temperature-sensitive SV40 large T antigen and human telomerase (hTERT). These cells proliferate at 33°C. After transfer to 37°C, the SV40LT is switched off and the cells regain their primary PSC phenotype and growth characteristics. NPSC contained cytoplasmic vitamin A-storing lipid droplets, while both NPSC and TPSC expressed the characteristic markers αSMA, vimentin, desmin and GFAP. Proteome array analysis revealed that of the 55 evaluated proteins, 27 (49%) were upregulated ≥3-fold in TPSC compared to NPSC, including uPA, pentraxin-3, endoglin and endothelin-1. Two insulin-like growth factor binding proteins (IGFBPs) were inversely expressed. Although discordant IGFBP-2 and IGFBP-3 levels, IGF-I was found to stimulate proliferation of both NPSC and TPSC. Both basal and IGF-I stimulated motility was significantly enhanced in TPSC compared to NPSC. In conclusion, these cells provide a unique resource that will facilitate further study of the active stroma compartment associated with pancreatic cancer. - Highlights: • Generation of human conditionally immortalized human pancreatic stellate cell lines. • Temperature-sensitive SV40LT allows switch to primary PSC phenotype characteristics. • Proteome profiling revealed distinct expression patterns between TPSC and NPSC. • Enhanced IGF-I-stimulated proliferation and motility by TPSC compared to NPSC.

  9. Characterization of immortalized MARCO and SR-AI/II-deficient murine alveolar macrophage cell lines

    Directory of Open Access Journals (Sweden)

    Imrich Amy

    2008-05-01

    Full Text Available Abstract Background Alveolar macrophages (AM avidly bind and ingest unopsonized inhaled particles and bacteria through class A scavenger receptors (SRAs MARCO and SR-AI/II. Studies to characterize the function of these SRAs have used AMs from MARCO or SR-AI/II null mice, but this approach is limited by the relatively low yield of AMs. Moreover, studies using both MARCO and SR-AI/II-deficient (MS-/- mice have not been reported yet. Hence, we sought to develop continuous cell lines from primary alveolar macrophages from MS-/- mice. Results We used in vitro infection of the primary AMs with the J2 retrovirus carrying the v-raf and v-myc oncogenes. Following initial isolation in media supplemented with murine macrophage colony-stimulating factor (M-CSF, we subcloned three AM cell lines, designated ZK-1, ZK-2 and ZK-6. These cell lines grow well in RPMI-1640-10% FBS in the absence of M-CSF. These adherent but trypsin-sensitive cell lines have a doubling time of approximately 14 hours, exhibit typical macrophage morphology, and express macrophage-associated cell surface Mac-1 (CD11b and F4/80 antigens. The cell lines show robust Fc-receptor dependent phagocytosis of opsonized red blood cells. Similar to freshly isolated AMs from MS-/- mice, the cell lines exhibit decreased phagocytosis of unopsonized titanium dioxide (TiO2, fluorescent latex beads and bacteria (Staphylococcus aureus compared with the primary AMs from wild type (WT C57BL/6 mice. Conclusion Our results indicated that three contiguous murine alveolar macrophage cell lines with MS-/- (ZK1, ZK2 and ZK6 were established successfully. These cell lines demonstrated macrophage morphology and functional activity. Interestingly, similar to freshly isolated AMs from MS-/- mice, the cell lines have a reduced, but not absent, ability to bind and ingest particles, with an altered pattern of blockade by scavenger receptor inhibitors. These cell lines will facilitate in vitro studies to further define

  10. Establishment of c-myc-immortalized Kupffer cell line from a C57BL/6 mouse strain

    Directory of Open Access Journals (Sweden)

    Hiroshi Kitani

    2014-01-01

    Full Text Available We recently demonstrated in several mammalian species, a novel procedure to obtain liver-macrophages (Kupffer cells in sufficient numbers and purity using a mixed primary culture of hepatocytes. In this study, we applied this method to the C57BL/6 mouse liver and established an immortalized Kupffer cell line from this mouse strain. The hepatocytes from the C57BL/6 adult mouse liver were isolated by a two-step collagenase perfusion method and cultured in T25 culture flasks. Similar to our previous studies, the mouse hepatocytes progressively changed their morphology into a fibroblastic appearance after a few days of culture. After 7–10 days of culture, Kupffer-like cells, which were contaminants in the hepatocyte fraction at the start of the culture, actively proliferated on the mixed fibroblastic cell sheet. At this stage, a retroviral vector containing the human c-myc oncogene and neomycin resistance gene was introduced into the mixed culture. Gentle shaking of the culture flask, followed by the transfer and brief incubation of the culture supernatant, resulted in a quick and selective adhesion of Kupffer cells to a plastic dish surface. After selection with G418 and cloning by limiting dilutions, a clonal cell line (KUP5 was established. KUP5 cells displayed typical macrophage morphology and were stably passaged at 4–5 days intervals for more than 5 months, with a population doubling time of 19 h. KUP5 cells are immunocytochemically positive for mouse macrophage markers, such as Mac-1, F4/80. KUP5 cells exhibited substantial phagocytosis of polystyrene microbeads and the release of inflammatory cytokines upon lipopolysaccharide stimulation. Taken together, KUP5 cells provide a useful means to study the function of Kupffer cells in vitro.

  11. Characterization of a novel telomerase-immortalized human endometrial stromal cell line, St-T1b

    Directory of Open Access Journals (Sweden)

    Brosens Jan J

    2009-07-01

    Full Text Available Abstract Background Coordinated differentiation of the endometrial compartments in the second half of the menstrual cycle is a prerequisite for the establishment of pregnancy. Endometrial stromal cells (ESC decidualize under the influence of ovarian progesterone to accommodate implantation of the blastocyst and support establishment of the placenta. Studies into the mechanisms of decidualization are often hampered by the lack of primary ESC. Here we describe a novel immortalized human ESC line. Methods Primary ESC were immortalized by the transduction of telomerase. The resultant cell line, termed St-T1b, was characterized for its morphological and biochemical properties by immunocytochemistry, RT-PCR and immunoblotting. Its progestational response was tested using progesterone and medroxyprogesterone acetate with and without 8-Br-cAMP, an established inducer of decidualization in vitro. Results St-T1b were positive for the fibroblast markers vimentin and CD90 and negative for the epithelial marker cytokeratin-7. They acquired a decidual phenotype indistinguishable from primary ESC in response to cAMP stimulation. The decidual response was characterized by transcriptional activation of marker genes, such as PRL, IGFBP1, and FOXO1, and enhanced protein levels of the tumor suppressor p53 and the metastasis suppressor KAI1 (CD82. Progestins alone had no effect on St-T1b cells, but medroxyprogesterone acetate greatly enhanced the cAMP-stimulated expression of IGFBP-1 after 3 and 7 days. Progesterone, albeit more weakly, also augmented the cAMP-induced IGFBP-1 production but only after 7 days of treatment. The cell line remained stable in continuous culture for more than 150 passages. Conclusion St-T1b express the appropriate phenotypic ESC markers and their decidual response closely mimics that of primary cultures. Decidualization is efficiently induced by cAMP analog and enhanced by medroxyprogesterone acetate, and, to a lesser extent, by natural

  12. Cytogenetic and molecular genetic characterization of immortalized human ovarian surface epithelial cell lines: consistent loss of chromosome 13 and amplification of chromosome 20.

    Science.gov (United States)

    Jin, Yuesheng; Zhang, Hao; Tsao, Sai Wah; Jin, Charlotte; Lv, Mei; Strömbeck, Bodil; Wiegant, Joop; Wan, Thomas Shek Kong; Yuen, Po Wing; Kwong, Yok-Lam

    2004-01-01

    This study aimed at identifying the genetic events involved in immortalization of ovarian epithelial cells, which might be important steps in ovarian carcinogenesis. The genetic profiles of five human ovarian surface epithelial (HOSE) cell lines immortalized by retroviral transfection of the human papillomavirus (HPV) E6/E7 genes were thoroughly characterized by chromosome banding and fluorescence in situ hybridization (FISH), at various passages pre- and post-crisis. In pre-crisis, most cells had simple, non-clonal karyotypic changes. Telomere association was the commonest aberration, suggesting that tolermase dysfunction might be an important genetic event leading to cellular crisis. After immortalization post-crisis, however, the karyotypic patterns were non-random. Loss of genetic materials was a characteristic feature. The commonest numerical aberrations were -13, -14, -16, -17, -18, and +5. Among them, loss of chromosome 13 was common change observed in all lines. The only recurrent structural aberration was homogeneously staining regions (hsr) observed in three lines. FISH and combined binary ratio labeling (COBRA)-FISH showed in two cases that the hsrs were derived from chromosome 20. Clonal evolution was observed in four of the lines. In one line, hsr was the only change shared by all subclones, suggesting that it might be a primary event in cell immortalization. The results of the present study suggested that loss of chromosome 13 and the amplification of chromosome 20 might be early genetic events involved in ovarian cell immortalization, and might be useful targets for the study of genomic aberrations in ovarian carcinogenesis.

  13. An immortal cell line to study the role of endogenous CFTR in electrolyte absorption.

    Science.gov (United States)

    Bell, C L; Quinton, P M

    1995-01-01

    The intact human reabsorptive sweat duct (RD) has been a reliable model for investigations of the functional role of "endogenous" CFTR (cystic fibrosis transmembrane conductance regulator) in normal and abnormal electrolyte absorptive function. But to overcome the limitations imposed by the use of fresh, intact tissue, we transformed cultured RD cells using the chimeric virus Ad5/SV40 1613 ori-. The resultant cell line, RD2(NL), has remained differentiated forming a polarized epithelium that expressed two fundamental components of absorption, a cAMP activated Cl- conductance (GCl) and an amiloride-sensitive Na+ conductance (GNa). In the unstimulated state, there was a low level of transport activity; however, addition of forskolin (10(-5) M) significantly increased the Cl- diffusion potential (Vt) generated by a luminally directed Cl- gradient from -15.3 +/- 0.7 mV to -23.9 +/- 1.1 mV, n = 39; and decreased the transepithelial resistance (Rt) from 814.8 +/- 56.3 omega.cm2 to 750.5 +/- 47.5 omega.cm2, n = 39, (n = number of cultures). cAMP activation, anion selectivity (Cl- > I- > gluconate), and a dependence upon metabolic energy (metabolic poisoning inhibited GCl), all indicate that the GCl expressed in RD2(NL) is in fact CFTR-GCl. The presence of an apical amiloride-sensitive GNa was shown by the amiloride (10(-5) M) inhibition of GNa as indicated by a reduction of Vt and equivalent short circuit current by 78.0 +/- 3.1% and 77.9 +/- 2.6%, respectively, and an increase in Rt by 7.2 +/- 0.8%, n = 36. In conclusion, the RD2(NL) cell line presents the first model system in which CFTR-GCl is expressed in a purely absorptive tissue.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Generation and Characterization of an Immortalized Human Esophageal Myofibroblast Line.

    Directory of Open Access Journals (Sweden)

    Chao Niu

    Full Text Available Stromal cells with a myofibroblast phenotype present in the normal human esophagus are increased in individuals with gastro-esophageal reflux disease (GERD. We have previously demonstrated that myofibroblasts stimulated with acid and TLR4 agonists increase IL-6 and IL-8 secretion using primary cultures of myofibroblasts established from normal human esophagus. While primary cultures have the advantage of reflecting the in vivo environment, a short life span and unavoidable heterogeneity limits the usefulness of this model in larger scale in vitro cellular signaling studies. The major aim of this paper therefore was to generate a human esophageal myofibroblast line with an extended lifespan. In the work presented here we have generated and characterized an immortalized human esophageal myofibroblast line by transfection with a commercially available GFP-hTERT lentivirus. Immortalized human esophageal myofibroblasts demonstrate phenotypic, genotypic and functional similarity to primary cultures of esophageal myofibroblasts we have previously described. We found that immortalized esophageal myofibroblasts retain myofibroblast spindle-shaped morphology at low and high confluence beyond passage 80, and express α-SMA, vimentin, and CD90 myofibroblast markers. Immortalized human esophageal myofibroblasts also express the putative acid receptor TRPV1 and TLR4 and retain the functional capacity to respond to stimuli encountered in GERD with secretion of IL-6. Finally, immortalized human esophageal myofibroblasts also support the stratified growth of squamous esophageal epithelial cells in 3D organotypic cultures. This newly characterized immortalized human esophageal myofibroblast cell line can be used in future cellular signaling and co-culture studies.

  15. Regulation of hTERT Expression and Function in Newly Immortalized p53(+) Human Mammary Epithelial Cell Lines

    Science.gov (United States)

    2007-06-01

    human mammary epithelial cell types by human papilloma virus 16 e6 or e7. Proc Nat Acad Sci USA 1995; 92:3687-91. 54. Shay JW, Pereira-Smith OM, Wright...Liu X-L, Chu Q, Gao Q, Band V. Immortalization of distinct human mammary epithelial cell types by human papilloma virus 16 e6 or e7. Proc Nat Acad

  16. Choline transport via choline transporter-like protein 1 in conditionally immortalized rat syncytiotrophoblast cell lines TR-TBT.

    Science.gov (United States)

    Lee, N-Y; Choi, H-M; Kang, Y-S

    2009-04-01

    Choline is an essential nutrient for phospholipids and acetylcholine biosynthesis in normal development of fetus. In the present study, we investigated the functional characteristics of choline transport system and inhibitory effect of cationic drugs on choline transport in rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT). Choline transport was weakly Na(+) dependent and significantly influenced by extracellular pH and by membrane depolarization. The transport process of choline is saturable with Michaelis-Menten constants (K(m)) of 68microM and 130microM in TR-TBT 18d-1 and TR-TBT 18d-2 respectively. Choline uptake in the cells was inhibited by unlabeled choline and hemicholinium-3 as well as various organic cations including guanidine, amiloride and acetylcholine. However, the prototypical organic cation tetraethylammonium and cimetidine showed very little inhibitory effect of choline uptake in TR-TBT cells. RT-PCR revealed that choline transporter-like protein 1 (CTL1) and organic cation transporter 2 (OCT2) are expressed in TR-TBT cells. The transport properties of choline in TR-TBT cells were similar or identical to that of CTL1 but not OCT2. CTL1 was also detected in human placenta. In addition, several cationic drugs such as diphenhydramine and verapamil competitively inhibited choline uptake in TR-TBT 18d-1 with K(i) of 115microM and 55microM, respectively. Our results suggest that choline transport system, which has intermediate affinity and weakly Na(+) dependent, in TR-TBT seems to occur through a CTL1 and this system may have relevance with the uptake of pharmacologically important organic cation drugs.

  17. Telomere elongation in immortal human cells without detectable telomerase activity.

    Science.gov (United States)

    Bryan, T M; Englezou, A; Gupta, J; Bacchetti, S; Reddel, R R

    1995-09-01

    Immortalization of human cells is often associated with reactivation of telomerase, a ribonucleoprotein enzyme that adds TTAGGG repeats onto telomeres and compensates for their shortening. We examined whether telomerase activation is necessary for immortalization. All normal human fibroblasts tested were negative for telomerase activity. Thirteen out of 13 DNA tumor virus-transformed cell cultures were also negative in the pre-crisis (i.e. non-immortalized) stage. Of 35 immortalized cell lines, 20 had telomerase activity as expected, but 15 had no detectable telomerase. The 15 telomerase-negative immortalized cell lines all had very long and heterogeneous telomeres of up to 50 kb. Hybrids between telomerase-negative and telomerase-positive cells senesced. Two senescent hybrids demonstrated telomerase activity, indicating that activation of telomerase is not sufficient for immortalization. Some hybrid clones subsequently recommenced proliferation and became immortalized either with or without telomerase activity. Those without telomerase activity also had very long and heterogeneous telomeres. Taken together, these data suggest that the presence of lengthened or stabilized telomeres is necessary for immortalization, and that this may be achieved either by the reactivation of telomerase or by a novel and as yet unidentified mechanism.

  18. Decellularized extracellular matrices produced from immortal cell lines derived from different parts of the placenta support primary mesenchymal stem cell expansion.

    Directory of Open Access Journals (Sweden)

    Gina D Kusuma

    Full Text Available Mesenchymal stem/stromal cells (MSCs exhibit undesired phenotypic changes during ex vivo expansion, limiting production of the large quantities of high quality primary MSCs needed for both basic research and cell therapies. Primary MSCs retain many desired MSC properties including proliferative capacity and differentiation potential when expanded on decellularized extracellular matrix (dECM prepared from primary MSCs. However, the need to use low passage number primary MSCs (passage 3 or lower to produce the dECM drastically limits the utility and impact of this technology. Here, we report that primary MSCs expanded on dECM prepared from high passage number (passage 25 human telomerase reverse transcriptase (hTERT transduced immortal MSC cell lines also exhibit increased proliferation and osteogenic differentiation. Two hTERT-transduced placenta-derived MSC cell lines, CMSC29 and DMSC23 [derived from placental chorionic villi (CMSCs and decidua basalis (DMSCs, respectively], were used to prepare dECM-coated substrates. These dECM substrates showed structural and biochemical differences. Primary DMSCs cultured on dECM-DMSC23 showed a three-fold increase in cell number after 14 days expansion in culture and increased osteogenic differentiation compared with controls. Primary CMSCs cultured on the dECM-DMSC23 exhibited a two-fold increase in cell number and increased osteogenic differentiation. We conclude that immortal MSC cell lines derived from different parts of the placenta produce dECM with varying abilities for supporting increased primary MSC expansion while maintaining important primary MSC properties. Additionally, this is the first demonstration of using high passage number cells to produce dECM that can promote primary MSC expansion, and this advancement greatly increases the feasibility and applicability of dECM-based technologies.

  19. Determination of Drug Toxicity Using 3D Spheroids Constructed From an Immortal Human Hepatocyte Cell Line

    DEFF Research Database (Denmark)

    Fey, S. J.; Wrzesinski, Krzysztof

    2012-01-01

    that a precise dose can be provided in a manner similar to in vivo studies. This avoided correction of the actual dose given based on a protein determination after treatment (when some cells may have lysed). Conversion of published in vitro LC50 data (mM) for six common drugs (acetaminophen, amiodarone...... different from 2D cultures and are more representative of the liver in vivo....

  20. Transplantations and Cloning of an Immortal Cell Line from Rat SCN

    Science.gov (United States)

    1994-05-31

    8217 NTIS G•A&I DTIC TA• o t I It q 2 EXPERIMENTAL PROCEDURES Animals and Primary Cultures On separate occasions at day 15 and 16 of gestation, fetuses...for 30 minutes, primary antibody in PBS with 0.25% BSA for 48-72 hr at 50C, biotinylated donkey anti-rabbit immunoglobulin (IgG; Jackson Labs...for the first several weeks postinfection; cells were either singly isolated without companions or organized into small aggregates of no more than 4-5

  1. Establishment of a new immortalized human corneal epithelial cell line (iHCE-NY1) for use in evaluating eye irritancy by in vitro test methods.

    Science.gov (United States)

    Yamamoto, Naoki; Kato, Yoshinao; Sato, Atsushi; Hiramatsu, Noriko; Yamashita, Hiromi; Ohkuma, Mahito; Miyachi, Ei-Ichi; Horiguchi, Masayuki; Hirano, Koji; Kojima, Hajime

    2016-08-01

    In vitro test methods that use human corneal epithelial cells to evaluate the eye irritation potency of chemical substances do not use human corneal epithelium because it has been difficult to maintain more than four passages. In this study, we make a new cell line comprising immortalized human corneal epithelial cells (iHCE-NY1). The IC50 of iHCE-NY1 cells is slightly higher than that of Statens Seruminstitut Rabbit Cornea (SIRC) cells, which are currently used in some in vitro test methods. CDKN1A in iHCE-NY1 cells was used as a marker of gene expression to indicate cell cycle activity. This enabled us to evaluate cell recovery characteristics at concentrations lower than the IC50 of cytotoxic tests.

  2. The combined effects of irradiation and herpes simplex virus type 1 infection on an immortal gingival cell line

    Science.gov (United States)

    2014-01-01

    Background Oral mucosa is frequently exposed to Herpes simplex virus type 1 (HSV-1) infection and irradiation due to dental radiography. During radiotherapy for oral cancer, the surrounding clinically normal tissues are also irradiated. This prompted us to study the effects of HSV-1 infection and irradiation on viability and apoptosis of oral epithelial cells. Methods Immortal gingival keratinocyte (HMK) cells were infected with HSV-1 at a low multiplicity of infection (MOI) and irradiated with 2 Gy 24 hours post infection. The cells were then harvested at 24, 72 and 144 hours post irradiation for viability assays and qRT-PCR analyses for the apoptosis-related genes caspases 3, 8, and 9, bcl-2, NFκB1, and viral gene VP16. Mann–Whitney U-test was used for statistical calculations. Results Irradiation improved the cell viability at 144 hours post irradiation (P = 0.05), which was further improved by HSV-1 infection at MOI of 0.00001 (P = 0.05). Simultaneously, the combined effects of infection at MOI of 0.0001 and irradiation resulted in upregulation in NFκB1 (P = 0.05). The combined effects of irradiation and HSV infection also significantly downregulated the expression of caspases 3, 8, and 9 at 144 hours (P = 0.05) whereas caspase 3 and 8 significantly upregulated in non-irradiated, HSV-infected cells as compared to uninfected controls (P = 0.05). Infection with 0.0001 MOI downregulated bcl-2 in non-irradiated cells but was upregulated by 27% after irradiation when compared to non-irradiated infected cells (P = 0.05). Irradiation had no effect on HSV-1 shedding or HSV gene expression at 144 hours. Conclusions HSV-1 infection may improve the viability of immortal cells after irradiation. The effect might be related to inhibition of apoptosis. PMID:25005804

  3. Type I Interferon Reaction to Viral Infection in Interferon-Competent, Immortalized Cell Lines from the African Fruit Bat Eidolon helvum

    Science.gov (United States)

    Biesold, Susanne E.; Ritz, Daniel; Gloza-Rausch, Florian; Wollny, Robert; Drexler, Jan Felix; Corman, Victor M.; Kalko, Elisabeth K. V.; Oppong, Samuel; Drosten, Christian; Müller, Marcel A.

    2011-01-01

    Bats harbor several highly pathogenic zoonotic viruses including Rabies, Marburg, and henipaviruses, without overt clinical symptoms in the animals. It has been suspected that bats might have evolved particularly effective mechanisms to suppress viral replication. Here, we investigated interferon (IFN) response, -induction, -secretion and -signaling in epithelial-like cells of the relevant and abundant African fruit bat species, Eidolon helvum (E. helvum). Immortalized cell lines were generated; their potential to induce and react on IFN was confirmed, and biological assays were adapted to application in bat cell cultures, enabling comparison of landmark IFN properties with that of common mammalian cell lines. E. helvum cells were fully capable of reacting to viral and artificial IFN stimuli. E. helvum cells showed highest IFN mRNA induction, highly productive IFN protein secretion, and evidence of efficient IFN stimulated gene induction. In an Alphavirus infection model, O'nyong-nyong virus exhibited strong IFN induction but evaded the IFN response by translational rather than transcriptional shutoff, similar to other Alphavirus infections. These novel IFN-competent cell lines will allow comparative research on zoonotic, bat-borne viruses in order to model mechanisms of viral maintenance and emergence in bat reservoirs. PMID:22140523

  4. Identification of differentially expressed proteins between human esophageal immortalized and carcinomatous cell lines by two-dimensional electrophoresis and MALDI-TOF-mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Xing-Dong Xiong; Li-Yan Xu; Zhong-Ying Shen; Wei-Jia Cai; Jian-Min Luo; Ya-Li Han; En-Min Li

    2002-01-01

    AIM: To identify the differentially expressed proteins between the human immortalized esophageal epithelial cell line (SHEE) and the malignant transformed esophageal carcinoma cell line (SHEEC), and to explore new ways for studying esophageal carcinoma associated genes. METHODS: SHEE and SHEEC cell lines were used to separate differentially expressed proteins by two-dimensional electrophoresis/The silver-stained 2-D gels was scanned with EDAS290 digital camera system and analyzed with the PDQuest 6.2 Software. Six spots in which the differentially expressed protein was more obvious were selected and analyzed with matrix-assisted laser desorption/ionization time of flying mass spectrometry (MALDI-TOF-MS).RESULTS: There were 107±4.58 and 115±9.91 protein spots observed in SHEE and SHEEC respectively, and the majority of these spots between the two cell lines matched each other (r=-0.772), only a few were expressed differentially. After analyzed by MALDI-TOF-MS and database search for the six differentially expressed proteins, One new protein as well as other five sequence-known proteins including RNPEP-like protein, human rRNA gene upstream sequence binding transcription factor, uracil DNA glycosylase,Annexin A2 and p300/CBP-associated factor were preliminarily identified.CONCLUSION: These differentially expressed proteins might play an importance role during malignant transformation of SHEEC from SHEE. The identification of these proteins may serve as a new way for studying esophageal carcinoma associated genes.

  5. Assessment of estradiol-induced gene regulation and proliferation in an immortalized mouse immature Sertoli cell line.

    Science.gov (United States)

    Kumar, Narender; Srivastava, Swati; Burek, Malgorzata; Förster, Carola Y; Roy, Partha

    2016-03-01

    The number of Sertoli cells during proliferative phase determines the fate of the germ cells in male reproductive system. A well-characterized cell line may help in better understanding of Sertoli cell biology. Hence, the present study assessed estradiol signaling in a mouse immature Sertoli cell line (MSC-1) as an alternative model in place of primary culture of Sertoli cells. In this study, we used MSC-1 cell line, derived from 10-day old mice. The cell cycle parameters were assessed, and the expression and regulation of Sertoli cell-specific secretory genes (ABP; androgen-binding protein) and tight junction genes (claudin-5, occludin, and vimentin) in response to estradiol was studied. The results obtained suggested the presence of both estrogen receptors (ERα and ERβ) in MSC-1 cells. In vitro scratch assay and cell-cycle analysis suggested the proliferative effects of estradiol in both time- and dose-dependent manner. The gene expression profiles of ABP, claudin-5, and occludin showed biphasic regulation at low and high doses of estradiol. Analysis of signaling pathways suggested the activation of extracellular signal-regulated kinase (ERK) pathway with significantly increased pERK/ERK ratio (p<0.05). The results also suggested down regulation in the expression of mir-17 family members (mir-17, mir-20b, and mir-106a) (p<0.05). Considering the limited number of Sertoli cell lines and long-term survival inability of primary culture of Sertoli cells, MSC-1 cells could be a potential cell line for understanding the mechanisms of various cellular events in Sertoli cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Identification of two immortalized cell lines, ECV304 and bEnd3, for in vitro permeability studies of blood-brain barrier.

    Directory of Open Access Journals (Sweden)

    Shu Yang

    Full Text Available To identify suitable cell lines for a mimetic system of in vivo blood-brain barrier (BBB for drug permeability assessment, we characterized two immortalized cell lines, ECV304 and bEnd3 in the respect of the tightness, tight junction proteins, P-glycoprotein (P-gp function and discriminative brain penetration. The ECV304 monoculture achieved higher transendothelial electrical resistance (TEER and lower permeability to Lucifer yellow than bEnd3. However, co-culture with rat glioma C6 cells impaired the integrity of ECV304 and bEnd3 cell layers perhaps due to the heterogeneity among C6 cells in inducing BBB characteristics. The immunostaining of ZO-1 delivered distinct bands along cell borders on both cell lines while those of occludin and claudin-5 were diffused and weak. P-gp functionality was only proved in bEnd3 by Rhodamine 123 (R123 uptake assay. A permeability test of reference compounds displayed a similar rank order (digoxin < R123 < quinidine, verapamil < propranolol in ECV304 and bEnd3 cells. In comparison with bEnd3, ECV304 developed tighter barrier for the passage of reference compounds and higher discrimination between transcellular and paracellular transport. However, the monoculture models of ECV304 and bEnd3 fail to achieve the sufficient tightness of in vitro BBB permeability models with high TEER and evident immunostaining of tight junction proteins. Further strategies to enhance the paracellular tightness of both cell lines to mimic in vivo BBB tight barrier deserve to be conducted.

  7. Effects of hTERT immortalization on osteogenic and adipogenic differentiation of dental pulp stem cells

    Directory of Open Access Journals (Sweden)

    El-Ayachi Ikbale

    2016-03-01

    Full Text Available These data relate to the differentiation of human dental pulp stem cells (DPSC and DPSC immortalized by constitutively expressing human telomerase reverse transcriptase (hTERT through both osteogenic and adipogenic lineages (i.e. to make bone producing and fat producing cells from these dental pulp stem cells. The data augment another study to characterize immortalized DPSC for the study of neurogenetic “Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders” [1]. Two copies of one typical control cell line (technical replicates were used in this study. The data represent the differentiation of primary DPSC into osteoblast cells approximately 60% more effectively than hTERT immortalized DPSC. Conversely, both primary and immortalized DPSC are poorly differentiated into adipocytes. The mRNA expression levels for both early and late adipogenic and osteogenic gene markers are shown. Keywords: Stem cells, Osteogenic, Adipogenic, Immortalized, hTERT, DPSC

  8. Establishment of a Conditionally Immortalized Wilms Tumor Cell Line with a Homozygous WT1 Deletion within a Heterozygous 11p13 Deletion and UPD Limited to 11p15.

    Directory of Open Access Journals (Sweden)

    Artur Brandt

    Full Text Available We describe a stromal predominant Wilms tumor with focal anaplasia and a complex, tumor specific chromosome 11 aberration: a homozygous deletion of the entire WT1 gene within a heterozygous 11p13 deletion and an additional region of uniparental disomy (UPD limited to 11p15.5-p15.2 including the IGF2 gene. The tumor carried a heterozygous p.T41A mutation in CTNNB1. Cells established from the tumor carried the same chromosome 11 aberration, but a different, homozygous p.S45Δ CTNNB1 mutation. Uniparental disomy (UPD 3p21.3pter lead to the homozygous CTNNB1 mutation. The tumor cell line was immortalized using the catalytic subunit of human telomerase (hTERT in conjunction with a novel thermolabile mutant (U19dl89-97tsA58 of SV40 large T antigen (LT. This cell line is cytogenetically stable and can be grown indefinitely representing a valuable tool to study the effect of a complete lack of WT1 in tumor cells. The origin/fate of Wilms tumors with WT1 mutations is currently poorly defined. Here we studied the expression of several genes expressed in early kidney development, e.g. FOXD1, PAX3, SIX1, OSR1, OSR2 and MEIS1 and show that these are expressed at similar levels in the parental and the immortalized Wilms10 cells. In addition the limited potential for muscle/ osteogenic/ adipogenic differentiation similar to all other WT1 mutant cell lines is also observed in the Wilms10 tumor cell line and this is retained in the immortalized cells. In summary these Wilms10 cells are a valuable model system for functional studies of WT1 mutant cells.

  9. Establishment of a Conditionally Immortalized Wilms Tumor Cell Line with a Homozygous WT1 Deletion within a Heterozygous 11p13 Deletion and UPD Limited to 11p15

    Science.gov (United States)

    Brandt, Artur; Löhers, Katharina; Beier, Manfred; Leube, Barbara; de Torres, Carmen; Mora, Jaume; Arora, Parineeta; Jat, Parmjit S.; Royer-Pokora, Brigitte

    2016-01-01

    We describe a stromal predominant Wilms tumor with focal anaplasia and a complex, tumor specific chromosome 11 aberration: a homozygous deletion of the entire WT1 gene within a heterozygous 11p13 deletion and an additional region of uniparental disomy (UPD) limited to 11p15.5-p15.2 including the IGF2 gene. The tumor carried a heterozygous p.T41A mutation in CTNNB1. Cells established from the tumor carried the same chromosome 11 aberration, but a different, homozygous p.S45Δ CTNNB1 mutation. Uniparental disomy (UPD) 3p21.3pter lead to the homozygous CTNNB1 mutation. The tumor cell line was immortalized using the catalytic subunit of human telomerase (hTERT) in conjunction with a novel thermolabile mutant (U19dl89-97tsA58) of SV40 large T antigen (LT). This cell line is cytogenetically stable and can be grown indefinitely representing a valuable tool to study the effect of a complete lack of WT1 in tumor cells. The origin/fate of Wilms tumors with WT1 mutations is currently poorly defined. Here we studied the expression of several genes expressed in early kidney development, e.g. FOXD1, PAX3, SIX1, OSR1, OSR2 and MEIS1 and show that these are expressed at similar levels in the parental and the immortalized Wilms10 cells. In addition the limited potential for muscle/ osteogenic/ adipogenic differentiation similar to all other WT1 mutant cell lines is also observed in the Wilms10 tumor cell line and this is retained in the immortalized cells. In summary these Wilms10 cells are a valuable model system for functional studies of WT1 mutant cells. PMID:27213811

  10. Dioxin exerts anti-estrogenic actions in a novel dioxin-responsive telomerase-immortalized epithelial cell line of the porcine oviduct (TERT-OPEC).

    Science.gov (United States)

    Hombach-Klonisch, Sabine; Pocar, Paola; Kauffold, Johannes; Klonisch, Thomas

    2006-04-01

    Oviduct epithelial cells are important for the nourishment and survival of ovulated oocytes and early embryos, and they respond to the steroid hormones estrogen and progesterone. Endocrine-disrupting polyhalogenated aromatic hydrocarbons (PHAH) are environmental toxins that act in part through the ligand-activated transcription factor arylhydrocarbon receptor (AhR; dioxin receptor), and exposure to PHAH has been shown to decrease fertility. To investigate effects of PHAHs on the oviduct epithelium as a potential target tissue of dioxin-type endocrine disruptors, we have established a novel telomerase-immortalized oviduct porcine epithelial cell line (TERT-OPEC). TERT-OPEC exhibited active telomerase and the immunoreactive epithelial marker cytokeratin but lacked the stromal marker vimentin. TERT-OPEC contained functional estrogen receptor (ER)-alpha and AhR, as determined by the detection of ER-alpha- and AhR-specific target molecules. Treatment of TERT-OPEC with the AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) resulted in a significant increase in the production of the cytochrome P-450 microsomal enzyme CYP1A1. Activated AhR caused a downregulation of ER nuclear protein fraction and significantly decreased ER-signaling in TERT-OPEC as determined by ERE-luciferase transient transfection assays. In summary, the TCDD-induced and AhR-mediated anti-estrogenic responses by TERT-OPEC suggest that PHAH affect the predominantly estrogen-dependent differentiation of the oviduct epithelium within the fallopian tube. This action then alters the local endocrine milieu, potentially resulting in a largely unexplored cause of impaired embryonic development and female infertility.

  11. Difference in membrane repair capacity between cancer cell lines and a normal cell line

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; McNeil, Anna K.; Novak, Ivana

    2016-01-01

    repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique...... cancer cell lines (p immortalized cell line (p

  12. Successful immortalization of mesenchymal progenitor cells derived from human placenta and the differentiation abilities of immortalized cells

    International Nuclear Information System (INIS)

    Zhang Xiaohong; Soda, Yasushi; Takahashi, Kenji; Bai, Yuansong; Mitsuru, Ayako; Igura, Koichi; Satoh, Hitoshi; Yamaguchi, Satoru; Tani, Kenzaburo; Tojo, Arinobu; Takahashi, Tsuneo A.

    2006-01-01

    We reported previously that mesenchymal progenitor cells derived from chorionic villi of the human placenta could differentiate into osteoblasts, adipocytes, and chondrocytes under proper induction conditions and that these cells should be useful for allogeneic regenerative medicine, including cartilage tissue engineering. However, similar to human mesenchymal stem cells (hMSCs), though these placental cells can be isolated easily, they are difficult to study in detail because of their limited life span in vitro. To overcome this problem, we attempted to prolong the life span of human placenta-derived mesenchymal cells (hPDMCs) by modifying hTERT and Bmi-1, and investigated whether these modified hPDMCs retained their differentiation capability and multipotency. Our results indicated that the combination of hTERT and Bmi-1 was highly efficient in prolonging the life span of hPDMCs with differentiation capability to osteogenic, adipogenic, and chondrogenic cells in vitro. Clonal cell lines with directional differentiation ability were established from the immortalized parental hPDMC/hTERT + Bmi-1. Interestingly, hPDMC/Bmi-1 showed extended proliferation after long-term growth arrest and telomerase was activated in the immortal hPDMC/Bmi-1 cells. However, the differentiation potential was lost in these cells. This study reports a method to extend the life span of hPDMCs with hTERT and Bmi-1 that should become a useful tool for the study of mesenchymal stem cells

  13. Citric acid induces cell-cycle arrest and apoptosis of human immortalized keratinocyte cell line (HaCaT) via caspase- and mitochondrial-dependent signaling pathways.

    Science.gov (United States)

    Ying, Tsung-Ho; Chen, Chia-Wei; Hsiao, Yu-Ping; Hung, Sung-Jen; Chung, Jing-Gung; Yang, Jen-Hung

    2013-10-01

    Citric acid is an alpha-hydroxyacid (AHA) widely used in cosmetic dermatology and skincare products. However, there is concern regarding its safety for the skin. In this study, we investigated the cytotoxic effects of citric acid on the human keratinocyte cell line HaCaT. HaCaT cells were treated with citric acid at 2.5-12.5 mM for different time periods. Cell-cycle arrest and apoptosis were investigated by 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining, flow cytometry, western blot and confocal microscopy. Citric acid not only inhibited proliferation of HaCaT cells in a dose-dependent manner, but also induced apoptosis and cell cycle-arrest at the G2/M phase (before 24 h) and S phase (after 24 h). Citric acid increased the level of Bcl-2-associated X protein (BAX) and reduced the levels of B-cell lymphoma-2 (BCL-2), B-cell lymphoma-extra large (BCL-XL) and activated caspase-9 and caspase-3, which subsequently induced apoptosis via caspase-dependent and caspase-independent pathways. Citric acid also activated death receptors and increased the levels of caspase-8, activated BH3 interacting-domain death agonist (BID) protein, Apoptosis-inducing factor (AIF), and Endonuclease G (EndoG). Therefore, citric acid induces apoptosis through the mitochondrial pathway in the human keratinocyte cell line HaCaT. The study results suggest that citric acid is cytotoxic to HaCaT cells via induction of apoptosis and cell-cycle arrest in vitro.

  14. Clonal nature of spontaneously immortalized 3T3 cells.

    Science.gov (United States)

    Rittling, S R

    1996-11-25

    Mouse embryo fibroblasts (MEFs), when plated at appropriate densities, proliferate vigorously for several passages, and then the growth rate of the culture slows considerably. If the cells are plated at a high enough density and continuously passed, the cultures will eventually overcome this "crisis" period and resume rapid growth. Here, we have addressed the question of what the changes are that cells undergo in overcoming the growth restraints of crisis. Primary MEF cells were infected with a retrovirus which confers G418 resistance and selected in G418. The resultant pre-crisis population comprised cells which each contained a retrovirus integrated at a unique genomic location. These cells were then passed according to the 3T3 protocol until immortal, rapidly growing cells emerged. The integration pattern of the retrovirus in the immortal population was examined. In two independent experiments, the immortal population of cells grown in the presence of G418 comprised two independent clones of cells, with additional clones undetectable at the level of detection of the assays used. The integration pattern was also examined in parallel infected cultures grown in the absence of selection. In one experiment the unselected immortal population contained the same labeled clone that appeared in the sister infected culture, indicating that an immortal precursor was present in the precrisis population. These results are consistent with the idea that a mutation is responsible for the immortal phenotype.

  15. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha

    2008-01-01

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged...

  16. Immortalized sheep microglial cells are permissive to a diverse range of ruminant viruses.

    Science.gov (United States)

    Stanton, James B; Swanson, Beryl; Orozco, Edith; Muñoz-Gutiérrez, Juan F; Evermann, James F; Ridpath, Julia F

    2017-12-01

    Ruminants, including sheep and goats (small ruminants), are key agricultural animals in many parts of the world. Infectious diseases, including many viral diseases, are significant problems to efficient production of ruminants. Unfortunately, reagents tailored to viruses of ruminants, and especially small ruminants, are lacking compared to other animals more typically used for biomedical research. The purpose of this study was to determine the permissibility of a stably immortalized, sheep microglial cell line to viruses that are reported to infect ruminants: bovine viral diarrhea virus (BVDV), bovine herpesvirus 1 (BoHV-1), small ruminant lentiviruses (SRLV), and bovine respiratory syncytial virus (BRSV). Sublines A and H of previously isolated, immortalized, and characterized (CD14-positive) ovine microglial cells were used. Bovine turbinate cells and goat synovial membrane cells were used for comparison. Cytopathic changes were used to confirm infection of individual wells, which were then counted and used to calculate the 50% tissue culture infectious dose. Uninoculated cells served as negative controls and confirmed that the cells were not previously infected with these viruses using polymerase chain reaction (PCR). Inoculation of the two microglial cell sublines with laboratory and field isolates of BVDV, BoHV-1, and BRSV resulted in viral infection in a manner similar to bovine turbinate cells. Immortalized microglia cells are also permissive to SRLV, similar to goat synovial membrane cells. These immortalized sheep microglial cells provide a new tool for the study of ruminant viruses in ruminant microglial cell line.

  17. Functional analysis of a novel human serotonin transporter gene promoter in immortalized raphe cells

    DEFF Research Database (Denmark)

    Mortensen, O V; Thomassen, M; Larsen, M B

    1999-01-01

    were found to possess the additional 379 bp fragment. The integrity of the promoter was furthermore confirmed by genomic Southern blotting. The promoter activity was analyzed by reporter gene assays in neuronal and non-neuronal serotonergic cell lines. In immortalized serotonergic raphe neurons, RN46A...

  18. Genes involved in immortalization of human mammary cells

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2001-09-27

    Breast cancer progression is characterized by inappropriate cell growth. Normal cells cease growth after a limited number of cell divisions--a process called cellular senescence-while tumor cells may acquire the ability to proliferate indefinitely (immortality). Inappropriate expression of specific oncogenes in a key cellular signaling pathway (Ras, Raf) can promote tumorigenicity in immortal cells, while causing finite lifespan cells to undergo a rapid senescence-like arrest. We have studied when in the course of transformation of cultured human mammary epithelial cells (HMEC), the response to overexpressed oncogenic Raf changes from being tumor-suppressive to tumor enhancing, and what are the molecular underpinnings of this response. Our data indicate: (1) HMEC acquire the ability to maintain growth in the presence of oncogenic Raf not simply as a consequence of overcoming senescence, but as a result of a newly discovered step in the process of immortal transformation uncovered by our lab, termed conversion. Immortal cells that have not undergone conversion (e.g., cells immortalized by exogenous introduction of the immortalizing enzyme, telomerase) remain growth inhibited. (2) Finite lifespan HMEC growth arrest in response to oncogenic Raf using mediators of growth inhibition that are very different from those used in response to oncogenic Raf by rodent cells and certain other human cell types, including the connective tissue cells from the same breast tissue. While many diverse cell types appear to have in common a tumor-suppressive response to this oncogenic signal, they also have developed multiple mechanisms to elicit this response. Understanding how cancer cells acquire the crucial capacity to be immortal and to abrogate normal tumor-suppressive mechanisms may serve both to increase our understanding of breast cancer progression, and to provide new targets for therapeutic intervention. Our results indicate that normal HMEC have novel means of enforcing a Raf

  19. Establishment of a novel immortalized human prostatic epithelial cell line stably expressing androgen receptor and its application for the functional screening of androgen receptor modulators

    International Nuclear Information System (INIS)

    Yu, Shan; Wang, Ming-Wei; Yao, Xiaoqiang; Chan, F.L.

    2009-01-01

    In this study, we developed a human prostatic epithelial cell line BPH-1-AR stably expressing AR by lentiviral transduction. Characterization by immunoblot and RT-PCR showed that AR was stably expressed in all representative BPH-1-AR clones. Androgen treatment induced a secretory differentiation phenotype in BPH-1-AR cells but suppressed their cell proliferation. Treatments with AR agonists induced transactivation of a transfected PSA-gene promoter reporter in BPH-1-AR cells, whereas this transactivation was suppressed by an AR antagonist flutamide, indicating that the transduced AR in BPH-1-AR cells was functional. Finally, we utilized BPH-1-AR cells to evaluate the androgenic activities and growth effects of five newly developed non-steroidal compounds. Results showed that these compounds showed androgenic activities and growth-inhibitory effects on BPH-1-AR cells. Our results showed that BPH-1-AR cell line would be a valuable in vitro model for the study of androgen-regulated processes in prostatic epithelial cells and identification of compounds with AR-modulating activities.

  20. Inefficiency in macromolecular transport of SCS-based microcapsules affects viability of primary human mesenchymal stem cells but not of immortalized cells

    DEFF Research Database (Denmark)

    Sanz-Nogués, Clara; Horan, Jason; Thompson, Kerry

    2015-01-01

    mesenchymal stem cells (hMSCs). Human MSCs are of interest in regenerative medicine applications due to pro-angiogenic, anti-inflammatory and immunomodulatory properties, which result from paracrine effects of this cell type. In the present work we have encapsulated primary hMSCs and hMSC-TERT immortalized...... nutrients and had a more detrimental effect on the viability of primary cell cultures compared to cell lines and immortalized cells. This article is protected by copyright. All rights reserved....

  1. X-ray induction of immortalization in primary rat embryo cells associated with and without tumorigenicity

    International Nuclear Information System (INIS)

    Sierra, E.; Oberley, L.W.; Guernsey, D.L.

    1985-01-01

    Cultures of primary rat embryo fibroblasts were irradiated with X-rays (3 Gy). After 14 days the majority of colonies in both irradiated and control plates had senesced. Surviving clones were ring isolated from irradiated and control plates and grown in culture. A phase of rapid proliferation after isolation was observed, followed by a decline (crisis) leading to senescence. Several clones from the irradiated plates were able to recover from this crisis and gave rise to continuous cell lines, while all colonies from control plates senesced. Three types of cells have been identified among the irradiated survivors: (1) immortal fully transformed, capable of growth in soft agar (Aga/sup +/) and tumor formation, (2) immortal normal, not able to grow in soft agar (Aga/sup -/) and nontumorigenic, and (3) immortal Aga/sup -/ cells which progressed to malignancy (Aga/sup +/, tumorigenicity) after further sub-culture. These data support the suggestion that X-rays can induce immortalization of mammalian cells in the absence of tumorigenicity, in addition to (and separate from) the fully tumorigenetic state

  2. Multistep carcinogenesis of normal human fibroblasts. Human fibroblasts immortalized by repeated treatment with Co-60 gamma rays were transformed into tumorigenic cells with Ha-ras oncogenes.

    Science.gov (United States)

    Namba, M; Nishitani, K; Fukushima, F; Kimoto, T

    1988-01-01

    Two normal mortal human fibroblast cell strains were transformed into immortal cell lines, SUSM-1 and KMST-6, by treatment with 4-nitroquinoline 1-oxide (4NQO) and Co-60 gamma rays, respectively. These immortalized cell lines showed morphological changes of cells and remarkable chromosome aberrations, but neither of them grew in soft agar or formed tumors in nude mice. The immortal cell line, KMST-6, was then converted into neoplastic cells by treatment with Harvey murine sarcoma virus (Ha-MSV) or the c-Ha-ras oncogene derived from a human lung carcinoma. These neoplastically transformed cells acquired anchorage-independent growth potential and developed tumors when transplanted into nude mice. All the tumors grew progressively without regression until the animals died of tumors. In addition, the tumors were transplantable into other nude mice. Normal human fibroblasts, on the other hand, were not transformed into either immortal or tumorigenic cells by treatment with Ha-MSV or c-Ha-ras alone. Our present data indicate that (1) the chemical carcinogen, 4NQO, or gamma rays worked as an initiator of carcinogenesis in normal human cells, giving rise to immortality, and (2) the ras gene played a role in the progression of the immortally transformed cells to more malignant cells showing anchorage-independent growth and tumorigenicity. In other words, the immortalization process of human cells seems to be a pivotal or rate-limiting step in the carcinogenesis of human cells.

  3. Establishment and characterization of two human breast carcinoma cell lines by spontaneous immortalization: Discordance between Estrogen, Progesterone and HER2/neu receptors of breast carcinoma tissues with derived cell lines

    Directory of Open Access Journals (Sweden)

    Kamalidehghan Behnam

    2012-10-01

    Full Text Available Abstract Background Breast cancer is one of the most common cancers among women throughout the world. Therefore, established cell lines are widely used as in vitro experimental models in cancer research. Methods Two continuous human breast cell lines, designated MBC1 and MBC2, were successfully established and characterized from invasive ductal breast carcinoma tissues of Malaysian patients. MBC1 and MBC2 have been characterized in terms of morphology analysis, population doubling time, clonogenic formation, wound healing assay, invasion assay, cell cycle, DNA profiling, fluorescence immunocytochemistry, Western blotting and karyotyping. Results MBC1 and MBC2 exhibited adherent monolayer epithelial morphology at a passage number of 150. Receptor status of MBC1 and MBC2 show (ER+, PR+, HER2+ and (ER+, PR-, HER2+, respectively. These results are in discordance with histopathological studies of the tumoral tissues, which were triple negative and (ER-, PR-, HER2+ for MBC1 and MBC2, respectively. Both cell lines were capable of growing in soft agar culture, which suggests their metastatic potential. The MBC1 and MBC2 metaphase spreads showed an abnormal karyotype, including hyperdiploidy and complex rearrangements with modes of 52–58 chromosomes per cell. Conclusions Loss or gain in secondary properties, deregulation and specific genetic changes possibly conferred receptor changes during the culturing of tumoral cells. Thus, we hypothesize that, among heterogenous tumoral cells, only a small minority of ER+/PR+/HER2+ and ER+/PR-/HER2+ cells with lower energy metabolism might survive and adjust easily to in vitro conditions. These cell lines will pave the way for new perspectives in genetic and biological investigations, drug resistance and chemotherapy studies, and would serve as prototype models in Malaysian breast carcinogenesis investigations.

  4. Effects of simvastatin on CAT-1-mediated arginine transport and NO level under high glucose conditions in conditionally immortalized rat inner blood-retinal barrier cell lines (TR-iBRB).

    Science.gov (United States)

    Tun, Temdara; Kang, Young-Sook

    2017-05-01

    Hyperglycemia causes the breakdown of the blood-retinal barrier by impairing endothelial nitric oxide synthase (eNOS) function. Statins have many pleiotropic effects such as improving endothelial barrier permeability and increasing eNOS mRNA stability. The objective of this study was to determine effect of simvastatin on l-arginine transport and NO production under high-glucose conditions in conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB). Changes in l-arginine transport uptake and, expression levels of cationic amino acid transporter 1 (CAT-1) and eNOS mRNA were investigated after pre-treatment with simvastatin and NOS inhibitors (l-NMMA and l-NAME) under high-glucose conditions using TR-iBRB, an in vitro model of iBRB. The NO level released from TR-iBRB cells was examined using Griess reagents. Under high glucose conditions, [ 3 H]l-arginine uptake was decreased in TR-iBRB cells. Simvastatin pretreatment elevated [ 3 H]l-arginine uptake, the expression levels of CAT-1 and eNOS mRNA, and NO production under high-glucose conditions. Moreover, the co-treatment with simvastatin and NOS inhibitors reduced [ 3 H]l-arginine uptake compared to pretreatment with simvastatin alone. Our results suggest that, in the presence of high-glucose levels, increased l-arginine uptake due to simvastatin treatment was associated with increased CAT-1 and eNOS mRNA levels, leading to higher NO production in TR-iBRB cells. Thus, simvastatin might be a good modulator for diabetic retinopathy therapy by increasing of the l-arginine uptake and improving endothelial function in retinal capillary endothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A supporting role of Chinese National Immortalized Cell Bank in life science research.

    Science.gov (United States)

    Xu, Chong-feng; Duan, Zi-yuan

    2017-01-20

    A biorepository of human samples is essential to support the research of life science. Lymphoblastoid B cell line (LCL), which is easy to be prepared and can reproduce indefinitely, is a convenient form of sample preservation. LCLs are established from human B cells transformed by Epstein-Barr virus (EBV). Chinese National Immortalized Cell Bank has preserved human LCLs from different ethnic groups in China. As there are many studies on the nature of LCLs and public available resources with genome-wide data for LCLs, they have been widely applied in genetics, immunology, pharmacogenetics/genomics, regenerative medicine, cancer pathogenesis and immunotherapy, screening and generation of fully human neutralizing monoclonal antibodies and study on EBV pathogenesis. Here, we review the characteristics of LCLs and their contributions to scientific research, and introduce preserved samples in Chinese National Immortalized Cell Bank to the scientific community. We hope this bank can support more areas in the scientific research.

  6. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies

    OpenAIRE

    Eigenmann, Daniela E; Xue, Gongda; Kim, Kwang S; Moses, Ashlee V; Hamburger, Matthias; Oufir, Mouhssin

    2013-01-01

    Background: Reliable human in vitro blood brain barrier (BBB) models suitable for high throughput screening are urgently needed in early drug discovery and development for assessing the ability of promising bioactive compounds to overcome the BBB. To establish an improved human in vitro BBB model we compared four currently available and well characterized immortalized human brain capillary endothelial cell lines hCMEC/D3 hBMEC TY10 and BB19 with respect to barrier tightness and paracellular p...

  7. Transcriptome profile and cytogenetic analysis of immortalized neuronally restricted progenitor cells derived from the porcine olfactory bulb

    Science.gov (United States)

    Recently, we established and phenotypically characterized an immortalized porcine olfactory bulb neuroblast cell line, OBGF400 (Uebing-Czipura et al., 2008). To facilitate the future application of these cells in studies of neurological dysfunction and neuronal replacement therapies, a comprehensive...

  8. Cell culture from sponges: pluripotency and immortality

    NARCIS (Netherlands)

    Caralt Bosch, de S.; Uriz, M.J.; Wijffels, R.H.

    2007-01-01

    Sponges are a source of compounds with potential pharmaceutical applications. In this article, methods of sponge cell culture for production of these bioactive compounds are reviewed, and new approaches for overcoming the problem of metabolite supply are examined. The use of embryos is proposed as a

  9. Conditionally immortalized stem cell lines from human spinal cord retain regional identity and generate functional V2a interneurons and motorneurons

    Czech Academy of Sciences Publication Activity Database

    Cocks, G.; Romanyuk, Nataliya; Amemori, Takashi; Jendelová, Pavla; Forostyak, Oksana; Jeffries, A. R.; Perfect, L.; Thuret, S.; Dayanithi, Govindan; Syková, Eva; Price, J.

    2013-01-01

    Roč. 4, č. 3 (2013), s. 69 ISSN 1757-6512 R&D Projects: GA AV ČR IAA500390902; GA ČR GAP304/11/2373; GA ČR GA13-00939S; GA ČR(CZ) GBP304/12/G069 Institutional research plan: CEZ:AV0Z50390703 Institutional support: RVO:68378041 Keywords : neural stem cells * spinal cord * motoneurons Subject RIV: FH - Neurology Impact factor: 4.634, year: 2013

  10. DNA asymmetry in stem cells - immortal or mortal?

    Science.gov (United States)

    Yadlapalli, Swathi; Yamashita, Yukiko M

    2013-09-15

    The immortal strand hypothesis proposes that stem cells retain a template copy of genomic DNA (i.e. an 'immortal strand') to avoid replication-induced mutations. An alternative hypothesis suggests that certain cells segregate sister chromatids non-randomly to transmit distinct epigenetic information. However, this area of research has been highly controversial, with conflicting data even from the same cell types. Moreover, historically, the same term of 'non-random sister chromatid segregation' or 'biased sister chromatid segregation' has been used to indicate distinct biological processes, generating a confusion in the biological significance and potential mechanism of each phenomenon. Here, we discuss the models of non-random sister chromatid segregation, and we explore the strengths and limitations of the various techniques and experimental model systems used to study this question. We also describe our recent study on Drosophila male germline stem cells, where sister chromatids of X and Y chromosomes are segregated non-randomly during cell division. We aim to integrate the existing evidence to speculate on the underlying mechanisms and biological relevance of this long-standing observation on non-random sister chromatid segregation.

