WorldWideScience

Sample records for imaging system assessment

  1. System for objective assessment of image differences in digital cinema

    Science.gov (United States)

    Fliegel, Karel; Krasula, Lukáš; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2014-09-01

    There is high demand for quick digitization and subsequent image restoration of archived film records. Digitization is very urgent in many cases because various invaluable pieces of cultural heritage are stored on aging media. Only selected records can be reconstructed perfectly using painstaking manual or semi-automatic procedures. This paper aims to answer the question what are the quality requirements on the restoration process in order to obtain acceptably close visual perception of the digitally restored film in comparison to the original analog film copy. This knowledge is very important to preserve the original artistic intention of the movie producers. Subjective experiment with artificially distorted images has been conducted in order to answer the question what is the visual impact of common image distortions in digital cinema. Typical color and contrast distortions were introduced and test images were presented to viewers using digital projector. Based on the outcome of this subjective evaluation a system for objective assessment of image distortions has been developed and its performance tested. The system utilizes calibrated digital single-lens reflex camera and subsequent analysis of suitable features of images captured from the projection screen. The evaluation of captured image data has been optimized in order to obtain predicted differences between the reference and distorted images while achieving high correlation with the results of subjective assessment. The system can be used to objectively determine the difference between analog film and digital cinema images on the projection screen.

  2. Image quality assessment for video stream recognition systems

    Science.gov (United States)

    Chernov, Timofey S.; Razumnuy, Nikita P.; Kozharinov, Alexander S.; Nikolaev, Dmitry P.; Arlazarov, Vladimir V.

    2018-04-01

    Recognition and machine vision systems have long been widely used in many disciplines to automate various processes of life and industry. Input images of optical recognition systems can be subjected to a large number of different distortions, especially in uncontrolled or natural shooting conditions, which leads to unpredictable results of recognition systems, making it impossible to assess their reliability. For this reason, it is necessary to perform quality control of the input data of recognition systems, which is facilitated by modern progress in the field of image quality evaluation. In this paper, we investigate the approach to designing optical recognition systems with built-in input image quality estimation modules and feedback, for which the necessary definitions are introduced and a model for describing such systems is constructed. The efficiency of this approach is illustrated by the example of solving the problem of selecting the best frames for recognition in a video stream for a system with limited resources. Experimental results are presented for the system for identity documents recognition, showing a significant increase in the accuracy and speed of the system under simulated conditions of automatic camera focusing, leading to blurring of frames.

  3. Performance assessment of imaging plates for the JHR transfer Neutron Imaging System

    Science.gov (United States)

    Simon, E.; Guimbal, P. AB(; )

    2018-01-01

    The underwater Neutron Imaging System to be installed in the Jules Horowitz Reactor (JHR-NIS) is based on a transfer method using a neutron activated beta-emitter like Dysprosium. The information stored in the converter is to be offline transferred on a specific imaging system, still to be defined. Solutions are currently under investigation for the JHR-NIS in order to anticipate the disappearance of radiographic films commonly used in these applications. We report here the performance assessment of Computed Radiography imagers (Imaging Plates) performed at LLB/Orphée (CEA Saclay). Several imaging plate types are studied, in one hand in the configuration involving an intimate contact with an activated dysprosium foil converter: Fuji BAS-TR, Fuji UR-1 and Carestream Flex XL Blue imaging plates, and in the other hand by using a prototypal imaging plate doped with dysprosium and thus not needing any contact with a separate converter foil. The results for these imaging plates are compared with those obtained with gadolinium doped imaging plate used in direct neutron imaging (Fuji BAS-ND). The detection performances of the different imagers are compared regarding resolution and noise. The many advantages of using imaging plates over radiographic films (high sensitivity, linear response, high dynamic range) could palliate its lower intrinsic resolution.

  4. Dosimetry and image quality assessment in a direct radiography system

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Bruno Beraldo; Paixao, Lucas; Nogueira, Maria do Socorro, E-mail: boliveira.mg@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Oliveira, Marcio Alves de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Medicina. Dept. de Anatomia e Imagem; Teixeira, Maria Helena Araujo [Clinica Dra. Maria Helena Araujo Teixeira, Belo Horizonte, MG (Brazil)

    2014-11-15

    Objective: to evaluate the mean glandular dose with a solid state detector and the image quality in a direct radiography system, utilizing phantoms. Materials and methods: Irradiations were performed with automatic exposure control and polymethyl methacrylate slabs with different thicknesses to calculate glandular dose values. The image quality was evaluated by means of the structures visualized on the images of the phantoms. Results: considering the uncertainty of the measurements, the mean glandular dose results are in agreement with the values provided by the equipment and with internationally adopted reference levels. Results obtained from images of the phantoms were in agreement with the reference values. Conclusion: the present study contributes to verify the equipment conformity as regards dose values and image quality. (author)

  5. Design of a practical model-observer-based image quality assessment method for CT imaging systems

    Science.gov (United States)

    Tseng, Hsin-Wu; Fan, Jiahua; Cao, Guangzhi; Kupinski, Matthew A.; Sainath, Paavana

    2014-03-01

    The channelized Hotelling observer (CHO) is a powerful method for quantitative image quality evaluations of CT systems and their image reconstruction algorithms. It has recently been used to validate the dose reduction capability of iterative image-reconstruction algorithms implemented on CT imaging systems. The use of the CHO for routine and frequent system evaluations is desirable both for quality assurance evaluations as well as further system optimizations. The use of channels substantially reduces the amount of data required to achieve accurate estimates of observer performance. However, the number of scans required is still large even with the use of channels. This work explores different data reduction schemes and designs a new approach that requires only a few CT scans of a phantom. For this work, the leave-one-out likelihood (LOOL) method developed by Hoffbeck and Landgrebe is studied as an efficient method of estimating the covariance matrices needed to compute CHO performance. Three different kinds of approaches are included in the study: a conventional CHO estimation technique with a large sample size, a conventional technique with fewer samples, and the new LOOL-based approach with fewer samples. The mean value and standard deviation of area under ROC curve (AUC) is estimated by shuffle method. Both simulation and real data results indicate that an 80% data reduction can be achieved without loss of accuracy. This data reduction makes the proposed approach a practical tool for routine CT system assessment.

  6. Assessing the impact of a medical image access system

    Science.gov (United States)

    McNeill, Kevin M.; Maloney, Kris; Parra, Miguel V.; Ovitt, Theron W.; Dallas, William J.

    1994-05-01

    We have developed and installed a Medical Image Access System in an intensive care unit. Images are acquired and transmitted automatically to this system, thus expanding on the previous results of Shile et. al. It is our goal to determine what effect regular, sustained availability of image data in the clinic has on the Intensive Care Unit and the Department of Radiology. Our system is installed and has been in regular use in the hospital since late August of 1993. Since the time of installation we have been collecting usage information from both the manual and automated systems. From this data we are performing the standard measures established by DeSimone et. al. Our initial results support the original findings that image availability in the clinic leads to earlier patient care decision based on the image data. However, our findings do not seem to indicate that there is a breakdown of communication between the clinician and the radiologist as a result of the use of the clinical display system. In addition to the established measure we are investigating other criteria to measure time saved by both the clinician and radiologist. The results are reported in this paper.

  7. A study on assessment of bone mass from aluminum-equivalent image by digital imaging system

    International Nuclear Information System (INIS)

    Kim, Jin Soo; Kim, Jae Duck; Choi, Eui Hwan

    1997-01-01

    The purpose of this study was to evaluated the method for quantitative assessment of bone mass from aluminum-equivalent value of hydroxyapatite by using digital imaging system consisted of Power Macintosh 7200/120, 15-inch color monitor, and GT-9000 scanner with transparency unit. After aluminum-equivalent image made from correlation between aluminum thickness and grey scale, the accuracy of conversion to mass from aluminum-equivalent value was evaluated. Measured bone mass was compared with converted bone mass from aluminum-equivalent value of hydroxyapatite block by correlation formula between aluminum-equivalent value of hydroxy apatite block and hydroxyapatite mass. The results of this study were as follows : 1. Correlation between aluminum thickness and grey level for obtaining aluminum-equivalent image was high positively associated (r2=0.99). Converted masses from aluminum-equivalent value were very similar to measured masses. There was, statistically, no significant difference (P<0.05) between them. 2. Correlation between hydroxyapatite aluminum-equivalent and hydroxyapatite mass was shown to linear relation (r2 =0.95). 3. Converted masses from aluminum-equivalent value of 3 dry mandible segments were similar to measured masses. The difference between the exposure directions was not significantly different (P<0.05).

  8. Wavelet crosstalk matrix and its application to assessment of shift-variant imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Jinyi; Huesman, Ronald H.

    2002-11-01

    The objective assessment of image quality is essential for design of imaging systems. Barrett and Gifford [1] introduced the Fourier cross talk matrix. Because it is diagonal for continuous linear shift-invariant imaging systems, the Fourier cross talk matrix is a powerful technique for discrete imaging systems that are close to shift invariant. However, for a system that is intrinsically shift variant, Fourier techniques are not particularly effective. Because Fourier bases have no localization property, the shift-variance of the imaging system cannot be shown by the response of individual Fourier bases; rather, it is shown in the correlation between the Fourier coefficients. This makes the analysis and optimization quite difficult. In this paper, we introduce a wavelet cross talk matrix based on wavelet series expansions. The wavelet cross talk matrix allows simultaneous study of the imaging system in both the frequency and spatial domains. Hence it is well suited for shift variant systems. We compared the wavelet cross talk matrix with the Fourier cross talk matrix for several simulated imaging systems, namely the interior and exterior tomography problems, limited angle tomography, and a rectangular geometry positron emission tomograph. The results demonstrate the advantages of the wavelet cross talk matrix in analyzing shift-variant imaging systems.

  9. Wavelet crosstalk matrix and its application to assessment of shift-variant imaging systems

    International Nuclear Information System (INIS)

    Qi, Jinyi; Huesman, Ronald H.

    2002-01-01

    The objective assessment of image quality is essential for design of imaging systems. Barrett and Gifford [1] introduced the Fourier cross talk matrix. Because it is diagonal for continuous linear shift-invariant imaging systems, the Fourier cross talk matrix is a powerful technique for discrete imaging systems that are close to shift invariant. However, for a system that is intrinsically shift variant, Fourier techniques are not particularly effective. Because Fourier bases have no localization property, the shift-variance of the imaging system cannot be shown by the response of individual Fourier bases; rather, it is shown in the correlation between the Fourier coefficients. This makes the analysis and optimization quite difficult. In this paper, we introduce a wavelet cross talk matrix based on wavelet series expansions. The wavelet cross talk matrix allows simultaneous study of the imaging system in both the frequency and spatial domains. Hence it is well suited for shift variant systems. We compared the wavelet cross talk matrix with the Fourier cross talk matrix for several simulated imaging systems, namely the interior and exterior tomography problems, limited angle tomography, and a rectangular geometry positron emission tomograph. The results demonstrate the advantages of the wavelet cross talk matrix in analyzing shift-variant imaging systems

  10. The use of Leeds Test Objects in the assessment of the performance of radiological imaging systems: an introduction

    International Nuclear Information System (INIS)

    Cowen, A.R.

    1986-01-01

    Over the preceding decade the Leeds Radiological Imaging Group have developed a range of test objects with which to assess the performance of radiological imaging systems. The types of imaging equipment which can be assessed include X-ray image intensifier television systems, small-format 100mm/105mm fluorography systems and radiographic screen-film combinations. We have recently extended our interest to the evaluation of digital radiological imaging equipment including digital subtraction fluorography and digital (greyscale) radiographic imaging systems. These test objects were initially developed for the purpose of evaluating imaging performance under laboratory conditions but they have also proved useful under field (clinical) conditions. (author)

  11. Reliability of a novel thermal imaging system for temperature assessment of healthy feet.

    Science.gov (United States)

    Petrova, N L; Whittam, A; MacDonald, A; Ainarkar, S; Donaldson, A N; Bevans, J; Allen, J; Plassmann, P; Kluwe, B; Ring, F; Rogers, L; Simpson, R; Machin, G; Edmonds, M E

    2018-01-01

    Thermal imaging is a useful modality for identifying preulcerative lesions ("hot spots") in diabetic foot patients. Despite its recognised potential, at present, there is no readily available instrument for routine podiatric assessment of patients at risk. To address this need, a novel thermal imaging system was recently developed. This paper reports the reliability of this device for temperature assessment of healthy feet. Plantar skin foot temperatures were measured with the novel thermal imaging device (Diabetic Foot Ulcer Prevention System (DFUPS), constructed by Photometrix Imaging Ltd) and also with a hand-held infrared spot thermometer (Thermofocus® 01500A3, Tecnimed, Italy) after 20 min of barefoot resting with legs supported and extended in 105 subjects (52 males and 53 females; age range 18 to 69 years) as part of a multicentre clinical trial. The temperature differences between the right and left foot at five regions of interest (ROIs), including 1st and 4th toes, 1st, 3rd and 5th metatarsal heads were calculated. The intra-instrument agreement (three repeated measures) and the inter-instrument agreement (hand-held thermometer and thermal imaging device) were quantified using intra-class correlation coefficients (ICCs) and the 95% confidence intervals (CI). Both devices showed almost perfect agreement in replication by instrument. The intra-instrument ICCs for the thermal imaging device at all five ROIs ranged from 0.95 to 0.97 and the intra-instrument ICCs for the hand-held-thermometer ranged from 0.94 to 0.97. There was substantial to perfect inter-instrument agreement between the hand-held thermometer and the thermal imaging device and the ICCs at all five ROIs ranged between 0.94 and 0.97. This study reports the performance of a novel thermal imaging device in the assessment of foot temperatures in healthy volunteers in comparison with a hand-held infrared thermometer. The newly developed thermal imaging device showed very good agreement in

  12. Use of the software Seed Vigor Imaging System (SVIS® for assessing vigor of carrot seeds

    Directory of Open Access Journals (Sweden)

    José Luís de Marchi

    Full Text Available ABSTRACT Seed vigor has traditionally been evaluated by physiological, biochemical and stress tolerance tests. More recently, with the use of computerized image analysis, objective information has become accessible in a relatively short period of time, with less human interference. The aim of this study was to verify the efficiency of computerized seedling image analysis by Seed Vigor Imaging System (SVIS® to detect differences in vigor between carrot (Daucus carota L. seed lots as compared to those provided by traditional vigor tests. Seeds from seven lots from the Brasilia cultivar were subjected to a germination test, first count of germination, speed of germination, accelerated aging with saline solution and seedling emergence; furthermore, a vigor index, growth index and uniformity index were determined by the Seed Vigor Imaging System (SVIS® during four evaluation periods. The results obtained by the computerized seedling analysis (vigor index and growth index show that SVIS® is efficient in assessing carrot seed vigor.

  13. SU-E-I-94: Automated Image Quality Assessment of Radiographic Systems Using An Anthropomorphic Phantom

    International Nuclear Information System (INIS)

    Wells, J; Wilson, J; Zhang, Y; Samei, E; Ravin, Carl E.

    2014-01-01

    Purpose: In a large, academic medical center, consistent radiographic imaging performance is difficult to routinely monitor and maintain, especially for a fleet consisting of multiple vendors, models, software versions, and numerous imaging protocols. Thus, an automated image quality control methodology has been implemented using routine image quality assessment with a physical, stylized anthropomorphic chest phantom. Methods: The “Duke” Phantom (Digital Phantom 07-646, Supertech, Elkhart, IN) was imaged twice on each of 13 radiographic units from a variety of vendors at 13 primary care clinics. The first acquisition used the clinical PA chest protocol to acquire the post-processed “FOR PRESENTATION” image. The second image was acquired without an antiscatter grid followed by collection of the “FOR PROCESSING” image. Manual CNR measurements were made from the largest and thickest contrast-detail inserts in the lung, heart, and abdominal regions of the phantom in each image. An automated image registration algorithm was used to estimate the CNR of the same insert using similar ROIs. Automated measurements were then compared to the manual measurements. Results: Automatic and manual CNR measurements obtained from “FOR PRESENTATION” images had average percent differences of 0.42%±5.18%, −3.44%±4.85%, and 1.04%±3.15% in the lung, heart, and abdominal regions, respectively; measurements obtained from “FOR PROCESSING” images had average percent differences of -0.63%±6.66%, −0.97%±3.92%, and −0.53%±4.18%, respectively. The maximum absolute difference in CNR was 15.78%, 10.89%, and 8.73% in the respective regions. In addition to CNR assessment of the largest and thickest contrast-detail inserts, the automated method also provided CNR estimates for all 75 contrast-detail inserts in each phantom image. Conclusion: Automated analysis of a radiographic phantom has been shown to be a fast, robust, and objective means for assessing radiographic

  14. NutriNet: A Deep Learning Food and Drink Image Recognition System for Dietary Assessment.

    Science.gov (United States)

    Mezgec, Simon; Koroušić Seljak, Barbara

    2017-06-27

    Automatic food image recognition systems are alleviating the process of food-intake estimation and dietary assessment. However, due to the nature of food images, their recognition is a particularly challenging task, which is why traditional approaches in the field have achieved a low classification accuracy. Deep neural networks have outperformed such solutions, and we present a novel approach to the problem of food and drink image detection and recognition that uses a newly-defined deep convolutional neural network architecture, called NutriNet. This architecture was tuned on a recognition dataset containing 225,953 512 × 512 pixel images of 520 different food and drink items from a broad spectrum of food groups, on which we achieved a classification accuracy of 86 . 72 % , along with an accuracy of 94 . 47 % on a detection dataset containing 130 , 517 images. We also performed a real-world test on a dataset of self-acquired images, combined with images from Parkinson's disease patients, all taken using a smartphone camera, achieving a top-five accuracy of 55 % , which is an encouraging result for real-world images. Additionally, we tested NutriNet on the University of Milano-Bicocca 2016 (UNIMIB2016) food image dataset, on which we improved upon the provided baseline recognition result. An online training component was implemented to continually fine-tune the food and drink recognition model on new images. The model is being used in practice as part of a mobile app for the dietary assessment of Parkinson's disease patients.

  15. High-volume image quality assessment systems: tuning performance with an interactive data visualization tool

    Science.gov (United States)

    Bresnahan, Patricia A.; Pukinskis, Madeleine; Wiggins, Michael

    1999-03-01

    Image quality assessment systems differ greatly with respect to the number and types of mags they need to evaluate, and their overall architectures. Managers of these systems, however, all need to be able to tune and evaluate system performance, requirements often overlooked or under-designed during project planning. Performance tuning tools allow users to define acceptable quality standards for image features and attributes by adjusting parameter settings. Performance analysis tools allow users to evaluate and/or predict how well a system performs in a given parameter state. While image assessment algorithms are becoming quite sophisticated, duplicating or surpassing the human decision making process in their speed and reliability, they often require a greater investment in 'training' or fine tuning of parameters in order to achieve optimum performance. This process may involve the analysis of hundreds or thousands of images, generating a large database of files and statistics that can be difficult to sort through and interpret. Compounding the difficulty is the fact that personnel charged with tuning and maintaining the production system may not have the statistical or analytical background required for the task. Meanwhile, hardware innovations have greatly increased the volume of images that can be handled in a given time frame, magnifying the consequences of running a production site with an inadequately tuned system. In this paper, some general requirements for a performance evaluation and tuning data visualization system are discussed. A custom engineered solution to the tuning and evaluation problem is then presented, developed within the context of a high volume image quality assessment, data entry, OCR, and image archival system. A key factor influencing the design of the system was the context-dependent definition of image quality, as perceived by a human interpreter. This led to the development of a five-level, hierarchical approach to image quality

  16. Facial fluid synthesis for assessment of acne vulgaris using luminescent visualization system through optical imaging and integration of fluorescent imaging system

    Science.gov (United States)

    Balbin, Jessie R.; Dela Cruz, Jennifer C.; Camba, Clarisse O.; Gozo, Angelo D.; Jimenez, Sheena Mariz B.; Tribiana, Aivje C.

    2017-06-01

    Acne vulgaris, commonly called as acne, is a skin problem that occurs when oil and dead skin cells clog up in a person's pores. This is because hormones change which makes the skin oilier. The problem is people really do not know the real assessment of sensitivity of their skin in terms of fluid development on their faces that tends to develop acne vulgaris, thus having more complications. This research aims to assess Acne Vulgaris using luminescent visualization system through optical imaging and integration of image processing algorithms. Specifically, this research aims to design a prototype for facial fluid analysis using luminescent visualization system through optical imaging and integration of fluorescent imaging system, and to classify different facial fluids present in each person. Throughout the process, some structures and layers of the face will be excluded, leaving only a mapped facial structure with acne regions. Facial fluid regions are distinguished from the acne region as they are characterized differently.

  17. Imaging system

    International Nuclear Information System (INIS)

    Froggatt, R.J.

    1981-01-01

    The invention provides a two dimensional imaging system in which a pattern of radiation falling on the system is detected to give electrical signals for each of a plurality of strips across the pattern. The detection is repeated for different orientations of the strips and the whole processed by compensated back projection. For a shadow x-ray system a plurality of strip x-ray detectors are rotated on a turntable. For lower frequencies the pattern may be rotated with a Dove prism and the strips condensed to suit smaller detectors with a cylindrical lens. (author)

  18. Recent developments in imaging system assessment methodology, FROC analysis and the search model.

    Science.gov (United States)

    Chakraborty, Dev P

    2011-08-21

    A frequent problem in imaging is assessing whether a new imaging system is an improvement over an existing standard. Observer performance methods, in particular the receiver operating characteristic (ROC) paradigm, are widely used in this context. In ROC analysis lesion location information is not used and consequently scoring ambiguities can arise in tasks, such as nodule detection, involving finding localized lesions. This paper reviews progress in the free-response ROC (FROC) paradigm in which the observer marks and rates suspicious regions and the location information is used to determine whether lesions were correctly localized. Reviewed are FROC data analysis, a search-model for simulating FROC data, predictions of the model and a method for estimating the parameters. The search model parameters are physically meaningful quantities that can guide system optimization.

  19. Recent developments in imaging system assessment methodology, FROC analysis and the search model

    International Nuclear Information System (INIS)

    Chakraborty, Dev P.

    2011-01-01

    A frequent problem in imaging is assessing whether a new imaging system is an improvement over an existing standard. Observer performance methods, in particular the receiver operating characteristic (ROC) paradigm, are widely used in this context. In ROC analysis lesion location information is not used and consequently scoring ambiguities can arise in tasks, such as nodule detection, involving finding localized lesions. This paper reviews progress in the free-response ROC (FROC) paradigm in which the observer marks and rates suspicious regions and the location information is used to determine whether lesions were correctly localized. Reviewed are FROC data analysis, a search model for simulating FROC data, predictions of the model and a method for estimating the parameters. The search model parameters are physically meaningful quantities that can guide system optimization.

  20. Imaging system

    International Nuclear Information System (INIS)

    Rushbrooke, J.G.; Ansorge, R.E.

    1987-01-01

    A moving object such as a container on a conveyor belt is imaged by an optical system onto a charge coupled device array in which the lines of the array are arranged perpendicular to the direction of motion of the object. The speed of movement of the object is sensed to generate electrical signals which are processed to provide shift signals enabling the shifting of data row to row in the array in synchronism with the movement of the container. The electrical charge associated with a given point on the array is transferred from one line to the other until it appears at the last line of the array, from which it is read out in known manner in conjunction with all other electrical charges associated with the row of charge coupled devices in the last line of the array. Due to the integrating effect achieved, the aperture of the imaging system can be much smaller than otherwise would be required, and/or the level of light illumination can be reduced. The imaging system can be applied to X-ray inspection devices, aerial surveillance or scanning of moving documents in copying processes. (author)

  1. Design and assessment of compact optical systems towards special effects imaging

    Science.gov (United States)

    Shaoulov, Vesselin Iossifov

    A main challenge in the field of special effects is to create special effects in real time in a way that the user can preview the effect before taking the actual picture or movie sequence. There are many techniques currently used to create computer-simulated special effects, however current techniques in computer graphics do not provide the option for the creation of real-time texture synthesis. Thus, while computer graphics is a powerful tool in the field of special effects, it is neither portable nor does it provide work in real-time capabilities. Real-time special effects may, however, be created optically. Such approach will provide not only real-time image processing at the speed of light but also a preview option, allowing the user or the artist to preview the effect on various parts of the object in order to optimize the outcome. The work presented in this dissertation was inspired by the idea of optically created special effects, such as painterly effects, encoded in images captured by photographic or motion picture cameras. As part of the presented work, compact relay optics was assessed, developed, and a working prototype was built. It was concluded that even though compact relay optics can be achieved, further push for compactness and cost-effectiveness was impossible in the paradigm of bulk macro-optics systems. Thus, a paradigm for imaging with multi-aperture micro-optics was proposed and demonstrated for the first time, which constitutes one of the key contributions of this work. This new paradigm was further extended to the most general case of magnifying multi-aperture micro-optical systems. Such paradigm allows an extreme reduction in size of the imaging optics by a factor of about 10 and a reduction in weight by a factor of about 500. Furthermore, an experimental quantification of the feasibility of optically created special effects was completed, and consequently raytracing software was developed, which was later commercialized by Sm

  2. VISDTA: A video imaging system for detection, tracking, and assessment: Prototype development and concept demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.A.

    1987-05-01

    It has been demonstrated that thermal imagers are an effective surveillance and assessment tool for security applications because: (1) they work day or night due to their sensitivity to thermal signatures; (2) penetrability through fog, rain, dust, etc., is better than human eyes; (3) short or long range operation is possible with various optics; and (4) they are strictly passive devices providing visible imagery which is readily interpreted by the operator with little training. Unfortunately, most thermal imagers also require the setup of a tripod, connection of batteries, cables, display, etc. When this is accomplished, the operator must manually move the camera back and forth searching for signs of aggressor activity. VISDTA is designed to provide automatic panning, and in a sense, ''watch'' the imagery in place of the operator. The idea behind the development of VISDTA is to provide a small, portable, rugged system to automatically scan areas and detect targets by computer processing of images. It would use a thermal imager and possibly an intensified day/night TV camera, a pan/ tilt mount, and a computer for system control. If mounted on a dedicated vehicle or on a tower, VISDTA will perform video motion detection functions on incoming video imagery, and automatically scan predefined patterns in search of abnormal conditions which may indicate attempted intrusions into the field-of-regard. In that respect, VISDTA is capable of improving the ability of security forces to maintain security of a given area of interest by augmenting present techniques and reducing operator fatigue.

  3. Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system.

    Science.gov (United States)

    Heppert, Jennifer K; Dickinson, Daniel J; Pani, Ariel M; Higgins, Christopher D; Steward, Annette; Ahringer, Julie; Kuhn, Jeffrey R; Goldstein, Bob

    2016-11-07

    Fluorescent protein tags are fundamental tools used to visualize gene products and analyze their dynamics in vivo. Recent advances in genome editing have expedited the precise insertion of fluorescent protein tags into the genomes of diverse organisms. These advances expand the potential of in vivo imaging experiments and facilitate experimentation with new, bright, photostable fluorescent proteins. Most quantitative comparisons of the brightness and photostability of different fluorescent proteins have been made in vitro, removed from biological variables that govern their performance in cells or organisms. To address the gap, we quantitatively assessed fluorescent protein properties in vivo in an animal model system. We generated transgenic Caenorhabditis elegans strains expressing green, yellow, or red fluorescent proteins in embryos and imaged embryos expressing different fluorescent proteins under the same conditions for direct comparison. We found that mNeonGreen was not as bright in vivo as predicted based on in vitro data but is a better tag than GFP for specific kinds of experiments, and we report on optimal red fluorescent proteins. These results identify ideal fluorescent proteins for imaging in vivo in C. elegans embryos and suggest good candidate fluorescent proteins to test in other animal model systems for in vivo imaging experiments. © 2016 Heppert et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Assessment of the lymphatic system in patients with diffuse lymphangiomatosis by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lohrmann, Christian, E-mail: christian.lohrmann@uniklinik-freiburg.de [Department of Radiology, University Hospital of Freiburg, Hugstetter Strasse 55, D-79106 Freiburg i. Br. (Germany); Foeldi, Etelka, E-mail: foeldi@foeldiklinik.de [Foeldi Clinic for Lymphology, Hinterzarten, Roesslehofweg 2-6, D-79856 Hinterzarten (Germany); Langer, Mathias, E-mail: mathias.langer@uniklinik-freiburg.de [Department of Radiology, University Hospital of Freiburg, Hugstetter Strasse 55, D-79106 Freiburg i. Br. (Germany)

    2011-11-15

    Objective: To assess the lymphatic system in patients with diffuse lymphangiomatosis by magnetic resonance imaging. Materials and methods: 15 patients with diffuse lymphangiomatosis were examined by magnetic resonance imaging. Three locations were examined: first, the lower leg and foot region; second, the upper leg and the knee region; and third, the pelvic with retroperitoneal and abdominal region. For magnetic resonance lymphangiography a T1-weighted 3D spoiled gradient-echo and a T2-weighted 3D-TSE sequence was used. Results: The size of the genital lymphangiomas, which were revealed in all patients, varied between 5 and 83 mm. In 47% of the patients lymphangiomas were detected at the level of the lower legs, and in 87% of the patients at the level of the upper leg and retroperitoneum. Furthermore, lymphangiomas were seen in the inguinal and pelvic region in 100% and intraabdominally in 40% of the patients. The lymphangiomas extended into the abdominal wall in 93% of the examined patients. A chylous pleural effusion was revealed in 20% and a chylous ascites in 13% of patients. 93% of patients suffered due to the diffuse lymphangiomatous pathologies from a lymphedema of the lower extremities, while a generalized lymphedema of the trunk was found in 87% of the patients. Conclusion: Magnetic resonance imaging is a safe and accurate minimal-invasive imaging modality for the evaluation of the lymphatic system in patients with diffuse lymphangiomatosis. Since the localization and extension of the lymphangiomas are important prognostic factors, it is crucial to perform a safe radiologic evaluation with a high resolution for the patient's therapeutic planning.

  5. Radiographic assessment of proximal caries: A comparison between film-based and dexis digital imaging systems

    Directory of Open Access Journals (Sweden)

    Anupama N Kalappanavar

    2011-01-01

    Full Text Available This study compared Kodak Ektaspeed film and Dexis digital imaging systems for their diagnostic accuracy in detection of proximal canes in 210 proximal surfaces from 105 extracted human teeth (20 premolars and 85 molars, 129 of which were carious. Ground teeth were evaluated histologically. The images were assessed by an observer. ANOVA revealed that groups differ in scoring patterns with f-value of 26.72 and p < 0.01. The mean caries score by histologic assessment was significantly (p < 0.01 more when compared with the scores obtained by conventional and Dexis digital radiographic methods. The mean score for conventional radiographic method was slightly more than Dexis digital radiographic method, but the difference was statistically insignificant (p < 0.05. Both the radiographic methods were less accurate in detecting proximal canes confined to enamel, but as the lesion depth was increased to dentin, the rate of caries detection increased dramatically. It was concluded that both conventional and Dexis digital radiographic methods under estimated canes depth when compared with histologic method. Lastly, conventional film radiographs and Dexis digital radiographs did not perform significantly different from each other in the detection of canes.

  6. Structural lesions detected by magnetic resonance imaging in the spine of patients with spondyloarthritis - definitions, assessment system, and reference image set

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Maksymowych, Walter P; Pedersen, Susanne J

    2009-01-01

    are assessed at each vertebral endplate at all 23 spinal levels from C2/3 to L5/S1, whereas facet joint lesions are to be assessed by segmental level (cervical, thoracic, and lumbar). CONCLUSION: An anatomy-based set of definitions and an assessment system for structural lesions in the spine of patients......OBJECTIVE: There is no reliable and sensitive magnetic resonance imaging (MRI) assessment system for structural lesions in patients with spondyloarthritis (SpA). We sought to develop and illustrate a detailed anatomy-based set of MRI definitions and an assessment system for structural lesions...... in the spine of patients with SpA. METHODS: MRI definitions of different structural ("chronic") lesions at various anatomical locations in the spine, and an accompanying assessment system, were agreed by consensus within the Canada-Denmark MRI working group. Subsequently, a reference image set...

  7. Assessment of School Image

    Directory of Open Access Journals (Sweden)

    Ludvík Eger

    2018-06-01

    Full Text Available There seems to be a gap in the literature on educational management that focuses on school image and its assessment. This paper addresses this issue by reviewing the state of the art regarding school image and communication with the public.School image can be defined as the overall impression and mosaic synthesised from numerous impressions of individuals of school publics (pupils/students, teachers and deputies of school management, parents, and other stakeholders. School image is not what the headteachers understand it to be, but the feelings and beliefs about the school and its educational programme that exist in the minds of the school publics. The present study contributes to the literature by providing an overview of school image and by providing a practical application of a useful tool for assessing the content of corporate image. Semantic differential scales are used for marketing purposes and as a useful technique for measuring and assessing school image. Communication with publics and the development and sustainability of a positive school image influence not only the marketing of the school but also the educational process in the school. Today, shaping and maintaining a school image is even more important because of the curriculum reform, focusing on higher study process outputs, quality assessments, and accountability. The findings of this study have important implications for school marketing experts and researchers, headteachers, education policymakers, as well as teachers at schools.

  8. Automatic Vertebral Fracture Assessment System (AVFAS) for Spinal Pathologies Diagnosis Based on Radiograph X-Ray Images

    Science.gov (United States)

    Mustapha, Aouache; Hussain, Aini; Samad, Salina Abd; Bin Abdul Hamid, Hamzaini; Ariffin, Ahmad Kamal

    Nowadays, medical imaging has become a major tool in many clinical trials. This is because the technology enables rapid diagnosis with visualization and quantitative assessment that facilitate health practitioners or professionals. Since the medical and healthcare sector is a vast industry that is very much related to every citizen's quality of life, the image based medical diagnosis has become one of the important service areas in this sector. As such, a medical diagnostic imaging (MDI) software tool for assessing vertebral fracture is being developed which we have named as AVFAS short for Automatic Vertebral Fracture Assessment System. The developed software system is capable of indexing, detecting and classifying vertebral fractures by measuring the shape and appearance of vertebrae of radiograph x-ray images of the spine. This paper describes the MDI software tool which consists of three main sub-systems known as Medical Image Training & Verification System (MITVS), Medical Image and Measurement & Decision System (MIMDS) and Medical Image Registration System (MIRS) in term of its functionality, performance, ongoing research and outstanding technical issues.

  9. Assessment of uniformity and signal-to-noise ratio in radiological image intensifier TV systems

    International Nuclear Information System (INIS)

    Malone, J.F.; O'Connor, M.K.; Maher, K.P.

    1985-01-01

    A method of measuring the uniformity of radiological Image Intensifier-TV systems is described. Large non-uniformities were observed in the systems tested. A method of estimating the Signal-to-Noise Ratio in such systems is also presented and applied to characterise the effectiveness of the noise reduction techniques used in digital fluoroscopy. (author)

  10. Implementation and assessment of an animal management system for small-animal micro-CT / micro-SPECT imaging

    Science.gov (United States)

    Holdsworth, David W.; Detombe, Sarah A.; Chiodo, Chris; Fricke, Stanley T.; Drangova, Maria

    2011-03-01

    Advances in laboratory imaging systems for CT, SPECT, MRI, and PET facilitate routine micro-imaging during pre-clinical investigations. Challenges still arise when dealing with immune-compromised animals, biohazardous agents, and multi-modality imaging. These challenges can be overcome with an appropriate animal management system (AMS), with the capability for supporting and monitoring a rat or mouse during micro-imaging. We report the implementation and assessment of a new AMS system for mice (PRA-3000 / AHS-2750, ASI Instruments, Warren MI), designed to be compatible with a commercial micro-CT / micro-SPECT imaging system (eXplore speCZT, GE Healthcare, London ON). The AMS was assessed under the following criteria: 1) compatibility with the imaging system (i.e. artifact generation, geometric dimensions); 2) compatibility with live animals (i.e. positioning, temperature regulation, anesthetic supply); 3) monitoring capabilities (i.e. rectal temperature, respiratory and cardiac monitoring); 4) stability of co-registration; and 5) containment. Micro-CT scans performed using a standardized live-animal protocol (90 kVp, 40 mA, 900 views, 16 ms per view) exhibited low noise (+/-19 HU) and acceptable artifact from high-density components within the AMS (e.g. ECG pad contacts). Live mice were imaged repeatedly (with removal and replacement of the AMS) and spatial registration was found to be stable to within +/-0.07 mm. All animals tolerated enclosure within the AMS for extended periods (i.e. > one hour) without distress, based on continuous recordings of rectal temperature, ECG waveform and respiratory rate. A sealed AMS system extends the capability of a conventional micro-imaging system to include immune-compromised and biosafety level 2 mouse-imaging protocols.

  11. Assessing the Performance of Imaging Health Systems in Five Selected Hospitals in Uganda

    Directory of Open Access Journals (Sweden)

    Michael G Kawooya

    2012-01-01

    Full Text Available Objectives : The first objective of the study was to develop an index termed as the ′Imaging Coverage′ (IC, for measuring the performance of the imaging health systems. This index together with the Hospital-Based Utilization (HBU would then be calculated for five Ugandan hospitals. Second, was to relate the financial resources and existing health policy to the performance of the imaging systems. Materials and Methods: This was a cross-sectional survey employing the triangulation methodology, conducted in Mulago National Referral Hospital. The qualitative study used cluster sampling, in-depth interviews, focus group discussions, and self-administered questionnaires to explore the non-measurable aspects of the imaging systems′ performances. Results: The IC developed and tested as an index for the imaging system′s performance was 36%. General X-rays had the best IC followed by ultrasound. The Hospital-Based Utilization for the five selected hospitals was 186 per thousand and was the highest for general radiography followed by ultrasound. Conclusion: The IC for the five selected hospitals was 36% and the HBU was 186 per thousand, reflecting low performance levels, largely attributable to inadequate funding. There were shortfalls in imaging requisitions and inefficiencies in the imaging systems, financing, and health policy. Although the proportion of inappropriate imaging was small, reducing this inappropriateness even further would lead to a significant total saving, which could be channeled into investigating more patients. Financial resources stood out as the major limitation in attaining the desired performance and there is a need to increase budget funding so as to improve the performance of the imaging health systems.

  12. PUSHBROOM HYPERSPECTRAL IMAGING FROM AN UNMANNED AIRCRAFT SYSTEM (UAS) – GEOMETRIC PROCESSINGWORKFLOW AND ACCURACY ASSESSMENT

    KAUST Repository

    Turner, D.

    2017-08-31

    In this study, we assess two push broom hyperspectral sensors as carried by small (10-15 kg) multi-rotor Unmanned Aircraft Systems (UAS). We used a Headwall Photonics micro-Hyperspec push broom sensor with 324 spectral bands (4-5 nm FWHM) and a Headwall Photonics nano-Hyperspec sensor with 270 spectral bands (6 nm FWHM) both in the VNIR spectral range (400-1000 nm). A gimbal was used to stabilise the sensors in relation to the aircraft flight dynamics, and for the micro-Hyperspec a tightly coupled dual frequency Global Navigation Satellite System (GNSS) receiver, an Inertial Measurement Unit (IMU), and Machine Vision Camera (MVC) were used for attitude and position determination. For the nano-Hyperspec, a navigation grade GNSS system and IMU provided position and attitude data. This study presents the geometric results of one flight over a grass oval on which a dense Ground Control Point (GCP) network was deployed. The aim being to ascertain the geometric accuracy achievable with the system. Using the PARGE software package (ReSe - Remote Sensing Applications) we ortho-rectify the push broom hyperspectral image strips and then quantify the accuracy of the ortho-rectification by using the GCPs as check points. The orientation (roll, pitch, and yaw) of the sensor is measured by the IMU. Alternatively imagery from a MVC running at 15 Hz, with accurate camera position data can be processed with Structure from Motion (SfM) software to obtain an estimated camera orientation. In this study, we look at which of these data sources will yield a flight strip with the highest geometric accuracy.

  13. Pre-harvest assessment of perennial weeds in cereals based on images from unmanned aerial systems (UAS)

    DEFF Research Database (Denmark)

    Egilsson, Jon; Pedersen, Kim Steenstrup; Olsen, Søren Ingvor

    2015-01-01

    Unmanned aerial systems (UAS) are able to deliver images of agricultural fields of high spatial and temporal resolution. It is, however, not trivial to extract quantitative information about weed infestations from images. This study contributes to weed research by using state-of-the-art computer....... In order to provide ground truth prior to the modeling phase in Python, a subset of 600 images was annotated by experts with 16000 regions of weeds or crop. Following this, images were segmented into regions with weeds or crop by subdividing each image into 64 by 64 pixel patches and classifying each patch...... as either crop or weed. A collection of geo-referenced segmented images may subsequently be used to map weed occurrences in fields. To find a robust and fully automated assessment method both texture and color information was used to build a number of different competing weed-crop classifiers, including...

  14. Assessing Leg length Discrepancy Using a Biplane Low Dose Imaging System. A Comparative Diagnostic Study

    DEFF Research Database (Denmark)

    Jensen, Janni; Mussmann, Bo Redder; Torfing, Trine

    study was to evaluate the diagnostic accuracy of leg length (LL) measurements performed on low dose pre-view images acquired using a new bi-planar imaging system. The administered radiation dose from the pre-view image is approximately 20,17μGycm2 vs. 2670μGycm2 when acquiring the diagnostic image.......84) for the tibial measurements and the mean difference for total LLD was 0.01cm (p=0.92) and 0.03cm (p=0.73). All ICC calculations were >.99 indicating excellent inter- and intra-rater reliability. Conclusion. The results strongly imply that LL measurements performed on pre-view images acquired with a new bi...

  15. Contemporary issues for experimental design in assessment of medical imaging and computer-assist systems

    Science.gov (United States)

    Wagner, Robert F.; Beiden, Sergey V.; Campbell, Gregory; Metz, Charles E.; Sacks, William M.

    2003-05-01

    The dialog among investigators in academia, industry, NIH, and the FDA has grown in recent years on topics of historic interest to attendees of these SPIE sub-conferences on Image Perception, Observer Performance, and Technology Assessment. Several of the most visible issues in this regard have been the emergence of digital mammography and modalities for computer-assisted detection and diagnosis in breast and lung imaging. These issues appear to be only the "tip of the iceberg" foreshadowing a number of emerging advances in imaging technology. So it is timely to make some general remarks looking back and looking ahead at the landscape (or seascape). The advances have been facilitated and documented in several forums. The major role of the SPIE Medical Imaging Conferences i well-known to all of us. Many of us were also present at the Medical Image Perception Society and co-sponsored by CDRH and NCI in September of 2001 at Airlie House, VA. The workshops and discussions held at that conference addressed some critical contemporary issues related to how society - and in particular industry and FDA - approach the general assessment problem. A great deal of inspiration for these discussions was also drawn from several workshops in recent years sponsored by the Biomedical Imaging Program of the National Cancer Institute on these issues, in particular the problem of "The Moving Target" of imaging technology. Another critical phenomenon deserving our attention is the fact that the Fourth National Forum on Biomedical Imaging in Oncology was recently held in Bethesda, MD., February 6-7, 2003. These forums are presented by the National Cancer Institute (NCI), the Food and Drug Administration (FDA), the Centers for Medicare and Medicaid Services (CMS), and the National Electrical Manufacturers Association (NEMA). They are sponsored by the National Institutes of Health/Foundation for Advanced Education in the Sciences (NIH/FAES). These forums led to the development of the NCI

  16. Implementation of the program of quality control of the system on-board imager of varian: initial assessment

    International Nuclear Information System (INIS)

    Ortega Martin, I.; Ruiz Morales, C.; Lopez Sanchez, F.; Tobarra Gonzalez, B. M.

    2013-01-01

    This work aims to present evidence that are part of our quality control system on-board Imager of Varian, elaborated from recommendations and national and international protocols, as well as a first assessment of the results obtained to date. (Author)

  17. Medical Imaging System

    Science.gov (United States)

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  18. Operational calibration and validation of landsat data continuity mission (LDCM) sensors using the image assessment system (IAS)

    Science.gov (United States)

    Micijevic, Esad; Morfitt, Ron

    2010-01-01

    Systematic characterization and calibration of the Landsat sensors and the assessment of image data quality are performed using the Image Assessment System (IAS). The IAS was first introduced as an element of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) ground segment and recently extended to Landsat 4 (L4) and 5 (L5) Thematic Mappers (TM) and Multispectral Sensors (MSS) on-board the Landsat 1-5 satellites. In preparation for the Landsat Data Continuity Mission (LDCM), the IAS was developed for the Earth Observer 1 (EO-1) Advanced Land Imager (ALI) with a capability to assess pushbroom sensors. This paper describes the LDCM version of the IAS and how it relates to unique calibration and validation attributes of its on-board imaging sensors. The LDCM IAS system will have to handle a significantly larger number of detectors and the associated database than the previous IAS versions. An additional challenge is that the LDCM IAS must handle data from two sensors, as the LDCM products will combine the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) spectral bands.

  19. Turbine imaging technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  20. Implementation of a channelized Hotelling observer model to assess image quality of x-ray angiography systems.

    Science.gov (United States)

    Favazza, Christopher P; Fetterly, Kenneth A; Hangiandreou, Nicholas J; Leng, Shuai; Schueler, Beth A

    2015-01-01

    Evaluation of flat-panel angiography equipment through conventional image quality metrics is limited by the scope of standard spatial-domain image quality metric(s), such as contrast-to-noise ratio and spatial resolution, or by restricted access to appropriate data to calculate Fourier domain measurements, such as modulation transfer function, noise power spectrum, and detective quantum efficiency. Observer models have been shown capable of overcoming these limitations and are able to comprehensively evaluate medical-imaging systems. We present a spatial domain-based channelized Hotelling observer model to calculate the detectability index (DI) of our different sized disks and compare the performance of different imaging conditions and angiography systems. When appropriate, changes in DIs were compared to expectations based on the classical Rose model of signal detection to assess linearity of the model with quantum signal-to-noise ratio (SNR) theory. For these experiments, the estimated uncertainty of the DIs was less than 3%, allowing for precise comparison of imaging systems or conditions. For most experimental variables, DI changes were linear with expectations based on quantum SNR theory. DIs calculated for the smallest objects demonstrated nonlinearity with quantum SNR theory due to system blur. Two angiography systems with different detector element sizes were shown to perform similarly across the majority of the detection tasks.

  1. Image Quality and Radiation Dose Assessment of a Digital Mammography System

    International Nuclear Information System (INIS)

    Isa, N. M.; Hassan, W. M. S. W.; Abdullah, W. A. K. W.; Othman, F.; Ramli, A. A. M.

    2010-01-01

    Image quality and radiation dose of a direct amorphous selenium digital mammography system were considered in terms of contrast to noise ratio (CNR) and average glandular dose (AGD). They were measured for various qualities and breast phantom thicknesses with different types of breast tissue composition to determine optimal radiation quality and dose. Three sets of breast tissue equivalent slabs (30%:70%, 50%:50% and 70%:30% glandular-adipose) with thickness of 2 cm to 7 cm and 0.2 mm aluminum foil were used to provide certain CNR. Two different combinations of anode/ilter material and a wide range of tube voltages were employed for each phantom thickness. Phantom images with grid were acquired using automatic exposure control (AEC) mode for each thickness. Phantom images without grid were also obtained in manual exposure mode by selecting the same anode/filter combination and kVp as the image obtained with grid at the same thickness, but varying mAs of 10 to 200 mAs. Optimization indicated that relatively high energy beam qualities should be used with a greater dose to compensate for lower energy x-rays. The results also indicate that current AEC setting for a fixed detector is not optimal.