  11. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies.

    Science.gov (United States)

    Eigenmann, Daniela E; Xue, Gongda; Kim, Kwang S; Moses, Ashlee V; Hamburger, Matthias; Oufir, Mouhssin

    2013-11-22

    Reliable human in vitro blood-brain barrier (BBB) models suitable for high-throughput screening are urgently needed in early drug discovery and development for assessing the ability of promising bioactive compounds to overcome the BBB. To establish an improved human in vitro BBB model, we compared four currently available and well characterized immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, with respect to barrier tightness and paracellular permeability. Co-culture systems using immortalized human astrocytes (SVG-A cell line) and immortalized human pericytes (HBPCT cell line) were designed with the aim of positively influencing barrier tightness. Tight junction (TJ) formation was assessed by transendothelial electrical resistance (TEER) measurements using a conventional epithelial voltohmmeter (EVOM) and an automated CellZscope system which records TEER and cell layer capacitance (CCL) in real-time.Paracellular permeability was assessed using two fluorescent marker compounds with low BBB penetration (sodium fluorescein (Na-F) and lucifer yellow (LY)). Conditions were optimized for each endothelial cell line by screening a series of 24-well tissue culture inserts from different providers. For hBMEC cells, further optimization was carried out by varying coating material, coating procedure, cell seeding density, and growth media composition. Biochemical characterization of cell type-specific transmembrane adherens junction protein VE-cadherin and of TJ proteins ZO-1 and claudin-5 were carried out for each endothelial cell line. In addition, immunostaining for ZO-1 in hBMEC cell line was performed. The four cell lines all expressed the endothelial cell type-specific adherens junction protein VE-cadherin. The TJ protein ZO-1 was expressed in hCMEC/D3 and in hBMEC cells. ZO-1 expression could be confirmed in hBMEC cells by immunocytochemical staining. Claudin-5 expression was detected in hCMEC/D3, TY10, and at a very low level

  12. Immortalization of canine adipose-derived mesenchymal stem cells and their seminiferous tubule transplantation.

    Science.gov (United States)

    Fang, Jia; Wei, Yudong; Teng, Xin; Zhao, Shanting; Hua, Jinlian

    2018-04-01

    Adipose-derived mesenchymal stem cells (ADSCs) are proven to provide good effects in numerous tissue engineering application and other cell-based therapies. However, the difficulty in the proliferation of ADSCs, known as the "Hayflick limit" in vitro, limits their clinical application. Here, we immortalized canine ADSCs (cADSCs) with SV40 gene and transplanted them into busulfan-induced seminiferous tubules of infertile mice. The proliferation of these immortalized cells was improved significantly. Then, cellular differentiation assays showed that the immortalized cADSCs could differentiate into three-germ-layer cells, osteogenesis, chondrogenesis, adipogenesis phenotypes, and primordial germ cell-like cells (PGCLCs). In addition, the immortalized cADSCs can proliferate in the busulfan-induced seminiferous tubules of infertile mice. These findings confirmed that the immortalized cADSCs maintain the criteria of cADSCs. © 2017 Wiley Periodicals, Inc.

  13. Immortalization protocols used in cell culture models of human breast morphogenesis

    DEFF Research Database (Denmark)

    Gudjonsson, T; Villadsen, R; Rønnov-Jessen, L

    2004-01-01

    of the tissue of origin. In recent years, we have sought to establish immortalized primary breast cells, which retain crucial characteristics of their original in situ tissue pattern. This review discusses various approaches to immortalization of breast-derived epithelial and stromal cells and the application...

  14. Immortalization of Werner syndrome and progeria fibroblasts

    International Nuclear Information System (INIS)

    Saito, H.; Moses, R.E.

    1991-01-01

    Human fibroblast cells from two different progeroid syndromes, Werner syndrome (WS) and progeria, were established as immortalized cell lines by transfection with plasmid DNA containing the SV40 early region. The lineage of each immortalized cell line was confirmed by VNTR analysis. Each of the immortalized cell lines maintained its original phenotype of slow growth. DNA repair ability of these cells was also studied by measuring sensitivity to killing by uv or the DNA-damaging drugs methyl methansulfonate, bleomycin, and cis-dichlorodiamine platinum. The results showed that both WS and progeria cells have normal sensitivity to these agents

  15. Amplification and overexpression of aurora kinase A (AURKA) in immortalized human ovarian epithelial (HOSE) cells.

    Science.gov (United States)

    Chung, C M; Man, C; Jin, Y; Jin, C; Guan, X Y; Wang, Q; Wan, T S K; Cheung, A L M; Tsao, S W

    2005-07-01

    Immortalization is an early and essential step of human carcinogenesis. Amplification of chromosome 20q has been shown to be a common event in immortalized cells and cancers. We have previously reported that gain and amplification of chromosome 20q is a non-random and common event in immortalized human ovarian surface epithelial (HOSE) cells. The chromosome 20q harbors genes including TGIF2 (20q11.2-q12), AIB1 (20q12), PTPN1 (20q13.1), ZNF217 (20q13.2), and AURKA (20q13.2-q13.3), which were previously reported to be amplified and overexpressed in ovarian cancers. Some of these genes may be involved in immortalization of HOSE cells and represent crucial premalignant changes in ovarian surface epithelium. Investigation of the involvement of these genes was examined in four pairs of pre-crisis (preimmortalized) and post-crisis (immortalized) HOSE cells. Overexpression of AURKA (Aurora kinase A), also known as BTAK and STK15, by both real time-quantitative polymerase chain reaction (RT-QPCR) and Western blotting was detected in all the four immortalized HOSE cells examined while overexpression of AIB1 and ZNF217 was observed in two of four immortalized HOSE cells examined. Overexpression of TGIF2 and PTPN1 was not significant in our immortalized HOSE cell systems. The degree of overexpression of AURKA was shown to be closely associated with the amplification of chromosome 20q in immortalized HOSE cells. Fluorescence in situ hybridization (FISH) with labeled P1 artificial clone (PAC) confirmed the amplification of the chromosomal region (20q13.2-13.3) where AURKA resides. DNA amplification of AURKA was also confirmed using semi-quantitative PCR. Our study showed that amplification and overexpression of AURKA is a common and significant event during immortalization of HOSE cells and may represent an important premalignant change in ovarian carcinogenesis. Copyright (c) 2005 Wiley-Liss, Inc.

  16. Immortalization of human neural stem cells with the c-myc mutant T58A.

    Directory of Open Access Journals (Sweden)

    Lidia De Filippis

    Full Text Available Human neural stem cells (hNSC represent an essential source of renewable brain cells for both experimental studies and cell replacement therapies. Their relatively slow rate of proliferation and physiological senescence in culture make their use cumbersome under some experimental and pre-clinical settings. The immortalization of hNSC with the v-myc gene (v-IhNSC has been shown to generate stem cells endowed with enhanced proliferative capacity, which greatly facilitates the study of hNSCs, both in vitro and in vivo. Despite the excellent safety properties displayed by v-IhNSCs--which do not transform in vitro and are not tumorigenic in vivo--the v-myc gene contains several mutations and recombination elements, whose role(s and effects remains to be elucidated, yielding unresolved safety concerns. To address this issue, we used a c-myc T58A retroviral vector to establish an immortal cell line (T-IhNSC from the same hNSCs used to generate the original v-IhNSCs and compared their characteristics with the latter, with hNSC and with hNSC immortalized using c-myc wt (c-IhNSC. T-IhNSCs displayed an enhanced self-renewal ability, with their proliferative capacity and clonogenic potential being remarkably comparable to those of v-IhNSC and higher than wild type hNSCs and c-IhNSCs. Upon growth factors removal, T-IhNSC promptly gave rise to well-differentiated neurons, astrocytes and most importantly, to a heretofore undocumented high percentage of human oligodendrocytes (up to 23%. Persistent growth-factor dependence, steady functional properties, lack of ability to generate colonies in soft-agar colony-forming assay and to establish tumors upon orthotopic transplantation, point to the fact that immortalization by c-myc T58A does not bring about tumorigenicity in hNSCs. Hence, this work describes a novel and continuous cell line of immortalized human multipotent neural stem cells, in which the immortalizing agent is represented by a single gene which, in

  17. LC-MS/MS Based Quantitation of ABC and SLC Transporter Proteins in Plasma Membranes of Cultured Primary Human Retinal Pigment Epithelium Cells and Immortalized ARPE19 Cell Line.

    Science.gov (United States)

    Pelkonen, Laura; Sato, Kazuki; Reinisalo, Mika; Kidron, Heidi; Tachikawa, Masanori; Watanabe, Michitoshi; Uchida, Yasuo; Urtti, Arto; Terasaki, Tetsuya

    2017-03-06

    The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier between neural retina and choroid. The RPE has several important vision supporting functions, such as transport mechanisms that may also modify pharmacokinetics in the posterior eye segment. Expression of plasma membrane transporters in the RPE cells has not been quantitated. The aim of this study was to characterize and compare transporter protein expression in the ARPE19 cell line and hfRPE (human fetal RPE) cells by using quantitative targeted absolute proteomics (QTAP). Among 41 studied transporters, 16 proteins were expressed in hfRPE and 13 in ARPE19 cells. MRP1, MRP5, GLUT1, 4F2hc, TAUT, CAT1, LAT1, and MATE1 proteins were detected in both cell lines within 4-fold differences. MPR7, OAT2 and RFC1 were detected in the hfRPE cells, but their expression levels were below the limit of quantification in ARPE19 cells. PCFT was detected in both studied cell lines, but the expression was over 4-fold higher in hfRPE cells. MCT1, MCT4, MRP4, and Na + /K + ATPase were upregulated in the ARPE19 cell line showing over 4-fold differences in the quantitative expression values. Expression levels of 25 transporters were below the limit of quantification in both cell models. In conclusion, we present the first systematic and quantitative study on transporter protein expression in the plasma membranes of ARPE19 and hfRPE cells. Overall, transporter expression in the ARPE19 and hfRPE cells correlated well and the absolute expression levels were similar, but not identical. The presented quantitative expression levels could be a useful basis for further studies on drug permeation in the outer blood-retinal barrier.

  18. Isolation and Characterization of Exosome from Human Embryonic Stem Cell-Derived C-Myc-Immortalized Mesenchymal Stem Cells.

    Science.gov (United States)

    Lai, Ruenn Chai; Yeo, Ronne Wee Yeh; Padmanabhan, Jayanthi; Choo, Andre; de Kleijn, Dominique P V; Lim, Sai Kiang

    2016-01-01

    Mesenchymal stem cells (MSC) are currently the cell type of choice in many cell therapy trials. The number of therapeutic applications for MSCs registered as product IND submissions with the FDA and initiation of registered clinical trials has increased substantially in recent years, in particular between 2006 and 2012. However, defined mechanisms of action underpinning the therapeutic efficacy of MSCs are lacking, but they are increasingly attributed to MSC trophic secretion rather than their differentiation potential. A promising secreted therapeutic candidate is an extracellular vesicle (EV) known as the exosome. The use of exosomes instead of cells as a therapeutic agent provides several advantages. A critical advantage is the prospect of a conventional pharmaceutical manufacturing process that is highly scalable and amenable to the stringent manufacturing process. For example, MSCs used as producers of therapeutics, and not as therapeutics per se, could be immortalized to generate infinitely expansible clonal lines to enhance the reproducible production of therapeutic exosomes. In this chapter, we will describe the immortalization of MSCs, and the production, isolation, and characterization of exosomes from immortalized MSC.

  19. Accumulation and altered localization of telomere-associated protein TRF2 in immortally transformed and tumor-derived human breast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nijjar, Tarlochan; Bassett, Ekaterina; Garbe, James; Takenaka, Yasuhiro; Stampfer, Martha R.; Gilley, David; Yaswen, Paul

    2004-12-23

    We have used cultured human mammary epithelial cells (HMEC) and breast tumor-derived lines to gain information on defects that occur during breast cancer progression. HMEC immortalized by a variety of agents (the chemical carcinogen benzo(a)pyrene, oncogenes c-myc and ZNF217, and/or dominant negative p53 genetic suppressor element GSE22) displayed marked up regulation (10-15 fold) of the telomere binding protein, TRF2. Up-regulation of TRF2 protein was apparently due to differences in post-transcriptional regulation, as mRNA levels remained comparable in finite life span and immortal HMEC. TRF2 protein was not up-regulated by the oncogenic agents alone in the absence of immortalization, nor by expression of exogenously introduced hTERT genes. We found TRF2 levels to be at least 2-fold higher than in control cells in 11/15 breast tumor cell lines, suggesting that elevated TRF2 levels are a frequent occurrence during the transformation of breast tumor cells in vivo. The dispersed distribution of TRF2 throughout the nuclei in some immortalized and tumor-derived cells indicated that not all the TRF2 was associated with telomeres in these cells. The process responsible for accumulation of TRF2 in immortalized HMEC and breast tumor-derived cell lines may promote tumorigenesis by contributing to the cells ability to maintain an indefinite life span.

  20. Immortal DNA strand cosegregation requires p53/IMPDH-dependent asymmetric self-renewal associated with adult stem cells.

    Science.gov (United States)

    Rambhatla, Lakshmi; Ram-Mohan, Sumati; Cheng, Jennifer J; Sherley, James L

    2005-04-15

    Because they are long-lived and cycle continuously, adult stem cells (ASCs) are predicted as the most common precursor for cancers in adult mammalian tissues. Two unique attributes have been proposed to restrict the carcinogenic potential of ASCs. These are asymmetric self-renewal that limits their number and immortal DNA strand cosegregation that limits their accumulation of mutations due to DNA replication errors. Until recently, the molecular basis and regulation of these important ASC-specific functions were unknown. We developed engineered cultured cells that exhibit asymmetric self-renewal and immortal DNA strand cosegregation. These model cells were used to show that both ASC-specific functions are regulated by the p53 cancer gene. Previously, we proposed that IMP dehydrogenase (IMPDH) was an essential factor for p53-dependent asymmetric self-renewal. We now confirm this proposal and provide quantitative evidence that asymmetric self-renewal is acutely sensitive to even modest changes in IMPDH expression. These analyses reveal that immortal DNA strand cosegregation is also regulated by IMPDH and confirm the original implicit precept that immortal DNA strand cosegregation is specific to cells undergoing asymmetric self-renewal (i.e., ASCs). With IMPDH being the rate-determining enzyme for guanine ribonucleotide (rGNP) biosynthesis, its requirement implicates rGNPs as important regulators of ASC asymmetric self-renewal and immortal DNA strand cosegregation. An in silico analysis of global gene expression data from human cancer cell lines underscored the importance of p53-IMPDH-rGNP regulation for normal tissue cell kinetics, providing further support for the concept that ASCs are key targets for adult tissue carcinogenesis.

  1. Cytogenetic characterization and H-ras associated transformation of immortalized human mammary epithelial cells

    Directory of Open Access Journals (Sweden)

    Larivee Siobhan

    2006-05-01

    Full Text Available Abstract Introduction Immortalization is a key step in malignant transformation, but immortalization alone is insufficient for transformation. Human mammary epithelial cell (HMEC transformation is a complex process that requires additional genetic changes beyond immortalization and can be accomplished in vitro by accumulation of genetic changes and expression of H-ras. Methods HMEC were immortalized by serial passaging and transduction with the catalytic subunit of the human telomerase gene (hTERT. The immortalized cells were passaged in vitro and studied by a combination of G- banding and Spectral Karyotyping (SKY. H-ras transduced, hTERT immortalized cells were cloned in soft agar and injected into nude mice. Extensive analysis was performed on the tumors that developed in nude mice, including immunohistochemistry and western blotting. Results Immortal HMEC alone were not tumorigenic in γ-irradiated nude mice and could not grow in soft agar. Late passage hTERT immortalized HMEC from a donor transduced with a retroviral vector containing the mutant, autoactive, human H-ras61L gene acquired anchorage independent growth properties and the capacity for tumorigenic growth in vivo. The tumors that developed in the nude mice were poorly differentiated epithelial carcinomas that continued to overexpress ras. These cells were resistant to doxorubicin mediated G1/S phase arrest but were sensitive to treatment with a farnesyltransferase inhibitor. Conclusion Some of the cytogenetic changes are similar to what is observed in premalignant and malignant breast lesions. Despite these changes, late passage immortal HMEC are not tumorigenic and could only be transformed with overexpression of a mutant H-ras oncogene.

  2. Maintenance of vascular endothelial cell-specific properties after immortalization with an amphotrophic replication-deficient retrovirus containing human papilloma virus 16 E6/E7 DNA

    NARCIS (Netherlands)

    Fontijn, R.; Hop, C.; Brinkman, H. J.; Slater, R.; Westerveld, A.; van Mourik, J. A.; Pannekoek, H.

    1995-01-01

    Primary human vascular endothelial cells were immortalized by the integration of a single DNA copy of an amphotrophic, replication-deficient retrovirus containing the E6/E7 genes of human papilloma virus. To date, the resulting cell lines, designated EC-RF7 and EC-RF24, have been cultured for more

  3. Higher 5-hydroxymethylcytosine identifies immortal DNA strand chromosomes in asymmetrically self-renewing distributed stem cells.

    Science.gov (United States)

    Huh, Yang Hoon; Cohen, Justin; Sherley, James L

    2013-10-15

    Immortal strands are the targeted chromosomal DNA strands of nonrandom sister chromatid segregation, a mitotic chromosome segregation pattern unique to asymmetrically self-renewing distributed stem cells (DSCs). By nonrandom segregation, immortal DNA strands become the oldest DNA strands in asymmetrically self-renewing DSCs. Nonrandom segregation of immortal DNA strands may limit DSC mutagenesis, preserve DSC fate, and contribute to DSC aging. The mechanisms responsible for specification and maintenance of immortal DNA strands are unknown. To discover clues to these mechanisms, we investigated the 5-methylcytosine and 5-hydroxymethylcytosine (5hmC) content on chromosomes in mouse hair follicle DSCs during nonrandom segregation. Although 5-methylcytosine content did not differ significantly, the relative content of 5hmC was significantly higher in chromosomes containing immortal DNA strands than in opposed mitotic chromosomes containing younger mortal DNA strands. The difference in relative 5hmC content was caused by the loss of 5hmC from mortal chromosomes. These findings implicate higher 5hmC as a specific molecular determinant of immortal DNA strand chromosomes. Because 5hmC is an intermediate during DNA demethylation, we propose a ten-eleven translocase enzyme mechanism for both the specification and maintenance of nonrandomly segregated immortal DNA strands. The proposed mechanism reveals a means by which DSCs "know" the generational age of immortal DNA strands. The mechanism is supported by molecular expression data and accounts for the selection of newly replicated DNA strands when nonrandom segregation is initiated. These mechanistic insights also provide a possible basis for another characteristic property of immortal DNA strands, their guanine ribonucleotide dependency.

  4. Transformation of SV40-immortalized human uroepithelial cells by 3-methylcholanthrene increases IFN- and Large T Antigen-induced transcripts

    Directory of Open Access Journals (Sweden)

    Easton Marilyn J

    2010-02-01

    Full Text Available Abstract Background Simian Virus 40 (SV40 immortalization followed by treatment of cells with 3-methylcholanthrene (3-MC has been used to elicit tumors in athymic mice. 3-MC carcinogenesis has been thoroughly studied, however gene-level interactions between 3-MC and SV40 that could have produced the observed tumors have not been explored. The commercially-available human uroepithelial cell lines were either SV40-immortalized (HUC or SV40-immortalized and then 3-MC-transformed (HUC-TC. Results To characterize the SV40 - 3MC interaction, we compared human gene expression in these cell lines using a human cancer array and confirmed selected changes by RT-PCR. Many viral Large T Antigen (Tag expression-related changes occurred in HUC-TC, and it is concluded that SV40 and 3-MC may act synergistically to transform cells. Changes noted in IFP 9-27, 2'-5' OAS, IF 56, MxA and MxAB were typical of those that occur in response to viral exposure and are part of the innate immune response. Because interferon is crucial to innate immune host defenses and many gene changes were interferon-related, we explored cellular growth responses to exogenous IFN-γ and found that treatment impeded growth in tumor, but not immortalized HUC on days 4 - 7. Cellular metabolism however, was inhibited in both cell types. We conclude that IFN-γ metabolic responses were functional in both cell lines, but IFN-γ anti-proliferative responses functioned only in tumor cells. Conclusions Synergism of SV40 with 3-MC or other environmental carcinogens may be of concern as SV40 is now endemic in 2-5.9% of the U.S. population. In addition, SV40-immortalization is a generally-accepted method used in many research materials, but the possibility of off-target effects in studies carried out using these cells has not been considered. We hope that our work will stimulate further study of this important phenomenon.

  5. Production and Functional Characterization of Murine Osteoclasts Differentiated from ER-Hoxb8-Immortalized Myeloid Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Frank Zach

    Full Text Available In vitro differentiation into functional osteoclasts is routinely achieved by incubation of embryonic stem cells, induced pluripotent stem cells, or primary as well as cryopreserved spleen and bone marrow-derived cells with soluble receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor. Additionally, osteoclasts can be derived from co-cultures with osteoblasts or by direct administration of soluble receptor activator of nuclear factor kappa-B ligand to RAW 264.7 macrophage lineage cells. However, despite their benefits for osteoclast-associated research, these different methods have several drawbacks with respect to differentiation yields, time and animal consumption, storage life of progenitor cells or the limited potential for genetic manipulation of osteoclast precursors. In the present study, we therefore established a novel protocol for the differentiation of osteoclasts from murine ER-Hoxb8-immortalized myeloid stem cells. We isolated and immortalized bone marrow cells from wild type and genetically manipulated mouse lines, optimized protocols for osteoclast differentiation and compared these cells to osteoclasts derived from conventional sources. In vitro generated ER-Hoxb8 osteoclasts displayed typical osteoclast characteristics such as multi-nucleation, tartrate-resistant acid phosphatase staining of supernatants and cells, F-actin ring formation and bone resorption activity. Furthermore, the osteoclast differentiation time course was traced on a gene expression level. Increased expression of osteoclast-specific genes and decreased expression of stem cell marker genes during differentiation of osteoclasts from ER-Hoxb8-immortalized myeloid progenitor cells were detected by gene array and confirmed by semi-quantitative and quantitative RT-PCR approaches. In summary, we established a novel method for the quantitative production of murine bona fide osteoclasts from ER-Hoxb8 stem cells generated from

  6. Determination of acute lethal and chronic lethal dose thresholds of valproic acid using 3D spheroids constructed from the immortal human hepatocyte cell line HepG2/C3A

    DEFF Research Database (Denmark)

    Fey, S. J.; Wrzesinski, K.

    2013-01-01

    describe here a culture system based on 3D spheroid culture of immortal hepatocytes which can determine the toxicity of valproic acid (or structurally or functionally related molecules) in vitro. The spheroids were used to follow changes in ATP production, glucose uptake and adenylate kinase following...

  7. Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy

    Directory of Open Access Journals (Sweden)

    Haiying Guo

    2018-01-01

    Full Text Available Dermal papilla (DP plays important roles in hair follicle regeneration. Long-term culture of mouse DP cells can provide enough cells for research and application of DP cells. We optimized the culture strategy for DP cells from three dimensions: stepwise dissection, collagen I coating, and optimized culture medium. Based on the optimized culture strategy, we immortalized primary DP cells with SV40 large T antigen, and established several immortalized DP cell strains. By comparing molecular expression and morphologic characteristics with primary DP cells, we found one cell strain named iDP6 was similar with primary DP cells. Further identifications illustrate that iDP6 expresses FGF7 and α-SMA, and has activity of alkaline phosphatase. During the process of characterization of immortalized DP cell strains, we also found that cells in DP were heterogeneous. We successfully optimized culture strategy for DP cells, and established an immortalized DP cell strain suitable for research and application of DP cells.

  8. Immortalized Muscle Cell Model to Test the Exon Skipping Efficacy for Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Quynh Nguyen

    2017-10-01

    Full Text Available Duchenne muscular dystrophy (DMD is a lethal genetic disorder that most commonly results from mutations disrupting the reading frame of the dystrophin (DMD gene. Among the therapeutic approaches employed, exon skipping using antisense oligonucleotides (AOs is one of the most promising strategies. This strategy aims to restore the reading frame, thus producing a truncated, yet functioning dystrophin protein. In 2016, the Food and Drug Administration (FDA conditionally approved the first AO-based drug, eteplirsen (Exondys 51, developed for DMD exon 51 skipping. An accurate and reproducible method to quantify exon skipping efficacy is essential for evaluating the therapeutic potential of different AOs sequences. However, previous in vitro screening studies have been hampered by the limited proliferative capacity and insufficient amounts of dystrophin expressed by primary muscle cell lines that have been the main system used to evaluate AOs sequences. In this paper, we illustrate the challenges associated with primary muscle cell lines and describe a novel approach that utilizes immortalized cell lines to quantitatively evaluate the exon skipping efficacy in in vitro studies.

  9. Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders

    Directory of Open Access Journals (Sweden)

    Nora Urraca

    2015-11-01

    Full Text Available A major challenge to the study and treatment of neurogenetic syndromes is accessing live neurons for study from affected individuals. Although several sources of stem cells are currently available, acquiring these involve invasive procedures, may be difficult or expensive to generate and are limited in number. Dental pulp stem cells (DPSCs are multipotent stem cells that reside deep the pulp of shed teeth. To investigate the characteristics of DPSCs that make them a valuable resource for translational research, we performed a set of viability, senescence, immortalization and gene expression studies on control DPSC and derived neurons. We investigated the basic transport conditions and maximum passage number for primary DPSCs. We immortalized control DPSCs using human telomerase reverse transcriptase (hTERT and evaluated neuronal differentiation potential and global gene expression changes by RNA-seq. We show that neurons from immortalized DPSCs share morphological and electrophysiological properties with non-immortalized DPSCs. We also show that differentiation of DPSCs into neurons significantly alters gene expression for 1305 transcripts. Here we show that these changes in gene expression are concurrent with changes in protein levels of the transcriptional repressor REST/NRSF, which is known to be involved in neuronal differentiation. Immortalization significantly altered the expression of 183 genes after neuronal differentiation, 94 of which also changed during differentiation. Our studies indicate that viable DPSCs can be obtained from teeth stored for ≥72 h, these can then be immortalized and still produce functional neurons for in vitro studies, but that constitutive hTERT immortalization is not be the best approach for long term use of patient derived DPSCs for the study of disease.

  10. Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders.

    Science.gov (United States)

    Urraca, Nora; Memon, Rawaha; El-Iyachi, Ikbale; Goorha, Sarita; Valdez, Colleen; Tran, Quynh T; Scroggs, Reese; Miranda-Carboni, Gustavo A; Donaldson, Martin; Bridges, Dave; Reiter, Lawrence T

    2015-11-01

    A major challenge to the study and treatment of neurogenetic syndromes is accessing live neurons for study from affected individuals. Although several sources of stem cells are currently available, acquiring these involve invasive procedures, may be difficult or expensive to generate and are limited in number. Dental pulp stem cells (DPSCs) are multipotent stem cells that reside deep the pulp of shed teeth. To investigate the characteristics of DPSCs that make them a valuable resource for translational research, we performed a set of viability, senescence, immortalization and gene expression studies on control DPSC and derived neurons. We investigated the basic transport conditions and maximum passage number for primary DPSCs. We immortalized control DPSCs using human telomerase reverse transcriptase (hTERT) and evaluated neuronal differentiation potential and global gene expression changes by RNA-seq. We show that neurons from immortalized DPSCs share morphological and electrophysiological properties with non-immortalized DPSCs. We also show that differentiation of DPSCs into neurons significantly alters gene expression for 1305 transcripts. Here we show that these changes in gene expression are concurrent with changes in protein levels of the transcriptional repressor REST/NRSF, which is known to be involved in neuronal differentiation. Immortalization significantly altered the expression of 183 genes after neuronal differentiation, 94 of which also changed during differentiation. Our studies indicate that viable DPSCs can be obtained from teeth stored for ≥72 h, these can then be immortalized and still produce functional neurons for in vitro studies, but that constitutive hTERT immortalization is not be the best approach for long term use of patient derived DPSCs for the study of disease. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Genetic effect of low dose rate radiation on human cells immortalized with the hTERT gene

    International Nuclear Information System (INIS)

    Nakamura, Hideaki; Fukami, Hiroko; Hayashi, Yuko; Kiyono, Tohru; Ishizaki, Kanji; Tachibana, Akira; Nakatsugawa, Shigekazu; Hamaguchi, Michinari

    2003-01-01

    We established immortal human cells by introducing the hTERT gene into skin fibroblast cells obtained from normal (SuSa) and ataxia telangiectasia (AT: AT1OS) individuals of Japanese origin. These immortalized cells showed the same characteristics as the original cells except expanded life span. We irradiated SuSa/T-n and AT1OS/T-n cells with low-dose-rate (LDR; 0.3 mGy/min) irradiation at confluent state in low-serum medium. Then, survival rate and micronucleus frequency of each cell line were analyzed. In SuSa/T-n cells, frequency of HPRT mutation induction was also determined by 6TG selection. In SuSa/T-n cells, survival rate and micronucleus frequency showed higher resistance after irradiation with LDR than high-dose-rate (HDR; 2 Gy/min) irradiation. In contrast, no significant difference was observed in survival and micronucleus induction in AT1OS/T-n cells between HDR and LDR irradiation, suggesting that AT1OS/T-n cells may have some defect in DNA repair activity. In SuSa/T-n cells, the frequency of HPRT mutation after LDR irradiation decreased to approximately one eighth that after HDR irradiation. (author)

  12. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...

  13. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements

    International Nuclear Information System (INIS)

    Band, V.; Zajchowski, D.; Kulesa, V.; Sager, R.

    1990-01-01

    Human papilloma virus (HPV) types 16 and 18 are most commonly associated with cervical carcinoma in patients and induce immortalization of human keratinocytes in culture. HPV has not been associated with breast cancer. This report describes the immortalization of normal human mammary epithelial cells (76N) by plasmid pHPV18 or pHPV16, each containing the linearized viral genome. Transfectants were grown continuously for more than 60 passages, whereas 76N cells senesce after 18-20 passages. The transfectants also differ from 76N cells in cloning in a completely defined medium called D2 and growing a minimally supplemented defined medium (D3) containing epidermal growth factor. All transfectant tested contain integrated HPV DNA, express HPV RNA, and produce HPV E7 protein. HPV transfectants do not form tumors in a nude mouse assay. It is concluded that products of the HPV genome induce immortalization of human breast epithelial cells and reduce their growth factor requirements. This result raises the possibility that HPV might be involved in breast cancer. Furthermore, other tissue-specific primary epithelial cells that are presently difficult to grown and investigate may also be immortalized by HPV

  14. Rat embryo cells immortalized with transfected oncogenes are transformed by gamma irradiation.

    Science.gov (United States)

    Endlich, B; Salavati, R; Sullivan, T; Ling, C C

    1992-12-01

    Cesium-137 gamma rays were used to transform rat embryo cells (REC) which were first transfected with activated c-myc or c-Ha-ras oncogenes to produce immortal cell lines (REC:myc and REC:ras). When exposed to 6 Gy of 137Cs gamma rays, some cells became morphologically transformed with focus formation frequencies of approximately 3 x 10(-4) for REC:myc and approximately 1 x 10(-4) for REC:ras, respectively. Cells isolated from foci of gamma-ray-transformed REC:myc (REC:myc:gamma) formed anchorage-independent colonies and were tumorigenic in nude mice, but foci from gamma-ray-transformed REC:ras (REC:ras:gamma) did not exhibit either of these criteria of transformation. Similar to the results with gamma irradiation, we observed a sequence-dependent phenomenon when myc and ras were transfected into REC, one at a time. REC immortalized by ras transfection were not converted to a tumorigenic phenotype by secondary transfection with myc, but REC transfected with myc were very susceptible to transformation by subsequent ras transfection. This suggests that myc-immortalized cells are more permissive to transformation via secondary treatments. In sequentially transfected REC, myc expression was high whether it was transfected first or second, whereas ras expression was highest when the ras gene was transfected secondarily into myc-containing REC. Molecular analysis of REC:ras:gamma transformants showed no alterations in structure of the transfected ras or of the endogenous ras, myc, p53, or fos genes. The expression of ras and p53 was increased in some isolates of REC:ras:gamma, but myc and fos expression were not affected. Similarly, REC:myc:gamma transformants did not demonstrate rearrangement or amplification of the transfected or the endogenous myc genes, or of the potentially cooperating Ha-, Ki-, or N-ras genes. Northern hybridization analysis revealed increased expression of N-ras in two isolates, REC:myc:gamma 33 and gamma 41, but no alterations in the expression

  15. Evolutionary dynamics of adult stem cells: Comparison of random and immortal strand segregation mechanisms

    OpenAIRE

    Tannenbaum, Emmanuel; Sherley, James L.; Shakhnovich, Eugene I.

    2004-01-01

    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) Random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell. (2) ``Immortal DNA strand'' co-segregation, for which the stem cell reta...

  16. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    International Nuclear Information System (INIS)

    Li Hongzhen; Zhou Jianjun; Miki, Jun; Furusato, Bungo; Gu Yongpeng; Srivastava, Shiv; McLeod, David G.; Vogel, Jonathan C.; Rhim, Johng S.

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin α2β1 hi and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 μg/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation

  17. [The concept of cellular immortality, a myth or a reality. Example of "immortalized" articular chondrocytes].

    Science.gov (United States)

    Adolphe, M; Thenet, S

    1990-01-01

    The concept of cellular immortality, which arose from the historical studies of A. Carrel, is getting a new start with the progress of virology. However, the definition of cell immortalization is still ambiguous. Although scientists agree that cells regarded as immortal have acquired an infinite growth capacity, the relationship of this change with the first stages of transformation is difficult to clearly define. Immortalized cell lines have already been obtained from numerous cell types by using viral infection or transfection with viral and cellular genes. Immortalization of cells is interesting for three main reasons: it permits study of the steps in progression to transformation, allows establishment of cell lines for producing biological products, and permits various cell types to maintain a part of their differentiated functions. For example, hypothalamic neurosecretory cells, macrophages, astrocytes and intestinal epithelial cells have been immortalized and these lines can be used for understanding the balance between division and differentiation, and also for pharmacotoxicological studies. In our laboratory, we immortalized rabbit articular chondrocytes by transfection with SV40 large T and little t encoding genes. At the 9th subculture, when the control culture was senescent, clones of polygonal cells appeared in the transfected cell cultures. Three clones have been selected and have been maintained in culture for two years. Growth curves of normal and SV40-transfected chondrocytes were compared and displayed similar doubling times (approximately 20 hours). The exponential phase of growth was longer for immortalized cells resulting in a 2-fold higher saturation density. These cells appear to be not fully transformed and maintain some properties of differentiated chondrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. A gene expression signature classifying telomerase and ALT immortalization reveals an hTERT regulatory network and suggests a mesenchymal stem cell origin for ALT

    DEFF Research Database (Denmark)

    Lafferty-Whyte, K; Cairney, C J; Will, M B

    2009-01-01

    Telomere length is maintained by two known mechanisms, the activation of telomerase or alternative lengthening of telomeres (ALT). The molecular mechanisms regulating the ALT phenotype are poorly understood and it is unknown how the decision of which pathway to activate is made at the cellular le......TERT in different tumour types and normal tissues. We also show evidence to suggest a novel mesenchymal stem cell origin for ALT immortalization in cell lines and mesenchymal tissues....

  19. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    Science.gov (United States)

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value.

  20. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha; Beisiegel, Ulrike; Heeren, Joerg

    2008-01-01

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor γ (PPARγ) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPARγ agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPARγ-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake

  1. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    Directory of Open Access Journals (Sweden)

    Cara L Sherwood

    Full Text Available Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE cell model we found that both micromolar (3.9 μM and submicromolar (0.8 μM arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-. We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  2. Evolutionary dynamics of adult stem cells: comparison of random and immortal-strand segregation mechanisms.

    Science.gov (United States)

    Tannenbaum, Emmanuel; Sherley, James L; Shakhnovich, Eugene I

    2005-04-01

    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) "immortal DNA strand" co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.

  3. The role of p38 MAP kinase and c-Jun N-terminal protein kinase signaling in the differentiation and apoptosis of immortalized neural stem cells

    International Nuclear Information System (INIS)

    Yang, Se-Ran; Cho, Sung-Dae; Ahn, Nam-Shik; Jung, Ji-Won; Park, Joon-Suk; Jo, Eun-Hye; Hwang, Jae-Woong; Kim, Sung-Hoon; Lee, Bong-Hee; Kang, Kyung-Sun; Lee, Yong-Soon

    2005-01-01

    The two distinct members of the mitogen-activated protein (MAP) kinase family c-Jun N-terminal protein kinase (JNK) and p38 MAP kinase, play an important role in central nervous system (CNS) development and differentiation. However, their role and functions are not completely understood in CNS. To facilitate in vitro study, we have established an immortal stem cell line using SV40 from fetal rat embryonic day 17. In these cells, MAP kinase inhibitors (SP600125, SB202190, and PD98059) were treated for 1, 24, 48, and 72 h to examine the roles of protein kinases. Early inhibition of JNK did not alter phenotypic or morphological changes of immortalized cells, however overexpression of Bax and decrease of phosphorylated AKT was observed. The prolonged inhibition of JNK induced polyploidization of immortalized cells, and resulted in differentiation and inhibition of cell proliferation. Moreover, JNK and p38 MAP kinase but not ERK1/2 was activated, and p21, p53, and Bax were overexpressed by prolonged inhibition of JNK. These results indicate that JNK and p38 MAP kinase could play dual roles on cell survival and apoptosis. Furthermore, this established cell line could facilitate study of the role of JNK and p38 MAP kinase on CNS development or differentiation/apoptosis

  4. Long-term culture and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized mesenchymal cells.

    Science.gov (United States)

    Garba, Abubakar; Acar, Delphine D; Roukaerts, Inge D M; Desmarets, Lowiese M B; Devriendt, Bert; Nauwynck, Hans J

    2017-09-01

    Mesenchymal cells are multipotent stromal cells with self-renewal, differentiation and immunomodulatory capabilities. We aimed to develop a co-culture model for differentiating hematopoietic cells on top of immortalized mesenchymal cells for studying interactions between hematopoietic and mesenchymal cells, useful for adequately exploring the therapeutic potential of mesenchymal cells. In this study, we investigated the survival, proliferation and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized porcine bone marrow mesenchymal cells for a period of five weeks. Directly after collection, primary porcine bone marrow mesenchymal cells adhered firmly to the bottom of the culture plates and showed a fibroblast-like appearance, one week after isolation. Upon immortalization, porcine bone marrow mesenchymal cells were continuously proliferating. They were positive for simian virus 40 (SV40) large T antigen and the mesenchymal cell markers CD44 and CD55. Isolated red bone marrow cells were added to these immortalized mesenchymal cells. Five weeks post-seeding, 92±6% of the red bone marrow hematopoietic cells were still alive and their number increased 3-fold during five weekly subpassages on top of the immortalized mesenchymal cells. The red bone marrow hematopoietic cells were originally small and round; later, the cells increased in size. Some of them became elongated, while others remained round. Tiny dendrites appeared attaching hematopoietic cells to the underlying immortalized mesenchymal cells. Furthermore, weekly differential-quick staining of the cells indicated the presence of monoblasts, monocytes, macrophages and lymphocytes in the co-cultures. At three weeks of co-culture, flow cytometry analysis showed an increased surface expression of CD172a, CD14, CD163, CD169, CD4 and CD8 up to 37±0.8%, 40±8%, 41±4%, 23±3% and 19±5% of the hematopoietic cells, respectively. In conclusion, continuous mesenchymal cell

  5. Induction of chromosomal aberrations in human primary fibroblasts and immortalized cancer cells exposed to extremely-low-frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Seyyedi, S. S.; Mozdarani, H.; Rezaei Tavirani, M.; Heydari, S.

    2010-01-01

    Rapidly increasing possibilities of exposure to environmental extremely low-frequency electromagnetic fields have become a topic of worldwide investigation. Epidemiological and laboratory studies suggest that exposure to extremely low-frequency electromagnetic fields may increase cancer risk therefore assessment of chromosomal damage in various cell lines might be of predictive value for future risk estimation. Materials and Methods: Primary cultures of fibroblasts from human skin biopsy were exposed to continuous extremely low-frequency electromagnetic fields (3, 50 and 60 Hz, sinusoidal, 3h, and 4 m T). Also immortalized cell lines, SW480, MCF-7 and 1321N1 were exposed to continuous extremely low-frequency electromagnetic fields (50 Hz, sinusoidal, 3 h, 4 m T). Metaphase plates Were prepared according to standard methods and stained in 5% Giemsa solution. Chromosomal aberrations of both chromosome and chromatid types were scored to evaluate the effects of extremely low-frequency electromagnetic fields on primary or established cell lines. Results: Results indicate that by increasing the frequency of extremely low-frequency electromagnetic fields, chromosomal aberrations were increased up to 7-fold above background levels in primary human fibroblast cells. In addition, continuous exposure to a 50 Hz electromagnetic field led to a significant increase in chromosomal aberrations in SW480, MCF-7 and 1321N1 cell lines compared to sham control. Conclusion: Results obtained indicate that extremely low-frequency electromagnetic fields has the potential for induction of chromosomal aberrations in all cell types.

  6. Colonic stem cell data are consistent with the immortal model of stem cell division under non-random strand segregation.

    Science.gov (United States)

    Walters, K

    2009-06-01

    Colonic stem cells are thought to reside towards the base of crypts of the colon, but their numbers and proliferation mechanisms are not well characterized. A defining property of stem cells is that they are able to divide asymmetrically, but it is not known whether they always divide asymmetrically (immortal model) or whether there are occasional symmetrical divisions (stochastic model). By measuring diversity of methylation patterns in colon crypt samples, a recent study found evidence in favour of the stochastic model, assuming random segregation of stem cell DNA strands during cell division. Here, the effect of preferential segregation of the template strand is considered to be consistent with the 'immortal strand hypothesis', and explore the effect on conclusions of previously published results. For a sample of crypts, it is shown how, under the immortal model, to calculate mean and variance of the number of unique methylation patterns allowing for non-random strand segregation and compare them with those observed. The calculated mean and variance are consistent with an immortal model that incorporates non-random strand segregation for a range of stem cell numbers and levels of preferential strand segregation. Allowing for preferential strand segregation considerably alters previously published conclusions relating to stem cell numbers and turnover mechanisms. Evidence in favour of the stochastic model may not be as strong as previously thought.

  7. Immortalized porcine mesenchymal cells derived from nasal mucosa, lungs, lymph nodes, spleen and bone marrow retain their stemness properties and trigger the expression of siglec-1 in co-cultured blood monocytic cells.

    Science.gov (United States)

    Garba, Abubakar; Desmarets, Lowiese M B; Acar, Delphine D; Devriendt, Bert; Nauwynck, Hans J

    2017-01-01

    Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes.

  8. Establishment of a pig fibroblast-derived cell line for locus-directed transgene expression in cell cultures and blastocysts

    DEFF Research Database (Denmark)

    Jakobsen, Jannik E; Li, Juan; Moldt, Brian

    2011-01-01

    We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon-based do......We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon...

  9. Variation in the loss of O6-methylguanine-DNA methyltransferase during immortalization of human fibroblasts.

    Science.gov (United States)

    Green, M H; Karran, P; Lowe, J E; Priestley, A; Arlett, C F; Mayne, L

    1990-01-01

    We have examined O6-methylguanine-DNA methyltransferase (MT) activity in four human fibroblast cell lines during immortalization. Transfection of primary fibroblasts with the plasmid pSV3gpt or pSV3neo, which encode the SV40 large T antigen, confers a transformed phenotype but not immediate immortality. After a period of growth (pre-crisis) the cells enter a quiescent phase (crisis) from which an immortal clone of cells eventually grows out. From measurements of MT activity in extracts of cells taken at different defined stages of the immortalization process, we conclude that the establishment of a Mex- (MT-deficient) cell population is not specifically associated with cellular transformation or with any particular stage of immortalization. It appears that in different cell populations the change from Mex+ to Mex- may occur at different times during the immortalization process and that the change may be very abrupt.

  10. Aneuploidy in immortalized human mesenchymal stem cells with non-random loss of chromosome 13 in culture.

    Science.gov (United States)

    Takeuchi, Masao; Takeuchi, Kikuko; Ozawa, Yutaka; Kohara, Akihiro; Mizusawa, Hiroshi

    2009-01-01

    Aneuploidy (an abnormal number of chromosomes) is commonly observed in most human cancer cells, highlighting the need to examine chromosomal instability in tumorigenesis. Previously, the immortalized human mesenchymal stem cell line UE6E7T-3 was shown to undergo a preferential loss of one copy of chromosome 13 after prolonged culture. Here, the loss of chromosome 13 was found to be caused by chromosome missegregation during mitosis, which involved unequal segregation, exclusion of the misaligned chromosome 13 on the metaphase plate, and trapping of chromosome 13 in the midbody region, as observed by fluorescence in situ hybridization. Near-diploid aneuploidy, not tetraploidy, was the direct result. The loss of chromosome 13 was non-random, and was detected by analysis of microsatellites and single nucleotide polymorphism-based loss of heterozygosity (LOH). Of the five microsatellite loci on chromosome 13, four loci showed microsatellite instability at an early stage in culture, and LOH was apparent at a late stage in culture. These results suggest that the microsatellite mutations cause changes in centromere integrity provoking loss of this chromosome in the UE6E7T-3 cell line. Thus, these results support the use of this cell line as a useful model for understanding the mechanism of aneuploid formation in cell cultures.

  11. Change of mitotic cycle and DNA repair in embryonic cells of rat, immortalized by E1 A oncogene and transformated by E1 A and c-Ha-Ras oncogenes under ionizing radiation action

    International Nuclear Information System (INIS)

    Kirillova, T.V.

    1997-01-01

    Comparison investigation into the repair of mitotic cycle and the reunion of DN single- and double-strand breaks in gamma-ray irradiated initial E1 A oncogene immortalized and E1 A and c-Ha-Ras oncogene transformed (mutant form) lines of rat embryonic fibroblasts was carried out. Possible involvement of Ras gene product in DNA repair speed governing and absence of tumor suppression function of p 53 protein in the embryonic and E1 A oncogene immortalized cells of rat fibroblast, as well as, presence of the mentioned function of p 53 protein in E1 A and c-Ha-Ras oncogene transformed cells were studied [ru

  12. The use of hTERT-immortalized cells in tissue engineering

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem; Yu, Zentao

    2004-01-01

    The use of human telomerase reverse transcriptase (hTERT)-immortalized cells in tissue engineering protocols is a potentially important application of telomere biology. Several human cell types have been created that overexpress the hTERT gene with enhanced telomerase activity, extended life span...... and maintained or even improved functional activities. Furthermore, some studies have employed the telomerized cells in tissue engineering protocols with very good results. However, high telomerase activity allows extensive cell proliferation that may be associated with genomic instability and risk for cell...... transformation. Thus, safety issues should be studied carefully before using the telomerized tissues in the clinic. Alternatively, the development of conditional or intermittent telomerase activation protocols is needed....

  13. hTERT gene immortalized human adipose-derived stem cells and its multiple differentiations: a preliminary investigation.

    Science.gov (United States)

    Wang, L; Song, K; Qu, X; Wang, H; Zhu, H; Xu, X; Zhang, M; Tang, Y; Yang, X

    2013-03-01

    Human adipose-derived adult stem cells (hADSCs) can express human telomerase reverse transcriptase phenotypes under an appropriate culture condition. Because adipose tissue is abundant and easily accessible, hADSCs offer a promising source of stem cells for tissue engineering application and other cell-based therapies. However, the shortage of cells number and the difficulty to proliferate, known as the "Hayflick limit" in vitro, limit their further clinical application. Here, hADSCs were transfected with human telomerase reverse transcriptase (hTERT) gene by the lentiviral vector to prolong the lifespan of stem cells and even immortalize them. Following to this, the cellular properties and functionalities of the transfected cell lines were assayed. The results demonstrated that hADSCs had been successfully transfected with hTERT gene (hTERT-ADSCs). Then, hTERT-ADSCs were initially selected by G418 and subsequently expanded over 20 passages in vitro. Moreover, the qualitative and quantitative differentiation criteria for 20 passages of hTERT-ADSCs also demonstrated that hTERT-ADSCs could differentiate into osteogenesis, chondrogenesis, and adipogenesis phenotypes in lineage-specific differentiation media. These findings confirmed that this transfection could prolong the lifespan of hADSCs.

  14. Artichoke compound cynarin differentially affects the survival, growth and stress response of normal, immortalized and cancerous human cells

    DEFF Research Database (Denmark)

    Gezer, Ceren; Yücecan, Sevinç; Rattan, Suresh Inder Singh

    2015-01-01

    of CYN on the proliferative potential, survival, morphology, and stress response (SR) markers haemoxygenase-1 (HO-1) and heat shock protein-70 (HSP70) in normal human skin fibroblasts (FSF-1), telomerase-immortalized mesenchymal stem cells (hTERT-MSC) and cervical cancer cells, HeLa. Effects of CYN...

  15. Reversible immortalization of Nestin-positive precursor cells from pancreas and differentiation into insulin-secreting cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Pei; Li, Li; Qi, Hui [The Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People' s Hospital), Jinan University, 518020 Shenzhen (China); Zhou, Han-xin [Department of General Surgery, First Hospital (Shenzhen Second People' s Hospital) of Shenzhen University, 518020 Shenzhen (China); Deng, Chun-yan [The Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People' s Hospital), Jinan University, 518020 Shenzhen (China); Li, Fu-rong, E-mail: frli62@yahoo.com [The Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People' s Hospital), Jinan University, 518020 Shenzhen (China); Shenzhen Institution of Gerontology, 518020 Shenzhen (China)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The NPPCs from mouse pancreas were isolated. Black-Right-Pointing-Pointer Tet-on system for SV40 large in NPPCs was used to get RINPPCs. Black-Right-Pointing-Pointer The RINPPCs can undergo at least 80 population doublings without senescence. Black-Right-Pointing-Pointer The RINPPCs can be induced to differentiate into insulin-producing cells. Black-Right-Pointing-Pointer The combination of GLP-1 and sodium butyrate promoted the differentiation process. -- Abstract: Pancreatic stem cells or progenitor cells posses the ability of directed differentiation into pancreatic {beta} cells. However, these cells usually have limited proliferative capacity and finite lifespan in vitro. In the present study, Nestin-positive progenitor cells (NPPCs) from mouse pancreas that expressed the pancreatic stem cells or progenitor cell marker Nestin were isolated to obtain a sufficient number of differentiated pancreatic {beta} cells. Tet-on system for SV40 large T-antigen expression in NPPCs was used to achieve reversible immortalization. The reversible immortal Nestin-positive progenitor cells (RINPPCs) can undergo at least 80 population doublings without senescence in vitro while maintaining their biological and genetic characteristics. RINPPCs can be efficiently induced to differentiate into insulin-producing cells that contain a combination of glucagon-like peptide-1 (GLP-1) and sodium butyrate. The results of the present study can be used to explore transplantation therapy of type I diabetes mellitus.

  16. A Novel Inhibitor Of Topoisomerase I is Selectively Toxic For A Subset of Non-Small Cell Lung Cancer Cell Lines | Office of Cancer Genomics

    Science.gov (United States)

    SW044248, identified through a screen for chemicals that are selectively toxic for NSCLC cell lines, was found to rapidly inhibit macromolecular synthesis in sensitive, but not in insensitive cells. SW044248 killed approximately 15% of a panel of 74 NSCLC cell lines and was non-toxic to immortalized human bronchial cell lines.

  17. Establishment and characterization of rat portal myofibroblast cell lines.

    Directory of Open Access Journals (Sweden)

    Michel Fausther

    Full Text Available The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC and portal fibroblasts (PF. In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5'-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myofibroblasts and their contribution to the progression of liver fibrosis.

  18. Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Petr; Jensen, Taylor J.; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

    2009-04-20

    The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunction due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that mayprove useful in breast cancer risk assessment.

  19. Immortal ethics.

    Science.gov (United States)

    Harris, John

    2004-06-01

    This article draws on ideas published in my "Intimations of Immortality" essay in Science (Vol. 288, No. 5463, p. 59, April 7, 2000) and my "Intimations of Immortality-The Ethics and Justice of Life Extending Therapies" in editor Michael Freeman's Current Legal Problems (Oxford University Press 2002: 65-97). This article outlines the ethical issues involved in life-extending therapies. The arguments against life extension are examined and found wanting. The consequences of life extension are explored and found challenging but not sufficiently daunting to warrant regulation or control. In short, there is no doubt that immortality would be a mixed blessing, but we should be slow to reject cures for terrible diseases that may be an inextricable part of life-extending procedures even if the price we have to pay for those cures is increasing life expectancy and even creating immortals. Better surely to accompany the scientific race to achieve immortality with commensurate work in ethics and social policy to ensure that we know how to cope with the transition to parallel populations of mortals and immortals as envisaged in mythology.

  20. Immortalization of normal human fibroblasts by treatment with 4-nitroquinoline 1-oxide.

    Science.gov (United States)

    Bai, L; Mihara, K; Kondo, Y; Honma, M; Namba, M

    1993-02-01

    Normal human fibroblasts (the OUMS-24 strain), derived from a 6-week-old human embryo, were transformed (into the OUMS-24F line) and immortalized by repeated treatments (59 times) with 4-nitroquinoline 1-oxide (4NQO). Treatment began during primary culture and ended at the 51st population doubling level (PDL). At the 57th PDL (146 days after the last treatment), morphologically altered, epithelial-type cells appeared, began to grow and became immortal (now past the 100th PDL). However, the control fibroblasts, which were not treated with 4NQO, senesced at the 62nd PDL. The finding that extensive, repeated treatments with 4NQO are required for the immortalization of normal human cells, indicates that multiple mutational events are involved in the immortalization of human cells in general. In other words, immortalization itself seems to be a multi-step process. Karyotypic analysis showed that many cells were hypodiploid before immortalization, but that afterwards chromosomes were distributed broadly in the diploid to tetraploid regions. The immortalized cells showed amplification and enhanced expression of c-myc. Two-dimensional electrophoretic analysis showed that the number of disappearing cellular proteins was greater than the number of the newly appearing ones after the cells became immortalized. Since the immortalized cells showed neither anchorage-independent growth nor tumorigenicity, they are useful for studying factors that can contribute to multi-step carcinogenesis in human cells. In addition, genetically matched normal (OUMS-24) and immortalized (OUMS-24F) cells will be useful for analyzing the genes related to cellular mortality and immortalization.

  1. Telomerase reverse transcriptase mediated immortalization of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Yong Teng

    2014-02-01

    Full Text Available Primary human bone marrow stromal cells (hMSCs were transfected with human telomerase reverse transcriptase (hTERT gene with lipofection method. The hTERT transfected hMSCs of passage 100 underwent chondrogenesis induction with dexamethasone, transforming the growth factor β and vitamin C, osteogenesis induction with dexamethasone, β glycerophosphoric acid and vitamin C, and cardiomyocyte induction with 5-azacytidine. After 7, 14, 21 and 28 days of induction, immunocytochemistry was performed to detect the expressions of type I and II collagen and osteocalcin, and alizarin red staining was performed to detect the bone nodule formation in osteogenesis induction. Immunocytochemistry was carried out to detect the striated muscle actin expression in cardiomyocytes. The hMSCs undergoing successful transfection were positive for the hTERT. The hTERT transfected cells were grown in vitro successfully and passaged for 136 generations. Results showed that these cells could be induced to differentiate into chondrocytes, bone and myocardial cells. Introduction of exogenous hTERT into hMSCs could achieve immortalized hMSCs with the potential of multi-directional differentiation. Thus, these cells could be applied as seed cells in tissue engineering.

  2. Can widely used cell type markers predict the suitability of immortalized or primary mammary epithelial cell models?

    Directory of Open Access Journals (Sweden)

    Edgar Corneille Ontsouka

    Full Text Available BACKGROUND: Mammary cell cultures are convenient tools for in vitro studies of mammary gland biology. However, the heterogeneity of mammary cell types, e.g., glandular milk secretory epithelial or myoepithelial cells, often complicates the interpretation of cell-based data. The present study was undertaken to determine the relevance of bovine primary mammary epithelial cells isolated from American Holstein (bMEC US or Swiss Holstein-Friesian (bMEC CH cows, and of primary bovine mammary alveolar epithelial cells stably transfected with simian virus-40 (SV-40 large T-antigen (MAC-T for in vitro analyses. This was evaluated by testing their expression pattern of cytokeratin (CK 7, 18, 19, vimentin, and α-smooth muscle actin (α-SMA. RESULTS: The expression of the listed markers was assessed using real-time quantitative PCR, flow cytometry and immunofluorescence microscopy. Characteristic markers of the mesenchymal (vimentin, myoepithelial (α-SMA and glandular secretory cells (CKs showed differential expression among the studied cell cultures, partly depending on the analytical method used. The relative mRNA expression of vimentin, CK7 and CK19, respectively, was lower (P < 0.05 in immortalized than in primary mammary cell cultures. The stain index (based on flow cytometry of CK7 and CK19 protein was lower (P < 0.05 in MAC-T than in bMECs, while the expression of α-SMA and CK18 showed an inverse pattern. Immunofluorescence microscopy analysis mostly confirmed the mRNA data, while partly disagreed with flow cytometry data (e.g., vimentin level in MAC-T. The differential expression of CK7 and CK19 allowed discriminating between immortal and primary mammary cultures. CONCLUSIONS: The expression of the selected widely used cell type markers in primary and immortalized MEC cells did not allow a clear preference between these two cell models for in vitro analyses studying aspects of milk composition. All tested cell models exhibited to a variable

  3. GSK3 Inhibitor-BIO Regulates Proliferation of Immortalized Pancreatic Mesenchymal Stem Cells (iPMSCs)

    Science.gov (United States)

    Cao, Hui; Chu, Yuankui; Lv, Xiao; Qiu, Pubin; Liu, Chao; Zhang, Huiru; Li, Dan; Peng, Sha; Dou, Zhongying; Hua, Jinlian

    2012-01-01

    Background The small molecule 6-bromoindirubin-30-oxime (BIO), a glycogen synthase kinase 3 (GSK3) inhibitor, is a pharmacological agent known to maintain self-renewal in human and mouse embryonic stem cells (ESCs). However, the precise role of GSK3 in immortalized pancreatic mesenchymal stem cells (iPMSCs) growth and survival is not completely understood at present. Results To determine whether this molecule is involved in controlling the proliferation of iPMSCs, we examined the effect of BIO on iPMSCs. We found that the inactivation of GSK3 by BIO can robustly stimulate iPMSCs proliferation and mass formation as shown by QRT-PCR, western blotting, 5-Bromo-2-deoxyuridine (BrdU) immunostaining assay and tunel assay. However, we did not find the related roles of BIO on β cell differentiation by immunostaining, QRT-PCR assay, glucose-stimulated insulin release and C-peptide content analysis. Conclusions These results suggest that BIO plays a key role in the regulation of cell mass proliferation and maintenance of the undifferentiated state of iPMSCs. PMID:22384031

  4. Expression of a TGF-{beta} regulated cyclin-dependent kinase inhibitor in normal and immortalized airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, L.A.; Bloomfield, C.; Johnson, N.F. [and others

    1995-12-01

    Tumors arising from epithelial cells, including lung cancers are frequently resistant to factors that regulate growth and differentiation in normal in normal cells. Once such factor is transforming growth factor-{Beta} (TGF-{Beta}). Escape from the growth-inhibitory effects of TGF-{Beta} is thought to be a key step in the transformation of airway epithelial cells. most lung cancer cell lines require serum for growth. In contrast, normal human bronchial epithelial (NHBE) cells are exquisitely sensitive to growth-inhibitory and differentiating effects of TGF-{Beta}. The recent identification of a novel cyclin-dependent kinase inhibitor, p15{sup INK4B}, which is regulated by TGF-{Beta}, suggests a mechanism by which TGF-{Beta} mediates growth arrest in NHBE cells. The purpose of this study was two-fold: (1) to determine if p15{sup INK4B} is induced by TGF-{Beta} in NHBE cells or immortalized bronchial epithelial (R.1) cells and if that induction corresponds to a G1/S cell-cycle arrest; (2) to determine the temporal relationship between p15{sup INK4B} induction, cell-cycle arrest, and the phosphorylation state of the pRB because it is thought that p15{sup INK4B} acts indirectly by preventing phosphorylation of the RB gene product. In this study, expression of p15{sup INK4B} was examined in NHBE cells and R.1 cells at different time intervals following TGF-{Beta} treatment. The expression of this kinase inhibitor and its relationship to the cell and the pRb phosphorylation state were examined in cells that were both sensitive (NHBE) and resistant (R.1) to the effects of TGF-{Beta}. These results suggest that the cyclin-dependent kinase inhibitor, p15{sup INK4B}, is involved in airway epithelial cell differentiation and that loss or reduction of expression plays a role in the resistance of transformed or neoplastic cells to the growth-inhibitory effects of TGF-{Beta}.

  5. Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation

    Energy Technology Data Exchange (ETDEWEB)

    Tatrai, Peter, E-mail: peter.tatrai@biomembrane.hu [Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Karolina ut 29, H-1113 Budapest (Hungary); Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Szepesi, Aron, E-mail: aron.szepesi@biomembrane.hu [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Matula, Zsolt, E-mail: matula.zsolt@gmail.com [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Szigeti, Anna, E-mail: anna.szigeti@biomembrane.hu [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Buchan, Gyoengyi, E-mail: buchan@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Madi, Andras, E-mail: madi@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Stem Cell, Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Uher, Ferenc, E-mail: uher@biomembrane.hu [Stem Cell Laboratory, Hungarian National Blood Transfusion Service, Dioszegi ut 64, H-1113 Budapest (Hungary); and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer We immortalized human adipose stromal cells (ASCs) with hTERT, Bmi-1, and SV40T. Black-Right-Pointing-Pointer hTERT-only ASCs are prone to transformation, while Bmi-only ASCs become senescent. Black-Right-Pointing-Pointer SV40T introduced along with hTERT abrogates proliferation control and multipotency. Black-Right-Pointing-Pointer hTERT combined with Bmi-1 yields stable phenotype up to 140 population doublings. -- Abstract: Adipose tissue-derived stromal cells (ASCs) are increasingly being studied for their usefulness in regenerative medicine. However, limited life span and donor-dependent variation of primary cells such as ASCs present major hurdles to controlled and reproducible experiments. We therefore aimed to establish immortalized ASC cell lines that provide steady supply of homogeneous cells for in vitro work while retain essential features of primary cells. To this end, combinations of human telomerase reverse transcriptase (hTERT), murine Bmi-1, and SV40 large T antigen (SV40T) were introduced by lentiviral transduction into ASCs. The resulting cell lines ASC{sup hTERT}, ASC{sup Bmi-1}, ASC{sup Bmi-1+hTERT} and ASC{sup SV40T+hTERT} were tested for transgene expression, telomerase activity, surface immunomarkers, proliferation, osteogenic and adipogenic differentiation, karyotype, tumorigenicity, and cellular senescence. All cell lines have maintained expression of characteristic surface immunomarkers, and none was tumorigenic. However, ASC{sup Bmi-1} had limited replicative potential, while the rapidly proliferating ASC{sup SV40T+hTERT} acquired chromosomal aberrations, departed from MSC phenotype, and lost differentiation capacity. ASC{sup hTERT} and ASC{sup hTERT+Bmi-1}, on the other hand, preserved all essential MSC features and did not senesce after 100 population doublings. Notably, a subpopulation of ASC{sup hTERT} also acquired aberrant karyotype and showed signs of transformation after long-term culture

  6. Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation

    International Nuclear Information System (INIS)

    Tátrai, Péter; Szepesi, Áron; Matula, Zsolt; Szigeti, Anna; Buchan, Gyöngyi; Mádi, András; Uher, Ferenc

    2012-01-01

    Highlights: ► We immortalized human adipose stromal cells (ASCs) with hTERT, Bmi-1, and SV40T. ► hTERT-only ASCs are prone to transformation, while Bmi-only ASCs become senescent. ► SV40T introduced along with hTERT abrogates proliferation control and multipotency. ► hTERT combined with Bmi-1 yields stable phenotype up to 140 population doublings. -- Abstract: Adipose tissue-derived stromal cells (ASCs) are increasingly being studied for their usefulness in regenerative medicine. However, limited life span and donor-dependent variation of primary cells such as ASCs present major hurdles to controlled and reproducible experiments. We therefore aimed to establish immortalized ASC cell lines that provide steady supply of homogeneous cells for in vitro work while retain essential features of primary cells. To this end, combinations of human telomerase reverse transcriptase (hTERT), murine Bmi-1, and SV40 large T antigen (SV40T) were introduced by lentiviral transduction into ASCs. The resulting cell lines ASC hTERT , ASC Bmi-1 , ASC Bmi-1+hTERT and ASC SV40T+hTERT were tested for transgene expression, telomerase activity, surface immunomarkers, proliferation, osteogenic and adipogenic differentiation, karyotype, tumorigenicity, and cellular senescence. All cell lines have maintained expression of characteristic surface immunomarkers, and none was tumorigenic. However, ASC Bmi-1 had limited replicative potential, while the rapidly proliferating ASC SV40T+hTERT acquired chromosomal aberrations, departed from MSC phenotype, and lost differentiation capacity. ASC hTERT and ASC hTERT+Bmi-1 , on the other hand, preserved all essential MSC features and did not senesce after 100 population doublings. Notably, a subpopulation of ASC hTERT also acquired aberrant karyotype and showed signs of transformation after long-term culture. In conclusion, hTERT alone was sufficient to extend the life span of human ASC, but ASC hTERT are prone to transformation during extensive

  7. Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-oncogene, bcl-2.

    Science.gov (United States)

    Cadet, J L; Ordonez, S V; Ordonez, J V

    1997-02-01

    Methamphetamine (METH) is an amphetamine analog that produces degeneration of the dopaminergic system in mammals. The neurotoxic effects of the drug are thought to be mediated by oxygen-based free radicals. In the present report, we have used immortalized neural cells obtained from rat mesencephalon in order to further assess the role of oxidative stress in METH-induced neurotoxicity. We thus tested if the anti-death proto-oncogene, bcl-2 could protect against METH-induced cytotoxicity. METH caused dose-dependent loss of cellular viability in control cells while bcl-2-expressing cells were protected against these deleterious effects. Using flow cytometry, immunofluorescent staining, and DNA electrophoresis, we also show that METH exposure can cause DNA strand breaks, chromatin condensation, nuclear fragmentation, and DNA laddering. All these changes were prevented by bcl-2 expression. These observations provide further support for the involvement of oxidative stress in the toxic effects of amphetamine analogs. They also document that METH-induced cytotoxicity is secondary to apoptosis. These findings may be of relevance to the cause(s) of Parkinson's disease which involves degeneration of the nigrostriatal dopaminergic pathway.

  8. Loss of Dnmt3a Immortalizes Hematopoietic Stem Cells In Vivo

    Directory of Open Access Journals (Sweden)

    Mira Jeong

    2018-04-01

    Full Text Available Summary: Somatic mutations in DNMT3A are recurrent events across a range of blood cancers. Dnmt3a loss of function in hematopoietic stem cells (HSCs skews divisions toward self-renewal at the expense of differentiation. Moreover, DNMT3A mutations can be detected in the blood of aging individuals, indicating that mutant cells outcompete normal HSCs over time. It is important to understand how these mutations provide a competitive advantage to HSCs. Here we show that Dnmt3a-null HSCs can regenerate over at least 12 transplant generations in mice, far exceeding the lifespan of normal HSCs. Molecular characterization reveals that this in vivo immortalization is associated with gradual and focal losses of DNA methylation at key regulatory regions associated with self-renewal genes, producing a highly stereotypical HSC phenotype in which epigenetic features are further buttressed. These findings lend insight into the preponderance of DNMT3A mutations in clonal hematopoiesis and the persistence of mutant clones after chemotherapy. : Jeong et al. show that a single genetic manipulation, conditional inactivation of the DNA methyltransferase enzyme Dnmt3a, removes all inherent hematopoietic stem cell (HSC self-renewal limits and replicative lifespan. Deletion of Dnmt3a allows HSCs to be propagated indefinitely in vivo. Keywords: DNMT3A, DNA methylation, HSC, self-renewal, leukemia

  9. Transcription of a novel mouse semaphorin gene, M-semaH, correlates with the metastatic ability of mouse tumor cell lines

    DEFF Research Database (Denmark)

    Christensen, C R; Klingelhöfer, Jörg; Tarabykina, S

    1998-01-01

    identified a novel member of the semaphorin/collapsin family in the two metastatic cell lines. We have named it M-semaH. Northern hybridization to a panel of tumor cell lines revealed transcripts in 12 of 12 metastatic cell lines but in only 2 of 6 nonmetastatic cells and none in immortalized mouse...

  10. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene

    DEFF Research Database (Denmark)

    Efrat, S; Linde, S; Kofod, Hans

    1988-01-01

    Three pancreatic beta-cell lines have been established from insulinomas derived from transgenic mice carrying a hybrid insulin-promoted simian virus 40 tumor antigen gene. The beta tumor cell (beta TC) lines maintain the features of differentiated beta cells for about 50 passages in culture. The ...... both to immortalize a rare cell type and to provide a selection for the maintenance of its differentiated phenotype....

  11. Immortalization of T-Cells Is Accompanied by Gradual Changes in CpG Methylation Resulting in a Profile Resembling a Subset of T-Cell Leukemias

    Directory of Open Access Journals (Sweden)

    Sofie Degerman

    2014-07-01

    Full Text Available We have previously described gene expression changes during spontaneous immortalization of T-cells, thereby identifying cellular processes important for cell growth crisis escape and unlimited proliferation. Here, we analyze the same model to investigate the role of genome-wide methylation in the immortalization process at different time points pre-crisis and post-crisis using high-resolution arrays. We show that over time in culture there is an overall accumulation of methylation alterations, with preferential increased methylation close to transcription start sites (TSSs, islands, and shore regions. Methylation and gene expression alterations did not correlate for the majority of genes, but for the fraction that correlated, gain of methylation close to TSS was associated with decreased gene expression. Interestingly, the pattern of CpG site methylation observed in immortal T-cell cultures was similar to clinical T-cell acute lymphoblastic leukemia (T-ALL samples classified as CpG island methylator phenotype positive. These sites were highly overrepresented by polycomb target genes and involved in developmental, cell adhesion, and cell signaling processes. The presence of non-random methylation events in in vitro immortalized T-cell cultures and diagnostic T-ALL samples indicates altered methylation of CpG sites with a possible role in malignant hematopoiesis.

  12. Immortalization of T-cells is accompanied by gradual changes in CpG methylation resulting in a profile resembling a subset of T-cell leukemias.

    Science.gov (United States)

    Degerman, Sofie; Landfors, Mattias; Siwicki, Jan Konrad; Revie, John; Borssén, Magnus; Evelönn, Emma; Forestier, Erik; Chrzanowska, Krystyna H; Rydén, Patrik; Keith, W Nicol; Roos, Göran

    2014-07-01

    We have previously described gene expression changes during spontaneous immortalization of T-cells, thereby identifying cellular processes important for cell growth crisis escape and unlimited proliferation. Here, we analyze the same model to investigate the role of genome-wide methylation in the immortalization process at different time points pre-crisis and post-crisis using high-resolution arrays. We show that over time in culture there is an overall accumulation of methylation alterations, with preferential increased methylation close to transcription start sites (TSSs), islands, and shore regions. Methylation and gene expression alterations did not correlate for the majority of genes, but for the fraction that correlated, gain of methylation close to TSS was associated with decreased gene expression. Interestingly, the pattern of CpG site methylation observed in immortal T-cell cultures was similar to clinical T-cell acute lymphoblastic leukemia (T-ALL) samples classified as CpG island methylator phenotype positive. These sites were highly overrepresented by polycomb target genes and involved in developmental, cell adhesion, and cell signaling processes. The presence of non-random methylation events in in vitro immortalized T-cell cultures and diagnostic T-ALL samples indicates altered methylation of CpG sites with a possible role in malignant hematopoiesis. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  13. Herpes simplex virus-1 infection or Simian virus 40-mediated immortalization of corneal cells causes permanent translocation of NLRP3 to the nuclei

    Directory of Open Access Journals (Sweden)

    Shu-Long Wang

    2015-01-01

    Full Text Available AIM: To investigate into the potential involvement of pyrin containing 3 gene (NLRP3, a member of the nucleotide-binding oligomerization domain-like receptors with cytosolic pattern recognition, in the host defense of corneas against viruses. METHODS: The herpes viral keratitis model was utilized in BALB/c mice with inoculation of herpes simplex virus-1 (HSV-1. Corneal tissues removed during therapy of patients with viral keratitis as well as a Simian vacuolating virus 40 (SV40-immortalized human corneal epithelial cell line were also examined. Immunohistochemistry was used to detect NLRP3 in these subjects, focusing on their distribution in tissue or cells. Western blot was used to measure the level of NLRP3 and another two related molecules in NLPR3 inflammasome, namely caspase-1 and IL-1β. RESULTS: The NLRP3 activation induced by HSV-1 infection in corneas was accompanied with redistribution of NLRP3 from the cytoplasm to the nucleus in both murine and human corneal epithelial cells. Furthermore, in the SV40-immortalized human corneal epithelial cells, NLRP3 was exclusively located in the nucleus, and treatment of the cells with high concentration of extracellular potassium (known as an inhibitor of NLRP3 activation effectively drove NLRP3 back to the cytoplasm as reflected by both immunohistochemistry and Western blot. CONCLUSION: It is proposed that herpes virus infection activates and causes redistribution of NLRP3 to nuclei. Whether this NLRP3 translocation occurs with other viral infections and in other cell types merit further study.

  14. Expression profile of senescence-associated beta-galactosidase and activation of telomerase in human ovarian surface epithelial cells undergoing immortalization.

    Science.gov (United States)

    Litaker, J R; Pan, J; Cheung, Y; Zhang, D K; Liu, Y; Wong, S C; Wan, T S; Tsao, S W

    1998-11-01

    Senescence is a specific physiological stage of cells characterized by long population doubling time. It accounts for the inability of normal somatic cells to undergo indefinite cell division. As the number of population doublings increase, cell cycle regulatory mechanisms come into play and signal cells to exit the cell cycle and become senescent. Senescence has been implicated in the aging process and may function as a tumor suppressor mechanism in human cells. The ability to measure the degree of cellular senescence is important in understanding the biological processes regulating cell aging and immortalization. Senescent cells exhibit an enzyme termed senescence-associated histochemical staining. Cells immortalized by viral oncogenes often enter a stage of crisis at the early phase of immortalization. The cells at crisis have a long population doubling time. Cells at the crisis stage resemble senescent cells and the expression of SA- beta-Gal may be used to monitor the process of immortalization. In this study the expression profile of SA-beta-Gal was examined in human ovarian surface epithelial cells (HOSE 6-3) undergoing immortalization by the human papilloma viral oncogene E6 and E7 (HPV E6 and E7). Our results showed a low percentage (12.0%) of HOSE 6-3 cells expressing SA-beta-Gal activity at the pre-crisis stage. The percentage of HOSE 6-3 cells expressing SA-beta-Gal activity was highest (39.2%) at the crisis stage. When HOSE 6-3 cells achieved immortalized status there was a sharp decrease in cells (1. 3%) expressing SA-beta-Gal activity. In addition, an inverse relationship between the expression of SA-beta-Gal activity and telomerase activity was noted in cells undergoing immortalization. The results confirm that the SA-beta-Gal enzyme is a good marker for monitoring the population of cells undergoing senescence at different stages of immortalization and that telomerase activation is a characteristic feature of post-crisis cells.

  15. Possible involvement of loss of imprinting in immortalization of human fibroblasts.

    Science.gov (United States)

    Okamura, Kotaro; Ohno, Maki; Tsutsui, Takeki

    2011-04-01

    Disruption of the normal pattern of parental origin-specific gene expression is referred to as loss of imprinting (LOI), which is common in various cancers. To investigate a possible role of LOI in the early stage of human cell transformation, we studied LOI in 18 human fibroblast cell lines immortalized spontaneously, by viral oncogenes, by chemical or physical carcinogens, or by infection with a retrovirus vector encoding the human telomerase catalytic subunit, hTERT cDNA. LOI was observed in all the 18 immortal cell lines. The gene most commonly exhibiting LOI was NDN which displayed LOI in 15 of the 18 cell lines (83%). The other genes exhibiting LOI at high frequencies were PEG3 (50%), MAGE-L2 (61%) and ZNF 127 (50%). Expression of NDN that was lost in the immortal cell lines was restored by treatment with 5-aza-2'-deoxycytidine. The ratio of histone H3 lysine 9 methylation to histone H3 lysine 4 methylation of the chromatin containing the NDN promoter in the immortal WI-38VA13 cells was greater than that in the parental cells, suggesting chromatin structure-mediated regulation of NDN expression. We previously demonstrated that inactivation of the p16INK4a/pRb pathway is necessary for immortalization of human cells. Human fibroblasts in the pre-crisis phase and cells with an extended lifespan that eventually senesce, both of which have the normal p16INK4a/pRb pathway, did not show LOI at any imprinted gene examined. Although it is not clear if LOI plays a causal role in immortalization of human cells or is merely coincidental, these findings indicate a possible involvement of LOI in immortalization of human cells or a common mechanism involved in both processes.

  16. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    2005-08-01

    Full Text Available DNA methylation, copy number in the genomes of three immortalized prostate epithelial, five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, PC3MLN4 were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme Hpall, followed by linker ligation, polymerase chain reaction (PCR amplification, labeling, hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5% showed differential hybridization between immortalized prostate epithelial, cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, TSPY previously observed in prostate cancer, 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, WIT-1. The majority of genes that appear to be both differentially methylated, differentially regulated between prostate epithelial, cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.

  17. An In Vitro System Comprising Immortalized Hypothalamic Neuronal Cells (GT1?7 Cells) for Evaluation of the Neuroendocrine Effects of Essential Oils

    OpenAIRE

    Mizuno, Dai; Konoha-Mizuno, Keiko; Mori, Miwako; Yamazaki, Kentaro; Haneda, Toshihiro; Koyama, Hironari; Kawahara, Masahiro

    2015-01-01

    Aromatherapy and plant-based essential oils are widely used as complementary and alternative therapies for symptoms including anxiety. Furthermore, it was reportedly effective for the care of several diseases such as Alzheimer’s disease and depressive illness. To investigate the pharmacological effects of essential oils, we developed an in vitro assay system using immortalized hypothalamic neuronal cells (GT1–7 cells). In this study, we evaluated the effects of essential oils on neuronal deat...

  18. Sensitive Tumorigenic Potential Evaluation of Adult Human Multipotent Neural Cells Immortalized by hTERT Gene Transduction.

    Directory of Open Access Journals (Sweden)

    Kee Hang Lee

    Full Text Available Stem cells and therapeutic genes are emerging as a new therapeutic approach to treat various neurodegenerative diseases with few effective treatment options. However, potential formation of tumors by stem cells has hampered their clinical application. Moreover, adequate preclinical platforms to precisely test tumorigenic potential of stem cells are controversial. In this study, we compared the sensitivity of various animal models for in vivo stem cell tumorigenicity testing to identify the most sensitive platform. Then, tumorigenic potential of adult human multipotent neural cells (ahMNCs immortalized by the human telomerase reverse transcriptase (hTERT gene was examined as a stem cell model with therapeutic genes. When human glioblastoma (GBM cells were injected into adult (4-6-week-old Balb/c-nu, adult NOD/SCID, adult NOG, or neonate (1-2-week-old NOG mice, the neonate NOG mice showed significantly faster tumorigenesis than that of the other groups regardless of intracranial or subcutaneous injection route. Two kinds of ahMNCs (682TL and 779TL were primary cultured from surgical samples of patients with temporal lobe epilepsy. Although the ahMNCs were immortalized by lentiviral hTERT gene delivery (hTERT-682TL and hTERT-779TL, they did not form any detectable masses, even in the most sensitive neonate NOG mouse platform. Moreover, the hTERT-ahMNCs had no gross chromosomal abnormalities on a karyotype analysis. Taken together, our data suggest that neonate NOG mice could be a sensitive animal platform to test tumorigenic potential of stem cell therapeutics and that ahMNCs could be a genetically stable stem cell source with little tumorigenic activity to develop regenerative treatments for neurodegenerative diseases.

  19. Efficient immortalization of primary human cells by p16INK4a-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT.

    Science.gov (United States)

    Haga, Kei; Ohno, Shin-ichi; Yugawa, Takashi; Narisawa-Saito, Mako; Fujita, Masatoshi; Sakamoto, Michiie; Galloway, Denise A; Kiyono, Tohru

    2007-02-01

    Activation of telomerase is sufficient for immortalization of some types of human cells but additional factors may also be essential. It has been proposed that stress imposed by inadequate culture conditions induces senescence due to accumulation of p16(INK4a). Here, we present evidence that many human cell types undergo senescence by activation of the p16(INK4a)/Rb pathway, and that introduction of Bmi-1 can inhibit p16(INK4a) expression and extend the life span of human epithelial cells derived from skin, mammary gland and lung. Introduction of p16(INK4a)-specific short hairpin RNA, as well as Bmi-1, suppressed p16(INK4a) expression in human mammary epithelial cells without promoter methylation, and extended their life span. Subsequent introduction of hTERT, the telomerase catalytic subunit, into cells with low p16(INK4a) levels resulted in efficient immortalization of three cell types without crisis or growth arrest. The majority of the human mammary epithelial cells thus immortalized showed almost normal ploidy as judged by G-banding and spectral karyotyping analysis. Our data suggest that inhibition of p16(INK4a) and introduction of hTERT can immortalize many human cell types with little chromosomal instability.

  20. Evaluating the immortal strand hypothesis in cancer stem cells: symmetric/self-renewal as the relevant surrogate marker of tumorigenicity.

    Science.gov (United States)

    Winquist, Raymond J; Hall, Amy B; Eustace, Brenda K; Furey, Brinley F

    2014-09-15

    Stem cells subserve repair functions for the lifetime of the organism but, as a consequence of this responsibility, are candidate cells for accumulating numerous genetic and/or epigenetic aberrations leading to malignant transformation. However, given the importance of this guardian role, stem cells likely harbor some process for maintaining their precious genetic code such as non-random segregation of chromatid strands as predicted by the Immortal Strand Hypothesis (ISH). Discerning such non-random chromosomal segregation and asymmetric cell division in normal or cancer stem cells has been complicated by methodological shortcomings but also by differing division kinetics amongst tissues and the likelihood that both asymmetric and symmetric cell divisions, dictated by local extrinsic factors, are operant in these cells. Recent data suggest that cancer stem cells demonstrate a higher incidence of symmetric versus asymmetric cell division with both daughter cells retaining self-renewal characteristics, a profile which may underlie poorly differentiated morphology and marked clonal diversity in tumors. Pathways and targets are beginning to emerge which may provide opportunities for preventing such a predilection in cancer stem cells and that will hopefully translate into new classes of chemotherapeutics in oncology. Thus, although the existence of the ISH remains controversial, the shift of cell division dynamics to symmetric random chromosome segregation/self-renewal, which would negate any likelihood of template strand retention, appears to be a surrogate marker for the presence of highly malignant tumorigenic cell populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Gokhan Yildiz

    Full Text Available Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become "immortal" by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15

  2. Radiosensitivity of mesothelioma cell lines

    International Nuclear Information System (INIS)

    Haekkinen, A.M.; Laasonen, A.; Linnainmaa, K.; Mattson, K.; Pyrhoenen, S.

    1996-01-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters α and β of the linear quadratic model (LQ-model) and mean inactivation dose (D MID ) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean α value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The α/β ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.)

  3. Establishment and evaluation of a stable cattle type II alveolar epithelial cell line.

    Directory of Open Access Journals (Sweden)

    Feng Su

    Full Text Available Macrophages and dendritic cells are recognized as key players in the defense against mycobacterial infection. Recent research has confirmed that alveolar epithelial cells (AECs also play important roles against mycobacterium infections. Thus, establishing a stable cattle AEC line for future endogenous immune research on bacterial invasion is necessary. In the present study, we first purified and immortalized type II AECs (AEC II cells by transfecting them with a plasmid containing the human telomerase reverse trancriptase gene. We then tested whether or not the immortalized cells retained the basic physiological properties of primary AECs by reverse-transcription polymerase chain reaction and Western blot. Finally, we tested the secretion capacity of immortalized AEC II cells upon stimulation by bacterial invasion. The cattle type II alveolar epithelial cell line (HTERT-AEC II that we established retained lung epithelial cell characteristics: the cells were positive for surfactants A and B, and they secreted tumor necrosis factor-α and interleukin-6 in response to bacterial invasion. Thus, the cell line we established is a potential tool for research on the relationship between AECs and Mycobacterium tuberculosis.

  4. CLO : The cell line ontology

    NARCIS (Netherlands)

    Sarntivijai, Sirarat; Lin, Yu; Xiang, Zuoshuang; Meehan, Terrence F.; Diehl, Alexander D.; Vempati, Uma D.; Schuerer, Stephan C.; Pang, Chao; Malone, James; Parkinson, Helen; Liu, Yue; Takatsuki, Terue; Saijo, Kaoru; Masuya, Hiroshi; Nakamura, Yukio; Brush, Matthew H.; Haendel, Melissa A.; Zheng, Jie; Stoeckert, Christian J.; Peters, Bjoern; Mungall, Christopher J.; Carey, Thomas E.; States, David J.; Athey, Brian D.; He, Yongqun

    2014-01-01

    Background: Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO

  5. Polymer encapsulated dopaminergic cell lines as "alternative neural grafts".

    Science.gov (United States)

    Jaeger, C B; Greene, L A; Tresco, P A; Winn, S R; Aebischer, P

    1990-01-01

    Our preliminary findings (Jaeger et al., 1988; Aebischer et al., 1989; Tresco et al., 1989) and the studies in progress show that encapsulated dopaminergic cell lines survive enclosure within a semi-permeable membrane. The encapsulated cells remained viable for extended time periods when maintained in vitro. Moreover, encapsulated PC12 and T28 cells have the potential to survive following their implantation into the forebrain of rats. Cell lines are essentially "immortal" because they continue to divide indefinitely. This property allows perpetual "self-renewal" of a given cell population. However, the capacity of continuous uncontrolled cell division may also lead to tumor formation. This in fact is the case for unencapsulated PC12 cell implants placed into the brain of young Sprague Dawley rats (Jaeger, 1985). Cell line encapsulation has the potential to prevent tumor growth (Jaeger et al., 1988). Survival for 6 months in vitro suggests that encapsulation does not preclude long-term maintenance of an homogeneous cell line like PC12 cells. The presence of mitotic figures in the capsules further supports the likelihood of propagation and self renewal of the encapsulated population. Another significant property of cell lines is that they consist of a single, genetically homogeneous cell type. They do not require specific synaptic interactions for their survival. In the case of PC12 and T28 lines, the cells synthesize and release neurotransmitters. Our data show that PC12 and T28 cells continue to release dopamine spontaneously and to express specific transmitters and enzymes following encapsulation. Thus, cell lines such as these may constitute relatively simple "neural implants" exerting their function via humoral release.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Adaptive regulation of taurine and beta-alanine uptake in a human kidney cell line from the proximal tubule

    DEFF Research Database (Denmark)

    Jessen, H; Jacobsen, Christian

    1997-01-01

    1. The underlying mechanisms involved in the adaptive regulation of beta-amino acid uptake in the human proximal tubule were examined by use of an immortalized human embryonic kidney epithelial cell line (IHKE). 2. The results indicated that the adaptive response to maintain whole-body taurine...

  7. Radiosensitivity of mesothelioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, A.M. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland); Laasonen, A. [Dept. of Pathology, Central Hospital of Etelae-Pohjanmaa, Seinaejoki (Finland); Linnainmaa, K. [Dept. of Industrial Hygiene and Toxicology, Inst. of Occupational Health, Helsinki (Finland); Mattson, K. [Dept. Pulmonary Medicine, Univ. Central Hospital, Helsinki (Finland); Pyrhoenen, S. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland)

    1996-10-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters {alpha} and {beta} of the linear quadratic model (LQ-model) and mean inactivation dose (D{sub MID}) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean {alpha} value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The {alpha}/{beta} ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.).

  8. Immortalization of human foreskin keratinocytes by various human papillomavirus DNAs corresponds to their association with cervical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Woodworth, C.D.; Doniger, J.; DiPaolo, J.A.

    1989-01-01

    Normal human foreskin keratinocytes cotransfected with the neomycin resistance gene and recombinant human papillomavirus (HPV) DNAs (types 16, 18, 31, and 33) that have a high or moderate association with cervical malignancy acquired immortality and contained integrated and transcriptionally active viral genomes. Only transcripts from the intact E6 and E7 genes were detected in at least one cell line, suggesting that one or both of these genes are responsible for immortalization. Recombinant HPV DNAs with low or no oncogenic potential for cervical cancer (HPV1a, -5, -6b, and -11) induced small G418-resistant colonies that senesced as did the nontransfected cells. These colonies contained only episomal virus DNA; therefore, integration of HPV sequences is important for immortalization of keratinocytes. This study suggests that the virus-encoded immortalization function contributes to the pathogenesis of cervical carcinoma.

  9. Establishment and characterization of a novel osteosarcoma cell line: CHOS.

    Science.gov (United States)

    Liu, Yunlu; Feng, Xiaobo; Zhang, Yukun; Jiang, Hongyan; Cai, Xianyi; Yan, Xinxin; Huang, Zengfa; Mo, Fengbo; Yang, Wen; Yang, Cao; Yang, Shuhua; Liu, Xianzhe

    2016-12-01

    Osteosarcoma has a well-recognized bimodal distribution, with the first peak in adolescence and another in the elderly age-group. The elderly patients have different clinical features and a poorer prognosis as compared to adolescents. To better understand the biological features of osteosarcoma in the elderly population, we established a new human osteosarcoma cell line from a 58-year-old man with primary chondroblastic osteosarcoma. After 6 months of continuous culture in vitro for over 50 passages, an immortalized cell line CHOS was established. The cell line was well-characterized by cytogenetic, biomarker, functional, and histological analyses. The CHOS cells exhibited a spindle-shaped morphology and a doubling time of 36 h. Cytogenetic analysis of CHOS cells revealed the loss of chromosome Y and the gain of chromosome 12. Quantitative real-time polymerase chain reaction (RT-PCR), Western blotting and/or immunofluorescence revealed the expression of chondroblastic, mesenchymal and tumor metastasis markers in the CHOS cells. Compared with the osteosarcoma cell line, the CHOS cells were found to be more sensitive to cisplatin and doxorubicin, but were resistant to methotrexate. The cell line was highly tumorigenic and maintained the histological characteristics and invasive nature of the original tumor. Furthermore, on immunohistochemical analysis, the xenografts and metastases were found to co-express collagen II, aggrecan, vimentin and S100A4 that resembled the original tumor cells. Our results indicate, the potential of CHOS cell line to serve as a useful tool for further studies on the molecular biology of osteosarcoma, especially in the elderly patients. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2116-2125, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Specific regulation of point-mutated K-ras-immortalized cell proliferation by a photodynamic antisense strategy.

    Science.gov (United States)

    Higuchi, Maiko; Yamayoshi, Asako; Kato, Kiyoko; Kobori, Akio; Wake, Norio; Murakami, Akira

    2010-02-01

    It has been reported that point mutations in genes are responsible for various cancers, and the selective regulation of gene expression is an important factor in developing new types of anticancer drugs. To develop effective drugs for the regulation of point-mutated genes, we focused on photoreactive antisense oligonucleotides. Previously, we reported that photoreactive oligonucleotides containing 2'-O-psoralenylmethoxyethyl adenosine (2'-Ps-eom) showed drastic photoreactivity in a strictly sequence-specific manner. Here, we demonstrated the specific gene regulatory effects of 2'-Ps-eom on [(12)Val]K-ras mutant (GGT --> GTT). Photo-cross-linking between target mRNAs and 2'-Ps-eom was sequence-specific, and the effect was UVA irradiation-dependent. Furthermore, 2'-Ps-eom was able to inhibit K-ras-immortalized cell proliferation (K12V) but not Vco cells that have the wild-type K-ras gene. These results suggest that the 2'-Ps-eom will be a powerful nucleic acid drug to inhibit the expression of disease-causing point mutation genes, and has great therapeutic potential in the treatment of cancer.

  11. Direct induction of hepatocyte-like cells from immortalized human bone marrow mesenchymal stem cells by overexpression of HNF4α

    International Nuclear Information System (INIS)

    Hu, Xiaojun; Xie, Peiyi; Li, Weiqiang; Li, Zhengran; Shan, Hong

    2016-01-01

    Hepatocytes from human bone marrow-derived mesenchymal stem cells (hBM-MSCs) are expected to be a useful source for cell transplantation. However, relatively low efficiency and repeatability of hepatic differentiation of human BM-MSCs remains an obstacle for clinical translation. Hepatocyte nuclear factor 4 alpha (HNF4α), a critical transcription factor, plays an essential role in the entire process of liver development. In this study, immortalized hBM-MSCs, UE7T-13 cells were transduced with a lentiviral vector containing HNF4α. The typical fibroblast-like morphology of the MSCs changed, and polygonal, epithelioid cells grew out after HNF4α transduction. In hepatocyte culture medium, HNF4α-transduced MSCs (E7-hHNF4α cells) strongly expressed the albumin (ALB), CYP2B6, alpha-1 antitrypsin (AAT), and FOXA2 mRNA and exhibited morphology markedly similar to that of mature hepatocytes. The E7-hHNF4α cells showed hepatic functions such as Indocyanine green (ICG) uptake and release, glycogen storage, urea production and ALB secretion. Approximately 28% of E7-hHNF4α cells expressed both ALB and AAT. Furthermore, these E7-hHNF4α cells via superior mesenteric vein (SMV) injection expressed human ALB in mouse chronic injured liver. In conclusion, this study represents a novel strategy by directly inducing hepatocyte-like cells from MSCs. - Highlights: • We overexpressed HNF4α in immortalized BM-MSCs by lentiviral transduction. • HNF4α-transduced MSCs transdifferentiated into hepatocytes with mature hepatic metabolic functions. • Our study represents a novel strategy by direct induction of hepatocyte-like cells from MSCs.

  12. Mouse DRG Cell Line with Properties of Nociceptors.

    Science.gov (United States)

    Doran, Ciara; Chetrit, Jonathan; Holley, Matthew C; Grundy, David; Nassar, Mohammed A

    2015-01-01

    In vitro cell lines from DRG neurons aid drug discovery because they can be used for early stage, high-throughput screens for drugs targeting pain pathways, with minimal dependence on animals. We have established a conditionally immortal DRG cell line from the Immortomouse. Using immunocytochemistry, RT-PCR and calcium microfluorimetry, we demonstrate that the cell line MED17.11 expresses markers of cells committed to the sensory neuron lineage. Within a few hours under differentiating conditions, MED17.11 cells extend processes and following seven days of differentiation, express markers of more mature DRG neurons, such as NaV1.7 and Piezo2. However, at least at this time-point, the nociceptive marker NaV1.8 is not expressed, but the cells respond to compounds known to excite nociceptors, including the TRPV1 agonist capsaicin, the purinergic receptor agonist ATP and the voltage gated sodium channel agonist, veratridine. Robust calcium transients are observed in the presence of the inflammatory mediators bradykinin, histamine and norepinephrine. MED17.11 cells have the potential to replace or reduce the use of primary DRG culture in sensory, pain and developmental research by providing a simple model to study acute nociception, neurite outgrowth and the developmental specification of DRG neurons.

  13. Establishment and characterization of a novel head and neck squamous cell carcinoma cell line USC-HN1.

    Science.gov (United States)

    Liebertz, Daniel J; Lechner, Melissa G; Masood, Rizwan; Sinha, Uttam K; Han, Jing; Puri, Raj K; Correa, Adrian J; Epstein, Alan L

    2010-02-22

    Head and neck squamous cell carcinoma (HNSCC) is an aggressive and lethal malignancy. Publically available cell lines are mostly of lingual origin, or have not been carefully characterized. Detailed characterization of novel HNSCC cell lines is needed in order to provide researchers a concrete keystone on which to build their investigations. The USC-HN1 cell line was established from a primary maxillary HNSCC biopsy explant in tissue culture. The immortalized cells were then further characterized by heterotransplantation in Nude mice; immunohistochemical staining for relevant HNSCC biomarkers; flow cytometry for surface markers; cytogenetic karyotypic analysis; human papillomavirus and Epstein-Barr virus screening; qRT-PCR for oncogene and cytokine analysis; investigation of activated, cleaved Notch1 levels; and detailed 35,000 gene microarray analysis. Characterization experiments confirmed the human HNSCC origin of USC-HN1, including a phenotype similar to the original tumor. Viral screening revealed no HPV or EBV infection, while western blotting displayed significant upregulation of activated, cleaved Notch1. USC-HN1, a novel immortalized cell line has been derived from a maxillary HNSCC. Characterization studies have shown that the cell line is of HNSCC origin and displays many of the same markers previously reported in the literature. USC-HN1 is available for public research and will further the investigation of HNSCC and the development of new therapeutic modalities.

  14. Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR

    Science.gov (United States)

    Wang, Wei; Zhang, Tianmu; Wu, Chunyan; Wang, Shanshan; Wang, Yuxiang; Wang, Ning

    2017-01-01

    The chicken is an important agricultural animal and model for developmental biology, immunology and virology. Excess fat accumulation continues to be a serious problem for the chicken industry. However, chicken adipogenesis and obesity have not been well investigated, because no chicken preadipocyte cell lines have been generated thus far. Here, we successfully generated two immortalized chicken preadipocyte cell lines through transduction of either chicken telomerase reverse transcriptase (chTERT) alone or in combination with chicken telomerase RNA (chTR). Both of these cell lines have survived >100 population doublings in vitro, display high telomerase activity and have no sign of replicative senescence. Similar to primary chicken preadipocytes, these two cell lines display a fibroblast-like morphology, retain the capacity to differentiate into adipocytes, and do not display any signs of malignant transformation. Isoenzyme analysis and PCR-based analysis confirmed that these two cell lines are of chicken origin and are free from inter-species contamination. To our knowledge, this is the first report demonstrating the generation of immortal chicken cells by introduction of chTERT and chTR. Our established chicken preadipocyte cell lines show great promise as an in vitro model for the investigation of chicken adipogenesis, lipid metabolism, and obesity and its related diseases, and our results also provide clues for immortalizing other avian cell types. PMID:28486516

  15. Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available The chicken is an important agricultural animal and model for developmental biology, immunology and virology. Excess fat accumulation continues to be a serious problem for the chicken industry. However, chicken adipogenesis and obesity have not been well investigated, because no chicken preadipocyte cell lines have been generated thus far. Here, we successfully generated two immortalized chicken preadipocyte cell lines through transduction of either chicken telomerase reverse transcriptase (chTERT alone or in combination with chicken telomerase RNA (chTR. Both of these cell lines have survived >100 population doublings in vitro, display high telomerase activity and have no sign of replicative senescence. Similar to primary chicken preadipocytes, these two cell lines display a fibroblast-like morphology, retain the capacity to differentiate into adipocytes, and do not display any signs of malignant transformation. Isoenzyme analysis and PCR-based analysis confirmed that these two cell lines are of chicken origin and are free from inter-species contamination. To our knowledge, this is the first report demonstrating the generation of immortal chicken cells by introduction of chTERT and chTR. Our established chicken preadipocyte cell lines show great promise as an in vitro model for the investigation of chicken adipogenesis, lipid metabolism, and obesity and its related diseases, and our results also provide clues for immortalizing other avian cell types.

  16. The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis

    Science.gov (United States)

    2014-01-01

    Background It is believed that in tapeworms a separate population of undifferentiated cells, the germinative cells, is the only source of cell proliferation throughout the life cycle (similar to the neoblasts of free living flatworms). In Echinococcus multilocularis, the metacestode larval stage has a unique development, growing continuously like a mass of vesicles that infiltrate the tissues of the intermediate host, generating multiple protoscoleces by asexual budding. This unique proliferation potential indicates the existence of stem cells that are totipotent and have the ability for extensive self-renewal. Results We show that only the germinative cells proliferate in the larval vesicles and in primary cell cultures that undergo complete vesicle regeneration, by using a combination of morphological criteria and by developing molecular markers of differentiated cell types. The germinative cells are homogeneous in morphology but heterogeneous at the molecular level, since only sub-populations express homologs of the post-transcriptional regulators nanos and argonaute. Important differences are observed between the expression patterns of selected neoblast marker genes of other flatworms and the E. multilocularis germinative cells, including widespread expression in E. multilocularis of some genes that are neoblast-specific in planarians. Hydroxyurea treatment results in the depletion of germinative cells in larval vesicles, and after recovery following hydroxyurea treatment, surviving proliferating cells grow as patches that suggest extensive self-renewal potential for individual germinative cells. Conclusions In E. multilocularis metacestodes, the germinative cells are the only proliferating cells, presumably driving the continuous growth of the larval vesicles. However, the existence of sub-populations of the germinative cells is strongly supported by our data. Although the germinative cells are very similar to the neoblasts of other flatworms in function and

  17. *NO and oxyradical metabolism in new cell lines of rat brain capillary endothelial cells forming the blood-brain barrier.

    Science.gov (United States)

    Blasig, I E; Giese, H; Schroeter, M L; Sporbert, A; Utepbergenov, D I; Buchwalow, I B; Neubert, K; Schönfelder, G; Freyer, D; Schimke, I; Siems, W E; Paul, M; Haseloff, R F; Blasig, R

    2001-09-01

    To investigate the relevance of *NO and oxyradicals in the blood-brain barrier (BBB), differentiated and well-proliferating brain capillary endothelial cells (BCEC) are required. Therefore, rat BCEC (rBCEC) were transfected with immortalizing genes. The resulting lines exhibited endothelial characteristics (factor VIII, angiotensin-converting enzyme, high prostacyclin/thromboxane release rates) and BBB markers (gamma-glutamyl transpeptidase, alkaline phosphatase). The control line rBCEC2 (mock transfected) revealed fibroblastoid morphology, less factor VIII, reduced gamma-glutamyl transpeptidase, weak radical defence, low prostanoid metabolism, and limited proliferation. Lines transfected with immortalizing genes (especially rBCEC4, polyoma virus large T antigen) conserved primary properties: epitheloid morphology, subcultivation with high proliferation rate under pure culture conditions, and powerful defence against reactive oxygen species (Mn-, Cu/Zn-superoxide dismutase, catalase, glutathione peroxidase, glutathione) effectively controlling radical metabolism. Only 100 microM H2O2 overcame this defence and stimulated the formation of eicosanoids similarly as in primary cells. Some BBB markers were expressed to a lower degree; however, cocultivation with astrocytes intensified these markers (e.g., alkaline phosphatase) and paraendothelial tightness, indicating induction of BBB properties. Inducible NO synthase was induced by a cytokine plus lipopolysaccharide mixture in all lines and primary cells, resulting in *NO release. Comparing the cell lines obtained, rBCEC4 are stable immortalized and reveal the best conservation of properties from primary cells, including enzymes producing or decomposing reactive species. These cells can be subcultivated in large amounts and, hence, they are suitable to study the role of radical metabolism in the BBB and in the cerebral microvasculature. Copyright 2001 Academic Press.

  18. Immune activation induces immortalization of HTLV-1 LTR-Tax transgenic CD4+ T cells

    OpenAIRE

    Swaims, Alison Y.; Khani, Francesca; Zhang, Yingyu; Roberts, Arthur I.; Devadas, Satish; Shi, Yufang; Rabson, Arnold B.

    2010-01-01

    Infection with the human T-cell leukemia virus-1 (HTLV-1) results in a variety of diseases including adult T-cell leukemia/lymphoma (ATL). Although the pathogenesis of these disorders is poorly understood, it involves complex interactions with the host immune system. Activation of infected T cells may play an important role in disease pathogenesis through induction of the oncogenic HTLV-1 Tax transactivator protein. To test this hypothesis, we employed transgenic mice in which Tax is regulate...

  19. C-terminal cleavage of DeltaNp63alpha is associated with TSA-induced apoptosis in immortalized corneal epithelial cells.

    Science.gov (United States)

    Robertson, Danielle M; Ho, Su-Inn; Cavanagh, H Dwight

    2010-08-01

    In the central human corneal epithelium, loss of DeltaNp63 occurs in all surface epithelial cells preparing to undergo desquamation, suggesting a potential role for DeltaNp63 isoforms in mediating surface cell apoptotic shedding. In this study, the authors investigated a role for DeltaNp63 isoforms in caspase-mediated apoptosis in a telomerase-immortalized corneal epithelial cell line. For in vitro studies, hTCEpi cells were cultured in KGM-2 serum-free culture media containing 0.15 mM calcium. To assess dynamic protein interactions among individual DeltaNp63 isoforms, DeltaNp63-EGFP expression plasmids were transiently expressed in hTCEpi cells and evaluated by FRAP. Trichostatin-A (TSA; 3.31 muM) was used to induce cell death as measured by caspase activity. Cleavage and loss of endogenous DeltaNp63alpha, DeltaNp63-EGFP expression plasmids, and p53 were assessed after treatment with TSA and siRNA. Transient expression of DeltaNp63-EGFP alpha and beta isoforms resulted in the formation of a smaller isoform similar in size to DeltaNp63gamma-EGFP. FRAP demonstrated that DeltaNp63alpha-EGFP has greater immobile fraction than beta or gamma. TSA induced caspase-mediated apoptotic pathways; caspase induction was accompanied by a decrease in endogenous DeltaNp63alpha and p53. TSA upregulated DeltaNp63-EGFP plasmid expression; this was accompanied by a selective increase in cleavage of DeltaNp63alpha-EGFP. siRNA knockdown of DeltaNp63alpha correlated with a reduction in p53 independently of TSA. DeltaNp63alpha is the dominant active isoform in corneal epithelial cell nuclei. Loss of DeltaNp63alpha occurs during apoptotic signaling by cleavage at the C terminus. The corresponding loss of p53 suggests that a significant relationship appears to exist between these two regulatory proteins.

  20. Transplantation of Immortalized CD34+ and CD34- Adipose-Derived Stem Cells Improve Cardiac Function and Mitigate Systemic Pro-Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Jong-Ho Kim

    Full Text Available Adipose-derived stem cells (ADSCs have the potential to differentiate into various cell lineages and they are easily obtainable from patients, which makes them a promising candidate for cell therapy. However, a drawback is their limited life span during in vitro culture. Therefore, hTERT-immortalized CD34+ and CD34- mouse ADSC lines (mADSCshTERT tagged with GFP were established. We evaluated the proliferation capacity, multi-differentiation potential, and secretory profiles of CD34+ and CD34- mADSCshTERT in vitro, as well as their effects on cardiac function and systemic inflammation following transplantation into a rat model of acute myocardial infarction (AMI to assess whether these cells could be used as a novel cell source for regeneration therapy in the cardiovascular field. CD34+ and CD34- mADSCshTERT demonstrated phenotypic characteristics and multi-differentiation potentials similar to those of primary mADSCs. CD34+ mADSCshTERT exhibited a higher proliferation ability compared to CD34- mADSCshTERT, whereas CD34- mADSCshTERT showed a higher osteogenic differentiation potential compared to CD34+ mADSCshTERT. Primary mADSCs, CD34+, and CD34- mADSCshTERT primarily secreted EGF, TGF-β1, IGF-1, IGF-2, MCP-1, and HGFR. CD34+ mADSCshTERT had higher secretion of VEGF and SDF-1 compared to CD34- mADSCshTERT. IL-6 secretion was severely reduced in both CD34+ and CD34- mADSCshTERT compared to primary mADSCs. Transplantation of CD34+ and CD34- mADSCshTERT significantly improved the left ventricular ejection fraction and reduced infarct size compared to AMI-induced rats after 28 days. At 28 days after transplantation, engraftment of CD34+ and CD34- mADSCshTERT was confirmed by positive Y chromosome staining, and differentiation of CD34+ and CD34- mADSCshTERT into endothelial cells was found in the infarcted myocardium. Significant decreases were observed in circulating IL-6 levels in CD34+ and CD34- mADSCshTERT groups compared to the AMI

  1. Interaction of CtBP with adenovirus E1A suppresses immortalization of primary epithelial cells and enhances virus replication during productive infection

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, T.; Zhao, Ling-jun; Chinnadurai, G., E-mail: chinnag@slu.edu

    2013-09-01

    Adenovirus E1A induces cell proliferation, oncogenic transformation and promotes viral replication through interaction with p300/CBP, TRRAP/p400 multi-protein complex and the retinoblastoma (pRb) family proteins through distinct domains in the E1A N-terminal region. The C-terminal region of E1A suppresses E1A/Ras co-transformation and interacts with FOXK1/K2, DYRK1A/1B/HAN11 and CtBP1/2 (CtBP) protein complexes. To specifically dissect the role of CtBP interaction with E1A, we engineered a mutation (DL→AS) within the CtBP-binding motif, PLDLS, and investigated the effect of the mutation on immortalization and Ras cooperative transformation of primary cells and viral replication. Our results suggest that CtBP–E1A interaction suppresses immortalization and Ras co-operative transformation of primary rodent epithelial cells without significantly influencing the tumorigenic activities of transformed cells in immunodeficient and immunocompetent animals. During productive infection, CtBP–E1A interaction enhances viral replication in human cells. Between the two CtBP family proteins, CtBP2 appears to restrict viral replication more than CtBP1 in human cells. - Highlights: • Adenovirus E1A C-terminal region suppresses E1A/Ras co-transformation. • This E1A region binds with FOXK, DYRK1/HAN11 and CtBP cellular protein complexes. • We found that E1A–CtBP interaction suppresses immortalization and transformation. • The interaction enhances viral replication in human cells.

  2. Mouse Retinal Pigmented Epithelial Cell Lines retain their phenotypic characteristics after transfection with Human Papilloma Virus: A new tool to further the study of RPE biology

    Science.gov (United States)

    Catanuto, Paola; Espinosa-Heidmann, Diego; Pereira-Simon, Simone; Sanchez, Patricia; Salas, Pedro; Hernandez, Eleut; Cousins, Scott W.; Elliot, Sharon J.