  2. SU-F-J-143: Initial Assessment of Image Quality of An Integrated MR-Linac System with ACR Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J; Fuller, C [MD Anderson Cancer Center, Houston, TX (United States); Yung, J; Kadbi, M; Ding, Y; Ibbott, G [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose/Objective(s): To assess the image quality of an integrated MR-Linac system and compare with other MRI systems that are primarily used for diagnostic purposes. Materials/Methods: An ACR MRI quality control (QC) phantom was used to evaluate the image quality of a fully integrated 1.5T MRI-Linac system recently installed at our institution. This system has a new split magnet design which gives the magnetic field strength of 1.5T. All images were acquired with a set of phased-array surface coils which are designed to have minimal attention of radiation beam. The anterior coil rests on a coil holder which keeps the anterior coil’s position consistent for QA purposes. The posterior coil is imbedded in the patient couch. Multiple sets of T1, T2/PD images were acquired using the protocols as prescribed by the ACR on three different dates, ranging 3 months apart. Results: The geometric distortion are within 0.5 mm in the axial scans and within 1mm in the saggital (z-direction) scans. Slice thickness accuracy, image uniformity, ghosting ratio, high contrast detectability are comparable to other 1.5T diagnostic MRI scanners. The low-contrast object detectability are lower comparatively, which is a result of using the body array coil. Additionally, the beam’s-eye-view images (oblique coronal and saggital images) have minimal geometric distortion at all linac gantry angles tested. No observable changes or drift in image quality is found from images acquired 3 month apart. Conclusion: Despite the use of a body array surface coil, the image quality is comparable to that of an 1.5T MRI scanner and is of sufficient quality to pass the ACR MRI accreditation program. The geometric distortion of the MRI system of the integrated MR-Linac is within 1mm for an object size similar to the ACR phantom, sufficient for radiation therapy treatment purpose. The authors received corporate sponsored research grants from Elekta which is the vendor for the MR-Linac evaluated in this

  3. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  4. Assessment of a customised immobilisation system for head and neck IMRT using electronic portal imaging

    International Nuclear Information System (INIS)

    Humphreys, Mandy; Guerrero Urbano, M.Teressa; Mubata, Cefas; Miles, Elizabeth; Harrington, Kevin J.; Bidmead, Margaret; Nutting, Christopher M.

    2005-01-01

    Purpose: To evaluate set-up reproducibility of a cabulite shell and determine CTV-PTV margins for head and neck intensity-modulated-radiotherapy. Materials and methods: Twenty patients were entered into the study. A total of 354 anterior and lateral isocentric electronic portal images (EPIs) were compared to simulator reference images. Results: About 94% of all translational displacements were ≤3 mm, and 99% ≤5 mm. The overall systematic error was 0.9 mm (±1.0SD) in the Right-Left, 0.7 mm (±0.9SD) in the Superior-Inferior and -0.02 mm (±1.1SD) in the Anterior-Posterior directions. The corresponding SDs of the random errors were ±0.4, ±0.6 and ±0.7 mm. The estimated margins required from CTV-PTV were calculated according to the Van Herk formula was 2.9, 2.6 and 3.3 mm, respectively. Conclusions: This head and neck immobilisation system is of sufficient accuracy for its use with IMRT treatments and a 3 mm CTV-PTV margin has been adopted

  5. Feasibility study and quality assessment of unmanned aircraft system-derived multispectral images

    Science.gov (United States)

    Chang, Kuo-Jen

    2017-04-01

    The purpose of study is to explore the precision and the applicability of UAS-derived multispectral images. In this study, the Micro-MCA6 multispectral camera was mounted on quadcopter. The Micro-MCA6 shoot images synchronized of each single band. By means of geotagged images and control points, the orthomosaic images of each single band generated firstly by 14cm resolution. The multispectral image was merged complete with 6 bands. In order to improve the spatial resolution, the 6 band image fused with 9cm resolution image taken from RGB camera. Quality evaluation of the image is verified of the each single band by using control points and check points. The standard deviations of errors are within 1 to 2 pixel resolution of each band. The quality of the multispectral image is compared with 3 cm resolution orthomosaic RGB image gathered from UAV in the same mission, as well. The standard deviations of errors are within 2 to 3 pixel resolution. The result shows that the errors resulting from the blurry and the band dislocation of the objects edge identification. To the end, the normalized difference vegetation index (NDVI) extracted from the image to explore the condition of vegetation and the nature of the environment. This study demonstrates the feasibility and the capability of the high resolution multispectral images.

  6. Assessment of display performance for medical imaging systems: Executive summary of AAPM TG18 report

    International Nuclear Information System (INIS)

    Samei, Ehsan; Badano, Aldo; Chakraborty, Dev

    2005-01-01

    Digital imaging provides an effective means to electronically acquire, archive, distribute, and view medical images. Medical imaging display stations are an integral part of these operations. Therefore, it is vitally important to assure that electronic display devices do not compromise image quality and ultimately patient care. The AAPM Task Group 18 (TG18) recently published guidelines and acceptance criteria for acceptance testing and quality control of medical display devices. This paper is an executive summary of the TG18 report. TG18 guidelines include visual, quantitative, and advanced testing methodologies for primary and secondary class display devices. The characteristics, tested in conjunction with specially designed test patterns (i.e., TG18 patterns), include reflection, geometric distortion, luminance, the spatial and angular dependencies of luminance, resolution, noise, glare, chromaticity, and display artifacts. Geometric distortions are evaluated by linear measurements of the TG18-QC test pattern, which should render distortion coefficients less than 2%/5% for primary/secondary displays, respectively. Reflection measurements include specular and diffuse reflection coefficients from which the maximum allowable ambient lighting is determined such that contrast degradation due to display reflection remains below a 20% limit and the level of ambient luminance (L amb ) does not unduly compromise luminance ratio (LR) and contrast at low luminance levels. Luminance evaluation relies on visual assessment of low contrast features in the TG18-CT and TG18-MP test patterns, or quantitative measurements at 18 distinct luminance levels of the TG18-LN test patterns. The major acceptable criteria for primary/secondary displays are maximum luminance of greater than 170/100 cd/m 2 , LR of greater than 250/100, and contrast conformance to that of the grayscale standard display function (GSDF) of better than 10%/20%, respectively. The angular response is tested to

  7. Assessment of the image quality and tumor detectability of breath-hold T2-weighted imaging of liver tumors using a fast gradient MR system

    International Nuclear Information System (INIS)

    Yoshida, Kotaro; Suto, Yuji; Sugihara, Shuji; Tokuda, Yukiko

    1996-01-01

    Fourteen patients with various types of focal liver tumors were imaged with turbo spin-echo (TSE), breath-hold TSE (BH-TSE) and half-Fourier single-shot TSE (HASTE) pulse sequences using a fast gradient magnetic resonance imaging (MRI) system. We compared the T2-weighted images of the liver with the TSE, BH-TSE, HASTE and conventional spin-echo (SE) pulse sequences in order to determine whether those fast T2-weighted images, including fat suppressed images, could replace SE images. In quantitative and qualitative analysis, the fast T2-weighted images were slightly superior to the SE images, but they were inferior in the conspicuousness of liver tumor to the SE images. These findings suggest that the fast T2-weighted images can shorten the examination time of the liver MRI, but cannot replace the T2-weighted SE images because of the low conspicuousness. (author)

  8. Reproducibility of patient positioning during routine radiotherapy, as assessed by an integrated megavoltage imaging system

    International Nuclear Information System (INIS)

    Gildersleve, J.; Dearnaley, D.P.; Evans, P.M.; Swindell, W.

    1995-01-01

    A portal imaging system has been used, in conjunction with a movie measurement technique to measure set-up errors for 15 patients treated with radiotherapy of the pelvis and for 12 patients treated with radiotherapy of the brain. The pelvic patients were treated without fixation devices and the brain patients were treated with individually-moulded plastic shells. As would be expected the brain treatments were found to be more accurate than the pelvic treatments. Results are presented in terms of five error types: random error from treatment to treatment, error between mean treatment position and simulation position, random simulation error, systematic simulator-to-treatment errors and total treatment error. For the brain patients the simulation-to-treatment error predominates and random treatment errors were small (95% ≤ 3 mm, 77% ≤ 1.5 mm). Vector components of the systematic simulation-to-treatment errors were 1-2 mm with maximal random simulation error of ± 5 mm (2 S.D.). There is much interest in the number of verification films necessary to evaluate treatment accuracy. These results indicate that one check film performed at the first treatment is likely to be sufficient for set-up evaluation. For the pelvis the random treatment error is larger (95% ≤ 4.5 mm, 87% ≤ 3 mm). The systematic simulation-to-treatment error is up to 3 mm and the maximal random simulation error is ± 6 mm (2 S.D.). Thus corrections made solely on the basis of a first day check film may not be sufficient for adequate set-up evaluation

  9. Multipurpose Hyperspectral Imaging System

    Science.gov (United States)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon

    2005-01-01

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  10. REMOTE SENSING IMAGE QUALITY ASSESSMENT EXPERIMENT WITH POST-PROCESSING

    Directory of Open Access Journals (Sweden)

    W. Jiang

    2018-04-01

    Full Text Available This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.

  11. Dietary Assessment on a Mobile Phone Using Image Processing and Pattern Recognition Techniques: Algorithm Design and System Prototyping

    Directory of Open Access Journals (Sweden)

    Yasmine Probst

    2015-07-01

    Full Text Available Dietary assessment, while traditionally based on pen-and-paper, is rapidly moving towards automatic approaches. This study describes an Australian automatic food record method and its prototype for dietary assessment via the use of a mobile phone and techniques of image processing and pattern recognition. Common visual features including scale invariant feature transformation (SIFT, local binary patterns (LBP, and colour are used for describing food images. The popular bag-of-words (BoW model is employed for recognizing the images taken by a mobile phone for dietary assessment. Technical details are provided together with discussions on the issues and future work.

  12. Radiology residents' comprehension of the breast imaging reporting and data system: The ultrasound lexicon and final assessment category

    International Nuclear Information System (INIS)

    Jeong, Sun Hye; Lee, Eun Hye; Roh, Yun Ho; Kim, Min Jung; Youk, Ji Hyun; Yoon, Jung Hyun; Kim, Sung Hun; Kim, You Me

    2017-01-01

    To evaluate radiology residents' performance in interpretation and comprehension of breast ultrasonographic descriptors in the Breast Imaging Reporting and Data System (BI-RADS) to suggest the adequate duration of training in breast ultrasonography. A total of 102 radiology residents working in the Department of Radiology were included in this study. They were asked to answer 16 questions about the ultrasonographic lexicon and 11 questions about the BI-RADS category. We analyzed the proportion of correct answers according to the radiology residents’ year of training and duration of breast imaging training. With respect to the duration of breast imaging training, the proportion of correct answers for lexicon descriptors ranged from 77.2% to 81.3% (p = 0.368) and the proportion of correct answers for the BI-RADS category was highest after three-four months of training compared with after one month of training (p = 0.033). The proportion of correct answers for lexicon descriptors and BI-RADS category did not differ significantly according to the year of residency training. Radiology residents' comprehension of the BI-RADS category on breast ultrasonography was not associated with their year of residency training. Based on our findings, radiology residents' assessment of the BI-RADS category was significantly improved with three-four months of training compared with one month of training

  13. Radiology residents' comprehension of the breast imaging reporting and data system: The ultrasound lexicon and final assessment category

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Sun Hye; Lee, Eun Hye [Bucheon Hospital, Bucheon (Korea, Republic of); Roh, Yun Ho; Kim, Min Jung; Youk, Ji Hyun [Yonsei University College of Medicine, Seoul (Korea, Republic of); Yoon, Jung Hyun; Kim, Sung Hun [The Catholic University of Korea, Seoul (Korea, Republic of); Kim, You Me [Dankook University College of Medicine, Cheonan (Korea, Republic of)

    2017-07-15

    To evaluate radiology residents' performance in interpretation and comprehension of breast ultrasonographic descriptors in the Breast Imaging Reporting and Data System (BI-RADS) to suggest the adequate duration of training in breast ultrasonography. A total of 102 radiology residents working in the Department of Radiology were included in this study. They were asked to answer 16 questions about the ultrasonographic lexicon and 11 questions about the BI-RADS category. We analyzed the proportion of correct answers according to the radiology residents’ year of training and duration of breast imaging training. With respect to the duration of breast imaging training, the proportion of correct answers for lexicon descriptors ranged from 77.2% to 81.3% (p = 0.368) and the proportion of correct answers for the BI-RADS category was highest after three-four months of training compared with after one month of training (p = 0.033). The proportion of correct answers for lexicon descriptors and BI-RADS category did not differ significantly according to the year of residency training. Radiology residents' comprehension of the BI-RADS category on breast ultrasonography was not associated with their year of residency training. Based on our findings, radiology residents' assessment of the BI-RADS category was significantly improved with three-four months of training compared with one month of training.

  14. Turbine Imaging Technology Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  15. Turbine Imaging Technology Assessment

    International Nuclear Information System (INIS)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-01-01

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions

  16. PUSHBROOM HYPERSPECTRAL IMAGING FROM AN UNMANNED AIRCRAFT SYSTEM (UAS) – GEOMETRIC PROCESSINGWORKFLOW AND ACCURACY ASSESSMENT

    KAUST Repository

    Turner, D.; Lucieer, A.; McCabe, Matthew; Parkes, Stephen; Clarke, I.

    2017-01-01

    dual frequency Global Navigation Satellite System (GNSS) receiver, an Inertial Measurement Unit (IMU), and Machine Vision Camera (MVC) were used for attitude and position determination. For the nano-Hyperspec, a navigation grade GNSS system and IMU

  17. Accuracy Assessment Measures for Image Segmentation Goodness of the Land Parcel Identification System

    DEFF Research Database (Denmark)

    Montaghi, Alessandro; Larsen, Rene; Greve, Mogens Humlekrog

    2013-01-01

    , was employed in order to assess the quality of segmentation. An accuracy assessment was performed using seven metrics based on the topological or geometric similarity between segmented polygons and reference polygons, which were derived through manual delineation. The results indicate that (1) segmentation...... accuracy is influenced by the size of the reference polygons and (2) the presence of clear boundaries (e.g. hedgerow, ponds, ditches and road) drives the segmentation algorithm when the scale parameter exceeds a certain value....

  18. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V [Wayland, MA

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  19. Quantitative Assessment of Pap Smear Cells by PC-Based Cytopathologic Image Analysis System and Support Vector Machine

    Science.gov (United States)

    Huang, Po-Chi; Chan, Yung-Kuan; Chan, Po-Chou; Chen, Yung-Fu; Chen, Rung-Ching; Huang, Yu-Ruei

    Cytologic screening has been widely used for controlling the prevalence of cervical cancer. Errors from sampling, screening and interpretation, still concealed some unpleasant results. This study aims at designing a cellular image analysis system based on feasible and available software and hardware for a routine cytologic laboratory. Totally 1814 cellular images from the liquid-based cervical smears with Papanicolaou stain in 100x, 200x, and 400x magnification were captured by a digital camera. Cell images were reviewed by pathologic experts with peer agreement and only 503 images were selected for further study. The images were divided into 4 diagnostic categories. A PC-based cellular image analysis system (PCCIA) was developed for computing morphometric parameters. Then support vector machine (SVM) was used to classify signature patterns. The results show that the selected 13 morphometric parameters can be used to correctly differentiate the dysplastic cells from the normal cells (pgynecologic cytologic specimens.

  20. Quantitative luminescence imaging system

    Science.gov (United States)

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  1. Enhanced Gender Recognition System Using an Improved Histogram of Oriented Gradient (HOG Feature from Quality Assessment of Visible Light and Thermal Images of the Human Body

    Directory of Open Access Journals (Sweden)

    Dat Tien Nguyen

    2016-07-01

    Full Text Available With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG, which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images.

  2. Enhanced Gender Recognition System Using an Improved Histogram of Oriented Gradient (HOG) Feature from Quality Assessment of Visible Light and Thermal Images of the Human Body.

    Science.gov (United States)

    Nguyen, Dat Tien; Park, Kang Ryoung

    2016-07-21

    With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images.

  3. Raster images vectorization system

    OpenAIRE

    Genytė, Jurgita

    2006-01-01

    The problem of raster images vectorization was analyzed and researched in this work. Existing vectorization systems are quite expensive, the results are inaccurate, and the manual vectorization of a large number of drafts is impossible. That‘s why our goal was to design and develop a new raster images vectorization system using our suggested automatic vectorization algorithm and the way to record results in a new universal vectorial file format. The work consists of these main parts: analysis...

  4. Spatial assessment of intertidal seagrass meadows using optical imaging systems and a lightweight drone

    Science.gov (United States)

    Duffy, James P.; Pratt, Laura; Anderson, Karen; Land, Peter E.; Shutler, Jamie D.

    2018-01-01

    Seagrass ecosystems are highly sensitive to environmental change. They are also in global decline and under threat from a variety of anthropogenic factors. There is now an urgency to establish robust monitoring methodologies so that changes in seagrass abundance and distribution in these sensitive coastal environments can be understood. Typical monitoring approaches have included remote sensing from satellites and airborne platforms, ground based ecological surveys and snorkel/scuba surveys. These techniques can suffer from temporal and spatial inconsistency, or are very localised making it hard to assess seagrass meadows in a structured manner. Here we present a novel technique using a lightweight (sub 7 kg) drone and consumer grade cameras to produce very high spatial resolution (∼4 mm pixel-1) mosaics of two intertidal sites in Wales, UK. We present a full data collection methodology followed by a selection of classification techniques to produce coverage estimates at each site. We trialled three classification approaches of varying complexity to investigate and illustrate the differing performance and capabilities of each. Our results show that unsupervised classifications perform better than object-based methods in classifying seagrass cover. We also found that the more sparsely vegetated of the two meadows studied was more accurately classified - it had lower root mean squared deviation (RMSD) between observed and classified coverage (9-9.5%) compared to a more densely vegetated meadow (RMSD 16-22%). Furthermore, we examine the potential to detect other biotic features, finding that lugworm mounds can be detected visually at coarser resolutions such as 43 mm pixel-1, whereas smaller features such as cockle shells within seagrass require finer grained data (<17 mm pixel-1).

  5. A new U.S. film system classification and image quality assessment

    International Nuclear Information System (INIS)

    Knell, M.

    1996-01-01

    The last ASTM Standard E94 which classified Industrial Radiography films was published in 1984. Since that time inspection contracts in US and worldwide have continued to specify Type 1 and Type 2 films--although these no longer exist. From 1990 there was discussion within ASTM and work was done by ASTM Committee E07-01. The method proposed used data on graininess and gradient to produce an index to represent quality. In the early version the author found that it was possible to have a very fine grain low-contrast film with the same index as a fine grain film, with high contrast. The draft standard was then developed, so that it is possible to classify both types of film in separate groups. The first is the Classical type of film and the second is a Wide Latitude film. In a Classical film, the contrast increases over the useable density range. The range of application standards specify densities generally from D = 2.0 to D = 4.0. A radiologist would expect contrast to be higher at D = 4.0 compared with contrast at D = 2.0. The new ASTM film classification uses a signal to noise ratio--with minimum values for each class for contrast and a maximum value for graininess. The ASTM Classification System uses the same parameters as the European Standard EN584-1 and ISO CD

  6. Interneuronal systems of the cervical spinal cord assessed with BOLD imaging at 1.5 T

    International Nuclear Information System (INIS)

    Stracke, C.P.; Schoth, F.; Moeller-Hartmann, W.; Krings, T.; Pettersson, L.G.

    2005-01-01

    The purpose of this study was to investigate if functional activity with spinal cord somatosensory stimulation can be visualized using BOLD fMRI. We investigated nine healthy volunteers using a somatosensory stimulus generator. The stimuli were applied in three different runs at the first, third, and fifth finger tip of the right hand, respectively, corresponding to dermatomes c6, c7, and c8. The stimuli gave an increase of BOLD signal (activation) in three different locations of the spinal cord and brain stem. First, activations could be seen in the spinal segment corresponding to the stimulated dermatome in seven out of nine volunteers for c6 stimulation, two out of eight for c7, and three out of eight for c8. These activations were located close to the posterior margin of the spinal cord, presumably reflecting synaptic transmission to dorsal horn interneurons. Second, activation in the medulla oblongata was evident in four subjects, most likely corresponding to the location of the nucleus cuneatus. The third location of activation, which was the strongest and most reliable observed was inside the spinal cord in the c3 and c4 segments. Activation at these spinal levels was almost invariably observed independently of the dermatome stimulated (9/9 for c6, 8/8 for c7, and 7/8 for c8 stimulation). These activations may pertain to an interneuronal system at this spinal level. The results are discussed in relation to neurophysiological studies on cervical spinal interneuronal pathways in animals and humans. (orig.)

  7. Scorpion image segmentation system

    Science.gov (United States)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  8. Retinal image quality assessment based on image clarity and content

    Science.gov (United States)

    Abdel-Hamid, Lamiaa; El-Rafei, Ahmed; El-Ramly, Salwa; Michelson, Georg; Hornegger, Joachim

    2016-09-01

    Retinal image quality assessment (RIQA) is an essential step in automated screening systems to avoid misdiagnosis caused by processing poor quality retinal images. A no-reference transform-based RIQA algorithm is introduced that assesses images based on five clarity and content quality issues: sharpness, illumination, homogeneity, field definition, and content. Transform-based RIQA algorithms have the advantage of considering retinal structures while being computationally inexpensive. Wavelet-based features are proposed to evaluate the sharpness and overall illumination of the images. A retinal saturation channel is designed and used along with wavelet-based features for homogeneity assessment. The presented sharpness and illumination features are utilized to assure adequate field definition, whereas color information is used to exclude nonretinal images. Several publicly available datasets of varying quality grades are utilized to evaluate the feature sets resulting in area under the receiver operating characteristic curve above 0.99 for each of the individual feature sets. The overall quality is assessed by a classifier that uses the collective features as an input vector. The classification results show superior performance of the algorithm in comparison to other methods from literature. Moreover, the algorithm addresses efficiently and comprehensively various quality issues and is suitable for automatic screening systems.

  9. A 3D imaging system integrating photoacoustic and fluorescence orthogonal projections for anatomical, functional and molecular assessment of rodent models

    Science.gov (United States)

    Brecht, Hans P.; Ivanov, Vassili; Dumani, Diego S.; Emelianov, Stanislav Y.; Anastasio, Mark A.; Ermilov, Sergey A.

    2018-03-01

    We have developed a preclinical 3D imaging instrument integrating photoacoustic tomography and fluorescence (PAFT) addressing known deficiencies in sensitivity and spatial resolution of the individual imaging components. PAFT is designed for simultaneous acquisition of photoacoustic and fluorescence orthogonal projections at each rotational position of a biological object, enabling direct registration of the two imaging modalities. Orthogonal photoacoustic projections are utilized to reconstruct large (21 cm3 ) volumes showing vascularized anatomical structures and regions of induced optical contrast with spatial resolution exceeding 100 µm. The major advantage of orthogonal fluorescence projections is significant reduction of background noise associated with transmitted or backscattered photons. The fluorescence imaging component of PAFT is used to boost detection sensitivity by providing low-resolution spatial constraint for the fluorescent biomarkers. PAFT performance characteristics were assessed by imaging optical and fluorescent contrast agents in tissue mimicking phantoms and in vivo. The proposed PAFT technology will enable functional and molecular volumetric imaging using fluorescent biomarkers, nanoparticles, and other photosensitive constructs mapped with high fidelity over robust anatomical structures, such as skin, central and peripheral vasculature, and internal organs.

  10. Image Perception and Assessment. Chapter 18

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, I. [University of Chicago, Chicago (United States)

    2014-09-15

    The main purpose of a medical image is to provide information to a human reader, such as a radiologist, so that a diagnosis can be reached — rather than to display the beauty of the human internal workings. It is important to understand how the human visual system affects the perception of contrast and spatial resolution of structures that are present in the image. If the image is not properly displayed, or the environment is not appropriate, subtle clinical signs may go unnoticed, which can potentially lead to a misdiagnosis. This chapter provides an introduction to human visual perception and task based objective assessment of an imaging system. A model for the contrast sensitivity of the human visual system is presented. This model is used to derive the greyscale standard display function for medical displays. Task based assessment measures the quality of an imaging system as the ability of an observer to perform a well defined task, based on a set of images. Metrics for observer performance are introduced, as well as experimental methodologies for the measurement of human performance. The last section of the chapter describes the estimation of task performance based on mathematical observer models.

  11. Retrospective assessment of exposure to static magnetic fields during production and development of magnetic resonance imaging systems

    NARCIS (Netherlands)

    Bongers, Suzan|info:eu-repo/dai/nl/313874050; Christopher, Yvette|info:eu-repo/dai/nl/27590184X; Engels, Hans; Slottje, Pauline|info:eu-repo/dai/nl/299345351; Kromhout, Hans|info:eu-repo/dai/nl/074385224

    2014-01-01

    At present, the relationship between chronic exposure to static magnetic fields (SMF) and health effects is unclear. We developed a task-based deterministic model for estimating historical electromagnetic field exposure from the static B-field (B0) of magnetic resonance imaging (MRI) systems, for a

  12. Vaginal distribution and retention of a multiparticulate drug delivery system, assessed by gamma scintigraphy and magnetic resonance imaging.

    Science.gov (United States)

    Mehta, Samata; Verstraelen, Hans; Peremans, Kathelijne; Villeirs, Geert; Vermeire, Simon; De Vos, Filip; Mehuys, Els; Remon, Jean Paul; Vervaet, Chris

    2012-04-15

    For any new vaginal dosage form, the distribution and retention in the vagina has to be assessed by in vivo evaluation. We evaluated the vaginal distribution and retention of starch-based pellets in sheep as live animal model by gamma scintigraphy (using Indium-111 DTPA as radiolabel) and in women via magnetic resonance imaging (MRI, using a gadolinium chelate as contrast agent). A conventional cream formulation was used as reference in both studies. Cream and pellets were administered to sheep (n=6) in a two period-two treatment study and to healthy female volunteers (n=6) via a randomized crossover trial. Pellets (filled into hard gelatin capsule) and cetomacrogol cream, both labeled with Indium-111 DTPA (for gamma scintigraphy) or with gadolinium chelate (for MRI) were evaluated for their intravaginal distribution and retention over a 24h period. Spreading in the vagina was assessed based on the part of the vagina covered with formulation (expressed in relation to the total vaginal length). Vaginal retention of the formulation was quantified based on the radioactivity remaining in the vaginal area (sheep study), or qualitatively evaluated (women study). Both trials indicated a rapid distribution of the cream within the vagina as complete coverage of the vaginal mucosa was seen 1h after dose administration. Clearance of the cream was rapid: about 10% activity remained in the vaginal area of the sheep 12h post-administration, while after 8h only a thin layer of cream was detected on the vaginal mucosa of women. After disintegration of the hard gelatin capsule, the pellet formulation gradually distributed over the entire vaginal mucosa. Residence time of the pellets in the vagina was longer compared to the semi-solid formulation: after 24h 23 ± 7% radioactivity was detected in the vaginal area of the sheep, while in women the pellet formulation was still detected throughout the vagina. A multi-particulate system containing starch-based pellets was identified as a

  13. Nuclear imaging system

    International Nuclear Information System (INIS)

    Barrett, H.H.; Horrigan, F.A.

    1975-01-01

    This invention relates to a nuclear imaging system for mapping the source of high energy nuclear particles from a living organ which has selectively absorbed a radioactive compound by spatially coding the energy from the source in a Fresnel pattern on a detector and decoding the detector output to prouce an image of the source. The coding is produced by a Fresnel zone plate interposed between the nuclear energy source and the detector whose position is adjustable with respect to the detector to focus the slices of the nuclear source on the detector. By adjusting the zone plate to a plurality of positions, data from a plurality of cross-sectional slices are produced from which a three-dimensional image of the nuclear source may be obtained. (Patent Office Record)

  14. Quantitative assessment of graded burn wounds using a commercial and research grade laser speckle imaging (LSI) system

    Science.gov (United States)

    Ponticorvo, A.; Rowland, R.; Yang, B.; Lertsakdadet, B.; Crouzet, C.; Bernal, N.; Choi, B.; Durkin, A. J.

    2017-02-01

    Burn wounds are often characterized by injury depth, which then dictates wound management strategy. While most superficial burns and full thickness burns can be diagnosed through visual inspection, clinicians experience difficulty with accurate diagnosis of burns that fall between these extremes. Accurately diagnosing burn severity in a timely manner is critical for starting the appropriate treatment plan at the earliest time points to improve patient outcomes. To address this challenge, research groups have studied the use of commercial laser Doppler imaging (LDI) systems to provide objective characterization of burn-wound severity. Despite initial promising findings, LDI systems are not commonplace in part due to long acquisition times that can suffer from artifacts in moving patients. Commercial LDI systems are being phased out in favor of laser speckle imaging (LSI) systems that can provide similar information with faster acquisition speeds. To better understand the accuracy and usefulness of commercial LSI systems in burn-oriented research, we studied the performance of a commercial LSI system in three different sample systems and compared its results to a research-grade LSI system in the same environments. The first sample system involved laboratory measurements of intralipid (1%) flowing through a tissue simulating phantom, the second preclinical measurements in a controlled burn study in which wounds of graded severity were created on a Yorkshire pig, and the third clinical measurements involving a small sample of clinical patients. In addition to the commercial LSI system, a research grade LSI system that was designed and fabricated in our labs was used to quantitatively compare the performance of both systems and also to better understand the "Perfusion Unit" output of commercial systems.

  15. Radiographic imaging system

    International Nuclear Information System (INIS)

    Davis, L. Jr.; Barrett, H.H.

    1979-01-01

    This invention describes a system for imaging a subject, such as a human being, in which there has been injected a contrast agent which absorbs radiation of a predetermined frequency. The system utilizes a source of high energy radiation such as X or gamma radiation. The source is a composite of first and second radiating materials each of which is arranged in a predetermined pattern or code, each pattern having both luminous and dark regions. In one embodiment, the luminous regions of one pattern are in registration with the dark regions of the other pattern, these regions being spaced apart in an alternative embodiment. The characteristic frequencies of radiation emitted by the first and second materials are respectively lower and higher than the predetermined absorption frequency. A detector of radiation is positioned relative to the subject and the source such that radiation propagating through the subject is incident upon the detector. Since the absorption edge of the contrast agent lies between the two characteristic frequencies of radiation, radiation from the second material is preferentially absorbed by the contrast agent with the result that the contrast agent appears to be illuminated by a coded source while the remainder of the subject may be regarded as illuminated essentially by a uniform uncoded source. Imaging is accomplished by a decoding of a detected coded image. Substances within the subject having other absorption frequencies are not imaged since the radiations of both materials are essentially equally absorbed by the subject so that the source appears uncoded

  16. Implementation of the program of quality control of the system on-board imager of varian: initial assessment; Puesta en marcha del programa de control de calidad del sistema on-board imager de varian: evaluacion inicial

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Martin, I.; Ruiz Morales, C.; Lopez Sanchez, F.; Tobarra Gonzalez, B. M.

    2013-07-01

    This work aims to present evidence that are part of our quality control system on-board Imager of Varian, elaborated from recommendations and national and international protocols, as well as a first assessment of the results obtained to date. (Author)

  17. Characterization of a 0.35T MR system for phantom image quality stability and in vivo assessment of motion quantification.

    Science.gov (United States)

    Saenz, Daniel L; Yan, Yue; Christensen, Neil; Henzler, Margaret A; Forrest, Lisa J; Bayouth, John E; Paliwal, Bhudatt R

    2015-11-08

    ViewRay is a novel MR-guided radiotherapy system capable of imaging in near real-time at four frames per second during treatment using 0.35T field strength. It allows for improved gating techniques and adaptive radiotherapy. Three cobalt-60 sources (~ 15,000 Curies) permit multiple-beam, intensity-modulated radiation therapy. The primary aim of this study is to assess the imaging stability, accuracy, and automatic segmentation algorithm capability to track motion in simulated and in vivo targets. Magnetic resonance imaging (MRI) characteristics of the system were assessed using the American College of Radiology (ACR)-recommended phantom and accreditation protocol. Images of the ACR phantom were acquired using a head coil following the ACR scanning instructions. ACR recommended T1- and T2-weighted sequences were evaluated. Nine measurements were performed over a period of seven months, on just over a monthly basis, to establish consistency. A silicon dielectric gel target was attached to the motor via a rod. 40 mm total amplitude was used with cycles of 3 to 9 s in length in a sinusoidal trajectory. Trajectories of six moving clinical targets in four canine patients were quantified and tracked. ACR phantom images were analyzed, and the results were compared with the ACR acceptance levels. Measured slice thickness accuracies were within the acceptance limits. In the 0.35 T system, the image intensity uniformity was also within the ACR acceptance limit. Over the range of cycle lengths, representing a wide range of breathing rates in patients imaged at four frames/s, excellent agreement was observed between the expected and measured target trajectories. In vivo canine targets, including the gross target volume (GTV), as well as other abdominal soft tissue structures, were visualized with inherent MR contrast, allowing for preliminary results of target tracking.

  18. Comparison of laser Doppler imaging, fingertip lacticemy test, and nailfold capillaroscopy for assessment of digital microcirculation in systemic sclerosis.

    Science.gov (United States)

    Correa, Marcelo Ju; Andrade, Luis Ec; Kayser, Cristiane

    2010-01-01

    Laser Doppler imaging (LDI) is a relatively new method for assessing the functional aspect of superficial skin blood flow in systemic sclerosis (SSc) and Raynaud's phenomenon. The present study investigated the dynamic behavior of digital skin microvascular blood flow before and after cold stimulus (CS) in SSc patients and in healthy controls by means of a comprehensive approach of the functional (LDI), morphological (nailfold capillaroscopy (NFC)), and biochemical (fingertip lacticemy (FTL)) microcirculation components. Forty-four SSc patients and 40 healthy controls were included. After acclimatization, all subjects underwent NFC followed by LDI and FTL measurement. NFC was performed with a stereomicroscope under 10× to 20× magnification in the 10 digits of the hands. Skin blood flow of the dorsum of four fingertips (excluding the thumb) of the left hand was measured using LDI at baseline and for 30 minutes after CS. The mean finger blood flow (FBF) of the four fingertips was expressed as arbitrary perfusion units. FTL was determined on the fourth left finger before (pre-CS-FTL) and 10 minutes after CS. LDI showed significantly lower mean baseline FBF in SSc patients as compared with controls (296.9 ± 208.8 vs. 503.6 ± 146.4 perfusion units; P < 0.001) and also at all time points after CS (P < 0.001). There was a significant decrease in mean FBF after CS as compared with baseline in SSc patients and in controls, followed by recovery of the blood flow 27 minutes after CS in healthy controls, but not in SSc patients. FBF tended to be lower in patients with digital scars and previous ulceration/amputation (P = 0.06). There was no correlation between mean baseline FBF and NFC parameters. Interestingly, there was a negative correlation between FTL and FBF measured by LDI in basal conditions and 10 minutes after CS in SSc patients. LDI showed lower digital blood flow in SSc patients when compared with healthy controls and correlated well with FTL both at baseline

  19. Heart Imaging System

    Science.gov (United States)

    1993-01-01

    Johnson Space Flight Center's device to test astronauts' heart function in microgravity has led to the MultiWire Gamma Camera, which images heart conditions six times faster than conventional devices. Dr. Jeffrey Lacy, who developed the technology as a NASA researcher, later formed Proportional Technologies, Inc. to develop a commercially viable process that would enable use of Tantalum-178 (Ta-178), a radio-pharmaceutical. His company supplies the generator for the radioactive Ta-178 to Xenos Medical Systems, which markets the camera. Ta-178 can only be optimally imaged with the camera. Because the body is subjected to it for only nine minutes, the radiation dose is significantly reduced and the technique can be used more frequently. Ta-178 also enables the camera to be used on pediatric patients who are rarely studied with conventional isotopes because of the high radiation dosage.

  20. Method of assessing heterogeneity in images

    Science.gov (United States)

    Jacob, Richard E.; Carson, James P.

    2016-08-23

    A method of assessing heterogeneity in images is disclosed. 3D images of an object are acquired. The acquired images may be filtered and masked. Iterative decomposition is performed on the masked images to obtain image subdivisions that are relatively homogeneous. Comparative analysis, such as variogram analysis or correlogram analysis, is performed of the decomposed images to determine spatial relationships between regions of the images that are relatively homogeneous.

  1. Tomographic imaging system

    International Nuclear Information System (INIS)

    Hayakawa, T.; Horiba, I.; Kohno, H.; Nakaya, C.; Sekihara, K.; Shiono, H.; Tomura, T.; Yamamoto, S.; Yanaka, S.

    1980-01-01

    A tomographic imaging system comprising: irradiating means for irradating a cross-section of an object under consideration with radiation rays from plural directions; detector means for detecting the radiation rays transmitted through the cross-section of said object to produce an output signal; first memory means for storing the output signal of said detector means; and an image jreconstructing section for performing a convolution integral operation on the contents of said first memory means by means of a first weighting function to reconstruct a three-dimensional image of the cross-section of said object, said image reconstructing section including (I) second memory means for storing a second weighting function, said second weighting function being provided with a predetermined positive and negative (N-1)th order when the output signal of said detector means produced by the irradiation of the cross-section of said object from one of said plural directions is sampled by N points, the value of the (N-1)th order of said second weighting function being an integration of said first weighting function from the (N-1)th order to positive infinity and the value of -(N-1)th order of said second weighting function being an integration of said first weighting function from the -(N-1)th order to negative infinity, (II) control means for successively reading out the contents of said first and second memory means, and (III) operational means for performing multiplying and summing operations on the read-out contents of said first and second memory means, said operational means producing the product of the values fo the (N-1)th and -(N-1)th orders of said second weighting function and a component of the output signal of said detector means relating to the radiation rays free from the absorption thereof by said object

  2. ASSESSMENT OF CROPPING SYSTEM DIVERSITY IN THE FERGANA VALLEY THROUGH IMAGE FUSION OF LANDSAT 8 AND SENTINEL-1

    Directory of Open Access Journals (Sweden)

    D. Dimov

    2016-06-01

    Full Text Available In the transitioning agricultural societies of the world, food security is an essential element of livelihood and economic development with the agricultural sector very often being the major employment factor and income source. Rapid population growth, urbanization, pollution, desertification, soil degradation and climate change pose a variety of threats to a sustainable agricultural development and can be expressed as agricultural vulnerability components. Diverse cropping patterns may help to adapt the agricultural systems to those hazards in terms of increasing the potential yield and resilience to water scarcity. Thus, the quantification of crop diversity using indices like the Simpson Index of Diversity (SID e.g. through freely available remote sensing data becomes a very important issue. This however requires accurate land use classifications. In this study, the focus is set on the cropping system diversity of garden plots, summer crop fields and orchard plots which are the prevalent agricultural systems in the test area of the Fergana Valley in Uzbekistan. In order to improve the accuracy of land use classification algorithms with low or medium resolution data, a novel processing chain through the hitherto unique fusion of optical and SAR data from the Landsat 8 and Sentinel-1 platforms is proposed. The combination of both sensors is intended to enhance the object´s textural and spectral signature rather than just to enhance the spatial context through pansharpening. It could be concluded that the Ehlers fusion algorithm gave the most suitable results. Based on the derived image fusion different object-based image classification algorithms such as SVM, Naïve Bayesian and Random Forest were evaluated whereby the latter one achieved the highest classification accuracy. Subsequently, the SID was applied to measure the diversification of the three main cropping systems.

  3. Assessment of Cropping System Diversity in the Fergana Valley Through Image Fusion of Landsat 8 and SENTINEL-1

    Science.gov (United States)

    Dimov, D.; Kuhn, J.; Conrad, C.

    2016-06-01

    In the transitioning agricultural societies of the world, food security is an essential element of livelihood and economic development with the agricultural sector very often being the major employment factor and income source. Rapid population growth, urbanization, pollution, desertification, soil degradation and climate change pose a variety of threats to a sustainable agricultural development and can be expressed as agricultural vulnerability components. Diverse cropping patterns may help to adapt the agricultural systems to those hazards in terms of increasing the potential yield and resilience to water scarcity. Thus, the quantification of crop diversity using indices like the Simpson Index of Diversity (SID) e.g. through freely available remote sensing data becomes a very important issue. This however requires accurate land use classifications. In this study, the focus is set on the cropping system diversity of garden plots, summer crop fields and orchard plots which are the prevalent agricultural systems in the test area of the Fergana Valley in Uzbekistan. In order to improve the accuracy of land use classification algorithms with low or medium resolution data, a novel processing chain through the hitherto unique fusion of optical and SAR data from the Landsat 8 and Sentinel-1 platforms is proposed. The combination of both sensors is intended to enhance the object's textural and spectral signature rather than just to enhance the spatial context through pansharpening. It could be concluded that the Ehlers fusion algorithm gave the most suitable results. Based on the derived image fusion different object-based image classification algorithms such as SVM, Naïve Bayesian and Random Forest were evaluated whereby the latter one achieved the highest classification accuracy. Subsequently, the SID was applied to measure the diversification of the three main cropping systems.

  4. Acoustic imaging system

    Science.gov (United States)

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  5. Nuclear medicine imaging system

    Science.gov (United States)

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  6. Assessment of acetabulum anteversion aligned with the transverse acetabulum ligament: cadaveric study using image-free navigation system

    Directory of Open Access Journals (Sweden)

    Tomokazu Fukui

    2013-02-01

    Full Text Available The transverse acetabulum ligament (TAL has been used as an intraoperative anatomical landmark to position the acetabulum cup in total hip arthroplasty (THA. However, the validity of the use of TAL has not been clarified. The purpose of this study was to examine the orientation of the cup component aligned with the TAL in cadaveric study. The 31 hips in 25 whole-body embalmed cadavers were examined. The donors were 12 men and 13 women. Simulated THA procedure using image-free navigation system was performed and a trial cup with a diameter of approximately 2 mm less than the size of the acetabulum were inserted and snugly fitted on the TAL through the posterior wall of acetabulum. The orientation of the cup component was measured using an image-free THA navigation system. The measured radiographic anteversion and inclination angles averaged 18.2±7.2° (range: 2.0-33.2° and 43.5±4.2° (range: 33.1-51.0° respectively. Based on the Lewinnek’s safe zone criteria, 26 hips (80.6% were judged to be within the. Moreover, in the analysis of the gender difference of TAL angles, the average anteversion angle was shown to be significant larger in female than male population. The TAL can be effectively used an intraoperative landmark to align the acetabulum component helping reduce the risk of dislocation after surgery. In the intraoperative judgment, a gender difference in the alignment of the TAL should be taken into consideration.

  7. Quality assessment for online iris images

    CSIR Research Space (South Africa)

    Makinana, S

    2015-01-01

    Full Text Available Iris recognition systems have attracted much attention for their uniqueness, stability and reliability. However, performance of this system depends on quality of iris image. Therefore there is a need to select good quality images before features can...

  8. An ontological system based on MODIS images to assess ecosystem functioning of Natura 2000 habitats: A case study for Quercus pyrenaica forests

    Science.gov (United States)

    Pérez-Luque, A. J.; Pérez-Pérez, R.; Bonet-García, F. J.; Magaña, P. J.

    2015-05-01

    The implementation of the Natura 2000 network requires methods to assess the conservation status of habitats. This paper shows a methodological approach that combines the use of (satellite) Earth observation with ontologies to monitor Natura 2000 habitats and assess their functioning. We have created an ontological system called Savia that can describe both the ecosystem functioning and the behaviour of abiotic factors in a Natura 2000 habitat. This system is able to automatically download images from MODIS products, create indicators and compute temporal trends for them. We have developed an ontology that takes into account the different concepts and relations about indicators and temporal trends, and the spatio-temporal components of the datasets. All the information generated from datasets and MODIS images, is stored into a knowledge base according to the ontology. Users can formulate complex questions using a SPARQL end-point. This system has been tested and validated in a case study that uses Quercus pyrenaica Willd. forests as a target habitat in Sierra Nevada (Spain), a Natura 2000 site. We assess ecosystem functioning using NDVI. The selected abiotic factor is snow cover. Savia provides useful data regarding these two variables and reflects relationships between them.

  9. Experimental image alignment system

    Science.gov (United States)

    Moyer, A. L.; Kowel, S. T.; Kornreich, P. G.

    1980-01-01

    A microcomputer-based instrument for image alignment with respect to a reference image is described which uses the DEFT sensor (Direct Electronic Fourier Transform) for image sensing and preprocessing. The instrument alignment algorithm which uses the two-dimensional Fourier transform as input is also described. It generates signals used to steer the stage carrying the test image into the correct orientation. This algorithm has computational advantages over algorithms which use image intensity data as input and is suitable for a microcomputer-based instrument since the two-dimensional Fourier transform is provided by the DEFT sensor.

  10. Image quality assessment using deep convolutional networks

    Science.gov (United States)

    Li, Yezhou; Ye, Xiang; Li, Yong

    2017-12-01

    This paper proposes a method of accurately assessing image quality without a reference image by using a deep convolutional neural network. Existing training based methods usually utilize a compact set of linear filters for learning features of images captured by different sensors to assess their quality. These methods may not be able to learn the semantic features that are intimately related with the features used in human subject assessment. Observing this drawback, this work proposes training a deep convolutional neural network (CNN) with labelled images for image quality assessment. The ReLU in the CNN allows non-linear transformations for extracting high-level image features, providing a more reliable assessment of image quality than linear filters. To enable the neural network to take images of any arbitrary size as input, the spatial pyramid pooling (SPP) is introduced connecting the top convolutional layer and the fully-connected layer. In addition, the SPP makes the CNN robust to object deformations to a certain extent. The proposed method taking an image as input carries out an end-to-end learning process, and outputs the quality of the image. It is tested on public datasets. Experimental results show that it outperforms existing methods by a large margin and can accurately assess the image quality on images taken by different sensors of varying sizes.

  11. ASSESSING CHANGES IN POTATO CANOPY CAUSED BY LATE BLIGHT IN ORGANIC PRODUCTION SYSTEMS THROUGH UAV-BASED PUSHBROOM IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    M. H. D. Franceschini

    2017-08-01

    Full Text Available Productivity of cropping systems can be constrained simultaneously by different limiting factors and approaches allowing to indicate and identify plants under stress in field conditions can be valuable for farmers and breeders. In organic production systems, sensing solutions are not frequently studied, despite their potential for crop traits retrieval and stress assessment. In this study, spectral data in the optical domain acquired using a pushbroom spectrometer on board of a unmanned aerial vehicle is used to evaluate the potential of this information for assessment of late blight (Phytophthora infestans incidence on potato (Solanum tuberosum under organic cultivation. Vegetation indices formulations with two and three spectral bands were tested for the complete range of the spectral information acquired (i.e., from 450 to 900 nm, with 10 nm of spectral resolution. This evaluation concerned the discrimination between plots cultivated with only one resistant potato variety in contrast with plots with a variety mixture, with resistant and susceptible cultivars. Results indicated that indices based on three spectral bands performed better and optimal wavelengths (i.e., near 490, 530 and 670 nm are not only related to chlorophyll content but also to other leaf pigments like carotenoids.

  12. Assessing Changes in Potato Canopy Caused by Late Blight in Organic Production Systems Through Uav-Based Pushbroom Imaging Spectrometer

    Science.gov (United States)

    Franceschini, M. H. D.; Bartholomeus, H.; van Apeldoorn, D.; Suomalainen, J.; Kooistra, L.

    2017-08-01

    Productivity of cropping systems can be constrained simultaneously by different limiting factors and approaches allowing to indicate and identify plants under stress in field conditions can be valuable for farmers and breeders. In organic production systems, sensing solutions are not frequently studied, despite their potential for crop traits retrieval and stress assessment. In this study, spectral data in the optical domain acquired using a pushbroom spectrometer on board of a unmanned aerial vehicle is used to evaluate the potential of this information for assessment of late blight (Phytophthora infestans) incidence on potato (Solanum tuberosum) under organic cultivation. Vegetation indices formulations with two and three spectral bands were tested for the complete range of the spectral information acquired (i.e., from 450 to 900 nm, with 10 nm of spectral resolution). This evaluation concerned the discrimination between plots cultivated with only one resistant potato variety in contrast with plots with a variety mixture, with resistant and susceptible cultivars. Results indicated that indices based on three spectral bands performed better and optimal wavelengths (i.e., near 490, 530 and 670 nm) are not only related to chlorophyll content but also to other leaf pigments like carotenoids.

  13. Image quality evaluation and patient dose assessment of medical fluoroscopic X-ray systems: A national study

    International Nuclear Information System (INIS)

    Economides, S.; Hourdakis, C. J.; Kalivas, N.; Kalathaki, M.; Simantirakis, G.; Tritakis, P.; Manousaridis, G.; Vogiatzi, S.; Kipouros, P.; Boziari, A.; Kamenopoulou, V.

    2008-01-01

    This study presents the results from a survey conducted by the Greek Atomic Energy Commission (GAEC), during the period 1998-2003, in 530 public and private owned fluoroscopic X-ray systems in Greece. Certain operational parameters for conventional and remote control systems were assessed, according to a quality control protocol developed by GAEC on the basis of the current literature. Public (91.5%) and private (81.5%) owned fluoroscopic units exhibit high-contrast resolution values over 1 lp mm -1 . Moreover, 88.5 and 87.1% of the fluoroscopic units installed in the public and private sector, respectively, present Maximum Patient Entrance Kerma Rate values lower than 100 mGy min -1 . Additionally, 68.3% of the units assessed were found to perform within the acceptance limits. Finally, the third quartile of the Entrance Surface Dose Rate distribution was estimated according to the Dose Reference Level definition and found equal to 35 mGy min -1 . (authors)

  14. Image quality of digital mammography images produced using wet and dry laser imaging systems

    International Nuclear Information System (INIS)

    Al Khalifah, K.; Brindhaban, A.; AlArfaj, R.; Jassim, O.