    2009-01-01

    Development of immortalized mouse retinal pigmented epithelial cell (RPE) lines that retain many of their in vivo phenotypic characteristics, would aid in studies of ocular diseases including age related macular degeneration (AMD). RPE cells were isolated from 16 month old (estrogen receptor knockout) ERKOα and ERKOβ mice and their C57Bl/6 wild type littermates. RPE65 and cellular retinaldehyde binding protein (CRALBP) expression, in vivo markers of RPE cells, were detected by real-time RT-PCR and western analysis. We confirmed the presence of epithelial cell markers, ZO1, cytokeratin 8 and 18 by immunofluorescence staining. In addition, we confirmed the distribution of actin filaments and the expression of ezrin. To develop cell lines, RPE cells were isolated, propagated and immortalized using human papilloma virus (HPV) 16 (E6/E7). RPE-specific markers and morphology were assessed before and after immortalization. In wildtype littermate controls, there was no evidence of any alterations in the parameters that we examined including MMP-2, TIMP-2, collagen type IV, and estrogen receptor (ER) α and ERβ protein expression and ER copy number ratio. Therefore, immortalized mouse RPE cell lines that retain their in vivo phenotype can be isolated from either pharmacologically or genetically manipulated mice, and may be used to study RPE cell biology. PMID:19013153

  3. Human Papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization

    Science.gov (United States)

    Vandermark, Erik R.; Deluca, Krysta A.; Gardner, Courtney R.; Marker, Daniel F.; Schreiner, Cynthia N.; Strickland, David A.; Wilton, Katelynn M.; Mondal, Sumona; Woodworth, Craig D.

    2012-01-01

    The NF-kB family of transcription factors regulates important biological functions including cell growth, survival and the immune response. We found that Human Papillomavirus type 16 (HPV-16) E7 and E6/E7 proteins inhibited basal and TNF-alpha-inducible NF-kB activity in human epithelial cells cultured from the cervical transformation zone, the anatomic region where most cervical cancers develop. In contrast, HPV-16 E6 regulated NF-kB in a cell type- and cell growth-dependent manner. NF-kB influenced immortalization of cervical cells by HPV16. Inhibition of NF-kB by an IkB alpha repressor mutant increased colony formation and immortalization by HPV-16. In contrast, activation of NF-kB by constitutive expression of p65 inhibited proliferation and immortalization. Our results suggest that inhibition of NF-kB by HPV-16 E6/E7 contributes to immortalization of cells from the cervical transformation zone. PMID:22284893

  4. MicroRNA-4739 regulates osteogenic and adipocytic differentiation of immortalized human bone marrow stromal cells via targeting LRP3

    Directory of Open Access Journals (Sweden)

    Mona Elsafadi

    2017-04-01

    Full Text Available Understanding the regulatory networks underlying lineage differentiation and fate determination of human bone marrow stromal cells (hBMSC is a prerequisite for their therapeutic use. The goal of the current study was to unravel the novel role of the low-density lipoprotein receptor-related protein 3 (LRP3 in regulating the osteogenic and adipogenic differentiation of immortalized hBMSCs. Gene expression profiling revealed significantly higher LRP3 levels in the highly osteogenic hBMSC clone imCL1 than in the less osteogenic clone imCL2, as well as a significant upregulation of LRP3 during the osteogenic induction of the imCL1 clone. Data from functional and gene expression assays demonstrated the role of LRP3 as a molecular switch promoting hBMSC lineage differentiation into osteoblasts and inhibiting differentiation into adipocytes. Interestingly, microRNA (miRNA expression profiling identified miR-4739 as the most under-represented miRNA (−36.11 fold in imCL1 compared to imCL2. The TargetScan prediction algorithm, combined with functional and biochemical assays, identified LRP3 mRNA as a novel target of miR-4739, with a single potential binding site for miR-4739 located in the LRP3 3′ UTR. Regulation of LRP3 expression by miR-4739 was subsequently confirmed by qRT-PCR, western blotting, and luciferase assays. Over-expression of miR-4739 mimicked the effects of LRP3 knockdown on promoting adipogenic and suppressing osteogenic differentiation of hBMSCs. Hence, we report for the first time a novel biological role for the LRP3/hsa-miR-4739 axis in balancing osteogenic and adipocytic differentiation of hBMSCs. Our data support the potential utilization of miRNA-based therapies in regenerative medicine.

  5. MicroRNA-4739 regulates osteogenic and adipocytic differentiation of immortalized human bone marrow stromal cells via targeting LRP3

    DEFF Research Database (Denmark)

    Elsafadi, Mona; Manikandan, Muthurangan; Alajez, Nehad M

    2017-01-01

    3 (LRP3) in regulating the osteogenic and adipogenic differentiation of immortalized hBMSCs. Gene expression profiling revealed significantly higher LRP3 levels in the highly osteogenic hBMSC clone imCL1 than in the less osteogenic clone imCL2, as well as a significant upregulation of LRP3 during...

  6. Tumorigenic Heterogeneity in Cancer Stem Cells Evolved from Long-term Cultures of Telomerase-Immortalized

    DEFF Research Database (Denmark)

    Burns, Jorge S; Abdallah, Basem M; Guldberg, Per

    2005-01-01

    Long-term cultures of telomerase-transduced adult human mesenchymal stem cells (hMSC) may evolve spontaneous genetic changes leading to tumorigenicity in immunodeficient mice (e.g., hMSC-TERT20). We wished to clarify whether this unusual phenotype reflected a rare but dominant subpopulation or if...

  7. Interaction of CtBP with adenovirus E1A suppresses immortalization of primary epithelial cells and enhances virus replication during productive infection.

    Science.gov (United States)

    Subramanian, T; Zhao, Ling-Jun; Chinnadurai, G

    2013-09-01

    Adenovirus E1A induces cell proliferation, oncogenic transformation and promotes viral replication through interaction with p300/CBP, TRRAP/p400 multi-protein complex and the retinoblastoma (pRb) family proteins through distinct domains in the E1A N-terminal region. The C-terminal region of E1A suppresses E1A/Ras co-transformation and interacts with FOXK1/K2, DYRK1A/1B/HAN11 and CtBP1/2 (CtBP) protein complexes. To specifically dissect the role of CtBP interaction with E1A, we engineered a mutation (DL→AS) within the CtBP-binding motif, PLDLS, and investigated the effect of the mutation on immortalization and Ras cooperative transformation of primary cells and viral replication. Our results suggest that CtBP-E1A interaction suppresses immortalization and Ras co-operative transformation of primary rodent epithelial cells without significantly influencing the tumorigenic activities of transformed cells in immunodeficient and immunocompetent animals. During productive infection, CtBP-E1A interaction enhances viral replication in human cells. Between the two CtBP family proteins, CtBP2 appears to restrict viral replication more than CtBP1 in human cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Integration sites of Epstein-Barr virus genome on chromosomes of human lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Wuu, K.D.; Chen, Y.J.; Wang-Wuu, S. [Institute of Genetics, Taipei (Taiwan, Province of China)

    1994-09-01

    Epstein-Barr virus (EBV) is the pathogen of infectious mononucleosis. The viral genome is present in more than 95% of the African cases of Burkitt lymphoma and it is usually maintained in episomal form in the tumor cells. Viral integration has been described only for Nanalwa which is a Burkitt lymphoma cell line lacking episomes. In order to examine the role of EBV in the immortalization of human Blymphocytes, we investigated whether the EBV integration into the human genome is essential. If the integration does occur, we would like to know whether the integration is randomly distributed or whether the viral DNA integrates preferentially at certain sites. Fourteen in vitro immortalized human lymphoblastoid cell lines (LCLs) were examined by fluorescence in situ hybridization (FISH) with a biotinylated EBV BamHI w DNA fragment as probe. The episomal form of EBV DNA was found in all cells of these cell lines, while only about 65% of the cells have the integrated viral DNA. This might suggest that integration is not a pre-requisite for cell immortalization. Although all chromosomes, except Y, have been found with integrated viral genome, chromsomes 1 and 5 are the most frequent EBV DNA carrier (p<0.05). Nine chromosome bands, namely, 1p31, 1q31, 2q32, 3q13, 3q26, 5q14, 6q24, 7q31 and 12q21, are preferential targets for EBV integration (p<0.001). Eighty percent of the total 938 EBV hybridization signals were found to be at G-band-positive area. This suggests that the mechanism of EBV integration might be different from that of the retroviruses, which specifically integrate to G-band-negative areas. Thus, we conclude that the integration of EBV to host genome is non-random and it may have something to do with the structure of chromosome and DNA sequences.

  9. Glucose metabolite glyoxal induces senescence in telomerase-immortalized human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Larsen, Simon Asbjørn; Kassem, Moustapha; Rattan, Suresh

    2012-01-01

    ). Furthermore, the in vitro differentiation potential of hMSC-TERT to become functional osteoblasts was highly reduced in GO-treated stem cells, as determined by alkaline phosphatase (ALP) activity and mineralized matrix (MM) formation. Conclusions The results of our study imply that an imbalanced glucose...... physiological metabolite produced by the auto-oxidation of glucose, and can form covalent adducts known as advanced glycation endproducts (AGE). We have previously reported that GO accelerates ageing and causes premature senescence in normal human skin fibroblasts. Results Using a bone marrow-derived telomerase...

  10. Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat

    Czech Academy of Sciences Publication Activity Database

    Amemori, Takashi; Romanyuk, Nataliya; Jendelová, Pavla; Herynek, V.; Turnovcová, Karolína; Procházka, Pavel; Kapcalová, Miroslava; Cocks, G.; Price, J.; Syková, Eva

    2013-01-01

    Roč. 4, č. 3 (2013), s. 68 ISSN 1757-6512 R&D Projects: GA ČR(CZ) GAP304/12/1370; GA ČR GA13-00939S; GA MŠk LH12024; GA ČR(CZ) GBP304/12/G069 Grant - others:GA MZd(CZ) 00023001IKEM Institutional support: RVO:68378041 Keywords : human fetal neural stem cells * spinal cord injury * motor neuron differentiation Subject RIV: FH - Neurology Impact factor: 4.634, year: 2013

  11. HPV16-E2 protein modifies self-renewal and differentiation rate in progenitor cells of human immortalized keratinocytes.

    Science.gov (United States)

    Domínguez-Catzín, Victoria; Reveles-Espinoza, Alicia-María; Sánchez-Ramos, Janet; Cruz-Cadena, Raúl; Lemus-Hernández, Diana; Garrido, Efraín

    2017-04-03

    Cervical cancer is the fourth cause of death worldwide by cancer in women and is a disease associated to persistent infection with human papillomavirus (HPV), particularly from two high-risk types HPV16 and 18. The virus initiates its replicative cycle infecting cells located in the basal layer of the epithelium, where a small population of epithelial stem cells is located performing important functions of renewal and maintenance of the tissue. Viral E2 gene is one of the first expressed after infection and plays relevant roles in the replicative cycle of the virus, modifying fundamental processes in the infected cells. Thus, the aim of the present study was to demonstrate the presence of hierarchic subpopulations in HaCaT cell line and evaluate the effect of HPV16-E2 expression, on their biological processes. HaCaT-HPV16-E2 cells were generated by transduction of HaCaT cell line with a lentiviral vector. The α6-integrin-CD71 expression profile was established by immunostaining and flow cytometric analysis. After sorting, cell subpopulations were analyzed in biological assays for self-renewal, clonogenicity and expression of stemness factors (RT-qPCR). We identified in HaCaT cell line three different subpopulations that correspond to early differentiated cells (α6-integrin dim ), transitory amplifying cells (α6-integrin bri /CD71 bri ) and progenitor cells (α6-integrin bri /CD71 dim ). The last subpopulation showed stem cell characteristics, such as self-renewal ability, clonogenicity and expression of the well-known stem cell factors SOX2, OCT4 and NANOG, suggesting they are stem-like cells. Interestingly, the expression of HPV16-E2 in HaCaT cells changed its α6-integrin-CD71 immunophenotype modifying the relative abundance of the cell subpopulations, reducing significantly the percentage of α6-integrin bri /CD71 dim cells. Moreover, the expression of the stem cell markers was also modified, increasing the expression of SOX2 and NANOG, but decreasing notably

  12. Malignant hematopoietic cell lines: in vitro models for the study of natural killer cell leukemia-lymphoma.

    Science.gov (United States)

    Drexler, H G; Matsuo, Y

    2000-05-01

    Malignancies involving natural killer (NK) cells are rare disorders. The complexity of NK cell-involving disorders has only recently been appreciated. Modern classifications discern immature (precursor) from mature NK cell leukemias-lymphomas. Continuous NK leukemia-lymphoma cell lines represent important model systems to study these neoplasms. While there are a number of putative NK cell lines which are, however, either not characterized, not immortalized, non-malignant, non-NK, or plain false cell lines, six bona fide malignant NK cell lines have been established and are sufficiently well characterized: HANK1, KHYG-1, NK-92, NKL, NK-YS and YT. Except for YT which was derived from a not further defined acute lymphoblastic lymphoma, these cell lines were established from patients with various NK cell malignancies. Five of the six cell lines are constitutively interleukin-2-dependent. Their immunoprofile is remarkably similar: CD1-, CD2+, surface CD3 (but cytoplasmic CD3epsilon+), CD4-, CD5-, CD7+, CD8-, CD16-, CD56+, CD57-, TCRalphabeta-, TCRgammadelta-, negative for B cell and myelomonocytic markers. The immunoglobulin heavy chain and T cell receptor genes are all in germline configuration. All six lines show complex chromosomal alterations, with both numerical and structural aberrations, attesting to their malignant and monoclonal nature. Functionally, these cells which contain azurophilic granules in their cytoplasm are nearly universally positive in NK activity assays. Three of five cell lines are Epstein-Barr virus-positive (type II latency). The composite data on these six cell lines allow for the operational definition of a typical malignant NK cell line profile. NK leukemia-lymphoma cell lines will prove invaluable for studies of normal and malignant NK cell biology.

  13. The (not so immortal strand hypothesis

    Directory of Open Access Journals (Sweden)

    Cristian Tomasetti

    2015-03-01

    Significance: Utilizing an approach that is fundamentally different from previous efforts to confirm or refute the immortal strand hypothesis, we provide evidence against non-random segregation of DNA during stem cell replication. Our results strongly suggest that parental DNA is passed randomly to stem cell daughters and provides new insight into the mechanism of DNA replication in stem cells.

  14. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    International Nuclear Information System (INIS)

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A. Ivana; Mondello, Chiara

    2011-01-01

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs

  15. Regulation of Telomere Homeostasis during Epstein-Barr virus Infection and Immortalization.

    Science.gov (United States)

    Kamranvar, Siamak A; Masucci, Maria G

    2017-08-09

    The acquisition of unlimited proliferative potential is dependent on the activation of mechanisms for telomere maintenance, which counteracts telomere shortening and the consequent triggering of the DNA damage response, cell cycle arrest, and apoptosis. The capacity of Epstein Barr virus (EBV) to infect B-lymphocytes in vitro and transform the infected cells into autonomously proliferating immortal cell lines underlies the association of this human gamma-herpesvirus with a broad variety of lymphoid and epithelial cell malignancies. Current evidence suggests that both telomerase-dependent and -independent pathways of telomere elongation are activated in the infected cells during the early and late phases of virus-induced immortalization. Here we review the interaction of EBV with different components of the telomere maintenance machinery and the mechanisms by which the virus regulates telomere homeostasis in proliferating cells. We also discuss how these viral strategies may contribute to malignant transformation.

  16. Rearrangement of Upstream Sequences of the hTERT Gene During Cellular Immortalization

    Science.gov (United States)

    Zhao, Yuanjun; Wang, Shuwen; Popova, Evgenya Y.; Grigoryev, Sergei A.; Zhu, Jiyue

    2010-01-01

    Telomerase expression, resulting from transcriptional activation of the hTERT gene, allows cells to acquire indefinite proliferative potential during cellular immortalization and tumorigenesis. However, mechanisms of hTERT gene activation in many immortal cell lines and cancer cells are poorly understood. Here, we report our studies on hTERT activation using genetically related pairs of telomerase-negative (Tel−) and -positive (Tel+) fibroblast lines. First, whereas transiently transfected plasmid reporters did not recapitulate the endogenous hTERT promoter, the promoter in chromosomally integrated bacterial artificial chromosome (BAC) reporters was activated in a subset of Tel+ cells, indicating that activation of the hTERT promoter required native chromatin context and/or distal regulatory elements. Second, the hTERT gene, located near the telomere of chromosome 5p, was translocated in all three Tel+ cell lines but not in their parental pre-crisis cells and Tel− immortal siblings. The breakage points were mapped to regions upstream of the hTERT promoter, indicating that the hTERT gene was the target of these chromosomal rearrangements. In two Tel+ cell lines, translocation of the endogenous hTERT gene appeared to be the major mechanism of its activation as the activity of hTERT promoter in many chromosomally integrated BAC reporters, with intact upstream and downstream neighboring loci, remained relatively low. Therefore, our results suggest that rearrangement of upstream sequences is an important new mechanism of hTERT promoter activation during cellular immortalization. The chromosomal rearrangements likely occurred during cellular crisis and facilitated by telomere dysfunction. Such translocations allowed the hTERT promoter to escape from the native condensed chromatin environment. PMID:19672873

  17. Telomere dynamics, end-to-end fusions and telomerase activation during the human fibroblast immortalization process.

    Science.gov (United States)

    Ducray, C; Pommier, J P; Martins, L; Boussin, F D; Sabatier, L

    1999-07-22

    Loss of telomeric repeats during cell proliferation could play a role in senescence. It has been generally assumed that activation of telomerase prevents further telomere shortening and is essential for cell immortalization. In this study, we performed a detailed cytogenetic and molecular characterization of four SV40 transformed human fibroblastic cell lines by regularly monitoring the size distribution of terminal restriction fragments, telomerase activity and the associated chromosomal instability throughout immortalization. The mean TRF lengths progressively decreased in pre-crisis cells during the lifespan of the cultures. At crisis, telomeres reached a critical size, different among the cell lines, contributing to the peak of dicentric chromosomes, which resulted mostly from telomeric associations. We observed a direct correlation between short telomere length at crisis and chromosomal instability. In two immortal cell lines, although telomerase was detected, mean telomere length still continued to decrease whereas the number of dicentric chromosomes associated was stabilized. Thus telomerase could protect specifically telomeres which have reached a critical size against end-to-end dicentrics, while long telomeres continue to decrease, although at a slower rate as before crisis. This suggests a balance between elongation by telomerase and telomere shortening, towards a stabilized 'optimal' length.

  18. Generation and properties of a new human ventral mesencephalic neural stem cell line

    DEFF Research Database (Denmark)

    Villa, Ana; Liste, Isabel; Courtois, Elise T

    2009-01-01

    . Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization. The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal......Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro...... derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing....

  19. An In Vitro System Comprising Immortalized Hypothalamic Neuronal Cells (GT1-7 Cells) for Evaluation of the Neuroendocrine Effects of Essential Oils.

    Science.gov (United States)

    Mizuno, Dai; Konoha-Mizuno, Keiko; Mori, Miwako; Yamazaki, Kentaro; Haneda, Toshihiro; Koyama, Hironari; Kawahara, Masahiro

    2015-01-01

    Aromatherapy and plant-based essential oils are widely used as complementary and alternative therapies for symptoms including anxiety. Furthermore, it was reportedly effective for the care of several diseases such as Alzheimer's disease and depressive illness. To investigate the pharmacological effects of essential oils, we developed an in vitro assay system using immortalized hypothalamic neuronal cells (GT1-7 cells). In this study, we evaluated the effects of essential oils on neuronal death induced by hydrogen peroxide (H2O2), aluminum, zinc, or the antagonist of estrogen receptor (tamoxifen). Among tests of various essential oils, we found that H2O2-induced neuronal death was attenuated by the essential oils of damask rose, eucalyptus, fennel, geranium, ginger, kabosu, mandarin, myrrh, and neroli. Damask rose oil had protective effects against aluminum-induced neurotoxicity, while geranium and rosemary oil showed protective activity against zinc-induced neurotoxicity. In contrast, geranium oil and ginger oil enhanced the neurotoxicity of tamoxifen. Our in vitro assay system could be useful for the neuropharmacological and endocrine pharmacological studies of essential oils.

  20. An In Vitro System Comprising Immortalized Hypothalamic Neuronal Cells (GT1–7 Cells for Evaluation of the Neuroendocrine Effects of Essential Oils

    Directory of Open Access Journals (Sweden)

    Dai Mizuno

    2015-01-01

    Full Text Available Aromatherapy and plant-based essential oils are widely used as complementary and alternative therapies for symptoms including anxiety. Furthermore, it was reportedly effective for the care of several diseases such as Alzheimer’s disease and depressive illness. To investigate the pharmacological effects of essential oils, we developed an in vitro assay system using immortalized hypothalamic neuronal cells (GT1–7 cells. In this study, we evaluated the effects of essential oils on neuronal death induced by hydrogen peroxide (H2O2, aluminum, zinc, or the antagonist of estrogen receptor (tamoxifen. Among tests of various essential oils, we found that H2O2-induced neuronal death was attenuated by the essential oils of damask rose, eucalyptus, fennel, geranium, ginger, kabosu, mandarin, myrrh, and neroli. Damask rose oil had protective effects against aluminum-induced neurotoxicity, while geranium and rosemary oil showed protective activity against zinc-induced neurotoxicity. In contrast, geranium oil and ginger oil enhanced the neurotoxicity of tamoxifen. Our in vitro assay system could be useful for the neuropharmacological and endocrine pharmacological studies of essential oils.

  1. Isolation and characterization of exosome from human embryonic stem cell-derived c-myc-immortalized mesenchymal stem cells

    NARCIS (Netherlands)

    Lai, Ruenn Chai; Yeo, Ronne Wee Yeh; Padmanabhan, Jayanthi; Choo, Andre; De Kleijn, Dominique P V; Lim, Sai Kiang

    2016-01-01

    Mesenchymal stem cells (MSC) are currently the cell type of choice in many cell therapy trials. The number of therapeutic applications for MSCs registered as product IND submissions with the FDA and initiation of registered clinical trials has increased substantially in recent years, in particular

  2. Comparative proteomics analysis of oral cancer cell lines: identification of cancer associated proteins

    Science.gov (United States)

    2014-01-01

    Background A limiting factor in performing proteomics analysis on cancerous cells is the difficulty in obtaining sufficient amounts of starting material. Cell lines can be used as a simplified model system for studying changes that accompany tumorigenesis. This study used two-dimensional gel electrophoresis (2DE) to compare the whole cell proteome of oral cancer cell lines vs normal cells in an attempt to identify cancer associated proteins. Results Three primary cell cultures of normal cells with a limited lifespan without hTERT immortalization have been successfully established. 2DE was used to compare the whole cell proteome of these cells with that of three oral cancer cell lines. Twenty four protein spots were found to have changed in abundance. MALDI TOF/TOF was then used to determine the identity of these proteins. Identified proteins were classified into seven functional categories – structural proteins, enzymes, regulatory proteins, chaperones and others. IPA core analysis predicted that 18 proteins were related to cancer with involvements in hyperplasia, metastasis, invasion, growth and tumorigenesis. The mRNA expressions of two proteins – 14-3-3 protein sigma and Stress-induced-phosphoprotein 1 – were found to correlate with the corresponding proteins’ abundance. Conclusions The outcome of this analysis demonstrated that a comparative study of whole cell proteome of cancer versus normal cell lines can be used to identify cancer associated proteins. PMID:24422745

  3. Characterization of a continuous feline mammary epithelial cell line susceptible to feline epitheliotropic viruses.

    Science.gov (United States)

    Pesavento, Patricia; Liu, Hongwei; Ossiboff, Robert J; Stucker, Karla M; Heymer, Anna; Millon, Lee; Wood, Jason; van der List, Deborah; Parker, John S L

    2009-04-01

    Mucosal epithelial cells are the primary targets for many common viral pathogens of cats. Viral infection of epithelia can damage or disrupt the epithelial barrier that protects underlying tissues. In vitro cell culture systems are an effective means to study how viruses infect and disrupt epithelial barriers, however no true continuous or immortalized feline epithelial cell culture lines are available. A continuous cell culture of feline mammary epithelial cells (FMEC UCD-04-2) that forms tight junctions with high transepithelial electrical resistance (>2000Omegacm(-1)) 3-4 days after reaching confluence was characterized. In addition, it was shown that FMECs are susceptible to infection with feline calicivirus (FCV), feline herpesvirus (FHV-1), feline coronavirus (FeCoV), and feline panleukopenia virus (FPV). These cells will be useful for studies of feline viral disease and for in vitro studies of feline epithelia.

  4. Molecular mechanisms of anti-aging hormetic effects of mild heat stress on human cells

    DEFF Research Database (Denmark)

    Rattan, Suresh I S; Eskildsen-Helmond, Yvonne E G; Beedholm, Rasmus

    2004-01-01

    of cellular responsiveness to mild and severe heat stress. Furthermore, we are also undertaking comparative studies using non-aging immortal cell lines, such as SV40-transformed human fibroblasts, spontaneous osteosarcoma cells, and telomerase-immortalized human bone marrow cells for establishing differences...

  5. Comparison of Two Mouse Ameloblast-like Cell Lines for Enamel-specific Gene Expression

    Directory of Open Access Journals (Sweden)

    Juni eSarkar

    2014-07-01

    Full Text Available Ameloblasts are ectoderm-derived cells that produce an extracellular enamel matrix that mineralizes to form enamel. The development and use of immortalized cell lines, with a stable phenotype, is an important contribution to biological studies as it allows for the investigation of molecular activities without the continuous need for animals. In this study we compare the expression profiles of enamel-specific genes in two mouse derived ameloblast-like cell lines: LS8 and ALC cells. Quantitative PCR analysis indicates that, relative to each other, LS8 cells express greater mRNA levels for genes that define secretory-stage activities (Amelx, Ambn, Enam and Mmp20, while ALC express greater mRNA levels for genes that define maturation-stage activities (Odam and Klk4. Western blot analyses show that Amelx, Ambn and Odam proteins are detectable in ALC, but not LS8 cells. Unstimulated ALC cells form calcified nodules, while LS8 cells do not. These data provide greater insight as to the suitability of both cell lines to contribute to biological studies on enamel formation and biomineralization, and highlight some of the strengths and weaknesses when relying on enamel epithelial organ-derived cell lines to study molecular activities of amelogenesis.

  6. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    OpenAIRE

    Barkla, D. H.; Whitehead, R. H.; Foster, H.; Tutton, P. J.

    1988-01-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting f...

  7. The (not so) immortal strand hypothesis.

    Science.gov (United States)

    Tomasetti, Cristian; Bozic, Ivana

    2015-03-01

    Non-random segregation of DNA strands during stem cell replication has been proposed as a mechanism to minimize accumulated genetic errors in stem cells of rapidly dividing tissues. According to this hypothesis, an "immortal" DNA strand is passed to the stem cell daughter and not the more differentiated cell, keeping the stem cell lineage replication error-free. After it was introduced, experimental evidence both in favor and against the hypothesis has been presented. Using a novel methodology that utilizes cancer sequencing data we are able to estimate the rate of accumulation of mutations in healthy stem cells of the colon, blood and head and neck tissues. We find that in these tissues mutations in stem cells accumulate at rates strikingly similar to those expected without the protection from the immortal strand mechanism. Utilizing an approach that is fundamentally different from previous efforts to confirm or refute the immortal strand hypothesis, we provide evidence against non-random segregation of DNA during stem cell replication. Our results strongly suggest that parental DNA is passed randomly to stem cell daughters and provides new insight into the mechanism of DNA replication in stem cells. Copyright © 2015. Published by Elsevier B.V.

  8. Expression of progesterone receptor membrane component-2 within the immature rat ovary and its role in regulating mitosis and apoptosis of spontaneously immortalized granulosa cells.

    Science.gov (United States)

    Griffin, Daniel; Liu, Xiufang; Pru, Cindy; Pru, James K; Peluso, John J

    2014-08-01

    Progesterone receptor membrane component 2 (Pgrmc2) mRNA was detected in the immature rat ovary. By 48 h after eCG, Pgrmc2 mRNA levels decreased by 40% and were maintained at 48 h post-hCG. Immunohistochemical studies detected PGRMC2 in oocytes and ovarian surface epithelial, interstitial, thecal, granulosa, and luteal cells. PGRMC2 was also present in spontaneously immortalized granulosa cells, localizing to the cytoplasm of interphase cells and apparently to the mitotic spindle of cells in metaphase. Interestingly, PGRMC2 levels appeared to decrease during the G1 stage of the cell cycle. Moreover, overexpression of PGRMC2 suppressed entry into the cell cycle, possibly by binding the p58 form of cyclin dependent kinase 11b. Conversely, Pgrmc2 small interfering RNA (siRNA) treatment increased the percentage of cells in G1 and M stage but did not increase the number of cells, which was likely due to an increase in apoptosis. Depleting PGRMC2 did not inhibit cellular (3)H-progesterone binding, but attenuated the ability of progesterone to suppress mitosis and apoptosis. Taken together these studies suggest that PGRMC2 affects granulosa cell mitosis by acting at two specific stages of the cell cycle. First, PGRMC2 regulates the progression from the G0 into the G1 stage of the cell cycle. Second, PGRMC2 appears to localize to the mitotic spindle, where it likely promotes the final stages of mitosis. Finally, siRNA knockdown studies indicate that PGRMC2 is required for progesterone to slow the rate of granulosa cell mitosis and apoptosis. These findings support a role for PGRMC2 in ovarian follicle development. © 2014 by the Society for the Study of Reproduction, Inc.

  9. Analysis of STAT4 expression in cutaneous T-cell lymphoma (CTCL) patients and patient-derived cell lines

    DEFF Research Database (Denmark)

    Litvinov, Ivan V; Cordeiro, Brendan; Fredholm, Simon Mayland

    2014-01-01

    Deregulation of STAT signaling has been implicated in the pathogenesis for a variety of cancers, including CTCL. Recent reports indicate that loss of STAT4 expression is an important prognostic marker for CTCL progression and is associated with the acquisition of T helper 2 cell phenotype......R-155 leads to upregulation in STAT4 expression in MyLa cells. In summary, our results suggest that loss of STAT4 expression and associated switch to Th2 phenotype during Mycosis Fungoides progression may be driven via aberrant histone acetylation and/or upregulation of oncogenic miR-155 microRNA....... by malignant cells. However, little is known about the molecular mechanism behind the downregulation of STAT4 in this cancer. In the current work we test the expression of STAT4 and STAT6 via RT-PCR and/or Western Blot in CTCL lesional skin samples and in immortalized patient-derived cell lines...

  10. The immortality of humoral immunity.

    Science.gov (United States)

    Elgueta, Raul; de Vries, Victor C; Noelle, Randolph J

    2010-07-01

    Decades of high-titered antibody are sustained due to the persistence of memory B cells and long-lived plasma cells (PCs). The differentiation of each of these subsets is antigen- and T-cell driven and is dependent on signals acquired and integrated during the germinal center response. Inherent in the primary immune response must be the delivery of signals to B cells to create these populations, which have virtual immortality. Differences in biology and chemotactic behavior disperse memory B cells and long-lived PCs to a spectrum of anatomic sites. Each subset must rely on survival factors that can support their longevity. This review focuses on the generation of each of these subsets, their survival, and renewal, which must occur to sustain serological memory. In this context, we discuss the role of antigen, bystander inflammation, and cellular niches. The contribution of BAFF (B-cell activating factor belonging to the tumor necrosis factor family) and APRIL (a proliferation-inducing ligand) to the persistence of memory B cells and PCs are also detailed. Insights that have been provided over the past few years in the regulation of long-lived B-cell responses will have profound impact on vaccine development, the treatment of pre-sensitized patients for organ transplantation, and therapeutic interventions in both antibody- and T-cell-mediated autoimmunity.

  11. Generation and properties of a new human ventral mesencephalic neural stem cell line

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Ana; Liste, Isabel; Courtois, Elise T.; Seiz, Emma G.; Ramos, Milagros [Center of Molecular Biology ' Severo Ochoa' , Autonomous University of Madrid-C.S.I.C., Campus Cantoblanco 28049-Madrid (Spain); Meyer, Morten [Department of Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark, Winslowparken 21,st, DK-500, Odense C (Denmark); Juliusson, Bengt; Kusk, Philip [NsGene A/S, Ballerup (Denmark); Martinez-Serrano, Alberto, E-mail: amserrano@cbm.uam.es [Center of Molecular Biology ' Severo Ochoa' , Autonomous University of Madrid-C.S.I.C., Campus Cantoblanco 28049-Madrid (Spain)

    2009-07-01

    Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization. The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal of growth factors, proliferation and expression of v-myc were dramatically reduced and the cells differentiated into astrocytes, oligodendrocytes and neurons. hVM1 cells yield a large number of dopaminergic neurons (about 12% of total cells are TH{sup +}) after differentiation, which also produce dopamine. In addition to proneural genes (NGN2, MASH1), differentiated cells show expression of several genuine mesencephalic dopaminergic markers such as: LMX1A, LMX1B, GIRK2, ADH2, NURR1, PITX3, VMAT2 and DAT, indicating that they retain their regional identity. Our data indicate that this cell line and its clonal derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing.

  12. Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy

    DEFF Research Database (Denmark)

    Fontana, Flavia; Shahbazi, Mohammad Ali; Liu, Dongfei

    2017-01-01

    nanoparticles presented high monodispersity due to the efficient mixing produced in the microfluidic device and were shown to be highly cytocompatible over two human immortalized cell lines, KG1 and BDCM. Moreover, the nanoparticles induced the expression of co-stimulatory signals both in the immortal cell...

  13. Symbiotic Plant Peptides Eliminate Candida albicans Both In Vitro and in an Epithelial Infection Model and Inhibit the Proliferation of Immortalized Human Cells

    Directory of Open Access Journals (Sweden)

    Lilla Ördögh

    2014-01-01

    Full Text Available The increasing number of multidrug-resistant microbes now emerging necessitates the identification of novel antimicrobial agents. Plants produce a great variety of antimicrobial peptides including hundreds of small, nodule-specific cysteine-rich NCR peptides that, in the legume Medicago truncatula, govern the differentiation of endosymbiotic nitrogen fixing bacteria and, in vitro, can display potent antibacterial activities. In this study, the potential candidacidal activity of 19 NCR peptides was investigated. Cationic NCR peptides having an isoelectric point above 9 were efficient in killing Candida albicans, one of the most common fungal pathogens of humans. None of the tested NCR peptides were toxic for immortalized human epithelial cells at concentrations that effectively killed the fungus; however, at higher concentrations, some of them inhibited the division of the cells. Furthermore, the cationic peptides successfully inhibited C. albicans induced human epithelial cell death in an in vitro coculture model. These results highlight the therapeutic potential of cationic NCR peptides in the treatment of candidiasis.

  14. Graminex Pollen: Phenolic Pattern, Colorimetric Analysis and Protective Effects in Immortalized Prostate Cells (PC3) and Rat Prostate Challenged with LPS.

    Science.gov (United States)

    Locatelli, Marcello; Macchione, Nicola; Ferrante, Claudio; Chiavaroli, Annalisa; Recinella, Lucia; Carradori, Simone; Zengin, Gokhan; Cesa, Stefania; Leporini, Lidia; Leone, Sheila; Brunetti, Luigi; Menghini, Luigi; Orlando, Giustino

    2018-05-11

    Prostatitis, a general term describing prostate inflammation, is a common disease that could be sustained by bacterial or non-bacterial infectious agents. The efficacy of herbal extracts with antioxidant and anti-inflammatory effects for blunting the burden of inflammation and oxidative stress, with possible improvements in clinical symptoms, is under investigation. Pollen extracts have been previously reported as promising agents in managing clinical symptoms related to prostatitis. The aim of the present work was to evaluate the protective effects of Graminex pollen (Graminex TM , Deshler, OH, USA), a commercially available product based on standardized pollen extracts, in rat prostate specimens, ex vivo. In this context, we studied the putative mechanism of action of pollen on multiple inflammatory pathways, including the reduction of prostaglandin E₂ (PGE₂), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), and malondialdehyde (MDA), whose activities were significantly increased by inflammatory stimuli. We characterized by means of chromatographic and colorimetric studies the composition of Graminex pollen to better correlate the activity of pollen on immortalized prostate cells (PC3), and in rat prostate specimens challenged with Escherichia coli lipopolysaccharide (LPS). We found that Graminex pollen was able to reduce radical oxygen species (ROS) production by PC3 cells and MDA, NFκB mRNA, and PGE₂ levels, in rat prostate specimens. According to our experimental evidence, Graminex pollen appears to be a promising natural product for the management of the inflammatory components in the prostate.

  15. Universal mortality law and immortality

    Science.gov (United States)

    Azbel', Mark Ya.

    2004-10-01

    Well-protected human and laboratory animal populations with abundant resources are evolutionarily unprecedented. Physical approach, which takes advantage of their extensively quantified mortality, establishes that its dominant fraction yields the exact law, which is universal for all animals from yeast to humans. Singularities of the law demonstrate new kinds of stepwise adaptation. The law proves that universal mortality is an evolutionary by-product, which at any given age is reversible, independent of previous life history, and disposable. Life expectancy may be extended, arguably to immortality, by minor biological amendments in the animals. Indeed, in nematodes with a small number of perturbed genes and tissues it increased 6-fold (to 430 years in human terms), with no apparent loss in health and vitality. The law relates universal mortality to specific processes in cells and their genetic regulation.

  16. Critical role of free cytosolic calcium, but not uncoupling, in mitochondrial permeability transition and cell death induced by diclofenac oxidative metabolites in immortalized human hepatocytes

    International Nuclear Information System (INIS)

    Lim, M.S.; Lim, Priscilla L.K.; Gupta, Rashi; Boelsterli, Urs A.

    2006-01-01

    Diclofenac is a widely used nonsteroidal anti-inflammatory drug that has been associated with rare but serious hepatotoxicity. Experimental evidence indicates that diclofenac targets mitochondria and induces the permeability transition (mPT) which leads to apoptotic cell death in hepatocytes. While the downstream effector mechanisms have been well characterized, the more proximal pathways leading to the mPT are not known. The purpose of this study was to explore the role of free cytosolic calcium (Ca 2+ c ) in diclofenac-induced cell injury in immortalized human hepatocytes. We show that exposure to diclofenac caused time- and concentration-dependent cell injury, which was prevented by the specific mPT inhibitor cyclosporin A (CsA, 5 μM). At 8 h, diclofenac caused increases in [Ca 2+ ] c (Fluo-4 fluorescence), which was unaffected by CsA. Combined exposure to diclofenac/BAPTA (Ca 2+ chelator) inhibited cell injury, indicating that Ca 2+ plays a critical role in precipitating mPT. Diclofenac decreased the mitochondrial membrane potential, ΔΨ m (JC-1 fluorescence), even in the presence of CsA or BAPTA, indicating that mitochondrial depolarization was not a consequence of the mPT or elevated [Ca 2+ ] c . The CYP2C9 inhibitor sulphaphenazole (10 μM) protected from diclofenac-induced cell injury and prevented increases in [Ca 2+ ] c , while it had no effect on the dissipation of the ΔΨ m . Finally, diclofenac exposure greatly increased the mitochondria-selective superoxide levels secondary to the increases in [Ca 2+ ] c . In conclusion, these data demonstrate that diclofenac has direct depolarizing effects on mitochondria which does not lead to cell injury, while CYP2C9-mediated bioactivation causes increases in [Ca 2+ ] c , triggering the mPT and precipitating cell death

  17. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Víctor A. Solarte

    2015-01-01

    Full Text Available Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20–254, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90% in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.

  18. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines.

    Science.gov (United States)

    Solarte, Víctor A; Rosas, Jaiver E; Rivera, Zuly J; Arango-Rodríguez, Martha L; García, Javier E; Vernot, Jean-Paul

    2015-01-01

    Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC) cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20-25)4, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90%) in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.

  19. Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes

    International Nuclear Information System (INIS)

    Latchoumycandane, Calivarathan; Seah, Quee Ming; Tan, Rachel C.H.; Sattabongkot, Jetsumon; Beerheide, Walter; Boelsterli, Urs A.

    2006-01-01

    Leflunomide, a disease-modifying anti-rheumatic drug, protects against T-cell-mediated liver injury by poorly understood mechanisms. The active metabolite of leflunomide, A77 1726 (teriflunomide) has been shown to inhibit stress-activated protein kinases (JNK pathway), which are key regulators of mitochondria-mediated cell death. Therefore, we hypothesized that leflunomide may protect from drugs that induce the mitochondrial permeability transition (mPT) by blocking the JNK signaling pathway. To this end, we exposed cultured immortalized human hepatocytes (HC-04) to the standard protoxicant drug acetaminophen (APAP), which induces CsA-sensitive mPT-mediated cell death. We determined the effects of leflunomide on the extent of APAP-induced hepatocyte injury and the upstream JNK-mediated mitochondrial signaling pathways. We found that leflunomide or A77 1726 concentration-dependently protected hepatocytes from APAP (1 mM)-induced mitochondrial permeabilization and lethal cell injury. This was not due to proximal inhibition of CYP-catalyzed APAP bioactivation to its thiol-reactive metabolite. Instead, we demonstrate that leflunomide (20 μM) inhibited the APAP-induced early (3 h) activation (phosphorylation) of JNK1/2, thus inhibiting phosphorylation of the anti-apoptotic protein Bcl-2 and preventing P-Bcl-2-mediated induction of the mPT. This greatly attenuated mitochondrial cytochrome c release, which we used as a marker for mitochondrial permeabilization. The specific JNK2 inhibitor SP600125 similarly protected from APAP-induced cell death. In conclusion, these findings are consistent with our hypothesis that leflunomide protects from protoxicant-induced hepatocyte injury by inhibiting JNK signaling and preventing mPT induction

  20. Establishment of cell lines with rat spermatogonial stem cell characteristics

    NARCIS (Netherlands)

    van Pelt, Ans M. M.; Roepers-Gajadien, Hermien L.; Gademan, Iris S.; Creemers, Laura B.; de Rooij, Dirk G.; van Dissel-Emiliani, Federica M. F.

    2002-01-01

    Spermatogonial cell lines were established by transfecting a mixed population of purified rat A(s) (stem cells), A(pr) and A(al) spermatogonia with SV40 large T antigen. Two cell lines were characterized and found to express Hsp90alpha and oct-4, specific markers for germ cells and A spermatogonia,

  1. Effects of ultrasound on the proliferation and differentiation of cementoblast lineage cells

    NARCIS (Netherlands)

    Inubushi, T.; Tanaka, E.; Rego, E.B.; Kitagawa, M.; Kawazoe, A.; Ohta, A.; Okada, H.; Koolstra, J.H.; Miyauchi, M.; Takata, T.; Tanne, K.

    2008-01-01

    Background: The purpose of this study was to investigate the effects of low-intensity pulsed ultrasound (LIPUS) stimulation on the proliferation and differentiation of cementoblast lineage cells. Methods: An immortalized human periodontal ligament cell line (HPL) showing immature cementoblastic

  2. Cytotoxicity and Bioactivity of Calcium Silicate Cements Combined with Niobium Oxide in Different Cell Lines.

    Science.gov (United States)

    Mestieri, Leticia Boldrin; Gomes-Cornélio, Ana Lívia; Rodrigues, Elisandra Márcia; Faria, Gisele; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mário

    2017-01-01

    The aim of this study was to evaluate the cytotoxicity and bioactivity of calcium silicate-based cements combined with niobium oxide (Nb2O5) micro and nanoparticles, comparing the response in different cell lines. This evaluation used four cell lines: two primary cultures (human dental pulp cells - hDPCs and human dental follicle cells - hDFCs) and two immortalized cultures (human osteoblast-like cells - Saos-2 and mouse periodontal ligament cells - mPDL). The tested materials were: White Portland Cement (PC), mineral trioxide aggregate (MTA), white Portland cement combined with microparticles (PC/Nb2O5µ) or nanoparticles (PC/Nb2O5n) of niobium oxide (Nb2O5). Cytotoxicity was evaluated by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) and trypan blue exclusion assays and bioactivity by alkaline phosphatase (ALP) enzyme activity. Results were analyzed by ANOVA and Tukey test (a=0.05). PC/Nb2O5n presented similar or higher cell viability than PC/Nb2O5µ in all cell lines. Moreover, the materials presented similar or higher cell viability than MTA. Saos-2 exhibited high ALP activity, highlighting PC/Nb2O5µ material at 7 days of exposure. In conclusion, calcium silicate cements combined with micro and nanoparticles of Nb2O5 presented cytocompatibility and bioactivity, demonstrating the potential of Nb2O5 as an alternative radiopacifier agent for these cements. The different cell lines had similar response to cytotoxicity evaluation of calcium silicate cements. However, bioactivity was more accurately detected in human osteoblast-like cell line, Saos-2.

  3. Enhanced detection and study of murine norovirus-1 using a more efficient microglial cell line

    Directory of Open Access Journals (Sweden)

    Lu Yuanan

    2009-11-01

    Full Text Available Abstract Background Human Noroviruses are the predominant cause of non-bacterial gastroenteritis worldwide. To facilitate prevention and control, a norovirus isolated from mice can provide a model to understand human noroviruses. To establish optimal viral infectivity conditions for murine noroviruses, several cell lines of hematopoietic lineage, including murine BV-2, RAW 264.7, and TIB, as well as human CHME-5, were tested comparatively for their sensitivity to murine norovirus-1. Results Except for CHME-5, all three murine-derived cell lines were susceptible to MNV infection. Viral infection of these cells was confirmed by RT-PCR. Using both viral plaque and replication assays, BV-2 and RAW 264.7 cells were determined to have comparable sensitivities to MNV-1 infection. Comparisons of cell growth characteristics, general laboratory handling and potential in-field applications suggest the use of BV-2 to be more advantageous. Conclusion Results obtained from these studies demonstrate that an immortalized microglial cell line can support MNV-1 replication and provides a more efficient method to detect and study murine noroviruses, facilitating future investigations using MNV-1 as a model to study, detect, and control Human Norovirus.

  4. Conventional cytogenetic characterization of a new cell line, ACP01, established from a primary human gastric tumor

    Directory of Open Access Journals (Sweden)

    E.M. Lima

    2004-12-01

    Full Text Available Gastric cancer is the second most frequent type of neoplasia and also the second most important cause of death in the world. Virtually all the established cell lines of gastric neoplasia were developed in Asian countries, and western countries have contributed very little to this area. In the present study we describe the establishment of the cell line ACP01 and characterize it cytogenetically by means of in vitro immortalization. Cells were transformed from an intestinal-type gastric adenocarcinoma (T4N2M0 originating from a 48-year-old male patient. This is the first gastric adenocarcinoma cell line established in Brazil. The most powerful application of the cell line ACP01 is in the assessment of cytotoxicity. Solid tumor cell lines from different origins have been treated with several conventional and investigational anticancer drugs. The ACP01 cell line is triploid, grows as a single, non-organized layer, similar to fibroblasts, with focus formation, heterogeneous division, and a cell cycle of approximately 40 h. Chromosome 8 trisomy, present in 60% of the cells, was the most frequent cytogenetic alteration. These data lead us to propose a multifactorial triggering of gastric cancer which evolves over multiple stages involving progressive genetic changes and clonal expansion.

  5. Radiation-induced transformation of SV40-immortalized human thyroid epithelial cells by single and fractionated exposure to γ-irradiation in vitro

    International Nuclear Information System (INIS)

    Riches, A.C.; Herceg, Z.; Bryant, P.E.; Wynford-Thomas, D.

    1994-01-01

    Radiation-induced transformation of a human thyroid epithelial cell line (HTori-3) has been investigated following exposure to single and fractionated doses of γ-irradiation. The human epithelial cells were irradiated in vitro and following passaging, transplanted to the athymic nude mouse. Following a single exposure to γ-irradiation in the range 0.5-4Gy, 22 tumours were observed in 45 recipients and following three equal fractions in the range 0.5-4Gy per fraction, 18 tumours were observed in 31 recipients. Tumours were undifferentiated carcinomas and were observed from 7 to 20 weeks after transplantation. They occurred after similar radiation doses to those received by the children in the Belarus region of Ukraine, who developed thyroid tumours. The number of tumours observed, in each group receiving cells irradiated with a single dose of γ-irradiation in the range 0.5-4 Gy, was similar. Cell lines were established from some tumours and the tumorigenicity confirmed by retransplantation. These tumour cell lines were more radiosensitive than the human thyroid epithelial cell line they were derived from. This indicates that transformed cells were not being selected from a subpopulation within the parent cell line but that radiation-induced transformants were being induced de novo. The human origin of the tumours was established by karyotyping, immunocytochemical demonstration of human epithelial cytokeratins and p53 analysis. DNA fingerprinting confirmed that the tumours were derived from the original cell line. (author)

  6. Epithelial cells derived from human embryonic stem cells display p16INK4A senescence, hypermotility, and differentiation properties shared by many P63+ somatic cell types

    DEFF Research Database (Denmark)

    Dabelsteen, Sally; Hercule, Paula; Barron, Patricia

    2009-01-01

    hESderK cells and keratinocytes a substantially extended lifespan. When exposed to transforming growth factor beta or to an incompletely processed form of Laminin-332, three lifespan-extended or immortalized hESderK lines that we studied became directionally hypermotile, a wound healing and invasion......(+)/K14(+) urothelial and tracheobronchial epithelial cells. Primary and immortalized lines of these cell types had growth requirements and hypermotility responses similar to keratinocytes and bmi1 expression facilitated their immortalization by engineering to express the catalytic subunit of telomerase...

  7. Staphylococcus aureus alpha-toxin mediates general and cell type-specific changes in metabolite concentrations of immortalized human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Philipp Gierok

    Full Text Available Staphylococcus aureus alpha-toxin (Hla is a potent pore-forming cytotoxin that plays an important role in the pathogenesis of S. aureus infections, including pneumonia. The impact of Hla on the dynamics of the metabolome in eukaryotic host cells has not been investigated comprehensively. Using 1H-NMR, GC-MS and HPLC-MS, we quantified the concentrations of 51 intracellular metabolites and assessed alterations in the amount of 25 extracellular metabolites in the two human bronchial epithelial cell lines S9 and 16HBE14o- under standard culture conditions and after treatment with sub-lethal amounts (2 µg/ml of recombinant Hla (rHla in a time-dependent manner. Treatment of cells with rHla caused substantial decreases in the concentrations of intracellular metabolites from different metabolic pathways in both cell lines, including ATP and amino acids. Concomitant increases in the extracellular concentrations were detected for various intracellular compounds, including nucleotides, glutathione disulfide and NAD+. Our results indicate that rHla has a major impact on the metabolome of eukaryotic cells as a consequence of direct rHla-mediated alterations in plasma membrane permeability or indirect effects mediated by cellular signalling. However, cell-specific changes also were observed. Glucose consumption and lactate production rates suggest that the glycolytic activity of S9 cells, but not of 16HBE14o- cells, is increased in response to rHla. This could contribute to the observed higher level of resistance of S9 cells against rHla-induced membrane damage.

  8. Immortalization of Human Fetal Hepatocyte by Ectopic Expression of Human Telomerase Reverse Transcriptase, Human Papilloma Virus (E7) and Simian Virus 40 Large T (SV40 T) Antigen Towards Bioartificial Liver Support.

    Science.gov (United States)

    Giri, Shibashish; Bader, Augustinus

    2014-09-01

    Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5-7 days. The remaining transfected hepatocytes persisted for 2-4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose consumption. We established a

  9. Fourier analysis of the cell shape of paired human urothelial cell lines of the same origin but of different grades of transformation.

    Science.gov (United States)

    Ostrowski, K; Dziedzic-Goclawska, A; Strojny, P; Grzesik, W; Kieler, J; Christensen, B; Mareel, M

    1986-01-01

    The rationale of the present investigation is the observations made by many authors of changes in the molecular structure of the cell surface during the multistep process of malignant transformation. These changes may influence cell-matrix and cell-cell interactions and thereby cause changes in cell adhesiveness and cell shape. The aim of the present work was to investigate whether the development of various grades of transformation in vivo and in vitro of human urothelial cells is accompanied by significant changes in cell shape as measured by Fourier analysis. The following transformation grades (TGr) have been defined (Christensen et al. 1984; Kieler 1984): TGr I = nonmalignant, mortal cell lines that grow independently of fibroblasts and have a prolonged life span. TGr II = nonmalignant cell lines with an infinite life span. TGr III = malignant and immortal cell lines that grow invasively in co-cultures with embryonic chick heart fragments and possess tumorigenic properties after s.c. injection into nude mice. Comparisons of 4 pairs of cell lines were performed; each pair was of the same origin. Two pairs--each including a TGr I cell line (Hu 961b and Hu 1703S) compared to a TGr III cell line (Hu 961a or Hu 1703He)--were derived from two transitional cell carcinomas (TCC) containing a heterogeneous cell population. Two additional cell lines classified as TGr II (HCV-29 and Hu 609) were compared to two TGr III sublines (HCV-29T and Hu 609T, respectively) which arose by "spontaneous" transformation during propagation in vitro of the respective maternal TGr II-cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Immortalized human hepatocytes as a tool for the study of hepatocytic (de-)differentiation

    NARCIS (Netherlands)

    Schippers, IJ; Moshage, H; Roelofsen, H; Muller, M; Heymans, HSA; Ruiters, M; Kuipers, F

    Primary human hepatocytes were immortalized by stable transfection with a recombinant plasmid containing the early region of simian virus (SV) 40. The cells were cultured in serum-free, hormonally defined medium during the immortalization procedure. Foci of dividing cells were seen after 3 months.

  11. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking.

    Science.gov (United States)

    Corral-Vázquez, C; Aguilar-Quesada, R; Catalina, P; Lucena-Aguilar, G; Ligero, G; Miranda, B; Carrillo-Ávila, J A

    2017-06-01

    Establishment of continuous cell lines from human normal and tumor tissues is an extended and useful methodology for molecular characterization of cancer pathophysiology and drug development in research laboratories. The exchange of these cell lines between different labs is a common practice that can compromise assays reliability due to contamination with microorganism such as mycoplasma or cells from different flasks that compromise experiment reproducibility and reliability. Great proportions of cell lines are contaminated with mycoplasma and/or are replaced by cells derived for a different origin during processing or distribution process. The scientific community has underestimated this problem and thousand of research experiment has been done with cell lines that are incorrectly identified and wrong scientific conclusions have been published. Regular contamination and authentication tests are necessary in order to avoid negative consequences of widespread misidentified and contaminated cell lines. Cell banks generate, store and distribute cell lines for research, being mandatory a consistent and continuous quality program. Methods implementation for guaranteeing both, the absence of mycoplasma and authentication in the supplied cell lines, has been performed in the Andalusian Health System Biobank. Specifically, precise results were obtained using real time PCR detection for mycoplasma and 10 STRs identification by capillary electrophoresis for cell line authentication. Advantages and disadvantages of these protocols are discussed.

  12. Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and ... The morphology of the HepG2 cell nucleus was investigated by Hoechst 33342, ..... Gong F, Liang Y, Xie P, Chau F. Information theory.

  13. Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite of extensive proliferation

    International Nuclear Information System (INIS)

    Abdallah, Basem M.; Haack-Sorensen, Mandana; Burns, Jorge S.; Elsnab, Birgitte; Jakob, Franz; Hokland, Peter; Kassem, Moustapha

    2005-01-01

    Human bone marrow mesenchymal stem cells (hMSC) represent a population of stem cells that are capable of differentiation into multiple lineages. However, these cells exhibit senescence-associated growth arrest and phenotypic changes during long-term in vitro culture. We have recently demonstrated that overexpression of human telomerase reverse transcriptase (hTERT) in hMSC reconstitutes telomerase activity and extends life span of the cells [Nat. Biotechnol. 20 (2002) 592]. In the present study, we have performed extensive characterization of three independent cell lines derived from the parental hMSC-TERT cell line based on different plating densities during expansion in culture: 1:2 (hMSC-TERT2), 1:4 (hMSC-TERT4), and 1:20 (hMSC-TERT20). The 3 cell lines exhibited differences in morphology and growth rates but they all maintained the characteristics of self-renewing stem cells and the ability to differentiate into multiple mesoderm-type cell lineages: osteoblasts, adipocytes, chondrocytes, and endothelial-like cells over a 3-year period in culture. Also, surface marker studies using flow cytometry showed a pattern similar to that known from normal hMSC. Thus, telomerization of hMSC by hTERT overexpression maintains the stem cell phenotype of hMSC and it may be a useful tool for obtaining enough number of cells with a stable phenotype for mechanistic studies of cell differentiation and for tissue engineering protocols

  14. Small-molecule aggregation inhibitors reduce excess amyloid in a trisomy 16 mouse cortical cell line

    Directory of Open Access Journals (Sweden)

    ANDRÉA C PAULA LIMA

    2008-01-01

    Full Text Available We have previously characterized a number of small molecule organic compounds that prevent the aggregation of the β-amyloid peptide and its neurotoxicity in hippocampal neuronal cultures. We have now evaluated the effects of such compounds on amyloid precursor protein (APP accumulation in the CTb immortalized cell line derived from the cerebral cortex of a trisomy 16 mouse, an animal model of Down's syndrome. Compared to a non-trisomic cortical cell line (CNh, CTb cells overexpress APP and exhibit slightly elevated resting intracellular Ca2+ levéis ([Ca2+]¡. Here, we show that the compounds 2,4-dinitrophenol, 3-nitrophenol and 4-anisidine decreased intracellular accumulation of APP in CTb cells. Those compounds were non-toxic to the cells, and slightly increased the basal [Ca2+]¡. Results indícate that the compounds tested can be leads for the development of drugs to decrease intracellular vesicular accumulation of APP in trisomic cells.

  15. HDAC gene expression in pancreatic tumor cell lines following treatment with the HDAC inhibitors panobinostat (LBH589) and trichostatine (TSA).

    Science.gov (United States)

    Mehdi, Ouaïssi; Françoise, Silvy; Sofia, Costa Lima; Urs, Giger; Kevin, Zemmour; Bernard, Sastre; Igor, Sielezneff; Anabela, Cordeiro-da-Silva; Dominique, Lombardo; Eric, Mas; Ali, Ouaïssi

    2012-01-01

    In this study, the effect of LBH589 and trichostatin (TSA), a standard histone deacetylase inhibitor (HDACi) toward the growth of pancreatic cancer cell lines was studied. Thus, we examined for the first time, the HDAC family gene expression levels before and after drug treatment. Several human pancreatic cancer cell lines (Panc-1, BxPC-3, SOJ-6) and a normal human pancreatic duct immortalized epithelial cell line (HPDE/E6E7) were used as target cells. The cell growth was measured by MTT assay, cell cycle alteration, membrane phosphatidylserine exposure, DNA fragmentation, mitochondrial membrane potential loss, RT-PCR and Western blots were done using standard methods. The effect of drugs on tumor growth in vivo was studied using subcutaneous xenograft model. Except in the case of certain HDAC gene/tumor cell line couples: (SIRT1/HPDE-SOJ6/TSA- or LBH589-treated cells; LBH589-treated Panc-1 Cells; HDAC2/BxPC-3/LBH589-treated cells or TSA-treated SOJ-6-1 cells), there were no major significant changes of HDACs genes transcription in cells upon drug treatment. However, significant variation in HDACs and SIRTs protein expression levels could be seen among individual cell samples. The in vivo results showed that LBH589 formulation exhibited similar tumor reduction efficacy as the commercial drug gemcitabine. Our data demonstrate that LBH589 induced the death of pancreatic tumor cell by apoptosis. In line with its in vitro activity, LBH589 achieved a significant reduction in tumor growth in BxPC-3 pancreatic tumor cell line subcutaneous xenograft mouse model. Furthermore, exploring the impact of LBH589 on HDACs encoding genes expression revealed for the first time that some of them, depending on the cell line considered, seem to be regulated during translation. Copyright © 2012 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  16. Immortalization and characterization of mouse floxed Bmp2/4 osteoblasts

    International Nuclear Information System (INIS)

    Wu, Li-An; Yuan, Guohua; Yang, Guobin; Ortiz-Gonzalez, Iris; Yang, Wuchen; Cui, Yong; MacDougall, Mary; Donly, Kevin J.; Harris, Stephen; Chen, Shuo

    2009-01-01

    Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show that transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.

  17. Immortalization and characterization of mouse floxed Bmp2/4 osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Li-An [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi-an (China); Yuan, Guohua; Yang, Guobin [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Key Laboratory of Oral Biomedical Engineering Ministry of Education, Wuhan (China); Ortiz-Gonzalez, Iris [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Yang, Wuchen; Cui, Yong [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); MacDougall, Mary [Department of Oral/Maxillofacial Surgery, University of Alabama, Birmingham, AL (United States); Donly, Kevin J. [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Harris, Stephen [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); Chen, Shuo, E-mail: chens0@uthscsa.edu [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States)

    2009-08-14

    Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show that transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.

  18. N-domain angiotensin-I converting enzyme is expressed in immortalized mesangial, proximal tubule and collecting duct cells.

    Science.gov (United States)

    Mei Wang, Pamella Huey; Andrade, Maria Claudina; Quinto, Beata Marie Redublo; Di Marco, Giovana; Mortara, Renato Arruda; Vio, Carlos P; Casarini, Dulce Elena

    2015-01-01

    Somatic ACE (sACE) is found in glomerulus, proximal tubule and excreted in urine. We hypothesized that N-domain ACE can also be found at these sites. ACE profile was analyzed in mesangial (IMC), proximal (LLC-PK1), distal tubule (MDCK) and collecting duct (IMCD) cells. Cell lysate and culture medium were submitted to gel filtration chromatography, which separated two peaks with ACE activity from cells and medium, except from distal tubule. The first had a high molecular weight and the second, a lower one (65 kDa; N-domain ACE). We focused on N-domain ACE purification and characterization from LLC-PK1. Total LLC-PK1 N-domain ACE purification was achieved by ion-exchange chromatography, which presented only one peak with ACE activity, denominated ACE(int2A). ACE(int2A) activity was influenced by pH, NaCl and temperature. The purified enzyme was inhibited by Captopril and hydrolyzed AngI, Ang1-7 and AcSDKP. Its ability to hydrolyze AcSDKP characterized it as an N-domain ACE. ACE(int2A) also presented high amino acid sequence homology with the N-terminal part of sACE from mouse, rat, human and rabbit. The presence of secreted and intracellular N-domain ACE and sACE in IMC, LLC-PK1 and IMCD cells confirmed our studies along the nephron. We identified, purified and characterized N-domain ACE from LLC-PK1. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Cell fusion induced by ionizing radiation in various cell lines

    International Nuclear Information System (INIS)

    Khair, M.B.

    1994-07-01

    Cell fusion induced by ionizing radiation has been studied in rat's hepatocytes in vivo and in different cell lines in vitro. These cell lines were: Hela cells, V-79 fibroblasts, human and rat lymphocytes. For irradiation, 0.85 MeV fission neutrons and 14 MeV fast neutrons were used. Cell analyses were performed by fluorescent dyes using immunofluorescent microscope and flow cytometre. Our results in vivo showed that, regardless the dose-rate, a dose of 1 Gy approximately was enough to induce a significant level of cell fusion depending on neutron energy and the age of rats. The level of cell fusion was also significant in Hela cells at a dose of 0.5 Gy. Similar effect, but to a lesser extent, was observed in V-79 cells. Whereas, in lymphocytes insignificant cell fusion was noticed. The varying levels of cell-fusion in different cell lines could be attributed to the type of cells and mutual contact between cells. Furthermore irradiation did not show any influence on cell division ability in both hepatocytes and Hela cells and that fused cells were also able to divide forming a new generation of cells. (author). 36 refs., 8 figs., 10 tabs

  20. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines.

    Science.gov (United States)

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.

  1. Characterization of a spontaneously generated murine retinal pigmented epithelium cell line; a model for in vitro experiments

    International Nuclear Information System (INIS)

    Ranaei Pirmardan, Ehsan; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Mowla, Seyed Javad; Ezzati, Razie; Naseri, Marzieh

    2016-01-01

    Retinal pigmented epithelium (RPE), the outermost layer of the retina, has a key role in maintaining retinal cells’ functions. Severity of the culture of RPE cells has exerted many limitations to both in vitro and in vivo studies and its therapeutic applications. Therefore, establishment of RPE cell lines with high proliferative potential can considerably improve study of RPE cell biology. Here we report generation of a spontaneously immortalized murine RPE cell line in primary mouse RPE cell culture. Founded colonized cells were picked up and expression of RPE and retinal progenitor cells’ (RPC) markers were studied using immunocytochemistry (ICC). Emerged cells cultured over 35 passages and population doubling times in different serum concentrations were calculated. We also investigated the ability of cells for becoming transfected by calcium-phosphate method and for becoming infected by adeno-associated virus serotype 2 (AAV2) using flow cytometry. Data showed that the cobblestone constituent cells expressed RPE65, cytokeratin and ZO1 and moreover several progenitor markers such as Pax6, Sox2, Nestin and Chx10. It revealed that, despite primary RPE cells, the newly emerged cells were easily transfectable and were highly infectable when compared with HEK293T cells. Our data indicated that the emerged mouse RPE cell line pretended RPC-like phenotype and also simultaneously expressed RPE markers. It would be a promising model for leading studies on RPE and RPC cells and substantially confirmed the great RPE plasticity and its invaluable potential in research studies. - Highlights: • Isolation of a spontaneously generated retinal pigmented epithelium cell line is reported. • The cells express some of the retinal progenitor cell markers in addition to the RPE markers. • The aforesaid cell line is highly transfecable and considerably infectable by AAV2. • These results confirm the great RPE plasticity and its invaluable potential in research studies.

  2. Characterization of a spontaneously generated murine retinal pigmented epithelium cell line; a model for in vitro experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ranaei Pirmardan, Ehsan [Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Soheili, Zahra-Soheila [Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of); Samiei, Shahram [Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran (Iran, Islamic Republic of); Ahmadieh, Hamid [Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mowla, Seyed Javad [Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ezzati, Razie [Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of); Naseri, Marzieh [Department of Molecular Medicine, Faculty of Advanced Technology, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-10-01

    Retinal pigmented epithelium (RPE), the outermost layer of the retina, has a key role in maintaining retinal cells’ functions. Severity of the culture of RPE cells has exerted many limitations to both in vitro and in vivo studies and its therapeutic applications. Therefore, establishment of RPE cell lines with high proliferative potential can considerably improve study of RPE cell biology. Here we report generation of a spontaneously immortalized murine RPE cell line in primary mouse RPE cell culture. Founded colonized cells were picked up and expression of RPE and retinal progenitor cells’ (RPC) markers were studied using immunocytochemistry (ICC). Emerged cells cultured over 35 passages and population doubling times in different serum concentrations were calculated. We also investigated the ability of cells for becoming transfected by calcium-phosphate method and for becoming infected by adeno-associated virus serotype 2 (AAV2) using flow cytometry. Data showed that the cobblestone constituent cells expressed RPE65, cytokeratin and ZO1 and moreover several progenitor markers such as Pax6, Sox2, Nestin and Chx10. It revealed that, despite primary RPE cells, the newly emerged cells were easily transfectable and were highly infectable when compared with HEK293T cells. Our data indicated that the emerged mouse RPE cell line pretended RPC-like phenotype and also simultaneously expressed RPE markers. It would be a promising model for leading studies on RPE and RPC cells and substantially confirmed the great RPE plasticity and its invaluable potential in research studies. - Highlights: • Isolation of a spontaneously generated retinal pigmented epithelium cell line is reported. • The cells express some of the retinal progenitor cell markers in addition to the RPE markers. • The aforesaid cell line is highly transfecable and considerably infectable by AAV2. • These results confirm the great RPE plasticity and its invaluable potential in research studies.

  3. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    Science.gov (United States)

    Barkla, D H; Whitehead, R H; Foster, H; Tutton, P J

    1988-09-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting from the apical surface. The microvilli are attached by a core of long microfilaments passing deep into the apical cytoplasm. Between the microvilli are parallel arrays of vesicles (caveoli) containing flocculent material. Two different but not mutually exclusive explanations for the presence of tuft cells are proposed. The first explanation is that tuft cells came from the resected tumour and have survived by mitotic division during subsequent passages. The second explanation suggests that tuft cells are the progeny of undifferentiated tumour cells. Descriptions of tuft cells in colon carcinomas are uncommon and possible reasons for this are presented. The morphology of tuft cells is consistent with that of a highly differentiated cell specialised for absorption, and these new models provide an opportunity to further investigate the structure and function of tuft cells.

  4. Peptidomic analysis of human cell lines

    Science.gov (United States)

    Gelman, Julia S.; Sironi, Juan; Castro, Leandro M.; Ferro, Emer S.; Fricker, Lloyd D.

    2011-01-01

    Peptides have been proposed to function in intracellular signaling within the cytosol. Although cytosolic peptides are considered to be highly unstable, a large number of peptides have been detected in mouse brain and other biological samples. In the present study, we evaluated the peptidome of three diverse cell lines: SH-SY5Y, MCF7, and HEK293 cells. A comparison of the peptidomes revealed considerable overlap in the identity of the peptides found in each cell line. The majority of the observed peptides are not derived from the most abundant or least stable proteins in the cell, and approximately half of the cellular peptides correspond to the N- or C- termini of the precursor proteins. Cleavage site analysis revealed a preference for hydrophobic residues in the P1 position. Quantitative peptidomic analysis indicated that the levels of most cellular peptides are not altered in response to elevated intracellular calcium, suggesting that calpain is not responsible for their production. The similarity of the peptidomes of the three cell lines and the lack of correlation with the predicted cellular degradome implies the selective formation or retention of these peptides, consistent with the hypothesis that they are functional in the cells. PMID:21204522

  5. Breast cancer cell lines: friend or foe?

    International Nuclear Information System (INIS)

    Burdall, Sarah E; Hanby, Andrew M; Lansdown, Mark RJ; Speirs, Valerie

    2003-01-01

    The majority of breast cancer research is conducted using established breast cancer cell lines as in vitro models. An alternative is to use cultures established from primary breast tumours. Here, we discuss the pros and cons of using both of these models in translational breast cancer research

  6. (Asteraceae) Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    Purpose: To investigate the anti-proliferative and apoptotic activity of crude and dichloromethane fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and L929). Methods: A. sieberi was extracted with methanol and further purification was carried out using liquidliquid extraction ...

  7. Overexpression of the human BCL-2 gene product results in growth enhancement of Epstein-Barr virus-immortalized B cells

    International Nuclear Information System (INIS)

    Tsujimoto, Yoshihide

    1989-01-01

    The biological activity of the human BCL-2 gene product was analyzed in an Epstein-Barr virus (EBV)-infected human lymphoblastoid B-cell line transfected with BCL-2 sequences driven by the simian virus 40 promoter and enhancer. Overproduction of the BCL-2 protein conferred a selective growth advantage to the EBV-infected B cells as compared with control transfectants in low-serum medium and also after seeding at limiting dilution but did not render the cells tumorigenic in athymic nude mice. This growth enhancement was also seen in cells transfected with the BCL-2 gene with its own promoter juxtaposed to the immunoglobulin heavy chain gene enhancer, which represents the translocated form of the BCL-2 gene observed in follicular lymphomas with the t(14;18) translocation. The growth advantage of EBV-infected B cells overproducing the BCL-2 protein is neither due to the enhanced growth factor production nor due to an enhanced sensitivity of the BCL-2 transfectants to interleukins 1 or 6, although both lymphokines are known to stimulate proliferation of EBV-infected B-cell lines. The growth advantage of EBV-infected B-cell lines. The growth advantage of EBV-infected B cells by overproduction of the BCL-2 protein suggests the direct involvement of the BCL-2 gene product in the pathogenesis of follicular lymphoma

  8. Radiation sensitivity of Merkel cell carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J.H.; Ramsay, J.R.; Birrell, G.W. [Queensland Institute of Medical Research (Australia)] [and others

    1995-07-30

    Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.

  9. Radiation sensitivity of Merkell cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Leonard, J. Helen; Ramsay, Jonathan R.; Kearsley, John H.; Birrell, Geoff W.

    1995-01-01

    Purpose: Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Methods and Materials: Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after γ irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. Results: We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to γ irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Conclusion: Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution

  10. Characterization of new cell line stably expressing CHI3L1 oncogene

    Directory of Open Access Journals (Sweden)

    Chekhonin V. P.

    2011-06-01

    Full Text Available Aim. To characterize the immortalized 293 cell line after stable transfection with human oncogene (CHI3L1. Methods. 293 cells, stably transfected with pcDNA3.1_CHI3L1, and 293 cells, stably transfected with pcDNA3.1 as a negative control, were used throughout all experiments. The clones of CHI3L1-expressing 293 cells and 293 cells, transfected with pcDNA3.1, were analyzed by immunofluorescence and confocal microscopy. Cell proliferation was measured using MTT assay; analyses of ERK1/2 and AKT activation and their cellular localization were performed with anti-phospho-ERK and anti-phospho-AKT antibodies. Specific activation of MAP and PI3 kinases was measured by densitometric analysis of Western-blot signals. Results. The obtained results show quite modest ability of CHI3L1 to stimulate cell growth and reflect rather an improved cellular plating efficiency of the 293 cells stably transfected with pcDNA3.1_CHI3L1 as compared to the 293 cells transfected with an «empty» vector. ERK1/2 and AKT are activated in the 293_CHI3L1 cells. In these cells phosphorylated ERK1/2 were localized in both cell cytoplasm and nuclei while AKT only in cytoplasm. The 293_CHI3L1 cells differed from the 293 cells, transfected with an «empty» vector, in their size and ability to adhere to the culture plates. Conclusions. The overexpression of CHI3L1 is likely to have an important role in tumorigenesis via a mechanism which involves activation of PI3K and ERK1/2 pathways. The tumors which can be induced by orthotopic implantation of the transformed human cells with overexpressed human oncogene CHI3L1 into the rat brain can be used as a target for anticancer drug development.

  11. Characterization of three human cell line models for high-throughput neuronal cytotoxicity screening.

    Science.gov (United States)

    Tong, Zhi-Bin; Hogberg, Helena; Kuo, David; Sakamuru, Srilatha; Xia, Menghang; Smirnova, Lena; Hartung, Thomas; Gerhold, David

    2017-02-01

    More than 75 000 man-made chemicals contaminate the environment; many of these have not been tested for toxicities. These chemicals demand quantitative high-throughput screening assays to assess them for causative roles in neurotoxicities, including Parkinson's disease and other neurodegenerative disorders. To facilitate high throughput screening for cytotoxicity to neurons, three human neuronal cellular models were compared: SH-SY5Y neuroblastoma cells, LUHMES conditionally-immortalized dopaminergic neurons, and Neural Stem Cells (NSC) derived from human fetal brain. These three cell lines were evaluated for rapidity and degree of differentiation, and sensitivity to 32 known or candidate neurotoxicants. First, expression of neural differentiation genes was assayed during a 7-day differentiation period. Of the three cell lines, LUHMES showed the highest gene expression of neuronal markers after differentiation. Both in the undifferentiated state and after 7 days of neuronal differentiation, LUHMES cells exhibited greater cytotoxic sensitivity to most of 32 suspected or known neurotoxicants than SH-SY5Y or NSCs. LUHMES cells were also unique in being more susceptible to several compounds in the differentiating state than in the undifferentiated state; including known neurotoxicants colchicine, methyl-mercury (II), and vincristine. Gene expression results suggest that differentiating LUHMES cells may be susceptible to apoptosis because they express low levels of anti-apoptotic genes BCL2 and BIRC5/survivin, whereas SH-SY5Y cells may be resistant to apoptosis because they express high levels of BCL2, BIRC5/survivin, and BIRC3 genes. Thus, LUHMES cells exhibited favorable characteristics for neuro-cytotoxicity screening: rapid differentiation into neurons that exhibit high level expression neuronal marker genes, and marked sensitivity of LUHMES cells to known neurotoxicants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Phenotype and Functional Features of Human Telomerase Reverse Transcriptase Immortalized Human Airway Smooth Muscle Cells from Asthmatic and Non-Asthmatic Donors.

    Science.gov (United States)

    Burgess, J K; Ketheson, A; Faiz, A; Limbert Rempel, K A; Oliver, B G; Ward, J P T; Halayko, A J

    2018-01-16

    Asthma is an obstructive respiratory disease characterised by chronic inflammation with airway hyperresponsiveness. In asthmatic airways, there is an increase in airway smooth muscle (ASM) cell bulk, which differs from non-asthmatic ASM in characteristics. This study aimed to assess the usefulness of hTERT immortalisation of human ASM cells as a research tool. Specifically we compared proliferative capacity, inflammatory mediator release and extracellular matrix (ECM) production in hTERT immortalised and parent primary ASM cells from asthmatic and non-asthmatic donors. Our studies revealed no significant differences in proliferation, IL-6 and eotaxin-1 production, or CTGF synthesis between donor-matched parent and hTERT immortalised ASM cell lines. However, deposition of ECM proteins fibronectin and fibulin-1 was significantly lower in immortalised ASM cells compared to corresponding primary cells. Notably, previously reported differences in proliferation and inflammatory mediator release between asthmatic and non-asthmatic ASM cells were retained, but excessive ECM protein deposition in asthmatic ASM cells was lost in hTERT ASM cells. This study shows that hTERT immortalised ASM cells mirror primary ASM cells in proliferation and inflammatory profile characteristics. Moreover, we demonstrate both strengths and weaknesses of this immortalised cell model as a representation of primary ASM cells for future asthma pathophysiological research.

  13. A universal mammalian vaccine cell line substrate.

    Directory of Open Access Journals (Sweden)

    Jackelyn Murray

    Full Text Available Using genome-wide small interfering RNA (siRNA screens for poliovirus, influenza A virus and rotavirus, we validated the top 6 gene hits PV, RV or IAV to search for host genes that when knocked-down (KD enhanced virus permissiveness and replication over wild type Vero cells or HEp-2 cells. The enhanced virus replication was tested for 12 viruses and ranged from 2-fold to >1000-fold. There were variations in virus-specific replication (strain differences across the cell lines examined. Some host genes (CNTD2, COQ9, GCGR, NDUFA9, NEU2, PYCR1, SEC16G, SVOPL, ZFYVE9, and ZNF205 showed that KD resulted in enhanced virus replication. These findings advance platform-enabling vaccine technology, the creation of diagnostic cells substrates, and are informative about the host mechanisms that affect virus replication in mammalian cells.

  14. Regulation of hTERT Expression and Function in Newly Immortalized p53(+) Human Mammary Epithelial Cell Lines

    Science.gov (United States)

    2008-06-01

    senescence: Putting the brakes on tumor develop- ment. Cancer Res 2006; 66:2881-4. 17. Jones CJ, Kipling D, Morris M, Hepburn P, Skinner J, Bounacer A...A, Bonner-Weir S, Sharpless NE. P16ink4a induces an age-dependent decline in islet regenerative potential. Nature 2006; 443:453-7. 67...195L HMEC (Group A) fall into two categories : genes previously iden- tified as cancer-associated (including several antigens pro- posed as cancer

  15. Thallium stimulates ethanol production in immortalized hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Laura Colombaioni

    Full Text Available Lactate and ethanol (EtOH were determined in cell culture medium (CCM of immortalized hippocampal neurons (HN9.10e cell line before and after incubation with Thallium (Tl. This cell line is a reliable, in vitro model of one of the most vulnerable regions of central nervous system. Cells were incubated for 48 h with three different single Tl doses: 1, 10, 100 μg/L (corresponding to 4.9, 49 and 490 nM, respectively. After 48 h, neurons were "reperfused" with fresh CCM every 24/48 h until 7 days after the treatment and the removed CCM was collected and analysed. Confocal microscopy was employed to observe morphological changes. EtOH was determined by head space-solid phase microextraction -gas chromatography -mass spectrometry (HS-SPME-GCMS, lactate by RP-HPLC with UV detection. Tl exposure had significant effects on neuronal growth rate and morphology. The damage degree was dose-dependent. In not exposed cells, EtOH concentration was 0.18 ± 0.013 mM, which represents about 5% of lactate concentration (3.4 ± 0.10 mM. After Tl exposure lactate and EtOH increased. In CCM of 100 and 10 μg/L Tl-treated cells, lactate increased 24 h after reperfusion up to 2 and 3.3 times the control value, respectively. In CCM of 10 and 100 μg/L Tl-treated cells 24 h after reperfusion, EtOH increased up to 0.3 and 0.58 mmol/L. respectively. These results are consistent with significant alterations in energy metabolism, despite the low doses of Tl employed and the relatively short incubation time.

  16. Thallium stimulates ethanol production in immortalized hippocampal neurons.

    Science.gov (United States)

    Colombaioni, Laura; Onor, Massimo; Benedetti, Edoardo; Bramanti, Emilia

    2017-01-01

    Lactate and ethanol (EtOH) were determined in cell culture medium (CCM) of immortalized hippocampal neurons (HN9.10e cell line) before and after incubation with Thallium (Tl). This cell line is a reliable, in vitro model of one of the most vulnerable regions of central nervous system. Cells were incubated for 48 h with three different single Tl doses: 1, 10, 100 μg/L (corresponding to 4.9, 49 and 490 nM, respectively). After 48 h, neurons were "reperfused" with fresh CCM every 24/48 h until 7 days after the treatment and the removed CCM was collected and analysed. Confocal microscopy was employed to observe morphological changes. EtOH was determined by head space-solid phase microextraction -gas chromatography -mass spectrometry (HS-SPME-GCMS), lactate by RP-HPLC with UV detection. Tl exposure had significant effects on neuronal growth rate and morphology. The damage degree was dose-dependent. In not exposed cells, EtOH concentration was 0.18 ± 0.013 mM, which represents about 5% of lactate concentration (3.4 ± 0.10 mM). After Tl exposure lactate and EtOH increased. In CCM of 100 and 10 μg/L Tl-treated cells, lactate increased 24 h after reperfusion up to 2 and 3.3 times the control value, respectively. In CCM of 10 and 100 μg/L Tl-treated cells 24 h after reperfusion, EtOH increased up to 0.3 and 0.58 mmol/L. respectively. These results are consistent with significant alterations in energy metabolism, despite the low doses of Tl employed and the relatively short incubation time.

  17. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...

  18. Anticancer drugs and the regulation of Hedgehog genes GLI1 and PTCH1, a comparative study in nonmelanoma skin cancer cell lines

    DEFF Research Database (Denmark)

    Olesen, Uffe H; Bojesen, Sophie; Gehl, Julie

    2017-01-01

    Nonmelanoma skin cancer is the most common cancer in humans, comprising mainly basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). BCC proliferation is highly dependent on the Hedgehog signaling pathway. We aimed to investigate a panel of anticancer drugs with known activity against skin...... of immortalized keratinocytes (HaCaT), BCC (UWBCC1 and BCC77015), and SCC (A431 and SCC25) cell lines. The impact of treatment on the regulation of Hedgehog pathway target genes (GLI1 and PTCH1), measured by real-time PCR, was compared between UWBCC1 and HaCaT. Varying cell line sensitivity profiles...... to the examined anticancer drugs were observed. Generally, 24-h drug exposure was sufficient to reduce cell viability. We found that 5-FU, MTX, and cisplatin significantly downregulated the expression of two genes controlled by the Hedgehog pathway (≤25-, 2.9-, and 12.5-fold, respectively, for GLI1 in UWBCC1...

  19. Establishment and partial characterization of a cell line from burbot Lota lota maculosa: susceptibility to IHNV, IPNV and VHSV.

    Science.gov (United States)

    Polinski, Mark P; Drennan, John D; Batts, William N; Ireland, Susan C; Cain, Kenneth D

    2010-05-18

    This study describes the development and partial characterization of a continuous fibroblastic-like cell line (BEF-1) developed from late stage embryos of North American burbot Lota lota maculosa. This cell line has been maintained for over 5 yr and 100 passages in vitro. Cells were cultured using Eagle's minimum essential medium with Earle's salts (MEM) supplemented with GlutaMAX, and 10% fetal bovine serum (FBS), pH 7.4. The addition of penicillin-streptomycin-neomycin (PSN) antibiotic mixture (0.05, 0.05, 0.1 mg m(-1), respectively) did not negatively influence cell replication; however, the antimycotic FungizoneTM (2.5 microg m(-1), amphotericin B) caused cell rounding and resulted in a severe decrease in cell proliferation. Optimal incubation temperature has been observed between 15 and 23 degrees C, and at these temperatures cultures are routinely passed using standard trypsinization methods every 5 to 7 d at a split ratio of 1:3 or 1:4. The cell line was susceptible to isolates of the M and U North American genotypes of infectious hematopoietic necrosis virus (IHNV), and to isolates of genotypes I, IVa, and IVb of viral hemorrhagic septicemia virus (VHSV). In contrast, the cell line was refractory to infection by 2 North American isolates of infectious pancreatic necrosis virus (IPNV) from serotypes A1 and A9. This cell line provides a new laboratory tool, will allow further investigation into viral diseases of burbot and possibly other species, and is the first immortalized cell line reported from a species in the Gadidae (cod) family.

  20. Establishment and partial characterization of a cell line from burbot Lota lota maculosa: susceptibility to IHNV, IPNV and VHSV.

    Science.gov (United States)

    Batts, William N.; Polinski, Mark P.; Drennan, John D.; Ireland, Susan C.; Cain, Kenneth D.

    2010-01-01

    This study describes the development and partial characterization of a continuous fibroblastic-like cell line (BEF-1) developed from late stage embryos of North American burbot Lota lota maculosa. This cell line has been maintained for over 5 yr and 100 passages in vitro. Cells were cultured using Eagle’s minimum essential medium with Earle’s salts (MEM) supplemented with GlutaMAX™, and 10% fetal bovine serum (FBS), pH 7.4. The addition of penicillin-streptomycin-neomycin (PSN) antibiotic mixture (0.05, 0.05, 0.1 mg ml–1, respectively) did not negatively influence cell replication; however, the antimycotic Fungizone™ (2.5 µg ml–1, amphotericin B) caused cell rounding and resulted in a severe decrease in cell proliferation. Optimal incubation temperature has been observed between 15 and 23°C, and at these temperatures cultures are routinely passed using standard trypsinization methods every 5 to 7 d at a split ratio of 1:3 or 1:4. The cell line was susceptible to isolates of the M and U North American genotypes of infectious hematopoietic necrosis virus (IHNV), and to isolates of genotypes I, IVa, and IVb of viral hemorrhagic septicemia virus (VHSV). In contrast, the cell line was refractory to infection by 2 North American isolates of infectious pancreatic necrosis virus (IPNV) from serotypes A1 and A9. This cell line provides a new laboratory tool, will allow further investigation into viral diseases of burbot and possibly other species, and is the first immortalized cell line reported from a species in the Gadidae (cod) family.

  1. Expression of the Pokemon proto-oncogene in nasopharyngeal carcinoma cell lines and tissues.

    Science.gov (United States)

    Jiao, Wei; Liu, Fei; Tang, Feng-Zhu; Lan, Jiao; Xiao, Rui-Ping; Chen, Xing-Zhou; Ye, Hui-Lan; Cai, Yong-Lin

    2013-01-01

    To study the differentiated expression of the proto-oncogene Pokemon in nasopharyngeal carcinoma (NPC) cell lines and tissues, mRNA and protein expression levels of CNE1, CNE2, CNE3 and C666-1 were detected separately by reverse transcription polymerase chain reaction (RT-PCR), real-time PCR and Western-blotting. The immortalized nasopharyngeal epithelial cell line NP69 was used as a control. The Pokemon protein expression level in biopsy specimens from chronic rhinitis patients and undifferentiated non keratinizing NPC patients was determined by Western-blotting and arranged from high to low: C666-1>CNE1>CNE2> CNE3>NP69. The Pokemon mRNA expression level was also arranged from high to low: CNE1>CNE2>NP69>C666-1>CNE3. Pokemon expression of NP69 and C666-1 obviously varied from mRNA to protein. The Pokemon protein level of NPC biopsy specimens was obviously higher than in chronic rhinitis. The data suggest that high Pokemon protein expression is closely associated with undifferentiated non-keratinizing NPC and may provide useful information for NPC molecular target therapy.

  2. Attempts on producing lymphoid cell line from Penaeus monodon by induction with SV40-T and 12S EIA oncogenes.

    Science.gov (United States)

    Puthumana, Jayesh; Prabhakaran, Priyaja; Philip, Rosamma; Singh, I S Bright

    2015-12-01

    In an attempt of in vitro transformation, transfection mediated expression of Simian virus-40 (T) antigen (SV40-T) and transduction mediated expression of Adenovirus type 12 early region 1A (12S E1A) oncogene were performed in Penaeus monodon lymphoid cells. pSV3-neo vector encoding SV40-T oncogene and a recombinant baculovirus BacP2-12S E1A-GFP encoding 12S E1A oncogene under the control of hybrid promoters were used. Electroporation and lipofection mediated transformation of SV40-T in lymphoid cells confirmed the transgene expression by phenotypic variation and the expression of GFP in co-transfection experiment. The cells transfected by lipofection (≥ 5%) survived for 14 days with lower toxicity (30%), whilst on electroporation, most of the cells succumbed to death (60%) and survived cells lived up to 7 days. Transduction efficiency in primary lymphoid cells was more than 80% within 14 days of post-transduction, however, an incubation period of 7 days post-transduction was observed without detectable expression of 12S E1A. High level of oncogenic 12S E1A expression were observed after 14 day post-transduction and the proliferating cells survived for more than 90 days with GFP expression, however, without in vitro transformation and immortalization. The study put forth the requirement of transduction mediated 'specific' oncogene expression along with telomerase activation and epigenetic induction for the immortalization and establishment of shrimp cell line. Copyright © 2015. Published by Elsevier Ltd.

  3. A novel dual-color reporter for identifying insulin-producing beta-cells and classifying heterogeneity of insulinoma cell lines.

    Directory of Open Access Journals (Sweden)

    Nan Sook Lee

    Full Text Available Many research studies use immortalized cell lines as surrogates for primary beta- cells. We describe the production and use of a novel "indirect" dual-fluorescent reporter system that leads to mutually exclusive expression of EGFP in insulin-producing (INS(+ beta-cells or mCherry in non-beta-cells. Our system uses the human insulin promoter to initiate a Cre-mediated shift in reporter color within a single transgene construct and is useful for FACS selection of cells from single cultures for further analysis. Application of our reporter to presumably clonal HIT-T15 insulinoma cells, as well as other presumably clonal lines, indicates that these cultures are in fact heterogeneous with respect to INS(+ phenotype. Our strategy could be easily applied to other cell- or tissue-specific promoters. We anticipate its utility for FACS purification of INS(+ and glucose-responsive beta-like-cells from primary human islet cell isolates or in vitro differentiated pluripotent stem cells.

  4. Development and characterization of a hydrogen peroxide-resistant cholangiocyte cell line: A novel model of oxidative stress-related cholangiocarcinoma genesis

    Energy Technology Data Exchange (ETDEWEB)

    Thanan, Raynoo [Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Techasen, Anchalee [Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Hou, Bo [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Jamnongkan, Wassana; Armartmuntree, Napat [Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Yongvanit, Puangrat, E-mail: puangrat@kku.ac.th [Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Murata, Mariko, E-mail: mmurata@doc.medic.mie-u.ac.jp [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan)

    2015-08-14

    Oxidative stress is a cause of inflammation–related diseases, including cancers. Cholangiocarcinoma is a liver cancer with bile duct epithelial cell phenotypes. Our previous studies in animal and human models indicated that oxidative stress is a major cause of cholangiocarcinoma development. Hydrogen peroxide (H{sub 2}O{sub 2}) can generate hydroxyl radicals, which damage lipids, proteins, and nucleic acids, leading to cell death. However, some cells can survive by adapting to oxidative stress conditions, and selective clonal expansion of these resistant cells would be involved in oxidative stress-related carcinogenesis. The present study aimed to establish H{sub 2}O{sub 2}-resistant cell line from an immortal cholangiocyte cell line (MMNK1) by chronic treatment with low-concentration H{sub 2}O{sub 2} (25 μM). After 72 days of induction, H{sub 2}O{sub 2}-resistant cell lines (ox-MMNK1-L) were obtained. The ox-MMNK1-L cell line showed H{sub 2}O{sub 2}-resistant properties, increasing the expression of the anti-oxidant genes catalase (CAT), superoxide dismutase-1 (SOD1), superoxide dismutase-2 (SOD2), and superoxide dismutase-3 (SOD3) and the enzyme activities of CAT and intracellular SODs. Furthermore, the resistant cells showed increased expression levels of an epigenetics-related gene, DNA methyltransferase-1 (DNMT1), when compared to the parental cells. Interestingly, the ox-MMNK1-L cell line had a significantly higher cell proliferation rate than the MMNK1 normal cell line. Moreover, ox-MMNK1-L cells showed pseudopodia formation and the loss of cell-to-cell adhesion (multi-layers) under additional oxidative stress (100 μM H{sub 2}O{sub 2}). These findings suggest that H{sub 2}O{sub 2}-resistant cells can be used as a model of oxidative stress-related cholangiocarcinoma genesis through molecular changes such as alteration of gene expression and epigenetic changes. - Highlights: • An H{sub 2}O{sub 2}-resistant ox-MMNK1-L cells was established from

  5. Characterization of a spontaneously generated murine retinal pigmented epithelium cell line; a model for in vitro experiments.

    Science.gov (United States)

    Ranaei Pirmardan, Ehsan; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Mowla, Seyed Javad; Ezzati, Razie; Naseri, Marzieh

    2016-10-01

    Retinal pigmented epithelium (RPE), the outermost layer of the retina, has a key role in maintaining retinal cells' functions. Severity of the culture of RPE cells has exerted many limitations to both in vitro and in vivo studies and its therapeutic applications. Therefore, establishment of RPE cell lines with high proliferative potential can considerably improve study of RPE cell biology. Here we report generation of a spontaneously immortalized murine RPE cell line in primary mouse RPE cell culture. Founded colonized cells were picked up and expression of RPE and retinal progenitor cells' (RPC) markers were studied using immunocytochemistry (ICC). Emerged cells cultured over 35 passages and population doubling times in different serum concentrations were calculated. We also investigated the ability of cells for becoming transfected by calcium-phosphate method and for becoming infected by adeno-associated virus serotype 2 (AAV2) using flow cytometry. Data showed that the cobblestone constituent cells expressed RPE65, cytokeratin and ZO1 and moreover several progenitor markers such as Pax6, Sox2, Nestin and Chx10. It revealed that, despite primary RPE cells, the newly emerged cells were easily transfectable and were highly infectable when compared with HEK293T cells. Our data indicated that the emerged mouse RPE cell line pretended RPC-like phenotype and also simultaneously expressed RPE markers. It would be a promising model for leading studies on RPE and RPC cells and substantially confirmed the great RPE plasticity and its invaluable potential in research studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The Immortal Senescence.

    Science.gov (United States)

    Bianchi-Smiraglia, Anna; Lipchick, Brittany C; Nikiforov, Mikhail A

    2017-01-01

    Activation of oncogenic signaling paradoxically results in the permanent withdrawal from cell cycle and induction of senescence (oncogene-induced senescence (OIS)). OIS is a fail-safe mechanism used by the cells to prevent uncontrolled tumor growth, and, as such, it is considered as the first barrier against cancer. In order to progress, tumor cells thus need to first overcome the senescent phenotype. Despite the increasing attention gained by OIS in the past 20 years, this field is still rather young due to continuous emergence of novel pathways and processes involved in OIS. Among the many factors contributing to incomplete understanding of OIS are the lack of unequivocal markers for senescence and the complexity of the phenotypes revealed by senescent cells in vivo and in vitro. OIS has been shown to play major roles at both the cellular and organismal levels in biological processes ranging from embryonic development to barrier to cancer progression. Here we will briefly outline major advances in methodologies that are being utilized for induction, identification, and characterization of molecular processes in cells undergoing oncogene-induced senescence. The full description of such methodologies is provided in the corresponding chapters of the book.

  7. Menadione inhibits MIBG uptake in two neuroendocrine cell lines

    NARCIS (Netherlands)

    Cornelissen, J.; Tytgat, G. A.; van den Brug, M.; van Kuilenburg, A. B.; Voûte, P. A.; van Gennip, A. H.

    1997-01-01

    In this paper we report on our studies of the effect of menadione on the uptake of MIBG in the neuroendocrine cell lines PC12 and SK-N-SH. Menadione inhibits the uptake of MIBG in both cell lines in a dose-dependent manner. Inhibition of MIBG uptake is most pronounced in the PC12 cell line.

  8. TERRA Expression Levels Do Not Correlate With Telomere Length and Radiation Sensitivity in Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Alexandra eSmirnova

    2013-05-01

    Full Text Available Mammalian telomeres are transcribed into long non-coding telomeric RNA molecules (TERRA that seem to play a role in the maintenance of telomere stability. In human cells, CpG island promoters drive TERRA transcription and are regulated by methylation. It was suggested that the amount of TERRA may be related to telomere length. To test this hypothesis we measured telomere length and TERRA levels in single clones isolated from five human cell lines: HeLa (cervical carcinoma, BRC-230 (breast cancer, AKG and GK2 (gastric cancers and GM847 (SV40 immortalized skin fibroblasts. We observed great clonal heterogeneity both in TRF (Terminal Restriction Fragment length and in TERRA levels. However, these two parameters did not correlate with each other. Moreover, cell survival to γ-rays did not show a significant variation among the clones, suggesting that, in this cellular system, the intra-population variability in telomere length and TERRA levels does not influence sensitivity to ionizing radiation. This conclusion was supported by the observation that in a cell line in which telomeres were greatly elongated by the ectopic expression of telomerase, TERRA expression levels and radiation sensitivity were similar to the parental HeLa cell line.

  9. The consequences of chromosomal aneuploidy on gene expression profiles in a cell line model for prostate carcinogenesis.

    Science.gov (United States)

    Phillips, J L; Hayward, S W; Wang, Y; Vasselli, J; Pavlovich, C; Padilla-Nash, H; Pezullo, J R; Ghadimi, B M; Grossfeld, G D; Rivera, A; Linehan, W M; Cunha, G R; Ried, T

    2001-11-15

    Here we report the genetic characterization of immortalized prostate epithelial cells before and after conversion to tumorigenicity using molecular cytogenetics and microarray technology. We were particularly interested to analyze the consequences of acquired chromosomal aneuploidies with respect to modifications of gene expression profiles. Compared with nontumorigenic but immortalized prostate epithelium, prostate tumor cell lines showed high levels of chromosomal rearrangements that led to gains of 1p, 5, 11q, 12p, 16q, and 20q and losses of 1pter, 11p, 17, 20p, 21, 22, and Y. Of 5700 unique targets on a 6.5K cDNA microarray, approximately 3% were subject to modification in expression levels; these included GRO-1, -2, IAP-1,- 2, MMP-9, and cyclin D1, which showed increased expression, and TRAIL, BRCA1, and CTNNA, which showed decreased expression. Thirty % of expression changes occurred in regions the genomic copy number of which remained balanced. Of the remainder, 42% of down-regulated and 51% of up-regulated genes mapped to regions present in decreased or increased genomic copy numbers, respectively. A relative gain or loss of a chromosome or chromosomal arm usually resulted in a statistically significant increase or decrease, respectively, in the average expression level of all of the genes on the chromosome. However, of these genes, very few (e.g., 5 of 101 genes on chromosome 11q), and in some instances only two genes (MMP-9 and PROCR on chromosome 20q), were overexpressed by > or =1.7-fold when scored individually. Cluster analysis by gene function suggests that prostate tumorigenesis in these cell line models involves alterations in gene expression that may favor invasion, prevent apoptosis, and promote growth.

  10. Human pathogenic Mycoplasma species induced cytokine gene expression in Epstein-Barr virus (EBV)-positive lymphoblastoid cell lines.

    Science.gov (United States)

    Schäffner, E; Opitz, O; Pietsch, K; Bauer, G; Ehlers, S; Jacobs, E

    1998-04-01

    We addressed the question whether the in vitro interaction of two Epstein-Barr virus (EBV)-genome-positive B cell lines (EB-3 and HilB-gamma) with either Mycoplasma pneumoniae or M. hominis, with the mycoplasma species (M. fermentans, M. fermentans subsp. incognitus, M. penetrans, M. genitalium) or with mycoplasma species known to be mere commensals of the respiratory tract (M. orale and M. salivarium) would result in expression of mRNAs for IL-2, IL-2R, IL-4 and IL-6 as determined by reverse transcriptase (RT)-PCR after 4 and 24 h of cocultivation. The pattern of cytokine gene expression observed depended on (i) the origin of the transformed cell line, (ii) the pathogenicity of the Mycoplasma species, and (iii) the length of cocultivation. The EBV-immortalized lymphoblastoid cell line HilB-gamma showed mRNA expression for IL-2, IL-2-receptor, IL-4 and IL-6 peaking 24 h after stimulation with M. pneumoniae and all AIDS-related mycoplasma species tested. The Burkitt lymphoma cell line EB-3 showed a distinct and isolated strong II-2/IL-2 R-mRNA expression within 4 h after contact with the pathogenic and all of the AIDS related mycoplasma species. In neither EBV-containing cell line cytokine was gene expression detectable after stimulation with the commensal mycoplasma species, M. orale and M. salivarium, indicating species differences in the ability of mycoplasmas to interact with and stimulate B-cell lines. Our data suggest that some mcyoplasma species may act as immunomodulatory cofactors by eliciting inappropriate cytokine gene expression in B cells latently infected with EBV. Therefore, this cultivation model may prove useful in evaluating the pathogenetic potential of novel isolated mycoplasma species. Copyright 1998 Academic Press Limited.

  11. Periodicity and Immortality in Reversible Computing

    OpenAIRE

    Kari , Jarkko; Ollinger , Nicolas

    2008-01-01

    Additional material available on the web at http://www.lif.univ-mrs.fr/~nollinge/rec/gnirut/; We investigate the decidability of the periodicity and the immortality problems in three models of reversible computation: reversible counter machines, reversible Turing machines and reversible one-dimensional cellular automata. Immortality and periodicity are properties that describe the behavior of the model starting from arbitrary initial configurations: immortality is the property of having at le...

  12. Characterization of human lymphoid cell lines GM9947 and GM9948 as intra- and interlaboratory reference standards for DNA typing

    Energy Technology Data Exchange (ETDEWEB)

    Fregeau, C.J.; Elliott, J.C.; Fourney, R.M. [RCMP Central Forensic Laboratory, Ottawa, Ontario (Canada)] [and others

    1995-07-20

    The incorporation of reference DNA is crucial to the validation of any DNA typing protocol. Currently, reference DNA standards are restricted to molecular size DNA ladders and/or tumor cell line DNA. Either of these, however, presents some limitations. We have rigorously characterized two Epstein-Barr virus (EBV)-immortalized human lymphoid cell lines-GM9947 (female) and GM9948 (male)-to determine their suitability as alternative in-line standards for three widely employed allele profiling strategies. Twenty-one highly polymorphic VNTR-based allelic systems (7 RFLPs, 2 AmpFLPs, and 12 STRs) distributed over 12 chromosomes were scrutinized along with 3 gender-based discriminatory systems. The genetic stability of each locus was confirmed over a period of 225 in vitro population doublings. Allele size estimates and degree of informativeness for each of the 21 VNTR systems were compiled. The reproducibility of allele scoring by traditional RFLP analyses, using both cell lines as reference standards, was also verified by an interlaboratory validation study involving 13 analysts from two geographically distinct forensic laboratories. Taken together, our data indicate that GM9947 and GM9948 genomic DNAs could be adopted as reliable reference standards for DNA typing. 82 refs., 3 figs., 8 tabs.

  13. Establishment of a luciferase assay-based screening system: Fumitremorgin C selectively inhibits cellular proliferation of immortalized astrocytes expressing an active form of AKT

    International Nuclear Information System (INIS)

    Wang Lei; Sasai, Ken; Akagi, Tsuyoshi; Tanaka, Shinya

    2008-01-01

    The AKT pathway is frequently activated in glioblastoma, and as such, inhibitors of this pathway could prove very useful as anti-glioblastoma therapies. Here we established immortalized astrocytes expressing Renilla luciferase as well as those expressing both an active form of AKT and firefly luciferase. Since both luciferase activities represent the numbers of corresponding cell lines, novel inhibitors of the AKT pathway can be identified by treating co-cultures containing the two types of luciferase-expressing cells with individual compounds. Indeed, such a screening system succeeded in identifying fumitremorgin C as an efficient inhibitor of the AKT pathway, which was further confirmed by the ability of fumitremorgin C to selectively inhibit the growth of immortalized astrocytes expressing an active form of AKT. The present study proposes a broadly applicable approach for identifying therapeutic agents that target the pathways and/or molecules responsible for cancer development

  14. Introduction of a normal human chromosome 8 corrects abnormal phenotypes of Werner syndrome cells immortalized by expressing an hTERT gene

    International Nuclear Information System (INIS)

    Ariyoshi, Kentaro; Kodama, Seiji; Suzuki, Keiji; Goto, Makoto; Oshimura, Mitsuo; Ishizaki, Kanji; Watanabe, Masami

    2009-01-01

    Werner syndrome (WS) is an autosomal recessive disease characterized by premature aging and caused by mutations of the WRN gene mapped at 8p12. To examine functional complementation of WS phenotypes, we introduced a normal human chromosome 8 into a strain of WS fibroblasts (WS3RGB) immortalized by expressing a human telomerase reverse transcriptase subunit (hTERT) gene. Here, we demonstrate that the abnormal WS phenotypes including cellular sensitivities to 4-nitroquinoline-1-oxide (4NQO) and hydroxy urea (HU), and chromosomal radiosensitivity at G 2 phase are corrected by expression of the WRN gene mediated by introducing a chromosome 8. This indicates that those multiple abnormal WS phenotypes are derived from a primary, but not secondary, defect in the WRN gene. (author)

  15. The Cellosaurus, a Cell-Line Knowledge Resource

    Science.gov (United States)

    Bairoch, Amos

    2018-01-01

    The Cellosaurus is a knowledge resource on cell lines. It aims to describe all cell lines used in biomedical research. Its scope encompasses both vertebrates and invertebrates. Currently, information for >100,000 cell lines is provided. For each cell line, it provides a wealth of information, cross-references, and literature citations. The Cellosaurus is available on the ExPASy server (https://web.expasy.org/cellosaurus/) and can be downloaded in a variety of formats. Among its many uses, the Cellosaurus is a key resource to help researchers identify potentially contaminated/misidentified cell lines, thus contributing to improving the quality of research in the life sciences. PMID:29805321

  16. Generation and characterization of human smooth muscle cell lines derived from atherosclerotic plaque.

    Science.gov (United States)

    Bonin, L R; Madden, K; Shera, K; Ihle, J; Matthews, C; Aziz, S; Perez-Reyes, N; McDougall, J K; Conroy, S C

    1999-03-01

    The study of atherogenesis in humans has been restricted by the limited availability and brief in vitro life span of plaque smooth muscle cells (SMCs). We describe plaque SMC lines with extended life spans generated by the expression of the human papillomavirus (HPV)-16 E6 and E7 genes, which has been shown to extend the life span of normal adult human aortic SMCs. Resulting cell lines (pdSMC1A and 2) demonstrated at least 10-fold increases in life span; pdSMC1A became immortal. The SMC identity of both pdSMC lines was confirmed by SM22 mRNA expression. pdSMC2 were generally diploid but with various structural and numerical alterations; pdSMC1A demonstrated several chromosomal abnormalities, most commonly -Y, +7, -13, anomalies previously reported in both primary pdSMCs and atherosclerotic tissue. Confluent pdSMC2 appeared grossly similar to HPV-16 E6/E7-expressing normal adult aortic SMCs (AASMCs), exhibiting typical SMC morphology/growth patterns; pdSMC1A displayed irregular cell shape/organization with numerous mitotic figures. Dedifferentiation to a synthetic/proliferative phenotype has been hypothesized as a critical step in atherogenesis, because rat neonatal SMCs and adult intimal SMCs exhibit similar gene expression patterns. To confirm that our pdSMC lines likewise express this apparent plaque phenotype, osteopontin, platelet-derived growth factor B, and elastin mRNA levels were determined in pdSMC1A, pdSMC2, and AASMCs. However, no significant increases in osteopontin or platelet-derived growth factor B expression levels were observed in either pdSMC compared with AASMCs. pdSMC2 alone expressed high levels of elastin mRNA. Lower levels of SM22 mRNA in pdSMC1A suggested greater dedifferentiation and/or additional population doublings in pdSMC1A relative to pdSMC2. Both pdSMC lines (particularly 1A) demonstrated high message levels for matrix Gla protein, previously reported to be highly expressed by human neointimal SMCs in vitro. These results describe 2

  17. Staphylococcal superantigens stimulate immortalized human adipocytes to produce chemokines.

    Directory of Open Access Journals (Sweden)

    Bao G Vu

    Full Text Available BACKGROUND: Human adipocytes may have significant functions in wound healing and the development of diabetes through production of pro-inflammatory cytokines after stimulation by gram-negative bacterial endotoxin. Diabetic foot ulcers are most often associated with staphylococcal infections. Adipocyte responses in the area of the wound may play a role in persistence and pathology. We studied the effect of staphylococcal superantigens (SAgs on immortalized human adipocytes, alone and in the presence of bacterial endotoxin or staphylococcal α-toxin. METHODOLOGY/PRINCIPAL FINDINGS: Primary non-diabetic and diabetic human preadipocytes were immortalized by the reverse transcriptase component of telomerase (TERT and the E6/E7 genes of human papillomavirus. The immortal cells were demonstrated to have properties of non-immortalized pre-adipocytes and could be differentiated into mature and functional adipocytes. Differentiated adipocytes exposed to staphylococcal SAgs produced robust levels of cytokines IL-6 and IL-8, but there were no significant differences in levels between the non-diabetic and diabetic cells. Cytokine production was increased by co-incubation of adipocytes with SAgs and endotoxin together. In contrast, α-toxin alone was cytotoxic at high concentrations, but, at sub-cytotoxic doses, did not stimulate production of IL-6 and IL-8. CONCLUSIONS/SIGNIFICANCE: Endotoxin has been proposed to contribute to diabetes through enhanced insulin resistance after chronic exposure and stimulation of adipocytes to produce cytokines. Our data indicate staphylococcal SAgs TSST-1 and SEB alone and in combination with bacterial endotoxin also stimulate adipocytes to produce cytokines and thus may contribute to the inflammatory response found in chronic diabetic ulcers and in the systemic inflammation that is associated with the development and persistence of diabetes. The immortal human pre-adipocytes reported here will be useful for studies to

  18. Cellular radiosensitivity of small-cell lung cancer cell lines

    International Nuclear Information System (INIS)

    Krarup, Marianne; Poulsen, Hans Skovgaard; Spang-Thomsen, Mogens

    1997-01-01

    Purpose: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based on the construction of continuous exponential growth curves. Methods and Materials: Fifteen SCLC cell lines were studied, applying a slightly modified clonogenic assay and a growth extrapolation method. A dose-survival curve was obtained for each experiment and used for calculating several survival parameters. The multitarget single hit model was applied to calculate the cellular radiosensitivity (D 0 ), the capacity for sublethal damage repair (D q ), and the extrapolation number (n). Values for α and β were determined from best-fit curves according to the linear-quadratic model and these values were applied to calculate the surviving fraction after 2-Gy irradiation (SF 2 ). Results: In our investigation, the extrapolation method proved to be inappropriate for the study of in vitro cellular radiosensitivity due to lack of reproducibility. The results obtained by the clonogenic assay showed that the cell lines studied were radiobiologically heterogeneous with no discrete features of the examined parameters including the repair capacity. Conclusion: The results indicate that SCLC tumors per se are not generally candidates for hyperfractionated radiotherapy

  19. Susceptibility testing of fish cell lines for virus isolation

    DEFF Research Database (Denmark)

    Ariel, Ellen; Skall, Helle Frank; Olesen, Niels Jørgen

    2009-01-01

    and laboratories, but also between lineages of the same cell line. To minimise the occurrence of false negatives in a cell culture based surveillance system, we have investigated methods, to select cell lineages that are relatively superior in their susceptibility to a panel of virus isolates. The procedures...... cell lineages, we increased the number of isolates of each virus, propagated stocks in a given cell line and tested all lineages of that line in use in the laboratory. Testing of relative cell line susceptibility between laboratories is carried out annually via the Inter-laboratory Proficiency Test...... sensitivity for surveillance purposes within a cell line and between laboratories.In terms of economic and practical considerations as well as attempting to approach a realistic test system, we suggest the optimal procedure for susceptibility testing of fish cell lines for virus isolation to be a combination...