    2006-01-01

    Introduction: A study was carried out to compare the quality of digital mammographic images printed or processed by a wet laser imaging system and a dedicated mammographic dry laser imaging system. Material and methods: Digital images of a tissue equivalent breast phantom were obtained using a GE Senographe 2000D digital mammography system and different target/filter combinations of the X-ray tube. These images were printed on films using the Fuji FL-IM D wet laser imaging system and the Kodak DryView 8600 dry laser imaging system. The quality of images was assessed in terms of detectability of microcalcifications and simulated tumour masses by five radiologists. In addition, the contrast index and speed index of the two systems were measured using the step wedge in the phantom. The unpaired, unequal variance t-test was used to test any statistically significant differences. Results: There were no significant (p < 0.05) differences between the images printed using the two systems in terms of microcalcification and tumour mass detectability. The wet system resulted in slightly higher contrast index while the dry system showed significantly higher speed index. Conclusion: Both wet and dry laser imaging systems can produce mammography images of good quality on which 0.2 mm microcalcifications and 2 mm tumour masses can be detected. Dry systems are preferable due to the absence of wet chemical processing and solid or liquid chemical waste. The wet laser imaging systems, however, still represent a useful alternative to dry laser imaging systems for mammography studies

  15. Distributed road assessment system

    Science.gov (United States)

    Beer, N. Reginald; Paglieroni, David W

    2014-03-25

    A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.

  16. OSPACS: Ultrasound image management system

    Directory of Open Access Journals (Sweden)

    Bessant Conrad

    2008-06-01

    Full Text Available Abstract Background Ultrasound scanning uses the medical imaging format, DICOM, for electronically storing the images and data associated with a particular scan. Large health care facilities typically use a picture archiving and communication system (PACS for storing and retrieving such images. However, these systems are usually not suitable for managing large collections of anonymized ultrasound images gathered during a clinical screening trial. Results We have developed a system enabling the accurate archiving and management of ultrasound images gathered during a clinical screening trial. It is based upon a Windows application utilizing an open-source DICOM image viewer and a relational database. The system automates the bulk import of DICOM files from removable media by cross-validating the patient information against an external database, anonymizing the data as well as the image, and then storing the contents of the file as a field in a database record. These image records may then be retrieved from the database and presented in a tree-view control so that the user can select particular images for display in a DICOM viewer or export them to external media. Conclusion This system provides error-free automation of ultrasound image archiving and management, suitable for use in a clinical trial. An open-source project has been established to promote continued development of the system.

  17. Central nervous system imaging

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Since its introduction in 1973, computed tomography (CT) of the brain has had a revolutionary impact on neuroradiologic diagnosis. It has largely replaced radionuclide brain imaging as the initial, noninvasive neurologic screening examination. Although conventional radionuclide brain imaging still contributes useful and unique diagnostic information in a few clinical situations, it appears that new technology and applications must be found if nuclear imaging is to play a prominent future role in neurologic diagnosis as it did in the past. One of the main advantages of CT over radionuclide brain imaging at present is CT's ability to demonstrate the size, shape, and position of the cerebral ventricles and subarachnoid spaces. Another important strength of CT is the ability to differentiate ischemic cerebral infarction from intracerebral hemorrhage. The overall sensitivity of CT in detecting intracranial neoplasms is also greater than that of radionuclide brain imaging, and CT is very useful in demonstrating the effects of head trauma. Magnetic resonance imaging appears superior to CT in the evaluation of neurologic disorders. A renewed interest in radionuclide brain imaging has developed because of recent advances in emission computed tomographic imaging. When tracer kinetic models are used, cerebral blood flow (CBF), blood volume, metabolic rate, and glucose and amino acid transport can be measured. Other applications involve investigation of receptor bindings, evaluation of the blood-brain barrier, brain blood-volume measurement, and cisternography

  18. Systems dependability assessment

    CERN Document Server

    Aubry, Jean-François

    2015-01-01

    Presents recent developments of probabilistic assessment of systems dependability based on stochastic models, including graph theory, finite state automaton and language theory, for both dynamic and hybrid contexts.

  19. Spatially modulated imaging system

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1975-01-01

    Noncoherent radiation, such as x-rays, is spatially coded, directed through an object and spatially detected to form a spatially coded pattern, from which an image of the object may be reconstructed. The x-ray source may be formed by x-ray fluorescence and substration of the holographic images formed by two sources having energy levels predominantly above and below the maximum absorption range of an agent in the object may be used to enhance contrast in the reproduced image. (Patent Office Record)

  20. New image-stabilizing system

    Science.gov (United States)

    Zhao, Yuejin

    1996-06-01

    In this paper, a new method for image stabilization with a three-axis image- stabilizing reflecting prism assembly is presented, and the principle of image stabilization in this prism assembly, formulae for image stabilization and working formulae with an approximation up to the third power are given in detail. In this image-stabilizing system, a single chip microcomputer is used to calculate value of compensating angles and thus to control the prism assembly. Two gyroscopes act as sensors from which information of angular perturbation is obtained, three stepping motors drive the prism assembly to compensate for the movement of image produced by angular perturbation. The image-stabilizing device so established is a multifold system which involves optics, mechanics, electronics and computer.

  1. In vivo comparison of Kodak E-speed film and direct digital imaging system for assessment of interproximal bone loss

    Directory of Open Access Journals (Sweden)

    Mellekatte C Neetha

    2014-01-01

    Full Text Available Aims: To evaluate the diagnostic accuracy of direct digital radiography as compared to a conventional radiographic film for the assessment of interproximal bone loss with intrasurgical measurements as the gold standard. Materials and Methods: A total of 100 patients, with untreated moderate-to-advanced periodontal disease, were included in the study. The presurgical radiographs were made using a Kodak E-speed film and a Dexis digital sensor simultaneously, for sites with interproximal bone loss. At the time of surgery, the distance from the cementoenamel junction to the bone defect (CEJ-BD was measured for 331 interproximal defects. The radiographs were randomized and then linear measurements were taken for the same sites in both conventional and digital radiographs. Stastistical Analysis: Comparison between the conventional, digital, and intrasurgical measurements was done statistically using the Student′s t-test. The agreement and correlation among the methods was assessed using the weighted Kappa measure of agreement and Pearson′s correlation, respectively. Results: The results showed that the conventional (5.15 ± 2.19 mm and digital analyzing techniques (5.13 ± 2.19 mm underestimated the interproximal bone loss, as compared to the intrasurgical measurements (6.07 ± 2.05 mm (p < 0.001. The difference between conventional and digital radiographic methods was found to be statistically insignificant (p = 0.92. Conclusion: Under normal clinical use, the alveolar bone levels revealed on intraoral direct digital radiographs and Kodak E speed film were almost same. Therefore, the digital radiographic system can be routinely used in clinical practice as an alternative to conventional film.

  2. Mechanics of bioinspired imaging systems

    Directory of Open Access Journals (Sweden)

    Zhengwei Li

    2016-01-01

    Full Text Available Imaging systems in nature have attracted a lot of research interest due to their superior optical and imaging characteristics. Recent advancements in materials science, mechanics, and stretchable electronics have led to successful development of bioinspired cameras that resemble the structures and functions of biological light-sensing organs. In this review, we discuss some recent progresses in mechanics of bioinspired imaging systems, including tunable hemispherical eyeball camera and artificial compound eye camera. The mechanics models and results reviewed in this article can provide efficient tools for design and optimization of such systems, as well as other related optoelectronic systems that combine rigid elements with soft substrates.

  3. Assessment of lower extremity ischemia using smartphone thermographic imaging

    Directory of Open Access Journals (Sweden)

    Peter H. Lin, MD

    2017-12-01

    Full Text Available Conventional diagnostic modalities for assessing arterial circulation or tissue perfusion include blood pressure measurement, ultrasound evaluation, and contrast-based angiographic assessment. An infrared thermal camera can detect infrared radiation energy from the human body, which generates a thermographic image to allow tissue perfusion analysis. We describe a smartphone-based miniature thermal imaging system that can be used as an adjunctive imaging modality to assess tissue perfusion. This smartphone-based camera device is noninvasive, simple to use, and cost-effective in assessing patients with lower extremity tissue perfusion. Assessment of patients with lower extremity arterial ischemia can be performed by a variety of diagnostic modalities, including ankle-brachial index, absolute systolic ankle or toe pressure, transcutaneous oximetry, arterial Doppler waveform, arterial duplex ultrasound, computed tomography scan, arterial angiography, and thermal imaging. We herein describe a noninvasive imaging modality using smartphone-based infrared thermography.

  4. Army medical imaging system: ARMIS

    International Nuclear Information System (INIS)

    Siedband, M.P.; Kramp, D.C.

    1987-01-01

    Recent advances of stimulable phosphor screens, data cards using optical storage means, and new personal computers with image processing capability have made possible the design of economical filmless medical imaging systems. The addition of communication links means that remote interpretation of images is also possible. The Army Medical Imaging System uses stimulable phosphor screens, digital readout, a small computer, an optical digital data card device, and a DIN/PACS link. Up to 200 images can be stored in the computer hard disk for rapid recall and reading by the radiologist. The computer permits image processing, annotation, insertion of text, and control of the system. Each device contains an image storage RAM and communicates with the computer via the small computer systems interface. Data compression is used to reduce the required storage capacity and transmission times of the 1-mB images. The credit card-size optical data cards replace film and can store 12 or more images. The data cards can be read on an independent viewer. The research is supported by the U.S. Army Biomedical Research and Development Laboratory

  5. Imaging with PET system

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    PET deals with biochemistry and metabolic changes that occur at molecular level. Hence, PET differs fundamentally from other imaging modalities. CT imaging is based on tissue density, whereas MRI conveys anatomic information based on proton density and proton relaxation dynamics. CT and MRI are useful in clinical diagnosis only when disease process has caused significant anatomic alterations. However, in most disease conditions chemical changes precede anatomic changes, that can be detected by PET technology. Thus, PET can provide earliest and unique information about ongoing disease process long before anatomic or structural changes take place. There is no other modality available at present that can replace PET technology. Although PET produces cross-sectional images like that obtained in MRI or CT, they represent circulation, function and metabolism, and not anatomic structure. PET is extremely sensitive measuring quantitatively concentration of tracers in nano to pico-molar range. Thus, PET enables merger of biochemistry and biology in medicine giving birth to molecular medicine that focuses on identifying the molecular errors of disease leading to developing molecular corrections including gene therapy. Molecular imaging with PET has been playing a role in examining the biological nature of a disease condition and its characterization to guide selection and evaluation of treatment. (author)

  6. Underwater laser imaging system (UWLIS)

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  7. Reliability demonstration of imaging surveillance systems

    International Nuclear Information System (INIS)

    Sheridan, T.F.; Henderson, J.T.; MacDiarmid, P.R.

    1979-01-01

    Security surveillance systems which employ closed circuit television are being deployed with increasing frequency for the protection of property and other valuable assets. A need exists to demonstrate the reliability of such systems before their installation to assure that the deployed systems will operate when needed with only the scheduled amount of maintenance and support costs. An approach to the reliability demonstration of imaging surveillance systems which employ closed circuit television is described. Failure definitions based on industry television standards and imaging alarm assessment criteria for surveillance systems are discussed. Test methods which allow 24 hour a day operation without the need for numerous test scenarios, test personnel and elaborate test facilities are presented. Existing reliability demonstration standards are shown to apply which obviate the need for elaborate statistical tests. The demonstration methods employed are shown to have applications in other types of imaging surveillance systems besides closed circuit television

  8. Assessing Photosynthesis by Fluorescence Imaging

    Science.gov (United States)

    Saura, Pedro; Quiles, Maria Jose

    2011-01-01

    This practical paper describes a novel fluorescence imaging experiment to study the three processes of photochemistry, fluorescence and thermal energy dissipation, which compete during the dissipation of excitation energy in photosynthesis. The technique represents a non-invasive tool for revealing and understanding the spatial heterogeneity in…

  9. Image simulation and assessment of the colour and spatial capabilities of the Colour and Stereo Surface Imaging System (CaSSIS) on the ExoMars Trace Gas Orbiter

    Science.gov (United States)

    Tornabene, Livio L.; Seelos, Frank P.; Pommerol, Antoine; Thomas, Nicolas; Caudill, Christy M.; Becerra, Patricio; Bridges, John C.; Byrne, Shane; Cardinale, Marco; Chojnacki, Matthew; Conway, Susan J.; Cremonese, Gabriele; Dundas, Colin M.; El-Maarry, M. R.; Fernando, Jennifer; Hansen, Candice J.; Hansen, Kayle; Harrison, Tanya N.; Henson, Rachel; Marinangeli, Lucia; McEwen, Alfred S.; Pajola, Maurizio; Sutton, Sarah S.; Wray, James J.

    2018-01-01

    This study aims to assess the spatial and visible/near-infrared (VNIR) colour/spectral capabilities of the 4-band Colour and Stereo Surface Imaging System (CaSSIS) aboard the ExoMars 2016 Trace Grace Orbiter (TGO). The instrument response functions for the CaSSIS imager was used to resample spectral libraries, modelled spectra and to construct spectrally (i.e., in I/F space) and spatially consistent simulated CaSSIS image cubes of various key sites of interest and for ongoing scientific investigations on Mars. Coordinated datasets from Mars Reconnaissance Orbiter (MRO) are ideal, and specifically used for simulating CaSSIS. The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) provides colour information, while the Context Imager (CTX), and in a few cases the High-Resolution Imaging Science Experiment (HiRISE), provides the complementary spatial information at the resampled CaSSIS unbinned/unsummed pixel resolution (4.6 m/pixel from a 400-km altitude). The methodology used herein employs a Gram-Schmidt spectral sharpening algorithm to combine the ∼18–36 m/pixel CRISM-derived CaSSIS colours with I/F images primarily derived from oversampled CTX images. One hundred and eighty-one simulated CaSSIS 4-colour image cubes (at 18–36 m/pixel) were generated (including one of Phobos) based on CRISM data. From these, thirty-three “fully”-simulated image cubes of thirty unique locations on Mars (i.e., with 4 colour bands at 4.6 m/pixel) were made. All simulated image cubes were used to test both the colour capabilities of CaSSIS by producing standard colour RGB images, colour band ratio composites (CBRCs) and spectral parameters. Simulated CaSSIS CBRCs demonstrated that CaSSIS will be able to readily isolate signatures related to ferrous (Fe2+) iron- and ferric (Fe3+) iron-bearing deposits on the surface of Mars, ices and atmospheric phenomena. Despite the lower spatial resolution of CaSSIS when compared to HiRISE, the results of this work demonstrate that

  10. Image Simulation and Assessment of the Colour and Spatial Capabilities of the Colour and Stereo Surface Imaging System (CaSSIS) on the ExoMars Trace Gas Orbiter

    Science.gov (United States)

    Tornabene, Livio L.; Seelos, Frank P.; Pommerol, Antoine; Thomas, Nicholas; Caudill, C. M.; Becerra, Patricio; Bridges, John C.; Byrne, Shane; Cardinale, Marco; Chojnacki, Matthew; Conway, Susan J.; Cremonese, Gabriele; Dundas, Colin M.; El-Maarry, M. R.; Fernando, Jennifer; Hansen, Candice J.; Hansen, Kayle; Harrison, Tanya N.; Henson, Rachel; Marinangeli, Lucia; McEwen, Alfred S.; Pajola, Maurizio; Sutton, Sarah S.; Wray, James J.

    2018-02-01

    This study aims to assess the spatial and visible/near-infrared (VNIR) colour/spectral capabilities of the 4-band Colour and Stereo Surface Imaging System (CaSSIS) aboard the ExoMars 2016 Trace Grace Orbiter (TGO). The instrument response functions for the CaSSIS imager was used to resample spectral libraries, modelled spectra and to construct spectrally ( i.e., in I/F space) and spatially consistent simulated CaSSIS image cubes of various key sites of interest and for ongoing scientific investigations on Mars. Coordinated datasets from Mars Reconnaissance Orbiter (MRO) are ideal, and specifically used for simulating CaSSIS. The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) provides colour information, while the Context Imager (CTX), and in a few cases the High-Resolution Imaging Science Experiment (HiRISE), provides the complementary spatial information at the resampled CaSSIS unbinned/unsummed pixel resolution (4.6 m/pixel from a 400-km altitude). The methodology used herein employs a Gram-Schmidt spectral sharpening algorithm to combine the ˜18-36 m/pixel CRISM-derived CaSSIS colours with I/F images primarily derived from oversampled CTX images. One hundred and eighty-one simulated CaSSIS 4-colour image cubes (at 18-36 m/pixel) were generated (including one of Phobos) based on CRISM data. From these, thirty-three "fully"-simulated image cubes of thirty unique locations on Mars ( i.e., with 4 colour bands at 4.6 m/pixel) were made. All simulated image cubes were used to test both the colour capabilities of CaSSIS by producing standard colour RGB images, colour band ratio composites (CBRCs) and spectral parameters. Simulated CaSSIS CBRCs demonstrated that CaSSIS will be able to readily isolate signatures related to ferrous (Fe2+) iron- and ferric (Fe3+) iron-bearing deposits on the surface of Mars, ices and atmospheric phenomena. Despite the lower spatial resolution of CaSSIS when compared to HiRISE, the results of this work demonstrate that Ca

  11. Stereoscopic medical imaging collaboration system

    Science.gov (United States)

    Okuyama, Fumio; Hirano, Takenori; Nakabayasi, Yuusuke; Minoura, Hirohito; Tsuruoka, Shinji

    2007-02-01

    The computerization of the clinical record and the realization of the multimedia have brought improvement of the medical service in medical facilities. It is very important for the patients to obtain comprehensible informed consent. Therefore, the doctor should plainly explain the purpose and the content of the diagnoses and treatments for the patient. We propose and design a Telemedicine Imaging Collaboration System which presents a three dimensional medical image as X-ray CT, MRI with stereoscopic image by using virtual common information space and operating the image from a remote location. This system is composed of two personal computers, two 15 inches stereoscopic parallax barrier type LCD display (LL-151D, Sharp), one 1Gbps router and 1000base LAN cables. The software is composed of a DICOM format data transfer program, an operation program of the images, the communication program between two personal computers and a real time rendering program. Two identical images of 512×768 pixcels are displayed on two stereoscopic LCD display, and both images show an expansion, reduction by mouse operation. This system can offer a comprehensible three-dimensional image of the diseased part. Therefore, the doctor and the patient can easily understand it, depending on their needs.

  12. ACCESS - A Science and Engineering Assessment of Space Coronagraph Concepts for the Direct Imaging and Spectroscopy of Exoplanetary Systems

    Science.gov (United States)

    Trauger, John

    2008-01-01

    Topics include and overview, science objectives, study objectives, coronagraph types, metrics, ACCESS observatory, laboratory validations, and summary. Individual slides examine ACCESS engineering approach, ACCESS gamut of coronagraph types, coronagraph metrics, ACCESS Discovery Space, coronagraph optical layout, wavefront control on the "level playing field", deformable mirror development for HCIT, laboratory testbed demonstrations, high contract imaging with the HCIT, laboratory coronagraph contrast and stability, model validation and performance predictions, HCIT coronagraph optical layout, Lyot coronagraph on the HCIT, pupil mapping (PIAA), shaped pupils, and vortex phase mask experiments on the HCIT.

  13. Breast imaging and reporting data system (BIRADS): Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tardivon, Anne A.; Athanasiou, Alexandra; Thibault, Fabienne; El Khoury, Carl

    2007-01-01

    This article reviews the technical aspects and interpretation criteria in breast MR imaging based on the first edition of breast imaging and reporting data system (BIRADS) published by the American College of Radiology (ACR) in 2003. In a second article, practical cases will be proposed for training the readers. The major aims of using this lexicon are: first to use a logical and standardized description of MR lesions, secondly to obtain a structured MR report with a clear final impression (BIRADS assessment categories), and thirdly to help comparison between different clinical studies based on similar breast MRI terminology

  14. Image fusion for enhanced forest structural assessment

    CSIR Research Space (South Africa)

    Roberts, JW

    2011-01-01

    Full Text Available This research explores the potential benefits of fusing active and passive medium resolution satellite-borne sensor data for forest structural assessment. Image fusion was applied as a means of retaining disparate data features relevant to modeling...

  15. Computer-aided assessment of diagnostic images for epidemiological research

    Directory of Open Access Journals (Sweden)

    Gange Stephen J

    2009-11-01

    Full Text Available Abstract Background Diagnostic images are often assessed for clinical outcomes using subjective methods, which are limited by the skill of the reviewer. Computer-aided diagnosis (CAD algorithms that assist reviewers in their decisions concerning outcomes have been developed to increase sensitivity and specificity in the clinical setting. However, these systems have not been well utilized in research settings to improve the measurement of clinical endpoints. Reductions in bias through their use could have important implications for etiologic research. Methods Using the example of cortical cataract detection, we developed an algorithm for assisting a reviewer in evaluating digital images for the presence and severity of lesions. Available image processing and statistical methods that were easily implementable were used as the basis for the CAD algorithm. The performance of the system was compared to the subjective assessment of five reviewers using 60 simulated images. Cortical cataract severity scores from 0 to 16 were assigned to the images by the reviewers and the CAD system, with each image assessed twice to obtain a measure of variability. Image characteristics that affected reviewer bias were also assessed by systematically varying the appearance of the simulated images. Results The algorithm yielded severity scores with smaller bias on images where cataract severity was mild to moderate (approximately ≤ 6/16ths. On high severity images, the bias of the CAD system exceeded that of the reviewers. The variability of the CAD system was zero on repeated images but ranged from 0.48 to 1.22 for the reviewers. The direction and magnitude of the bias exhibited by the reviewers was a function of the number of cataract opacities, the shape and the contrast of the lesions in the simulated images. Conclusion CAD systems are feasible to implement with available software and can be valuable when medical images contain exposure or outcome information for

  16. Artificial intelligence and medical imaging. Expert systems and image analysis

    International Nuclear Information System (INIS)

    Wackenheim, A.; Zoellner, G.; Horviller, S.; Jacqmain, T.

    1987-01-01

    This paper gives an overview on the existing systems for automated image analysis and interpretation in medical imaging, especially in radiology. The example of ORFEVRE, the system for the analysis of CAT-scan images of the cervical triplet (c3-c5) by image analysis and subsequent expert-system is given and discussed in detail. Possible extensions are described [fr

  17. A Diagnostic Ultrasound Imaging System

    International Nuclear Information System (INIS)

    Lee, Seong Woo

    1999-01-01

    The ability to see the internal organs of the human body in a noninvasive way is a powerful diagnostic tool of modern medicine. Among these imaging modalities such as X-ray, MRI, and ultrasound. MRI and ultrasound are presenting much less risk of undesirable damage of both patient and examiner. In fact, no deleterious effects have been reported as a result of clinical examination by using MRI and ultrasound diagnostic equipment. As a result, their market volume has been rapidly increased. MRI has a good resolution. but there are a few disadvantages such as high price. non-real-time imaging capability. and expensive diagnostic cost. On the other hand, the ultrasound imaging system has inherently poor resolution as compared with X-ray and MRI. In spite of its poor resolution, the ultrasound diagnostic equipment is lower in price and has an ability of real-time imaging as compared with the others. As a result, the ultrasound imaging system has become general and essential modality for imaging the internal organs of human body. In this review various researches and developments to enhance the resolution of the ultrasound images are explained and future trends of the ultrasound imaging technology are described

  18. Reactor Safety Assessment System

    International Nuclear Information System (INIS)

    Sebo, D.E.; Bray, M.A.; King, M.A.

    1987-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSAS is designed for use at the USNRC Operations Center in the event of a serious incident at a licensed nuclear power plant. RSAS is a situation assessment expert system which uses plant parametric data to generate conclusions for use by the NRC Reactor Safety Team. RSAS uses multiple rule bases and plant specific setpoint files to be applicable to all licensed nuclear power plants in the United States. RSAS currently covers several generic reactor categories and multiple plants within each category

  19. Reactor safety assessment system

    International Nuclear Information System (INIS)

    Sebo, D.E.; Bray, M.A.; King, M.A.

    1987-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSA is designed for use at the USNRC Operations Center in the event of a serious incident at a licensed nuclear power plant. RSAS is a situation assessment expert system which uses plant parametric data to generate conclusions for use by the NRC Reactor Safety Team. RSAS uses multiple rule bases and plant specific setpoint files to be applicable to all licensed nuclear power plants in the United States. RSAS currently covers several generic reactor categories and multiple plants within each category

  20. Dynamic Assessment of the Endothelialization of Tissue-Engineered Blood Vessels Using an Optical Coherence Tomography Catheter-Based Fluorescence Imaging System.

    Science.gov (United States)

    Gurjarpadhye, Abhijit Achyut; DeWitt, Matthew R; Xu, Yong; Wang, Ge; Rylander, Marissa Nichole; Rylander, Christopher G

    2015-07-01

    Lumen endothelialization of bioengineered vascular scaffolds is essential to maintain small-diameter graft patency and prevent thrombosis postimplantation. Unfortunately, nondestructive imaging methods to visualize this dynamic process are lacking, thus slowing development and clinical translation of these potential tissue-engineering approaches. To meet this need, a fluorescence imaging system utilizing a commercial optical coherence tomography (OCT) catheter was designed to visualize graft endothelialization. C7 DragonFly™ intravascular OCT catheter was used as a channel for delivery and collection of excitation and emission spectra. Poly-dl-lactide (PDLLA) electrospun scaffolds were seeded with endothelial cells (ECs). Seeded cells were exposed to Calcein AM before imaging, causing the living cells to emit green fluorescence in response to blue laser. By positioning the catheter tip precisely over a specimen using high-fidelity electromechanical components, small regions of the specimen were excited selectively. The resulting fluorescence intensities were mapped on a two-dimensional digital grid to generate spatial distribution of fluorophores at single-cell-level resolution. Fluorescence imaging of endothelialization on glass and PDLLA scaffolds was performed using the OCT catheter-based imaging system as well as with a commercial fluorescence microscope. Cell coverage area was calculated for both image sets for quantitative comparison of imaging techniques. Tubular PDLLA scaffolds were maintained in a bioreactor on seeding with ECs, and endothelialization was monitored over 5 days using the OCT catheter-based imaging system. No significant difference was observed in images obtained using our imaging system to those acquired with the fluorescence microscope. Cell area coverage calculated using the images yielded similar values. Nondestructive imaging of endothelialization on tubular scaffolds showed cell proliferation with cell coverage area increasing from

  1. Saliency image of feature building for image quality assessment

    Science.gov (United States)

    Ju, Xinuo; Sun, Jiyin; Wang, Peng

    2011-11-01

    The purpose and method of image quality assessment are quite different for automatic target recognition (ATR) and traditional application. Local invariant feature detectors, mainly including corner detectors, blob detectors and region detectors etc., are widely applied for ATR. A saliency model of feature was proposed to evaluate feasibility of ATR in this paper. The first step consisted of computing the first-order derivatives on horizontal orientation and vertical orientation, and computing DoG maps in different scales respectively. Next, saliency images of feature were built based auto-correlation matrix in different scale. Then, saliency images of feature of different scales amalgamated. Experiment were performed on a large test set, including infrared images and optical images, and the result showed that the salient regions computed by this model were consistent with real feature regions computed by mostly local invariant feature extraction algorithms.

  2. Assessment of clinical image quality in feline chest radiography with a needle-image plate (NIP) storage phosphor system. An approach to the evaluation of image quality in neonatal radiography; Untersuchungen zur Qualitaet von Thoraxaufnahmen bei Katzen mit einem auf einer Nadelstruktur basierenden Speicherfoliensystem. Modelluntersuchungen zur Bewertung der Bildqualitaet bei Neugeborenen

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, E.; Bosch, B.; Gaebler, K.; Succow, D.; Werrmann, A. [Klinik fuer Kleintiere, Univ. Leipzig (Germany); Hirsch, W.; Sorge, I. [Abt. Paediatrische Radiologie, Univ. Leipzig (Germany); Gosch, D. [Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie, Univ. Leipzig (Germany)

    2010-02-15

    Purpose: Is the image quality of thoracic radiographs of cats obtained with a needle-based storage phosphor (NIP) system superior to conventional (PIP) storage phosphor radiography? Is it possible to decrease the mAs by 50% with the NIP system without significant loss of information? Materials and Methods: From each of the 20 animals, three lateral radiographs were acquired. The assessment of the exposure level was based on the generated IgM-values. Images were acquired 1. with the NIP system and exposure settings equivalent to an IgM of 1.9, 2. with the PIP system and identical settings, and 3. with the NIP system and 50% of the mAs. Six blinded readers used a 5-step scale to assess the reproducibility of five anatomical structures and image noise sensation. Data were analysed using Visual Grading Characteristics Analysis (VGC). Results: While applying identical exposure values the NIP system for all features revealed superior ratings to those of the PIP system (AUC{sub VGC} values ranged from 0.81 for ''cardiac silhouette'' to 0.92 for ''trachea''). Even when reducing mAs by 50% in the NIP images all features were rated better compared with the PIP images and original settings (AUC{sub VGC} values ranged from 0.60 for ''cardiac silhouette'' to 0.74 for ''trachea'' and ''caudal thoracic field''). Conclusion: The NIP system demonstrates clearly better image quality compared to the reference PIP system. A dose reduction of 50% seems to be possible without relevant detraction from image quality. The results obtained in the animal model are valid for simulating conditions in neonatal radiological practise. (orig.)

  3. Assessing product image quality for online shopping

    Science.gov (United States)

    Goswami, Anjan; Chung, Sung H.; Chittar, Naren; Islam, Atiq

    2012-01-01

    Assessing product-image quality is important in the context of online shopping. A high quality image that conveys more information about a product can boost the buyer's confidence and can get more attention. However, the notion of image quality for product-images is not the same as that in other domains. The perception of quality of product-images depends not only on various photographic quality features but also on various high level features such as clarity of the foreground or goodness of the background etc. In this paper, we define a notion of product-image quality based on various such features. We conduct a crowd-sourced experiment to collect user judgments on thousands of eBay's images. We formulate a multi-class classification problem for modeling image quality by classifying images into good, fair and poor quality based on the guided perceptual notions from the judges. We also conduct experiments with regression using average crowd-sourced human judgments as target. We compute a pseudo-regression score with expected average of predicted classes and also compute a score from the regression technique. We design many experiments with various sampling and voting schemes with crowd-sourced data and construct various experimental image quality models. Most of our models have reasonable accuracies (greater or equal to 70%) on test data set. We observe that our computed image quality score has a high (0.66) rank correlation with average votes from the crowd sourced human judgments.

  4. Medical Imaging Image Quality Assessment with Monte Carlo Methods

    International Nuclear Information System (INIS)

    Michail, C M; Fountos, G P; Kalyvas, N I; Valais, I G; Kandarakis, I S; Karpetas, G E; Martini, Niki; Koukou, Vaia

    2015-01-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction, with cluster computing. The PET scanner simulated in this study was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the Modulation Transfer Function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL algorithm. OSMAPOSL reconstruction was assessed by using various subsets (3 to 21) and iterations (1 to 20), as well as by using various beta (hyper) parameter values. MTF values were found to increase up to the 12th iteration whereas remain almost constant thereafter. MTF improves by using lower beta values. The simulated PET evaluation method based on the TLC plane source can be also useful in research for the further development of PET and SPECT scanners though GATE simulations. (paper)

  5. Automated facial acne assessment from smartphone images

    Science.gov (United States)

    Amini, Mohammad; Vasefi, Fartash; Valdebran, Manuel; Huang, Kevin; Zhang, Haomiao; Kemp, William; MacKinnon, Nicholas

    2018-02-01

    A smartphone mobile medical application is presented, that provides analysis of the health of skin on the face using a smartphone image and cloud-based image processing techniques. The mobile application employs the use of the camera to capture a front face image of a subject, after which the captured image is spatially calibrated based on fiducial points such as position of the iris of the eye. A facial recognition algorithm is used to identify features of the human face image, to normalize the image, and to define facial regions of interest (ROI) for acne assessment. We identify acne lesions and classify them into two categories: those that are papules and those that are pustules. Automated facial acne assessment was validated by performing tests on images of 60 digital human models and 10 real human face images. The application was able to identify 92% of acne lesions within five facial ROIs. The classification accuracy for separating papules from pustules was 98%. Combined with in-app documentation of treatment, lifestyle factors, and automated facial acne assessment, the app can be used in both cosmetic and clinical dermatology. It allows users to quantitatively self-measure acne severity and treatment efficacy on an ongoing basis to help them manage their chronic facial acne.

  6. Microprocessor based image processing system

    International Nuclear Information System (INIS)

    Mirza, M.I.; Siddiqui, M.N.; Rangoonwala, A.

    1987-01-01

    Rapid developments in the production of integrated circuits and introduction of sophisticated 8,16 and now 32 bit microprocessor based computers, have set new trends in computer applications. Nowadays the users by investing much less money can make optimal use of smaller systems by getting them custom-tailored according to their requirements. During the past decade there have been great advancements in the field of computer Graphics and consequently, 'Image Processing' has emerged as a separate independent field. Image Processing is being used in a number of disciplines. In the Medical Sciences, it is used to construct pseudo color images from computer aided tomography (CAT) or positron emission tomography (PET) scanners. Art, advertising and publishing people use pseudo colours in pursuit of more effective graphics. Structural engineers use Image Processing to examine weld X-rays to search for imperfections. Photographers use Image Processing for various enhancements which are difficult to achieve in a conventional dark room. (author)

  7. An XCT image database system

    International Nuclear Information System (INIS)

    Komori, Masaru; Minato, Kotaro; Koide, Harutoshi; Hirakawa, Akina; Nakano, Yoshihisa; Itoh, Harumi; Torizuka, Kanji; Yamasaki, Tetsuo; Kuwahara, Michiyoshi.

    1984-01-01

    In this paper, an expansion of X-ray CT (XCT) examination history database to XCT image database is discussed. The XCT examination history database has been constructed and used for daily examination and investigation in our hospital. This database consists of alpha-numeric information (locations, diagnosis and so on) of more than 15,000 cases, and for some of them, we add tree structured image data which has a flexibility for various types of image data. This database system is written by MUMPS database manipulation language. (author)

  8. High intensity radiation imaging system

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1976-01-01

    A nuclear imaging system is described for mapping a spatially distributed source of high energy nuclear particles from a living organ which has selectively absorbed a radioactive compound in which the nuclear energy is spatially coded by a zone plate positioned between the source and a spatial detector, and a half tone screen is positioned between the source and the zone plate to increase the definition of the image

  9. Stepped scanner radiographic imaging system

    International Nuclear Information System (INIS)

    Lapidus, S.N.

    1981-01-01

    The imaging system includes a radiographic camera, a bed for supporting a subject in view of the camera, and a display system. The camera provides X and Y coordinate signals of each radiographic event. The position of the bed relative to the camera is altered sequentially by drive means, between each of a sequence of images provided by the camera. The sequentially occurring images are presented on the display system, each image being positioned on the display in correspondence with the location of the bed relative to the camera. The coordinates of each image point presented on the display is equal to the sum of the respective X and Y coordinate signals from the camera with X and Y coordinate signals provided by a timer which controls the drive means and defines the location of the bed relative to the camera. The camera is electronically decoupled from the display by a gate during movement of the bed relative to the camera from one location to the next location to prevent any smearing effect within the composite image presented on the display. (author)

  10. An Improved Image Contrast Assessment Method

    Directory of Open Access Journals (Sweden)

    Yuanyuan Fan

    2013-07-01

    Full Text Available Contrast is an important factor affecting the image quality. In order to overcome the problems of local band-limited contrast, a novel image contrast assessment method based on the property of HVS is proposed. Firstly, the image by low-pass filter is performed fast wavelet decomposition. Secondly, all levels of band-pass filtered image and its corresponding low-pass filtered image are obtained by processing wavelet coefficients. Thirdly, local band-limited contrast is calculated, and the local band-limited contrast entropy is calculated according to the definition of entropy, Finally, the contrast entropy of image is obtained by averaging the local band-limited contrast entropy weighed using CSF coefficient. The experiment results show that the best contrast image can be accurately identified in the sequence images obtained by adjusting the exposure time and stretching gray respectively, the assessment results accord with human visual characteristics and make up the lack of local band-limited contrast.

  11. Objective assessment of image quality VI: imaging in radiation therapy

    International Nuclear Information System (INIS)

    Barrett, Harrison H; Kupinski, Matthew A; Müeller, Stefan; Halpern, Howard J; Morris, John C III; Dwyer, Roisin

    2013-01-01

    Earlier work on objective assessment of image quality (OAIQ) focused largely on estimation or classification tasks in which the desired outcome of imaging is accurate diagnosis. This paper develops a general framework for assessing imaging quality on the basis of therapeutic outcomes rather than diagnostic performance. By analogy to receiver operating characteristic (ROC) curves and their variants as used in diagnostic OAIQ, the method proposed here utilizes the therapy operating characteristic or TOC curves, which are plots of the probability of tumor control versus the probability of normal-tissue complications as the overall dose level of a radiotherapy treatment is varied. The proposed figure of merit is the area under the TOC curve, denoted AUTOC. This paper reviews an earlier exposition of the theory of TOC and AUTOC, which was specific to the assessment of image-segmentation algorithms, and extends it to other applications of imaging in external-beam radiation treatment as well as in treatment with internal radioactive sources. For each application, a methodology for computing the TOC is presented. A key difference between ROC and TOC is that the latter can be defined for a single patient rather than a population of patients. (paper)

  12. Assessment of synthetic image fidelity

    Science.gov (United States)

    Mitchell, Kevin D.; Moorhead, Ian R.; Gilmore, Marilyn A.; Watson, Graham H.; Thomson, Mitch; Yates, T.; Troscianko, Tomasz; Tolhurst, David J.

    2000-07-01

    Computer generated imagery is increasingly used for a wide variety of purposes ranging from computer games to flight simulators to camouflage and sensor assessment. The fidelity required for this imagery is dependent on the anticipated use - for example when used for camouflage design it must be physically correct spectrally and spatially. The rendering techniques used will also depend upon the waveband being simulated, spatial resolution of the sensor and the required frame rate. Rendering of natural outdoor scenes is particularly demanding, because of the statistical variation in materials and illumination, atmospheric effects and the complex geometric structures of objects such as trees. The accuracy of the simulated imagery has tended to be assessed subjectively in the past. First and second order statistics do not capture many of the essential characteristics of natural scenes. Direct pixel comparison would impose an unachievable demand on the synthetic imagery. For many applications, such as camouflage design, it is important that nay metrics used will work in both visible and infrared wavebands. We are investigating a variety of different methods of comparing real and synthetic imagery and comparing synthetic imagery rendered to different levels of fidelity. These techniques will include neural networks (ICA), higher order statistics and models of human contrast perception. This paper will present an overview of the analyses we have carried out and some initial results along with some preliminary conclusions regarding the fidelity of synthetic imagery.

  13. Corner-point criterion for assessing nonlinear image processing imagers

    Science.gov (United States)

    Landeau, Stéphane; Pigois, Laurent; Foing, Jean-Paul; Deshors, Gilles; Swiathy, Greggory

    2017-10-01

    Range performance modeling of optronics imagers attempts to characterize the ability to resolve details in the image. Today, digital image processing is systematically used in conjunction with the optoelectronic system to correct its defects or to exploit tiny detection signals to increase performance. In order to characterize these processing having adaptive and non-linear properties, it becomes necessary to stimulate the imagers with test patterns whose properties are similar to the actual scene image ones, in terms of dynamic range, contours, texture and singular points. This paper presents an approach based on a Corner-Point (CP) resolution criterion, derived from the Probability of Correct Resolution (PCR) of binary fractal patterns. The fundamental principle lies in the respectful perception of the CP direction of one pixel minority value among the majority value of a 2×2 pixels block. The evaluation procedure considers the actual image as its multi-resolution CP transformation, taking the role of Ground Truth (GT). After a spatial registration between the degraded image and the original one, the degradation is statistically measured by comparing the GT with the degraded image CP transformation, in terms of localized PCR at the region of interest. The paper defines this CP criterion and presents the developed evaluation techniques, such as the measurement of the number of CP resolved on the target, the transformation CP and its inverse transform that make it possible to reconstruct an image of the perceived CPs. Then, this criterion is compared with the standard Johnson criterion, in the case of a linear blur and noise degradation. The evaluation of an imaging system integrating an image display and a visual perception is considered, by proposing an analysis scheme combining two methods: a CP measurement for the highly non-linear part (imaging) with real signature test target and conventional methods for the more linear part (displaying). The application to

  14. Intellectual system for images restoration

    Science.gov (United States)

    Mardare, Igor

    2005-02-01

    Intelligence systems on basis of artificial neural networks and associative memory allow to solve effectively problems of recognition and restoration of images. However, within analytical technologies there are no dominating approaches of deciding of intellectual problems. Choice of the best technology depends on nature of problem, features of objects, volume of represented information about the object, number of classes of objects, etc. It is required to determine opportunities, preconditions and field of application of neural networks and associative memory for decision of problem of restoration of images and to use their supplementary benefits for further development of intelligence systems.

  15. The Groningen image processing system

    International Nuclear Information System (INIS)

    Allen, R.J.; Ekers, R.D.; Terlouw, J.P.

    1985-01-01

    This paper describes an interactive, integrated software and hardware computer system for the reduction and analysis of astronomical images. A short historical introduction is presented before some examples of the astonomical data currently handled by the system are shown. A description is given of the present hardware and software structure. The system is illustrated by describing its appearance to the user, to the applications programmer, and to the system manager. Some quantitative information on the size and cost of the system is given, and its good and bad features are discussed

  16. Musashi dynamic image processing system

    International Nuclear Information System (INIS)

    Murata, Yutaka; Mochiki, Koh-ichi; Taguchi, Akira

    1992-01-01

    In order to produce transmitted neutron dynamic images using neutron radiography, a real time system called Musashi dynamic image processing system (MDIPS) was developed to collect, process, display and record image data. The block diagram of the MDIPS is shown. The system consists of a highly sensitive, high resolution TV camera driven by a custom-made scanner, a TV camera deflection controller for optimal scanning, which adjusts to the luminous intensity and the moving speed of an object, a real-time corrector to perform the real time correction of dark current, shading distortion and field intensity fluctuation, a real time filter for increasing the image signal to noise ratio, a video recording unit and a pseudocolor monitor to realize recording in commercially available products and monitoring by means of the CRTs in standard TV scanning, respectively. The TV camera and the TV camera deflection controller utilized for producing still images can be applied to this case. The block diagram of the real-time corrector is shown. Its performance is explained. Linear filters and ranked order filters were developed. (K.I.)

  17. Innovative Tools to Assess Systems Thinking Ability

    Science.gov (United States)

    2017-12-01

    addition to the six cognitive ability constructs, there are two motivational attributes that are highly relevant to systems thinking performance...roles of the habenular complex, the reward system , and the cingulate motor area revealed by functional magnetic resonance imaging. Journal of...Technical Report 1362 Innovative Tools to Assess Systems Thinking Ability Cory Adis Michelle Wisecarver Chelsey Raber Personnel

  18. Scanning Terahertz Heterodyne Imaging Systems

    Science.gov (United States)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  19. 3D Backscatter Imaging System

    Science.gov (United States)

    Whitaker, Ross (Inventor); Turner, D. Clark (Inventor)

    2016-01-01

    Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.

  20. Quality assessment in radiological imaging methods

    International Nuclear Information System (INIS)

    Herstel, W.

    1985-01-01

    The equipment used in diagnostic radiology is becoming more and more complicated. In the imaging process four components are distinguished, each of which can introduce loss in essential information: the X-ray source, the human body, the imaging system and the observer. In nearly all imaging methods the X-ray quantum fluctuations are a limitation to observation. But there are also technical factors. As an illustration it is shown how in a television scanning process the resolution is restricted by the system parameters. A short review is given of test devices and the results are given of an image comparison based on regular bar patterns. Although this method has the disadvantage of measuring mainly the limiting resolution, the results of the test correlate reasonably well with the subjective appreciations of radiographs of bony structures made by a group of trained radiologists. Fluoroscopic systems should preferably be tested using moving structures under dynamic conditions. (author)

  1. Image reconstruction of dynamic infrared single-pixel imaging system

    Science.gov (United States)

    Tong, Qi; Jiang, Yilin; Wang, Haiyan; Guo, Limin

    2018-03-01

    Single-pixel imaging technique has recently received much attention. Most of the current single-pixel imaging is aimed at relatively static targets or the imaging system is fixed, which is limited by the number of measurements received through the single detector. In this paper, we proposed a novel dynamic compressive imaging method to solve the imaging problem, where exists imaging system motion behavior, for the infrared (IR) rosette scanning system. The relationship between adjacent target images and scene is analyzed under different system movement scenarios. These relationships are used to build dynamic compressive imaging models. Simulation results demonstrate that the proposed method can improve the reconstruction quality of IR image and enhance the contrast between the target and the background in the presence of system movement.

  2. Imaging Systems in TLE Research

    DEFF Research Database (Denmark)

    Allin, Thomas Højgaard; Neubert, Torsten; Laursen, Steen

    2006-01-01

    documented using the right equipment in the right way. This chapter provides an introduction to the concepts of low light imagers, and how they can be successfully applied in TLE research. As examples, we describe the 2003 and 2004 Spritewatch systems, which integrate low-light cameras with a digital...

  3. PET imaging of the autonomic nervous system

    International Nuclear Information System (INIS)

    THACKERAY, James T.; BENGEL, Frank M.

    2016-01-01

    The autonomic nervous system is the primary extrinsic control of heart rate and contractility, and is subject to adaptive and maladaptive changes in cardiovascular disease. Consequently, noninvasive assessment of neuronal activity and function is an attractive target for molecular imaging. A myriad of targeted radiotracers have been developed over the last 25 years for imaging various components of the sympathetic and parasympathetic signal cascades. While routine clinical use remains somewhat limited, a number of larger scale studies in recent years have supplied momentum to molecular imaging of autonomic signaling. Specifically, the findings of the ADMIRE HF trial directly led to United States Food and Drug Administration approval of 123I-metaiodobenzylguanidine (MIBG) for Single Photon Emission Computed Tomography (SPECT) assessment of sympathetic neuronal innervation, and comparable results have been reported using the analogous PET agent 11C-meta-hydroxyephedrine (HED). Due to the inherent capacity for dynamic quantification and higher spatial resolution, regional analysis may be better served by PET. In addition, preliminary clinical and extensive preclinical experience has provided a broad foundation of cardiovascular applications for PET imaging of the autonomic nervous system. Recent years have witnessed the growth of novel quantification techniques, expansion of multiple tracer studies, and improved understanding of the uptake of different radiotracers, such that the transitional biology of dysfunctional subcellular catecholamine handling can be distinguished from complete denervation. As a result, sympathetic neuronal molecular imaging is poised to play a role in individualized patient care, by stratifying cardiovascular risk, visualizing underlying biology, and guiding and monitoring therapy.

  4. Imaging systems for medical diagnostics

    International Nuclear Information System (INIS)

    Krestel, E.

    1990-01-01

    This book provides physicians and clinical physicists with detailed information on today's imaging modalities and assists them in selecting the optimal system for each clinical application. Physicists, engineers and computer specialists engaged in research and development and sales departments will also find this book to be of considerable use. It may also be employed at universities, training centers and in technical seminars. The physiological and physical fundamentals are explained in part 1. The technical solutions contained in part 2 illustrate the numerous possibilities available in X-ray diagnostics, computed tomography, nuclear medical diagnostics, magnetic resonance imaging, sonography and biomagnetic diagnostics. (orig.)

  5. Myocardial viability assessment using nuclear imaging

    International Nuclear Information System (INIS)

    Matsunari, Ichiro; Hisada, Kinichi; Taki, Junichi; Nakajima, Kenichi; Tonami, Norihisa

    2003-01-01

    Myocardial assessment continues to be an issue in patients with coronary artery disease and left ventricular dysfunction. Nuclear imaging has long played an important role in this field. In particular, PET imaging using 18 F-fluorodeoxyglucose is regarded as the metabolic gold standard of tissue viability, which has been supported by a wide clinical experience. Viability assessment using SPECT techniques has gained more wide-spread clinical acceptance than PET, because it is more widely available at lower cost. Moreover, technical advances in SPECT technology such as gated-SPECT further improve the diagnostic accuracy of the test. However, other imaging techniques such as dobutamine echocardiography have recently emerged as competitors to nuclear imaging. It is also important to note that they sometimes may work in a complementary fashion to nuclear imaging, indicating that an appropriate use of these techniques may significantly improve their overall accuracy. In keeping these circumstances in mind, further efforts are necessary to further improve the diagnostic performance of nuclear imaging as a reliable viability test. (author) 107 refs

  6. Imaging systems in nuclear medicine and image evaluation

    International Nuclear Information System (INIS)

    Beck, R.; Charleston, D.; Metz, C.