  20. Aging in bacteria, immortality or not-a critical review.

    Science.gov (United States)

    Gómez, José M G

    2010-12-01

    Bacteria were traditionally thought to have a symmetrical binary fission without a clear distinction between soma and germ-line, being thus considered as immortal biological entities. Yet it has been recently described that bacteria also undergo replicative aging (RA). That is, they exhibit finite replicative abilities under good conditions to growth. The apparently initial indistinguishability of sibling cells after cytokinesis is broken. After division, the daughter cell that inherits the "old" pole present in the "mother cell" progressively exhibits a decline in its proliferative capacity with increasing cell pole age. This is a clear hallmark and phenotypic manifestation of a bona fide RA phenomenon in toto. While the exact molecular mechanism(s) underlying to this lost of replicative potential are not yet fully understood, the "old pole cell" is considered as an aging parent that in a repeatedly manner is able to produce rejuvenated offspring which inherit a resetting of the biological clock. On the order hand, bacteria exhibit in addition to this "mandatory" RA the dubbed conditional senescence (CS). CS is defined as a decline in cellular viability observed in arrested-growing bacteria populations, a phenomenon apparently not related to RA under growing active conditions. To understand bacterial aging, it is necessary to put it within the sociality-multicellularity framework. This is a new conceptual paradigm that expresses the natural reality of the bacterial world. From this more ecological perspective these bacterial aging phenomena probably should represent an insurance/bethedging anticipative survival strategy. This is underpinned in a self-generation of an appropriate level of populational phenotypic diversity. That is, bacterial aging could be considered a communitarian adaptive response to cope with different environmental stresses and threats. I have highlighted the necessity to construct an integrative conceptual framework to achieve a unified view

  1. Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1.

    Science.gov (United States)

    Velásquez, Celestino; Amako, Yutaka; Harold, Alexis; Toptan, Tuna; Chang, Yuan; Shuda, Masahiro

    2018-01-01

    Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.

  2. 3D cultured immortalized human hepatocytes useful to develop drugs for blood-borne HCV

    International Nuclear Information System (INIS)

    Aly, Hussein Hassan; Shimotohno, Kunitada; Hijikata, Makoto

    2009-01-01

    Due to the high polymorphism of natural hepatitis C virus (HCV) variants, existing recombinant HCV replication models have failed to be effective in developing effective anti-HCV agents. In the current study, we describe an in vitro system that supports the infection and replication of natural HCV from patient blood using an immortalized primary human hepatocyte cell line cultured in a three-dimensional (3D) culture system. Comparison of the gene expression profile of cells cultured in the 3D system to those cultured in the existing 2D system demonstrated an up-regulation of several genes activated by peroxisome proliferator-activated receptor alpha (PPARα) signaling. Furthermore, using PPARα agonists and antagonists, we also analyzed the effect of PPARα signaling on the modulation of HCV replication using this system. The 3D in vitro system described in this study provides significant insight into the search for novel anti-HCV strategies that are specific to various strains of HCV.

  3. Establishment of ultra long-lived cell lines by transfection of TERT into normal human fibroblast TIG-1 and their characterization.

    Science.gov (United States)

    Kamada, Mizuna; Kumazaki, Tsutomu; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko

    2012-06-01

    To establish useful human normal cell lines, TERT (telomerase reverse transcriptase) cDNA was transfected into normal female lung fibroblast, TIG-1. After long-term-sub-cultivation of 74 individual clones selected for resistance to G418, we obtained 55 cultures with normal range of life span [75 PDL (population doubling level)], 16 cultures with extended life span (75-140 PDL). In addition, 3 immortal cell strains and unexpectedly, one ultra long-lived cell line (ULT-1) with life span of 166 PDL were established. IMT-1, one of the immortal cell strains was confirmed to maintain long telomere length, high telomerase activity and an extremely low level of p16INK4A. They also showed moderate p53 and p21CIP1 expression, keeping vigorous growth rate even at 450 PDL. High level of fibronectin and collagen 1α expression confirmed IMT-1 as normal fibroblasts, although one X chromosome had been lost. ULT-1, however, kept a near normal karyotypes and had shortening of telomere length, high expression of p16INK4A, moderate levels of senescence associated-β-galactosidase positive cells and decreased growth rate only after 150 PDs (population doublings), and finally reached senescence at 166 PDL with morphology of normal senescent fibroblasts. As resources of standard normal human cell, abundant vials of early and middle passages of ULT-1 have been stocked. The use of the cell line is discussed, focusing on isograft of artificial skin and screening of anti-aging or safe chemical agents.

  4. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  5. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan

    2011-01-01

    The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...... (Jurkat E6-1) were incubated with five selenium compounds representing inorganic as well as organic Se compounds in different oxidation states. Selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), methylseleninic acid (MeSeA), selenite and selenate in the concentration range 5-100 mu M were...... incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size...

  6. Perturbation of nucleo-cytoplasmic transport affects size of nucleus and nucleolus in human cells.

    Science.gov (United States)

    Ganguly, Abira; Bhattacharjee, Chumki; Bhave, Madhura; Kailaje, Vaishali; Jain, Bhawik K; Sengupta, Isha; Rangarajan, Annapoorni; Bhattacharyya, Dibyendu

    2016-03-01

    Size regulation of human cell nucleus and nucleolus are poorly understood subjects. 3D reconstruction of live image shows that the karyoplasmic ratio (KR) increases by 30-80% in transformed cell lines compared to their immortalized counterpart. The attenuation of nucleo-cytoplasmic transport causes the KR value to increase by 30-50% in immortalized cell lines. Nucleolus volumes are significantly increased in transformed cell lines and the attenuation of nucleo-cytoplasmic transport causes a significant increase in the nucleolus volume of immortalized cell lines. A cytosol and nuclear fraction swapping experiment emphasizes the potential role of unknown cytosolic factors in nuclear and nucleolar size regulation. © 2016 Federation of European Biochemical Societies.

  7. Derivation and characterization of a pig embryonic stem cell-derived exocrine pancreatic cell line

    Science.gov (United States)

    The establishment and initial characterization of a pig embryonic stem cell-derived pancreatic cell line, PICM-31, and a colony-cloned derivative cell line, PICM-31A, is described. The cell lines were propagated for several months at split ratios of 1:3 or 1:5 at each passage on STO feeder cells af...

  8. The differential role of HTRA1 in HPV-positive and HPV-negative cervical cell line proliferation

    International Nuclear Information System (INIS)

    Stuqui, Bruna; Conceição, André Luis Giacometti; Termini, Lara; Sichero, Laura; Villa, Luisa Lina; Rahal, Paula; Calmon, Marília de Freitas

    2016-01-01

    High-risk human papillomaviruses (HPVs) are strongly associated with the development of some malignancies. The E6 and E7 viral oncoproteins are the primary proteins responsible for cell homeostasis alteration and immortalization. Furthermore, the E6 protein from high-risk HPVs can interact with the PDZ (PSD-90/Dlg/ZO-1) domains of cellular proteins, triggering cell transformation. One protein that is associated with pathological conditions and has a PDZ domain is the protease HTRA1 (high temperature requirement 1). This protein is poorly expressed in some cancers, suggesting a tumor suppressor role. The aim of this study was to evaluate the effect of HTRA1 overexpression in HPV16-positive (CasKi) and HPV-negative (C33) cervical cell lines. The cells were transfected with a vector containing the HTRA1 ORF or an empty vector. HTRA1 overexpression was confirmed by qRT-PCR. The cells were subjected to cell proliferation, colony formation, apoptosis and cell cycle assays. C33 cells expressing HTRA1 grew significantly fewer colonies and showed less proliferation than cells without HTRA1 expression. In contrast, in the CasKi cells overexpressing HTRA1, there was an increase in the cell growth rate and in the colonies density compared to cells expressing low levels of HTRA1. An apoptosis assay showed that HTRA1 does not interfere with the apoptosis rate in these cells. A cell cycle immunofluorescence assay revealed more CasKi cells overexpressing HTRA1 in the S phase and more C33 HTRA1-transfected cells in the G0/G1 phase, suggesting that HTRA1 plays different roles in the cell cycle progression of these cells. HTRA1 overexpression prevents cell proliferation in the HPV-negative cell line and increases cell proliferation in the HPV-positive cell line. Although the E6/HTRA1 interaction has already been described in the literature, more studies are required to confirm whether the present functional findings are a result of this interaction

  9. Feeder-cell-independent culture of the pig-embryonic-stem-cell-derived exocrine pancreatic cell line, PICM-31

    Science.gov (United States)

    The adaptation to feeder-independent growth of a pig embryonic stem cell-derived pancreatic cell line is described. The parental PICM-31 cell line, previously characterized as an exocrine pancreas cell line, was colony-cloned two times in succession resulting in the subclonal cell line, PICM-31A1. P...

  10. Radiation response of haematopoietic cell lines of human origin

    International Nuclear Information System (INIS)

    Lehnert, S.; Rybka, W.B.; Suissa, S.; Giambattisto, D.

    1986-01-01

    Six human haematopoietic cell lines, five of leukaemic origin, including cells with myeloid, lymphoid and undifferentiated phenotype have been studied with respect to radiation response. The intrinsic radio-sensitivity of the cells varied widely, the D 0 s ranging from 0.53 to 1.39 Gy. Five of the cell lines showed some capacity to accumulate sublethal damage; in three of these, enhanced survival was demonstrated in split-dose experiments. One cell line (HL-60) was anomalous in that although little accumulation of sublethal damage was demonstrable, survival was enhanced by fractionation of the dose. Five of the six cell lines studied were of leukaemic origin. The results support the belief that, in contrast to the almost constant radiosensitivity of normal haematopoietic cell progenitors, leukaemic cell progenitors may show a wide range of radiosensitivities. (author)

  11. Human rhabdomyosarcoma cell lines for rhabdomyosarcoma research: Utility and pitfalls

    Directory of Open Access Journals (Sweden)

    Ashley R.P. Hinson

    2013-07-01

    Full Text Available Rhabdomyosarcoma (RMS is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis.

  12. Human Rhabdomyosarcoma Cell Lines for Rhabdomyosarcoma Research: Utility and Pitfalls

    Science.gov (United States)

    Hinson, Ashley R. P.; Jones, Rosanne; Crose, Lisa E. S.; Belyea, Brian C.; Barr, Frederic G.; Linardic, Corinne M.

    2013-01-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell-line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis. PMID:23882450

  13. Authentication of M14 melanoma cell line proves misidentification of MDA‐MB‐435 breast cancer cell line

    Science.gov (United States)

    Korch, Christopher; Hall, Erin M.; Dirks, Wilhelm G.; Ewing, Margaret; Faries, Mark; Varella‐Garcia, Marileila; Robinson, Steven; Storts, Douglas; Turner, Jacqueline A.; Wang, Ying; Burnett, Edward C.; Healy, Lyn; Kniss, Douglas; Neve, Richard M.; Nims, Raymond W.; Reid, Yvonne A.; Robinson, William A.

    2017-01-01

    A variety of analytical approaches have indicated that melanoma cell line UCLA‐SO‐M14 (M14) and breast carcinoma cell line MDA‐MB‐435 originate from a common donor. This indicates that at some point in the past, one of these cell lines became misidentified, meaning that it ceased to correspond to the reported donor and instead became falsely identified (through cross‐contamination or other means) as a cell line from a different donor. Initial studies concluded that MDA‐MB‐435 was the misidentified cell line and M14 was the authentic cell line, although contradictory evidence has been published, resulting in further confusion. To address this question, we obtained early samples of the melanoma cell line (M14), a lymphoblastoid cell line from the same donor (ML14), and donor serum preserved at the originator's institution. M14 samples were cryopreserved in December 1975, before MDA‐MB‐435 cells were established in culture. Through a series of molecular characterizations, including short tandem repeat (STR) profiling and cytogenetic analysis, we demonstrated that later samples of M14 and MDA‐MB‐435 correspond to samples of M14 frozen in 1975, to the lymphoblastoid cell line ML14, and to the melanoma donor's STR profile, sex and blood type. This work demonstrates conclusively that M14 is the authentic cell line and MDA‐MB‐435 is misidentified. With clear provenance information and authentication testing of early samples, it is possible to resolve debates regarding the origins of problematic cell lines that are widely used in cancer research. PMID:28940260

  14. Change alone is eternal, perpetual, immortal : pharmacological immortality in science fiction

    OpenAIRE

    Grech, Victor E.; Vassallo, Clare; Callus, Ivan

    2012-01-01

    Immortality is a common feature in science-fiction (SF). This paper lists the ways in which the pharmacological induction of immortality has been depicted in SF, and the resultant outcomes. Immortality or extreme longevity are often melded with infertility in order to eliminate the overpopulation issues that would inevitably arise. This is only one way in which theoretical utopias which afford life extension become dystopias, cautionary tales that admonish against hubris. In this fashion, SF ...

  15. Trichloroethylene toxicity in a human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, E.; McMillian, J. [Medical Univ. of Charleston South Carolina, SC (United States)

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  16. Derivation of the human embryonic stem cell line RCM1

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCM-1 was derived from a failed to fertilise egg undergoing parthenogenetic stimulation. The cell line shows normal pluripotency marker expression and differentiation to three germ layers in vitro and in vivo. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  17. Inward rectifier potassium channels in the HL-1 cardiomyocyte-derived cell line.

    Science.gov (United States)

    Goldoni, Dana; Zhao, YouYou; Green, Brian D; McDermott, Barbara J; Collins, Anthony

    2010-11-01

    HL-1 is a line of immortalized cells of cardiomyocyte origin that are a useful complement to native cardiomyocytes in studies of cardiac gene regulation. Several types of ion channel have been identified in these cells, but not the physiologically important inward rectifier K(+) channels. Our aim was to identify and characterize inward rectifier K(+) channels in HL-1 cells. External Ba(2+) (100 µM) inhibited 44 ± 0.05% (mean ± s.e.m., n = 11) of inward current in whole-cell patch-clamp recordings. The reversal potential of the Ba(2+)-sensitive current shifted with external [K(+)] as expected for K(+)-selective channels. The slope conductance of the inward Ba(2+)-sensitive current increased with external [K(+)]. The apparent Kd for Ba(2+) was voltage dependent, ranging from 15 µM at -150  mV to 148 µM at -75  mV in 120  mM external K(+). This current was insensitive to 10 µM glybenclamide. A component of whole-cell current was sensitive to 150 µM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), although it did not correspond to the Ba(2+)-sensitive component. The effect of external 1 mM Cs(+) was similar to that of Ba(2+). Polymerase chain reaction using HL-1 cDNA as template and primers specific for the cardiac inward rectifier K(ir)2.1 produced a fragment of the expected size that was confirmed to be K(ir)2.1 by DNA sequencing. In conclusion, HL-1 cells express a current that is characteristic of cardiac inward rectifier K(+) channels, and express K(ir)2.1 mRNA. This cell line may have use as a system for studying inward rectifier gene regulation in a cardiomyocyte phenotype. © 2010 Wiley-Liss, Inc.

  18. Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport

    Directory of Open Access Journals (Sweden)

    Szilvia Veszelka

    2018-05-01

    Full Text Available Cell culture-based blood-brain barrier (BBB models are useful tools for screening of CNS drug candidates. Cell sources for BBB models include primary brain endothelial cells or immortalized brain endothelial cell lines. Despite their well-known differences, epithelial cell lines are also used as surrogate models for testing neuropharmaceuticals. The aim of the present study was to compare the expression of selected BBB related genes including tight junction proteins, solute carriers (SLC, ABC transporters, metabolic enzymes and to describe the paracellular properties of nine different culture models. To establish a primary BBB model rat brain capillary endothelial cells were co-cultured with rat pericytes and astrocytes (EPA. As other BBB and surrogate models four brain endothelial cells lines, rat GP8 and RBE4 cells, and human hCMEC/D3 cells with or without lithium treatment (D3 and D3L, and four epithelial cell lines, native human intestinal Caco-2 and high P-glycoprotein expressing vinblastine-selected VB-Caco-2 cells, native MDCK and MDR1 transfected MDCK canine kidney cells were used. To test transporter functionality, the permeability of 12 molecules, glucopyranose, valproate, baclofen, gabapentin, probenecid, salicylate, rosuvastatin, pravastatin, atorvastatin, tacrine, donepezil, was also measured in the EPA and epithelial models. Among the junctional protein genes, the expression level of occludin was high in all models except the GP8 and RBE4 cells, and each model expressed a unique claudin pattern. Major BBB efflux (P-glycoprotein or ABCB1 and influx transporters (GLUT-1, LAT-1 were present in all models at mRNA levels. The transcript of BCRP (ABCG2 was not expressed in MDCK, GP8 and RBE4 cells. The absence of gene expression of important BBB efflux and influx transporters BCRP, MRP6, -9, MCT6, -8, PHT2, OATPs in one or both types of epithelial models suggests that Caco-2 or MDCK models are not suitable to test drug candidates which

  19. Comparison of steroid receptors from the androgen responsive DDT1 cell line and the nonresponsive HVP cell line.

    Science.gov (United States)

    Norris, J S; Kohler, P O

    1978-01-01

    Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.

  20. Identification of a novel rhabdovirus in Spodoptera frugiperda cell lines.

    Science.gov (United States)

    Ma, Hailun; Galvin, Teresa A; Glasner, Dustin R; Shaheduzzaman, Syed; Khan, Arifa S

    2014-06-01

    The Sf9 cell line, derived from Spodoptera frugiperda, is used as a cell substrate for biological products, and no viruses have been reported in this cell line after extensive testing. We used degenerate PCR assays and massively parallel sequencing (MPS) to identify a novel RNA virus belonging to the order Mononegavirales in Sf9 cells. Sequence analysis of the assembled virus genome showed the presence of five open reading frames (ORFs) corresponding to the genes for the N, P, M, G, and L proteins in other rhabdoviruses and an unknown ORF of 111 amino acids located between the G- and L-protein genes. BLAST searches indicated that the S. frugiperda rhabdovirus (Sf-rhabdovirus) was related in a limited region of the L-protein gene to Taastrup virus, a newly discovered member of the Mononegavirales from a leafhopper (Hemiptera), and also to plant rhabdoviruses, particularly in the genus Cytorhabdovirus. Phylogenetic analysis of sequences in the L-protein gene indicated that Sf-rhabdovirus is a novel virus that branched with Taastrup virus. Rhabdovirus morphology was confirmed by transmission electron microscopy of filtered supernatant samples from Sf9 cells. Infectivity studies indicated potential transient infection by Sf-rhabdovirus in other insect cell lines, but there was no evidence of entry or virus replication in human cell lines. Sf-rhabdovirus sequences were also found in the Sf21 parental cell line of Sf9 cells but not in other insect cell lines, such as BT1-TN-5B1-4 (Tn5; High Five) cells and Schneider's Drosophila line 2 [D.Mel.(2); SL2] cells, indicating a species-specific infection. The results indicate that conventional methods may be complemented by state-of-the-art technologies with extensive bioinformatics analysis for identification of novel viruses. The Spodoptera frugiperda Sf9 cell line is used as a cell substrate for the development and manufacture of biological products. Extensive testing has not previously identified any viruses in this cell

  1. Recombinant protein production from stable mammalian cell lines and pools.

    Science.gov (United States)

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Susceptibility of various cell lines to Neospora caninum tachyzoites cultivation

    Directory of Open Access Journals (Sweden)

    Khordadmehr, M.,

    2014-05-01

    Full Text Available Neospora caninum is a coccidian protozoan parasite which is a major cause of bovine abortions and neonatal mortality in cattle, sheep, goat and horse. Occasionally, cultured cells are used for isolation and multiplication of the agent in vitro with several purposes. In this study the tachyzoite yields of N. caninum were compared in various cell cultures as the host cell lines. Among the cell cultures tested, two presented good susceptibility to the agent: cell lines Vero and MA-104. SW742 and TLI (in vitro suspension culture of lymphoid cells infected with Theileria lestoquardi showed moderate sensitivity. No viable tachyzoite were detected in the culture of MDCK and McCoy cell lines. These results demonstrate that MA-104 and SW742 cells present adequate susceptibility to N. caninum compared to Vero cells, which have been largely used to multiply the parasite in vitro. Moreover, these have easy manipulation, fast multiplication and relatively low nutritional requirements. In addition, the result of this study showed that TLI cell line as a suspension cell culture is susceptible to Nc-1 tachyzoites infection and could be used as an alternative host cell line for tachyzoites culture in vitro studies.

  3. Natural killer cells for immunotherapy – Advantages of cell lines over blood NK cells

    Directory of Open Access Journals (Sweden)

    Hans eKlingemann

    2016-03-01

    Full Text Available Natural killer cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells form a patient’s blood since they represent only 10% of the lymphocytes. Especially, cancer patients are known to have dysfunctional NK cells. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T-cells. Establishing cell lines from donor blood NK cells have not been successful, in contrast to blood NK cells obtained from patients with a clonal NK cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. However, except for the NK-92 cell line none of the other six known cell lines has consistent and reproducibly high anti-tumor cytotoxicity, nor can they be easily genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through ADCC. NK-92 is also the only cell line product that has been widely given to patients with advanced cancer with demonstrated efficiency and minimal side effects.

  4. Specific locus mutagenesis of human mammary epithelial cells by ultraviolet radiation

    International Nuclear Information System (INIS)

    Eldridge, S.R.; Gould, M.N.

    1991-01-01

    Tissue and locus specificity of mutation induction was studied in human mammary epithelial cells (HMEC). Primary HMEC from normal tissue, and immortalized HMEC (184B5) derived from normal HMEC, were cultured under identical conditions and exposed to 10J/m 2 ultraviolet (UV) radiation (254 nm peak wavelength), which produced approximately 50% mean survival in all cell strains and lines tested. UV radiation was found to induce mutations at the Na + -K + ATPase locus as determined by ouabain-resistance in both normal and immortalized HMEC. Mutation frequencies measured in these cells following UV exposure were similar to those reported for human diploid fibroblasts. Mutation induction was investigated at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus in normal and immortalized HMEC. Induced mutations at the HPRT locus as determined by 6-thioguanine resistance in normal primary HMEC were not observed following UV radiation. Mutation induction was observed at this locus UV-exposed immortalized HMEC. (author)

  5. Application of DNA fingerprints for cell-line individualization.

    Science.gov (United States)

    Gilbert, D A; Reid, Y A; Gail, M H; Pee, D; White, C; Hay, R J; O'Brien, S J

    1990-09-01

    DNA fingerprints of 46 human cell lines were derived using minisatellite probes for hypervariable genetic loci. The incidence of 121 HaeIII DNA fragments among 33 cell lines derived from unrelated individuals was used to estimate allelic and genotypic frequencies for each fragment and for composite individual DNA fingerprints. We present a quantitative estimate of the extent of genetic difference between individuals, an estimate based on the percentage of restriction fragments at which they differ. The average percent difference (APD) among pairwise combinations from the population of 33 unrelated cell lines was 76.9%, compared with the APD in band sharing among cell lines derived from the same individual (less than or equal to 1.2%). Included in this survey were nine additional cell lines previously implicated as HeLa cell derivatives, and these lines were clearly confirmed as such by DNA fingerprints (APD less than or equal to 0.6%). On the basis of fragment frequencies in the tested cell line population, a simple genetic model was developed to estimate the frequencies of each DNA fingerprint in the population. The median incidence was 2.9 X 10(-17), and the range was 2.4 X 10(-21) to 6.6 X 10(-15). This value approximates the probability that a second cell line selected at random from unrelated individuals will match a given DNA fingerprint. Related calculations address the chance that any two DNA fingerprints would be identical among a large group of cell lines. This estimate is still very slight; for example, the chance of two or more common DNA fingerprints among 1 million distinct individuals is less than .001. The procedure provides a straightforward, easily interpreted, and statistically robust method for identification and individualization of human cells.

  6. Antiproliferative activity in tumor cell lines, antioxidant capacity and total phenolic, flavonoid and tannin contents of Myrciaria floribunda

    Directory of Open Access Journals (Sweden)

    LUIS A.C. TIETBOHL

    Full Text Available ABSTRACT Myrciaria floribunda (H. West ex Willd. O. Berg, Myrtaceae, is a native plant species of the Atlantic Rain Forest, from north to south of Brazil. The lyophilized ethyl acetate extract from the leaves of M. floribunda was investigated for its antiproliferative activity in tumor cell lines, antioxidant capacity and its total phenolic, flavonoid and tannin contents. Antiproliferative activity was tested in vitro against seven human cancer cells and against immortalized human skin keratinocytes line (HaCat, no cancer cell. Antioxidant activity was determined using 1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging and oxygen radical absorbing capacity (ORAC assays and total phenolic, flavonoid and tannin contents were determined by spectrophotometric techniques. Ethyl acetate extract of M. floribunda exhibited antiproliferative activity against cancer cell lines with total growth inhibition (TGI between 69.70 and 172.10 µg/mL. For HaCat cell, TGI value was 213.60 µg/mL. M. floribunda showed a strong antioxidant potential: EC50 of 45.89±0.42 µg/mL and 0.55±0.05 mmol TE/g for DPPH and ORAC, respectively. Total phenolic content was 0.23±0.013g gallic acid equivalents (GAE/g extract and exhibited 13.10±1.60% of tannins content. The content of flavonoid was 24.08±0.44% expressed as rutin equivalents. These results provide a direction for further researches about the antitumoral potential of M. floribunda.

  7. Immortalization of normal human embryonic fibroblasts by introduction of either the human papillomavirus type 16 E6 or E7 gene alone.

    Science.gov (United States)

    Yamamoto, Akito; Kumakura, Shin-ichi; Uchida, Minoru; Barrett, J Carl; Tsutsui, Takeki

    2003-09-01

    The ability of the human papillomavirus type 16 (HPV-16) E6 or E7 gene to induce immortalization of normal human embryonic fibroblast WHE-7 cells was examined. WHE-7 cells at 9 population doublings (PD) were infected with retrovirus vectors encoding either HPV-16 E6 or E7 alone or both E6 and E7 (E6/E7). One of 4 isolated clones carrying E6 alone became immortal and is currently at >445 PD. Four of 4 isolated clones carrying E7 alone escaped from crisis and are currently at >330 PD. Three of 5 isolated clones carrying E6/E7 were also immortalized and are currently at >268 PD. The immortal clone carrying E6 only and 2 of the 3 immortal clones carrying E6/E7 expressed a high level of E6 protein, and all the immortal clones carrying E7 alone and the other immortal clone carrying E6/E7 expressed a high level of E7 protein when compared to their mortal or precrisis clones. The immortal clones expressing a high level of E6 or E7 protein were positive for telomerase activity or an alternative mechanism of telomere maintenance, respectively, known as ALT (alternative lengthening of telomeres). All the mortal or precrisis clones were negative for both phenotypes. All the immortal clones exhibited abrogation of G1 arrest after DNA damage by X-ray irradiation. The expression of INK4a protein (p16(INK4a)) was undetectable in the E6-infected mortal and immortal clones, whereas Rb protein (pRb) was hyperphosphorylated only in the immortal clone. The p16(INK4a) protein was overexpressed in all the E7-infected immortal clones and their clones in the pre-crisis period as well as all the E6/E7-infected mortal and immortal clones, but the pRb expression was downregulated in all of these clones. These results demonstrate for the first time to our knowledge that HPV-16 E6 or E7 alone can induce immortalization of normal human embryonic fibroblasts. Inactivation of p16(INK4a)/pRb pathways in combination with activation of a telomere maintenance mechanism is suggested to be necessary for

  8. Radiation sensitivity of human lung cancer cell lines

    International Nuclear Information System (INIS)

    Carmichael, J.; Degraff, W.G.; Gamson, J.; Russo, G.; Mitchell, J.B.; Gazdar, A.F.; Minna, J.D.; Levitt, M.L.

    1989-01-01

    X-Ray survival curves were determined using a panel of 17 human lung cancer cell lines, with emphasis on non-small cell lung cancer (NSCLC). In contrast to classic small cell lung cancer (SCLC) cell lines, NSCLC cell lines were generally less sensitive to radiation as evidenced by higher radiation survival curve extrapolation numbers, surviving fraction values following a 2Gy dose (SF2) and the mean inactivation dose values (D) values. The spectrum of in vitro radiation responses observed was similar to that expected in clinical practice, although mesothelioma was unexpectedly sensitive in vitro. Differences in radiosensitivity were best distinguished by comparison of SF2 values. Some NSCLC lines were relatively sensitive, and in view of this demonstrable variability in radiation sensitivity, the SF2 value may be useful for in vitro predictive assay testing of clinical specimens. (author)

  9. Antiproliferative effect of isopentenylated coumarins on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Ogawa, K; Sugiura, M; Yano, M; Yoshizawa, Y; Ito, C; Furukawa, H

    2001-01-01

    33 coumarins, mainly the simple isopentenylated coumarins and derived pyrano- and furanocoumarins, were examined for their antiproliferative activity towards several cancer and normal human cell lines. The pyrano- and furanocoumarins showed strong activity against the cancer cell lines, whereas they had weak antiproliferative activity against the normal human cell lines. The decreasing rank order of potency was osthenone (10), clausarin (25), clausenidin (26), dentatin (24), nordentatin (23), imperatorin (29), seselin (27), xanthyletin (21), suberosin (17), phebalosin (8) and osthol (12). The structure-activity relationship established from the results revealed that the 1,1-dimethylallyl and isopentenyl groups have an important role for antiproliferative activity.

  10. A stromal myoid cell line provokes thymic erythropoiesis between ...

    African Journals Online (AJOL)

    Background: The thymus provides an optimal cellular and humoral microenvironment for cell line committed differentiation of haematopoietic stem cells. The immigration process requires the secretion of at least one peptide called thymotaxine by cells of the reticulo-epithelial (RE) network of the thymic stromal cellular ...

  11. Cytotoxicity against MCF-7 breast cancer cell line and interaction ...

    African Journals Online (AJOL)

    N6-furfuryladenine (kinetin) is a cytokinin growth factor with several biological effects observed in human cells and fruit flies. Kinetin exists naturally in the DNA of almost all organisms tested so far, including human cells and various plants. The cytotoxicity effect of kinetin on MCF-7 breast cancer cell lines was measured by ...

  12. Fanconi anemia genes act to suppress a cross-linker-inducible p53-independent apoptosis pathway in lymphoblastoid cell lines

    NARCIS (Netherlands)

    Kruyt, F. A.; Dijkmans, L. M.; van den Berg, T. K.; Joenje, H.

    1996-01-01

    Hypersensitivity to cross-linking agents such as mitomycin C (MMC) is characteristic of cells from patients suffering from the inherited bone marrow failure syndrome. Fanconi anemia (FA). Here, we link MMC hypersensitivity of Epstein-Barr virus (EBV)-immortalized FA lymphoblasts to a high

  13. Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite [corrected] extensive proliferation

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Haack-Sørensen, Mandana; Burns, Jorge S

    2005-01-01

    Human bone marrow mesenchymal stem cells (hMSC) represent a population of stem cells that are capable of differentiation into multiple lineages. However, these cells exhibit senescence-associated growth arrest and phenotypic changes during long-term in vitro culture. We have recently demonstrated...

  14. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  15. Global Conservation of Protein Status between Cell Lines and Xenografts

    Directory of Open Access Journals (Sweden)

    Julian Biau

    2016-08-01

    Full Text Available Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery.

  16. Quantification of residual host cell DNA in adenoviral vectors produced on PER.C6 cells

    NARCIS (Netherlands)

    Gijsbers, Linda; Koel, Björn; Weggeman, Miranda; Goudsmit, Jaap; Havenga, Menzo; Marzio, Giuseppe

    2005-01-01

    Recombinant adenoviral vectors for gene therapy and vaccination are routinely prepared on cultures of immortalized cells, allowing the production of vector batches of high titer and consistent quality. Quantification of residual DNA from the producing cell line is part of the purity tests for

  17. IK channel activation increases tumor growth and induces differential behavioral responses in two breast epithelial cell lines.

    Science.gov (United States)

    Thurber, Amy E; Nelson, Michaela; Frost, Crystal L; Levin, Michael; Brackenbury, William J; Kaplan, David L

    2017-06-27

    Many potassium channel families are over-expressed in cancer, but their mechanistic role in disease progression is poorly understood. Potassium channels modulate membrane potential (Vmem) and thereby influence calcium ion dynamics and other voltage-sensitive signaling mechanisms, potentially acting as transcriptional regulators. This study investigated the differential response to over-expression and activation of a cancer-associated potassium channel, the intermediate conductance calcium-activated potassium channel (IK), on aggressive behaviors in mammary epithelial and breast cancer cell lines. IK was over-expressed in the highly metastatic breast cancer cell line MDA-MB-231 and the spontaneously immortalized breast epithelial cell line MCF-10A, and the effect on cancer-associated behaviors was assessed. IK over-expression increased primary tumor growth and metastasis of MDA-MB-231 in orthotopic xenografts, demonstrating for the first time in any cancer type that increased IK is sufficient to promote cancer aggression. The primary tumors had similar vascularization as determined by CD31 staining and similar histological characteristics. Interestingly, despite the increased in vivo growth and metastasis, neither IK over-expression nor activation with agonist had a significant effect on MDA-MB-231 proliferation, invasion, or migration in vitro. In contrast, IK decreased MCF-10A proliferation and invasion through Matrigel but had no effect on migration in a scratch-wound assay. We conclude that IK activity is sufficient to promote cell aggression in vivo. Our data provide novel evidence supporting IK and downstream signaling networks as potential targets for cancer therapies.

  18. Induction of apoptosis by opium in some tumor cell lines.

    Science.gov (United States)

    Khaleghi, M; Farsinejad, A; Dabiri, S; Asadikaram, G

    2016-09-30

    The current study is aimed at investigation of the opium effects on the apoptosis of different cell lines in culture medium and compares such effects with one another. The study is carried out on over 8 cell lines (AA8, AGS, Hela, HepG2, MCF7, N2a, PC12, WEHI). A 2.86 x 10-4 g/ml opium concentration was prepared and added to the culture medium of the cell lines for 48 hours. Cytotoxicity was tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic effect of opium on the cell lines was analyzed by Annexin-PI test. Opium with concentration of 2.86 x 10-4 g/ml in 48 hours significantly induces apoptosis in certain cell lines (i.e. AA8, N2a, WEHI), apoptosis and necrosis in some others (i.e. Hela, HepG2, MCF7, and PC12), and also solely necrosis in the AGS cell line. One could infer that the usage of opium with different levels in different tissues leads to certain disorders in some tissues and may have therapeutic effects under distinctive conditions (i.e. unchecked growth of cells) as confirmed by the results.

  19. Lining cells on normal human vertebral bone surfaces

    International Nuclear Information System (INIS)

    Henning, C.B.; Lloyd, E.L.

    1982-01-01

    Thoracic vertebrae from two individuals with no bone disease were studied with the electron microscope to determine cell morphology in relation to bone mineral. The work was undertaken to determine if cell morphology or spatial relationships between the bone lining cells and bone mineral could account for the relative infrequency of bone tumors which arise at this site following radium intake, when compared with other sites, such as the head of the femur. Cells lining the vertebral mineral were found to be generally rounded in appearance with varied numbers of cytoplasmic granules, and they appeared to have a high density per unit of surface area. These features contrasted with the single layer of flattened cells characteristic of the bone lining cells of the femur. A tentative discussion of the reasons for the relative infrequency of tumors in the vertebrae following radium acquisition is presented

  20. DNA fingerprinting of the NCI-60 cell line panel.

    Science.gov (United States)

    Lorenzi, Philip L; Reinhold, William C; Varma, Sudhir; Hutchinson, Amy A; Pommier, Yves; Chanock, Stephen J; Weinstein, John N

    2009-04-01

    The National Cancer Institute's NCI-60 cell line panel, the most extensively characterized set of cells in existence and a public resource, is frequently used as a screening tool for drug discovery. Because many laboratories around the world rely on data from the NCI-60 cells, confirmation of their genetic identities represents an essential step in validating results from them. Given the consequences of cell line contamination or misidentification, quality control measures should routinely include DNA fingerprinting. We have, therefore, used standard DNA microsatellite short tandem repeats to profile the NCI-60, and the resulting DNA fingerprints are provided here as a reference. Consistent with previous reports, the fingerprints suggest that several NCI-60 lines have common origins: the melanoma lines MDA-MB-435, MDA-N, and M14; the central nervous system lines U251 and SNB-19; the ovarian lines OVCAR-8 and OVCAR-8/ADR (also called NCI/ADR); and the prostate lines DU-145, DU-145 (ATCC), and RC0.1. Those lines also show that the ability to connect two fingerprints to the same origin is not affected by stable transfection or by the development of multidrug resistance. As expected, DNA fingerprints were not able to distinguish different tissues-of-origin. The fingerprints serve principally as a barcodes.

  1. Application of DNA fingerprints for cell-line individualization.

    OpenAIRE

    Gilbert, D A; Reid, Y A; Gail, M H; Pee, D; White, C; Hay, R J; O'Brien, S J

    1990-01-01

    DNA fingerprints of 46 human cell lines were derived using minisatellite probes for hypervariable genetic loci. The incidence of 121 HaeIII DNA fragments among 33 cell lines derived from unrelated individuals was used to estimate allelic and genotypic frequencies for each fragment and for composite individual DNA fingerprints. We present a quantitative estimate of the extent of genetic difference between individuals, an estimate based on the percentage of restriction fragments at which they d...

  2. Establishment of cell lines from adult T-cell leukemia cells dependent on negatively charged polymers.

    Science.gov (United States)

    Kagami, Yoshitoyo; Uchiyama, Susumu; Kato, Harumi; Okada, Yasutaka; Seto, Masao; Kinoshita, Tomohiro

    2017-07-05

    Growing adult T-cell leukemia/lymphoma (ATLL) cells in vitro is difficult. Here, we examined the effects of static electricity in the culture medium on the proliferation of ATLL cells. Six out of 10 ATLL cells did not proliferate in vitro and thus had to be cultured in a medium containing negatively charged polymers. In the presence of poly-γ-glutamic acid (PGA) or chondroitin sulfate (CDR), cell lines (HKOX3-PGA, HKOX3-CDR) were established from the same single ATLL case using interleukin (IL)-2, IL-4, and feeder cells expressing OX40L (OX40L + HK). Dextran sulfate inhibited growth in both HKOX3 cell lines. Both PGA and OX40L + HK were indispensable for HKOX3-PGA growth, but HKOX3-CDR could proliferate in the presence of CDR or OX40L + HK alone. Thus, the specific action of each negatively charged polymer promoted the growth of specific ATLL cells in vitro.

  3. Establishment of Myotis myotis cell lines--model for investigation of host-pathogen interaction in a natural host for emerging viruses.

    Directory of Open Access Journals (Sweden)

    Xiaocui He

    Full Text Available Bats are found to be the natural reservoirs for many emerging viruses. In most cases, severe clinical signs caused by such virus infections are normally not seen in bats. This indicates differences in the virus-host interactions and underlines the necessity to develop natural host related models to study these phenomena. Due to the strict protection of European bat species, immortalized cell lines are the only alternative to investigate the innate anti-virus immune mechanisms. Here, we report about the establishment and functional characterization of Myotis myotis derived cell lines from different tissues: brain (MmBr, tonsil (MmTo, peritoneal cavity (MmPca, nasal epithelium (MmNep and nervus olfactorius (MmNol after immortalization by SV 40 large T antigen. The usefulness of these cell lines to study antiviral responses has been confirmed by analysis of their susceptibility to lyssavirus infection and the mRNA patterns of immune-relevant genes after poly I:C stimulation. Performed experiments indicated varying susceptibility to lyssavirus infection with MmBr being considerably less susceptible than the other cell lines. Further investigation demonstrated a strong activation of interferon mediated antiviral response in MmBr contributing to its resistance. The pattern recognition receptors: RIG-I and MDA5 were highly up-regulated during rabies virus infection in MmBr, suggesting their involvement in promotion of antiviral responses. The presence of CD14 and CD68 in MmBr suggested MmBr cells are microglia-like cells which play a key role in host defense against infections in the central nervous system (CNS. Thus the expression pattern of MmBr combined with the observed limitation of lyssavirus replication underpin a protective mechanism of the CNS controlling the lyssavirus infection. Overall, the established cell lines are important tools to analyze antiviral innate immunity in M. myotis against neurotropic virus infections and present a valuable

  4. Establishment of Myotis myotis cell lines--model for investigation of host-pathogen interaction in a natural host for emerging viruses.

    Science.gov (United States)

    He, Xiaocui; Korytář, Tomáš; Zhu, Yaqing; Pikula, Jiří; Bandouchova, Hana; Zukal, Jan; Köllner, Bernd

    2014-01-01

    Bats are found to be the natural reservoirs for many emerging viruses. In most cases, severe clinical signs caused by such virus infections are normally not seen in bats. This indicates differences in the virus-host interactions and underlines the necessity to develop natural host related models to study these phenomena. Due to the strict protection of European bat species, immortalized cell lines are the only alternative to investigate the innate anti-virus immune mechanisms. Here, we report about the establishment and functional characterization of Myotis myotis derived cell lines from different tissues: brain (MmBr), tonsil (MmTo), peritoneal cavity (MmPca), nasal epithelium (MmNep) and nervus olfactorius (MmNol) after immortalization by SV 40 large T antigen. The usefulness of these cell lines to study antiviral responses has been confirmed by analysis of their susceptibility to lyssavirus infection and the mRNA patterns of immune-relevant genes after poly I:C stimulation. Performed experiments indicated varying susceptibility to lyssavirus infection with MmBr being considerably less susceptible than the other cell lines. Further investigation demonstrated a strong activation of interferon mediated antiviral response in MmBr contributing to its resistance. The pattern recognition receptors: RIG-I and MDA5 were highly up-regulated during rabies virus infection in MmBr, suggesting their involvement in promotion of antiviral responses. The presence of CD14 and CD68 in MmBr suggested MmBr cells are microglia-like cells which play a key role in host defense against infections in the central nervous system (CNS). Thus the expression pattern of MmBr combined with the observed limitation of lyssavirus replication underpin a protective mechanism of the CNS controlling the lyssavirus infection. Overall, the established cell lines are important tools to analyze antiviral innate immunity in M. myotis against neurotropic virus infections and present a valuable tool for a

  5. Establishment of Myotis myotis Cell Lines - Model for Investigation of Host-Pathogen Interaction in a Natural Host for Emerging Viruses

    Science.gov (United States)

    He, Xiaocui; Korytář, Tomáš; Zhu, Yaqing; Pikula, Jiří; Bandouchova, Hana; Zukal, Jan; Köllner, Bernd

    2014-01-01

    Bats are found to be the natural reservoirs for many emerging viruses. In most cases, severe clinical signs caused by such virus infections are normally not seen in bats. This indicates differences in the virus-host interactions and underlines the necessity to develop natural host related models to study these phenomena. Due to the strict protection of European bat species, immortalized cell lines are the only alternative to investigate the innate anti-virus immune mechanisms. Here, we report about the establishment and functional characterization of Myotis myotis derived cell lines from different tissues: brain (MmBr), tonsil (MmTo), peritoneal cavity (MmPca), nasal epithelium (MmNep) and nervus olfactorius (MmNol) after immortalization by SV 40 large T antigen. The usefulness of these cell lines to study antiviral responses has been confirmed by analysis of their susceptibility to lyssavirus infection and the mRNA patterns of immune-relevant genes after poly I:C stimulation. Performed experiments indicated varying susceptibility to lyssavirus infection with MmBr being considerably less susceptible than the other cell lines. Further investigation demonstrated a strong activation of interferon mediated antiviral response in MmBr contributing to its resistance. The pattern recognition receptors: RIG-I and MDA5 were highly up-regulated during rabies virus infection in MmBr, suggesting their involvement in promotion of antiviral responses. The presence of CD14 and CD68 in MmBr suggested MmBr cells are microglia-like cells which play a key role in host defense against infections in the central nervous system (CNS). Thus the expression pattern of MmBr combined with the observed limitation of lyssavirus replication underpin a protective mechanism of the CNS controlling the lyssavirus infection. Overall, the established cell lines are important tools to analyze antiviral innate immunity in M. myotis against neurotropic virus infections and present a valuable tool for a

  6. Isolation of two chloroethylnitrosourea-sensitive Chinese hamster cell lines

    International Nuclear Information System (INIS)

    Hata, H.; Numata, M.; Tohda, H.; Yasui, A.; Oikawa, A.

    1991-01-01

    1-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-3-(2-chloroethyl)-3- nitrosourea hydrochloride (ACNU), a cancer chemotherapeutic bifunctional alkylating agent, causes chloroethylation of DNA and subsequent DNA strand cross-linking through an ethylene bridge. We isolated and characterized two ACNU-sensitive mutants from mutagenized Chinese hamster ovary cells and found them to be new drug-sensitive recessive Chinese hamster mutants. Both mutants were sensitive to various monofunctional alkylating agents in a way similar to that of the parental cell lines CHO9. One mutant (UVS1) was cross-sensitive to UV and complemented the UV sensitivity of all Chinese hamster cell lines of 7 established complementation groups. Since UV-induced unscheduled DNA synthesis was very low, a new locus related to excision repair is thought to be defective in this cell line. Another ACNU-sensitive mutant, CNU1, was slightly more sensitive to UV than the parent cell line. CNU1 was cross-sensitive to 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea and slightly more sensitive to mitomycin C. No increased accumulation of ACNU and a low level of UV-induced unscheduled DNA synthesis in this cell as compared with the parental cell line suggest that there is abnormality in a repair response of this mutant cell to some types of DNA cross-links

  7. In vitro Rb-1 gene transfer to retinoblastoma cell lines

    International Nuclear Information System (INIS)

    Choi, Sang Wook; Ham, Yong Hoh; Kim, Mee Heui

    1994-04-01

    After transfection of Rb-vector to packaging cell line (CRIP) by Ca-P precipitation method, we could select nineteen colonies of G-418 resistant clone by ring cloning. Each colony was transduced to NIH3T3 cells to select the one which produces high titer virus. After NIH3T3 cells transduction, we could get 28 colony counts for the high, 127 for the middle, and 6 for the low viral titer. With the supernatant of the high viral titer colony (CRIPRb 2-5). We transduct retinoblastoma cell lines. 5 figs, 11 refs. (Author)

  8. Immortality in view of Maimonides and Spinoza

    Directory of Open Access Journals (Sweden)

    Morteza Shajari

    2014-12-01

    Full Text Available Desire for immortality can be seen as the essential natural impulse. Therefore, different religions and thinkers have attempted to see the issue from different viewpoints. The great Jewish philosopher. Maimonides, due to deep fixation to Judaism, has tried to express their issues to be consistent with the Bible and his own community believes. He, in his discussion of resurrection, believed to three basic steps: The Messiah, the resurrection, and the world hereafter. His standpoint of eternity is dedicated to the hereafter. And we can be immortalized only by acting and teachings in accordance with the Bible and righteousness. Like Maimonides, Spinoza – the other Jewish philosopher - considered the immortality as Ultimate bliss through which the “immutable and eternal love of God" can be achieved. In his opinion, a person reaches this stage, when the lusts and emotions can reasonably be overcome, and also, when the power and anger and contempt and disregard others will respond with love and dignity. Thus, a man can be reached its proper perfection and immortality is reached. The difference between these two philosophers is that Maimonides believes through "actual intellect" -that is Emanation of the active intellect- can be immortalized but, for Spinoza, eternity can be reached through the adequate Ideas.

  9. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to generate an apical membrane domain that serves as a protective barrier for the epithelial sheet....

  10. Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations

    Czech Academy of Sciences Publication Activity Database

    Garbe, J.C.; Vrba, Lukáš; Sputova, K.; Fuchs, L.; Novák, Petr; Brothman, A.R.; Jackson, M.; Chin, K.; LaBarge, M.A.; Watts, G.; Futscher, B. W.; Stampfer, M.R.

    2014-01-01

    Roč. 13, č. 21 (2014), s. 3423-3435 ISSN 1538-4101 Institutional support: RVO:60077344 Keywords : genomic instability * human mammary epithelial cells * telomerase Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 4.565, year: 2014

  11. Effect of failures and repairs on multiple cell production lines

    Energy Technology Data Exchange (ETDEWEB)

    Legato, P.; Bobbio, A.; Roberti, L.

    1989-01-01

    This paper examines a production line composed of multiple stages, or cells, which are passed in sequential order to arrive to the final product. Two possible coordination disciplines are considered, namely: the classical tandem arrangement of sequential working centers with input buffer and the kanban scheme, considered the Japanese shop floor realization of the Just-In-Time (JIT) manifacturing approach. The production line is modelled and analysed by means of Stochastic Petri Nets (SPN). Finally an analysis is made of the possibility that the working cells can incur failure/repair cycles perturbing the production flow of the line and thus reduce performance indices.

  12. Selection of radioresistant cells by vitamin A deficiency in a small cell lung cancer cell line

    International Nuclear Information System (INIS)

    Terasaki, Takeo; Shimosato, Yukio; Wada, Makio; Yokota, Jun; Terada, Masaaki

    1990-01-01

    Radiation sensitivity of a human small cell lung cancer cell line, Lu-134-B cells, cultured in serum-supplemented medium and of cells transferred to and cultured in delipidized serum-supplemented (vitamin A-deficient) medium was studied. The cells cultured in serum-supplemented medium showed the phenotype of classic small cell lung cancer sensitive to radiation, while cells transferred to delipidized serum-supplemented medium showed partial squamous cell differentiation and became resistant to radiation. These results suggest that some small cell lung cancer cells in vitro change their morphology and radiosensitivity depending on the culture conditions. The change in radiosensitivity was reproducible, and was not reversible by culture of the radioresistant cells in delipidized serum-supplemented medium with addition of retinoic acid (vitamin A-sufficient medium) for two months, although squamous cells disappeared. Acquisition of radioresistancy was considered to occur as the result of clonal selective growth in delipidized medium of a minor cell population in the original cell culture, based on a study of chromosome number. It was also found that there was no association of myc-family oncogenes with the changes of radiosensitivity in this cell line. (author)

  13. Solid Oxide Fuel Cell Systems PVL Line

    International Nuclear Information System (INIS)

    Shearer, Susan; Rush, Gregory

    2012-01-01

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability to

  14. Overexpression of microRNA miR-30a or miR-191 in A549 lung cancer or BEAS-2B normal lung cell lines does not alter phenotype.

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Patnaik

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are small, noncoding RNAs (ribonucleic acids that regulate translation. Several miRNAs have been shown to be altered in whole cancer tissue compared to normal tissue when quantified by microarray. Based on previous such evidence of differential expression, we chose to study the functional significance of miRNAs miR-30a and -191 alterations in human lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: The functional significance of miRNAs miR-30a and -191 was studied by creating stable transfectants of the lung adenocarcinoma cell line A549 and the immortalized bronchial epithelial cell line BEAS-2B with modest overexpression of miR-30a or -191 using a lentiviral system. When compared to the corresponding controls, both cell lines overexpressing miR-30a or -191 do not demonstrate any significant changes in cell cycle distribution, cell proliferation, adherent colony formation, soft agar colony formation, xenograft formation in a subcutaneous SCID mouse model, and drug sensitivity to doxorubicin and cisplatin. There is a modest increase in cell migration in cell lines overexpressing miR-30a compared to their controls. CONCLUSIONS/SIGNIFICANCE: Overexpression of miR-30a or -191 does not lead to an alteration in cell cycle, proliferation, xenograft formation, and chemosensitivity of A549 and BEAS-2B cell lines. Using microarray data from whole tumors to select specific miRNAs for functional study may be a suboptimal strategy.

  15. Proteomic analysis of cell lines to identify the irinotecan resistance ...

    Indian Academy of Sciences (India)

    MADHU

    was selected from the wild-type LoVo cell line by chronic exposure to irinotecan ... dose–effect curves of anticancer drugs were drawn on semilogarithm .... alcohol metabolites daunorubicinol (Forrest and Gonzalez. 2000; Mordente et al. ..... Chen L, Huang C and Wei Y 2007 Proteomic analysis of liver cancer cells treated ...

  16. Novel human multiple myeloma cell line UHKT-893

    Czech Academy of Sciences Publication Activity Database

    Uherková, L.; Vančurová, I.; Vyhlídalová, I.; Pleschnerová, M.; Špička, I.; Mihalová, R.; Březinová, J.; Hodný, Zdeněk; Čermáková, K.; Polanská, V.; Marinov, I.; Jedelský, P.L.; Kuželová, K.; Stöckbauer, P.

    2013-01-01

    Roč. 37, č. 3 (2013), s. 320-326 ISSN 0145-2126 Institutional support: RVO:68378050 Keywords : human myeloma cell line * human multiple myeloma * plasma cell * IL-6 dependence * immunoglobulin * free light chain Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.692, year: 2013

  17. Frequency and distribution of Notch mutations in tumor cell lines

    International Nuclear Information System (INIS)

    Mutvei, Anders Peter; Fredlund, Erik; Lendahl, Urban

    2015-01-01

    Deregulated Notch signaling is linked to a variety of tumors and it is therefore important to learn more about the frequency and distribution of Notch mutations in a tumor context. In this report, we use data from the recently developed Cancer Cell Line Encyclopedia to assess the frequency and distribution of Notch mutations in a large panel of cancer cell lines in silico. Our results show that the mutation frequency of Notch receptor and ligand genes is at par with that for established oncogenes and higher than for a set of house-keeping genes. Mutations were found across all four Notch receptor genes, but with notable differences between protein domains, mutations were for example more prevalent in the regions encoding the LNR and PEST domains in the Notch intracellular domain. Furthermore, an in silico estimation of functional impact showed that deleterious mutations cluster to the ligand-binding and the intracellular domains of NOTCH1. For most cell line groups, the mutation frequency of Notch genes is higher than in associated primary tumors. Our results shed new light on the spectrum of Notch mutations after in vitro culturing of tumor cells. The higher mutation frequency in tumor cell lines indicates that Notch mutations are associated with a growth advantage in vitro, and thus may be considered to be driver mutations in a tumor cell line context. The online version of this article (doi:10.1186/s12885-015-1278-x) contains supplementary material, which is available to authorized users

  18. Clonogenic cell line survival of a human liver cancer cell line SMMC-7721 after carbon ion irradiation with different LET

    International Nuclear Information System (INIS)

    Lei Suwen; Su Xu; Wang Jifang; Li Wenjian

    2003-01-01

    Objective: To investigate the survival fraction of a human liver cancer cell line SMMC-7721 following irradiation with carbon ions with different LET. Methods: cells of the human liver cancer cell line SMMC-7721 were irradiated with carbon ions (LET=30 and 70 keV/μm). The survival fraction was determined with clonogenic assay after 9 days incubation in a 5% CO 2 incubator at 37 degree C. Results: When the survival fractions of 70 keV/μm were D s = 0.1 and D s=0.01 absorption dose were 2.94 and 5.88 Gy respectively, and those of 30 keV/μm were 4.00 and 8.00 Gy respectively. Conclusion: For the SMMC-7721 cell line, 70 keV/μm is more effective for cell killing than 30 keV/μm

  19. Guidelines for the use of cell lines in biomedical research.

    Science.gov (United States)

    Geraghty, R J; Capes-Davis, A; Davis, J M; Downward, J; Freshney, R I; Knezevic, I; Lovell-Badge, R; Masters, J R W; Meredith, J; Stacey, G N; Thraves, P; Vias, M

    2014-09-09

    Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise.

  20. Bifenthrin activates homotypic aggregation in human T-cell lines.

    Science.gov (United States)

    Hoffman, Nataly; Tran, Van; Daniyan, Anthony; Ojugbele, Olutosin; Pryor, Stephen C; Bonventre, Josephine A; Flynn, Katherine; Weeks, Benjamin S

    2006-03-01

    Here, we addressed the concern that, despite the lack of overt toxicity, exposure to low levels of the common household pyrethroid pesticide, bifenthrin, could cause harm to the immune system. To do this, we measure the effect of bifenthrin on phytohemagglutinin (PHA) activation of homotypic aggregation in human T-cell lines. The human CD4+ H9, and Jurkat cell lines and the human promonocyte U937 cell line, were exposed to varying concentrations of bifenthrin. Cell viability was determined using the AlmarBlue Toxicity Assay. Concentrations of bifenthrin which did not reduce cell viability were determined and these concentrations were tested for the effect of bifenthrin on PHA-mediated homotypic aggregation. Blocking antibodies to ICAM and LFA-1 were used to disrupt aggregation and a nonspecific IgG was used as a control. Bifenthrin was found to be nontoxic at concentrations ranging from 10(-4) to 10(-13) M. Bifenthrin did not inhibit PHA induced cell aggregation in all cell lines tested. However, at 10(-4) M, bifenthrin to form aggregates stimulated homotypic aggregation in the H9 and Jurkat T-cell lines. The bifenthrin-induced aggregate formation, like that seen with PHA, was blocked by treating the cells with antibodies to either LFA-1 or ICAM. The results here show that bifenthrin activates T-cell function by stimulating ICAM/LFA-1 mediated homotypic aggregation. This data suggests that exposure to bifenthrin, even at "acceptable" limits, can increase the risk for and frequency of inflammatory responses and diseases such as asthma.

  1. Establishment, immortalisation and characterisation of pteropid bat cell lines.

    Directory of Open Access Journals (Sweden)

    Gary Crameri

    Full Text Available BACKGROUND: Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. METHODOLOGY/FINDINGS: Black flying foxes (Pteropus alecto were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. CONCLUSIONS/SIGNIFICANCE: The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study.

  2. Endothelial Induced EMT in Breast Epithelial Cells with Stem Cell Properties

    OpenAIRE

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla; Fridriksdottir, Agla J. R.; Ringnér, Markus; Villadsen, Rene; Borg, Ake; Agnarsson, Bjarni A.; Petersen, Ole William; Magnusson, Magnus K.; Gudjonsson, Thorarinn

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell proper...

  3. Isolation of a primate embryonic stem cell line.

    OpenAIRE

    Thomson, J A; Kalishman, J; Golos, T G; Durning, M; Harris, C P; Becker, R A; Hearn, J P

    1995-01-01

    Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. Here we report the derivation of a cloned cell line (R278.5) from a rhesus monkey blastocyst that remains undifferentiated in continuous passage for > 1 year, maintains a normal XY karyotype, and expresses the cell surface markers (alkaline phosphatase, stage-specific embryonic antigen 3, st...

  4. Sensory hair cell regeneration in the zebrafish lateral line.

    Science.gov (United States)

    Lush, Mark E; Piotrowski, Tatjana

    2014-10-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. Copyright © 2014 Wiley Periodicals, Inc.

  5. Nestin expression in the cell lines derived from glioblastoma multiforme

    International Nuclear Information System (INIS)

    Veselska, Renata; Kuglik, Petr; Cejpek, Pavel; Svachova, Hana; Neradil, Jakub; Loja, Tomas; Relichova, Jirina

    2006-01-01

    Nestin is a protein belonging to class VI of intermediate filaments that is produced in stem/progenitor cells in the mammalian CNS during development and is consecutively replaced by other intermediate filament proteins (neurofilaments, GFAP). Down-regulated nestin may be re-expressed in the adult organism under certain pathological conditions (brain injury, ischemia, inflammation, neoplastic transformation). Our work focused on a detailed study of the nestin cytoskeleton in cell lines derived from glioblastoma multiforme, because re-expression of nestin together with down-regulation of GFAP has been previously reported in this type of brain tumor. Two cell lines were derived from the tumor tissue of patients treated for glioblastoma multiforme. Nestin and other cytoskeletal proteins were visualized using imunocytochemical methods: indirect immunofluorescence and immunogold-labelling. Using epifluorescence and confocal microscopy, we described the morphology of nestin-positive intermediate filaments in glioblastoma cells of both primary cultures and the derived cell lines, as well as the reorganization of nestin during mitosis. Our most important result came through transmission electron microscopy and provided clear evidence that nestin is present in the cell nucleus. Detailed information concerning the pattern of the nestin cytoskeleton in glioblastoma cell lines and especially the demonstration of nestin in the nucleus represent an important background for further studies of nestin re-expression in relationship to tumor malignancy and invasive potential

  6. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    Science.gov (United States)

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019

  7. Phenotype and Functional Features of Human Telomerase Reverse Transcriptase Immortalized Human Airway Smooth Muscle Cells from Asthmatic and Non-Asthmatic Donors

    NARCIS (Netherlands)

    Burgess, J. K.; Ketheson, A.; Faiz, A.; Rempel, K. A. Limbert; Oliver, B. G.; Ward, J. P. T.; Halayko, A. J.

    2018-01-01

    Asthma is an obstructive respiratory disease characterised by chronic inflammation with airway hyperresponsiveness. In asthmatic airways, there is an increase in airway smooth muscle (ASM) cell bulk, which differs from non-asthmatic ASM in characteristics. This study aimed to assess the usefulness

  8. Glycoproteins and sialyl transferase of human B lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Lui, S.W.L.; Ng, M.H.

    1980-01-01

    We used two radiolabeling methods to study glycoproteins on the surface of lymphoblastoid cells. One of the methods affects tritiation of residues which are oxidized with galactose oxidase and the other causes tritiation of neuraminic acid residues. This approach was shown to allow a better resolution of cell surface glycoproteins than if either method were used alone. Glycoproteins of B 1 - 19 cells which harbor the Epstein-Barr virus genomes were compared with those of its parental cell line, BJAB, which does not harbor the viral genomes. These studies did not reveal a unique viral protein. A 28,000 mol. wt. glycoprotein was found to be the most prominent neuraminic acidlabeled product of B 1 - 19 cells and also of the two other cell lines, Raji and Ly38, which harbor the EBV genomes. A similar molecular weight species from BJAB cells identified by galactose oxidase labeling might be deficient in neuraminic acid residues as it was poorly labeled by the periodate oxidation method. The neuraminic acid content and level of sialyl transferase of BJAB cells were found to be lower than those of the other cell lines studied. (auth.)

  9. Human papillomavirus type 59 immortalized keratinocytes express late viral proteins and infectious virus after calcium stimulation

    International Nuclear Information System (INIS)

    Lehr, Elizabeth E.; Qadadri, Brahim; Brown, Calla R.; Brown, Darron R.

    2003-01-01

    Human papillomavirus type 59 (HPV 59) is an oncogenic type related to HPV 18. HPV 59 was recently propagated in the athymic mouse xenograft system. A continuous keratinocyte cell line infected with HPV 59 was created from a foreskin xenograft grown in an athymic mouse. Cells were cultured beyond passage 50. The cells were highly pleomorphic, containing numerous abnormally shaped nuclei and mitotic figures. HPV 59 sequences were detected in the cells by DNA in situ hybridization in a diffuse nuclear distribution. Southern blots were consistent with an episomal state of HPV 59 DNA at approximately 50 copies per cell. Analysis of the cells using a PCR/reverse blot strip assay, which amplifies a portion of the L1 open reading frame, was strongly positive. Differentiation of cells in monolayers was induced by growth in F medium containing 2 mM calcium chloride for 10 days. Cells were harvested as a single tissue-like sheet, and histologic analysis revealed a four-to-six cell-thick layer. Transcripts encoding involucrin, a cornified envelope protein, and the E1-circumflexE4 and E1-circumflexE4-circumflexL1 viral transcripts were detected after several days of growth in F medium containing 2 mM calcium chloride. The E1-circumflexE4 and L1 proteins were detected by immunohistochemical analysis, and virus particles were seen in electron micrographs in a subset of differentiated cells. An extract of differentiated cells was prepared by vigorous sonication and was used to infect foreskin fragments. These fragments were implanted into athymic mice. HPV 59 was detected in the foreskin xenografts removed 4 months later by DNA in situ hybridization and PCR/reverse blot assay. Thus, the complete viral growth cycle, including production on infectious virus, was demonstrated in the HPV 59 immortalized cells grown in a simple culture system

  10. Amoebal endosymbiont Parachlamydia acanthamoebae Bn9 can grow in immortal human epithelial HEp-2 cells at low temperature; an in vitro model system to study chlamydial evolution.

    Science.gov (United States)

    Yamane, Chikayo; Yamazaki, Tomohiro; Nakamura, Shinji; Matsuo, Junji; Ishida, Kasumi; Yamazaki, Sumire; Oguri, Satoshi; Shouji, Natsumi; Hayashi, Yasuhiro; Yoshida, Mitsutaka; Yimin; Yamaguchi, Hiroyuki

    2015-01-01

    Ancient chlamydiae diverged into pathogenic and environmental chlamydiae 0.7-1.4 billion years ago. However, how pathogenic chlamydiae adapted to mammalian cells that provide a stable niche at approximately 37 °C, remains unknown, although environmental chlamydiae have evolved as endosymbionts of lower eukaryotes in harsh niches of relatively low temperatures. Hence, we assessed whether an environmental chlamydia, Parachlamydia Bn9, could grow in human HEp-2 cells at a low culture temperature of 30 °C. The assessment of inclusion formation by quantitative RT-PCR revealed that the numbers of bacterial inclusion bodies and the transcription level of 16SrRNA significantly increased after culture at 30 °C compared to at 37 °C. Confocal microscopy showed that the bacteria were located close to HEp-2 nuclei and were actively replicative. Transmission electron microscopy also revealed replicating bacteria consisting of reticular bodies, but with a few elementary bodies. Cytochalasin D and rifampicin inhibited inclusion formation. Lactacystin slightly inhibited bacterial inclusion formation. KEGG analysis using a draft genome sequence of the bacteria revealed that it possesses metabolic pathways almost identical to those of pathogenic chlamydia. Interestingly, comparative genomic analysis with pathogenic chlamydia revealed that the Parachlamydia similarly possess the genes encoding Type III secretion system, but lacking genes encoding inclusion membrane proteins (IncA to G) required for inclusion maturation. Taken together, we conclude that ancient chlamydiae had the potential to grow in human cells, but overcoming the thermal gap was a critical event for chlamydial adaptation to human cells.

  11. Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH.

    Science.gov (United States)

    Daidoji, Tomo; Watanabe, Yohei; Ibrahim, Madiha S; Yasugi, Mayo; Maruyama, Hisataka; Masuda, Taisuke; Arai, Fumihito; Ohba, Tomoyuki; Honda, Ayae; Ikuta, Kazuyoshi; Nakaya, Takaaki

    2015-04-24

    The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    International Nuclear Information System (INIS)

    Medina, D.; Oborn, C.J.; Li, M.L.; Bissell, M.J.

    1987-01-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appeared to represent myoepithelial cells. The cell lines were examined for expression of β-casein mRNA in the presence or absence of prolactin. The inducibility of β-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types

  13. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    OpenAIRE

    Zhang Ping; Zhang Zhiyuan; Zhou Xiaojian; Qiu Weiliu; Chen Fangan; Chen Wantao

    2006-01-01

    Abstract Background Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. Methods A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differe...

  14. Antiproliferative activity of flavonoids on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M

    1999-05-01

    Twenty-seven Citrus flavonoids were examined for their antiproliferative activities against several tumor and normal human cell lines. As a result, 7 flavonoids were judged to be active against the tumor cell lines, while they had weak antiproliferative activity against the normal human cell lines. The rank order of potency was luteolin, natsudaidain, quercetin, tangeretin, eriodictyol, nobiletin, and 3,3',4',5,6,7,8-heptamethoxyflavone. The structure-activity relationship established from comparison among these flavones and flavanones showed that the ortho-catechol moiety in ring B and a C2-C3 double bond were important for the antiproliferative activity. As to polymethoxylated flavones, C-3 hydroxyl and C-8 methoxyl groups were essential for high activity.

  15. DNA double strand break repair in a radioresistant cell line

    International Nuclear Information System (INIS)

    Koval, T.M.; Kazmar, E.R.

    1987-01-01

    TN-368 lepidopteran insect cells are on the order of 100 times more resistant to the lethal effects of ionizing radiation than cultured mammalian cells. DNA double strand breaks (DSB) are believed by many to be the critical molecular lesion leading to cell death. The authors therefore measured the rejoining of DSB in TN-368 and V79 Chinese hamster cells. Cells were irradiated on ice with /sup 137/Cs γ rays at a dose rate of 2.5 Gy/min, incubated for various periods of time, and assayed for DNA DSB using the method of neutral elution. The kinetics of DSB rejoining following a dose of 90.2 Gy are similar for both cell lines. Approximately 80% of the DSB are rejoined in both lines by 1 hr postirradiation. However, no further rejoining occurs in the TN-368 cells through at least 6 hr postirradiation, whereas 90% of the DSB are rejoined in the V79 cells by 2 hr postirradiation. Other studies (from 22.6 to 226 Gy) demonstrate that the amount of rejoining of DSB varies inversely with dose for the V79 cells but remains constant for the TN-368 cells. These findings do not support the hypothesis that unrejoined DNA DSB represent the major lesion resulting in cell death

  16. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  17. Temporal regulation of HTLV-2 expression in infected cell lines and patients: evidence for distinct expression kinetics with nuclear accumulation of APH-2 mRNA

    Directory of Open Access Journals (Sweden)

    Bender Cecilia

    2012-09-01

    Full Text Available Abstract Background Human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2 are delta retroviruses with similar genetic organization. Although both viruses immortalize T-cells in vitro, they exhibit distinct pathogenic potential in vivo. To search for possible differences in its expression strategy with respect to HTLV-1, we investigated the pattern of HTLV-2 expression in infected cell lines and peripheral blood mononuclear cells (PBMCs from infected patients using splice site-specific quantitative RT-PCR. Findings A novel alternative splice acceptor site for exon 2 was identified; its usage in env transcripts was found to be subtype-specific. Time-course analysis revealed a two-phase expression kinetics in an infected cell line and in PBMCs of two of the three patients examined; this pattern was reminiscent of HTLV-1. In addition, the minus-strand APH2 transcript was mainly detected in the nucleus, a feature that was similar to its HTLV-1 orthologue HBZ. In contrast to HTLV-1, expression of the mRNA encoding the main regulatory proteins Tax and Rex and that of the mRNAs encoding the p28 and truncated Rex inhibitors is skewed towards p28/truncated Rex inhibitors in HTLV-2. Conclusion Our data suggest a general converging pattern of expression of HTLV-2 and HTLV-1 and highlight peculiar differences in the expression of regulatory proteins that might influence the pathobiology of these viruses.

  18. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Emanuela Mari

    2016-11-01

    Full Text Available Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2 and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS, mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  19. Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Ismail Noorliza M

    2010-09-01

    Full Text Available Abstract Background The treatment of oral squamous cell carcinomas (OSCC and human osteosarcoma (HOS includes surgery and/or radiotherapy which often lead to reduced quality of life. This study was aimed to study the antiproliferative activity of local honey (Tualang on OSCC and HOS cell lines. Methods Several concentrations of Tualang honey (1% - 20% were applied on OSCC and HOS cell lines for 3, 6, 12, 24, 48 and 72 hours. Morphological characteristics were observed under light and fluorescent microscope. Cell viability was assessed using MTT assay and the optical density for absorbance values in each experiment was measured at 570 nm by an ELISA reader. Detection of cellular apoptosis was done using the Annexin V-FITC Apoptosis Detection Kit. Results Morphological appearance showed apoptotic cellular changes like becoming rounded, reduction in cell number, blebbed membrane and apoptotic nuclear changes like nuclear shrinkage, chromatin condensation and fragmented nucleus on OSCC and HOS cell lines. Cell viability assay showed a time and dose-dependent inhibitory effect of honey on both cell lines. The 50% inhibitory concentration (IC50 for OSCC and HOS cell lines was found to be 4% and 3.5% respectively. The maximum inhibition of cell growth of ≥80% was obtained at 15% for both cell lines. Early apoptosis was evident by flow cytometry where percentage of early apoptotic cells increased in dose and time dependent manner. Conclusion Tualang honey showed antiproliferative effect on OSCC and HOS cell lines by inducing early apoptosis.

  20. Generation and characterization of p53 null transformed hepatic progenitor cells: oval cells give rise to hepatocellular carcinoma.

    Science.gov (United States)

    Dumble, Melissa L; Croager, Emma J; Yeoh, George C T; Quail, Elizabeth A

    2002-03-01

    Oval cells are bipotential liver stem cells able to differentiate into hepatocytes and bile duct epithelia. In normal adult liver oval cells are quiescent, existing in low numbers around the periportal region, and proliferate following severe, prolonged liver trauma. There is evidence implicating oval cells in the development of hepatocellular carcinoma, and hence the availability of an immortalized oval cell line would be invaluable for the study of liver cell lineage differentiation and carcinogenesis. A novel approach in the generation of cell lines is the use of the p53 knockout mouse. Absence of p53 allows a cell to cycle past the normal Hayflick limit, rendering it immortalized, although subsequent genetic alterations are thought necessary for transformation. p53 knockout mice were fed a choline-deficient, ethionine-supplemented diet, previously shown to increase oval cell numbers in wild-type mice. The oval cells were isolated by centrifugal elutriation and maintained in culture. Colonies of hepatic cells were isolated and characterized with respect to phenotype, growth characteristics and tumorigenicity. Analysis of gene expression by Northern blotting and immunocytochemistry suggests they are oval-like cells by virtue of albumin and transferrin expression, as well as the oval cell markers alpha fetoprotein, M(2)-pyruvate kinase and A6. Injection into athymic nude mice shows the cell lines are capable of forming tumors which phenotypically resemble hepatocellular carcinoma. Thus, the use of p53 null hepatic cells successfully generated immortalized and tumorigenic hepatic stem cell lines. The results presented support the idea that deleting p53 allows immortalization and contributes to the transformation of the oval-like cell lines. Further, the tumorigenic status of the cell lines is direct evidence for the participation of oval cells in the formation of hepatocellular carcinoma.

  1. Maslinic acid inhibits proliferation of renal cell carcinoma cell lines and suppresses angiogenesis of endothelial cells

    Directory of Open Access Journals (Sweden)

    Parth Thakor

    2017-03-01

    Full Text Available Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC remains a treatment-re-sistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1, endothelial cells (human umbilical vein endothelial cell line [HUVEC], and primary cultures of kidney proximal tubular epithelial cells (PTEC were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.

  2. Cellular and Phenotypic Characterization of Canine Osteosarcoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Marie E. Legare, Jamie Bush, Amanda K. Ashley, Taka Kato, William H. Hanneman

    2011-01-01

    Full Text Available Canine and human osteosarcoma (OSA have many similarities, with the majority of reported cases occurring in the appendicular skeleton, gender predominance noted, high rate of metastasis at the time of presentation, and a lack of known etiology for this devastating disease. Due to poor understanding of the molecular mechanisms underlying OSA, we have characterized seven different OSA canine cell lines: Abrams, D17, Grey, Hughes, Ingles, Jarques, and Marisco and compared them to U2, a human OSA cell line, for the following parameters: morphology, growth, contact inhibition, migrational tendencies, alkaline phosphatase staining, heterologous tumor growth, double-strand DNA breaks, and oxidative damage. All results demonstrated the positive characteristics of the Abrams cell line for use in future studies of OSA. Of particular interest, the robust growth of a subcutaneous tumor and rapid pulmonary metastasis of the Abrams cell line in an immunocompromised mouse shows incredible potential for the future use of Abrams as a canine OSA model. Further investigations utilizing a canine cell model of OSA, such as Abrams, will be invaluable to understanding the molecular events underlying OSA, pharmaceutical inhibition of metastasis, and eventual prevention of this devastating disease.

  3. Effect of selected insecticides on SF9 insect cell line

    International Nuclear Information System (INIS)

    Saleh, M.; Rahmo, A.; Hajjar, J.

    2013-01-01

    The toxic effect of three insecticides: dimethoate (organophosphate insecticide), acetamiprid (neonicotinoid insecticide) and deltamethrin (pyrethroid insecticide) were evaluated in vitro on cultured Sf9 cell line. Cell growth inhibition was measured by the 3- (4,5- dimethylthiazol - 2-yl) - 2,5 - diphenyl tetrazolium bromide (MTT) assay. Regression Analysis was used to estimate the 20% inhibition of cells growth (IC 20). The IC 20 values obtained for deltamethrin, acetamipridand dimethoate were: 46.8, 61.6 and 68.9 μM, respectively. The proportion of phagocytic cells was positively correlated with the applied concentrations of the insecticides. (author)

  4. The antiproliferative effect of coumarins on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Ogawa, K; Sugiura, M; Yano, M; Yoshizawa, Y

    2001-01-01

    Twenty-one coumarins were examined for their antiproliferative activity towards several cancer cell lines, namely lung carcinoma (A549), melanin pigment producing mouse melanoma (B16 melanoma 4A5), human T-cell leukemia (CCRF-HSB-2), and human gastric cancer, lymph node metastasized (TGBC11TKB). The structure-activity relationship established from the results revealed that the 6,7-dihydroxy moiety had an important role for their antiproliferative activity. Analysis of cell cycle distribution indicated that esculetin-treated cells accumulated in the G1 (at 400 microM) or in S phase (at 100 microM).

  5. Characterization of stem-like cells in a new astroblastoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Coban, Esra Aydemir; Kasikci, Ezgi [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Karatas, Omer Faruk [Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum (Turkey); Suakar, Oznur; Kuskucu, Aysegul [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey); Altunbek, Mine [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Türe, Uğur [Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul (Turkey); Sahin, Fikrettin [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Bayrak, Omer Faruk, E-mail: ofbayrak@yeditepe.edu.tr [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey)

    2017-03-15

    Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells and cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors. - Highlights: • An establishment of a novel astroblastoma cell line was proposed. • The presence of astroblastic cells and cancer stem-like cells was investigated. • The molecular pathways underlying astroblastomas may be investigated. • New therapeutic strategies for patients with astroblastoma may be developed.

  6. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor

    DEFF Research Database (Denmark)

    Damstrup, L; Rude Voldborg, B; Spang-Thomsen, M

    1998-01-01

    receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labelling assays. In 11 small-cell lung cancer (SCLC) cell lines, EGFR mRNA was detected by Northern blot...... analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16......-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition...

  7. Recovery of important physiological functions in 3D culture of immortal hepatocytes

    DEFF Research Database (Denmark)

    Wrzesinski, Krzysztof; Fey, S. J.

    2011-01-01

    to grow human liver cells in ‘3 dimensional’ cultures so that they behave very similar to the liver in our bodies. By growing the immortal hepatocytes in specially designed bioreactors they form small pieces of ‘pseudotissue’ which exhibit several of the functions seen in the adult liver. We have grown...

  8. Hypoxic cell turnover in different solid tumor lines

    International Nuclear Information System (INIS)

    Ljungkvist, Anna S.E.; Bussink, Johan; Kaanders, Johannes H.A.M.; Rijken, Paulus F.J.W.; Begg, Adrian C.; Raleigh, James A.; Kogel, Albert J. van der

    2005-01-01

    Purpose: Most solid tumors contain hypoxic cells, and the amount of tumor hypoxia has been shown to have a negative impact on the outcome of radiotherapy. The efficacy of combined modality treatments depends both on the sequence and timing of the treatments. Hypoxic cell turnover in tumors may be important for optimal scheduling of combined modality treatments, especially when hypoxic cell targeting is involved. Methods and Materials: Previously we have shown that a double bioreductive hypoxic marker assay could be used to detect changes of tumor hypoxia in relation to the tumor vasculature after carbogen and hydralazine treatments. This assay was used in the current study to establish the turnover rate of hypoxic cells in three different tumor models. The first hypoxic marker, pimonidazole, was administered at variable times before tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. Hypoxic cell turnover was defined as loss of pimonidazole (first marker) relative to CCI-103F (second marker). Results: The half-life of hypoxic cell turnover was 17 h in the murine C38 colon carcinoma line, 23 h and 49 h in the human xenograft lines MEC82 and SCCNij3, respectively. Within 24 h, loss of pimonidazole-stained areas in C38 and MEC82 occurred concurrent with the appearance of pimonidazole positive cell debris in necrotic regions. In C38 and MEC82, most of the hypoxic cells had disappeared after 48 h, whereas in SCCNij3, viable cells that had been labeled with pimonidazole were still observed after 5 days. Conclusions: The present study demonstrates that the double hypoxia marker assay can be used to study changes in both the proportion of hypoxic tumor cells and their lifespan at the same time. The present study shows that large differences in hypoxic cell turnover rates may exist among tumor lines, with half-lives ranging from 17-49 h

  9. Isolation and differentiation of stromal vascular cells to beige/brite cells

    DEFF Research Database (Denmark)

    Aune, Ulrike Liisberg; Ruiz, Lauren; Kajimura, Shingo

    2013-01-01

    cold exposure or by PPARγ agonists, therefore, this cell type has potential as a therapeutic target for obesity treatment. Although most immortalized adipocyte lines cannot recapitulate the process of "browning" of white fat in culture, primary adipocytes isolated from stromal vascular fraction...

  10. Establishment of clinically relevant radioresistant cell lines and their characteristics

    International Nuclear Information System (INIS)

    Fukumoto, Manabu; Kuwahara, Yoshikazu; Suzuki, Masatoshi

    2014-01-01

    Although radiotherapy is one of the major therapeutic modalities for eradicating malignant tumors, the existence of radioresistant cells remains one of the most critical obstacles. Standard radiotherapy consists of fractionated radiation (FR) of 2-Gy X-rays once a day, 5 days a week, over 60 Gy in total. To understand the characteristics of radioresistant cells and to develop more effective radiotherapy, we have established novel radioresistant cell lines by long-term (> 5 years) exposure to moderate doses of fractionated X-rays. While all the parental human cancer cells ceased, their radioresistant derivatives continue to proliferate with daily exposure to 2-Gy FR for more than 30 days. We have coined those cells as 'clinically relevant radioresistant' (CRR) cells. Transplanted tumors into nude mice were also CRR, indicating that CRR cell lines are powerful tools to improve cancer radiotherapy. We have shown that the suppression of autophagic cell death but not apoptosis was mainly involved in cellular radioresistance. An inhibitor of the mTOR pathway which enhances autophagy was effective to overcome CRR tumors induced in nude mice. But the underlined mechanism was not through the inhibition of autophagy. Guanine nucleotide-binding protein 1 (GBP1) over expression was necessary for maintaining the CRR phenotype, but radioresistant cells were not necessarily cancer stem cells (CSCs). Targeting GBP1 positive cancer cells may be a more efficient method in conquering cancer than targeting CSCs. Slight but significant radioresistance was acquired by 0.5 Gy/12 hrs of long-term FR exposures to parental cells for more than 31 days in accordance with cyclinD1 over expression. This acquired radioresistance (ARR) was stably maintained in the tumor cells even on 31 days after the cessation of 0.5-Gy FR. Present observations give a mechanistic insight for ARR of tumor cells through long-term FR exposure, and provide novel therapeutic targets for radiosensitization

  11. Incorrect strain information for mouse cell lines: sequential influence of misidentification on sublines

    OpenAIRE

    Uchio-Yamada, Kozue; Kasai, Fumio; Ozawa, Midori; Kohara, Arihiro

    2016-01-01

    Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains. Based on comparisons with 7 major inbred strains, our results revealed their strains in 80 of 90 cell lines. However,...

  12. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yslas, Edith I., E-mail: eyslas@exa.unrc.edu.ar [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Cavallo, Pablo; Acevedo, Diego F.; Barbero, César A. [Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Rivarola, Viviana A. [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina)

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines.

  13. Cell lines radiosensitization of thyroid cancer by histone deacetylase inhibitors

    International Nuclear Information System (INIS)

    Perona, M; Dagrosa, M A; Rossich, L; Casal, M; Pisarev, M A; Thomasz, L; Juvenal G J

    2012-01-01

    Introduction: Thyroid cancer is the most common endocrine neoplasia. Surgical resection and radioactive iodine is an effective treatment for well-differentiated tumors. Histone deacetylase inhibitors (HDAC-I) are agents that cause hyperacetylation of histone proteins and as a consequence remodeling of chromatin structure. They can induce growth arrest, differentiation and apoptotic cell death in different tumor cells. The use of HDAC-I agents could be of utility to enhance the response to external radiation therapy of those thyroid cancers that are refractory to most conventional therapeutic treatments. Objective: To study the effect of HDAC-I as radiosensitizers for the treatment of thyroid cancer and their ability to induce differentiation of thyroid cancer cells. Materials and methods: The human thyroid follicular (WRO) and papillary (TPC-1) carcinoma cell lines were seeded and incubated with increasing doses (0, 0.3, 0.5, 1 and 1.5 mM) of the HDAC-I sodium butirate (NaB) and valproic acid (VA) to evaluate cell proliferation and iodide uptake. Cells were irradiated with a 60 Co γ-ray source (1 ± 5% Gy/min) and postirradiation survival was quantified with the colony formation assay. Survival fraction at 2 Gy (SF2) was calculated for each cell line. Cell cycle and cell death were evaluated at a dose of 3 Gy. Iodide uptake, PCR analysis and transient transfection studies were performed. Results: Cell proliferation was not significantly suppressed after 24 hours of incubation with both drugs at all assayed doses. Iodide uptake was not modified after incubation with HDAC-I of both cell lines. SF2 was reduced from 68 ± 1.6 % in the control WRO cells to 42 ± 3.8 % (P<0.001) in NaB-treated cells. In TPC-1 SF2 was reduced from 32 ± 1.1 % in the control cells to 24 ± 0.8 % (P<0.01). In VA-treated cells SF2 was reduced from 69 ± 0.02 % in control WRO cells to 56 ± 0.01 % (P<0.01) and from 31 ± 2 % in control TPC-1 cells to 11 ± 1 % (P<0.01). There was an arrest

  14. Monitoring cell line identity in collections of human induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Raquel Sarafian

    2018-04-01

    Full Text Available The ability to reprogram somatic cells into induced pluripotent stem cells (hiPSCs has led to the generation of large collections of cell lines from thousands of individuals with specific phenotypes, many of which will be shared among different research groups as invaluable tools for biomedical research. As hiPSC-based research involves extensive culture of many cell lines, the issue periodic cell line identification is particularly important to ensure that cell line identity remains accurate. Here we analyzed the different commercially available genotyping methods considering ease of in-house genotyping, cost and informativeness, and applied one of them in our workflow for hiPSC generation. We show that the chosen STR method was able to establish a unique DNA profile for each of the 35 individuals/hiPSC lines at the examined sites, as well as identify two discrepancies resulting from inadvertently exchanged samples. Our results highlight the importance of hiPSC line genotyping by an in-house method that allows periodic cell line identification and demonstrate that STR is a useful approach to supplement less frequent karyotyping and epigenetic evaluations. Keywords: Induced pluripotent stem cells, Genotyping, Cell line identification, Short tandem repeats, Quality control

  15. Detection of immunotoxicity using T-cell based cytokine reporter cell lines ('Cell Chip')

    International Nuclear Information System (INIS)

    Ringerike, Tove; Ulleraas, Erik; Voelker, Rene; Verlaan, Bert; Eikeset, Aase; Trzaska, Dominika; Adamczewska, Violetta; Olszewski, Maciej; Walczak-Drzewiecka, Aurelia; Arkusz, Joanna; Loveren, Henk van; Nilsson, Gunnar; Lovik, Martinus; Dastych, Jaroslaw; Vandebriel, Rob J.

    2005-01-01

    Safety assessment of chemicals and drugs is an important regulatory issue. The evaluation of potential adverse effects of compounds on the immune system depends today on animal experiments. An increasing demand, however, exists for in vitro alternatives. Cytokine measurement is a promising tool to evaluate chemical exposure effects on the immune system. Fortunately, this type of measurement can be performed in conjunction with in vitro exposure models. We have taken these considerations as the starting point to develop an in vitro method to efficiently screen compounds for potential immunotoxicity. The T-cell lymphoma cell line EL-4 was transfected with the regulatory sequences of interleukin (IL)-2, IL-4, IL-10, interferon (IFN)-γ or actin fused to the gene for enhanced green fluorescent protein (EGFP) in either a stabile or a destabilised form. Consequently, changes in fluorescence intensity represent changes in cytokine expression with one cell line per cytokine. We used this prototype 'Cell Chip' to test, by means of flow cytometry, the immunomodulatory potential of 13 substances and were able to detect changes in cytokine expression in 12 cases (successful for cyclosporine, rapamycin, pentamidine, thalidomide, bis(tri-n-butyltin)oxide, house dust mite allergen (Der p I), 1-chloro-2,4-dinitrobenzene, benzocaine, tolylene 2,4-diisocyanate, potassium tetrachloroplatinate, sodium dodecyl sulphate and mercuric chloride; unsuccessful for penicillin G). In conclusion, this approach seems promising for in vitro screening for potential immunotoxicity, especially when additional cell lines besides T-cells are included

  16. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    Directory of Open Access Journals (Sweden)

    Chen Lei

    2011-06-01

    Full Text Available Abstract Background Cancer stem cells (CSCs are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44. Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.

  17. Apoptosis induction of epifriedelinol on human cervical cancer cell line

    African Journals Online (AJOL)

    Background: Present investigation evaluates the antitumor activity of epifriedelinol for the management of cervical cancer by inducing process of apoptosis. Methods: Human Cervical Cancer Cell Line, C33A and HeLa were selected for study and treated with epifriedelinol at a concentration of (50-1000 μg/ml). Cytotoxicity of ...

  18. 77 FR 5489 - Identification of Human Cell Lines Project

    Science.gov (United States)

    2012-02-03

    ... individual or species. With the advent of standardized, simple, and rapid methods for human cell line... project will undergo STR profiling, a DNA profiling method that examines/screens for STRs (DNA elements 2... distinct DNA profile and when the STR DNA fragment sizes are converted to numeric values, the DNA profiles...

  19. Antibacterial and anti-breast cancer cell line activities of ...

    African Journals Online (AJOL)

    Purpose: To evaluate the activity of extracts of Sanghuangporus sp.1 fungus against pathogenic bacteria and a breast cancer cell line. Methods: The wild fruiting body and mycelium of Sanghuangporus sp.1 were extracted with water and ethanol by ultrasonication extraction. The activity of the extracts against pathogenic ...

  20. AAVS1-Targeted Plasmid Integration in AAV Producer Cell Lines.

    Science.gov (United States)

    Luo, Yuxia; Frederick, Amy; Martin, John M; Scaria, Abraham; Cheng, Seng H; Armentano, Donna; Wadsworth, Samuel C; Vincent, Karen A

    2017-06-01

    Adeno-associated virus (AAV) producer cell lines are created via transfection of HeLaS3 cells with a single plasmid containing three components (the vector sequence, the AAV rep and cap genes, and a selectable marker gene). As this plasmid contains both the cis (Rep binding sites) and trans (Rep protein encoded by the rep gene) elements required for site-specific integration, it was predicted that plasmid integration might occur within the AAVS1 locus on human chromosome 19 (chr19). The objective of this study was to investigate whether integration in AAVS1 might be correlated with vector yield. Plasmid integration sites within several independent cell lines were assessed via Southern, fluorescence in situ hybridization (FISH) and PCR analyses. In the Southern analyses, the presence of fragments detected by both rep- and AAVS1-specific probes suggested that for several mid- and high-producing lines, plasmid DNA had integrated into the AAVS1 locus. Analysis with puroR and AAVS1-specific probes suggested that integration in AAVS1 was a more widespread phenomenon. High-producing AAV2-secreted alkaline phosphatase (SEAP) lines (masterwell 82 [MW82] and MW278) were evaluated via FISH using probes specific for the plasmid, AAVS1, and a chr19 marker. FISH analysis detected two plasmid integration sites in MW278 (neither in AAVS1), while a total of three sites were identified in MW82 (two in AAVS1). An inverse PCR assay confirmed integration within AAVS1 for several mid- and high-producing lines. In summary, the FISH, Southern, and PCR data provide evidence of site-specific integration of the plasmid within AAVS1 in several AAV producer cell lines. The data also suggest that integration in AAVS1 is a general phenomenon that is not necessarily restricted to high producers. The results also suggest that plasmid integration within the AAVS1 locus is not an absolute requirement for a high vector yield.

  1. Effects of hypoxia on human cancer cell line chemosensitivity

    Science.gov (United States)

    2013-01-01

    Background Environment inside even a small tumor is characterized by total (anoxia) or partial oxygen deprivation, (hypoxia). It has been shown that radiotherapy and some conventional chemotherapies may be less effective in hypoxia, and therefore it is important to investigate how different drugs act in different microenvironments. In this study we perform a large screening of the effects of 19 clinically used or experimental chemotherapeutic drugs on five different cell lines in conditions of normoxia, hypoxia and anoxia. Methods A panel of 19 commercially available drugs: 5-fluorouracil, acriflavine, bortezomib, cisplatin, digitoxin, digoxin, docetaxel, doxorubicin, etoposide, gemcitabine, irinotecan, melphalan, mitomycin c, rapamycin, sorafenib, thalidomide, tirapazamine, topotecan and vincristine were tested for cytotoxic activity on the cancer cell lines A2780 (ovarian), ACHN (renal), MCF-7 (breast), H69 (SCLC) and U-937 (lymphoma). Parallel aliquots of the cells were grown at different oxygen pressures and after 72 hours of drug exposure viability was measured with the fluorometric microculture cytotoxicity assay (FMCA). Results Sorafenib, irinotecan and docetaxel were in general more effective in an oxygenated environment, while cisplatin, mitomycin c and tirapazamine were more effective in a low oxygen environment. Surprisingly, hypoxia in H69 and MCF-7 cells mostly rendered higher drug sensitivity. In contrast ACHN appeared more sensitive to hypoxia, giving slower proliferating cells, and consequently, was more resistant to most drugs. Conclusions A panel of standard cytotoxic agents was tested against five different human cancer cell lines cultivated at normoxic, hypoxic and anoxic conditions. Results show that impaired chemosensitivity is not universal, in contrast different cell lines behave different and some drugs appear even less effective in normoxia than hypoxia. PMID:23829203

  2. Characterization of the camel skin cell line Dubca.

    Science.gov (United States)

    Klopries, M; Wernery, U; Kaaden, O R

    1995-01-01

    A skin fibroblast cell culture was established from a 2-month-old dromedary foetus. The cells were transformed by infection with SV40 and cloned in soft agar. The established cell line is now designated Dubca cells (Dubai camel) and has been in permanent culture for 95 passages. The cell culture was examined morphologically, chromosome preparations made and DNA fingerprinting performed by hybridization with the oligonucleotide probe (GTG)5. SV40 large T antigen was detected by western blotting. The viral host range was determined by infection with viruses of different families. Camelpox virus (CaPV) bovine herpesvirus-1 (BHV-1), vesicular stomatitis virus (VSV) and border disease virus (BDV) could be propagated in these cells.

  3. 9-β-arabinofuranosyladenine preferentially sensitizes radioresistant squamous cell carcinoma cell lines to x-rays

    International Nuclear Information System (INIS)

    Heaton, D.

    1992-06-01

    The effect of 9-β-arabinofuranosyladenine (ara-A) on sensitivity to the deleterious effects of x-rays was studied in six squamous cell carcinoma cell lines. Three lines were relatively radioresistant, having D 0 values of 2.31 to 2.89 Gy, and the other three lines were relatively radiosensitive, having D 0 values of between 1.07 and 1.45 Gy. Ara-A (50 or 500 μM) was added to cultures 30 min prior to irradiation and removed 30 min after irradiation, and sensitivity was measured in terms of cell survival. The radiosensitizing effect of ara-A was very dependent on the inherent radiosensitivity of the tumor cell line. Fifty micromolar concentrations of ara-A sensitized only the two most radioresistant lines, SCC-12B.2 and JSQ-3. Five hundred micromolar concentrations of ara-A sensitized the more sensitive cell lines, SQ-20B and SQ-9G, but failed to have any effect on the radiation response of the two most sensitive cell lines, SQ-38 and SCC-61. Concentrations of ara-A as low as 10 μM were equally efficient in inhibiting DNA synthesis in all six cell lines. These results suggest that the target for the radiosensitizing effect of ara-A is probably related to the factor controlling the inherent radiosensitivity of human tumor cells. Therefore, ara-A might be useful in overcoming radiation resistance in vivo

  4. 9-{beta}-arabinofuranosyladenine preferentially sensitizes radioresistant squamous cell carcinoma cell lines to x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, D. [Rush Univ. Medical Center, Chicago, IL (United States). Therapeutic Radiology; Mustafi, R. [Chicago Univ., IL (United States). Dept. of Radiation and Cellular Oncology; Schwartz, J.L. [Chicago Univ., IL (United States). Dept. of Radiation and Cellular Oncology]|[Argonne National Lab., IL (United States)

    1992-06-01

    The effect of 9-{beta}-arabinofuranosyladenine (ara-A) on sensitivity to the deleterious effects of x-rays was studied in six squamous cell carcinoma cell lines. Three lines were relatively radioresistant, having D{sub 0} values of 2.31 to 2.89 Gy, and the other three lines were relatively radiosensitive, having D{sub 0} values of between 1.07 and 1.45 Gy. Ara-A (50 or 500 {mu}M) was added to cultures 30 min prior to irradiation and removed 30 min after irradiation, and sensitivity was measured in terms of cell survival. The radiosensitizing effect of ara-A was very dependent on the inherent radiosensitivity of the tumor cell line. Fifty micromolar concentrations of ara-A sensitized only the two most radioresistant lines, SCC-12B.2 and JSQ-3. Five hundred micromolar concentrations of ara-A sensitized the more sensitive cell lines, SQ-20B and SQ-9G, but failed to have any effect on the radiation response of the two most sensitive cell lines, SQ-38 and SCC-61. Concentrations of ara-A as low as 10 {mu}M were equally efficient in inhibiting DNA synthesis in all six cell lines. These results suggest that the target for the radiosensitizing effect of ara-A is probably related to the factor controlling the inherent radiosensitivity of human tumor cells. Therefore, ara-A might be useful in overcoming radiation resistance in vivo.

  5. Molecular Mechanisms of Radiation-Induced Genomic Instability in Human Cells

    Energy Technology Data Exchange (ETDEWEB)

    Howard L. Liber; Jeffrey L. Schwartz

    2005-10-31

    There are many different model systems that have been used to study chromosome instability. What is clear from all these studies is that conclusions concerning chromosome instability depend greatly on the model system and instability endpoint that is studied. The model system for our studies was the human B-lymphoblastoid cell line TK6. TK6 was isolated from a spontaneously immortalized lymphoblast culture. Thus there was no outside genetic manipulation used to immortalize them. TK6 is a relatively stable p53-normal immortal cell line (37). It shows low gene and chromosome mutation frequencies (19;28;31). Our general approach to studying instability in TK6 cells has been to isolate individual clones and analyze gene and chromosome mutation frequencies in each. This approach maximizes the possibility of detecting low frequency events that might be selected against in mass cultures.

  6. Effects of cholera toxin on human colon carcinoma cell lines.

    Science.gov (United States)

    Barkla, D H; Whitehead, R H; Hayward, I P

    1992-10-01

    This study reports on changes in morphology and membrane transport in 5 human colon carcinoma cell lines treated with cholera toxin (CT). Three of the cell lines that grew as monolayers (LIM 1215, LIM 1899, LIM 2099) and 1 that grew as floating clumps (LIM 2408) did not show morphological changes after CT treatment. However, cell line LIM 1863 that grows as floating "crypt-like" organoids showed rapid and distinctive changes in morphology and membrane transport after CT treatment. At 1 and 6 hrs after CT treatment, light and transmission electron microscopy revealed rapid dilatation of the central lumen of organoids and the appearance of 2 populations of apical vesicular inclusions. The first population was unusual in being non-membrane bound and limited by fuzzy filamentous material. The second population was membrane bound. Scanning electron microscopy at 1-6 hr after CT treatment showed swelling and loss of surface microvilli on some, but not all, cells. At 24 hr after CT treatment the majority of organoids showed evidence of fluid accumulation and small apical vesicles coalesced to form large single vacuoles that obliterated normal cell morphology. By 48 hr, continued swelling produced extreme attenuation of the plasma membrane with cells taking on an "endothelial cell-like" appearance. The response to CT was dose-dependent. Uptake studies using 86Rubidium and blocking studies using ouabain and amiloride indicated that CT is acting on the Na+/K+ ATPase membrane pump to cause the increased fluid uptake by LIM 1863 cells. This study is the first to report specific morphological changes in intestine-derived cells in response to CT.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Differences in radiosensitivity between three HER2 overexpressing cell lines

    International Nuclear Information System (INIS)

    Steffen, Ann-Charlott; Tolmachev, Vladimir; Stenerloew, Bo; Goestring, Lovisa; Palm, Stig; Carlsson, Joergen

    2008-01-01

    HER2 is a potential target for radionuclide therapy, especially when HER2 overexpressing breast cancer cells are resistant to Herceptin registered treatment. Therefore, it is of interest to analyse whether HER2 overexpressing tumour cells have different inherent radiosensitivity. The radiosensitivity of three often used HER2 overexpressing cell lines, SKOV-3, SKBR-3 and BT-474, was analysed. The cells were exposed to conventional photon irradiation, low linear energy transfer (LET), to characterise their inherent radiosensitivity. The analysis was made with clonogenic survival and growth extrapolation assays. The cells were also exposed to alpha particles, high LET, from 211 At decays using the HER2-binding affibody molecule 211 At-(Z HER2:4 ) 2 as targeting agent. Assays for studies of internalisation of the affibody molecule were applied. SKOV-3 cells were most radioresistant, SKBR-3 cells were intermediate and BT-474 cells were most sensitive as measured with the clonogenic and growth extrapolation assays after photon irradiation. The HER2 dependent cellular uptake of 211 At was qualitatively similar for all three cell lines. However, the sensitivity to the alpha particles from 211 At differed; SKOV-3 was most resistant, SKBR-3 intermediate and BT-474 most sensitive. These differences were unexpected because it is assumed that all types of cells should have similar sensitivity to high-LET radiation. The sensitivity to alpha particle exposure correlated with internalisation of the affibody molecule and with size of the cell nucleus. There can be differences in radiosensitivity, which, if they also exist between patient breast cancer cells, are important to consider for both conventional radiotherapy and for HER2-targeted radionuclide therapy. (orig.)

  8. Radiosensitization of colorectal carcinoma cell lines by histone deacetylase inhibition

    International Nuclear Information System (INIS)

    Flatmark, Kjersti; Nome, Ragnhild V; Folkvord, Sigurd; Bratland, Åse; Rasmussen, Heidi; Ellefsen, Mali Strand; Fodstad, Øystein; Ree, Anne Hansen

    2006-01-01

    The tumor response to preoperative radiotherapy of locally advanced rectal cancer varies greatly, warranting the use of experimental models to assay the efficacy of molecular targeting agents in rectal cancer radiosensitization. Histone deacetylase (HDAC) inhibitors, agents that cause hyperacetylation of histone proteins and thereby remodeling of chromatin structure, may override cell cycle checkpoint responses to DNA damage and amplify radiation-induced tumor cell death. Human colorectal carcinoma cell lines were exposed to ionizing radiation and HDAC inhibitors, and cell cycle profiles and regulatory factors, as well as clonogenicity, were analyzed. In addition to G 2 /M phase arrest following irradiation, the cell lines displayed cell cycle responses typical for either intact or defective p53 function (the presence or absence, respectively, of radiation-induced expression of the cell cycle inhibitor p21 and subsequent accumulation of G 1 phase cells). In contrast, histone acetylation was associated with complete depletion of the G 1 population of cells with functional p53 but accumulation of both G 1 and G 2 /M populations of cells with defective p53. The cellular phenotypes upon HDAC inhibition were consistent with the observed repression of Polo-like kinase-1, a regulatory G 2 /M phase kinase. Following pre-treatment with HDAC inhibitors currently undergoing clinical investigation, the inhibitory effect of ionizing radiation on clonogenicity was significantly amplified. In these experimental models, HDAC inhibition sensitized the tumor cells to ionizing radiation, which is in accordance with the concept of increased probability of tumor cell death when chromatin structure is modified

  9. LET effects on normal and radiosensitive cell lines

    International Nuclear Information System (INIS)

    Geard, C.R.; Travisano, M.

    1986-01-01

    Charged particles in the track segment mode were produced by the RARAF Van de Graaff accelerator and used to irradiate two CHO cell lines, a radiosensitive hypermutable line EM9 and its normal parent AA8. Asynchronous cells were irradiated attached to 6 micrometer thick Mylar with protons, deuterons and helium-3 particles at LETs ranging from 10 to 150 keV per micrometer. A 50 kVp x-ray tube integrated into the track segment facility provided a low LET comparison. Following irradiation cells were monitored for clonogenicity, and in a separate series of experiments frequencies of sister chromatid exchanges. Up to 9 experiments were carried out at each LET, with a total of 8 radiations of different LETs being compared. The optimally effective LET for cell survival was between 80 and 120 keV per micrometer, with the 150 keV per micrometer particles indicating energy wastage. The differential between the normal and radiosensitive cell lines was maintained at all LETs

  10. Plasmids and packaging cell lines for use in phage display

    Science.gov (United States)

    Bradbury, Andrew M.

    2012-07-24

    The invention relates to a novel phagemid display system for packaging phagemid DNA into phagemid particles which completely avoids the use of helper phage. The system of the invention incorporates the use of bacterial packaging cell lines which have been transformed with helper plasmids containing all required phage proteins but not the packaging signals. The absence of packaging signals in these helper plasmids prevents their DNA from being packaged in the bacterial cell, which provides a number of significant advantages over the use of both standard and modified helper phage. Packaged phagemids expressing a protein or peptide of interest, in fusion with a phage coat protein such as g3p, are generated simply by transfecting phagemid into the packaging cell line.

  11. CD40 expression in Wehi-164 cell line.

    Science.gov (United States)

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-07-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body's defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system.

  12. Effects of irradiation on cytokine production in glioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Ryuya; Tanaka, Ryuichi; Yoshida, Seiichi [Niigata Univ. (Japan). Brain Research Inst.

    1993-11-01

    The effects of irradiation on cytokine production in glioma cell lines, NP1, NP2 and NP3, were studied. Culture supernatants were collected after 6, 24, 48 or 72 hours and the concentrations of interleukin (IL)-6 and IL-8 measured by enzyme-linked immunosorbent assay. Spontaneous and IL-1[beta]-stimulated productions were analyzed. Some cells were given a single dose of Lineac irradiation (10 or 20 Gy). Production of IL-6 (with or without IL-1[beta] stimulation) increased gradually to a maximum after 72 hours, more in the 20 Gy-irradiated cells than 10 Gy cells (p<0.01). Production of IL-8 increased gradually to a maximum after 48 or 72 hours. Spontaneous production of IL-8 increased more in 20 Gy-irradiated cells than 10 Gy cells after 6 and 24 hours (p<0.01), but increased more in 10 Gy cells than 20 Gy cells after 48 and 72 hours (p<0.01). The production of IL-8 stimulated by IL-1[beta] increased more in 10 Gy cells than 20 Gy cells 24 hours later (p<0.01). IL-6 and IL-8 production differed in the response to irradiation. Our data suggest that bidirectional communication between the immune system and glioma cells changes after radiotherapy. (author).

  13. Immortality in view of Maimonides and Spinoza

    OpenAIRE

    Morteza Shajari; Yousef Nozohur; Abbas Fanni Asl

    2014-01-01

    Desire for immortality can be seen as the essential natural impulse. Therefore, different religions and thinkers have attempted to see the issue from different viewpoints. The great Jewish philosopher. Maimonides, due to deep fixation to Judaism, has tried to express their issues to be consistent with the Bible and his own community believes. He, in his discussion of resurrection, believed to three basic steps: The Messiah, the resurrection, and the world hereafter. His standpoint of eternity...

  14. Myelination competent conditionally immortalized mouse Schwann cells

    NARCIS (Netherlands)

    Saavedra, José T.; Wolterman, Ruud A.; Baas, Frank; ten Asbroek, Anneloor L. M. A.

    2008-01-01

    Numerous mouse myelin mutants are available to analyze the biology of the peripheral nervous system related to health and disease in vivo. However, robust in vitro biochemical characterizations of players in peripheral nerve processes are still not possible due to the limited growth capacities of

  15. Immortality versus resurrection in the Christian tradition.

    Science.gov (United States)

    Murphy, Nancey

    2011-10-01

    For those in contemporary society who believe in an afterlife, there are a number of views available. The most common may be based on belief in an immortal soul. However, the early Christian account was, instead, bodily resurrection. As Christianity moved throughout the Mediterranean world, apologists and theologians adapted their teaching on human nature and the afterlife to Greek and Roman philosophies. By the time of Augustine (d. 430), the doctrines of body-soul dualism and immortality of the soul were firmly entrenched in Christian teaching. The incorporation of the concept of an immortal soul into Christian accounts of life after death produced a hybrid account. The body dies, the soul (at least of those who were to be saved) travels to heaven. At the end of history, there would be a general resurrection, and the souls would be reunited with their bodies, although the bodies would be in a transformed, indestructible state. This hybrid account of life after death went largely uncontested until the twentieth century. In this essay, I describe this history and argue for a return to the early Christian view of humans as a unity, not a duality, and for belief in resurrection of the body as the appropriate expectation for eternal life. This would not only be truer to Christian sources, but, valuable, I believe, in focusing Christian attention on the need to care for the environment. © 2011 New York Academy of Sciences.