    1980-01-01

    This project deals with imaging systems in nuclear medicine and image evaluation and is presented as four subprojects. The goal of the first subproject is to improve diagnositc image quality by development of a general computer code for optimizing collimator design. The second subproject deals with a secondary emission and fluorescence technique for thyroid scanning while the third subproject emphasizes the need for more sophisticated image processing systems such as coherent optical spatial filtering systems and digital image processing. The fourth subproject presents a new approach for processing image data by taking into account the energy of each detected gamma-ray photon

  7. Multispectral Panoramic Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — International Electronic Machines Corporation, a leader in the design of precision imaging systems, will develop an innovative multispectral, panoramic imaging...

  8. The InSAeS4 Airborne X-Band Interferometric SAR System: A First Assessment on Its Imaging and Topographic Mapping Capabilities

    Directory of Open Access Journals (Sweden)

    Stefano Perna

    2016-01-01

    Full Text Available We present in this work a first assessment of the imaging and topographic mapping capabilities of the InSAeS4 system, which is a single-pass interferometric airborne X-Band Synthetic Aperture Radar (SAR. In particular, we first provide a brief description of the InSAeS4 sensor. Then, we discuss the results of our analysis on the SAR and interferometric SAR products relevant to the first flight-test campaign. More specifically, we have exploited as reference the GPS measurements relevant to nine Corner Reflectors (CRs deployed over the illuminated area during the campaign and a laser scanner Digital Elevation Model (DEM. From the analysis carried out on the CRs we achieved a mean geometric resolution, for the SAR products, of about 0.14 m in azimuth and 0.49 m in range, a positioning misalignment with standard deviation of 0.07 m in range and 0.08 m in azimuth, and a height error with standard deviation of 0.51 m. From the comparison with the laser scanner DEM we estimated a height error with standard deviation of 1.57 m.

  9. Bone age assessment by digital images

    International Nuclear Information System (INIS)

    Silva, Ana Maria Marques da

    1996-01-01

    An algorithm which allows bone age assessment by digital radiological images was developed. For geometric parameters extraction, the phalangeal and metacarpal regions of interest are enhanced and segmented, through spatial and morphological filtering. This study is based on perimeter, length and area, from distal to proximal portions. The quantification of these parameters make possible comparison between chronological and skeletal age, using growth standard tables

  10. Radiological interpretation 2020: Toward quantitative image assessment

    International Nuclear Information System (INIS)

    Boone, John M.

    2007-01-01

    The interpretation of medical images by radiologists is primarily and fundamentally a subjective activity, but there are a number of clinical applications such as tumor imaging where quantitative imaging (QI) metrics (such as tumor growth rate) would be valuable to the patient’s care. It is predicted that the subjective interpretive environment of the past will, over the next decade, evolve toward the increased use of quantitative metrics for evaluating patient health from images. The increasing sophistication and resolution of modern tomographic scanners promote the development of meaningful quantitative end points, determined from images which are in turn produced using well-controlled imaging protocols. For the QI environment to expand, medical physicists, physicians, other researchers and equipment vendors need to work collaboratively to develop the quantitative protocols for imaging, scanner calibrations, and robust analytical software that will lead to the routine inclusion of quantitative parameters in the diagnosis and therapeutic assessment of human health. Most importantly, quantitative metrics need to be developed which have genuine impact on patient diagnosis and welfare, and only then will QI techniques become integrated into the clinical environment.

  11. Accuracy assessment of topographic mapping using UAV image integrated with satellite images

    International Nuclear Information System (INIS)

    Azmi, S M; Ahmad, Baharin; Ahmad, Anuar

    2014-01-01

    Unmanned Aerial Vehicle or UAV is extensively applied in various fields such as military applications, archaeology, agriculture and scientific research. This study focuses on topographic mapping and map updating. UAV is one of the alternative ways to ease the process of acquiring data with lower operating costs, low manufacturing and operational costs, plus it is easy to operate. Furthermore, UAV images will be integrated with QuickBird images that are used as base maps. The objective of this study is to make accuracy assessment and comparison between topographic mapping using UAV images integrated with aerial photograph and satellite image. The main purpose of using UAV image is as a replacement for cloud covered area which normally exists in aerial photograph and satellite image, and for updating topographic map. Meanwhile, spatial resolution, pixel size, scale, geometric accuracy and correction, image quality and information contents are important requirements needed for the generation of topographic map using these kinds of data. In this study, ground control points (GCPs) and check points (CPs) were established using real time kinematic Global Positioning System (RTK-GPS) technique. There are two types of analysis that are carried out in this study which are quantitative and qualitative assessments. Quantitative assessment is carried out by calculating root mean square error (RMSE). The outputs of this study include topographic map and orthophoto. From this study, the accuracy of UAV image is ± 0.460 m. As conclusion, UAV image has the potential to be used for updating of topographic maps

  12. Analysis and Comparison of Objective Methods for Image Quality Assessment

    Directory of Open Access Journals (Sweden)

    P. S. Babkin

    2014-01-01

    Full Text Available The purpose of this work is research and modification of the reference objective methods for image quality assessment. The ultimate goal is to obtain a modification of formal assessments that more closely corresponds to the subjective expert estimates (MOS.In considering the formal reference objective methods for image quality assessment we used the results of other authors, which offer results and comparative analyzes of the most effective algorithms. Based on these investigations we have chosen two of the most successful algorithm for which was made a further analysis in the MATLAB 7.8 R 2009 a (PQS and MSSSIM. The publication focuses on the features of the algorithms, which have great importance in practical implementation, but are insufficiently covered in the publications by other authors.In the implemented modification of the algorithm PQS boundary detector Kirsch was replaced by the boundary detector Canny. Further experiments were carried out according to the method of the ITU-R VT.500-13 (01/2012 using monochrome images treated with different types of filters (should be emphasized that an objective assessment of image quality PQS is applicable only to monochrome images. Images were obtained with a thermal imaging surveillance system. The experimental results proved the effectiveness of this modification.In the specialized literature in the field of formal to evaluation methods pictures, this type of modification was not mentioned.The method described in the publication can be applied to various practical implementations of digital image processing.Advisability and effectiveness of using the modified method of PQS to assess the structural differences between the images are shown in the article and this will be used in solving the problems of identification and automatic control.

  13. WE-FG-207B-09: Experimental Assessment of Noise and Spatial Resolution in Virtual Non-Contrast Dual-Energy CT Images Across Multiple Patient Sizes and CT Systems

    International Nuclear Information System (INIS)

    Montoya, J; Ferrero, A; Yu, L; Leng, S; McCollough, C

    2016-01-01

    Purpose: To investigate the noise and spatial resolution properties of virtual non-contrast (VNC) dual-energy CT images compared to true non-contrast (TNC) images across multiple patient sizes and CT systems. Methods: Torso-shaped water phantoms with lateral widths of 25, 30, 35, 40 and 45 cm and a high resolution bar pattern phantom (Catphan CTP528) were scanned using 2nd and 3rd generation dual-source CT systems (Scanner A: Somatom Definition Flash, Scanner B: Somatom Force, Siemens Healthcare) in dual-energy scan mode with the same radiation dose for a given phantom size. Tube potentials of 80/Sn140 and 100/Sn140 on Scanner A and 80/Sn150, 90/Sn150 and 100/Sn150 on Scanner B were evaluated to examine the impact of spectral separation. Images were reconstructed using a medium sharp quantitative kernel (Qr40), 1.0-mm thickness, 1.0-mm interval and 20 cm field of view. Mixed images served as TNC images. VNC images were created using commercial software (Virtual Unenhanced, Syngo VIA Version VA30, Siemens Healthcare). The noise power spectrum (NPS), area under the NPS, peak frequency of the NPS and image noise were measured for every phantom size and tube potential combination in TNC and VNC images. Results were compared within and between CT systems. Results: Minimal shift in NPS peak frequencies was observed in VNC images compared to TNC for NPS having pronounced peaks. Image noise and area under the NPS were higher in VNC images compared to TNC images across all tube potentials and for scanner A compared to scanner B. Limiting spatial resolution was deemed to be identical between VNC and TNC images. Conclusion: Quantitative assessment of image quality in VNC images demonstrated higher noise but equivalent spatial resolution compared to TNC images. Decreased noise was observed in the 3rd generation dual-source CT system for tube potential pairs having greater spectral separation. Dr. McCollough receives research support from Siemens Healthcare

  14. WE-FG-207B-09: Experimental Assessment of Noise and Spatial Resolution in Virtual Non-Contrast Dual-Energy CT Images Across Multiple Patient Sizes and CT Systems

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, J; Ferrero, A; Yu, L; Leng, S; McCollough, C [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To investigate the noise and spatial resolution properties of virtual non-contrast (VNC) dual-energy CT images compared to true non-contrast (TNC) images across multiple patient sizes and CT systems. Methods: Torso-shaped water phantoms with lateral widths of 25, 30, 35, 40 and 45 cm and a high resolution bar pattern phantom (Catphan CTP528) were scanned using 2nd and 3rd generation dual-source CT systems (Scanner A: Somatom Definition Flash, Scanner B: Somatom Force, Siemens Healthcare) in dual-energy scan mode with the same radiation dose for a given phantom size. Tube potentials of 80/Sn140 and 100/Sn140 on Scanner A and 80/Sn150, 90/Sn150 and 100/Sn150 on Scanner B were evaluated to examine the impact of spectral separation. Images were reconstructed using a medium sharp quantitative kernel (Qr40), 1.0-mm thickness, 1.0-mm interval and 20 cm field of view. Mixed images served as TNC images. VNC images were created using commercial software (Virtual Unenhanced, Syngo VIA Version VA30, Siemens Healthcare). The noise power spectrum (NPS), area under the NPS, peak frequency of the NPS and image noise were measured for every phantom size and tube potential combination in TNC and VNC images. Results were compared within and between CT systems. Results: Minimal shift in NPS peak frequencies was observed in VNC images compared to TNC for NPS having pronounced peaks. Image noise and area under the NPS were higher in VNC images compared to TNC images across all tube potentials and for scanner A compared to scanner B. Limiting spatial resolution was deemed to be identical between VNC and TNC images. Conclusion: Quantitative assessment of image quality in VNC images demonstrated higher noise but equivalent spatial resolution compared to TNC images. Decreased noise was observed in the 3rd generation dual-source CT system for tube potential pairs having greater spectral separation. Dr. McCollough receives research support from Siemens Healthcare.

  15. Imaging systems and materials characterization

    International Nuclear Information System (INIS)

    Murr, L.E.

    2009-01-01

    This paper provides a broad background for the historical development and modern applications of light optical metallography, scanning and transmission electron microscopy, field-ion microscopy and several forms of scanning probe microscopes. Numerous case examples illustrating especially synergistic applications of these imaging systems are provided to demonstrate materials characterization especially in the context of structure-property-performance issues which define materials science and engineering

  16. GEOREFERENCED IMAGE SYSTEM WITH DRONES

    Directory of Open Access Journals (Sweden)

    Héctor A. Pérez-Sánchez

    2017-07-01

    Full Text Available This paper has as general purpose develop and implementation of a system that allows the generation of flight routes for a drone, the acquisition of geographic location information (GPS during the flight and taking photographs of points of interest for creating georeferenced images, same that will be used to generate KML files (Keyhole Markup Language for the representation of geographical data in three dimensions to be displayed on the Google Earth tool.

  17. Deep learning for objective quality assessment of 3D images

    NARCIS (Netherlands)

    Mocanu, D.C.; Exarchakos, G.; Liotta, A.

    2014-01-01

    Improving the users' Quality of Experience (QoE) in modern 3D Multimedia Systems is a challenging proposition, mainly due to our limited knowledge of 3D image Quality Assessment algorithms. While subjective QoE methods would better reflect the nature of human perception, these are not suitable in

  18. Image Quality Assessment of JPEG Compressed Mars Science Laboratory Mastcam Images using Convolutional Neural Networks

    Science.gov (United States)

    Kerner, H. R.; Bell, J. F., III; Ben Amor, H.

    2017-12-01

    The Mastcam color imaging system on the Mars Science Laboratory Curiosity rover acquires images within Gale crater for a variety of geologic and atmospheric studies. Images are often JPEG compressed before being downlinked to Earth. While critical for transmitting images on a low-bandwidth connection, this compression can result in image artifacts most noticeable as anomalous brightness or color changes within or near JPEG compression block boundaries. In images with significant high-frequency detail (e.g., in regions showing fine layering or lamination in sedimentary rocks), the image might need to be re-transmitted losslessly to enable accurate scientific interpretation of the data. The process of identifying which images have been adversely affected by compression artifacts is performed manually by the Mastcam science team, costing significant expert human time. To streamline the tedious process of identifying which images might need to be re-transmitted, we present an input-efficient neural network solution for predicting the perceived quality of a compressed Mastcam image. Most neural network solutions require large amounts of hand-labeled training data for the model to learn the target mapping between input (e.g. distorted images) and output (e.g. quality assessment). We propose an automatic labeling method using joint entropy between a compressed and uncompressed image to avoid the need for domain experts to label thousands of training examples by hand. We use automatically labeled data to train a convolutional neural network to estimate the probability that a Mastcam user would find the quality of a given compressed image acceptable for science analysis. We tested our model on a variety of Mastcam images and found that the proposed method correlates well with image quality perception by science team members. When assisted by our proposed method, we estimate that a Mastcam investigator could reduce the time spent reviewing images by a minimum of 70%.

  19. Total System Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Soo; Kang, Chul Hyung; Lee, Youn Myoung; Han, Ji Woong; Choi, Jong Won; Hahn, Pil Soo; Park, Jeong Hwa; Jeong, Mi Seon

    2007-06-15

    Based on the KAERI FEP list developed through the previous studies, the KAERI FEP Encyclopedia has been developed. Current version is 1.0 which includes all relevant FEPs to compose of two references and all alternative scenarios. Many interaction FEPs between scenario defining FEP(SDF) are created throughout the study. FEPs are classified into many Integrated FEP(IFEP) which eventually become the elements of the RES matrix. The FEAS program one of the component of the KAERI's CYPRUS information system is added to develop the FEP, RES, AC, AMF and finally scenarios. It assists to create transparent way to deal with assessment from the stage of the planning of the R and D to the final stage of the external audit and regulatory body review. Even though MASCOT-K and compartment analysis codes such as AMBER, GoldSim and Ecolego are excellent for TSPA they by in heritage possess a certain limitation especially to identify a proper migration cross sectional area when a relatively big component intersects with a tiny one such as a fracture. It is truly 3D phenomena in nature. MDPSA code is developed which is expected to overcome limitations in compartment models while successfully deals with natural disruptive events. The R and D target for the TSPA is to develop the sufficient scenarios and their variation cases to understand the safety of KRS in every possible aspect. For this, reference scenarios, alternative scenarios covering engineered barrier failure and natural events are developed and assessed respectively for around 100 cases. The stylized template to assess the Korean reference biosphere is developed using the AMBER. Three critical groups, agricultural, freshwater and marine water fishing groups are identified to assess the DCF following the guidelines of ICRP. Based on the QA principles of T2R3, the web based QA system is developed using the procedures in the USNRC 10CFR50 Appendix B. The QA system is combined with the PAID and FEAS to create the comprehensive

  20. Total System Performance Assessment

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Kang, Chul Hyung; Lee, Youn Myoung; Han, Ji Woong; Choi, Jong Won; Hahn, Pil Soo; Park, Jeong Hwa; Jeong, Mi Seon

    2007-06-01

    Based on the KAERI FEP list developed through the previous studies, the KAERI FEP Encyclopedia has been developed. Current version is 1.0 which includes all relevant FEPs to compose of two references and all alternative scenarios. Many interaction FEPs between scenario defining FEP(SDF) are created throughout the study. FEPs are classified into many Integrated FEP(IFEP) which eventually become the elements of the RES matrix. The FEAS program one of the component of the KAERI's CYPRUS information system is added to develop the FEP, RES, AC, AMF and finally scenarios. It assists to create transparent way to deal with assessment from the stage of the planning of the R and D to the final stage of the external audit and regulatory body review. Even though MASCOT-K and compartment analysis codes such as AMBER, GoldSim and Ecolego are excellent for TSPA they by in heritage possess a certain limitation especially to identify a proper migration cross sectional area when a relatively big component intersects with a tiny one such as a fracture. It is truly 3D phenomena in nature. MDPSA code is developed which is expected to overcome limitations in compartment models while successfully deals with natural disruptive events. The R and D target for the TSPA is to develop the sufficient scenarios and their variation cases to understand the safety of KRS in every possible aspect. For this, reference scenarios, alternative scenarios covering engineered barrier failure and natural events are developed and assessed respectively for around 100 cases. The stylized template to assess the Korean reference biosphere is developed using the AMBER. Three critical groups, agricultural, freshwater and marine water fishing groups are identified to assess the DCF following the guidelines of ICRP. Based on the QA principles of T2R3, the web based QA system is developed using the procedures in the USNRC 10CFR50 Appendix B. The QA system is combined with the PAID and FEAS to create the comprehensive

  1. Total System Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Soo; Kang, Chul Hyung; Lee, Youn Myoung; Han, Ji Woong; Choi, Jong Won; Hahn, Pil Soo; Park, Jeong Hwa; Jeong, Mi Seon

    2007-06-15

    Based on the KAERI FEP list developed through the previous studies, the KAERI FEP Encyclopedia has been developed. Current version is 1.0 which includes all relevant FEPs to compose of two references and all alternative scenarios. Many interaction FEPs between scenario defining FEP(SDF) are created throughout the study. FEPs are classified into many Integrated FEP(IFEP) which eventually become the elements of the RES matrix. The FEAS program one of the component of the KAERI's CYPRUS information system is added to develop the FEP, RES, AC, AMF and finally scenarios. It assists to create transparent way to deal with assessment from the stage of the planning of the R and D to the final stage of the external audit and regulatory body review. Even though MASCOT-K and compartment analysis codes such as AMBER, GoldSim and Ecolego are excellent for TSPA they by in heritage possess a certain limitation especially to identify a proper migration cross sectional area when a relatively big component intersects with a tiny one such as a fracture. It is truly 3D phenomena in nature. MDPSA code is developed which is expected to overcome limitations in compartment models while successfully deals with natural disruptive events. The R and D target for the TSPA is to develop the sufficient scenarios and their variation cases to understand the safety of KRS in every possible aspect. For this, reference scenarios, alternative scenarios covering engineered barrier failure and natural events are developed and assessed respectively for around 100 cases. The stylized template to assess the Korean reference biosphere is developed using the AMBER. Three critical groups, agricultural, freshwater and marine water fishing groups are identified to assess the DCF following the guidelines of ICRP. Based on the QA principles of T2R3, the web based QA system is developed using the procedures in the USNRC 10CFR50 Appendix B. The QA system is combined with the PAID and FEAS to create the

  2. Mammography image assessment; validity and reliability of current scheme

    International Nuclear Information System (INIS)

    Hill, C.; Robinson, L.

    2015-01-01

    Mammographers currently score their own images according to criteria set out by Regional Quality Assurance. The criteria used are based on the ‘Perfect, Good, Moderate, Inadequate’ (PGMI) marking criteria established by the National Health Service Breast Screening Programme (NHSBSP) in their Quality Assurance Guidelines of 2006 1 . This document discusses the validity and reliability of the current mammography image assessment scheme. Commencing with a critical review of the literature this document sets out to highlight problems with the national approach to the use of marking schemes. The findings suggest that ‘PGMI’ scheme is flawed in terms of reliability and validity and is not universally applied across the UK. There also appear to be differences in schemes used by trainees and qualified mammographers. Initial recommendations are to be made in collaboration with colleagues within the National Health Service Breast Screening Programme (NHSBSP), Higher Education Centres, College of Radiographers and the Royal College of Radiologists in order to identify a mammography image appraisal scheme that is fit for purpose. - Highlights: • Currently no robust evidence based marking tools in use for the assessment of images in mammography. • Is current system valid, reliable and robust? • How can the current image assessment tool be improved? • Should students and qualified mammographers use the same tool? • What marking criteria are available for image assessment?

  3. Image and information management system

    Science.gov (United States)

    Robertson, Tina L. (Inventor); Raney, Michael C. (Inventor); Dougherty, Dennis M. (Inventor); Kent, Peter C. (Inventor); Brucker, Russell X. (Inventor); Lampert, Daryl A. (Inventor)

    2009-01-01

    A system and methods through which pictorial views of an object's configuration, arranged in a hierarchical fashion, are navigated by a person to establish a visual context within the configuration. The visual context is automatically translated by the system into a set of search parameters driving retrieval of structured data and content (images, documents, multimedia, etc.) associated with the specific context. The system places ''hot spots'', or actionable regions, on various portions of the pictorials representing the object. When a user interacts with an actionable region, a more detailed pictorial from the hierarchy is presented representing that portion of the object, along with real-time feedback in the form of a popup pane containing information about that region, and counts-by-type reflecting the number of items that are available within the system associated with the specific context and search filters established at that point in time.

  4. X-ray imaging system

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    A novel, high-speed apparatus for use in X-ray computerised tomography is described in detail. It consists of a semi-circular array of X-ray sources, collimators and an ion chamber array for detection of the X-rays. The X-ray sources may be pulsed in salvos such that the corresponding detectors in the array are only illuminated by one source. The use of computer controlled salvos speeds up the image processing by at least a factor of two. The ion chamber array is designed to have a constant detection efficiency for varying angles of X-ray incidence. A detailed description of the detector construction and suggested gaseous fillings are given. It is claimed that the present tomographic system allows fast and accurate imaging of internal body organs and is insensitive to the blurring effects which motion of these organs tends to produce. (UK)

  5. Whole body imaging system mechanism

    International Nuclear Information System (INIS)

    Carman, R.W.; Doherty, E.J.

    1980-01-01

    A radioisotope scanning apparatus for use in nuclear medicine is described in detail. The apparatus enables the quantification and spatial location of the radioactivity in a body section of a patient to be determined with high sensitivity. It consists of an array of highly focussed collimators arranged such that adjacent collimators move in the same circumferential but opposite radial directions. The explicit movements of the gantry are described in detail and may be controlled by a general purpose computer. The use of highly focussed collimators allows both a reasonable solid angle of acceptance and also high target to background images; additionally, dual radionuclide pharmaceutical studies can be performed simultaneously. It is claimed that the high sensitivity of the system permits the early diagnosis of pathological changes and the images obtained show accurately the location and shape of physiological abnormalities. (U.K.)

  6. Design of low noise imaging system

    Science.gov (United States)

    Hu, Bo; Chen, Xiaolai

    2017-10-01

    In order to meet the needs of engineering applications for low noise imaging system under the mode of global shutter, a complete imaging system is designed based on the SCMOS (Scientific CMOS) image sensor CIS2521F. The paper introduces hardware circuit and software system design. Based on the analysis of key indexes and technologies about the imaging system, the paper makes chips selection and decides SCMOS + FPGA+ DDRII+ Camera Link as processing architecture. Then it introduces the entire system workflow and power supply and distribution unit design. As for the software system, which consists of the SCMOS control module, image acquisition module, data cache control module and transmission control module, the paper designs in Verilog language and drives it to work properly based on Xilinx FPGA. The imaging experimental results show that the imaging system exhibits a 2560*2160 pixel resolution, has a maximum frame frequency of 50 fps. The imaging quality of the system satisfies the requirement of the index.

  7. Image BOSS: a biomedical object storage system

    Science.gov (United States)

    Stacy, Mahlon C.; Augustine, Kurt E.; Robb, Richard A.

    1997-05-01

    Researchers using biomedical images have data management needs which are oriented perpendicular to clinical PACS. The image BOSS system is designed to permit researchers to organize and select images based on research topic, image metadata, and a thumbnail of the image. Image information is captured from existing images in a Unix based filesystem, stored in an object oriented database, and presented to the user in a familiar laboratory notebook metaphor. In addition, the ImageBOSS is designed to provide an extensible infrastructure for future content-based queries directly on the images.

  8. Multi-channel medical imaging system

    Science.gov (United States)

    Frangioni, John V

    2013-12-31

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  9. Mammographic image quality in relation to positioning of the breast: A multicentre international evaluation of the assessment systems currently used, to provide an evidence base for establishing a standardised method of assessment.

    Science.gov (United States)

    Taylor, K; Parashar, D; Bouverat, G; Poulos, A; Gullien, R; Stewart, E; Aarre, R; Crystal, P; Wallis, M

    2017-11-01

    Optimum mammography positioning technique is necessary to maximise cancer detection. Current criteria for mammography appraisal lack reliability and validity with a need to develop a more objective system. We aimed to establish current international practice in assessing image quality (IQ), of screening mammograms then develop and validate a reproducible assessment tool. A questionnaire sent to centres in countries undertaking population screening identified practice, participants for an expert panel (EP) of radiologists/radiographers and a testing panel (TP) of radiographers. The EP developed category criteria and descriptors using a modified Delphi process to agree definitions. The EP scored 12 screening mammograms to test agreement then a main set of 178 cases. Weighted scores were derived for each descriptor enabling calculation of numerical parameters for each new category. The TP then scored the main set. Statistical analysis included ANOVA, t-tests and Kendall's coefficient. 11 centres in 8 countries responded forming an EP of 7 members and TP of 44 members. The EP showed moderate agreement when the scoring the mini test set W = 0.50 p < 0.001 and the main set W = 0.55 p < 0.001, 'posterior nipple line' being the most difficult descriptor. The weighted total scores differentiated the 4 new categories Perfect, Good, Adequate and Inadequate (p < 0.001). We have developed an assessment tool by Delphi consensus and weighted consensus criteria. We have successfully tabulated a range of numerical scores for each new category providing the first validated and reproducible mammography IQ scoring system. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  10. Multilayer X-ray imaging systems

    Science.gov (United States)

    Shealy, D. L.; Hoover, R. B.; Gabardi, D. R.

    1986-01-01

    An assessment of the imaging properties of multilayer X-ray imaging systems with spherical surfaces has been made. A ray trace analysis was performed to investigate the effects of using spherical substrates (rather than the conventional paraboloidal/hyperboloidal contours) for doubly reflecting Cassegrain telescopes. These investigations were carried out for mirrors designed to operate at selected soft X-ray/XUV wavelengths that are of significance for studies of the solar corona/transition region from the Stanford/MSFC Rocket X-Ray Telescope. The effects of changes in separation of the primary and secondary elements were also investigated. These theoretical results are presented as well as the results of ray trace studies to establish the resolution and vignetting effects as a function of field angle and system parameters.

  11. Assessments of nuclear systems

    International Nuclear Information System (INIS)

    Ekholm, R.

    1978-01-01

    Assessments of competing energy systems are gaining increased importance as a means for an optimal choice of energy source for each specific major application considering the growing energy needs and the shortage of supply. However it is important to make sure that the assessments reflect scientific facts rather than private interests. If this is not achieved, scientists will lose credibility and one will lose the basis for political decisions. It is concluded that to accomplish the globally justified needs for thousands of nuclear reactors soon after the year 2000 and to save a maximum of lives with a minimum of environmental impact, emphasis must be put on low energy costs and on a good fuel and capital resource utilization. This goal can be best accomplished by expendient introduction of the fast breeders and of promising advanced reactors. The gas cooled breeder and the high temperature reactor have outstanding short and long terms merits on this respect, but are not enjoying the financial support that they deserve. (UK)

  12. Assessment of myocardial viability by MR imaging

    International Nuclear Information System (INIS)

    Sandstede, Joern J.W.

    2003-01-01

    Diagnosis of myocardial viability after infarction focuses on the prediction of functional improvement of dysfunctional myocardium after revascularization therapy. Magnetic resonance imaging provides different approaches for the detection of myocardial viability. Measurement of end-diastolic wall thickness is easy to perform and has a high sensitivity, but a low specificity, and can only be used 4 months after myocardial infarction due to infarct healing processes. Low-dose dobutamine stress has a good sensitivity with a high specificity for the prediction of wall motion improvement, but this is only true for patients with a singular dysfunctional area and only slightly depressed cardiac function. Late enhancement allows for direct visualization of necrotic or scarred tissue. By measuring the transmural extent of late enhancement, the probability of mechanical improvement can precisely be given. Imaging of microvascular obstruction by first-pass perfusion or late enhancement gives additional information on viability and patient prognosis. Metabolic imaging techniques, such as 31 P-MR spectroscopy and 23 Na-MR imaging, provide further insights into the mechanisms of myocardial infarction and viability. In conclusion, cardiac MRI offers several clinically usable approaches for the assessment of myocardial viability and will probably become the method of choice in the near future. (orig.)

  13. High dynamic range coding imaging system

    Science.gov (United States)

    Wu, Renfan; Huang, Yifan; Hou, Guangqi

    2014-10-01

    We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.

  14. Improved Interactive Medical-Imaging System

    Science.gov (United States)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  15. Imaging systems in nuclear medicine and image evaluation

    International Nuclear Information System (INIS)

    Beck, R.; Charleston, D.; Metz, C.; Tsui, B.

    1981-01-01

    A general computer code to simulate the imaging properties of existing and hypothetical imaging systems viewing realistic source distributions within non-uniform media. Such a code allows comparative evaluations of existing and hypothetical systems, and optimization of critical parameters of system design by maximizing the signal-to-noise ratio. To be most useful, such a code allows simulation of conventional scintillation scanners and cameras as well as single-photon and position tomographic systems

  16. Highly integrated image sensors enable low-cost imaging systems

    Science.gov (United States)

    Gallagher, Paul K.; Lake, Don; Chalmers, David; Hurwitz, J. E. D.

    1997-09-01

    The highest barriers to wide scale implementation of vision systems have been cost. This is closely followed by the level of difficulty of putting a complete imaging system together. As anyone who has every been in the position of creating a vision system knows, the various bits and pieces supplied by the many vendors are not under any type of standardization control. In short, unless you are an expert in imaging, electrical interfacing, computers, digital signal processing, and high speed storage techniques, you will likely spend more money trying to do it yourself rather than to buy the exceedingly expensive systems available. Another alternative is making headway into the imaging market however. The growing investment in highly integrated CMOS based imagers is addressing both the cost and the system integration difficulties. This paper discusses the benefits gained from CMOS based imaging, and how these benefits are already being applied.

  17. Imaging of systemic vasculitis in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, Magdy [The Hospital for Sick Children, Department of Medical Imaging, Toronto, ON (Canada); Cairo University, Department of Medical Imaging, Cairo (Egypt); Laxer, Ronald; Yeung, Rae [The Hospital for Sick Children, Department of Rheumatology, Toronto, ON (Canada); Manson, David; Doria, Andrea S. [The Hospital for Sick Children, Department of Medical Imaging, Toronto, ON (Canada)

    2015-08-15

    The term ''systemic vasculitis'' encompasses a diverse set of diseases linked by the presence of blood-vessel inflammation that are often associated with critical complications. These diseases are uncommon in childhood and are frequently subjected to a delayed diagnosis. Although the diagnosis and treatment may be similar for adult and childhood systemic vasculitides, the prevalence and classification vary according to the age group under investigation. For example, Kawasaki disease affects children while it is rarely encountered in adults. In 2006, the European League Against Rheumatism (EULAR) and the Pediatric Rheumatology European Society (PReS) proposed a classification system for childhood vasculitis adopting the system devised in the Chapel Hill Consensus Conference in 1993, which categorizes vasculitides according to the predominant size of the involved blood vessels into small, medium and large vessel diseases. Currently, medical imaging has a pivotal role in the diagnosis of vasculitis given recent developments in the imaging of blood vessels. For example, early diagnosis of coronary artery aneurysms, a serious complication of Kawasaki disease, is now possible by magnetic resonance imaging (MRI) of the heart and multidetector computed tomography (MDCT); positron emission tomography/CT (PET/CT) helps to assess active vascular inflammation in Takayasu arteritis. Our review offers a unique approach using the integration of the proposed classification criteria for common systemic childhood vasculitides with their most frequent imaging findings, along with differential diagnoses and an algorithm for diagnosis based on common findings. It should help radiologists and clinicians reach an early diagnosis, therefore facilitating the ultimate goal of proper management of affected children. (orig.)

  18. Imaging of systemic vasculitis in childhood

    International Nuclear Information System (INIS)

    Soliman, Magdy; Laxer, Ronald; Yeung, Rae; Manson, David; Doria, Andrea S.

    2015-01-01

    The term ''systemic vasculitis'' encompasses a diverse set of diseases linked by the presence of blood-vessel inflammation that are often associated with critical complications. These diseases are uncommon in childhood and are frequently subjected to a delayed diagnosis. Although the diagnosis and treatment may be similar for adult and childhood systemic vasculitides, the prevalence and classification vary according to the age group under investigation. For example, Kawasaki disease affects children while it is rarely encountered in adults. In 2006, the European League Against Rheumatism (EULAR) and the Pediatric Rheumatology European Society (PReS) proposed a classification system for childhood vasculitis adopting the system devised in the Chapel Hill Consensus Conference in 1993, which categorizes vasculitides according to the predominant size of the involved blood vessels into small, medium and large vessel diseases. Currently, medical imaging has a pivotal role in the diagnosis of vasculitis given recent developments in the imaging of blood vessels. For example, early diagnosis of coronary artery aneurysms, a serious complication of Kawasaki disease, is now possible by magnetic resonance imaging (MRI) of the heart and multidetector computed tomography (MDCT); positron emission tomography/CT (PET/CT) helps to assess active vascular inflammation in Takayasu arteritis. Our review offers a unique approach using the integration of the proposed classification criteria for common systemic childhood vasculitides with their most frequent imaging findings, along with differential diagnoses and an algorithm for diagnosis based on common findings. It should help radiologists and clinicians reach an early diagnosis, therefore facilitating the ultimate goal of proper management of affected children. (orig.)

  19. Handheld microwave bomb-detecting imaging system

    Science.gov (United States)

    Gorwara, Ashok; Molchanov, Pavlo

    2017-05-01

    Proposed novel imaging technique will provide all weather high-resolution imaging and recognition capability for RF/Microwave signals with good penetration through highly scattered media: fog, snow, dust, smoke, even foliage, camouflage, walls and ground. Image resolution in proposed imaging system is not limited by diffraction and will be determined by processor and sampling frequency. Proposed imaging system can simultaneously cover wide field of view, detect multiple targets and can be multi-frequency, multi-function. Directional antennas in imaging system can be close positioned and installed in cell phone size handheld device, on small aircraft or distributed around protected border or object. Non-scanning monopulse system allows dramatically decrease in transmitting power and at the same time provides increased imaging range by integrating 2-3 orders more signals than regular scanning imaging systems.

  20. Information System Quality Assessment Methods

    OpenAIRE

    Korn, Alexandra

    2014-01-01

    This thesis explores challenging topic of information system quality assessment and mainly process assessment. In this work the term Information System Quality is defined as well as different approaches in a quality definition for different domains of information systems are outlined. Main methods of process assessment are overviewed and their relationships are described. Process assessment methods are divided into two categories: ISO standards and best practices. The main objective of this w...

  1. Digital image display system for emergency room

    International Nuclear Information System (INIS)

    Murry, R.C.; Lane, T.J.; Miax, L.S.

    1989-01-01

    This paper reports on a digital image display system for the emergency room (ER) in a major trauma hospital. Its objective is to reduce radiographic image delivery time to a busy ER while simultaneously providing a multimodality capability. Image storage, retrieval, and display will also be facilitated with this system. The system's backbone is a token-ring network of RISC and personal computers. The display terminals are higher- function RISC computers with 1,024 2 color or gray-scale monitors. The PCs serve as administrative terminals. Nuclear medicine, CT, MR, and digitized film images are transferred to the image display system

  2. A fractal-based image encryption system

    KAUST Repository

    Abd-El-Hafiz, S. K.; Radwan, Ahmed Gomaa; Abdel Haleem, Sherif H.; Barakat, Mohamed L.

    2014-01-01

    single-fractal image and statistical analysis is performed. A general encryption system utilising multiple fractal images is, then, introduced to improve the performance and increase the encryption key up to hundreds of bits. This improvement is achieved

  3. Self-Organizing Maps for Fingerprint Image Quality Assessment

    DEFF Research Database (Denmark)

    Olsen, Martin Aastrup; Tabassi, Elham; Makarov, Anton

    2013-01-01

    Fingerprint quality assessment is a crucial task which needs to be conducted accurately in various phases in the biometric enrolment and recognition processes. Neglecting quality measurement will adversely impact accuracy and efficiency of biometric recognition systems (e.g. verification and iden......Fingerprint quality assessment is a crucial task which needs to be conducted accurately in various phases in the biometric enrolment and recognition processes. Neglecting quality measurement will adversely impact accuracy and efficiency of biometric recognition systems (e.g. verification...... machine learning techniques. We train a self-organizing map (SOM) to cluster blocks of fingerprint images based on their spatial information content. The output of the SOM is a high-level representation of the finger image, which forms the input to a Random Forest trained to learn the relationship between...

  4. Assessment of the systemic distribution of a bioconjugated anti-Her2 magnetic nanoparticle in a breast cancer model by means of magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huerta-Núñez, L. F. E., E-mail: lidi-huerta@hotmail.com [Universidad del Ejercito y FAM/EMGS-Laboratorio Multidisciplinario de Investigación (Mexico); Villanueva-Lopez, G. Cleva, E-mail: villanuevacleva3@gmail.com [Instituto Politécnico Nacional-Escuela Superior de Medicina-Sección Investigación y Posgrado (Mexico); Morales-Guadarrama, A., E-mail: amorales@ci3m.mx [Centro Nacional de Investigacion en Imagenologia e Instrumentacion Medica-Universidad Autónoma (Mexico); Soto, S., E-mail: cuadrosdobles@hotmail.com; López, J., E-mail: jaimelocr@hotmail.com; Silva, J. G., E-mail: gabrielsilva173@gmail.com [Universidad del Ejercito y FAM/EMGS-Laboratorio Multidisciplinario de Investigación (Mexico); Perez-Vielma, N., E-mail: nadiampv@gmail.com [Instituto Politécnico Nacional - Centro Interdisciplinario de Ciencias de la Salud Unidad Santo Tomás (CICS-UST) (Mexico); Sacristán, E., E-mail: esacristan@ci3m.mx [Centro Nacional de Investigacion en Imagenologia e Instrumentacion Medica-Universidad Autónoma (Mexico); Gudiño-Zayas, Marco E., E-mail: gudino@unam.mx [UNAM, Departamento de Medicina Experimental, Facultad de Medicina (Mexico); González, C. A., E-mail: cgonzalezd@ipn.mx [Universidad del Ejercito y FAM/EMGS-Laboratorio Multidisciplinario de Investigación (Mexico)

    2016-09-15

    The aim of this study was to determine the systemic distribution of magnetic nanoparticles of 100 nm diameter (MNPs) coupled to a specific monoclonal antibody anti-Her2 in an experimental breast cancer (BC) model. The study was performed in two groups of Sprague–Dawley rats: control (n = 6) and BC chemically induced (n = 3). Bioconjugated “anti-Her2-MNPs” were intravenously administered, and magnetic resonance imaging (MRI) monitored its systemic distribution at seven times after administration. Non-heme iron presence associated with the location of the bioconjugated anti-Her2-MNPs in splenic, hepatic, cardiac and tumor tissues was detected by Perl’s Prussian blue (PPB) stain. Optical density measurements were used to semiquantitatively determine the iron presence in tissues on the basis of a grayscale values integration of T1 and T2 MRI sequence images. The results indicated a delayed systemic distribution of MNPs in cancer compared to healthy conditions with a maximum concentration of MNPs in cancer tissue at 24 h post-infusion.

  5. An integrated system for dissolution studies and magnetic resonance imaging of controlled release, polymer-based dosage forms-a tool for quantitative assessment of hydrogel formation processes.

    Science.gov (United States)

    Kulinowski, Piotr; Dorozyński, Przemysław; Jachowicz, Renata; Weglarz, Władysław P

    2008-11-04

    Controlled release (CR) dosage forms are often based on polymeric matrices, e.g., sustained-release tablets and capsules. It is crucial to visualise and quantify processes of the hydrogel formation during the standard dissolution study. A method for imaging of CR, polymer-based dosage forms during dissolution study in vitro is presented. Imaging was performed in a non-invasive way by means of the magnetic resonance imaging (MRI). This study was designed to simulate in vivo conditions regarding temperature, volume, state and composition of dissolution media. Two formulations of hydrodynamically balanced systems (HBS) were chosen as model CR dosage forms. HBS release active substance in stomach while floating on the surface of the gastric content. Time evolutions of the diffusion region, hydrogel formation region and "dry core" region were obtained during a dissolution study of L-dopa as a model drug in two simulated gastric fluids (i.e. in fed and fasted state). This method seems to be a very promising tool for examining properties of new formulations of CR, polymer-based dosage forms or for comparison of generic and originator dosage forms before carrying out bioequivalence studies.

  6. Objective analysis of image quality of video image capture systems

    Science.gov (United States)

    Rowberg, Alan H.

    1990-07-01

    As Picture Archiving and Communication System (PACS) technology has matured, video image capture has become a common way of capturing digital images from many modalities. While digital interfaces, such as those which use the ACR/NEMA standard, will become more common in the future, and are preferred because of the accuracy of image transfer, video image capture will be the dominant method in the short term, and may continue to be used for some time because of the low cost and high speed often associated with such devices. Currently, virtually all installed systems use methods of digitizing the video signal that is produced for display on the scanner viewing console itself. A series of digital test images have been developed for display on either a GE CT9800 or a GE Signa MRI scanner. These images have been captured with each of five commercially available image capture systems, and the resultant images digitally transferred on floppy disk to a PC1286 computer containing Optimast' image analysis software. Here the images can be displayed in a comparative manner for visual evaluation, in addition to being analyzed statistically. Each of the images have been designed to support certain tests, including noise, accuracy, linearity, gray scale range, stability, slew rate, and pixel alignment. These image capture systems vary widely in these characteristics, in addition to the presence or absence of other artifacts, such as shading and moire pattern. Other accessories such as video distribution amplifiers and noise filters can also add or modify artifacts seen in the captured images, often giving unusual results. Each image is described, together with the tests which were performed using them. One image contains alternating black and white lines, each one pixel wide, after equilibration strips ten pixels wide. While some systems have a slew rate fast enough to track this correctly, others blur it to an average shade of gray, and do not resolve the lines, or give

  7. Characterization of lens based photoacoustic imaging system

    Directory of Open Access Journals (Sweden)

    Kalloor Joseph Francis

    2017-12-01

    Full Text Available Some of the challenges in translating photoacoustic (PA imaging to clinical applications includes limited view of the target tissue, low signal to noise ratio and the high cost of developing real-time systems. Acoustic lens based PA imaging systems, also known as PA cameras are a potential alternative to conventional imaging systems in these scenarios. The 3D focusing action of lens enables real-time C-scan imaging with a 2D transducer array. In this paper, we model the underlying physics in a PA camera in the mathematical framework of an imaging system and derive a closed form expression for the point spread function (PSF. Experimental verification follows including the details on how to design and fabricate the lens inexpensively. The system PSF is evaluated over a 3D volume that can be imaged by this PA camera. Its utility is demonstrated by imaging phantom and an ex vivo human prostate tissue sample.

  8. Characterization of lens based photoacoustic imaging system.

    Science.gov (United States)

    Francis, Kalloor Joseph; Chinni, Bhargava; Channappayya, Sumohana S; Pachamuthu, Rajalakshmi; Dogra, Vikram S; Rao, Navalgund

    2017-12-01

    Some of the challenges in translating photoacoustic (PA) imaging to clinical applications includes limited view of the target tissue, low signal to noise ratio and the high cost of developing real-time systems. Acoustic lens based PA imaging systems, also known as PA cameras are a potential alternative to conventional imaging systems in these scenarios. The 3D focusing action of lens enables real-time C-scan imaging with a 2D transducer array. In this paper, we model the underlying physics in a PA camera in the mathematical framework of an imaging system and derive a closed form expression for the point spread function (PSF). Experimental verification follows including the details on how to design and fabricate the lens inexpensively. The system PSF is evaluated over a 3D volume that can be imaged by this PA camera. Its utility is demonstrated by imaging phantom and an ex vivo human prostate tissue sample.

  9. Analysis of image plane's Illumination in Image-forming System

    International Nuclear Information System (INIS)

    Duan Lihua; Zeng Yan'an; Zhang Nanyangsheng; Wang Zhiguo; Yin Shiliang

    2011-01-01

    In the detection of optical radiation, the detecting accuracy is affected by optic power distribution of the detector's surface to a large extent. In addition, in the image-forming system, the quality of the image is greatly determined by the uniformity of the image's illumination distribution. However, in the practical optical system, affected by the factors such as field of view, false light and off axis and so on, the distribution of the image's illumination tends to be non uniform, so it is necessary to discuss the image plane's illumination in image-forming systems. In order to analyze the characteristics of the image-forming system at a full range, on the basis of photometry, the formulas to calculate the illumination of the imaging plane have been summarized by the numbers. Moreover, the relationship between the horizontal offset of the light source and the illumination of the image has been discussed in detail. After that, the influence of some key factors such as aperture angle, off-axis distance and horizontal offset on illumination of the image has been brought forward. Through numerical simulation, various theoretical curves of those key factors have been given. The results of the numerical simulation show that it is recommended to aggrandize the diameter of the exit pupil to increase the illumination of the image. The angle of view plays a negative role in the illumination distribution of the image, that is, the uniformity of the illumination distribution can be enhanced by compressing the angle of view. Lastly, it is proved that telecentric optical design is an effective way to advance the uniformity of the illumination distribution.

  10. Fluoroscopic Imaging Systems. Chapter 8

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A. K. [University of Texas MD Anderson Cancer Center, Houston (United States)

    2014-09-15

    Fluoroscopy refers to the use of an X ray beam and a suitable image receptor for viewing images of processes or instruments in the body in real time. Fluoroscopic imaging trades the high signal to noise ratio (SNR) of radiography for high temporal resolution, as factors that maintain patient dose at an acceptable level must be used.

  11. Developing stereo image based robot control system

    Energy Technology Data Exchange (ETDEWEB)

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W. [Department of Physics, FMIPA, InstitutTeknologi Bandung Jl. Ganesha No. 10. Bandung 40132, Indonesia supri@fi.itb.ac.id (Indonesia)

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  12. Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture

    Science.gov (United States)

    Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

    2013-01-08

    Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

  13. Automatic cloud coverage assessment of Formosat-2 image

    Science.gov (United States)

    Hsu, Kuo-Hsien

    2011-11-01

    Formosat-2 satellite equips with the high-spatial-resolution (2m ground sampling distance) remote sensing instrument. It has been being operated on the daily-revisiting mission orbit by National Space organization (NSPO) of Taiwan since May 21 2004. NSPO has also serving as one of the ground receiving stations for daily processing the received Formosat- 2 images. The current cloud coverage assessment of Formosat-2 image for NSPO Image Processing System generally consists of two major steps. Firstly, an un-supervised K-means method is used for automatically estimating the cloud statistic of Formosat-2 image. Secondly, manual estimation of cloud coverage from Formosat-2 image is processed by manual examination. Apparently, a more accurate Automatic Cloud Coverage Assessment (ACCA) method certainly increases the efficiency of processing step 2 with a good prediction of cloud statistic. In this paper, mainly based on the research results from Chang et al, Irish, and Gotoh, we propose a modified Formosat-2 ACCA method which considered pre-processing and post-processing analysis. For pre-processing analysis, cloud statistic is determined by using un-supervised K-means classification, Sobel's method, Otsu's method, non-cloudy pixels reexamination, and cross-band filter method. Box-Counting fractal method is considered as a post-processing tool to double check the results of pre-processing analysis for increasing the efficiency of manual examination.

  14. Transfer function analysis of radiographic imaging systems

    International Nuclear Information System (INIS)

    Metz, C.E.; Doi, K.

    1979-01-01

    The theoretical and experimental aspects of the techniques of transfer function analysis used in radiographic imaging systems are reviewed. The mathematical principles of transfer function analysis are developed for linear, shift-invariant imaging systems, for the relation between object and image and for the image due to a sinusoidal plane wave object. The other basic mathematical principle discussed is 'Fourier analysis' and its application to an input function. Other aspects of transfer function analysis included are alternative expressions for the 'optical transfer function' of imaging systems and expressions are derived for both serial and parallel transfer image sub-systems. The applications of transfer function analysis to radiographic imaging systems are discussed in relation to the linearisation of the radiographic imaging system, the object, the geometrical unsharpness, the screen-film system unsharpness, other unsharpness effects and finally noise analysis. It is concluded that extensive theoretical, computer simulation and experimental studies have demonstrated that the techniques of transfer function analysis provide an accurate and reliable means for predicting and understanding the effects of various radiographic imaging system components in most practical diagnostic medical imaging situations. (U.K.)

  15. Multispectral system for medical fluorescence imaging

    International Nuclear Information System (INIS)

    Andersson, P.S.; Montan, S.; Svanberg, S.

    1987-01-01

    The principles of a powerful multicolor imaging system for tissue fluorescence diagnostics are discussed. Four individually spectrally filtered images are formed on a matrix detector by means of a split-mirror arrangement. The four images are processed in a computer, pixel by pixel, by means of mathematical operations, leading to an optimized contrast image, which enhances a selected feature. The system is being developed primarily for medical fluorescence imaging, but has wide applications in fluorescence, reflectance, and transmission monitoring related to a wide range of industrial and environmental problems. The system operation is described for the case of linear imaging on a diode array detector. Laser-induced fluorescence is used for cancer tumor and arteriosclerotic plaque demarcation using the contrast enhancement capabilities of this imaging system. Further examples of applications include fluorescing minerals and flames

  16. Advanced imaging of skeletal manifestations of systemic mastocytosis

    International Nuclear Information System (INIS)

    Fritz, J.; Fishman, E.K.; Carrino, J.A.; Horger, M.S.

    2012-01-01

    Systemic mastocytosis comprises a group of clonal disorders of the mast cell that most commonly involves the skeletal system. Imaging can be helpful in the detection and characterization of the osseous manifestations of this disease. While radiography and bone scans are frequently used for this assessment, low-dose multidetector computed tomography and magnetic resonance imaging can be more sensitive for the detection of marrow involvement and for the demonstration of the various disease patterns. In this article, we review the pathophysiological and clinical features of systemic mastocytosis, discuss the role of imaging for staging and management, and illustrate the various cross-sectional imaging appearances. Awareness and knowledge of the imaging features of this disorder will increase the accuracy of image interpretation and can contribute important information for management decisions. (orig.)

  17. Advanced imaging of skeletal manifestations of systemic mastocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, J. [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Fishman, E.K.; Carrino, J.A. [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Horger, M.S. [Eberhard-Karls-University, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2012-08-15

    Systemic mastocytosis comprises a group of clonal disorders of the mast cell that most commonly involves the skeletal system. Imaging can be helpful in the detection and characterization of the osseous manifestations of this disease. While radiography and bone scans are frequently used for this assessment, low-dose multidetector computed tomography and magnetic resonance imaging can be more sensitive for the detection of marrow involvement and for the demonstration of the various disease patterns. In this article, we review the pathophysiological and clinical features of systemic mastocytosis, discuss the role of imaging for staging and management, and illustrate the various cross-sectional imaging appearances. Awareness and knowledge of the imaging features of this disorder will increase the accuracy of image interpretation and can contribute important information for management decisions. (orig.)

  18. 3D images and expert system

    International Nuclear Information System (INIS)

    Hasegawa, Jun-ichi

    1998-01-01

    This paper presents an expert system called 3D-IMPRESS for supporting applications of three dimensional (3D) image processing. This system can automatically construct a 3D image processing procedure based on a pictorial example of the goal given by a user. In the paper, to evaluate the performance of the system, it was applied to construction of procedures for extracting specific component figures from practical chest X-ray CT images. (author)

  19. Quantitative assessment of dynamic PET imaging data in cancer imaging.

    Science.gov (United States)

    Muzi, Mark; O'Sullivan, Finbarr; Mankoff, David A; Doot, Robert K; Pierce, Larry A; Kurland, Brenda F; Linden, Hannah M; Kinahan, Paul E

    2012-11-01

    Clinical imaging in positron emission tomography (PET) is often performed using single-time-point estimates of tracer uptake or static imaging that provides a spatial map of regional tracer concentration. However, dynamic tracer imaging can provide considerably more information about in vivo biology by delineating both the temporal and spatial pattern of tracer uptake. In addition, several potential sources of error that occur in static imaging can be mitigated. This review focuses on the application of dynamic PET imaging to measuring regional cancer biologic features and especially in using dynamic PET imaging for quantitative therapeutic response monitoring for cancer clinical trials. Dynamic PET imaging output parameters, particularly transport (flow) and overall metabolic rate, have provided imaging end points for clinical trials at single-center institutions for years. However, dynamic imaging poses many challenges for multicenter clinical trial implementations from cross-center calibration to the inadequacy of a common informatics infrastructure. Underlying principles and methodology of PET dynamic imaging are first reviewed, followed by an examination of current approaches to dynamic PET image analysis with a specific case example of dynamic fluorothymidine imaging to illustrate the approach. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Temporomandibular Joint Anatomy Assessed by CBCT Images

    Directory of Open Access Journals (Sweden)

    Silvia Caruso

    2017-01-01

    Full Text Available Aim. Since cone beam computed tomography (CBCT has been used for the study of craniofacial morphology, the attention of orthodontists has also focused on the mandibular condyle. The purpose of this brief review is to summarize the recent 3D CBCT images of mandibular condyle. Material and Methods. The eligibility criteria for the studies are (a studies aimed at evaluating the anatomy of the temporomandibular joint; (b studies performed with CBCT images; (c studies on human subjects; (d studies that were not clinical case-reports and clinical series; (e studies reporting data on children, adolescents, or young adults (data from individuals with age ≤ 30 years. Sources included PubMed from June 2008 to June 2016. Results. 43 full-text articles were initially screened for eligibility. 13 full-text articles were assessed for eligibility. 11 articles were finally included in qualitative synthesis. The main topics treated in the studies are the volume and surface of the mandibular condyle, the bone changes on cortical surface, the facial asymmetry, and the optimum position of the condyle in the glenoid fossa. Conclusion. Additional studies will be necessary in the future, constructed with longitudinal methodology, especially in growing subjects. The limits of CBCT acquisitions are also highlighted.

  1. Flow imaging of the cardiovascular system using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Imai, Hitoshi; Sakakibara, Makoto; Sunami, Yuko

    1988-01-01

    Blood flow images by magnetic resonance imaging (MRI) using a 0.25 T unit were evaluated for nine normal volunteers and 108 subjects with a variety of cardiovascular abnormalities. Using the non-gated short-spin echo (SE) technique, blood flow in the cardiovascular systems was not imaged in the normal volunteers. Using end-systolic and end-diastolic SE techniques for the normal subjects, blood flow in the cardiac chambers was not clearly imaged. Blood flow in the ascending aorta and aortic arch often did not appear in the gated SE images of the normal subjects. However, blood flow in the descending aorta was often observed in the gated SE images. Blood flow imaging was demonstrated by both non-gated and gated SE techniques in regions where blood flow was relatively slow; for example, in the left atrium of mitral stenosis, in an aortic aneurysm, in a false lumen of an aortic dissection, and in the left ventricle having old myocardial infarction. Using the non-gated inversion recovery (IR) technique, no blood flow was imaged in the cardiovascular system except in the left atrium of one case with mitral stenosis. Using the non-gated short SE technique, there was good correlation between the thrombus formation and the presence of blood flow images in the left atria of 17 patients with mitral stenosis, and in the aneurysmal portions of the aorta or in the false lumens of aortic dissection of 18 patients. It was suggested that mural thrombi in such diseases were related to the relatively slow blood flow. Blood flow imaging easily distinguished stagnant blood flow from mural thrombi using non-gated short SE, end-systolic SE, and IR techniques. Thus, blood flow imaging using MRI should become an important means of evaluating the cardiovascular system. (author)

  2. Dynamic MR imaging of the musculoskeletal system

    International Nuclear Information System (INIS)

    Shah, A.S.; Hylton, H.; Hentz, V.R.; Schattner, P.

    1991-01-01

    This paper reports on dynamic MR imaging which is an MR technique that allows imaging of the musculoskeletal system in motion. Current methods for observing the articulation of muscles and joints are limited to acquisition of stationary images at different spatial orientations. These images are then replayed from computer memory to simulate motion. Unlike stationary acquisition, dynamic MR imaging allows the volume of interest to be subjected to motion and dynamic stress, which is important for detecting stress-induced pathology. To demonstrate the utility of dynamic MR imaging, a system for imaging a moving wrist has been developed. The system consists of apparatus capable of providing simultaneous radialulnar deviation and flexion-extension, and hardware for system control and acquisition gating. The apparatus is mounted on the patient bed and is transferable to a variety of standard clinical MR imaging systems. Images were obtained during motion, and the ability of dynamic MR imaging to accurately image the moving wrist with very little motion artifact was demonstrated

  3. Image processing of integrated video image obtained with a charged-particle imaging video monitor system

    International Nuclear Information System (INIS)

    Iida, Takao; Nakajima, Takehiro

    1988-01-01

    A new type of charged-particle imaging video monitor system was constructed for video imaging of the distributions of alpha-emitting and low-energy beta-emitting nuclides. The system can display not only the scintillation image due to radiation on the video monitor but also the integrated video image becoming gradually clearer on another video monitor. The distortion of the image is about 5% and the spatial resolution is about 2 line pairs (lp)mm -1 . The integrated image is transferred to a personal computer and image processing is performed qualitatively and quantitatively. (author)

  4. Image quality assessment based on multiscale geometric analysis.

    Science.gov (United States)

    Gao, Xinbo; Lu, Wen; Tao, Dacheng; Li, Xuelong

    2009-07-01

    Reduced-reference (RR) image quality assessment (IQA) has been recognized as an effective and efficient way to predict the visual quality of distorted images. The current standard is the wavelet-domain natural image statistics model (WNISM), which applies the Kullback-Leibler divergence between the marginal distributions of wavelet coefficients of the reference and distorted images to measure the image distortion. However, WNISM fails to consider the statistical correlations of wavelet coefficients in different subbands and the visual response characteristics of the mammalian cortical simple cells. In addition, wavelet transforms are optimal greedy approximations to extract singularity structures, so they fail to explicitly extract the image geometric information, e.g., lines and curves. Finally, wavelet coefficients are dense for smooth image edge contours. In this paper, to target the aforementioned problems in IQA, we develop a novel framework for IQA to mimic the human visual system (HVS) by incorporating the merits from multiscale geometric analysis (MGA), contrast sensitivity function (CSF), and the Weber's law of just noticeable difference (JND). In the proposed framework, MGA is utilized to decompose images and then extract features to mimic the multichannel structure of HVS. Additionally, MGA offers a series of transforms including wavelet, curvelet, bandelet, contourlet, wavelet-based contourlet transform (WBCT), and hybrid wavelets and directional filter banks (HWD), and different transforms capture different types of image geometric information. CSF is applied to weight coefficients obtained by MGA to simulate the appearance of images to observers by taking into account many of the nonlinearities inherent in HVS. JND is finally introduced to produce a noticeable variation in sensory experience. Thorough empirical studies are carried out upon the LIVE database against subjective mean opinion score (MOS) and demonstrate that 1) the proposed framework has

  5. SU-G-JeP4-14: Assessment of Inter- and Intra-Fractional Motion for Extremity Soft Tissue Sarcoma Patients by Using In-House Real-Time Optical Image-Based Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H [Interdisciplinary Program in Radiation Applied Life Science, College of Medicine, Seoul National University, Seoul (Korea, Republic of); Kim, I [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Ye, S [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: This study aimed to assess inter- and intra-fractional motion for extremity Soft Tissue Sarcoma (STS) patients, by using in-house real-time optical image-based monitoring system (ROIMS) with infra-red (IR) external markers. Methods: Inter- and intra-fractional motions for five extremity (1 upper, 4 lower) STS patients received postoperative 3D conformal radiotherapy (3D-CRT) were measured by registering the image acquired by ROIMS with the planning CT image (REG-ROIMS). To compare with the X-ray image-based monitoring, pre- and post-treatment cone beam computed tomography (CBCT) scans were performed once per week and registered with planning CT image as well (REG-CBCT). If the CBCT scan is not feasible due to the large couch shift, AP and LR on-board imager (OBI) images were acquired. The comparison was done by calculating mutual information (MI) of those registered images. Results: The standard deviation (SD) of the inter-fractional motion was 2.6 mm LR, 2.8 mm SI, and 2.0 mm AP, and the SD of the intra-fractional motion was 1.4 mm, 2.1 mm, and 1.3 mm in each axis, respectively. The SD of rotational inter-fractional motion was 0.6° pitch, 0.9° yaw, and 0.8° roll and the SD of rotational intra-fractional motion was 0.4° pitch, 0.9° yaw, and 0.7° roll. The derived averaged MI values were 0.83, 0.92 for REG-CBCT without rotation and REG-ROIMS with rotation, respectively. Conclusion: The in-house real-time optical image-based monitoring system was implemented clinically and confirmed the feasibility to assess inter- and intra-fractional motion for extremity STS patients while the daily basis and real-time CBCT scan is not feasible in clinic.

  6. SU-G-JeP4-14: Assessment of Inter- and Intra-Fractional Motion for Extremity Soft Tissue Sarcoma Patients by Using In-House Real-Time Optical Image-Based Monitoring System

    International Nuclear Information System (INIS)

    Kim, H; Kim, I; Ye, S

    2016-01-01

    Purpose: This study aimed to assess inter- and intra-fractional motion for extremity Soft Tissue Sarcoma (STS) patients, by using in-house real-time optical image-based monitoring system (ROIMS) with infra-red (IR) external markers. Methods: Inter- and intra-fractional motions for five extremity (1 upper, 4 lower) STS patients received postoperative 3D conformal radiotherapy (3D-CRT) were measured by registering the image acquired by ROIMS with the planning CT image (REG-ROIMS). To compare with the X-ray image-based monitoring, pre- and post-treatment cone beam computed tomography (CBCT) scans were performed once per week and registered with planning CT image as well (REG-CBCT). If the CBCT scan is not feasible due to the large couch shift, AP and LR on-board imager (OBI) images were acquired. The comparison was done by calculating mutual information (MI) of those registered images. Results: The standard deviation (SD) of the inter-fractional motion was 2.6 mm LR, 2.8 mm SI, and 2.0 mm AP, and the SD of the intra-fractional motion was 1.4 mm, 2.1 mm, and 1.3 mm in each axis, respectively. The SD of rotational inter-fractional motion was 0.6° pitch, 0.9° yaw, and 0.8° roll and the SD of rotational intra-fractional motion was 0.4° pitch, 0.9° yaw, and 0.7° roll. The derived averaged MI values were 0.83, 0.92 for REG-CBCT without rotation and REG-ROIMS with rotation, respectively. Conclusion: The in-house real-time optical image-based monitoring system was implemented clinically and confirmed the feasibility to assess inter- and intra-fractional motion for extremity STS patients while the daily basis and real-time CBCT scan is not feasible in clinic.

  7. Effects of scanning resolution and digital image magnification on photostimulable phosphor imaging system

    International Nuclear Information System (INIS)

    Sakurai, Takashi; Inagaki, Masafumi; Asai, Hideomi; Koyama, Atsushi; Kashima, Isamu

    2000-01-01

    The purpose of this study is to examine the effects of changes in scanning resolution and digital magnification on the image quality and diagnostic ability of the photostimulable phosphor imaging system. Using a photostimulable phosphor imaging system, images of a human adult dried mandible phantom embedded in a 25 mm-thick epoxy resin block were made. The latent images on the photostimulable phosphor imaging plate were scanned using four different pixel sizes as follows: 25 μm x 25 μm, 50 μm x 50 μm, 100 μm x 100 μm and 200 μm x 200 μm. A primary image was produced for each pixel size. These images were also digitally magnified at powers of 2, 4 and 8 times. The gradient range, brightness and contrast of each image were adjusted to optimum levels on a cathode ray tube display, and hard copies were produced with a writing pixel size of 60 μm x 60 μm. The granularity, sharpness and anatomical diagnostic ability of the images were assessed subjectively by eight dentists. Increasing the scanning resolution tended to generally improve image quality and diagnostic ability. Visual image quality was maintained up to a pixel size of 50 μm, and diagnostic ability was maintained up to a pixel size of 100 μm. Digital image magnification degraded image quality, and more than 2-times magnification degraded diagnostic ability. Under the present experimental conditions, increasing the scanning resolution did not always lead to an improvement in image quality or diagnostic ability, and digital image magnification degraded image quality and diagnostic ability. (author)

  8. Digital image information systems in radiology

    International Nuclear Information System (INIS)

    Greinacher, C.F.C.; Luetke, B.; Seufert, G.

    1987-01-01

    About 25% of all patient examinations are performed digitally in a today's radiological department. A computerized system is described that supports generation, transport, interpretation and archiving of digital radiological images (Picture Archiving and Communication System PACS). The technical features concerning image communication via local area networks, image storage on magnetic and optical media and digital workstations for image display and manipulation are described. A structured system architecture is introduced. It allows flexible adaption to individual organizations and minimizes the requirements of the communication network. (orig.) [de

  9. Dried fruits quality assessment by hyperspectral imaging

    Science.gov (United States)

    Serranti, Silvia; Gargiulo, Aldo; Bonifazi, Giuseppe

    2012-05-01

    Dried fruits products present different market values according to their quality. Such a quality is usually quantified in terms of freshness of the products, as well as presence of contaminants (pieces of shell, husk, and small stones), defects, mould and decays. The combination of these parameters, in terms of relative presence, represent a fundamental set of attributes conditioning dried fruits humans-senses-detectable-attributes (visual appearance, organolectic properties, etc.) and their overall quality in terms of marketable products. Sorting-selection strategies exist but sometimes they fail when a higher degree of detection is required especially if addressed to discriminate between dried fruits of relatively small dimensions and when aiming to perform an "early detection" of pathogen agents responsible of future moulds and decays development. Surface characteristics of dried fruits can be investigated by hyperspectral imaging (HSI). In this paper, specific and "ad hoc" applications addressed to propose quality detection logics, adopting a hyperspectral imaging (HSI) based approach, are described, compared and critically evaluated. Reflectance spectra of selected dried fruits (hazelnuts) of different quality and characterized by the presence of different contaminants and defects have been acquired by a laboratory device equipped with two HSI systems working in two different spectral ranges: visible-near infrared field (400-1000 nm) and near infrared field (1000-1700 nm). The spectra have been processed and results evaluated adopting both a simple and fast wavelength band ratio approach and a more sophisticated classification logic based on principal component (PCA) analysis.

  10. Systemic Assessment as a New Tool for Assessing Students ...

    African Journals Online (AJOL)

    Systemic Assessment as a New Tool for Assessing Students Learning in Chemistry using SATL Methods: Systemic Matching, Systemic Synthesis, Systemic Analysis, Systemic Synthetic – Analytic, as Systemic Question Types.

  11. Imaging system for creating 3D block-face cryo-images of whole mice

    Science.gov (United States)

    Roy, Debashish; Breen, Michael; Salvado, Olivier; Heinzel, Meredith; McKinley, Eliot; Wilson, David

    2006-03-01

    We developed a cryomicrotome/imaging system that provides high resolution, high sensitivity block-face images of whole mice or excised organs, and applied it to a variety of biological applications. With this cryo-imaging system, we sectioned cryo-preserved tissues at 2-40 μm thickness and acquired high resolution brightfield and fluorescence images with microscopic in-plane resolution (as good as 1.2 μm). Brightfield images of normal and pathological anatomy show exquisite detail, especially in the abdominal cavity. Multi-planar reformatting and 3D renderings allow one to interrogate 3D structures. In this report, we present brightfield images of mouse anatomy, as well as 3D renderings of organs. For BPK mice model of polycystic kidney disease, we compared brightfield cryo-images and kidney volumes to MRI. The color images provided greater contrast and resolution of cysts as compared to in vivo MRI. We note that color cryo-images are closer to what a researcher sees in dissection, making it easier for them to interpret image data. The combination of field of view, depth of field, ultra high resolution and color/fluorescence contrast enables cryo-image volumes to provide details that cannot be found through in vivo imaging or other ex vivo optical imaging approaches. We believe that this novel imaging system will have applications that include identification of mouse phenotypes, characterization of diseases like blood vessel disease, kidney disease, and cancer, assessment of drug and gene therapy delivery and efficacy and validation of other imaging modalities.

  12. Imaging of the peripheral vascular system

    International Nuclear Information System (INIS)

    Gould, S.A.; Pond, G.D.; Pinsky, S.; Moss, G.S.; Srikantaswamy, S.; Ryo, U.Y.

    1984-01-01

    This book is limited neither to the peripheral vascular system nor to diagnostic imaging techniques. Its 18 chapters cover nonimaging blood-flow techniques (Doppler ultrasound, plethysmography) as well as noninvasive and invasive imaging techniques (ultrasound, computed tomography, radionuclide digital-subtraction angiography, and contrast angiography). These are applied not only to the peripheral vascular system but also to the aorta and vena cava

  13. Image digitizer system for bubble chamber laser

    International Nuclear Information System (INIS)

    Haggerty, H.

    1986-01-01

    An IBM PC-based image digitizer system has been assembled to monitor the laser flash used for holography at the 15 foot bubble chamber. The hardware and the operating software are outlined. For an operational test of the system, an array of LEDs was flashed with a 10 microsecond pulse and the image was grabbed by one of the operating programs and processed

  14. IDAPS (Image Data Automated Processing System) System Description

    Science.gov (United States)

    1988-06-24

    This document describes the physical configuration and components used in the image processing system referred to as IDAPS (Image Data Automated ... Processing System). This system was developed by the Environmental Research Institute of Michigan (ERIM) for Eglin Air Force Base. The system is designed

  15. Brain imaging with synthetic MR in children: clinical quality assessment

    Energy Technology Data Exchange (ETDEWEB)

    Betts, Aaron M.; Serai, Suraj [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Leach, James L.; Jones, Blaise V. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); University of Cincinnati College of Medicine, Cincinnati, OH (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Biostatistics and Epidemiology, Cincinnati, OH (United States)

    2016-10-15

    Synthetic magnetic resonance imaging is a quantitative imaging technique that measures inherent T1-relaxation, T2-relaxation, and proton density. These inherent tissue properties allow synthesis of various imaging sequences from a single acquisition. Clinical use of synthetic MR imaging has been described in adult populations. However, use of synthetic MR imaging has not been previously reported in children. The purpose of this study is to report our assessment of diagnostic image quality using synthetic MR imaging in children. Synthetic MR acquisition was obtained in a sample of children undergoing brain MR imaging. Image quality assessments were performed on conventional and synthetic T1-weighted, T2-weighted, and FLAIR images. Standardized linear measurements were performed on conventional and synthetic T2 images. Estimates of patient age based upon myelination patterns were also performed. Conventional and synthetic MR images were evaluated on 30 children. Using a 4-point assessment scale, conventional imaging performed better than synthetic imaging for T1-weighted, T2-weighted, and FLAIR images. When the assessment was simplified to a dichotomized scale, the conventional and synthetic T1-weighted and T2-weighted images performed similarly. However, the superiority of conventional FLAIR images persisted in the dichotomized assessment. There were no statistically significant differences between linear measurements made on T2-weighted images. Estimates of patient age based upon pattern of myelination were also similar between conventional and synthetic techniques. Synthetic MR imaging may be acceptable for clinical use in children. However, users should be aware of current limitations that could impact clinical utility in the software version used in this study. (orig.)

  16. Advanced millimeter wave imaging systems

    Science.gov (United States)

    Schuchardt, J. M.; Gagliano, J. A.; Stratigos, J. A.; Webb, L. L.; Newton, J. M.

    1980-01-01

    Unique techniques are being utilized to develop self-contained imaging radiometers operating at single and multiple frequencies near 35, 95 and 183 GHz. These techniques include medium to large antennas for high spatial resolution, lowloss open structures for RF confinemnt and calibration, wide bandwidths for good sensitivity plus total automation of the unit operation and data collection. Applications include: detection of severe storms, imaging of motor vehicles, and the remote sensing of changes in material properties.

  17. Exploratory survey of image quality on CR digital mammography imaging systems in Mexico

    International Nuclear Information System (INIS)

    Gaona, E.; Rivera, T.; Arreola, M.; Franco, J.; Molina, N.; Alvarez, B.; Azorín, C.G.; Casian, G.

    2014-01-01

    The purpose of this study was to assess the current status of image quality and dose in computed radiographic digital mammography (CRDM) systems. Studies included CRDM systems of various models and manufacturers which dose and image quality comparisons were performed. Due to the recent rise in the use of digital radiographic systems in Mexico, CRDM systems are rapidly replacing conventional film-screen systems without any regard to quality control or image quality standards. Study was conducted in 65 mammography facilities which use CRDM systems in the Mexico City and surrounding States. The systems were tested as used clinically. This means that the dose and beam qualities were selected using the automatic beam selection and photo-timed features. All systems surveyed generate laser film hardcopies for the radiologist to read on a scope or mammographic high luminance light box. It was found that 51 of CRDM systems presented a variety of image artefacts and non-uniformities arising from inadequate acquisition and processing, as well as from the laser printer itself. Undisciplined alteration of image processing settings by the technologist was found to be a serious prevalent problem in 42 facilities. Only four of them showed an image QC program which is periodically monitored by a medical physicist. The Average Glandular Dose (AGD) in the surveyed systems was estimated to have a mean value of 2.4 mGy. To improve image quality in mammography and make more efficient screening mammographic in early detection of breast cancer is required new legislation. - Highlights: • Radiation dose in CR digital mammography (CRDM) systems was determined. • Image quality related with dose in CR digital mammography (CRDM) systems was analysed. • Image processing artefacts were observed and correlated with dose. • Measured entrance dose by TL phosphors could be good parameter for radiation protection optimization in patient

  18. Automated imaging system for single molecules

    Science.gov (United States)

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  19. Video systems for alarm assessment

    International Nuclear Information System (INIS)

    Greenwoll, D.A.; Matter, J.C.; Ebel, P.E.

    1991-09-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing closed-circuit television systems for video alarm assessment. There is a section on each of the major components in a video system: camera, lens, lighting, transmission, synchronization, switcher, monitor, and recorder. Each section includes information on component selection, procurement, installation, test, and maintenance. Considerations for system integration of the components are contained in each section. System emphasis is focused on perimeter intrusion detection and assessment systems. A glossary of video terms is included. 13 figs., 9 tabs

  20. Video systems for alarm assessment

    Energy Technology Data Exchange (ETDEWEB)

    Greenwoll, D.A.; Matter, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Ebel, P.E. (BE, Inc., Barnwell, SC (United States))

    1991-09-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing closed-circuit television systems for video alarm assessment. There is a section on each of the major components in a video system: camera, lens, lighting, transmission, synchronization, switcher, monitor, and recorder. Each section includes information on component selection, procurement, installation, test, and maintenance. Considerations for system integration of the components are contained in each section. System emphasis is focused on perimeter intrusion detection and assessment systems. A glossary of video terms is included. 13 figs., 9 tabs.

  1. Development of a THz spectroscopic imaging system

    International Nuclear Information System (INIS)

    Usami, M; Iwamoto, T; Fukasawa, R; Tani, M; Watanabe, M; Sakai, K

    2002-01-01

    We have developed a real-time THz imaging system based on the two-dimensional (2D) electro-optic (EO) sampling technique. Employing the 2D EO-sampling technique, we can obtain THz images using a CCD camera at a video rate of up to 30 frames per second. A spatial resolution of 1.4 mm was achieved. This resolution was reasonably close to the theoretical limit determined by diffraction. We observed not only static objects but also moving ones. To acquire spectroscopic information, time-domain images were collected. By processing these images on a computer, we can obtain spectroscopic images. Spectroscopy for silicon wafers was demonstrated

  2. Clinical software for MR imaging system, 4

    International Nuclear Information System (INIS)

    Shimizu, Koji; Kasai, Akira; Okamura, Shoichi

    1992-01-01

    Magnetic resonance imaging continues to elicit new application software through the recent technological advances of MR equipment. This paper describes several applications of our newly developed clinical software. The fast SE sequence (RISE) has proved to reduce routine examination time and to improve image quality, and ultra-fast FE sequence (SMASH) was found to extend the diagnostic capabilities in the field of cardiac study. Diffusion/perfusion imaging achieved in our MR system showed significant promise for providing novel information regarding tissue characterization. Furthermore, Image quality and practicalities of MR angiography have been improved by advanced imaging sequences and sophisticated post-processing software. (author)

  3. Application of ultrasound processed images in space: assessing diffuse affectations

    Science.gov (United States)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  4. Noise Estimation and Quality Assessment of Gaussian Noise Corrupted Images

    Science.gov (United States)

    Kamble, V. M.; Bhurchandi, K.

    2018-03-01

    Evaluating the exact quantity of noise present in an image and quality of an image in the absence of reference image is a challenging task. We propose a near perfect noise estimation method and a no reference image quality assessment method for images corrupted by Gaussian noise. The proposed methods obtain initial estimate of noise standard deviation present in an image using the median of wavelet transform coefficients and then obtains a near to exact estimate using curve fitting. The proposed noise estimation method provides the estimate of noise within average error of +/-4%. For quality assessment, this noise estimate is mapped to fit the Differential Mean Opinion Score (DMOS) using a nonlinear function. The proposed methods require minimum training and yields the noise estimate and image quality score. Images from Laboratory for image and Video Processing (LIVE) database and Computational Perception and Image Quality (CSIQ) database are used for validation of the proposed quality assessment method. Experimental results show that the performance of proposed quality assessment method is at par with the existing no reference image quality assessment metric for Gaussian noise corrupted images.

  5. High sensitivity optical molecular imaging system

    Science.gov (United States)

    An, Yu; Yuan, Gao; Huang, Chao; Jiang, Shixin; Zhang, Peng; Wang, Kun; Tian, Jie

    2018-02-01

    Optical Molecular Imaging (OMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorescent or bioluminescence probes, OMI can noninvasively obtain the distribution of the probes in vivo, which play the key role in cancer research, pharmacokinetics and other biological studies. In preclinical and clinical application, the image depth, resolution and sensitivity are the key factors for researchers to use OMI. In this paper, we report a high sensitivity optical molecular imaging system developed by our group, which can improve the imaging depth in phantom to nearly 5cm, high resolution at 2cm depth, and high image sensitivity. To validate the performance of the system, special designed phantom experiments and weak light detection experiment were implemented. The results shows that cooperated with high performance electron-multiplying charge coupled device (EMCCD) camera, precision design of light path system and high efficient image techniques, our OMI system can simultaneously collect the light-emitted signals generated by fluorescence molecular imaging, bioluminescence imaging, Cherenkov luminance and other optical imaging modality, and observe the internal distribution of light-emitting agents fast and accurately.

  6. Lossy image compression for digital medical imaging systems

    Science.gov (United States)

    Wilhelm, Paul S.; Haynor, David R.; Kim, Yongmin; Nelson, Alan C.; Riskin, Eve A.

    1990-07-01

    Image compression at rates of 10:1 or greater could make PACS much more responsive and economically attractive. This paper describes a protocol for subjective and objective evaluation of the fidelity of compressed/decompressed images to the originals and presents the results ofits application to four representative and promising compression methods. The methods examined are predictive pruned tree-structured vector quantization, fractal compression, the discrete cosine transform with equal weighting of block bit allocation, and the discrete cosine transform with human visual system weighting of block bit allocation. Vector quantization is theoretically capable of producing the best compressed images, but has proven to be difficult to effectively implement. It has the advantage that it can reconstruct images quickly through a simple lookup table. Disadvantages are that codebook training is required, the method is computationally intensive, and achieving the optimum performance would require prohibitively long vector dimensions. Fractal compression is a relatively new compression technique, but has produced satisfactory results while being computationally simple. It is fast at both image compression and image reconstruction. Discrete cosine iransform techniques reproduce images well, but have traditionally been hampered by the need for intensive computing to compress and decompress images. A protocol was developed for side-by-side observer comparison of reconstructed images with originals. Three 1024 X 1024 CR (Computed Radiography) images and two 512 X 512 X-ray CT images were viewed at six bit rates (0.2, 0.4, 0.6, 0.9, 1.2, and 1.5 bpp for CR, and 1.0, 1.3, 1.6, 1.9, 2.2, 2.5 bpp for X-ray CT) by nine radiologists at the University of Washington Medical Center. The CR images were viewed on a Pixar II Megascan (2560 X 2048) monitor and the CT images on a Sony (1280 X 1024) monitor. The radiologists' subjective evaluations of image fidelity were compared to

  7. New mobile methods for dietary assessment: review of image-assisted and image-based dietary assessment methods.

    Science.gov (United States)

    Boushey, C J; Spoden, M; Zhu, F M; Delp, E J; Kerr, D A

    2017-08-01

    For nutrition practitioners and researchers, assessing dietary intake of children and adults with a high level of accuracy continues to be a challenge. Developments in mobile technologies have created a role for images in the assessment of dietary intake. The objective of this review was to examine peer-reviewed published papers covering development, evaluation and/or validation of image-assisted or image-based dietary assessment methods from December 2013 to January 2016. Images taken with handheld devices or wearable cameras have been used to assist traditional dietary assessment methods for portion size estimations made by dietitians (image-assisted methods). Image-assisted approaches can supplement either dietary records or 24-h dietary recalls. In recent years, image-based approaches integrating application technology for mobile devices have been developed (image-based methods). Image-based approaches aim at capturing all eating occasions by images as the primary record of dietary intake, and therefore follow the methodology of food records. The present paper reviews several image-assisted and image-based methods, their benefits and challenges; followed by details on an image-based mobile food record. Mobile technology offers a wide range of feasible options for dietary assessment, which are easier to incorporate into daily routines. The presented studies illustrate that image-assisted methods can improve the accuracy of conventional dietary assessment methods by adding eating occasion detail via pictures captured by an individual (dynamic images). All of the studies reduced underreporting with the help of images compared with results with traditional assessment methods. Studies with larger sample sizes are needed to better delineate attributes with regards to age of user, degree of error and cost.

  8. A gamma cammera image processing system

    International Nuclear Information System (INIS)

    Chen Weihua; Mei Jufang; Jiang Wenchuan; Guo Zhenxiang

    1987-01-01

    A microcomputer based gamma camera image processing system has been introduced. Comparing with other systems, the feature of this system is that an inexpensive microcomputer has been combined with specially developed hardware, such as, data acquisition controller, data processor and dynamic display controller, ect. Thus the process of picture processing has been speeded up and the function expense ratio of the system raised

  9. Advanced image display systems in radiology

    International Nuclear Information System (INIS)

    Wendler, T.

    1987-01-01

    Advanced image display systems for the fully digital diagnostic imaging departments of the future will be far more than simple replacements of the traditional film-viewing equipment. The new capabilities of very high resolution and highly dynamic displays offer a userfriendly and problem-oriented way of image interpretation. Advanced harware-, software- and human-machine interaction-concepts have been outlined. A scenario for a future way of handling and displaying images, reflecting a new image viewing paradigm in radiology is sketched which has been realized in an experimental image workstation model in the laboratory which, despite its technical complexity, offers a consistent strategy for fast and convenient interaction with image objects. The perspective of knowledge based techniques for workstation control software with object-oriented programming environments and user- and task-adaptive behavior leads to more advanced display properties and a new quality of userfriendliness. 2 refs.; 5 figs

  10. MONSOON Image Acquisition System | CTIO

    Science.gov (United States)

    Staff CTIO History CTIO Directors Historic Highlights Site Description Contact Us Astronomers Observing Contact Acknowledgments TS4 History ISPI ISPI Exposure Time Calculator OSIRIS Spartan Optical Imagers single detector to very large focal planes made from arrays of detectors. The basic hierarchy of a

  11. System Analysis and Risk Assessment (SARA) system

    International Nuclear Information System (INIS)

    Krantz, E.A.; Russell, K.D.; Stewart, H.D.; Van Siclen, V.S.

    1986-01-01

    Utilization of Probabilistic Risk Assessment (PRA) related information in the day-to-day operation of plant systems has, in the past, been impracticable due to the size of the computers needed to run PRA codes. This paper discusses a microcomputer-based database system which can greatly enhance the capability of operators or regulators to incorporate PRA methodologies into their routine decision making. This system is called the System Analysis and Risk Assessment (SARA) system. SARA was developed by EG and G Idaho, Inc. at the Idaho National Engineering Laboratory to facilitate the study of frequency and consequence analyses of accident sequences from a large number of light water reactors (LWRs) in this country. This information is being amassed by several studies sponsored by the United States Nuclear Regulatory Commission (USNRC). To meet the need of portability and accessibility, and to perform the variety of calculations necessary, it was felt that a microcomputer-based system would be most suitable

  12. Devices for Evaluating Imaging Systems. Chapter 15

    Energy Technology Data Exchange (ETDEWEB)

    Demirkaya, O.; Al-Mazrou, R. [Department of Biomedical Physics, King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia)

    2014-12-15

    A quality management system (QMS) has three main components: (a) Quality assurance (QA); (b) Quality improvement; (c) Quality control (QC). The aim of a QMS is to ensure that the deliverables meet the requirements set forth by the users. The deliverables can be, in general, all the services provided in a nuclear medicine department, and the diagnostic imaging services in particular. In this section, the primary focus is the diagnostic imaging equipment and images produced by them.

  13. Imaging of dopaminergic system in movement disorders

    International Nuclear Information System (INIS)

    Kim, Yu Kyeong; Kim, Sang Eun

    2007-01-01

    Parkinson's disease is a common neurodegenerative disorder that is mainly caused by dopaminergic neuron loss in the substantia nigra. Several radiopharmaceutics have been developed to evaluated the integrity of dopaminergic neuronal system. In vivo PET and SPECT imaging of presynaptic dopamine imaging are already applied to Parkinson's disease and other parkinsonism, and can demonstrate the dopaminergic dysfunction. This review summarized the use of the presynaptic dopaminergic imaging in PD as biomarkers in evaluation of disease progression as well as in diagnosis of PD

  14. Scanned Image Projection System Employing Intermediate Image Plane

    Science.gov (United States)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)

    2014-01-01

    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  15. Color Image Quality Assessment Based on CIEDE2000

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2012-01-01

    Full Text Available Combining the color difference formula of CIEDE2000 and the printing industry standard for visual verification, we present an objective color image quality assessment method correlated with subjective vision perception. An objective score conformed to subjective perception (OSCSP Q was proposed to directly reflect the subjective visual perception. In addition, we present a general method to calibrate correction factors of color difference formula under real experimental conditions. Our experiment results show that the present DE2000-based metric can be consistent with human visual system in general application environment.

  16. Performance assessment of a data processing chain for THz imaging

    Science.gov (United States)

    Catapano, Ilaria; Ludeno, Giovanni; Soldovieri, Francesco

    2017-04-01

    Nowadays, TeraHertz (THz) imaging is deserving huge attention as very high resolution diagnostic tool in many applicative fields, among which security, cultural heritage, material characterization and civil engineering diagnostics. This widespread use of THz waves is due to their non-ionizing nature, their capability of penetrating into non-metallic opaque materials, as well as to the technological advances, which have allowed the commercialization of compact, flexible and portable systems. However, the effectiveness of THz imaging depends strongly on the adopted data processing aimed at improving the imaging performance of the hardware device. In particular, data processing is required to mitigate detrimental and unavoidable effects like noise, signal attenuation, as well as to correct the sample surface topography. With respect to data processing, we have proposed recently a strategy involving three different steps aimed at reducing noise, filtering out undesired signal introduced by the adopted THz system and performing surface topography correction [1]. The first step regards noise filtering and exploits a procedure based on the Singular Value Decomposition (SVD) [2] of the data matrix, which does not require knowledge of noise level and it does not involve the use of a reference signal. The second step aims at removing the undesired signal that we have experienced to be introduced by the adopted Z-Omega Fiber-Coupled Terahertz Time Domain (FICO) system. Indeed, when the system works in a high-speed mode, an undesired low amplitude peak occurs always at the same time instant from the beginning of the observation time window and needs to be removed from the useful data matrix in order to avoid a wrong interpretation of the imaging results. The third step of the considered data processing chain is a topographic correction, which needs in order to image properly the samples surface and its inner structure. Such a procedure performs an automatic alignment of the

  17. Blind assessment of image blur using the Haar wavelet

    CSIR Research Space (South Africa)

    Bachoo, A

    2010-10-01

    Full Text Available algorithms. We present an intuitive quality metric for characterizing the amount of blur in an image, through blind image assessment, using the Haar discrete wavelet transform. Thus, the method does not require a reference image or any prior information...

  18. Image processing system for flow pattern measurements

    International Nuclear Information System (INIS)

    Ushijima, Satoru; Miyanaga, Yoichi; Takeda, Hirofumi

    1989-01-01

    This paper describes the development and application of an image processing system for measurements of flow patterns occuring in natural circulation water flows. In this method, the motions of particles scattered in the flow are visualized by a laser light slit and they are recorded on normal video tapes. These image data are converted to digital data with an image processor and then transfered to a large computer. The center points and pathlines of the particle images are numerically analized, and velocity vectors are obtained with these results. In this image processing system, velocity vectors in a vertical plane are measured simultaneously, so that the two dimensional behaviors of various eddies, with low velocity and complicated flow patterns usually observed in natural circulation flows, can be determined almost quantitatively. The measured flow patterns, which were obtained from natural circulation flow experiments, agreed with photographs of the particle movements, and the validity of this measuring system was confirmed in this study. (author)

  19. Evaluating Picture Quality of Image Plates in Digital CR Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Byung Joon [Dept. of Radiological Tecnology, Choonhae College of Health Science, Ulsan (Korea, Republic of); Ji Tae Jeong [Dept. of Radiological Science, Kaya University, Kimhae (Korea, Republic of)

    2011-12-15

    Lab effectively supplemented the effects of outside radiation on image plates in the process of image acquisition of CR (computed radiography) systems and conducted for effective utilization in the case of clinical application. For this, Lab classified the storage places and time periods of image plates and compared and analyzed the differences between small dark spots. Lab also assessed the concentration distribution within the boundaries of images. Lab compared and measured the number of dark spots in a light room and a dark room depending on the storage places of image plates and found that dark spots slightly increased in an image plate when stored in a light room on the first and second days. Dark spots increased in proportion to the length of time stored. In the case of the image plate stored in a dark room, the number of dark spots remarkably decreased. With regard to picture quality as related to the location of image plates, the damage to picture quality could be reduced by locating regions of interest in the center. With regard to differences in sharpness following changes in the thickness of subjects, fewer scatter rays occurred and sharpness improved by reducing the thickness of subjects as much as possible. To get medical images of excellent quality, image plates should be managed effectively and it is desirable to keep images plates in dark iron plate boxes and not to expose them to outside radiation for a long time.

  20. Evaluating Picture Quality of Image Plates in Digital CR Systems

    International Nuclear Information System (INIS)

    Kwak, Byung Joon; Ji Tae Jeong

    2011-01-01

    Lab effectively supplemented the effects of outside radiation on image plates in the process of image acquisition of CR (computed radiography) systems and conducted for effective utilization in the case of clinical application. For this, Lab classified the storage places and time periods of image plates and compared and analyzed the differences between small dark spots. Lab also assessed the concentration distribution within the boundaries of images. Lab compared and measured the number of dark spots in a light room and a dark room depending on the storage places of image plates and found that dark spots slightly increased in an image plate when stored in a light room on the first and second days. Dark spots increased in proportion to the length of time stored. In the case of the image plate stored in a dark room, the number of dark spots remarkably decreased. With regard to picture quality as related to the location of image plates, the damage to picture quality could be reduced by locating regions of interest in the center. With regard to differences in sharpness following changes in the thickness of subjects, fewer scatter rays occurred and sharpness improved by reducing the thickness of subjects as much as possible. To get medical images of excellent quality, image plates should be managed effectively and it is desirable to keep images plates in dark iron plate boxes and not to expose them to outside radiation for a long time.

  1. Fibre laser based broadband THz imaging systems

    DEFF Research Database (Denmark)

    Eichhorn, Finn

    imaging techniques. This thesis exhibits that fiber technology can improve the robustness and the flexibility of terahertz imaging systems both by the use of fiber-optic light sources and the employment of optical fibers as light distribution medium. The main focus is placed on multi-element terahertz...

  2. Image based rendering of iterated function systems

    NARCIS (Netherlands)

    Wijk, van J.J.; Saupe, D.

    2004-01-01

    A fast method to generate fractal imagery is presented. Iterated function systems (IFS) are based on repeatedly copying transformed images. We show that this can be directly translated into standard graphics operations: Each image is generated by texture mapping and blending copies of the previous

  3. A Methodology for Anatomic Ultrasound Image Diagnostic Quality Assessment

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Lange, Theis; Brandt, Andreas Hjelm

    2017-01-01

    are presented. Earlier uses of the methodology has shown that it ensures validity of the assessment, as it separates the influences between developer, investigator, and assessor once a research protocol has been established. This separation reduces confounding influences on the result from the developer......This paper discusses methods for assessment of ultrasound image quality based on our experiences with evaluating new methods for anatomic imaging. It presents a methodology to ensure a fair assessment between competing imaging methods using clinically relevant evaluations. The methodology...... to properly reveal the clinical value. The paper exemplifies the methodology using recent studies of Synthetic Aperture Sequential Beamforming tissue harmonic imaging....

  4. Ginger and Zingerone Ameliorate Lipopolysaccharide-Induced Acute Systemic Inflammation in Mice, Assessed by Nuclear Factor-κB Bioluminescent Imaging.

    Science.gov (United States)

    Hsiang, Chien-Yun; Cheng, Hui-Man; Lo, Hsin-Yi; Li, Chia-Cheng; Chou, Pei-Chi; Lee, Yu-Chen; Ho, Tin-Yun

    2015-07-08

    Ginger is a commonly used spice in cooking. In this study, we comprehensively evaluated the anti-inflammatory activities of ginger and its component zingerone in lipopolysaccharide (LPS)-induced acute systemic inflammation in mice via nuclear factor-κB (NF-κB) bioluminescent imaging. Ginger and zingerone significantly suppressed LPS-induced NF-κB activities in cells in a dose-dependent manner, and the maximal inhibition (84.5% ± 3.5% and 96.2% ± 0.6%) was observed at 100 μg/mL ginger and zingerone, respectively. Moreover, dietary ginger and zingerone significantly reduced LPS-induced proinflammatory cytokine production in sera by 62.9% ± 18.2% and 81.3% ± 6.2%, respectively, and NF-κB bioluminescent signals in whole body by 26.9% ± 14.3% and 38.5% ± 6.2%, respectively. In addition, ginger and zingerone suppressed LPS-induced NF-κB-driven luminescent intensities in most organs, and the maximal inhibition by ginger and zingerone was observed in small intestine. Immunohistochemical staining further showed that ginger and zingerone decreased interleukin-1β (IL-1β)-, CD11b-, and p65-positive areas in jejunum. In conclusion, our findings suggested that ginger and zingerone were likely to be broad-spectrum anti-inflammatory agents in most organs that suppressed the activation of NF-κB, the production of IL-1β, and the infiltration of inflammatory cells in mice.

  5. Accuracy assessment between different image classification ...

    African Journals Online (AJOL)

    What image classification does is to assign pixel to a particular land cover and land use type that has the most similar spectral signature. However, there are possibilities that different methods or algorithms of image classification of the same data set could produce appreciable variant results in the sizes, shapes and areas of ...

  6. Objective and Subjective Assessment of Digital Pathology Image Quality

    Directory of Open Access Journals (Sweden)

    Prarthana Shrestha

    2015-03-01

    Full Text Available The quality of an image produced by the Whole Slide Imaging (WSI scanners is of critical importance for using the image in clinical diagnosis. Therefore, it is very important to monitor and ensure the quality of images. Since subjective image quality assessments by pathologists are very time-consuming, expensive and difficult to reproduce, we propose a method for objective assessment based on clinically relevant and perceptual image parameters: sharpness, contrast, brightness, uniform illumination and color separation; derived from a survey of pathologists. We developed techniques to quantify the parameters based on content-dependent absolute pixel performance and to manipulate the parameters in a predefined range resulting in images with content-independent relative quality measures. The method does not require a prior reference model. A subjective assessment of the image quality is performed involving 69 pathologists and 372 images (including 12 optimal quality images and their distorted versions per parameter at 6 different levels. To address the inter-reader variability, a representative rating is determined as a one-tailed 95% confidence interval of the mean rating. The results of the subjective assessment support the validity of the proposed objective image quality assessment method to model the readers’ perception of image quality. The subjective assessment also provides thresholds for determining the acceptable level of objective quality per parameter. The images for both the subjective and objective quality assessment are based on the HercepTestTM slides scanned by the Philips Ultra Fast Scanners, developed at Philips Digital Pathology Solutions. However, the method is applicable also to other types of slides and scanners.