  16. Change of cell cycle arrest of tumor cell lines after 60Co γ-irradiation

    International Nuclear Information System (INIS)

    Tang Yi; Liu Wenli; Zhou Jianfeng; Gao Qinglei; Wu Jianhong

    2003-01-01

    Objective: To observe the cell cycle arrest changes in peripheral blood mononuclear cells (PBMNCs) of normal persons and several kinds of tumor cell lines after 60 Co γ-irradiation. Methods: PBMNCs of normal persons, HL-60, K562, SiHA and 113 tumor cell lines were irradiated with 60 Co γ-rays at the absorbed doses of 6, 10,15 Gy. Cell cycles changes were checked 6, 12, 24, 48 and 60 h after the irradiation. Results: A stasis state was observed in normal person PBMNCs, 95 percents of which were in G 1 phase, and they still remained stasis after the irradiation. Except the 113 cell line manifesting G 1 phase arrest, all other tumor cell lines showed G 2 /M phase arrest after irradiation. The radiation sensitivity of HL-60 was higher than that of SiHA cell line. Conclusion: Different cell lines have different cell cycle arrest reaction to radiation and their radiation sensitivity are also different

  17. THP-1 cell line: an in vitro cell model for immune modulation approach.

    Science.gov (United States)

    Chanput, Wasaporn; Mes, Jurriaan J; Wichers, Harry J

    2014-11-01

    THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review attempts to summarize and discuss recent publications related to the THP-1 cell model. An overview on the biological similarities and dissimilarities between the THP-1 cell line and human peripheral blood mononuclear cell (PBMC) derived-monocytes and macrophages, as well as the advantages and disadvantages of the use of THP-1 cell line, is included. The review summarizes different published co-cultivation studies of THP-1 cells with other cell types, for instance, intestinal cells, adipocytes, T-lymphocytes, platelets, and vascular smooth muscle cells, which can be an option to study cell-cell interaction in vitro and can be an approach to better mimic in vivo conditions. Macrophage polarization is a relatively new topic which gains interest for which the THP-1 cell line also may be relevant. Besides that an overview of newly released commercial THP-1 engineered-reporter cells and THP-1 inflammasome test-cells is also given. Evaluation of recent papers leads to the conclusion that the THP-1 cell line has unique characteristics as a model to investigate/estimate immune-modulating effects of compounds in both activated and resting conditions of the cells. Although the THP-1 response can hint to potential responses that might occur ex vivo or in vivo, these should be, however, validated by in vivo studies to draw more definite conclusions. Copyright © 2013. Published by Elsevier B.V.

  18. Fibronectin synthesized by a human hepatoma cell line

    International Nuclear Information System (INIS)

    Glasgow, J.E.; Colman, R.W.

    1984-01-01

    Fibronectin is a family of immunologically similar glycoproteins which mediate a variety of cell-cell and cell-substratum interactions. It is a constituent of the extracellular matrix of connective tissue and circulates in plasma. When suspension and adherent cultures of a human hepatoma cell line (SK-HEP-1) were incubated in serum-free medium, the resulting conditioned medium contained material which was specifically immunoprecipitated by antisera to human plasma fibronectin. By double immunodiffusion, a component in the conditioned culture medium was shown to form a line of identity with fibronectin in human plasma and to migrate as an alpha 2- to beta-globulin during immunoelectrophoresis. Human fibronectin was quantified in conditioned medium by electroimmunodiffusion, and was found to increase for at least three days at about 0.1 micrograms/10(6) cells/day. Adherent cultures of SK-HEP-1 cells were incubated with L-[ 35 S]methionine to label newly synthesized proteins. Labeled fibronectin in conditioned medium or in cell extracts comigrated with fibronectin in human plasma as shown by autoradiography following crossed-immunoelectrophoresis. Fibronectin was demonstrated in the extra-cellular matrix of adherent SK-HEP-1 cultures by immunofluorescence. It was shown previously that SK-HEP-1 cells synthesize alpha 1-protease inhibitor, one of the products of normal hepatocytes. The finding that these hepatoma cells also synthesize fibronectin supports the concept that the hepatocyte may be one source of circulating fibronectin, a possibility consistent with the established role of this cell type in blood plasma protein synthesis

  19. Sensitivity of breast cancer cell lines to recombinant thiaminase I.

    Science.gov (United States)

    Liu, Shuqian; Monks, Noel R; Hanes, Jeremiah W; Begley, Tadhg P; Yu, Hui; Moscow, Jeffrey A

    2010-05-01

    We have previously shown that the expression of the thiamine transporter THTR2 is decreased sevenfold in breast cancer, which may leave breast cancer cells vulnerable to acute thiamine starvation. This concept was supported by the observation that MDA231 breast cancer xenografts demonstrated growth inhibition in mice fed a thiamine-free diet. We purified recombinant Bacillus thiaminolyticus thiaminase I enzyme, which digests thiamine, to study acute thiamine starvation in breast cancer. Thiaminase I enzyme was cytotoxic in six breast cancer cell lines with IC(50)s ranging from 0.012 to 0.022 U/ml. The growth inhibitory effects of the combination of thiaminase I with either doxorubicin or paclitaxel were also examined. Over a wide range of drug concentrations, thiaminase 1 was consistently synergistic or additive with doxorubicin and paclitaxel in MCF-7, ZR75, HS578T and T47D cell lines, with most combinations having a calculated combination index (CI) of less than 0.8, indicating synergy. Although thiaminase I exposure did not stimulate the energy-sensing signaling kinases AKT, AMPK and GSK-3beta in MCF-7, ZR75, HS578T and T47D cell lines, thiaminase I exposure did stimulate expression of the ER stress response protein GRP78. In summary, thiaminase I is cytotoxic in breast cancer cell lines and triggers the unfolded protein response. These findings suggest that THTR2 down-regulation in breast tumors may present a nutritional vulnerability that could be exploited by thiaminase I enzyme therapy.

  20. Ribosomal protein S6 phosphorylation and morphological changes in response to the tumour promoter 12-O-tetradecanoylphorbol 13-acetate in primary human tumour cells, established and transformed cell lines

    DEFF Research Database (Denmark)

    Rance, A J; Thönnes, M; Issinger, O G

    1985-01-01

    lifespan (fibroblasts, primary human tumour cells) can be mimicked by unknown steps also associated with immortalization (establishment function) and the transformed state of the tumour cells. Another interesting observation were morphological changes of the established and SV40-transformed cells which...

  1. Caffeine markedly sensitizes human mesothelioma cell lines to pemetrexed

    Science.gov (United States)

    Min, Sang Hee; Goldman, I. David; Zhao, Rongbao

    2013-01-01

    Pemetrexed is a new generation antifolate approved for the treatment of mesothelioma and non-small cell lung cancer. Caffeine is known to augment radiation or chemotherapeutic drug-induced cell killing. The current study addresses the impact of caffeine on the activity of pemetrexed in mesothelioma cell lines. Caffeine enhanced pemetrexed activity in all four mesothelioma cell lines tested (H2052, H2373, H28 and MSTO-211H). Caffeine sensitized H2052 cells in a dose- and schedule-dependent manner, and was associated with a markedly decreased clonogenic survival. Caffeine sensitization occurred only in cells subjected to pulse, but not continuous, exposure to pemetrexed. Similar pemetrexed sensitization was also observed with the clinically better tolerated caffeine analog, theobromine. Pemetrexed sensitization by caffeine was associated with an increase in pemetrexed-induced phosphorylation of ataxia-telangiectasia-mutated (ATM) and Chk1. These data indicate that caffeine and its analog, theobromine, may be a useful approach to enhance pemetrexed-based chemotherapy. PMID:17594092

  2. Study of radiosensitization of chloroquine on esophageal cancer cell line

    International Nuclear Information System (INIS)

    Yuan Xiaoli; Li Tao; Huang Jianming; Zha Xiao; Deng Bifang; Lang Jinyi

    2014-01-01

    Objective: To investigate the possibility of chloroquine radiosensitization of esophageal cancer cell line TE-1 and its further mechanism. Methods: Effect of chloroquine on cell viability of TE-1 cells was determined by MTT method. Expression of LC3, Beclin-1 and formation of acidic vesicular organelles (AVOs) were determined by Western blot, and fluorescence staining with Lyso-Tracker Red DND-99, respectively. Clonogenic survival of TE-1 cells was examined by clonogenic forming assay. Results: Chloroquine showed dose-dependent inhibition of TE-1 cell growth, and its values of IC_5_0 and IC_1_0 were (72.33±5.28) and (15.42±3.33) μmol/L, respectively. The expression of Beclin-1 and LC3-II/I markedly increased in irradiated TE-1 cells. The addition of chloroquine with IC_1_0 concentration significantly reduced the fluorescence and intensity of AVOs accumulation in the cytoplasm of TE-1 cells. Clonogenic survival fraction decreased obviously in TE-1 cells with addition of chloroquine after radiation and the value of SERD0 was 1.439. Conclusions: Chloroquine could radiosensitize esophageal cancer cells by blocking autophagy-lysosomal pathway and be used as a potential radiosensitizing strategy. (authors)

  3. Derivation of novel genetically diverse human embryonic stem cell lines.

    Science.gov (United States)

    Stefanova, Valentina T; Grifo, James A; Hansis, Christoph

    2012-06-10

    Human embryonic stem cells (hESCs) have the potential to revolutionize many biomedical fields ranging from basic research to disease modeling, regenerative medicine, drug discovery, and toxicity testing. A multitude of hESC lines have been derived worldwide since the first 5 lines by Thomson et al. 13 years ago, but many of these are poorly characterized, unavailable, or do not represent desired traits, thus making them unsuitable for application purposes. In order to provide the scientific community with better options, we have derived 12 new hESC lines at New York University from discarded genetically normal and abnormal embryos using the latest techniques. We examined the genetic status of the NYUES lines in detail as well as their molecular and cellular features and DNA fingerprinting profile. Furthermore, we differentiated our hESCs into the tissues most affected by a specific condition or into clinically desired cell types. To our knowledge, a number of characteristics of our hESCs have not been previously reported, for example, mutation for alpha thalassemia X-linked mental retardation syndrome, linkage to conditions with a genetic component such as asthma or poor sperm morphology, and novel combinations of ethnic backgrounds. Importantly, all of our undifferentiated euploid female lines tested to date did not show X chromosome inactivation, believed to result in superior potency. We continue to derive new hESC lines and add them to the NIH registry and other registries. This should facilitate the use of our hESCs and lead to advancements for patient-benefitting applications.

  4. Human primary erythroid cells as a more sensitive alternative in vitro hematological model for nanotoxicity studies: Toxicological effects of silver nanoparticles.

    Science.gov (United States)

    Rujanapun, Narawadee; Aueviriyavit, Sasitorn; Boonrungsiman, Suwimon; Rosena, Apiwan; Phummiratch, Duangkamol; Riolueang, Suchada; Chalaow, Nipon; Viprakasit, Vip; Maniratanachote, Rawiwan

    2015-12-01

    Although immortalized cells established from cancerous cells have been widely used for studies in nanotoxicology studies, the reliability of the results derived from immortalized cells has been questioned because of their different characteristics from normal cells. In the present study, human primary erythroid cells in liquid culture were used as an in vitro hematological cell model for investigation of the nanotoxicity of silver nanoparticles (AgNPs) and comparing the results to the immortalized hematological cell lines HL60 and K562. The AgNPs caused significant cytotoxic effects in the primary erythroid cells, as shown by the decreased cell viability and induction of intracellular ROS generation and apoptosis, whereas they showed much lower cytotoxic and apoptotic effects in HL60 and K562 cells and did not induced ROS generation in these cell lines. Scanning electron microcopy revealed an interaction of AgNPs to the cell membrane in both primary erythroid and immortalized cells. In addition, AgNPs induced hemolysis in the primary erythroid cells in a dose-dependent manner, and transmission electron microcopy analysis revealed that AgNPs damaged the erythroid cell membrane. Taken together, these results suggest that human primary erythroid cells in liquid culture are a more sensitive alternative in vitro hematological model for nanotoxicology studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses.

    Science.gov (United States)

    Furusawa, Tadashi; Ohkoshi, Katsuhiro; Kimura, Koji; Matsuyama, Shuichi; Akagi, Satoshi; Kaneda, Masahiro; Ikeda, Mitsumi; Hosoe, Misa; Kizaki, Keiichiro; Tokunaga, Tomoyuki

    2013-08-01

    Bovine embryonic stem (ES) cells have the potential to provide significant benefits in a range of agricultural and biomedical applications. Here, we employed a combination of conventional methods using glycogen synthase kinase 3 and mitogen-activated protein kinase inhibitors to establish ES cell lines from in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) bovine embryos. Five male cell lines were established from IVF embryos, and two female and three male cell lines from SCNT blastocysts; we named these lines bovine ES cell-like cells (bESLCs). The lines exhibited dome-shaped colonies, stained positively for alkaline phosphatase, and expressed pluripotent stem cell markers such as POU5F1, SOX2, and SSEA-1. The expression levels of these markers, especially for NANOG, varied among the cell lines. A DNA methylation assay showed the POU5F1 promoter region was hypomethylated compared to fibroblast cells. An in vitro differentiation assay showed that endoderm and ectoderm marker genes, but not mesoderm markers, were upregulated in differentiating bESLCs. To examine bESLCs in later embryonic stages, we created 22 chimeric blastocysts with a male bESLC line carrying a GFP marker gene and transferred these to a recipient cow. Four chimeric embryos were subsequently retrieved on Day 13 and retransferred to two recipient cows. One living fetus was obtained at Day 62. GFP signals were not identified in fetal cells by fluorescence microscopy; however, genomic PCR analysis detected the GFP gene in major organs. Clusters of GFP-positive cells were observed in amniotic membranes, suggesting that bESLCs can be categorized as a novel type of ICM-derived cells that can potentially differentiate into epiblast and hypoblast lineages.

  6. Generation, isolation, and maintenance of rodent mast cells and mast cell lines

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Swindle, Emily J; Iwaki, Shoko

    2006-01-01

    Antigen-mediated mast cell activation, with subsequent mediator release, is a major initiator of the inflammatory allergic response associated with such conditions as asthma. A comprehensive understanding of the principles involved in this process therefore is key to the development of novel...... therapies for the treatment of these disease states. In vitro models of mast cell function have allowed significant progress to be made in the recognition of the fundamental principles of mast cell activation via the high-affinity IgE receptor (FcvarepsilonRI) and, more recently, other receptors expressed...... on mast cells. In addition to human mast cells, the major cell culture systems employed to investigate these responses are rat and mouse peritoneal mast cells, mouse bone-marrow-derived mast cells, the rat basophilic leukemia cell line RBL-2H3, and the mouse MC/9 mast cell line. In this unit, we describe...

  7. CD40 expression in Wehi-164 cell line

    OpenAIRE

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-01-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body’s defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein ex...

  8. Destabilization of Akt Promotes the Death of Myeloma Cell Lines

    Directory of Open Access Journals (Sweden)

    Yanan Zhang

    2014-01-01

    Full Text Available Constitutive activation of Akt is believed to be an oncogenic signal in multiple myeloma and is associated with poor patient prognosis and resistance to available treatment. The stability of Akt proteins is regulated by phosphorylating the highly conserved turn motif (TM of these proteins and the chaperone protein HSP90. In this study we investigate the antitumor effects of inhibiting mTORC2 plus HSP90 in myeloma cell lines. We show that chronic exposure of cells to rapamycin can inhibit mTORC2 pathway, and AKT will be destabilized by administration of the HSP90 inhibitor 17-allylamino-geldanamycin (17-AAG. Finally, we show that the rapamycin synergizes with 17-AAG and inhibits myeloma cells growth and promotes cell death to a greater extent than either drug alone. Our studies provide a clinical rationale of use mTOR inhibitors and chaperone protein inhibitors in combination regimens for the treatment of human blood cancers.

  9. RBE of neutrons for induction of cell reproductive death and chromosome aberrations in three cell lines

    International Nuclear Information System (INIS)

    Zoetelief, J.; Kuijpers, W.C.; Baten-Wittwer, A.; Barendsen, G.W.

    1983-01-01

    The authors have compared the RBE values for induction of dicentrics and centric rings with those for cell inactivation and with the mean or effective quality factors (Q) recommended for radiation protection. The induction of cell reproductive death and chromosome aberrations has been investigated in plateau phase cultures of established lines of a rat rhabdomyosarcoma, a rat ureter carcinoma and Chinese hamster cells for single doses of 300 kV X-rays and 0.5, 4.2 and 15 MeV neutrons. The different cell lines show considerable variations in sensitivity and the RBE values obtained are presented in tabular form. The mean RBE values for the rat rhabdomyosarcoma cells are lower than those for the other two relatively resistant cell lines. Those for the Chinese hamster cells extrapolated to levels according to low doses of X-rays are in good agreement with the quoted Q values. (Auth./C.F.)

  10. Modelling cell population growth with applications to cancer therapy in human tumour cell lines.

    Science.gov (United States)

    Basse, Britta; Baguley, Bruce C; Marshall, Elaine S; Wake, Graeme C; Wall, David J N

    2004-01-01

    In this paper we present an overview of the work undertaken to model a population of cells and the effects of cancer therapy. We began with a theoretical one compartment size structured cell population model and investigated its asymptotic steady size distributions (SSDs) (On a cell growth model for plankton, MMB JIMA 21 (2004) 49). However these size distributions are not similar to the DNA (size) distributions obtained experimentally via the flow cytometric analysis of human tumour cell lines (data obtained from the Auckland Cancer Society Research Centre, New Zealand). In our one compartment model, size was a generic term, but in order to obtain realistic steady size distributions we chose size to be DNA content and devised a multi-compartment mathematical model for the cell division cycle where each compartment corresponds to a distinct phase of the cell cycle (J. Math. Biol. 47 (2003) 295). We then incorporated another compartment describing the possible induction of apoptosis (cell death) from mitosis phase (Modelling cell death in human tumour cell lines exposed to anticancer drug paclitaxel, J. Math. Biol. 2004, in press). This enabled us to compare our model to flow cytometric data of a melanoma cell line where the anticancer drug, paclitaxel, had been added. The model gives a dynamic picture of the effects of paclitaxel on the cell cycle. We hope to use the model to describe the effects of other cancer therapies on a number of different cell lines. Copyright 2004 Elsevier Ltd.

  11. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines.

    Science.gov (United States)

    Emadi Baygi, Modjtaba; Soheili, Zahra Soheila; Schmitz, Ingo; Sameie, Shahram; Schulz, Wolfgang A

    2010-12-01

    The epithelial-mesenchymal transition (EMT) is regarded as an important step in cancer metastasis. Snail, a master regulator of EMT, has been recently proposed to act additionally as a cell survival factor and inducer of motility. We have investigated the function of Snail (SNAI1) in prostate cancer cells by downregulating its expression via short (21-mer) interfering RNA (siRNA) and measuring the consequences on EMT markers, cell viability, death, cell cycle, senescence, attachment, and invasivity. Of eight carcinoma cell lines, the prostate carcinoma cell lines LNCaP and PC-3 showed the highest and moderate expression of SNAI1 mRNA, respectively, as measured by quantitative RT-PCR. Long-term knockdown of Snail induced a severe decline in cell numbers in LNCaP and PC-3 and caspase activity was accordingly enhanced in both cell lines. In addition, suppression of Snail expression induced senescence in LNCaP cells. SNAI1-siRNA-treated cells did not tolerate detachment from the extracellular matrix, probably due to downregulation of integrin α6. Expression of E-cadherin, vimentin, and fibronectin was also affected. Invasiveness of PC-3 cells was not significantly diminished by Snail knockdown. Our data suggest that Snail acts primarily as a survival factor and inhibitor of cellular senescence in prostate cancer cell lines. We therefore propose that Snail can act as early driver of prostate cancer progression.

  12. Colony, hanging drop, and methylcellulose three dimensional hypoxic growth optimization of renal cell carcinoma cell lines.

    Science.gov (United States)

    Matak, Damian; Brodaczewska, Klaudia K; Lipiec, Monika; Szymanski, Łukasz; Szczylik, Cezary; Czarnecka, Anna M

    2017-08-01

    Renal cell carcinoma (RCC) is the most lethal of the common urologic malignancies, comprising 3% of all human neoplasms, and the incidence of kidney cancer is rising annually. We need new approaches to target tumor cells that are resistant to current therapies and that give rise to recurrence and treatment failure. In this study, we focused on low oxygen tension and three-dimensional (3D) cell culture incorporation to develop a new RCC growth model. We used the hanging drop and colony formation methods, which are common in 3D culture, as well as a unique methylcellulose (MC) method. For the experiments, we used human primary RCC cell lines, metastatic RCC cell lines, human kidney cancer stem cells, and human healthy epithelial cells. In the hanging drop assay, we verified the potential of various cell lines to create solid aggregates in hypoxic and normoxic conditions. With the semi-soft agar method, we also determined the ability of various cell lines to create colonies under different oxygen conditions. Different cell behavior observed in the MC method versus the hanging drop and colony formation assays suggests that these three assays may be useful to test various cell properties. However, MC seems to be a particularly valuable alternative for 3D cell culture, as its higher efficiency of aggregate formation and serum independency are of interest in different areas of cancer biology.

  13. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    Science.gov (United States)

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research. © The Author(s) 2014.

  14. Expression of cadherin and NCAM in human small cell lung cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Møller, C; Bock, E

    1992-01-01

    characterised, the cadherin family and the Ig superfamily member, neural cell adhesion molecule (NCAM). We investigated expression of these two adhesion molecule families in small cell lung cancer (SCLC) cell lines and xenografts by immunoblotting. Nineteen tumours established from 15 patients with SCLC were......Tumour cell adhesion, detachment and aggregation seem to play an important part in tumour invasion and metastasis, and numerous cell adhesion molecules are expressed by tumour cells. Several families of cell-cell adhesion molecules have been described, of which two groups are particularly well...... embryonic development, which may play a role in connection with tumour invasion and metastasis, was found in 14/18 NCAM expressing SCLC tumours. Individual tumours grown as cell lines and as nude mouse xenografts showed no qualitative differences in cadherin or NCAM expression....

  15. Assessment of citalopram and escitalopram on neuroblastoma cell lines: Cell toxicity and gene modulation

    Science.gov (United States)

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-01-01

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (pescitalopram. PMID:28467792

  16. Assessment of citalopram and escitalopram on neuroblastoma cell lines. Cell toxicity and gene modulation.

    Science.gov (United States)

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-06-27

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (pescitalopram.

  17. Establishment of a novel human medulloblastoma cell line characterized by highly aggressive stem-like cells.

    Science.gov (United States)

    Silva, Patrícia Benites Gonçalves da; Rodini, Carolina Oliveira; Kaid, Carolini; Nakahata, Adriana Miti; Pereira, Márcia Cristina Leite; Matushita, Hamilton; Costa, Silvia Souza da; Okamoto, Oswaldo Keith

    2016-08-01

    Medulloblastoma is a highly aggressive brain tumor and one of the leading causes of morbidity and mortality related to childhood cancer. These tumors display differential ability to metastasize and respond to treatment, which reflects their high degree of heterogeneity at the genetic and molecular levels. Such heterogeneity of medulloblastoma brings an additional challenge to the understanding of its physiopathology and impacts the development of new therapeutic strategies. This translational effort has been the focus of most pre-clinical studies which invariably employ experimental models using human tumor cell lines. Nonetheless, compared to other cancers, relatively few cell lines of human medulloblastoma are available in central repositories, partly due to the rarity of these tumors and to the intrinsic difficulties in establishing continuous cell lines from pediatric brain tumors. Here, we report the establishment of a new human medulloblastoma cell line which, in comparison with the commonly used and well-established cell line Daoy, is characterized by enhanced proliferation and invasion capabilities, stem cell properties, increased chemoresistance, tumorigenicity in an orthotopic metastatic model, replication of original medulloblastoma behavior in vivo, strong chromosome structural instability and deregulation of genes involved in neural development. These features are advantageous for designing biologically relevant experimental models in clinically oriented studies, making this novel cell line, named USP-13-Med, instrumental for the study of medulloblastoma biology and treatment.

  18. Characterization of cell lines stably transfected with rubella virus replicons

    International Nuclear Information System (INIS)

    Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K.

    2012-01-01

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was ∼9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  19. Characterization of cell lines stably transfected with rubella virus replicons

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Wen-Pin; Xu, Jie [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States); Frey, Teryl K., E-mail: tfrey@gsu.edu [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States)

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  20. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Itoigawa, Yoshiaki [Tohoku University School of Medicine, Sendai (Japan); Juntendo University School of Medicine, Tokyo (Japan); Kishimoto, Koshi N., E-mail: kishimoto@med.tohoku.ac.jp [Tohoku University School of Medicine, Sendai (Japan); Okuno, Hiroshi; Sano, Hirotaka [Tohoku University School of Medicine, Sendai (Japan); Kaneko, Kazuo [Juntendo University School of Medicine, Tokyo (Japan); Itoi, Eiji [Tohoku University School of Medicine, Sendai (Japan)

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes. We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.

  1. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped...... for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  2. In Barrett's esophagus patients and Barrett's cell lines, ursodeoxycholic acid increases antioxidant expression and prevents DNA damage by bile acids.

    Science.gov (United States)

    Peng, Sui; Huo, Xiaofang; Rezaei, Davood; Zhang, Qiuyang; Zhang, Xi; Yu, Chunhua; Asanuma, Kiyotaka; Cheng, Edaire; Pham, Thai H; Wang, David H; Chen, Minhu; Souza, Rhonda F; Spechler, Stuart Jon

    2014-07-15

    Hydrophobic bile acids like deoxycholic acid (DCA), which cause oxidative DNA damage and activate NF-κB in Barrett's metaplasia, might contribute to carcinogenesis in Barrett's esophagus. We have explored mechanisms whereby ursodeoxycholic acid (UDCA, a hydrophilic bile acid) protects against DCA-induced injury in vivo in patients and in vitro using nonneoplastic, telomerase-immortalized Barrett's cell lines. We took biopsies of Barrett's esophagus from 21 patients before and after esophageal perfusion with DCA (250 μM) at baseline and after 8 wk of oral UDCA treatment. DNA damage was assessed by phospho-H2AX expression, neutral CometAssay, and phospho-H2AX nuclear foci formation. Quantitative PCR was performed for antioxidants including catalase and GPX1. Nrf2, catalase, and GPX1 were knocked down with siRNAs. Reporter assays were performed using a plasmid construct containing antioxidant responsive element. In patients, baseline esophageal perfusion with DCA significantly increased phospho-H2AX and phospho-p65 in Barrett's metaplasia. Oral UDCA increased GPX1 and catalase levels in Barrett's metaplasia and prevented DCA perfusion from inducing DNA damage and NF-κB activation. In cells, DCA-induced DNA damage and NF-κB activation was prevented by 24-h pretreatment with UDCA, but not by mixing UDCA with DCA. UDCA activated Nrf2 signaling to increase GPX1 and catalase expression, and protective effects of UDCA pretreatment were blocked by siRNA knockdown of these antioxidants. UDCA increases expression of antioxidants that prevent toxic bile acids from causing DNA damage and NF-κB activation in Barrett's metaplasia. Elucidation of this molecular pathway for UDCA protection provides rationale for clinical trials on UDCA for chemoprevention in Barrett's esophagus. Copyright © 2014 the American Physiological Society.

  3. Characterisation of Signalling by the Endogenous GPER1 (GPR30 Receptor in an Embryonic Mouse Hippocampal Cell Line (mHippoE-18.

    Directory of Open Access Journals (Sweden)

    Nicholas J Evans

    Full Text Available Estrogen can modulate neuronal development and signalling by both genomic and non-genomic pathways. Many of its rapid, non-genomic effects on nervous tissue have been suggested to be mediated via the activation of the estrogen sensitive G-protein coupled receptor (GPER1 or GPR30. There has been much controversy over the cellular location, signalling properties and endogenous activators of GPER1. Here we describe the pharmacology and signalling properties of GPER1 in an immortalized embryonic hippocampal cell line, mHippoE-18. This cell line does not suffer from the inherent problems associated with the study of this receptor in native tissue or the problems associated with heterologously expression in clonal cell lines. In mHippoE-18 cells, 17β-Estradiol can mediate a dose-dependent rapid potentiation of forskolin-stimulated cyclic AMP levels but does not appear to activate the ERK1/2 pathway. The effect of 17β-Estradiol can be mimicked by the GPER1 agonist, G1, and also by tamoxifen and ICI 182,780 which activate GPER1 in a variety of other preparations. The response is not mimicked by the application of the classical estrogen receptor agonists, PPT, (an ERα agonist or DPN, (an ERβ agonist, further suggesting that this effect of 17β-Estradiol is mediated through the activation of GPER1. However, after exposure of the cells to the GPER1 specific antagonists, G15 and G36, the stimulatory effects of the above agonists are replaced by dose-dependent inhibitions of forskolin-stimulated cyclic AMP levels. This inhibitory effect is mimicked by aldosterone in a dose-dependent way even in the absence of the GPER1 antagonists. The results are discussed in terms of possible "Biased Antagonism" whereby the antagonists change the conformation of the receptor resulting in changes in the agonist induced coupling of the receptor to different second messenger pathways.

  4. Ectopically hTERT expressing adult human mesenchymal stem cells are less radiosensitive than their telomerase negative counterpart

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Christensen, Rikke; Graakjaer, Jesper

    2007-01-01

    -detected alkaline DNA unwinding assay together with Western blot analyses for phosphorylated H2AX and Q-FISH was applied for investigation of telomeric damage. Our results indicate that hMSC and TERT-immortalized hMSCs can cope with relatively high doses of gamma-rays and that overall DNA repair is similar...... in the two cell lines. The telomeres were extensively destroyed after irradiation in both cell types suggesting that telomere caps are especially sensitive to radiation. The TERT-immortalized hMSCs showed higher stability at telomeric regions than primary hMSCs indicating that cells with long telomeres...

  5. Radiation-induced apoptosis and cell cycle checkpoints in human colorectal tumour cell lines

    International Nuclear Information System (INIS)

    Playle, L.C.

    2001-03-01

    The p53 tumour suppressor gene is mutated in 75% of colorectal carcinomas and is critical for DNA damage-induced G1 cell cycle arrest. Data presented in this thesis demonstrate that after treatment with Ionizing Radiation (IR), colorectal tumour cell lines with mutant p53 are unable to arrest at G1 and undergo cell cycle arrest at G2. The staurosporine derivative, UCN-01, was shown to abrogate the IR-induced G2 checkpoint in colorectal tumour cell lines. Furthermore, in some cell lines, abrogation of the G2 checkpoint was associated with radiosensitisation. Data presented in this study demonstrate that 2 out of 5 cell lines with mutant p53 were sensitised to IR by UCN-01. In order to determine whether radiosensitisation correlated with lack of functional p53, transfected derivatives of an adenoma-derived cell line were studied, in which endogenous wild type p53 was disrupted by expression of a dominant negative p53 mutant protein (and with a vector control). In both these cell lines UCN-01 abrogated the G2 arrest however this was not associated with radiosensitisation, indicating that radiosensitisation is a cell type-specific phenomenon. Although 2 colorectal carcinoma cell lines, with mutant p53, were sensitised to IR by UCN-01, the mechanisms of p53-independent IR-induced apoptosis in the colon are essentially unknown. The mitogen-activated protein kinase (MAPK) pathways (that is the JNK, p38 and ERK pathways) have been implicated in apoptosis in a range of cell systems and in IR-induced apoptosis in some cell types. Data presented in this study show that, although the MAPKs can be activated by the known activator anisomycin, there is no evidence of a role for MAPKs in IR-induced apoptosis in colorectal tumour cell lines, regardless of p53 status. In summary, some colorectal tumour cell lines with mutant p53 can be sensitised to IR-induced cell death by G2 checkpoint abrogation and this may be an important treatment strategy, however mechanisms of IR-induced p53

  6. Intrinsic radiosensitivity and PLD repair in osteosarcoma cell lines

    International Nuclear Information System (INIS)

    Sugimoto, M.; Toguchida, J.; Kotoura, Y.; Yamamuro, T.; Utsumi, H.

    1992-01-01

    The response to radiation of seven osteosarcoma cell lines was analysed by in vitro colony-forming assay and compared with that of eight human fibroblast strains. The values of D 0 , the surviving fraction after 2 Gy (S2Gy), and the mean inactivation dose (D-bar) of osteosarcoma cells in log-phase culture were significantly higher than those of fibroblast strains (p<0.01). PLD (potentially lethal damage) repair of osteosarcoma cells evaluated in the plateau phase of growth showed great variation for enhancement of survival, although all of the values were maximised within 12 h after irradiation. In the osteosarcoma, intrinsic radiosensitivity in vitro reflected the clinical response to radiation. However, the capacity for PLD repair might not be a good indicator for predicting the results of radiation therapy. (author)

  7. UV light blocks EGFR signalling in human cancer cell lines

    DEFF Research Database (Denmark)

    Olsen, BB; Neves-Petersen, M T; Klitgaard, S

    2007-01-01

    UV light excites aromatic residues, causing these to disrupt nearby disulphide bridges. The EGF receptor is rich in aromatic residues near the disulphide bridges. Herein we show that laser-pulsed UV illumination of two different skin-derived cancer cell lines i.e. Cal-39 and A431, which both...... antibodies. There was a threshold level, below which the receptor could not be blocked. In addition, illumination caused the cells to upregulate the cyclin-dependent kinase inhibitor p21WAF1, irrespective of the p53 status. Since the EGF receptor is often overexpressed in cancers and other proliferative skin...... disorders, it might be possible to significantly reduce the proliferative potential of these cells making them good targets for laser-pulsed UV light treatment....

  8. Serum depletion induces changes in protein expression in the trophoblast-derived cell line HTR-8/SVneo.

    Science.gov (United States)

    Novoa-Herran, Susana; Umaña-Perez, Adriana; Canals, Francesc; Sanchez-Gomez, Myriam

    2016-01-01

    How nutrition and growth factor restriction due to serum depletion affect trophoblast function remains poorly understood. We performed a proteomic differential study of the effects of serum depletion on a first trimester human immortalized trophoblast cell line. The viability of HTR-8/SVneo trophoblast cells in culture with 0, 0.5 and 10 % fetal bovine serum (FBS) were assayed via MTT at 24, 48 and 64 h. A comparative proteomic analysis of the cells grown with those FBS levels for 24 h was performed using two-dimensional electrophoresis (2DE), followed by mass spectrometry for protein spot identification, and a database search and bioinformatics analysis of the expressed proteins. Differential spots were identified using the Kolmogorov-Smirnov test ( n  = 3, significance level 0.10, D > 0.642) and/or ANOVA ( n  = 3, p  depletion differentially affect cell growth and protein expression. Differential expression was seen in 25 % of the protein spots grown with 0.5 % FBS and in 84 % of those grown with 0 % FBS, using 10 % serum as the physiological control. In 0.5 % FBS, this difference was related with biological processes typically affected by the serum, such as cell cycle, regulation of apoptosis and proliferation. In addition to these changes, in the serum-depleted proteome we observed downregulation of keratin 8, and upregulation of vimentin, the glycolytic enzymes enolase and pyruvate kinase (PKM2) and tumor progression-related inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) enzyme. The proteins regulated by total serum depletion, but not affected by growth in 0.5 % serum, are members of the glycolytic and nucleotide metabolic pathways and the epithelial-to-mesenchymal transition (EMT), suggesting an adaptive switch characteristic of malignant cells. This comparative proteomic analysis and the identified proteins are the first evidence of a protein expression response to serum depletion in a trophoblast cell model. Our results show that

  9. Spontaneous lung metastasis formation of human Merkel cell carcinoma cell lines transplanted into scid mice.

    Science.gov (United States)

    Knips, Jill; Czech-Sioli, Manja; Spohn, Michael; Heiland, Max; Moll, Ingrid; Grundhoff, Adam; Schumacher, Udo; Fischer, Nicole

    2017-07-01

    Merkel cell carcinoma (MCC) is an aggressive skin cancer entity that frequently leads to rapid death due to its high propensity to metastasize. The etiology of most MCC cases is linked to Merkel cell polyomavirus (MCPyV), a virus which is monoclonally integrated in up to 95% of tumors. While there are presently no animal models to study the role of authentic MCPyV infection on transformation, tumorigenesis or metastasis formation, xenograft mouse models employing engrafted MCC-derived cell lines (MCCL) represent a promising approach to study certain aspects of MCC pathogenesis. Here, the two MCPyV-positive MCC cell lines WaGa and MKL-1 were subcutaneously engrafted in scid mice. Engraftment of both MCC cell lines resulted in the appearance of circulating tumor cells and metastasis formation, with WaGa-engrafted mice showing a significantly shorter survival time as well as increased numbers of spontaneous lung metastases compared to MKL-1 mice. Interestingly, explanted tumors compared to parental cell lines exhibit an upregulation of MCPyV sT-Antigen expression in all tumors, with WaGa tumors showing significantly higher sT-Antigen expression than MKL-1 tumors. RNA-Seq analysis of explanted tumors and parental cell lines furthermore revealed that in the more aggressive WaGa tumors, genes involved in inflammatory response, growth factor activity and Wnt signalling pathway are significantly upregulated, suggesting that sT-Antigen is the driver of the observed differences in metastasis formation. © 2017 UICC.

  10. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.

    Science.gov (United States)

    Fan, Lianchun; Kadura, Ibrahim; Krebs, Lara E; Hatfield, Christopher C; Shaw, Margaret M; Frye, Christopher C

    2012-04-01

    Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high-producing clones among a large population of low- and non-productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)-based methotrexate (MTX) selection and glutamine synthetase (GS)-based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS-CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L-MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS-knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (∼2%) of bi-allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine-dependent growth of all GS-knockout cell lines. Full evaluation of the GS-knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two- to three-fold through the use of GS-knockout cells as parent cells. The selection stringency was

  11. Validation of an immortalized human (hBMEC) in vitro blood-brain barrier model.

    Science.gov (United States)

    Eigenmann, Daniela Elisabeth; Jähne, Evelyn Andrea; Smieško, Martin; Hamburger, Matthias; Oufir, Mouhssin

    2016-03-01

    We recently established and optimized an immortalized human in vitro blood-brain barrier (BBB) model based on the hBMEC cell line. In the present work, we validated this mono-culture 24-well model with a representative series of drug substances which are known to cross or not to cross the BBB. For each individual compound, a quantitative UHPLC-MS/MS method in Ringer HEPES buffer was developed and validated according to current regulatory guidelines, with respect to selectivity, precision, and reliability. Various biological and analytical challenges were met during method validation, highlighting the importance of careful method development. The positive controls antipyrine, caffeine, diazepam, and propranolol showed mean endothelial permeability coefficients (P e) in the range of 17-70 × 10(-6) cm/s, indicating moderate to high BBB permeability when compared to the barrier integrity marker sodium fluorescein (mean P e 3-5 × 10(-6) cm/s). The negative controls atenolol, cimetidine, and vinblastine showed mean P e values < 10 × 10(-6) cm/s, suggesting low permeability. In silico calculations were in agreement with in vitro data. With the exception of quinidine (P-glycoprotein inhibitor and substrate), BBB permeability of all control compounds was correctly predicted by this new, easy, and fast to set up human in vitro BBB model. Addition of retinoic acid and puromycin did not increase transendothelial electrical resistance (TEER) values of the BBB model.

  12. 'Immortal' energy systems and intergenerational justice

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1985-01-01

    Some critics of our technological society have asserted that we are leaving a legacy of problems for our descendants - in the shape, for example, of CO 2 pollution of the atmosphere and radioactive waste. The author argues that if some of our power generation systems turn out to be near 'immortal', with lives much longer than their book lives, on the contrary, great benefits may be bequeathed to our successors - in fully amortized plant with very low running costs. There are examples in history of similar benefits conferred by dams built hundreds of years ago but which still serve useful purposes today. (author)

  13. Functional somatostatin receptors on a rat pancreatic acinar cell line

    International Nuclear Information System (INIS)

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.; Clerc, P.; Logsdon, C.; Svoboda, M.; Susini, C.; Vaysse, N.; Ribet, A.

    1988-01-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of 125 I-[Tyr 11 ]Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 ± 20 fmol/10 6 cells. Somatostatin receptor structure was analyzed by covalently cross-linking 125 I-[Tyr 11 ]somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N i to inhibit adenylate cyclase

  14. New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines.

    Directory of Open Access Journals (Sweden)

    Andreas Krieg

    Full Text Available Recently, a novel WHO-classification has been introduced that divided gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN according to their proliferation index into G1- or G2-neuroendocrine tumors (NET and poorly differentiated small-cell or large-cell G3-neuroendocrine carcinomas (NEC. Our knowledge on primary NECs of the GEP-system is limited due to the rarity of these tumors and chemotherapeutic concepts of highly aggressive NEC do not provide convincing results. The aim of this study was to establish a reliable cell line model for NEC that could be helpful in identifying novel druggable molecular targets. Cell lines were established from liver (NEC-DUE1 or lymph node metastases (NEC-DUE2 from large cell NECs of the gastroesophageal junction and the large intestine, respectively. Morphological characteristics and expression of neuroendocrine markers were extensively analyzed. Chromosomal aberrations were mapped by array comparative genomic hybridization and DNA profiling was analyzed by DNA fingerprinting. In vitro and in vivo tumorigenicity was evaluated and the sensitivity against chemotherapeutic agents assessed. Both cell lines exhibited typical morphological and molecular features of large cell NEC. In vitro and in vivo experiments demonstrated that both cell lines retained their malignant properties. Whereas NEC-DUE1 and -DUE2 were resistant to chemotherapeutic drugs such as cisplatin, etoposide and oxaliplatin, a high sensitivity to 5-fluorouracil was observed for the NEC-DUE1 cell line. Taken together, we established and characterized the first GEP large-cell NEC cell lines that might serve as a helpful tool not only to understand the biology of these tumors, but also to establish novel targeted therapies in a preclinical setup.

  15. Metabolic characterization of invaded cells of the pancreatic cancer cell line, PANC?1

    OpenAIRE

    Fujita, Mayumi; Imadome, Kaori; Imai, Takashi

    2017-01-01

    We previously reported that about 0.4% of cells in the cultured human pancreatic cancer cell line, PANC?1, can invade matrigel during the transwell invasion assay, suggesting that these invaded PANC?1 cells may have specific characteristics to keep their invasive potential. To identify the metabolic characterization specific in the invaded PANC?1 cells, metabolome analysis of the invaded PANC?1 compared with the whole cultured PANC?1 was performed using CE?TOFMS, and concentrations of 110 met...

  16. Recommendation of short tandem repeat profiling for authenticating human cell lines, stem cells, and tissues

    OpenAIRE

    Barallon, Rita; Bauer, Steven R.; Butler, John; Capes-Davis, Amanda; Dirks, Wilhelm G.; Elmore, Eugene; Furtado, Manohar; Kline, Margaret C.; Kohara, Arihiro; Los, Georgyi V.; MacLeod, Roderick A. F.; Masters, John R. W.; Nardone, Mark; Nardone, Roland M.; Nims, Raymond W.

    2010-01-01

    Cell misidentification and cross-contamination have plagued biomedical research for as long as cells have been employed as research tools. Examples of misidentified cell lines continue to surface to this day. Efforts to eradicate the problem by raising awareness of the issue and by asking scientists voluntarily to take appropriate actions have not been successful. Unambiguous cell authentication is an essential step in the scientific process and should be an inherent consideration during peer...

  17. TRANSPLANTATION AND POTENTIAL IMMORTALITY OF MAMMALIAN TISSUES.

    Science.gov (United States)

    Loeb, L

    1926-06-20

    1. Serial transplantation of tumors made it possible in 1901 and following years to draw the conclusion that various mammalian tissues have potential immortality. Serial transplantations of normal tissues did not succeed at first, because the homoioreaction on the part of the lymphocytes and connective tissue of the host injures the transplant. 2. In continuation of these experiments we found that cartilage of the rat can be transplanted serially to other rats at least for a period of 3 years. At the end of that time great parts of the transplanted cartilage and perichondrium are alive. 3. Not only the cartilage of young rats can be homoiotransplanted, but also the cartilage of very old rats which are nearing the end of life. By using such animals we have been able to obtain cartilage and perichondrium approaching an age of 6 years which is almost double the average age of a rat. 4. We found that cartilage can be homoiotransplanted more readily than other tissues for the following reasons: (a) While in principle the homoioreaction towards cartilage is the same as against other tissues, cartilage elicits this reaction with less intensity; (b) cartilage is better able to resist the invasion of lymphocytes and connective tissue than the majority of other tissues; (c) a gradual adaptation between transplant and host seems to take place in the case of cartilage transplantation, as a result of which the lymphocytic reaction on the part of the host tissue decreases progressively the longer the cartilage is kept in the strange host. 5. At time of examination we not only found living transplanted cartilage tissue, but also perichondrial tissue, which in response to a stimulus apparently originating in the necrotic central cartilage, had been proliferating and replacing it. These results suggest that it may perhaps be possible under favorable conditions to keep cartilage alive indefinitely through serial transplantations. 6. At the same time these experiments permit the

  18. Inhibition of Zoledronic Acid on Cell Proliferation and Invasion of Lung Cancer Cell Line 95D

    Directory of Open Access Journals (Sweden)

    Mingming LI

    2009-03-01

    Full Text Available Background and objective Abnormal proliferation and metastasis is the basic characteristic of malignant tumors. The aim of this work is to explore the effects of zoledronic acid on cell proliferation and invasion in lung cancer cell line 95D. Methods The effect of zoledrnic acid (ZOL on proliferation of lung cancer cell line 95D was detected by MTT. The expression of proliferation and invasion-relation genes and proteins were detected by Western blot, RT-PCR and immunofluorescence. Changes of invasion of lung cancer cell numbers were measured by polycarbonates coated with Matrigel. Results ZOL could inhibit the proliferation of lung cancer cell line 95D in vitro in a time-dependant and a dose-dependant manner. With time extending after ZOL treated, the mRNA expresion of VEGF, MMP9, MMP2 and protein expression of VEGF, MMP9, ERK1/ ERK2 were decreased. The results of Tanswell invasion showed the numbers of invasive cells were significantly reduced in 95D cells treated with ZOL 4 d and 6 d later. Conclusion ZOL could inhibit cell proliferation and invasion of lung cancer cell line 95D.

  19. Sourcing human embryos for embryonic stem cell lines: Problems & perspectives

    Directory of Open Access Journals (Sweden)

    Rajvi H Mehta

    2014-01-01

    Full Text Available The ability to successfully derive human embryonic stem cells (hESC lines from human embryos following in vitro fertilization (IVF opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been ′discarded′ or ′spare′ fresh or frozen human embryos following IVF. It is a common practice to stimulate the ovaries of women undergoing any of the assisted reproductive technologies (ART and retrieve multiple oocytes which subsequently lead to multiple embryos. Of these, only two or maximum of three embryos are transferred while the rest are cryopreserved as per the decision of the couple. In case a couple does not desire to ′cryopreserve′ their embryos then all the embryos remaining following embryo transfer can be considered ′spare′ or if a couple is no longer in need of the ′cryopreserved′ embryos then these also can be considered as ′spare′. But, the question raised by the ethicists is, "what about ′slightly′ over-stimulating a woman to get a few extra eggs and embryos? The decision becomes more difficult when it comes to ′discarded′ embryos. As of today, the quality of the embryos is primarily assessed based on morphology and the rate of development mainly judged by single point assessment. Despite many criteria described in the literature, the quality assessment is purely subjective. The question that arises is on the decision of ′discarding′ embryos. What would be the criteria for discarding embryos and the potential ′use′ of ESC derived from the ′abnormal appearing′ embryos? This paper discusses some of the newer methods to procure embryos for the derivation of embryonic stem cell lines which will respect the ethical concerns but still provide the source material.

  20. 76 FR 16609 - Proposed Information Collection; Comment Request; Identification of Human Cell Lines Project

    Science.gov (United States)

    2011-03-24

    ... differentiate among cell lines, as described in Designation: ASN-0002 Authentication of Human Cell Lines... NIST (contact information above). III. Data OMB Control Number: None. Form Number: None. Type of Review...

  1. Development of buffalo (Bubalus bubalis embryonic stem cell lines from somatic cell nuclear transferred blastocysts

    Directory of Open Access Journals (Sweden)

    Syed Mohmad Shah

    2015-11-01

    Full Text Available We developed buffalo embryonic stem cell lines from somatic cell nuclear transfer derived blastocysts, produced by hand-guided cloning technique. The inner cell mass of the blastocyst was cut mechanically using a Microblade and cultured onto feeder cells in buffalo embryonic stem (ES cell culture medium at 38 °C in a 5% CO2 incubator. The stem cell colonies were characterized for alkaline phosphatase activity, karyotype, pluripotency and self-renewal markers like OCT4, NANOG, SOX2, c-Myc, FOXD3, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 and CD90. The cell lines also possessed the capability to differentiate across all the three germ layers under spontaneous differentiation conditions.

  2. Expression of caspase-3 gene in apoptotic HL-60 cell and different human tumor cell lines

    International Nuclear Information System (INIS)

    Li Xiaoming; Song Tianbao

    1999-01-01

    Objective: To research the expression of caspase-3 gene in the apoptotic and the control HL-60 cells and in the different human tumor cell lines. Methods: Caspase-3 mRNA in the control and γ-radiation-induced apoptotic HL-60 cells, and in the 6 types of human tumor cell lines, was analysed by Northern blot. Results: The caspase-3 gene transcript was more highly expressed in leukemia cells HL-60, CEM, K562 and neuroblastoma SH-SY5Y than in cervical adenocarcinoma HeLa and breast carcinoma MCF7, and more highly in the radiation-induced apoptotic HL-60 than in the control HL-60 cells. Conclusion: The high level of expression of caspase-3 may aid the efforts to understand the tumor cell sensitivity to radiation, apoptosis and its inherent ability to survive

  3. Incorrect strain information for mouse cell lines: sequential influence of misidentification on sublines.

    Science.gov (United States)

    Uchio-Yamada, Kozue; Kasai, Fumio; Ozawa, Midori; Kohara, Arihiro

    2017-03-01

    Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains. Based on comparisons with 7 major inbred strains, our results revealed their strains in 80 of 90 cell lines. However, 12 of the 80 cell lines (15%) were found to differ from registered information. Of them, 4 cell lines originated from the same mouse, which had been generated through mating between two different inbred strains. The genotype of the mouse sample had not been examined after the backcross, leading to strain misidentification in those cell lines. Although 8 other cell lines had been established as sublines of a BALB/c cell line, their SSLP profiles are similar to a Swiss cell line. This affects differences in genotypes between inbred and outbred strains. Because the use of inbred samples and interbreeding between strains are not involved in human materials, our results suggest that the cause and influence of misidentification in mouse cell lines are different from those in human.

  4. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    International Nuclear Information System (INIS)

    Zhang, Ping; Zhang, Zhiyuan; Zhou, Xiaojian; Qiu, Weiliu; Chen, Fangan; Chen, Wantao

    2006-01-01

    Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis and further intervention in cisplatin resistance

  5. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Zhang Ping

    2006-09-01

    Full Text Available Abstract Background Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. Methods A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Results Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. Conclusion The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis

  6. Opioid binding site in EL-4 thymoma cell line

    International Nuclear Information System (INIS)

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of [ 3 H] bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10 6 cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of [ 3 H] bremazocine with an IC 50 value = 0.57μM. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, [D-Pen 2 , D-Pen 5 ] enkephalin and β-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC 50 = 60μM, that was similar to naloxone. 32 references, 3 figures, 2 tables

  7. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Qin, J.-Z.; Xin, H. [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States); Nickoloff, B.J., E-mail: bnickol@lumc.edu [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States)

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  8. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines.

    Science.gov (United States)

    Qin, J-Z; Xin, H; Nickoloff, B J

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  9. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    International Nuclear Information System (INIS)

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J.

    2010-01-01

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  10. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  11. Role of free radicals in an adriamycin-resistant human small cell lung cancer cell line

    NARCIS (Netherlands)

    Meijer, C.; Mulder, N H; Timmer-Bosscha, H; Zijlstra, J G; de Vries, E G

    1987-01-01

    In two Adriamycin (Adr) resistant sublines (GLC4-Adr1 and GLC4-Adr2) of a human small cell lung carcinoma cell line, GLC4, cross-resistance for radiation was found. GLC4-Adr1 has an acquired Adr resistance factor of 44 after culturing without Adr for 20 days and GLC4-Adr2, the same subline cultured

  12. A vertically integrated dynamic RAM-cell: Buried bit line memory cell with floating transfer layer

    NARCIS (Netherlands)

    Mouthaan, A.J.; Vertregt, Maarten

    1986-01-01

    A charge injection device has been realized in which charge can be injected on to an MOS-capacitor from a buried layer via an isolated transfer layer. The cell is positioned vertically between word and bit line. LOCOS (local oxidation) is used to isolate the cells and (deep) ion implantation to

  13. Hexavalent chromium induces chromosome instability in human urothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Sandra S. [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Radiation Oncology, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215 (United States); Liou, Louis [Department of Pathology, Boston University School of Medicine, 670 Albany St., Boston, MA 02118 (United States); Adam, Rosalyn M. [Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Wise, John Pierce Sr., E-mail: john.wise@louisville.edu [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States)

    2016-04-01

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. - Highlights: • Hexavalent chromium is genotoxic to human urothelial cells. • Hexavalent chromium induces aneuploidy in human urothelial cells. • hTERT-immortalized human urothelial cells model the effects seen in primary urothelial cells. • Hexavalent chromium has a strong likelihood of being carcinogenic for bladder tissue.

  14. Characterisation and Manipulation of Docetaxel Resistant Prostate Cancer Cell Lines

    LENUS (Irish Health Repository)

    O'Neill, Amanda J

    2011-10-07

    Abstract Background There is no effective treatment strategy for advanced castration-resistant prostate cancer. Although Docetaxel (Taxotere®) represents the most active chemotherapeutic agent it only gives a modest survival advantage with most patients eventually progressing because of inherent or acquired drug resistance. The aims of this study were to further investigate the mechanisms of resistance to Docetaxel. Three Docetaxel resistant sub-lines were generated and confirmed to be resistant to the apoptotic and anti-proliferative effects of increasing concentrations of Docetaxel. Results The resistant DU-145 R and 22RV1 R had expression of P-glycoprotein and its inhibition with Elacridar partially and totally reversed the resistant phenotype in the two cell lines respectively, which was not seen in the PC-3 resistant sublines. Resistance was also not mediated in the PC-3 cells by cellular senescence or autophagy but multiple changes in pro- and anti-apoptotic genes and proteins were demonstrated. Even though there were lower basal levels of NF-κB activity in the PC-3 D12 cells compared to the Parental PC-3, docetaxel induced higher NF-κB activity and IκB phosphorylation at 3 and 6 hours with only minor changes in the DU-145 cells. Inhibition of NF-κB with the BAY 11-7082 inhibitor reversed the resistance to Docetaxel. Conclusion This study confirms that multiple mechanisms contribute to Docetaxel resistance and the central transcription factor NF-κB plays an immensely important role in determining docetaxel-resistance which may represent an appropriate therapeutic target.

  15. Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines

    International Nuclear Information System (INIS)

    Yang, Qiwei; Tian, Yufeng; Ostler, Kelly R; Chlenski, Alexandre; Guerrero, Lisa J; Salwen, Helen R; Godley, Lucy A; Cohn, Susan L

    2010-01-01

    Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC, and HIC-1) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype. Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used. Quantitative RNA expression analyses were performed on seven genes in LA1-5s, LA1-55n and 5-Aza-dC treated LA1-55n NB cell lines. The methylation status around THBS-1, HIN-1, TIG-1 and CASP8 promoters was examined using methylation specific PCR. Chromatin immunoprecipitation assay was used to examine histone modifications along the THBS-1 promoter. Luciferase assay was used to determine THBS-1 promoter activity. Cell proliferation assay was used to examine the effect of 5-Aza-dC on NB cell growth. The soft agar assay was used to determine the tumorigenicity. Promoter methylation values for THBS-1, HIN-1, TIG-1, and CASP8 were higher in LA1-55n cells compared to LA1-5s cells. Consistent with the promoter methylation status, lower levels of gene expression were detected in the LA1-55n cells. Histone marks associated with repressive chromatin states (H3K9Me3, H3K27Me3, and H3K4Me3) were identified in the THBS-1 promoter region in the LA1-55n cells, but not the LA1-5s cells. In contrast, the three histone codes assoc