  7. Sampling system for in vivo ultrasound images

    DEFF Research Database (Denmark)

    Jensen, Jorgen Arendt; Mathorne, Jan

    1991-01-01

    Newly developed algorithms for processing medical ultrasound images use the high frequency sampled transducer signal. This paper describes demands imposed on a sampling system suitable for acquiring such data and gives details about a prototype constructed. It acquires full clinical images...... at a sampling frequency of 20 MHz with a resolution of 12 bits. The prototype can be used for real time image processing. An example of a clinical in vivo image is shown and various aspects of the data acquisition process are discussed....

  8. Imaging and assessment of diffusion coefficients by magnetic resonance

    International Nuclear Information System (INIS)

    Tintera, J.; Dezortova, M.; Hajek, M.; Fitzek, C.

    1999-01-01

    The problem of assessment of molecular diffusion by magnetic resonance is highlighted and some typical applications of diffusion imaging in the diagnosis, e.g., of cerebral ischemia, changes in patients with phenylketonuria or multiple sclerosis are discussed. The images were obtained by using diffusion weighted spin echo Echo-Planar Imaging sequence with subsequent correction of the geometrical distortion of the images and calculation of the Apparent Diffusion Coefficient map

  9. Morocco; Financial System Stability Assessment

    OpenAIRE

    International Monetary Fund

    2003-01-01

    The Financial System Stability Assessment of Morocco reviews the reform program that is aimed at establishing a modern, market-oriented financial system that optimizes the mobilization of savings and the allocation of financial resources. It reviews the modernization of the banking sector and the development of competition within the sector, development of financial markets, and removal of constraints on financial system activity. It also provides reports on the Observance of Standards and Co...

  10. Four-Mirror Freeform Reflective Imaging Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Central Objectives: The research involves a revelation of the solution space for revolutionary families of four-mirror freeform reflective imaging systems. A...

  11. Fusion of Images from Dissimilar Sensor Systems

    National Research Council Canada - National Science Library

    Chow, Khin

    2004-01-01

    Different sensors exploit different regions of the electromagnetic spectrum; therefore a multi-sensor image fusion system can take full advantage of the complementary capabilities of individual sensors in the suit...

  12. Shimadzu magnetic resonance imaging system, SMT-50

    International Nuclear Information System (INIS)

    Oikawa, Shiro; Nishida, Takayuki; Fujio, Yasuo

    1986-01-01

    The magnetic resonance imaging (MRI) system, as a new modality of medical imaging, has already been put to practical applications on many clinical sites, through which a lot of clinical data has been accumulated. It can offer a powerful new probe of internal anatomy of the human body and its functions. Now that the MRI has established its effectiveness in diagnosis, a really practical MRI system which features high efficiency and economical design with high patient throughput is strongly called for. Introduced in this article is a superconductive magnet MRI system, SMT-50, operating at 5000 Gauss. It has realized an excellent diagnostic capability with such functions as multi-slice multi-echo imaging, high sensitive, surface coil technique and so on. High resolution image display (1024 x 1024 pixcel) unit and separate console system (viewing console and scanning console) will assist high patient throughput. The outline of the SMT-50 and its clinical data are reported here. (author)

  13. System for imaging plutonium through heavy shielding

    International Nuclear Information System (INIS)

    Kuckertz, T.H.; Cannon, T.M.; Fenimore, E.E.; Moss, C.E.; Nixon, K.V.

    1984-04-01

    A single pinhole can be used to image strong self-luminescent gamma-ray sources such as plutonium on gamma scintillation (Anger) cameras. However, if the source is weak or heavily shielded, a poor signal to noise ratio can prevent acquisition of the image. An imaging system designed and built at Los Alamos National Laboratory uses a coded aperture to image heavily shielded sources. The paper summarizes the mathematical techniques, based on the Fast Delta Hadamard transform, used to decode raw images. Practical design considerations such as the phase of the uniformly redundant aperture and the encoded image sampling are discussed. The imaging system consists of a custom designed m-sequence coded aperture, a Picker International Corporation gamma scintillation camera, a LeCroy 3500 data acquisition system, and custom imaging software. The paper considers two sources - 1.5 mCi 57 Co unshielded at a distance of 27 m and 220 g of bulk plutonium (11.8% 240 Pu) with 0.3 cm lead, 2.5 cm steel, and 10 cm of dense plastic material at a distance of 77.5 cm. Results show that the location and geometry of a source hidden in a large sealed package can be determined without having to open the package. 6 references, 4 figures

  14. Document Examination: Applications of Image Processing Systems.

    Science.gov (United States)

    Kopainsky, B

    1989-12-01

    Dealing with images is a familiar business for an expert in questioned documents: microscopic, photographic, infrared, and other optical techniques generate images containing the information he or she is looking for. A recent method for extracting most of this information is digital image processing, ranging from the simple contrast and contour enhancement to the advanced restoration of blurred texts. When combined with a sophisticated physical imaging system, an image pricessing system has proven to be a powerful and fast tool for routine non-destructive scanning of suspect documents. This article reviews frequent applications, comprising techniques to increase legibility, two-dimensional spectroscopy (ink discrimination, alterations, erased entries, etc.), comparison techniques (stamps, typescript letters, photo substitution), and densitometry. Computerized comparison of handwriting is not included. Copyright © 1989 Central Police University.

  15. A fractal-based image encryption system

    KAUST Repository

    Abd-El-Hafiz, S. K.

    2014-12-01

    This study introduces a novel image encryption system based on diffusion and confusion processes in which the image information is hidden inside the complex details of fractal images. A simplified encryption technique is, first, presented using a single-fractal image and statistical analysis is performed. A general encryption system utilising multiple fractal images is, then, introduced to improve the performance and increase the encryption key up to hundreds of bits. This improvement is achieved through several parameters: feedback delay, multiplexing and independent horizontal or vertical shifts. The effect of each parameter is studied separately and, then, they are combined to illustrate their influence on the encryption quality. The encryption quality is evaluated using different analysis techniques such as correlation coefficients, differential attack measures, histogram distributions, key sensitivity analysis and the National Institute of Standards and Technology (NIST) statistical test suite. The obtained results show great potential compared to other techniques.

  16. Image quality in digital radiographic systems

    Directory of Open Access Journals (Sweden)

    Almeida Solange Maria de

    2003-01-01

    Full Text Available The aim of the present study was to evaluate the image quality of four direct digital radiographic systems. Radiographs were made of the maxillary central incisor and mandibular left molar regions of a dry skull, and an aluminum step-wedge. The X-ray generator operated at 10 mA, 60 and 70 kVp, and images were acquired with 3, 5, 8, 12, 24 and 48 exposure pulses. Six well-trained observers classified the images by means of scores from 1 to 3. Collected data were submitted to nonparametric statistical analysis using Fisher's exact test. Statistical analysis showed significant differences (p<0.01 in image quality with the four systems. Based on the results, it was possible to conclude that: 1 all of the digital systems presented good performance in producing acceptable images for diagnosis, if the exposures of the step-wedge and the maxillary central incisor region were made at 5 pulses, as well as at 8 pulses for the mandibular left molar region, selecting 60 or 70kVp; 2 higher percentages of acceptable images were obtained with the administration of lower radiation doses in CCD-sensors (charge-coupled device; 3 the Storage Phosphor systems produced acceptable images at a large range of exposure settings, that included low, intermediate and high radiation doses.

  17. Image acquisition system for traffic monitoring applications

    Science.gov (United States)

    Auty, Glen; Corke, Peter I.; Dunn, Paul; Jensen, Murray; Macintyre, Ian B.; Mills, Dennis C.; Nguyen, Hao; Simons, Ben

    1995-03-01

    An imaging system for monitoring traffic on multilane highways is discussed. The system, named Safe-T-Cam, is capable of operating 24 hours per day in all but extreme weather conditions and can capture still images of vehicles traveling up to 160 km/hr. Systems operating at different remote locations are networked to allow transmission of images and data to a control center. A remote site facility comprises a vehicle detection and classification module (VCDM), an image acquisition module (IAM) and a license plate recognition module (LPRM). The remote site is connected to the central site by an ISDN communications network. The remote site system is discussed in this paper. The VCDM consists of a video camera, a specialized exposure control unit to maintain consistent image characteristics, and a 'real-time' image processing system that processes 50 images per second. The VCDM can detect and classify vehicles (e.g. cars from trucks). The vehicle class is used to determine what data should be recorded. The VCDM uses a vehicle tracking technique to allow optimum triggering of the high resolution camera of the IAM. The IAM camera combines the features necessary to operate consistently in the harsh environment encountered when imaging a vehicle 'head-on' in both day and night conditions. The image clarity obtained is ideally suited for automatic location and recognition of the vehicle license plate. This paper discusses the camera geometry, sensor characteristics and the image processing methods which permit consistent vehicle segmentation from a cluttered background allowing object oriented pattern recognition to be used for vehicle classification. The image capture of high resolution images and the image characteristics required for the LPRMs automatic reading of vehicle license plates, is also discussed. The results of field tests presented demonstrate that the vision based Safe-T-Cam system, currently installed on open highways, is capable of producing automatic

  18. Hologlyphics: volumetric image synthesis performance system

    Science.gov (United States)

    Funk, Walter

    2008-02-01

    This paper describes a novel volumetric image synthesis system and artistic technique, which generate moving volumetric images in real-time, integrated with music. The system, called the Hologlyphic Funkalizer, is performance based, wherein the images and sound are controlled by a live performer, for the purposes of entertaining a live audience and creating a performance art form unique to volumetric and autostereoscopic images. While currently configured for a specific parallax barrier display, the Hologlyphic Funkalizer's architecture is completely adaptable to various volumetric and autostereoscopic display technologies. Sound is distributed through a multi-channel audio system; currently a quadraphonic speaker setup is implemented. The system controls volumetric image synthesis, production of music and spatial sound via acoustic analysis and human gestural control, using a dedicated control panel, motion sensors, and multiple musical keyboards. Music can be produced by external acoustic instruments, pre-recorded sounds or custom audio synthesis integrated with the volumetric image synthesis. Aspects of the sound can control the evolution of images and visa versa. Sounds can be associated and interact with images, for example voice synthesis can be combined with an animated volumetric mouth, where nuances of generated speech modulate the mouth's expressiveness. Different images can be sent to up to 4 separate displays. The system applies many novel volumetric special effects, and extends several film and video special effects into the volumetric realm. Extensive and various content has been developed and shown to live audiences by a live performer. Real world applications will be explored, with feedback on the human factors.

  19. Assessment and Development of Microwave Imaging for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard

    At the Technical University of Denmark (DTU), a 3D tomographic microwave imaging system is currently being developed with the aim of using nonlinear microwave imaging for breast-cancer detection. The imaging algorithm used in the system is based on an iterative Newton-type scheme. In this algorithm...... used in the microwave tomographic imaging system is presented. Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels....... This implies that special care must be taken when the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might...

  20. Automated image quality assessment for chest CT scans.

    Science.gov (United States)

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  1. Visual computing scientific visualization and imaging systems

    CERN Document Server

    2014-01-01

    This volume aims to stimulate discussions on research involving the use of data and digital images as an understanding approach for analysis and visualization of phenomena and experiments. The emphasis is put not only on graphically representing data as a way of increasing its visual analysis, but also on the imaging systems which contribute greatly to the comprehension of real cases. Scientific Visualization and Imaging Systems encompass multidisciplinary areas, with applications in many knowledge fields such as Engineering, Medicine, Material Science, Physics, Geology, Geographic Information Systems, among others. This book is a selection of 13 revised and extended research papers presented in the International Conference on Advanced Computational Engineering and Experimenting -ACE-X conferences 2010 (Paris), 2011 (Algarve), 2012 (Istanbul) and 2013 (Madrid). The examples were particularly chosen from materials research, medical applications, general concepts applied in simulations and image analysis and ot...

  2. Under sodium ultrasonic imaging system for PFBR

    International Nuclear Information System (INIS)

    Patankar, V.H.; Lalwani, S.K.; Agashe, A.A.

    2014-01-01

    Under Sodium UltraSonic Scanner (USUSS) has been developed to detect the growth and protrusion of fuel sub-assemblies of PFBR, submerged in liquid sodium by using the ultrasonic imaging technique during reactor shut-down when liquid sodium is at 180 ℃. The imaging is carried out prior to every Fuel handling operation. Electronics Division, BARC has designed and developed an 8-Channel Ultrasonic Imaging System (UIS) which consists of 4 downward viewing and 4 side viewing ultrasonic transducers alongwith pulser-receiver, signal processing electronics hardware and software. An automated mechanical scanner developed by IGCAR houses sodium immersible transducers to image the fuel sub assemblies. The system has been successfully tested with dummy protruding and grown FSAs, submerged under liquid sodium. Such ultrasonic imaging systems are not available to India from international market. The USUSS developed indigenously has all the features available in similar systems developed by other countries. After every imaging campaign, the mechanical scanner containing ultrasonic transducers is stored in the Argon filled storage-pit. Before every campaign of USUSS, it is necessary to check the healthiness of the sodium immersible and contaminated ultrasonic transducers, as the under-sodium scanner is decontaminated once in five years. For this purpose, a novel Non Contact Ultrasonic Inspection System (NCUIS) has been designed and developed by Electronics Division, BARC to check the functionality of the high-temperature and contaminated transducers of USUSS, using air-coupled ultrasonic technique. (author)

  3. Evaluation of transmitted images by teleradiology system

    International Nuclear Information System (INIS)

    Hoshikawa, Yoshikazu

    1993-01-01

    Teleradiology system is a combination of digital data networks and computer systems, which is the electric transmission of radiographs and/or radiologic images from local to center radiological system. The author evaluated reproducibility of transmitted images using Photophone (Image Data Corporation) as teleradiology system. Proven cases of abdominal free air (38 plain films, 15 CT), pneumothorax (24 plain films, 20 CT) and small bowel obstruction (30 plain films, 8 CT) were transmitted. Findings could be identified on non-magnified plain films in 75.6%, 83.3% and 96.7% respectively and on magnified CT in 100%, 100% and 100%. Transmitted images of 57 cases of abdominal trauma were read for positive findings and diagnosis by three radiologists. Average positive ratio was 47.3% on plain films and 70.9% on CT. Diagnosis was correct in 66.7% on CT. Specificity and sensitivity were 81.9% and 61.6% respectively on plain film and 88.6% and 93.9% on CT. The accuracy of transmitted images appears to be unsatisfactory on this study. It is suggested that the system is useful for consultation of already identified findings on the original images. (author)

  4. Evaluation of transmitted images by teleradiology system

    Energy Technology Data Exchange (ETDEWEB)

    Hoshikawa, Yoshikazu (St. Marianna Univ., Kawasaki (Japan). School of Medicine)

    1993-12-01

    Teleradiology system is a combination of digital data networks and computer systems, which is the electric transmission of radiographs and/or radiologic images from local to center radiological system. The author evaluated reproducibility of transmitted images using Photophone (Image Data Corporation) as teleradiology system. Proven cases of abdominal free air (38 plain films, 15 CT), pneumothorax (24 plain films, 20 CT) and small bowel obstruction (30 plain films, 8 CT) were transmitted. Findings could be identified on non-magnified plain films in 75.6%, 83.3% and 96.7% respectively and on magnified CT in 100%, 100% and 100%. Transmitted images of 57 cases of abdominal trauma were read for positive findings and diagnosis by three radiologists. Average positive ratio was 47.3% on plain films and 70.9% on CT. Diagnosis was correct in 66.7% on CT. Specificity and sensitivity were 81.9% and 61.6% respectively on plain film and 88.6% and 93.9% on CT. The accuracy of transmitted images appears to be unsatisfactory on this study. It is suggested that the system is useful for consultation of already identified findings on the original images. (author).

  5. Imaging system design and image interpolation based on CMOS image sensor

    Science.gov (United States)

    Li, Yu-feng; Liang, Fei; Guo, Rui

    2009-11-01

    An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The hardware and software design of the image acquisition and processing system is given. CMOS digital cameras use color filter arrays to sample different spectral components, such as red, green, and blue. At the location of each pixel only one color sample is taken, and the other colors must be interpolated from neighboring samples. We use the edge-oriented adaptive interpolation algorithm for the edge pixels and bilinear interpolation algorithm for the non-edge pixels to improve the visual quality of the interpolated images. This method can get high processing speed, decrease the computational complexity, and effectively preserve the image edges.

  6. The National Ignition Facility Neutron Imaging System

    International Nuclear Information System (INIS)

    Wilke, Mark D.; Batha, Steven H.; Bradley, Paul A.; Day, Robert D.; Clark, David D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary P.; Jaramillo, Steven A.; Montoya, Andrew J.; Morgan, George L.; Oertel, John A.; Ortiz, Thomas A.; Payton, Jeremy R.; Pazuchanics, Peter; Schmidt, Derek W.; Valdez, Adelaida C.; Wilde, Carl H.

    2008-01-01

    The National Ignition Facility (NIF) is scheduled to begin deuterium-tritium (DT) shots possibly in the next several years. One of the important diagnostics in understanding capsule behavior and to guide changes in Hohlraum illumination, capsule design, and geometry will be neutron imaging of both the primary 14 MeV neutrons and the lower-energy downscattered neutrons in the 6-13 MeV range. The neutron imaging system (NIS) described here, which we are currently building for use on NIF, uses a precisely aligned set of apertures near the target to form the neutron images on a segmented scintillator. The images are recorded on a gated, intensified charge coupled device. Although the aperture set may be as close as 20 cm to the target, the imaging camera system will be located at a distance of 28 m from the target. At 28 m the camera system is outside the NIF building. Because of the distance and shielding, the imager will be able to obtain images with little background noise. The imager will be capable of imaging downscattered neutrons from failed capsules with yields Y n >10 14 neutrons. The shielding will also permit the NIS to function at neutron yields >10 18 , which is in contrast to most other diagnostics that may not work at high neutron yields. The following describes the current NIF NIS design and compares the predicted performance with the NIF specifications that must be satisfied to generate images that can be interpreted to understand results of a particular shot. The current design, including the aperture, scintillator, camera system, and reconstruction methods, is briefly described. System modeling of the existing Omega NIS and comparison with the Omega data that guided the NIF design based on our Omega results is described. We will show NIS model calculations of the expected NIF images based on component evaluations at Omega. We will also compare the calculated NIF input images with those unfolded from the NIS images generated from our NIS numerical

  7. Computerized assessment of body image in anorexia nervosa and bulimia nervosa: comparison with standardized body image assessment tool.

    Science.gov (United States)

    Caspi, Asaf; Amiaz, Revital; Davidson, Noa; Czerniak, Efrat; Gur, Eitan; Kiryati, Nahum; Harari, Daniel; Furst, Miriam; Stein, Daniel

    2017-02-01

    Body image disturbances are a prominent feature of eating disorders (EDs). Our aim was to test and evaluate a computerized assessment of body image (CABI), to compare the body image disturbances in different ED types, and to assess the factors affecting body image. The body image of 22 individuals undergoing inpatient treatment with restricting anorexia nervosa (AN-R), 22 with binge/purge AN (AN-B/P), 20 with bulimia nervosa (BN), and 41 healthy controls was assessed using the Contour Drawing Rating Scale (CDRS), the CABI, which simulated the participants' self-image in different levels of weight changes, and the Eating Disorder Inventory-2-Body Dissatisfaction (EDI-2-BD) scale. Severity of depression and anxiety was also assessed. Significant differences were found among the three scales assessing body image, although most of their dimensions differentiated between patients with EDs and controls. Our findings support the use of the CABI in the comparison of body image disturbances in patients with EDs vs. Moreover, the use of different assessment tools allows for a better understanding of the differences in body image disturbances in different ED types.

  8. Design of optically stable image reflector system.

    Science.gov (United States)

    Tsai, Chung-Yu

    2013-08-01

    The design of a partially optically stable (POS) reflector system, in which the exit ray direction and image pose are unchanged as the reflector system rotates about a specific directional vector, was presented in an earlier study by the current group [Appl. Phys. B100, 883-890 (2010)]. The present study further proposes an optically stable image (OSI) reflector system, in which not only is the optical stability property of the POS system retained, but the image position and total ray path length are also fixed. An analytical method is proposed for the design of OSI reflector systems comprising multiple reflectors. The validity of the proposed approach is demonstrated by means of two illustrative examples.

  9. STANDARDIZING QUALITY ASSESSMENT OF FUSED REMOTELY SENSED IMAGES

    Directory of Open Access Journals (Sweden)

    C. Pohl

    2017-09-01

    Full Text Available The multitude of available operational remote sensing satellites led to the development of many image fusion techniques to provide high spatial, spectral and temporal resolution images. The comparison of different techniques is necessary to obtain an optimized image for the different applications of remote sensing. There are two approaches in assessing image quality: 1. Quantitatively by visual interpretation and 2. Quantitatively using image quality indices. However an objective comparison is difficult due to the fact that a visual assessment is always subject and a quantitative assessment is done by different criteria. Depending on the criteria and indices the result varies. Therefore it is necessary to standardize both processes (qualitative and quantitative assessment in order to allow an objective image fusion quality evaluation. Various studies have been conducted at the University of Osnabrueck (UOS to establish a standardized process to objectively compare fused image quality. First established image fusion quality assessment protocols, i.e. Quality with No Reference (QNR and Khan's protocol, were compared on varies fusion experiments. Second the process of visual quality assessment was structured and standardized with the aim to provide an evaluation protocol. This manuscript reports on the results of the comparison and provides recommendations for future research.

  10. Standardizing Quality Assessment of Fused Remotely Sensed Images

    Science.gov (United States)

    Pohl, C.; Moellmann, J.; Fries, K.

    2017-09-01

    The multitude of available operational remote sensing satellites led to the development of many image fusion techniques to provide high spatial, spectral and temporal resolution images. The comparison of different techniques is necessary to obtain an optimized image for the different applications of remote sensing. There are two approaches in assessing image quality: 1. Quantitatively by visual interpretation and 2. Quantitatively using image quality indices. However an objective comparison is difficult due to the fact that a visual assessment is always subject and a quantitative assessment is done by different criteria. Depending on the criteria and indices the result varies. Therefore it is necessary to standardize both processes (qualitative and quantitative assessment) in order to allow an objective image fusion quality evaluation. Various studies have been conducted at the University of Osnabrueck (UOS) to establish a standardized process to objectively compare fused image quality. First established image fusion quality assessment protocols, i.e. Quality with No Reference (QNR) and Khan's protocol, were compared on varies fusion experiments. Second the process of visual quality assessment was structured and standardized with the aim to provide an evaluation protocol. This manuscript reports on the results of the comparison and provides recommendations for future research.

  11. Evaluation of a software package for automated quality assessment of contrast detail images-comparison with subjective visual assessment

    International Nuclear Information System (INIS)

    Pascoal, A; Lawinski, C P; Honey, I; Blake, P

    2005-01-01

    Contrast detail analysis is commonly used to assess image quality (IQ) associated with diagnostic imaging systems. Applications include routine assessment of equipment performance and optimization studies. Most frequently, the evaluation of contrast detail images involves human observers visually detecting the threshold contrast detail combinations in the image. However, the subjective nature of human perception and the variations in the decision threshold pose limits to the minimum image quality variations detectable with reliability. Objective methods of assessment of image quality such as automated scoring have the potential to overcome the above limitations. A software package (CDRAD analyser) developed for automated scoring of images produced with the CDRAD test object was evaluated. Its performance to assess absolute and relative IQ was compared with that of an average observer. Results show that the software does not mimic the absolute performance of the average observer. The software proved more sensitive and was able to detect smaller low-contrast variations. The observer's performance was superior to the software's in the detection of smaller details. Both scoring methods showed frequent agreement in the detection of image quality variations resulting from changes in kVp and KERMA detector , which indicates the potential to use the software CDRAD analyser for assessment of relative IQ

  12. Comparison of Intrahepatic and Pancreatic Perfusion on Fusion Images Using a Combined SPECT/CT System and Assessment of Efficacy of Combined Continuous Arterial Infusion and Systemic Chemotherapy in Advanced Pancreatic Carcinoma

    International Nuclear Information System (INIS)

    Ikeda, Osama; Tamura, Yoshitaka; Nakasone, Yutaka; Shiraishi, Shinya; Kawanaka, Kouichi; Tomiguchi, Seiji; Yamashita, Yasuyuki; Takamori, Hiroshi; Kanemitsu, Keiichiro; Baba, Hideo

    2007-01-01

    Purpose. The purpose of this study was to compare intrahepatic and pancreatic perfusion on fusion images using a combined single-photon emission computed tomography (SPECT)/CT system and to evaluate the efficacy of combined continuous transcatheter arterial infusion (CTAI) and systemic chemotherapy in the treatment of advanced pancreatic carcinoma. Materials and Methods. CTAI was performed in 33 patients (22 men, 11 women; age range, 35-77 years; mean age, 60 years) with stage IV pancreatic cancer with liver metastasis. The reservoir was transcutaneously implanted with the help of angiography. The systemic administration of gemcitabine was combined with the infusion of 5-fluorouracil via the reservoir. In all patients we obtained fusion images using a combined SPECT/CT system. Pancreatic perfusion on fusion images was classified as perfusion presence or as perfusion absent in the pancreatic cancer. Using WHO criteria we recorded the tumor response after 3 months on multislice helical CT scans. Treatment effects were evaluated based on the pancreatic cancer, liver metastasis, and factors such as intrahepatic and pancreatic perfusion on fusion images. For statistical analysis we used the chi-square test; survival was evaluated by the Kaplan Meier method (log-rank test). Results. On fusion images, pancreatic and intrahepatic perfusion was recorded as hot spot and as homogeneous distribution, respectively, in 18 patients (55%) and as cold spot and heterogeneous distribution, respectively, in 15 (45%). Patients with hot spot in the pancreatic tumor and homogeneous distribution in the liver manifested better treatment results (p < 0.05 and p < 0.01, respectively). Patients with hot spot both in the pancreatic cancer and in the liver survived longer than those with cold spot in the pancreatic cancer and heterogeneous distribution in the liver (median ± SD, 16.0 ± 3.7 vs. 8.0 ± 1.4 months; p < 0.05). Conclusions. We conclude that in patients with advanced pancreatic

  13. Assessing Expertise in Radiology : Evaluating and Improving the Assessment of Knowledge and Image Interpretation Skill

    NARCIS (Netherlands)

    Ravesloot, C.J.

    2016-01-01

    Aim: Expert radiologists are excellent image interpreters. Unfortunately, image interpretation errors are frequent even among experienced radiologists and not much is known about which factors lead to expertise. Increasing assessment quality can improve radiological performance. Progress tests can

  14. Assessing Body Image in Young Children

    Directory of Open Access Journals (Sweden)

    Kristin E. Heron

    2013-02-01

    Full Text Available The purpose of this study was to examine body image discrepancies in elementary-age children in a racially diverse sample. Body image and body image discrepancy were measured in elementary school children (N = 58 of various racial groups (35% Hispanic, 33% African American, 16% Caucasian, 14% other. Each participant was shown a set of silhouette figure drawings and reported current and ideal body sizes. Children’s body discrepancies appear to change between Grades 1 and 2. Notable discrepancies between their current and ideal figures, and their current figure and those that they believe are most attractive, are largely absent in Grade 1, but are evident in Grade 2 and older children. No substantive racial or gender differences in body image perceptions or dissatisfaction were observed in this sample. Body image dissatisfaction may begin as early as second grade in both girls and boys of various racial and ethnic backgrounds. These findings provide preliminary evidence that body discrepancies may begin much earlier than previously thought.

  15. Recognizable or Not: Towards Image Semantic Quality Assessment for Compression

    Science.gov (United States)

    Liu, Dong; Wang, Dandan; Li, Houqiang

    2017-12-01

    Traditionally, image compression was optimized for the pixel-wise fidelity or the perceptual quality of the compressed images given a bit-rate budget. But recently, compressed images are more and more utilized for automatic semantic analysis tasks such as recognition and retrieval. For these tasks, we argue that the optimization target of compression is no longer perceptual quality, but the utility of the compressed images in the given automatic semantic analysis task. Accordingly, we propose to evaluate the quality of the compressed images neither at pixel level nor at perceptual level, but at semantic level. In this paper, we make preliminary efforts towards image semantic quality assessment (ISQA), focusing on the task of optical character recognition (OCR) from compressed images. We propose a full-reference ISQA measure by comparing the features extracted from text regions of original and compressed images. We then propose to integrate the ISQA measure into an image compression scheme. Experimental results show that our proposed ISQA measure is much better than PSNR and SSIM in evaluating the semantic quality of compressed images; accordingly, adopting our ISQA measure to optimize compression for OCR leads to significant bit-rate saving compared to using PSNR or SSIM. Moreover, we perform subjective test about text recognition from compressed images, and observe that our ISQA measure has high consistency with subjective recognizability. Our work explores new dimensions in image quality assessment, and demonstrates promising direction to achieve higher compression ratio for specific semantic analysis tasks.

  16. Modified-BRISQUE as no reference image quality assessment for structural MR images.

    Science.gov (United States)

    Chow, Li Sze; Rajagopal, Heshalini

    2017-11-01

    An effective and practical Image Quality Assessment (IQA) model is needed to assess the image quality produced from any new hardware or software in MRI. A highly competitive No Reference - IQA (NR - IQA) model called Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) initially designed for natural images were modified to evaluate structural MR images. The BRISQUE model measures the image quality by using the locally normalized luminance coefficients, which were used to calculate the image features. The modified-BRISQUE model trained a new regression model using MR image features and Difference Mean Opinion Score (DMOS) from 775 MR images. Two types of benchmarks: objective and subjective assessments were used as performance evaluators for both original and modified-BRISQUE models. There was a high correlation between the modified-BRISQUE with both benchmarks, and they were higher than those for the original BRISQUE. There was a significant percentage improvement in their correlation values. The modified-BRISQUE was statistically better than the original BRISQUE. The modified-BRISQUE model can accurately measure the image quality of MR images. It is a practical NR-IQA model for MR images without using reference images. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Analysis of the imaging method for the assessment of the smile of laser diode bars

    International Nuclear Information System (INIS)

    Marti-Lopez, Luis; Ramos-de-Campos, Jose A.; Furlan, Walter D.

    2009-01-01

    Imaging systems designed for the assessment of the smile of laser diode bars (LDBs) are studied. The magnification matrix is derived from the required sampling period and the geometries of the LDB and the charge coupled device (CCD) array. These imaging systems present in-plane pure translation invariance, but lack in-plane rotation invariance. It is shown that the smile parameters of the image of the LDB are linked with the smile parameters of the LDB by simple mathematical expressions. The spatial resolution of such optical systems is estimated at about 1μm for a mean wavelength λ ∼ 800 nm and a fast axis divergence φ ∼ 20 o - 30 o . Our results suggest that imaging systems for LDB smile assessment can be used for assessing smile heights in the 1μm 10μm range. (Author)

  18. Imaging of primary central nervous system lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Y.Z., E-mail: yenzhitang@doctors.net.uk [Royal Free Hospital, London (United Kingdom); Booth, T.C.; Bhogal, P.; Malhotra, A.; Wilhelm, T. [Royal Free Hospital, London (United Kingdom)

    2011-08-15

    Primary central nervous system lymphoma (PCNSL) comprises 5% of all primary brain tumours. PCNSL demonstrates a variety of well-documented imaging findings, which can vary depending on immune status and histological type. Imaging features of PCNSL may overlap with other tumours and infection making definitive diagnosis challenging. In addition, several rare variants of PCNSL have been described, each with their own imaging characteristics. Advanced imaging techniques including 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose ({sup 18}FDG) and {sup 11}C positron-emission tomography (PET), {sup 201}Tl single-photon emission computed tomography (SPECT), {sup 1}H-magnetic resonance spectroscopy (MRS), and MR perfusion, have been used to aid differentiation of PCNSL from other tumours. Ultimately, no imaging method can definitively diagnose PCNSL, and histology is required.

  19. Expert System for ASIC Imaging

    Science.gov (United States)

    Gupta, Shri N.; Arshak, Khalil I.; McDonnell, Pearse; Boyce, Conor; Duggan, Andrew

    1989-07-01

    With the developments in the techniques of artificial intelligence over the last few years, development of advisory, scheduling and similar class of problems has become very convenient using tools such as PROLOG. In this paper an expert system has been described which helps lithographers and process engineers in several ways. The methodology used is to model each work station according to its input, output and control parameters, combine these work stations in a logical sequence based on past experience and work out process schedule for a job. In addition, all the requirements vis-a-vis a particular job parameters are converted into decision rules. One example is the exposure time, develop time for a wafer with different feature sizes would be different. This expert system has been written in Turbo Prolog. By building up a large number of rules, one can tune the program to any facility and use it for as diverse applications as advisory help, trouble shooting etc. Leitner (1) has described an advisory expert system that is being used at National Semiconductor. This system is quite different from the one being reported in the present paper. The approach is quite different for one. There is stress on job flow and process for another.

  20. Architecture Of High Speed Image Processing System

    Science.gov (United States)

    Konishi, Toshio; Hayashi, Hiroshi; Ohki, Tohru

    1988-01-01

    One of architectures for a high speed image processing system which corresponds to a new algorithm for a shape understanding is proposed. And the hardware system which is based on the archtecture was developed. Consideration points of the architecture are mainly that using processors should match with the processing sequence of the target image and that the developed system should be used practically in an industry. As the result, it was possible to perform each processing at a speed of 80 nano-seconds a pixel.

  1. Highly Protable Airborne Multispectral Imaging System

    Science.gov (United States)

    Lehnemann, Robert; Mcnamee, Todd

    2001-01-01

    A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.

  2. MIDAS - ESO's new image processing system

    Science.gov (United States)

    Banse, K.; Crane, P.; Grosbol, P.; Middleburg, F.; Ounnas, C.; Ponz, D.; Waldthausen, H.

    1983-03-01

    The Munich Image Data Analysis System (MIDAS) is an image processing system whose heart is a pair of VAX 11/780 computers linked together via DECnet. One of these computers, VAX-A, is equipped with 3.5 Mbytes of memory, 1.2 Gbytes of disk storage, and two tape drives with 800/1600 bpi density. The other computer, VAX-B, has 4.0 Mbytes of memory, 688 Mbytes of disk storage, and one tape drive with 1600/6250 bpi density. MIDAS is a command-driven system geared toward the interactive user. The type and number of parameters in a command depends on the unique parameter invoked. MIDAS is a highly modular system that provides building blocks for the undertaking of more sophisticated applications. Presently, 175 commands are available. These include the modification of the color-lookup table interactively, to enhance various image features, and the interactive extraction of subimages.

  3. Developing and validating a psychometric scale for image quality assessment

    International Nuclear Information System (INIS)

    Mraity, H.; England, A.; Hogg, P.

    2014-01-01

    Purpose: Using AP pelvis as a catalyst, this paper explains how a psychometric scale for image quality assessment can be created using Bandura's theory for self-efficacy. Background: Establishing an accurate diagnosis is highly dependent upon the quality of the radiographic image. Image quality, as a construct (i.e. set of attributes that makes up the image quality), continues to play an essential role in the field of diagnostic radiography. The process of assessing image quality can be facilitated by using criteria, such as the European Commission (EC) guidelines for quality criteria as published in 1996. However, with the advent of new technology (Computed Radiography and Digital Radiography), some of the EC criteria may no longer be suitable for assessing the visual quality of a digital radiographic image. Moreover, a lack of validated visual image quality scales in the literature can also lead to significant variations in image quality evaluation. Creating and validating visual image quality scales, using a robust methodology, could reduce variability and improve the validity and reliability of perceptual image quality evaluations

  4. No-reference visual quality assessment for image inpainting

    Science.gov (United States)

    Voronin, V. V.; Frantc, V. A.; Marchuk, V. I.; Sherstobitov, A. I.; Egiazarian, K.

    2015-03-01

    Inpainting has received a lot of attention in recent years and quality assessment is an important task to evaluate different image reconstruction approaches. In many cases inpainting methods introduce a blur in sharp transitions in image and image contours in the recovery of large areas with missing pixels and often fail to recover curvy boundary edges. Quantitative metrics of inpainting results currently do not exist and researchers use human comparisons to evaluate their methodologies and techniques. Most objective quality assessment methods rely on a reference image, which is often not available in inpainting applications. Usually researchers use subjective quality assessment by human observers. It is difficult and time consuming procedure. This paper focuses on a machine learning approach for no-reference visual quality assessment for image inpainting based on the human visual property. Our method is based on observation that Local Binary Patterns well describe local structural information of the image. We use a support vector regression learned on assessed by human images to predict perceived quality of inpainted images. We demonstrate how our predicted quality value correlates with qualitative opinion in a human observer study. Results are shown on a human-scored dataset for different inpainting methods.

  5. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in a uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation are discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  6. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in an uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation is discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  7. Magnetic resonance imaging assessment of labyrinthine pathology

    International Nuclear Information System (INIS)

    Marsot-Dupuch, K.; Vignaud, J.; Mehdi, M.; Pharaboz, C.; Meyer, B.

    1996-01-01

    Membranous labyrinth pathologies are quite rare. They were until recently difficult to demonstrate by imaging technics, CT being the modality of choice. Our purpose was to stress the interest of MR examination for investigating patients complaining of vertigo, tinnitus, and profound sensorineural hearing loss. Normal anatomy as well as the main pathologically encountered changes are illustrated. (orig.)

  8. Multimodality Imaging Assessment of Prosthetic Heart Valves

    NARCIS (Netherlands)

    Suchá, D.; Symersky, Petr; Tanis, W; Mali, Willem P Th M; Leiner, Tim; van Herwerden, LA; Budde, Ricardo P J

    Echocardiography and fluoroscopy are the main techniques for prosthetic heart valve (PHV) evaluation, but because of specific limitations they may not identify the morphological substrate or the extent of PHV pathology. Cardiac computed tomography (CT) and magnetic resonance imaging (MRI) have

  9. Magnetic resonance imaging assessment of labyrinthine pathology

    Energy Technology Data Exchange (ETDEWEB)

    Marsot-Dupuch, K [Hopital Saint-Antoine, Service de Radiologie, 75 - Paris (France); Vignaud, J [Val de Grace, Hopital d` Instruction du Service de Sante des Armees, 75 - Paris (France); Mehdi, M [Hopital Saint-Antoine, Service de Radiologie, 75 - Paris (France); Pharaboz, C [Hopital Begin, Hopital d` Instruction des Armees, 94 - Saint-Mande (France); Meyer, B [Hopital Saint-Antoine, Service d` ORL, 75 - Paris (France)

    1996-10-01

    Membranous labyrinth pathologies are quite rare. They were until recently difficult to demonstrate by imaging technics, CT being the modality of choice. Our purpose was to stress the interest of MR examination for investigating patients complaining of vertigo, tinnitus, and profound sensorineural hearing loss. Normal anatomy as well as the main pathologically encountered changes are illustrated. (orig.)

  10. Synthesized view comparison method for no-reference 3D image quality assessment

    Science.gov (United States)

    Luo, Fangzhou; Lin, Chaoyi; Gu, Xiaodong; Ma, Xiaojun

    2018-04-01

    We develop a no-reference image quality assessment metric to evaluate the quality of synthesized view rendered from the Multi-view Video plus Depth (MVD) format. Our metric is named Synthesized View Comparison (SVC), which is designed for real-time quality monitoring at the receiver side in a 3D-TV system. The metric utilizes the virtual views in the middle which are warped from left and right views by Depth-image-based rendering algorithm (DIBR), and compares the difference between the virtual views rendered from different cameras by Structural SIMilarity (SSIM), a popular 2D full-reference image quality assessment metric. The experimental results indicate that our no-reference quality assessment metric for the synthesized images has competitive prediction performance compared with some classic full-reference image quality assessment metrics.

  11. Detection rates in pediatric diagnostic imaging: a picture archive and communication system compared with a web-based imaging system

    International Nuclear Information System (INIS)

    McDonald, L.; Cramer, B.; Barrett, B.

    2006-01-01

    This prospective study assesses whether there are differences in accuracy of interpretation of diagnostic images among users of a picture archive and communication system (PACS) diagnostic workstation, compared with a less costly Web-based imaging system on a personal computer (PC) with a high resolution monitor. One hundred consecutive pediatric chest or abdomen and skeletal X-rays were selected from hospital inpatient and outpatient studies over a 5-month interval. They were classified as normal (n = 32), obviously abnormal (n = 33), or having subtle abnormal findings (n = 35) by 2 senior radiologists who reached a consensus for each individual case. Subsequently, 5 raters with varying degrees of experience independently viewed and interpreted the cases as normal or abnormal. Raters viewed each image 1 month apart on a PACS and on the Web-based PC imaging system. There was no relation between accuracy of detection and the system used to evaluate X-ray images (P = 0.92). The total percentage of incorrect interpretations on the Web-based PC imaging system was 23.2%, compared with 23.6% on the PACS (P = 0.92). For all raters combined, the overall difference in proportion assessed incorrectly on the PACS, compared with the PC system, was not significant at 0.4% (95%CI, -3.5% to 4.3%). The high-resolution Web-based imaging system via PC is an adequate alternative to a PACS clinical workstation. Accordingly, the provision of a more extensive network of workstations throughout the hospital setting could have potentially significant cost savings. (author)

  12. NMR imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Canby, R.C.; Evanochko, W.T.; Pohost, G.M.

    1986-01-01

    Proton nuclear magnetic resonance (NMR) imaging permits high-resolution tomographic and three-dimensional images of the human body to be obtained without exposure to ionizing radiation. Such imaging not only yields anatomic resolution comparable to X-ray examinations but also provides a potential means to discriminate between healthy tissue and diseased tissue. This potential is based on certain NMR properties known as relaxation times, which determine, in part, the signal intensity in an image. These properties are related to such factors as the sizes and concentrations of proteins and mobile lipids and the compartmentalization of the protons of water. Although NMR imaging (also called magnetic resonance imaging, MRI) is becoming widely available for clinical use, application to the cardiovascular system, though promising, remains primarily a research tool. Gated proton NMR imaging can generate cardiac images with excellent morphologic detail and contrast; however, its ultimate importance as a cardiovascular diagnostic modality will depend on the development of several unique applications. These applications are discussed in this paper

  13. Performance of a thermal neutron radiographic system using imaging plates

    International Nuclear Information System (INIS)

    Silvani, Maria Ines; Almeida, Gevaldo L. de; Furieri, Rosanne; Lopes, Ricardo T.

    2009-01-01

    A performance evaluation of a neutron radiographic system equipped with a thermal neutron sensitive imaging plate has been undertaken. It includes the assessment of spatial resolution, linearity, dynamic range and the response to exposure time, as well as a comparison of these parameters with the equivalent ones for neutron radiography employing conventional films and a gadolinium foil as converter. The evaluation and comparison between the radiographic systems have been performed at the Instituto de Engenharia Nuclear - CNEN, using the Argonauta Reactor as source of thermal neutrons and a commercially available imaging plate reader. (author)

  14. Whole-body imaging of the musculoskeletal system: the value of MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Gerwin P.; Reiser, Maximilian F.; Baur-Melnyk, Andrea [University Hospitals Munich/Grosshadern, LMU, Institute of Clinical Radiology, Munich (Germany)

    2007-12-15

    In clinical practice various modalities are used for whole-body imaging of the musculoskeletal system, including radiography, bone scintigraphy, computed tomography, magnetic resonance imaging (MRI), and positron emission tomography-computed tomography (PET-CT). Multislice CT is far more sensitive than radiographs in the assessment of trabecular and cortical bone destruction and allows for evaluation of fracture risk. The introduction of combined PET-CT scanners has markedly increased diagnostic accuracy for the detection of skeletal metastases compared with PET alone. The unique soft-tissue contrast of MRI enables for precise assessment of bone marrow infiltration and adjacent soft tissue structures so that alterations within the bone marrow may be detected before osseous destruction becomes apparent in CT or metabolic changes occur on bone scintigraphy or PET scan. Improvements in hard- and software, including parallel image acquisition acceleration, have made high resolution whole-body MRI clinically feasible. Whole-body MRI has successfully been applied for bone marrow screening of metastasis and systemic primary bone malignancies, like multiple myeloma. Furthermore, it has recently been proposed for the assessment of systemic bone diseases predisposing for malignancy (e.g., multiple cartilaginous exostoses) and muscle disease (e.g., muscle dystrophy). The following article gives an overview on state-of-the-art whole-body imaging of the musculoskeletal system and highlights present and potential future applications, especially in the field of whole-body MRI. (orig.)

  15. Image change detection systems, methods, and articles of manufacture

    Science.gov (United States)

    Jones, James L.; Lassahn, Gordon D.; Lancaster, Gregory D.

    2010-01-05

    Aspects of the invention relate to image change detection systems, methods, and articles of manufacture. According to one aspect, a method of identifying differences between a plurality of images is described. The method includes loading a source image and a target image into memory of a computer, constructing source and target edge images from the source and target images to enable processing of multiband images, displaying the source and target images on a display device of the computer, aligning the source and target edge images, switching displaying of the source image and the target image on the display device, to enable identification of differences between the source image and the target image.

  16. Magnetic resonance imaging assessment of the ventricular system in the brains of adult and juvenile beagle dogs treated with posaconazole IV Solution.

    Science.gov (United States)

    Hines, C D G; Song, X; Kuruvilla, S; Farris, G; Markgraf, C G

    2015-01-01

    Noxafil® (posaconazole; POS) is a potent, selective triazole antifungal approved for use in adults as an oral suspension, oral tablet and intravenous (IV) Solution. In support of pediatric administration of POS IV Solution to childrentwo years of age, two studies were undertaken using magnetic resonance imaging (MRI) to monitor brain ventricle size longitudinally during three months administration of POS IV in adult and juvenile dogs. Necropsy was performed on all animals at the end of the studies. From the baseline MRI images, great variability in ventricle size was noted in both the adult and juvenile dogs; these images were used to distribute differently sized ventricles between treatment and vehicle groups as to not skew group means during the course of the study. POS IV Solution had no effect on ventricle volume at any timepoint during dosing in either the adult or the juvenile dogs. Further, no gross or histomorphologic differences between groups were observed in either study. Compared to juvenile dogs, MRI analysis showed that adult dogs had larger ventricles, lower variability in all ventricle volumes, and a greater rate of increase in total ventricle volume. Information on growth and development of brains is one of the few areas in which more detailed information is available about humans than about the standard laboratory animals used to model disease and predict toxicities. The use of MRI helped elucidate large natural variabilities in the dog brain, which could have altered the interpretation of this de-risking study, and provided a valuable noninvasive means to monitor the brain ventricles longitudinally. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Thermoluminescence dosimetry in quality imaging in CR mammography systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaona, E.; Franco E, J.G. [UAM-Xochimilco, 04960 Mexico D.F. (Mexico); Azorin N, J. [UAM-Iztapalapa, 09340 Mexico D.F. (Mexico); Diaz G, J.A.I. [CICATA, Unidad Legaria, Av. Legaria 694, 11599 mexico D.F. (Mexico); Arreola, M. [Department of Radiology, Shands Hospital at UF, PO Box 100374, Gainesville, FL 32610-0374 (United States)

    2006-07-01

    The aim of this work is to estimate the average glandular dose with Thermoluminescence Dosimetry (TLD) and comparison with quality imaging in CR mammography. For measuring dose, FDA and ACR use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, Full Field Digital Mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one CR mammography system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium fluoro halide. We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated x-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose that overcomes 3.0 mGy and it doesn't improve the image quality and dose to the breast will be excessive. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement. (Author)

  18. Thermoluminescence dosimetry in quality imaging in CR mammography systems

    International Nuclear Information System (INIS)

    Gaona, E.; Franco E, J.G.; Azorin N, J.; Diaz G, J.A.I.; Arreola, M.

    2006-01-01

    The aim of this work is to estimate the average glandular dose with Thermoluminescence Dosimetry (TLD) and comparison with quality imaging in CR mammography. For measuring dose, FDA and ACR use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, Full Field Digital Mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one CR mammography system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium fluoro halide. We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated x-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose that overcomes 3.0 mGy and it doesn't improve the image quality and dose to the breast will be excessive. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement. (Author)

  19. Active gated imaging in driver assistance system

    Science.gov (United States)

    Grauer, Yoav

    2014-04-01

    In this paper, we shall present the active gated imaging system (AGIS) in relation to the automotive field. AGIS is based on a fast-gated camera and pulsed illuminator, synchronized in the time domain to record images of a certain range of interest. A dedicated gated CMOS imager sensor and near infra-red (NIR) pulsed laser illuminator, is presented in this paper to provide active gated technology. In recent years, we have developed these key components and learned the system parameters, which are most beneficial to nighttime (in all weather conditions) driving in terms of field of view, illumination profile, resolution, and processing power. We shall present our approach of a camera-based advanced driver assistance systems (ADAS) named BrightEye™, which makes use of the AGIS technology in the automotive field.

  20. Medium resolution image fusion, does it enhance forest structure assessment

    CSIR Research Space (South Africa)

    Roberts, JW

    2008-07-01

    Full Text Available This research explored the potential benefits of fusing optical and Synthetic Aperture Radar (SAR) medium resolution satellite-borne sensor data for forest structural assessment. Image fusion was applied as a means of retaining disparate data...

  1. Image Guidance and Assessment of Radiation Induced Gene Therapy

    National Research Council Canada - National Science Library

    Pelizzari, Charles

    2004-01-01

    Image guidance and assessment techniques are being developed for combined radiation/gene therapy, which utilizes a radiation-inducible gene promoter to cause expression of tumor necrosis factor alpha...

  2. Automatic system for quantification and visualization of lung aeration on chest computed tomography images: the Lung Image System Analysis - LISA

    Energy Technology Data Exchange (ETDEWEB)

    Felix, John Hebert da Silva; Cortez, Paulo Cesar, E-mail: jhsfelix@gmail.co [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia de Teleinformatica; Holanda, Marcelo Alcantara [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Hospital Universitario Walter Cantidio. Dept. de Medicina Clinica

    2010-12-15

    High Resolution Computed Tomography (HRCT) is the exam of choice for the diagnostic evaluation of lung parenchyma diseases. There is an increasing interest for computational systems able to automatically analyze the radiological densities of the lungs in CT images. The main objective of this study is to present a system for the automatic quantification and visualization of the lung aeration in HRCT images of different degrees of aeration, called Lung Image System Analysis (LISA). The secondary objective is to compare LISA to the Osiris system and also to specific algorithm lung segmentation (ALS), on the accuracy of the lungs segmentation. The LISA system automatically extracts the following image attributes: lungs perimeter, cross sectional area, volume, the radiological densities histograms, the mean lung density (MLD) in Hounsfield units (HU), the relative area of the lungs with voxels with density values lower than -950 HU (RA950) and the 15th percentile of the least density voxels (PERC15). Furthermore, LISA has a colored mask algorithm that applies pseudo-colors to the lung parenchyma according to the pre-defined radiological density chosen by the system user. The lungs segmentations of 102 images of 8 healthy volunteers and 141 images of 11 patients with Chronic Obstructive Pulmonary Disease (COPD) were compared on the accuracy and concordance among the three methods. The LISA was more effective on lungs segmentation than the other two methods. LISA's color mask tool improves the spatial visualization of the degrees of lung aeration and the various attributes of the image that can be extracted may help physicians and researchers to better assess lung aeration both quantitatively and qualitatively. LISA may have important clinical and research applications on the assessment of global and regional lung aeration and therefore deserves further developments and validation studies. (author)

  3. Automatic system for quantification and visualization of lung aeration on chest computed tomography images: the Lung Image System Analysis - LISA

    International Nuclear Information System (INIS)

    Felix, John Hebert da Silva; Cortez, Paulo Cesar; Holanda, Marcelo Alcantara

    2010-01-01

    High Resolution Computed Tomography (HRCT) is the exam of choice for the diagnostic evaluation of lung parenchyma diseases. There is an increasing interest for computational systems able to automatically analyze the radiological densities of the lungs in CT images. The main objective of this study is to present a system for the automatic quantification and visualization of the lung aeration in HRCT images of different degrees of aeration, called Lung Image System Analysis (LISA). The secondary objective is to compare LISA to the Osiris system and also to specific algorithm lung segmentation (ALS), on the accuracy of the lungs segmentation. The LISA system automatically extracts the following image attributes: lungs perimeter, cross sectional area, volume, the radiological densities histograms, the mean lung density (MLD) in Hounsfield units (HU), the relative area of the lungs with voxels with density values lower than -950 HU (RA950) and the 15th percentile of the least density voxels (PERC15). Furthermore, LISA has a colored mask algorithm that applies pseudo-colors to the lung parenchyma according to the pre-defined radiological density chosen by the system user. The lungs segmentations of 102 images of 8 healthy volunteers and 141 images of 11 patients with Chronic Obstructive Pulmonary Disease (COPD) were compared on the accuracy and concordance among the three methods. The LISA was more effective on lungs segmentation than the other two methods. LISA's color mask tool improves the spatial visualization of the degrees of lung aeration and the various attributes of the image that can be extracted may help physicians and researchers to better assess lung aeration both quantitatively and qualitatively. LISA may have important clinical and research applications on the assessment of global and regional lung aeration and therefore deserves further developments and validation studies. (author)

  4. Imaging and assessment of placental function.

    LENUS (Irish Health Repository)

    Moran, Mary

    2011-09-01

    The placenta is the vital support organ for the developing fetus. This article reviews current ultrasound (US) methods of assessing placental function. The ability of ultrasound to detect placental pathology is discussed. Doppler technology to investigate the fetal, placental, and maternal circulations in both high-risk and uncomplicated pregnancies is discussed and the current literature on the value of three-dimensional power Doppler studies to assess placental volume and vascularization is also evaluated. The article highlights the need for further research into three-dimensional ultrasound and alternative methods of placental evaluation if progress is to be made in optimizing placental function assessment.

  5. Consultation system for image diagnosis: Report formation support system

    International Nuclear Information System (INIS)

    Ikeda, M.; Sakuma, S.; Ishigaki, T.; Suzuki, K.; Oikawa, K.

    1987-01-01

    The authors developed a consultation system for image diagnosis, involving artificial intelligence ideas. In this system, the authors proposed a new report formation support system and implemented it in lymphangiography. This support system starts with the input of image interpretation. The input process is made mainly by selecting items. This system encodes the input findings into the semantic network, which is represented as a directed graph, and it reserves them into the knowledge database in the above structure. Finally, the output (report) is made in the near natural language, which corresponds to the input findings

  6. Fiber optic neutron imaging system: calibration

    International Nuclear Information System (INIS)

    Malone, R.M.; Gow, C.E.; Thayer, D.R.

    1981-01-01

    Two neutron imaging experiments using fiber optics have been performed at the Nevada Test Site. In each experiment, an array of scintillator fluor tubes is exposed to neutrons. Light is coupled out through radiation resistant PCS fibers (8-m long) into high-bandwidth, graded index fibers. For image reconstruction to be accurate, common timing differences and transmission variations between fiber optic channels are needed. The calibration system featured a scanning pulsed dye laser, a specially designed fiber optic star coupler, a tektronix 7912AD transient digitizer, and a DEC PDP 11/34 computing system

  7. X-ray image subtracting system

    International Nuclear Information System (INIS)

    Wesbey, W.H.; Keyes, G.S.; Georges, J.-P.J.

    1982-01-01

    An X-ray image subtracting system for making low contrast structures in the images more conspicuous is described. An X-ray source projects successive high and low energy X-ray beam pulses through a body and the resultant X-ray images are converted to optical images. Two image pick-up devices such as TV cameras that have synchronously operated shutters receive the alternate images and convert them to corresponding analog video signals. In some embodiments, the analog signals are converted to a matrix of digital pixel signals that are variously processed and subtracted and converted to signals for driving a TV monitor display and analog storage devices. In other embodiments the signals are processed and subtracted in analog form for display. The high and low energy pulses can follow each other immediately so good registration between subtracted images is obtainable even though the anatomy is in motion. The energy levels of the X-ray pulses are chosen to maximize the difference in attenuation between the anatomical structure which is to be subtracted out and that which remains. (author)

  8. Using a web-based image quality assurance reporting system to improve image quality.

    Science.gov (United States)

    Czuczman, Gregory J; Pomerantz, Stuart R; Alkasab, Tarik K; Huang, Ambrose J

    2013-08-01

    The purpose of this study is to show the impact of a web-based image quality assurance reporting system on the rates of three common image quality errors at our institution. A web-based image quality assurance reporting system was developed and used beginning in April 2009. Image quality endpoints were assessed immediately before deployment (period 1), approximately 18 months after deployment of a prototype reporting system (period 2), and approximately 12 months after deployment of a subsequent upgraded department-wide reporting system (period 3). A total of 3067 axillary shoulder radiographs were reviewed for correct orientation, 355 shoulder CT scans were reviewed for correct reformatting of coronal and sagittal images, and 346 sacral MRI scans were reviewed for correct acquisition plane of axial images. Error rates for each review period were calculated and compared using the Fisher exact test. Error rates of axillary shoulder radiograph orientation were 35.9%, 7.2%, and 10.0%, respectively, for the three review periods. The decrease in error rate between periods 1 and 2 was statistically significant (p < 0.0001). Error rates of shoulder CT reformats were 9.8%, 2.7%, and 5.8%, respectively, for the three review periods. The decrease in error rate between periods 1 and 2 was statistically significant (p = 0.03). Error rates for sacral MRI axial sequences were 96.5%, 32.5%, and 3.4%, respectively, for the three review periods. The decrease in error rates between periods 1 and 2 and between periods 2 and 3 was statistically significant (p < 0.0001). A web-based system for reporting image quality errors may be effective for improving image quality.

  9. Flexibility analysis in adolescent idiopathic scoliosis on side-bending images using the EOS imaging system.

    Science.gov (United States)

    Hirsch, C; Ilharreborde, B; Mazda, K

    2016-06-01

    Analysis of preoperative flexibility in adolescent idiopathic scoliosis (AIS) is essential to classify the curves, determine their structurality, and select the fusion levels during preoperative planning. Side-bending x-rays are the gold standard for the analysis of preoperative flexibility. The objective of this study was to examine the feasibility and performance of side-bending images taken in the standing position using the EOS imaging system. All patients who underwent preoperative assessment between April 2012 and January 2013 for AIS were prospectively included in the study. The work-up included standing AP and lateral EOS x-rays of the spine, standard side-bending x-rays in the supine position, and standing bending x-rays in the EOS booth. The irradiation dose was measured for each of the tests. Two-dimensional reducibility of the Cobb angle was measured on both types of bending x-rays. The results were based on the 50 patients in the study. No significant difference was demonstrated for reducibility of the Cobb angle between the standing side-bending images with the EOS imaging system and those in the supine position for all types of Lenke deformation. The irradiation dose was five times lower during the EOS bending imaging. The standing side-bending images in the EOS device contributed the same results as the supine images, with five times less irradiation. They should therefore be used in clinical routine. 2. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Comparative evaluation of image quality in computed radiology systems using imaging plates with different usage time

    International Nuclear Information System (INIS)

    Lazzaro, M.V.; Luz, R.M. da; Capaverde, A.S.; Silva, A.M. Marques da

    2015-01-01

    Computed Radiology (CR) systems use imaging plates (IPs) for latent image acquisition. Taking into account the quality control (QC) of these systems, imaging plates usage time is undetermined. Different recommendations and publications on the subject suggest tests to evaluate these systems. The objective of this study is to compare the image quality of IPs of a CR system, in a mammography service, considering the usage time and consistency of assessments. 8 IPs were used divided into two groups: the first group included 4 IPs with 3 years of use (Group A); the second group consisted of 4 new IPs with no previous exposure (Group B). The tests used to assess the IP's quality were: Uniformity, Differential Signal to Noise Ratio (SDNR), Ghost Effect and Figure of Merit (FOM). Statistical results show that the proposed tests are shown efficient in assessing the conditions of image quality obtained in CR systems in mammography and can be used as determining factors for the replacement of IP's. Moreover, comparing the two sets of IP, results led to the replacement of all the set of IP’s with 3 years of use. This work demonstrates the importance of an efficient quality control, not only with regard to the quality of IP's used, but in the acquisition system as a whole. From this work, these tests will be conducted on an annual basis, already targeting as future work, monitoring the wear of IP's Group B and the creation of a baseline for analysis and future replacements. (author)

  11. Advances in Small Animal Imaging Systems

    International Nuclear Information System (INIS)

    Loudos, George K.

    2007-01-01

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided

  12. Quantitative risk assessment system (QRAS)

    Science.gov (United States)

    Weinstock, Robert M (Inventor); Smidts, Carol S (Inventor); Mosleh, Ali (Inventor); Chang, Yung-Hsien (Inventor); Swaminathan, Sankaran (Inventor); Groen, Francisco J (Inventor); Tan, Zhibin (Inventor)

    2001-01-01

    A quantitative risk assessment system (QRAS) builds a risk model of a system for which risk of failure is being assessed, then analyzes the risk of the system corresponding to the risk model. The QRAS performs sensitivity analysis of the risk model by altering fundamental components and quantifications built into the risk model, then re-analyzes the risk of the system using the modifications. More particularly, the risk model is built by building a hierarchy, creating a mission timeline, quantifying failure modes, and building/editing event sequence diagrams. Multiplicities, dependencies, and redundancies of the system are included in the risk model. For analysis runs, a fixed baseline is first constructed and stored. This baseline contains the lowest level scenarios, preserved in event tree structure. The analysis runs, at any level of the hierarchy and below, access this baseline for risk quantitative computation as well as ranking of particular risks. A standalone Tool Box capability exists, allowing the user to store application programs within QRAS.

  13. Parallel asynchronous systems and image processing algorithms

    Science.gov (United States)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science.

  14. Online hyperspectral imaging system for evaluating quality of agricultural products

    Science.gov (United States)

    Mo, Changyeun; Kim, Giyoung; Lim, Jongguk

    2017-06-01

    The consumption of fresh-cut agricultural produce in Korea has been growing. The browning of fresh-cut vegetables that occurs during storage and foreign substances such as worms and slugs are some of the main causes of consumers' concerns with respect to safety and hygiene. The purpose of this study is to develop an on-line system for evaluating quality of agricultural products using hyperspectral imaging technology. The online evaluation system with single visible-near infrared hyperspectral camera in the range of 400 nm to 1000 nm that can assess quality of both surfaces of agricultural products such as fresh-cut lettuce was designed. Algorithms to detect browning surface were developed for this system. The optimal wavebands for discriminating between browning and sound lettuce as well as between browning lettuce and the conveyor belt were investigated using the correlation analysis and the one-way analysis of variance method. The imaging algorithms to discriminate the browning lettuces were developed using the optimal wavebands. The ratio image (RI) algorithm of the 533 nm and 697 nm images (RI533/697) for abaxial surface lettuce and the ratio image algorithm (RI533/697) and subtraction image (SI) algorithm (SI538-697) for adaxial surface lettuce had the highest classification accuracies. The classification accuracy of browning and sound lettuce was 100.0% and above 96.0%, respectively, for the both surfaces. The overall results show that the online hyperspectral imaging system could potentially be used to assess quality of agricultural products.

  15. Breast imaging reporting and data system (BI-RADS) US lexicon and final assessment category for solid breast masses: the rates of inter-and intraobserver agreement

    International Nuclear Information System (INIS)

    Lee, Eun Hye; Cha, Joo Hee; Koh, Young Hwan; Youn, Byung Jae; Cho, Byung Jae; Moon, Woo Kyung

    2007-01-01

    To evaluate the rates of inter-and intraobserver agreement of the BI-RADS US lexicon. Two radiologists reviewed 60 sonograms of solid breast masses to evaluate interobserver agreement. After four weeks, the radiologists reinterpreted the series to evaluate the intraobserver agreement. The radiologists described shape, orientation, margin, lesion boundary, echo pattern, posterior acoustic features and microcalcifications. Final assessment categories and management plans were suggested for each case. The rates of inter-and intraobserver agreements were measured by the use of kappa statistics. Interobserver agreement ranged from the highest for orientation (κ = 0.65) and shape (κ = 0.61) to the lowest for posterior acoustic features (κ = 0.42). For the final assessment categories (κ = 0.46) and management (κ = 0.49), interobserver agreement were moderate. Intraobserver agreement ranged from the highest for microcalcifications in mass (κ = 0.90, 0.82) and orientation (κ 0.87, 0.83) and the lowest for echo patterns (κ = 0.62, 0.57) and posterior acoustic features (κ = 0.59, 0.65). In the final assessment category and management, intraobserver agreements were substantial or nearly complete (κ = 0.65-0.83). There were variable raged inter-and intraobserver agreements in the description of the BI-RADS US lexicon of solid breast masses. Among them, margin and lesion boundary showed lower agreements. A modification of the BI-RADS US lexicon with more detailed guidelines, followed by continuous education, are suggested

  16. Corral Monitoring System assessment results

    International Nuclear Information System (INIS)

    Filby, E.E.; Haskel, K.J.

    1998-03-01

    This report describes the results of a functional and operational assessment of the Corral Monitoring Systems (CMS), which was designed to detect and document accountable items entering or leaving a monitored site. Its development was motivated by the possibility that multiple sites in the nuclear weapons states of the former Soviet Union might be opened to such monitoring under the provisions of the Strategic Arms Reduction Treaty. The assessment was performed at three levels. One level evaluated how well the planned approach addressed the target application, and which involved tracking sensitive items moving into and around a site being monitored as part of an international treaty or other agreement. The second level examined the overall design and development approach, while the third focused on individual subsystems within the total package. Unfortunately, the system was delivered as disassembled parts and pieces, with very poor documentation. Thus, the assessment was based on fragmentary operating data coupled with an analysis of what documents were provided with the system. The system design seemed to be a reasonable match to the requirements of the target application; however, important questions about site manning and top level administrative control were left unanswered. Four weaknesses in the overall design and development approach were detected: (1) poor configuration control and management, (2) inadequate adherence to a well defined architectural standard, (3) no apparent provision for improving top level error tolerance, and (4) weaknesses in the object oriented programming approach. The individual subsystems were found to offer few features or capabilities that were new or unique, even at the conceptual level. The CMS might possibly have offered a unique combination of features, but this level of integration was never realized, and it had no unique capabilities that could be readily extracted for use in another system

  17. Corral Monitoring System assessment results

    Energy Technology Data Exchange (ETDEWEB)

    Filby, E.E.; Haskel, K.J.

    1998-03-01

    This report describes the results of a functional and operational assessment of the Corral Monitoring Systems (CMS), which was designed to detect and document accountable items entering or leaving a monitored site. Its development was motivated by the possibility that multiple sites in the nuclear weapons states of the former Soviet Union might be opened to such monitoring under the provisions of the Strategic Arms Reduction Treaty. The assessment was performed at three levels. One level evaluated how well the planned approach addressed the target application, and which involved tracking sensitive items moving into and around a site being monitored as part of an international treaty or other agreement. The second level examined the overall design and development approach, while the third focused on individual subsystems within the total package. Unfortunately, the system was delivered as disassembled parts and pieces, with very poor documentation. Thus, the assessment was based on fragmentary operating data coupled with an analysis of what documents were provided with the system. The system design seemed to be a reasonable match to the requirements of the target application; however, important questions about site manning and top level administrative control were left unanswered. Four weaknesses in the overall design and development approach were detected: (1) poor configuration control and management, (2) inadequate adherence to a well defined architectural standard, (3) no apparent provision for improving top level error tolerance, and (4) weaknesses in the object oriented programming approach. The individual subsystems were found to offer few features or capabilities that were new or unique, even at the conceptual level. The CMS might possibly have offered a unique combination of features, but this level of integration was never realized, and it had no unique capabilities that could be readily extracted for use in another system.

  18. The art of assessing quality for images and video

    International Nuclear Information System (INIS)

    Deriche, M.

    2011-01-01

    The early years of this century have witnessed a tremendous growth in the use of digital multimedia data for di?erent communication applications. Researchers from around the world are spending substantial research efforts in developing techniques for improving the appearance of images/video. However, as we know, preserving high quality is a challenging task. Images are subject to distortions during acquisition, compression, transmission, analysis, and reconstruction. For this reason, the research area focusing on image and video quality assessment has attracted a lot of attention in recent years. In particular, compression applications and other multimedia applications need powerful techniques for evaluating quality objectively without human interference. This tutorial will cover the di?erent faces of image quality assessment. We will motivate the need for robust image quality assessment techniques, then discuss the main algorithms found in the literature with a critical perspective. We will present the di?erent metrics used for full reference, reduced reference and no reference applications. We will then discuss the difference between image and video quality assessment. In all of the above, we will take a critical approach to explain which metric can be used for which application. Finally we will discuss the different approaches to analyze the performance of image/video quality metrics, and end the tutorial with some perspectives on newly introduced metrics and their potential applications.

  19. Semiautomatic digital imaging system for cytogenetic analysis

    International Nuclear Information System (INIS)

    Chaubey, R.C.; Chauhan, P.C.; Bannur, S.V.; Kulgod, S.V.; Chadda, V.K.; Nigam, R.K.

    1999-08-01

    The paper describes a digital image processing system, developed indigenously at BARC for size measurement of microscopic biological objects such as cell, nucleus and micronucleus in mouse bone marrow; cytochalasin-B blocked human lymphocytes in-vitro; numerical counting and karyotyping of metaphase chromosomes of human lymphocytes. Errors in karyotyping of chromosomes by the imaging system may creep in due to lack of well-defined position of centromere or extensive bending of chromosomes, which may result due to poor quality of preparation. Good metaphase preparations are mandatory for precise and accurate analysis by the system. Additional new morphological parameters about each chromosome have to be incorporated to improve the accuracy of karyotyping. Though the experienced cytogenetisist is the final judge; however, the system assists him/her to carryout analysis much faster as compared to manual scoring. Further, experimental studies are in progress to validate different software packages developed for various cytogenetic applications. (author)

  20. Imaging of the fetal central nervous system

    NARCIS (Netherlands)

    Pistorius, L.R.

    2008-01-01

    Introduction : Ultrasound and MR imaging of the fetal central nervous system (CNS) develop at an ever-increasing rate. Theoretically, the two modalities should be synergistic, but a literature review revealed the difficulties of determining the merit of either technique and revealed gaps in our

  1. A recommender system for medical imaging diagnostic.

    Science.gov (United States)

    Monteiro, Eriksson; Valente, Frederico; Costa, Carlos; Oliveira, José Luís

    2015-01-01

    The large volume of data captured daily in healthcare institutions is opening new and great perspectives about the best ways to use it towards improving clinical practice. In this paper we present a context-based recommender system to support medical imaging diagnostic. The system relies on data mining and context-based retrieval techniques to automatically lookup for relevant information that may help physicians in the diagnostic decision.

  2. Spatial structure of the zooplankton community in the coastal upwelling system off central-southern Chile in spring 2004 as assessed by automated image analysis

    Science.gov (United States)

    Manríquez, Karen; Escribano, Ruben; Riquelme-Bugueño, Ramiro

    2012-01-01

    Size spectra of the mesozooplankton community was studied under the influence of coastal upwelling during austral spring 2004 in the coastal upwelling zone off central-southern Chile. Size spectra were derived from the ZooImage analysis of digitalized zooplankton samples obtained from the upper 200 m during a survey carried out under active upwelling (November 2004). An upwelling filament extended up to 180 km offshore, and the upper boundary of the oxygen minimum zone (1 mL O 2 L -1) varied between 20 m (nearshore) and 300 m depth (oceanic). The community descriptors (slope of the size spectra, size class index, abundance of size classes) were derived from the size spectra. Stepwise multiple regression analysis found significant correlations between these descriptors and oceanographic variables (temperature, dissolved oxygen, chlorophyll-a, OMZ depth). These data suggest an upwelling-dependent zooplankton distribution characterized by aggregations in a mid-shelf zone, where the log-normalized size spectra become flatter due to an increased abundance of larger size classes (>3 mm). In contrast, the inshore and offshore zones were dominated by small (zone coincided with moderate levels of chlorophyll-a (ca. 1 μg L -1) and the OMZ depth near 200 m. These spatial patterns and slopes of the size spectra however, were subjected to a significant day vs. night effect mostly explained by the diel vertical migration of the euphausiid Euphausia mucronata. This migration can descend below 200 m during the daylight, causing the larger size classes to disappear from the size spectrum and resulting in a steeper slope. Time-dependent effects must, therefore, be considered when examining the spatial patterns of zooplankton in coastal upwelling zones.

  3. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    International Nuclear Information System (INIS)

    Chen, Q G; Xu, Y; Zhu, H H; Chen, H; Lin, B

    2015-01-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565–750 nm. The spectral parameter, defined as the ratio of wavebands at 565–750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as <0.66, 0.66–1.06, 1.06–1.62, and >1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems. (paper)

  4. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    Science.gov (United States)

    Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.

    2015-08-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as 1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.

  5. Assessing microscope image focus quality with deep learning.

    Science.gov (United States)

    Yang, Samuel J; Berndl, Marc; Michael Ando, D; Barch, Mariya; Narayanaswamy, Arunachalam; Christiansen, Eric; Hoyer, Stephan; Roat, Chris; Hung, Jane; Rueden, Curtis T; Shankar, Asim; Finkbeiner, Steven; Nelson, Philip

    2018-03-15

    Large image datasets acquired on automated microscopes typically have some fraction of low quality, out-of-focus images, despite the use of hardware autofocus systems. Identification of these images using automated image analysis with high accuracy is important for obtaining a clean, unbiased image dataset. Complicating this task is the fact that image focus quality is only well-defined in foreground regions of images, and as a result, most previous approaches only enable a computation of the relative difference in quality between two or more images, rather than an absolute measure of quality. We present a deep neural network model capable of predicting an absolute measure of image focus on a single image in isolation, without any user-specified parameters. The model operates at the image-patch level, and also outputs a measure of prediction certainty, enabling interpretable predictions. The model was trained on only 384 in-focus Hoechst (nuclei) stain images of U2OS cells, which were synthetically defocused to one of 11 absolute defocus levels during training. The trained model can generalize on previously unseen real Hoechst stain images, identifying the absolute image focus to within one defocus level (approximately 3 pixel blur diameter difference) with 95% accuracy. On a simpler binary in/out-of-focus classification task, the trained model outperforms previous approaches on both Hoechst and Phalloidin (actin) stain images (F-scores of 0.89 and 0.86, respectively over 0.84 and 0.83), despite only having been presented Hoechst stain images during training. Lastly, we observe qualitatively that the model generalizes to two additional stains, Hoechst and Tubulin, of an unseen cell type (Human MCF-7) acquired on a different instrument. Our deep neural network enables classification of out-of-focus microscope images with both higher accuracy and greater precision than previous approaches via interpretable patch-level focus and certainty predictions. The use of

  6. MATLAB-based Applications for Image Processing and Image Quality Assessment – Part II: Experimental Results

    Directory of Open Access Journals (Sweden)

    L. Krasula

    2012-04-01

    Full Text Available The paper provides an overview of some possible usage of the software described in the Part I. It contains the real examples of image quality improvement, distortion simulations, objective and subjective quality assessment and other ways of image processing that can be obtained by the individual applications.

  7. Radiographic imaging system for high energy radiation

    International Nuclear Information System (INIS)

    1975-01-01

    A radiographic imaging system for high energy radiation is described utilizing a detector of such radiation and a mask having regions relatively transparent to such radiation and interspersed among regions relatively opaque to such radiation. A relative motion is imparted between the mask and the detector, the detector providing a time varying signal in response to the incident radiation and in response to the relative motion. The time varying signal provides, with the aid of a decoder, an image of a source of such radiation

  8. Penn State astronomical image processing system

    International Nuclear Information System (INIS)

    Truax, R.J.; Nousek, J.A.; Feigelson, E.D.; Lonsdale, C.J.

    1987-01-01

    The needs of modern astronomy for image processing set demanding standards in simultaneously requiring fast computation speed, high-quality graphic display, large data storage, and interactive response. An innovative image processing system was designed, integrated, and used; it is based on a supermicro architecture which is tailored specifically for astronomy, which provides a highly cost-effective alternative to the traditional minicomputer installation. The paper describes the design rationale, equipment selection, and software developed to allow other astronomers with similar needs to benefit from the present experience. 9 references

  9. Radiographic imaging system for high energy radiation

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1976-01-01

    A radiographic imaging system for high energy radiation utilizing a detector of such radiation and a mask having regions relatively transparent to such radiation interspersed among regions relatively opaque to such radiation is described. A relative motion is imparted between the mask and the detector, the detector providing a time varying signal in response to the incident radiation and in response to the relative motion. The time varying signal provides, with the aid of a decoder, an image of a source of such radiation

  10. Brain MR imaging of systemic lupus erythematodes

    International Nuclear Information System (INIS)

    Kobayashi, Satoshi; Suzuki, Masayuki; Ueda, Fumiaki; Arai, Kazunori; Kobayashi, Takeshi; Kadoya, Masumi; Matsui, Osamu; Takashima, Tsutomu

    1996-01-01

    Brain MR imaging of 13 patients with systemic lupus erythematodus (SLE) were reviewed. Two major findings was obtained. One was deep white matter hyperintensity (DWMH) and periventricular hyperintensity (PVH), the other was cerebral infarction. In comparison with the same age group, relatively severe brain atrophy was also observed. It was thought that these findings were induced from the vasculitis caused by SLE. However, the influence of the steroid therapy could not be excluded. No definite correlation between MR findings and clinical symptoms were seen. In conclusion, when we interpret brain MR imaging of the patients with SLE, special attention should be paid to their age. (author)

  11. Image registration assessment in radiotherapy image guidance based on control chart monitoring.

    Science.gov (United States)

    Xia, Wenyao; Breen, Stephen L

    2018-04-01

    Image guidance with cone beam computed tomography in radiotherapy can guarantee the precision and accuracy of patient positioning prior to treatment delivery. During the image guidance process, operators need to take great effort to evaluate the image guidance quality before correcting a patient's position. This work proposes an image registration assessment method based on control chart monitoring to reduce the effort taken by the operator. According to the control chart plotted by daily registration scores of each patient, the proposed method can quickly detect both alignment errors and image quality inconsistency. Therefore, the proposed method can provide a clear guideline for the operators to identify unacceptable image quality and unacceptable image registration with minimal effort. Experimental results demonstrate that by using control charts from a clinical database of 10 patients undergoing prostate radiotherapy, the proposed method can quickly identify out-of-control signals and find special cause of out-of-control registration events.

  12. A Gimbal-Stabilized Compact Hyperspectral Imaging System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Gimbal-stabilized Compact Hyperspectral Imaging System (GCHIS) fully integrates multi-sensor spectral imaging, stereovision, GPS and inertial measurement,...

  13. Web Based Distributed Coastal Image Analysis System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project develops Web based distributed image analysis system processing the Moderate Resolution Imaging Spectroradiometer (MODIS) data to provide decision...

  14. Imaging assessment of vertebral burst fracture

    International Nuclear Information System (INIS)

    Ding Jianlin; Liang Lihua; Wang Yujia

    2006-01-01

    Objective: To investigate the diagnostic value of radiography, CT and MRI in diagnosis of vertebral burst fracture. Methods: 51 patients with vertebral burst fracture were evaluated with X-ray, CT and MRI, including 3 cases in cervical vertebra, 18 cases in thoracic vertebra, and 30 cases in lumbar vertebra. The imaging features were comparatively studied. Results: Radiography showed decreased height of the vertebral body, increased antero-posterior diameter and the transverse diameter, and/or the widened interpedicle distance, the inter-spinous distance, as well as the bony fragment inserted into the vertebral canal in 28 cases(54.90%). X-ray findings similar to the compression fracture were revealed in 20 cases(39.21%). And missed diagnosis was made in 3 cases (5.88%). CT clearly demon-strated the vertebral body vertically or transversely burst crack in 49 cases (96.07%); bony fragment inserted into the vertebral canal and narrowed vertebral canal in 35 cases(68. 62% ); fracture of spinal appendix in 22 cases(43.14%). Meanwhile MRI showed abnormal signals within the spinal cord in 35 cases (68.62%),injured intervertebral disk in 29 cases(56.86% ), extradural hematoma in 12 cases(23.52% ) and torn posterior longitudinal ligament in 6 cases (11.76%). Conclusions: Radiography is the routine examination, while with limited diagnostic value in vertebral burst fracture. These patients who have nervous symptoms with simple compression fracture or unremarkable on X-ray should receive the CT or MRI examination. CT is better than MRI in demonstrating the fracture and the displaced bony fragment, while MRI is superior to CT in showing nervous injuries. CT and MRI will provide comprehensive information guiding clinical treatment of vertebral burst fracture. (authors)

  15. Scattered radiation in fan beam imaging systems

    International Nuclear Information System (INIS)

    Johns, P.C.; Yaffe, M.

    1982-01-01

    Scatter-to-primary energy fluence ratios (S/P) have been studied for fan x-ray beams as used in CT scanners and slit projection radiography systems. The dependence of S/P on phantom diameter, distance from phantom to image receptor, and kilovoltage is presented. An empirical equation is given that predicts S/P over a wide range of fan beam imaging configurations. For CT body scans on a 4th-generation machine, S/P is approximately 5%. Scattered radiation can produce a significant cupping artefact in CT images which is similar to that due to beam hardening. When multiple slices are used in scanned slit radiography, they can be arranged such that the increase in S/P is negligible. Calculations of scatter-to-primary ratios for first order scattering showed that for fan beams the contribution of coherent scatter is comparable to or greater than that of incoherent first scatter

  16. System Matrix Analysis for Computed Tomography Imaging

    Science.gov (United States)

    Flores, Liubov; Vidal, Vicent; Verdú, Gumersindo

    2015-01-01

    In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data. PMID:26575482

  17. ESIM: Edge Similarity for Screen Content Image Quality Assessment.

    Science.gov (United States)

    Ni, Zhangkai; Ma, Lin; Zeng, Huanqiang; Chen, Jing; Cai, Canhui; Ma, Kai-Kuang

    2017-10-01

    In this paper, an accurate full-reference image quality assessment (IQA) model developed for assessing screen content images (SCIs), called the edge similarity (ESIM), is proposed. It is inspired by the fact that the human visual system (HVS) is highly sensitive to edges that are often encountered in SCIs; therefore, essential edge features are extracted and exploited for conducting IQA for the SCIs. The key novelty of the proposed ESIM lies in the extraction and use of three salient edge features-i.e., edge contrast, edge width, and edge direction. The first two attributes are simultaneously generated from the input SCI based on a parametric edge model, while the last one is derived directly from the input SCI. The extraction of these three features will be performed for the reference SCI and the distorted SCI, individually. The degree of similarity measured for each above-mentioned edge attribute is then computed independently, followed by combining them together using our proposed edge-width pooling strategy to generate the final ESIM score. To conduct the performance evaluation of our proposed ESIM model, a new and the largest SCI database (denoted as SCID) is established in our work and made to the public for download. Our database contains 1800 distorted SCIs that are generated from 40 reference SCIs. For each SCI, nine distortion types are investigated, and five degradation levels are produced for each distortion type. Extensive simulation results have clearly shown that the proposed ESIM model is more consistent with the perception of the HVS on the evaluation of distorted SCIs than the multiple state-of-the-art IQA methods.

  18. A PET imaging system dedicated to mammography

    CERN Document Server

    Varela, J

    2007-01-01

    The imaging system Clear-PEM for positron emission mammography, under development within the framework of the Crystal Clear Collaboration at CERN, is presented. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes (APD) and readout by a fast low-noise electronic system. A dedicated digital trigger and data acquisition system is used for on-line selection of coincidence events with high efficiency, large bandwidth and negligible dead-time. The detector module performance was characterized in detail.

  19. An investigation of cerebrograph imaging system

    International Nuclear Information System (INIS)

    Chen Lianxiang; Zhang Qingling; Wang Xinhui; Luo Qikun

    1994-01-01

    A cerebrograph imaging system was investigated for the diagnosis of cerebrovascular diseases. This system can quantitatively analyse and map the regional cerebral blood flow (rCBF) and also the electroencephalography (EEG). The mapping of cerebellum-brain stem area was also realized. This system is the first one to combine the technology of nuclear medicine with electrophysiology, and thereby provide a combined information about the rCBF and the function of brain with coloured rCBF mapping, topographical EEG mapping and quantitative data at the same time. It has important value for the early diagnosis of brain diseases, especially for the cerebral vascular accident

  20. ICF's Plant Compliance Assessment System

    International Nuclear Information System (INIS)

    Baker, S.M.

    1989-01-01

    Government and private industrial facilities must manage wastes that are both radioactive and (chemically) hazardous. Until recently, these mixed wastes have been managed under rules established under the Atomic Energy Act (AEA) and the Low-Level Waste Policy At, and rules that derive from environmental legislation have not been applied. Both sets of rules now apply to mixed wastes, creating situations in which significant changes to waste steams must be made in order to bring them into compliance with environmental regulations. The first step in bringing waste streams into compliance is to determine their status with respect to the newly-applicable regulations. This process of compliance assessment is difficult because requirements to minimize human exposure to radiation can conflict with requirements of environmental regulations, many regulations are potentially applicable, the regulations are changing rapidly, and because waste streams designed to operate under AEA rules frequently cannot be easily modified to incorporate the additional regulations. Modern personal computer (PC) tools are being developed to help regulatory analysts manage the large amounts of information required to asses the compliance status of complex process plants. This paper presents the Plant Compliance Assessment System (PCAS), which performs this function by relating a database containing references to regulatory requirements to databases created to describe relevant aspects of the facility to be assessed

  1. Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images.

    Science.gov (United States)

    Kwan, Chiman; Zhu, Xiaolin; Gao, Feng; Chou, Bryan; Perez, Daniel; Li, Jiang; Shen, Yuzhong; Koperski, Krzysztof; Marchisio, Giovanni

    2018-03-31

    Although Worldview-2 (WV) images (non-pansharpened) have 2-m resolution, the re-visit times for the same areas may be seven days or more. In contrast, Planet images are collected using small satellites that can cover the whole Earth almost daily. However, the resolution of Planet images is 3.125 m. It would be ideal to fuse these two satellites images to generate high spatial resolution (2 m) and high temporal resolution (1 or 2 days) images for applications such as damage assessment, border monitoring, etc. that require quick decisions. In this paper, we evaluate three approaches to fusing Worldview (WV) and Planet images. These approaches are known as Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal Data Fusion (FSDAF), and Hybrid Color Mapping (HCM), which have been applied to the fusion of MODIS and Landsat images in recent years. Experimental results using actual Planet and Worldview images demonstrated that the three aforementioned approaches have comparable performance and can all generate high quality prediction images.

  2. Intelligence, mapping, and geospatial exploitation system (IMAGES)

    Science.gov (United States)

    Moellman, Dennis E.; Cain, Joel M.

    1998-08-01

    This paper provides further detail to one facet of the battlespace visualization concept described in last year's paper Battlespace Situation Awareness for Force XXI. It focuses on the National Imagery and Mapping Agency (NIMA) goal to 'provide customers seamless access to tailorable imagery, imagery intelligence, and geospatial information.' This paper describes Intelligence, Mapping, and Geospatial Exploitation System (IMAGES), an exploitation element capable of CONUS baseplant operations or field deployment to provide NIMA geospatial information collaboratively into a reconnaissance, surveillance, and target acquisition (RSTA) environment through the United States Imagery and Geospatial Information System (USIGS). In a baseplant CONUS setting IMAGES could be used to produce foundation data to support mission planning. In the field it could be directly associated with a tactical sensor receiver or ground station (e.g. UAV or UGV) to provide near real-time and mission specific RSTA to support mission execution. This paper provides IMAGES functional level design; describes the technologies, their interactions and interdependencies; and presents a notional operational scenario to illustrate the system flexibility. Using as a system backbone an intelligent software agent technology, called Open Agent ArchitectureTM (OAATM), IMAGES combines multimodal data entry, natural language understanding, and perceptual and evidential reasoning for system management. Configured to be DII COE compliant, it would utilize, to the extent possible, COTS applications software for data management, processing, fusion, exploitation, and reporting. It would also be modular, scaleable, and reconfigurable. This paper describes how the OAATM achieves data synchronization and enables the necessary level of information to be rapidly available to various command echelons for making informed decisions. The reasoning component will provide for the best information to be developed in the timeline

  3. Operator reliability assessment system (OPERAS)

    International Nuclear Information System (INIS)

    Singh, A.; Spurgin, A.J.; Martin, T.; Welsch, J.; Hallam, J.W.

    1991-01-01

    OPERAS is a personal-computer (PC) based software to collect and process simulator data on control-room operators responses during requalification training scenarios. The data collection scheme is based upon approach developed earlier during the EPRI Operator Reliability Experiments project. The software allows automated data collection from simulator, thus minimizing simulator staff time and resources to collect, maintain and process data which can be useful in monitoring, assessing and enhancing the progress of crew reliability and effectiveness. The system is designed to provide the data and output information in the form of user-friendly charts, tables and figures for use by plant staff. OPERAS prototype software has been implemented at the Diablo Canyon (PWR) and Millstone (BWR) plants and is currently being used to collect operator response data. Data collected from similator include plant-state variables such as reactor pressure and temperature, malfunction, times at which annunciators are activated, operator actions and observations of crew behavior by training staff. The data and systematic analytical results provided by the OPERAS system can contribute to increase objectivity by the utility probabilistic risk analysis (PRA) and training staff in monitoring and assessing reliability of their crews

  4. Brain dopaminergic systems : imaging with positron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Baron, J C [University of Caen/INSERM U, Caen (France). CYCERON; Comar, D [E.E.C. Concerted Action on P.E.T. Investigations of Cellular Regeneration and Degeneration, Orsay (France) CEA, 91 - Orsay (France). Service Hospitalier Frederic Joliot; Farde, L [Karolinska Sjukhuset, Stockholm (Sweden); Martinot, J L; Mazoyer, B [CEA, 91 - Orsay (France). Service Hospitalier Frederic Joliot Paris-

    1991-01-01

    Imaging of the dopaminergic system in the human brain with the in vivo use of Positron Emission Tomography emerged in the late 1980s as a tool of major importance in clinical neurosciences and pharmacology. The last few years have witnessed rapid development of new radiotracers specific to receptors, reuptake sites and enzymes of the dopamine system; the application of these radiotracers has led to major break-troughs in the pathophysiology and therapy of movement disorders and schizophrenic-like psychoses. This book is the first to collect, in a single volume, state-of-the-art contributions to the various aspects of this research. Its contents address methodological issues related to the design, labelling, quantitative imaging and compartmental modeli-sation of radioligands of the post-synaptic, pre-synaptic and enzyme sites of the dopamine system and to their use in clinical research in the fields of Parkinson's disease as well as other movement disorders, psychoses and neuroleptic receptor occupancy. The chapters were written by leading European scientists in the field of PET, gathered together in Caen (France, November 1990) under the aegis of the EEC Concerted Action on PET Investigations of Cellular Regeneration and Degeneration. This book provides a current and comprehensive overview on PET studies of the brain dopamine system which should aid and interest neurologists , psychiatrists, pharmacologists and medical imaging scientists. (author). refs.; figs.; tabs.

  5. Expandable image compression system: A modular approach

    International Nuclear Information System (INIS)

    Ho, B.K.T.; Chan, K.K.; Ishimitsu, Y.; Lo, S.C.; Huang, H.K.

    1987-01-01

    The full-frame bit allocation algorithm for radiological image compression developed in the authors' laboratory can achieve compression ratios as high as 30:1. The software development and clinical evaluation of this algorithm has been completed. It involves two stages of operations: a two-dimensional discrete cosine transform and pixel quantization in the transform space with pixel depth kept accountable by a bit allocation table. Their design took an expandable modular approach based on the VME bus system which has a maximum data transfer rate of 48 Mbytes per second and a Motorola 68020 microprocessor as the master controller. The transform modules are based on advanced digital signal processor (DSP) chips microprogrammed to perform fast cosine transforms. Four DSP's built into a single-board transform module can process an 1K x 1K image in 1.7 seconds. Additional transform modules working in parallel can be added if even greater speeds are desired. The flexibility inherent in the microcode extends the capabilities of the system to incorporate images of variable sizes. Their design allows for a maximum image size of 2K x 2K

  6. Missed pancreatic ductal adenocarcinoma: Assessment of early imaging findings on prediagnostic magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Kyung Mi; Kim, Seong Hyun, E-mail: sh6453.kim@samsung.com; Kim, Young Kon; Song, Kyoung Doo; Lee, Soon Jin; Choi, Dongil

    2015-08-15

    Highlights: • MR imaging was superior to CT for the detection of early PDAC. • A focal lesion with no MPD interruption is common MR finding of early PDAC. • A mean volume doubling time of early PDAC was about five months. - Abstract: Objective: To investigate the early imaging findings and growth rate of pancreatic ductal adenocarcinoma (PDAC), and to assess whether MR imaging detects early PDAC better than CT. Materials and methods: The institutional review board approved this retrospective study and waived the requirement for informed consent. Twenty-two patients were included, and two radiologists, by consensus, assessed the presence of focal lesions, interruption of the main pancreatic duct (MPD), MPD dilatation, and pancreatitis, volume doubling time (VDT) of PDAC on prediagnostic MR imaging. Two other observers independently reviewed three image sets (CT images, unenhanced MR images, and unenhanced and contrast-enhanced MR images) for the detection of early PDAC. Paired Wilcoxon signed rank test and receiver operating characteristic (ROC) curve analysis were used for statistical analyses. Results: In 20 (90.9%) patients, prediagnostic MR exams showed abnormality, and all of them showed focal lesions on the first abnormal prediagnostic MR exams. Thirteen lesions (65%) showed no MPD interruption and one lesion (5%) was accompanied by pancreatitis. The mean VDT of PDAC was 151.7 days (range, 18.3–417.8 days). Diagnostic performance of unenhanced MR images (Az, 0.971–0.989) and combined unenhanced and contrast-enhanced MR images (Az, 0.956–0.963) was significantly better than that of CT images (Az, 0.565–0.583; p < 0.01) for both observers, Conclusion: The most common early imaging finding of PDAC on prediagnostic MR exams was a focal lesion with no MPD interruption with a mean volume doubling time of five months. MR imaging was superior to CT for the detection of early PDAC.

  7. Quality assurance in diagnostic radiology - assessing the fluoroscopic image quality

    International Nuclear Information System (INIS)

    Tabakov, S.

    1995-01-01

    The X-ray fluoroscopic image has a considerably lower resolution than the radiographic one. This requires a careful quality control aiming at optimal use of the fluoroscopic equipment. The basic procedures for image quality assessment of Image Intensifier/TV image are described. Test objects from Leeds University (UK) are used as prototypes. The results from examining 50 various fluoroscopic devices are shown. Their limiting spatial resolution varies between 0.8 lp/mm (at maximum II field size) and 2.24 lp/mm (at minimum field size). The mean value of the limiting spatial resolution for a 23 cm Image Intensifier is about 1.24 lp/mm. The mean limits of variation of the contrast/detail diagram for various fluoroscopic equipment are graphically expressed. 14 refs., 1 fig. (author)

  8. Critical infrastructure systems of systems assessment methodology.

    Energy Technology Data Exchange (ETDEWEB)

    Sholander, Peter E.; Darby, John L.; Phelan, James M.; Smith, Bryan; Wyss, Gregory Dane; Walter, Andrew; Varnado, G. Bruce; Depoy, Jennifer Mae

    2006-10-01

    Assessing the risk of malevolent attacks against large-scale critical infrastructures requires modifications to existing methodologies that separately consider physical security and cyber security. This research has developed a risk assessment methodology that explicitly accounts for both physical and cyber security, while preserving the traditional security paradigm of detect, delay, and respond. This methodology also accounts for the condition that a facility may be able to recover from or mitigate the impact of a successful attack before serious consequences occur. The methodology uses evidence-based techniques (which are a generalization of probability theory) to evaluate the security posture of the cyber protection systems. Cyber threats are compared against cyber security posture using a category-based approach nested within a path-based analysis to determine the most vulnerable cyber attack path. The methodology summarizes the impact of a blended cyber/physical adversary attack in a conditional risk estimate where the consequence term is scaled by a ''willingness to pay'' avoidance approach.

  9. PIRATE: pediatric imaging response assessment and targeting environment

    Science.gov (United States)

    Glenn, Russell; Zhang, Yong; Krasin, Matthew; Hua, Chiaho

    2010-02-01

    By combining the strengths of various imaging modalities, the multimodality imaging approach has potential to improve tumor staging, delineation of tumor boundaries, chemo-radiotherapy regime design, and treatment response assessment in cancer management. To address the urgent needs for efficient tools to analyze large-scale clinical trial data, we have developed an integrated multimodality, functional and anatomical imaging analysis software package for target definition and therapy response assessment in pediatric radiotherapy (RT) patients. Our software provides quantitative tools for automated image segmentation, region-of-interest (ROI) histogram analysis, spatial volume-of-interest (VOI) analysis, and voxel-wise correlation across modalities. To demonstrate the clinical applicability of this software, histogram analyses were performed on baseline and follow-up 18F-fluorodeoxyglucose (18F-FDG) PET images of nine patients with rhabdomyosarcoma enrolled in an institutional clinical trial at St. Jude Children's Research Hospital. In addition, we combined 18F-FDG PET, dynamic-contrast-enhanced (DCE) MR, and anatomical MR data to visualize the heterogeneity in tumor pathophysiology with the ultimate goal of adaptive targeting of regions with high tumor burden. Our software is able to simultaneously analyze multimodality images across multiple time points, which could greatly speed up the analysis of large-scale clinical trial data and validation of potential imaging biomarkers.

  10. Image quality assessment for selfies with and without super resolution

    Science.gov (United States)

    Kubota, Aya; Gohshi, Seiichi

    2018-04-01

    With the advent of cellphone cameras, in particular, on smartphones, many people now take photos of themselves alone and with others in the frame; such photos are popularly known as "selfies". Most smartphones are equipped with two cameras: the front-facing and rear cameras. The camera located on the back of the smartphone is referred to as the "out-camera," whereas the one located on the front of the smartphone is called the "in-camera." In-cameras are mainly used for selfies. Some smartphones feature high-resolution cameras. However, the original image quality cannot be obtained because smartphone cameras often have low-performance lenses. Super resolution (SR) is one of the recent technological advancements that has increased image resolution. We developed a new SR technology that can be processed on smartphones. Smartphones with new SR technology are currently available in the market have already registered sales. However, the effective use of new SR technology has not yet been verified. Comparing the image quality with and without SR on smartphone display is necessary to confirm the usefulness of this new technology. Methods that are based on objective and subjective assessments are required to quantitatively measure image quality. It is known that the typical object assessment value, such as Peak Signal to Noise Ratio (PSNR), does not go together with how we feel when we assess image/video. When digital broadcast started, the standard was determined using subjective assessment. Although subjective assessment usually comes at high cost because of personnel expenses for observers, the results are highly reproducible when they are conducted under right conditions and statistical analysis. In this study, the subjective assessment results for selfie images are reported.

  11. In-situ Planetary Subsurface Imaging System

    Science.gov (United States)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments

  12. Dynamical systems probabilistic risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ames, Arlo Leroy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-01

    Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into the regulatory framework by quantifying both the total risk profile as well as the change in the risk profile caused by an event or action (e.g., in-service inspection procedures or power uprates). Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback loops can be characterized and studied as a function of time to describe the changes to the reliability of plant Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and increased operational flexibility.

  13. Development of terahertz systems for imaging applications

    OpenAIRE

    Maestrojuán Biurrun, Itziar

    2016-01-01

    El principal objetivo de esta tesis fue el estudio y desarrollo de tecnología, concretamente mezcladores armónicos, trabajando a frecuencias de milimétricas y sub-milimétricas con el fin de implementar sistemas para aplicaciones de imagen. The main goal of this thesis was the study and development of technology, specifically harmonic mixers, working at millimetre and submillimetre frequencies in other to implement systems for imaging applications. A couple of sub-harmonic...

  14. Laboratory testing & measurement on optical imaging systems

    CSIR Research Space (South Africa)

    Theron, B

    2013-04-01

    Full Text Available on Optical Imaging Systems Bertus Theron 27 April 2013 presented at SIECPC 2013, Riyadh, Saudi Arabia Overview of Workshop Part 1. Introduction & Context  Some history of Arabic Optics  Context: Global vs Local optical testing... of Arabic Optics 1 See [4]  Arabic records of study of geometrical optics  Traced to Hellenistic (Greek) optics  Translated to Arabic  9th century  Arabic contribution to geometric optics  Not just translation to Arabic  Innovative research...

  15. The impact of mammographic imaging systems on density measurement

    Science.gov (United States)

    Damases, Christine N.; Brennan, Patrick C.; McEntee, Mark F.

    2015-03-01

    The purpose of this study is to investigate whether having a mammogram on differing manufacturer equipment will affect a woman's breast density (BD) measurement. The data set comprised of 40 cases, each containing a combined image of the left craniocaudal (LCC) and left mediolateral oblique (LMLO). These images were obtained from 20 women age between 42-89 years. The images were acquired on two imaging systems (GE and Hologic) one year apart. Volumetric BD was assessed by using Volpara Density Grade (VDG) and average BD% (AvBD%). Twenty American Board of Radiology (ABR) examiners assessed the same images using the BIRADS BD scale 1-4. Statistical comparisons were performed on the means using Mann-Whitney, on correlation using Spearman's rank coefficient of correlation and agreement using Cohen's Kappa. The absolute median BIRADS difference between GE and Hologic was 0.225 (2.00 versus 2.00; pperfect agreement for VDG (κ=0.933; p<0.001).

  16. GammaCam trademark radiation imaging system

    International Nuclear Information System (INIS)

    1998-02-01

    GammaCam trademark, a gamma-ray imaging system manufactured by AIL System, Inc., would benefit a site that needs to locate radiation sources. It is capable of producing a two-dimensional image of a radiation field superimposed on a black and white visual image. Because the system can be positioned outside the radiologically controlled area, the radiation exposure to personnel is significantly reduced and extensive shielding is not required. This report covers the following topics: technology description; performance; technology applicability and alternatives; cost; regulatory and policy issues; and lessons learned. The demonstration of GammaCam trademark in December 1996 was part of the Large-Scale Demonstration Project (LSDP) whose objective is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) Chicago Pile-5 Research Reactor (CP-5). The purpose of the LSDP is to demonstrate that by using innovative and improved decontamination and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies

  17. Quality assessment of brain images by Hoffman phantom

    International Nuclear Information System (INIS)

    Karimian, A.R.; Saddad, F.; Mosalla, B.; Moradkhani, S.; Degbankhan, R.; Pouladi, M.

    2002-01-01

    The purpose of this investigation is using Hoffman brain phantom for quality assessment of brian images in SPECT system. There are the following standards for quality control in nuclear medicine: American Association of Physicists in Medicine, National Electrical Manufacturers Association, International Electromechanical Commission, International Atomic Energy Agency. Each of the above standards has the following important orders: Physical inspection, Acceptance and Reference Testing, Periodic Q C tests (Daily, Weekly, Monthly, Quarterly, Annually). The above tests are simple physics measures. To more meaningful ones based on performance of some tasks related to clinical application it is better to use from organs' phantoms, such as: brain, cardiac, etc. In this research we made a comparison between normal and abnormal states of Hoffman brain phantom. Methods of Hoffman brain phantom was filled with a solution of Tc- 99 m (5 mCi) and water (1300 cc). this results: The investigation of small abnormalities strongly related to the operating conditions and deviation from best tuning state of the system

  18. Non-invasive assessment of the liver using imaging

    Science.gov (United States)

    Thorling Thompson, Camilla; Wang, Haolu; Liu, Xin; Liang, Xiaowen; Crawford, Darrell H.; Roberts, Michael S.

    2016-12-01

    Chronic liver disease causes 2,000 deaths in Australia per year and early diagnosis is crucial to avoid progression to cirrhosis and end stage liver disease. There is no ideal method to evaluate liver function. Blood tests and liver biopsies provide spot examinations and are unable to track changes in function quickly. Therefore better techniques are needed. Non-invasive imaging has the potential to extract increased information over a large sampling area, continuously tracking dynamic changes in liver function. This project aimed to study the ability of three imaging techniques, multiphoton and fluorescence lifetime imaging microscopy, infrared thermography and photoacoustic imaging, in measuring liver function. Collagen deposition was obvious in multiphoton and fluorescence lifetime imaging in fibrosis and cirrhosis and comparable to conventional histology. Infrared thermography revealed a significantly increased liver temperature in hepatocellular carcinoma. In addition, multiphoton and fluorescence lifetime imaging and photoacoustic imaging could both track uptake and excretion of indocyanine green in rat liver. These results prove that non-invasive imaging can extract crucial information about the liver continuously over time and has the potential to be translated into clinic in the assessment of liver disease.

  19. A portable microscopy system for fluorescence, polarized, and brightfield imaging

    Science.gov (United States)

    Gordon, Paul; Wattinger, Rolla; Lewis, Cody; Venancio, Vinicius Paula; Mertens-Talcott, Susanne U.; Coté, Gerard

    2018-02-01

    The use of mobile phones to conduct diagnostic microscopy at the point-of-care presents intriguing possibilities for the advancement of high-quality medical care in remote settings. However, it is challenging to create a single device that can adapt to the ever-varying camera technologies in phones or that can image with the customization that multiple modalities require for applications such as malaria diagnosis. A portable multi-modal microscope system is presented that utilizes a Raspberry Pi to collect and transmit data wirelessly to a myriad of electronic devices for image analysis. The microscopy system is capable of providing to the user correlated brightfield, polarized, and fluorescent images of samples fixed on traditional microscopy slides. The multimodal diagnostic capabilities of the microscope were assessed by measuring parasitemia of Plasmodium falciparum-infected thin blood smears. The device is capable of detecting fluorescently-labeled DNA using FITC excitation (490 nm) and emission (525 nm), the birefringent P. falciparum byproduct hemozoin, and detecting brightfield absorption with a resolution of 0.78 micrometers (element 9-3 of a 1951 Air Force Target). This microscopy system is a novel portable imaging tool that may be a viable candidate for field implementation if challenges of system durability, cost considerations, and full automation can be overcome.

  20. Generating color terrain images in an emergency response system

    International Nuclear Information System (INIS)

    Belles, R.D.

    1985-08-01

    The Atmospheric Release Advisory Capability (ARAC) provides real-time assessments of the consequences resulting from an atmospheric release of radioactive material. In support of this operation, a system has been created which integrates numerical models, data acquisition systems, data analysis techniques, and professional staff. Of particular importance is the rapid generation of graphical images of the terrain surface in the vicinity of the accident site. A terrain data base and an associated acquisition system have been developed that provide the required terrain data. This data is then used as input to a collection of graphics programs which create and display realistic color images of the terrain. The graphics system currently has the capability of generating color shaded relief images from both overhead and perspective viewpoints within minutes. These images serve to quickly familiarize ARAC assessors with the terrain near the release location, and thus permit them to make better informed decisions in modeling the behavior of the released material. 7 refs., 8 figs

  1. Brain MR imaging in systemic lupus erythematous

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Ae; Chang, Kee Hyun; Han, Moon Hee; Lee, Kyung Hwon; Kim, Sung Kwon; Lee, Jung Sang [Seoul National University College of Medicine, Seoul (Korea, Republic of); Cha, Sang Hoon [Chungbuk National University College of Medicine, Chungju (Korea, Republic of)

    1992-09-15

    To present MR imaging findings of intracranial lesions in systemic lupus erythematosus(SLE), a retrospective study was performed on MR images of 33 SLE patients with neurologic symptoms and signs. MR imaging was performed on either a 0.5 T (21 patients) or 2.0 T unit (12 patients), using T1-weighted, proton-density-weighted, and T2-weighted spin echo sequences in all patients. In seven patients, post-contrast T1-weighted images were also obtained after administration of gadopentetate dimeglumine. The main MR findings consisted of focal lesions suggesting ischemia/infarct (15 patients), diffuse brain atrophy (8), and findings associated with infection (4). The MR findings were normal in 11 patients (33%). The focal lesions suggesting ischemia/infarcts presumably secondary to vasculitis were distributed in the cortex or subcortical white matter (7 patients), deep periventricular white matter (3), or in both areas (5). Most of the focal lesions were multiple and small in size. The findings associated with infection were variable and included communicating hydrocephalus, meningeal enhancement, granuloma, etc. MR findings of SLE were non-specific and therefore clinical correlation is needed when evaluating SLE in MR.

  2. Expandable image compression system: A modular approach

    International Nuclear Information System (INIS)

    Ho, B.K.T.; Lo, S.C.; Huang, H.K.

    1986-01-01

    The full-frame bit-allocation algorithm for radiological image compression can achieve an acceptable compression ratio as high as 30:1. It involves two stages of operation: a two-dimensional discrete cosine transform and pixel quantization in the transformed space with pixel depth kept accountable by a bit-allocation table. The cosine transform hardware design took an expandable modular approach based on the VME bus system with a maximum data transfer rate of 48 Mbytes/sec and a microprocessor (Motorola 68000 family). The modules are cascadable and microprogrammable to perform 1,024-point butterfly operations. A total of 18 stages would be required for transforming a 1,000 x 1,000 image. Multiplicative constants and addressing sequences are to be software loaded into the parameter buffers of each stage prior to streaming data through the processor stages. The compression rate for 1K x 1K images is expected to be faster than one image per sec

  3. Cine MR imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Nishimura, Fumiaki; Yoshino, Yasushi; Mihara, Junji; Ichikawa, Seiichi; Kimura, Masahiko; Yano, Masao; Umeda, Masahiro; Oouchi, Toshihiro

    1990-01-01

    In recent years cine magnetic resonance imaging (MRI) has developed as a high-speed imaging technique that provides a high intensity signal even at a short repetition time (20-30 msec) by using an excited pulse with a small flip angle according to the gradient echo method, enabling about 20 to 30 continuous images of the same section per one cardiac cycle to be taken. On cine display of these continuous images, information concerning blood flow shown by a high intensity signal in comparison with that of the myocardium and vascular wall is obtained with high temporal resolution along with anatomical information. The present study reports the clinical usefulness of cine MRI in today's situation, inculding the following: calculation of the left ventricular ejection fraction and pulmonary-to-systemic flow ratio in congenital shunt disease by integration of the area of multisections through application of Simpson's method; diagnosis of the severity of valvular regurgitation, evaluation of stenosal diseases, and diagnosis of inflow from the fissured entry of dissecting aortic aneurysm by evaluating of an area of low intensity signal, probably based on the high velocity or turbulent blood flow: and evaluation of patency of the internal mammary artery bypass graft of the basis of the possible visualization of even thin blood vessels because of the high intensity signal of blood flow. In particular, the characteristics of this procedures are described by comparing it with other technologies in the field of diseases of valvular regurgitation. (author)

  4. Chinese Academic Assessment and Incentive System.

    Science.gov (United States)

    Suo, Qinghui

    2016-02-01

    The Chinese academic assessment and incentive system drew mixed responses from academia. In the essay the author tried to explain why the current assessment system is appropriate in China and an opportunistic behavior in Chinese academia is exposed.

  5. An objective spinal motion imaging assessment (OSMIA): reliability, accuracy and exposure data.

    OpenAIRE

    Breen, Alan C.; Muggleton, J.M.; Mellor, F.E.

    2006-01-01

    Abstract Background Minimally-invasive measurement of continuous inter-vertebral motion in clinical settings is difficult to achieve. This paper describes the reliability, validity and radiation exposure levels in a new Objective Spinal Motion Imaging Assessment system (OSMIA) based on low-dose fluoroscopy and image processing. Methods Fluoroscopic sequences in coronal and sagittal planes were obtained from 2 calibration models using dry lumbar vertebrae, plus the lumbar spines of 30 asymptom...

  6. Systems for increasing the sensitivity of gamma-ray imagers

    Science.gov (United States)

    Mihailescu, Lucian; Vetter, Kai M.; Chivers, Daniel H.

    2012-12-11

    Systems that increase the position resolution and granularity of double sided segmented semiconductor detectors are provided. These systems increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  7. Technical validation of the Di3D stereophotogrammetry surface imaging system

    DEFF Research Database (Denmark)

    Winder, R.J.; Darvann, Tron Andre; McKnight, W.

    2008-01-01

    The purpose of this work was to assess the technical performance of a three-dimensional surface imaging system for geometric accuracy and maximum field of view. The system was designed for stereophotogrammetry capture of digital images from three-dimensional surfaces of the head, face, and neck...

  8. TL dosimetry for quality control of CR mammography imaging systems

    Science.gov (United States)

    Gaona, E.; Nieto, J. A.; Góngora, J. A. I. D.; Arreola, M.; Enríquez, J. G. F.

    The aim of this work is to estimate the average glandular dose with thermoluminescent (TL) dosimetry and comparison with quality imaging in computed radiography (CR) mammography. For a measuring dose, the Food and Drug Administration (FDA) and the American College of Radiology (ACR) use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, full field digital mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium flourohalideE We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated X-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose greater than 3.0 mGy without demonstrating improved image quality. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement for X-rays with a HVL (0.35-0.38 mmAl) and kVp (24-26) used in quality control procedures with ACR Mammography Accreditation Phantom.

  9. Image Quality Assessment via Quality-aware Group Sparse Coding

    Directory of Open Access Journals (Sweden)

    Minglei Tong

    2014-12-01

    Full Text Available Image quality assessment has been attracting growing attention at an accelerated pace over the past decade, in the fields of image processing, vision and machine learning. In particular, general purpose blind image quality assessment is technically challenging and lots of state-of-the-art approaches have been developed to solve this problem, most under the supervised learning framework where the human scored samples are needed for training a regression model. In this paper, we propose an unsupervised learning approach that work without the human label. In the off-line stage, our method trains a dictionary covering different levels of image quality patch atoms across the training samples without knowing the human score, where each atom is associated with a quality score induced from the reference image; at the on-line stage, given each image patch, our method performs group sparse coding to encode the sample, such that the sample quality can be estimated from the few labeled atoms whose encoding coefficients are nonzero. Experimental results on the public dataset show the promising performance of our approach and future research direction is also discussed.

  10. A novel 3D imaging system for strawberry phenotyping

    Directory of Open Access Journals (Sweden)

    Joe Q. He

    2017-11-01

    Full Text Available Abstract Background Accurate and quantitative phenotypic data in plant breeding programmes is vital in breeding to assess the performance of genotypes and to make selections. Traditional strawberry phenotyping relies on the human eye to assess most external fruit quality attributes, which is time-consuming and subjective. 3D imaging is a promising high-throughput technique that allows multiple external fruit quality attributes to be measured simultaneously. Results A low cost multi-view stereo (MVS imaging system was developed, which captured data from 360° around a target strawberry fruit. A 3D point cloud of the sample was derived and analysed with custom-developed software to estimate berry height, length, width, volume, calyx size, colour and achene number. Analysis of these traits in 100 fruits showed good concordance with manual assessment methods. Conclusion This study demonstrates the feasibility of an MVS based 3D imaging system for the rapid and quantitative phenotyping of seven agronomically important external strawberry traits. With further improvement, this method could be applied in strawberry breeding programmes as a cost effective phenotyping technique.

  11. A novel 3D imaging system for strawberry phenotyping.

    Science.gov (United States)

    He, Joe Q; Harrison, Richard J; Li, Bo

    2017-01-01

    Accurate and quantitative phenotypic data in plant breeding programmes is vital in breeding to assess the performance of genotypes and to make selections. Traditional strawberry phenotyping relies on the human eye to assess most external fruit quality attributes, which is time-consuming and subjective. 3D imaging is a promising high-throughput technique that allows multiple external fruit quality attributes to be measured simultaneously. A low cost multi-view stereo (MVS) imaging system was developed, which captured data from 360° around a target strawberry fruit. A 3D point cloud of the sample was derived and analysed with custom-developed software to estimate berry height, length, width, volume, calyx size, colour and achene number. Analysis of these traits in 100 fruits showed good concordance with manual assessment methods. This study demonstrates the feasibility of an MVS based 3D imaging system for the rapid and quantitative phenotyping of seven agronomically important external strawberry traits. With further improvement, this method could be applied in strawberry breeding programmes as a cost effective phenotyping technique.

  12. Molecular Imaging with Activatable Reporter Systems

    Directory of Open Access Journals (Sweden)

    Gang Niu, Xiaoyuan Chen

    2012-01-01

    Full Text Available Molecular imaging is a newly emerged multiple disciplinary field that aims to visualize, characterize and quantitatively measure biological processes at cellular and molecular levels in humans and other living systems. A reporter gene is a piece of DNA encoding reporter protein, which presents as a readily measurable phenotype that can be distinguished easily from the background of endogenous protein. After being transferred into cells of organ systems (transgenes, the reporter gene can be utilized to visualize transcriptional and posttranscriptional regulation of gene expression, protein-protein interactions, or trafficking of proteins or cells in living subjects. Herein, we review previous classification of reporter genes and regroup the reporter gene based imaging as basic, inducible and activatable, based on the regulation of reporter gene transcription and post-translational modification of reporter proteins. We then focus on activatable reporters, in which the signal can be activated at the posttranslational level for visualizing protein-protein interactions, protein phosphorylation or tertiary structure changes. The applications of several types of activatable reporters will also be summarized. We conclude that activatable reporter imaging can benefit both basic biomedical research and drug development.

  13. Magnetic resonance imaging in multiple system atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Aotsuka, Akiyo; Shinotoh, Hitoshi; Hirayama, Keizo [Chiba Univ. (Japan). School of Medicine; Ikehira, Hiroo; Hashimoto, Takahiro

    1992-08-01

    We studied 18 patients with multiple system atrophy (MSA) by high field strength MRI: 6 striatonigral degeneration (SND), 4 Shy-Drager syndrome (SDS), and 8 olivo-ponto-cerebellar atrophy (OPCA). We also studied 30 Parkinson's disease (PD) and 10 age-matched controls. The diagnosis of SND, SDS, and OPCA were based on criteria after Hirayama et al (1985). Bradykinesia, rigidity, and tremor were assessed with the summed scores of the signs used as the extrapyramidal scores. The mean extrapyramidal scores were not significantly different in patients with SND, SDS, OPCA, and PD. MRI studies were performed on 1.5 tesla MRI unit, using a T[sub 2]-weighted spin echo pulse sequence (TR2500 ms/TE40 ms). The width of the pars compacta signal in all subjects was measured by the method of Duguid et al (1986). Intensity profiles were made on a straight line perpendicular to the pars compacta through the center of the red nucleus on an image of the midbrain. We measured the width of the valley at half-height between the peaks of an index of the width of the pars compacta signal. The mean widths of the pars compacta signal were: 2.8[+-]0.4 mm (SND), 2.8[+-]0.7 mm (SDS), 3.6[+-]0.6 mm (OPCA), 2.7[+-]0.3 mm (PD), and 4.3[+-]0.6 mm (control). The mean widths of the pars compacta signal in PD, SND, and SDS were significantly narrower than that in the control group (p<0.05), while the OPCA group was not significantly narrower. The results may indicate that the time course of nigral involvement is milder in OPCA than in SND and SDS. The extrapyramidal signs in OPCA may be attributed mainly to the degeneration of the putamen rather than to that of the substantia nigra. Abnormal hypointensity in the posterolateral putamen was found in only one SND patient and in two OPCA patients, even though this finding has been frequently observed in MSA. Since no PD patients exhibited this finding, it may of some value in differentiating MSA from PD. (author).

  14. Special feature on imaging systems and techniques

    Science.gov (United States)

    Yang, Wuqiang; Giakos, George

    2013-07-01

    The IEEE International Conference on Imaging Systems and Techniques (IST'2012) was held in Manchester, UK, on 16-17 July 2012. The participants came from 26 countries or regions: Austria, Brazil, Canada, China, Denmark, France, Germany, Greece, India, Iran, Iraq, Italy, Japan, Korea, Latvia, Malaysia, Norway, Poland, Portugal, Sweden, Switzerland, Taiwan, Tunisia, UAE, UK and USA. The technical program of the conference consisted of a series of scientific and technical sessions, exploring physical principles, engineering and applications of new imaging systems and techniques, as reflected by the diversity of the submitted papers. Following a rigorous review process, a total of 123 papers were accepted, and they were organized into 30 oral presentation sessions and a poster session. In addition, six invited keynotes were arranged. The conference not only provided the participants with a unique opportunity to exchange ideas and disseminate research outcomes but also paved a way to establish global collaboration. Following the IST'2012, a total of 55 papers, which were technically extended substantially from their versions in the conference proceeding, were submitted as regular papers to this special feature of Measurement Science and Technology . Following a rigorous reviewing process, 25 papers have been finally accepted for publication in this special feature and they are organized into three categories: (1) industrial tomography, (2) imaging systems and techniques and (3) image processing. These papers not only present the latest developments in the field of imaging systems and techniques but also offer potential solutions to existing problems. We hope that this special feature provides a good reference for researchers who are active in the field and will serve as a catalyst to trigger further research. It has been our great pleasure to be the guest editors of this special feature. We would like to thank the authors for their contributions, without which it would

  15. Rigorous accuracy assessment for 3D reconstruction using time-series Dual Fluoroscopy (DF) image pairs

    Science.gov (United States)

    Al-Durgham, Kaleel; Lichti, Derek D.; Kuntze, Gregor; Ronsky, Janet

    2017-06-01

    High-speed biplanar videoradiography, or clinically referred to as dual fluoroscopy (DF), imaging systems are being used increasingly for skeletal kinematics analysis. Typically, a DF system comprises two X-ray sources, two image intensifiers and two high-speed video cameras. The combination of these elements provides time-series image pairs of articulating bones of a joint, which permits the measurement of bony rotation and translation in 3D at high temporal resolution (e.g., 120-250 Hz). Assessment of the accuracy of 3D measurements derived from DF imaging has been the subject of recent research efforts by several groups, however with methodological limitations. This paper presents a novel and simple accuracy assessment procedure based on using precise photogrammetric tools. We address the fundamental photogrammetry principles for the accuracy evaluation of an imaging system. Bundle adjustment with selfcalibration is used for the estimation of the system parameters. The bundle adjustment calibration uses an appropriate sensor model and applies free-network constraints and relative orientation stability constraints for a precise estimation of the system parameters. A photogrammetric intersection of time-series image pairs is used for the 3D reconstruction of a rotating planar object. A point-based registration method is used to combine the 3D coordinates from the intersection and independently surveyed coordinates. The final DF accuracy measure is reported as the distance between 3D coordinates from image intersection and the independently surveyed coordinates. The accuracy assessment procedure is designed to evaluate the accuracy over the full DF image format and a wide range of object rotation. Experiment of reconstruction of a rotating planar object reported an average positional error of 0.44 +/- 0.2 mm in the derived 3D coordinates (minimum 0.05 and maximum 1.2 mm).

  16. Fuel assembly assessment from CVD image analysis: A feasibility study

    International Nuclear Information System (INIS)

    Lindsay, C.S.; Lindblad, T.

    1997-05-01

    The Swedish Nuclear Inspectorate commissioned a feasibility study of automatic assessment of fuel assemblies from images obtained with the digital Cerenkov viewing device currently in development. The goal is to assist the IAEA inspectors in evaluating the fuel since they typically have only a few seconds to inspect an assembly. We report results here in two main areas: Investigation of basic image processing and recognition techniques needed to enhance the images and find the assembly in the image; Study of the properties of the distributions of light from the assemblies to determine whether they provide unique signatures for different burn-up and cooling times for real fuel or indicate presence of non-fuel. 8 refs, 27 figs

  17. Automatic anterior chamber angle assessment for HD-OCT images.

    Science.gov (United States)

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Wong, Hong-Tym; Aung, Tin

    2011-11-01

    Angle-closure glaucoma is a major blinding eye disease and could be detected by measuring the anterior chamber angle in the human eyes. High-definition OCT (Cirrus HD-OCT) is an emerging noninvasive, high-speed, and high-resolution imaging modality for the anterior segment of the eye. Here, we propose a novel algorithm which automatically detects a new landmark, Schwalbe's line, and measures the anterior chamber angle in the HD-OCT images. The distortion caused by refraction is corrected by dewarping the HD-OCT images, and three biometric measurements are defined to quantitatively assess the anterior chamber angle. The proposed algorithm was tested on 40 HD-OCT images of the eye and provided accurate measurements in about 1 second.

  18. Phantom evaluation of a commercially available three modality image guided radiation therapy system

    International Nuclear Information System (INIS)

    Ploquin, Nicolas; Rangel, Alejandra; Dunscombe, Peter

    2008-01-01

    The authors describe a detailed evaluation of the capabilities of imaging and image registration systems available with Varian linear accelerators for image guided radiation therapy (IGRT). Specifically, they present modulation transfer function curves for megavoltage planar, kilovoltage (kV) planar, and cone beam computed tomography imaging systems and compare these with conventional computed tomography. While kV planar imaging displayed the highest spatial resolution, all IGRT imaging techniques were assessed as adequate for their intended purpose. They have also characterized the image registration software available for use in conjunction with these imaging systems through a comprehensive phantom study involving translations in three orthogonal directions. All combinations of imaging systems and image registration software were found to be accurate, although the planar kV imaging system with automatic registration was generally superior, with both accuracy and precision of the order of 1 mm, under the conditions tested. Based on their phantom study, the attainable accuracy for rigid body translations using any of the features available with Varian equipment will more likely be limited by the resolution of the couch readouts than by inherent limitations in the imaging systems and image registration software. Overall, the accuracy and precision of currently available IGRT technology exceed published experience with the accuracy and precision of contouring for planning.

  19. Subjective assessment of impairment in scale-space-coded images

    NARCIS (Netherlands)

    Ridder, de H.; Majoor, G.M.M.

    1988-01-01

    Direct category scaling and a scaling procedure in accordance with Functional Measurement Theory (Anderson, 1982) have been used to assess impairment in scale-space-coded illlages, displayed on a black-and-white TV monitor. The image of a complex scene was passed through a Gaussian filter of limited

  20. Space-Ready Advanced Imaging System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II effort Toyon will increase the state-of-the-art for video/image systems. This will include digital image compression algorithms as well as system...

  1. An integral design strategy combining optical system and image processing to obtain high resolution images

    Science.gov (United States)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun

    2016-05-01

    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  2. Development and assessment of compression technique for medical images using neural network. I. Assessment of lossless compression

    International Nuclear Information System (INIS)

    Fukatsu, Hiroshi

    2007-01-01

    This paper describes assessment of the lossless compression of a new efficient compression technique (JIS system) using neural network that the author and co-workers have recently developed. At first, theory is explained for encoding and decoding the data. Assessment is done on 55 images each of chest digital roentgenography, digital mammography, 64-row multi-slice CT, 1.5 Tesla MRI, positron emission tomography (PET) and digital subtraction angiography, which are lossless-compressed by the present JIS system to see the compression rate and loss. For comparison, those data are also JPEG lossless-compressed. Personal computer (PC) is an Apple MacBook Pro with configuration of Boot Camp for Windows environment. The present JIS system is found to have a more than 4 times higher efficiency than the usual compressions which compressing the file volume to only 1/11 in average, and thus to be importantly responsible to the increasing medical imaging data. (R.T.)

  3. European Educational Systems and Assessment Practice

    DEFF Research Database (Denmark)

    Evans, Robert Harry; Cross, David; Grangeat, Michel

    2018-01-01

    Abstract This chapter surveys the status of educational systems and assessment practices across eight European countries that are part of the ASSIST-ME project. First, variations in country educational systems are examined to identify possible connections between systems and educational practices....... Such associations are useful both for understanding different existing assessment conditions as well as for providing possible pathways for change. Next, the chapter takes a closer look at teacher practices in these educational systems in order to identify the actual assessment practices of teachers in each country....... With these understandings of the systems and current uses of assessment, it is possible to identify affordances and challenges for improving assessment practices....

  4. Radiological Indicators of Bone Age Assessment in Cephalometric Images. Review

    Science.gov (United States)

    Durka-Zając, Magdalena; Mituś-Kenig, Maria; Derwich, Marcin; Marcinkowska-Mituś, Agata; Łoboda, Magdalena

    2016-01-01

    Summary The ability to assess bone age accurately is important and allows to diagnose the patient correctly and to plan orthodontic treatment appropriately. The aim of the work is to present views of different authors on the subject of using cephalometric images to determine bone age and its significance for conducting appropriate orthodontic treatment. Publications from the PubMed medical database were analyzed. Search criteria: bone age assessment, CVM method. Ultimately, 36 papers out of 1354 publications were selected. The research of many authors confirms the usefulness of various methods using cephalometric images to assess skeletal age. Currently, the CVM method devised by Baccetti et al. is the most frequently mentioned one in literature. It seems that bone age assessment methods based on evaluating the morphological structure of the cervical vertebrae in cephalometric images can clearly differentiate skeletal maturity in children regardless of their race or sex. Bearing in mind the constant technological progress in medicine and stomatology, bone age assessment methods need to be perfected in order to alleviate their impact on the patient as much as possible. PMID:27536337

  5. New imaging systems in nuclear medicine

    International Nuclear Information System (INIS)

    1989-01-01

    PCR-I, an analog coded single ring positron tomograph, demonstrates the concepts of analog coding and the utility of high resolution systems. PCR-I, with a resolution of 4.5mm, has been employed in a series of biological studies using small animals that have been highly successful and will lead to clinical application. The emphasis now is turning to even higher sensitivity instruments in order to provide adequate number of events to populate a volume image. For this purpose, we have designed and are constructing PCR-II, a cylindrical analog coded positron tomograph incorporating 12,800 small detectors coded to 1760 phototubes. The increased sensitivity is achieved by recording all events within a cylindrical source that produce annihilation radiation striking any point on the cylindrical detector. PCR-II is projected to have a sensitivity of 1.6 million counts per second for a 20 centimeter diameter sphere uniformly filled with activity at 1 μCi/cm 3 . This system, with a resolution of 3mm, will approach the limits of sensitivity and resolution for positron tomographs. It is our opinion that this system will revolutionize the concept of positron imaging

  6. Correlation of the clinical and physical image quality in chest radiography for average adults with a computed radiography imaging system.

    Science.gov (United States)

    Moore, C S; Wood, T J; Beavis, A W; Saunderson, J R

    2013-07-01

    The purpose of this study was to examine the correlation between the quality of visually graded patient (clinical) chest images and a quantitative assessment of chest phantom (physical) images acquired with a computed radiography (CR) imaging system. The results of a previously published study, in which four experienced image evaluators graded computer-simulated postero-anterior chest images using a visual grading analysis scoring (VGAS) scheme, were used for the clinical image quality measurement. Contrast-to-noise ratio (CNR) and effective dose efficiency (eDE) were used as physical image quality metrics measured in a uniform chest phantom. Although optimal values of these physical metrics for chest radiography were not derived in this work, their correlation with VGAS in images acquired without an antiscatter grid across the diagnostic range of X-ray tube voltages was determined using Pearson's correlation coefficient. Clinical and physical image quality metrics increased with decreasing tube voltage. Statistically significant correlations between VGAS and CNR (R=0.87, pchest CR images acquired without an antiscatter grid. A statistically significant correlation has been found between the clinical and physical image quality in CR chest imaging. The results support the value of using CNR and eDE in the evaluation of quality in clinical thorax radiography.

  7. SU-F-J-52: A Novel Approach to X-Ray Tube Quality Assurance for CBCT Systems in Order to Better Assess the Patient Imaging Dose in a Large, Multi-Unit Treatment Facility

    International Nuclear Information System (INIS)

    Buckley, L; Lambert, C; Nyiri, B; Gerig, L; Webb, R

    2016-01-01

    Purpose: To standardize the tube calibration for Elekta XVI cone beam CT (CBCT) systems in order to provide a meaningful estimate of the daily imaging dose and reduce the variation between units in a large centre with multiple treatment units. Methods: Initial measurements of the output from the CBCT systems were made using a Farmer chamber and standard CTDI phantom. The correlation between the measured CTDI and the tube current was confirmed using an Unfors Xi detector which was then used to perform a tube current calibration on each unit. Results: Initial measurements showed measured tube current variations of up to 25% between units for scans with the same image settings. In order to reasonably estimate the imaging dose, a systematic approach to x-ray generator calibration was adopted to ensure that the imaging dose was consistent across all units at the centre and was adopted as part of the routine quality assurance program. Subsequent measurements show that the variation in measured dose across nine units is on the order of 5%. Conclusion: Increasingly, patients receiving radiation therapy have extended life expectancies and therefore the cumulative dose from daily imaging should not be ignored. In theory, an estimate of imaging dose can be made from the imaging parameters. However, measurements have shown that there are large differences in the x-ray generator calibration as installed at the clinic. Current protocols recommend routine checks of dose to ensure constancy. The present study suggests that in addition to constancy checks on a single machine, a tube current calibration should be performed on every unit to ensure agreement across multiple machines. This is crucial at a large centre with multiple units in order to provide physicians with a meaningful estimate of the daily imaging dose.

  8. SU-F-J-52: A Novel Approach to X-Ray Tube Quality Assurance for CBCT Systems in Order to Better Assess the Patient Imaging Dose in a Large, Multi-Unit Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, L; Lambert, C; Nyiri, B; Gerig, L [The Ottawa Hospital Cancer Ctr., Ottawa, ON (Canada); Webb, R [Elekta, Montreal, Quebec (Canada)

    2016-06-15

    Purpose: To standardize the tube calibration for Elekta XVI cone beam CT (CBCT) systems in order to provide a meaningful estimate of the daily imaging dose and reduce the variation between units in a large centre with multiple treatment units. Methods: Initial measurements of the output from the CBCT systems were made using a Farmer chamber and standard CTDI phantom. The correlation between the measured CTDI and the tube current was confirmed using an Unfors Xi detector which was then used to perform a tube current calibration on each unit. Results: Initial measurements showed measured tube current variations of up to 25% between units for scans with the same image settings. In order to reasonably estimate the imaging dose, a systematic approach to x-ray generator calibration was adopted to ensure that the imaging dose was consistent across all units at the centre and was adopted as part of the routine quality assurance program. Subsequent measurements show that the variation in measured dose across nine units is on the order of 5%. Conclusion: Increasingly, patients receiving radiation therapy have extended life expectancies and therefore the cumulative dose from daily imaging should not be ignored. In theory, an estimate of imaging dose can be made from the imaging parameters. However, measurements have shown that there are large differences in the x-ray generator calibration as installed at the clinic. Current protocols recommend routine checks of dose to ensure constancy. The present study suggests that in addition to constancy checks on a single machine, a tube current calibration should be performed on every unit to ensure agreement across multiple machines. This is crucial at a large centre with multiple units in order to provide physicians with a meaningful estimate of the daily imaging dose.

  9. DAF: differential ACE filtering image quality assessment by automatic color equalization

    Science.gov (United States)

    Ouni, S.; Chambah, M.; Saint-Jean, C.; Rizzi, A.

    2008-01-01

    Ideally, a quality assessment system would perceive and measure image or video impairments just like a human being. But in reality, objective quality metrics do not necessarily correlate well with perceived quality [1]. Plus, some measures assume that there exists a reference in the form of an "original" to compare to, which prevents their usage in digital restoration field, where often there is no reference to compare to. That is why subjective evaluation is the most used and most efficient approach up to now. But subjective assessment is expensive, time consuming and does not respond, hence, to the economic requirements [2,3]. Thus, reliable automatic methods for visual quality assessment are needed in the field of digital film restoration. The ACE method, for Automatic Color Equalization [4,6], is an algorithm for digital images unsupervised enhancement. It is based on a new computational approach that tries to model the perceptual response of our vision system merging the Gray World and White Patch equalization mechanisms in a global and local way. Like our vision system ACE is able to adapt to widely varying lighting conditions, and to extract visual information from the environment efficaciously. Moreover ACE can be run in an unsupervised manner. Hence it is very useful as a digital film restoration tool since no a priori information is available. In this paper we deepen the investigation of using the ACE algorithm as a basis for a reference free image quality evaluation. This new metric called DAF for Differential ACE Filtering [7] is an objective quality measure that can be used in several image restoration and image quality assessment systems. In this paper, we compare on different image databases, the results obtained with DAF and with some subjective image quality assessments (Mean Opinion Score MOS as measure of perceived image quality). We study also the correlation between objective measure and MOS. In our experiments, we have used for the first image

  10. Quality assessment of butter cookies applying multispectral imaging

    Science.gov (United States)

    Andresen, Mette S; Dissing, Bjørn S; Løje, Hanne

    2013-01-01

    A method for characterization of butter cookie quality by assessing the surface browning and water content using multispectral images is presented. Based on evaluations of the browning of butter cookies, cookies were manually divided into groups. From this categorization, reference values were calculated for a statistical prediction model correlating multispectral images with a browning score. The browning score is calculated as a function of oven temperature and baking time. It is presented as a quadratic response surface. The investigated process window was the intervals 4–16 min and 160–200°C in a forced convection electrically heated oven. In addition to the browning score, a model for predicting the average water content based on the same images is presented. This shows how multispectral images of butter cookies may be used for the assessment of different quality parameters. Statistical analysis showed that the most significant wavelengths for browning predictions were in the interval 400–700 nm and the wavelengths significant for water prediction were primarily located in the near-infrared spectrum. The water prediction model was found to correctly estimate the average water content with an absolute error of 0.22%. From the images it was also possible to follow the browning and drying propagation from the cookie edge toward the center. PMID:24804036

  11. Dehazed Image Quality Assessment by Haze-Line Theory

    Science.gov (United States)

    Song, Yingchao; Luo, Haibo; Lu, Rongrong; Ma, Junkai

    2017-06-01

    Images captured in bad weather suffer from low contrast and faint color. Recently, plenty of dehazing algorithms have been proposed to enhance visibility and restore color. However, there is a lack of evaluation metrics to assess the performance of these algorithms or rate them. In this paper, an indicator of contrast enhancement is proposed basing on the newly proposed haze-line theory. The theory assumes that colors of a haze-free image are well approximated by a few hundred distinct colors, which form tight clusters in RGB space. The presence of haze makes each color cluster forms a line, which is named haze-line. By using these haze-lines, we assess performance of dehazing algorithms designed to enhance the contrast by measuring the inter-cluster deviations between different colors of dehazed image. Experimental results demonstrated that the proposed Color Contrast (CC) index correlates well with human judgments of image contrast taken in a subjective test on various scene of dehazed images and performs better than state-of-the-art metrics.

  12. Assessment of the sinus lift operation by magnetic resonance imaging.

    Science.gov (United States)

    Senel, Figen Cizmeci; Duran, Serpil; Icten, Onur; Izbudak, Izlem; Cizmeci, Fulya

    2006-12-01

    Vertical bone loss in edentulous maxillary alveolar processes may necessitate a sinus lift before the placement of dental implants. We have measured and assessed maxillary sinuses meticulously before the operation and evaluated the postoperative results of the operation with magnetic resonance imaging (MRI). Thirteen edentulous maxillary regions in eight patients were included in the study. The patients were examined 1 week before and 3 months after the sinus lift operations using a 1.5 T superconductive MR imager that gave oblique sagittal T2-weighted images with slices 2 mm thick without a gap. The images that were obtained 3 months after the sinus lift operations confirmed that vertical height had increased. We obtained high quality images without any artefacts during a short examination period with a high-resolution scanner. The results showed that it is possible to assess the maxillary sinus before the sinus lift and to evaluate the postoperative results using MRI accurately in three dimensions without the risk of radiation. This makes MRI a suitable alternative to computed tomography (CT).

  13. The image acquisition system design of floor grinder

    Science.gov (United States)

    Wang, Yang-jiang; Liu, Wei; Liu, Hui-qin

    2018-01-01

    Based on linear CCD, high resolution image real-time acquisition system serves as designing a set of image acquisition system for floor grinder through the calculation of optical imaging system. The entire image acquisition system can collect images of ground before and after the work of the floor grinder, and the data is transmitted through the Bluetooth system to the computer and compared to realize real-time monitoring of its working condition. The system provides technical support for the design of unmanned ground grinders.

  14. Magnetic resonance imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Masuda, Yoshiaki; Imai, Hiroshi; Watanabe, Sigeru; Inagaki, Yoshiaki; Tateno, Yukio; Ikehira, Hiroo.

    1990-01-01

    Magnetic resonance imaging (MRI) is a new noninvasive technique for visualization of the cardiovascular system, and is used to evaluate tissue characteristics, cardiac function and blood flow abnormalities, as well as to obtain morphological information. In this paper we presented results of clinical and laboratory research obtained using conventional spin echo MRI with regard to cardiovascular anatomy, tissue characterization and physiology. Furthermore, experience with two new techniques, cine-MRI and volume-selected MR spectroscopy, and their potential clinical usefulness in detecting cardiovascular diseases are documented. (author)

  15. GRANITE- A steroscopic imaging Chernkov telescope system

    International Nuclear Information System (INIS)

    Shubnell, M.; Akerlof, C.W.; Cawley, M.F.; Chantell, M.; Fegan, D.J.; Fennell, S.; O'Flaherty, K.S.; Freeman, S.; Frishman, D.; Gaidos, J.A.; Hagan, J.; Harris, K.; Hillas, A.M.; Kerrick, A.D.; Lamb, R.C.; Lappin, T.; Lawrence, M.A.; Levy, H.; Lewis, D.A.; Meyer, D.I.; Mohanty, G.; Punch, M.; Reynolds, P.T.; Rovero, A.C.; Sembroski, G.; Weaverdyck, C.; Weekes, T.C.; Whitaker, T.; Wilson, C.

    1993-01-01

    A second 10 meter class imaging telescope was constructed on Mt. Hopkins, Arizona, the site of the original 10 meter Whipple Cherenkov telescope. The twin telescope system with a 140 meter base line will allow both a reduction in the energy threshold and an improvement in the rejection of the hardonic background. The new telescope started operation in December 1991. With the final completion of the first installation stage (GRANITE I) during spring 92, it is now operating simultaneously with the orginal reflector. We describe in this paper design and construction of the new instrument and demonstrate the capability of the experiment to record coincident events

  16. Synthesis and assessment methods for an edge-alignment-free hybrid image

    Science.gov (United States)

    Sripian, Peeraya; Yamaguchi, Yasushi

    2017-07-01

    A hybrid image allows multiple image interpretations to be modulated by the viewing distance. It can be constructed on the basis of the multiscale perceptual mechanisms of the human visual system by combining the low and high spatial frequencies of two different images. The hybrid image was introduced as an experimental tool for visual recognition study in terms of spatial frequency perception. To produce a compelling hybrid image, the original hybrid image synthesis method could only use similar shapes of source images that were aligned in the edges. If any two different images can be hybrid, it would be beneficial as a new experimental tool. In addition, there is no measure for the actual perception of spatial frequency, whether a single spatial frequency or both spatial frequencies are perceived from the hybrid stimulus. This paper describes two methods for synthesizing a hybrid image from dissimilar shape images or unaligned images; this hybrid image is known as an "edge-alignment-free hybrid image." A noise-inserted method can be done by intentionally inserting and enhancing noises into the high-frequency image. With this method, the low-frequency blobs are covered with high-frequency noises when viewed up close. A color-inserted method uses complementary color gratings in the background of the high-frequency image to emphasize the high-frequency image when viewed up close, whereas the gratings disappear when viewed from far away. To ascertain that our approach successfully separates the spatial frequency at each viewing distance, we measured this property using our proposed assessment method. Our proposed method allows the experimenter to quantify the probability of perceiving both spatial frequencies and a single spatial frequency in a hybrid image. The experimental results confirmed that our proposed synthesis methods successfully hid the low-frequency image and emphasized the high-frequency image at a close viewing distance. At the same time, the

  17. An Ibm PC/AT-Based Image Acquisition And Processing System For Quantitative Image Analysis

    Science.gov (United States)

    Kim, Yongmin; Alexander, Thomas

    1986-06-01

    In recent years, a large number of applications have been developed for image processing systems in the area of biological imaging. We have already finished the development of a dedicated microcomputer-based image processing and analysis system for quantitative microscopy. The system's primary function has been to facilitate and ultimately automate quantitative image analysis tasks such as the measurement of cellular DNA contents. We have recognized from this development experience, and interaction with system users, biologists and technicians, that the increasingly widespread use of image processing systems, and the development and application of new techniques for utilizing the capabilities of such systems, would generate a need for some kind of inexpensive general purpose image acquisition and processing system specially tailored for the needs of the medical community. We are currently engaged in the development and testing of hardware and software for a fairly high-performance image processing computer system based on a popular personal computer. In this paper, we describe the design and development of this system. Biological image processing computer systems have now reached a level of hardware and software refinement where they could become convenient image analysis tools for biologists. The development of a general purpose image processing system for quantitative image analysis that is inexpensive, flexible, and easy-to-use represents a significant step towards making the microscopic digital image processing techniques more widely applicable not only in a research environment as a biologist's workstation, but also in clinical environments as a diagnostic tool.

  18. Image quality improvement in megavoltage cone beam CT using an imaging beam line and a sintered pixelated array system

    International Nuclear Information System (INIS)

    Breitbach, Elizabeth K.; Maltz, Jonathan S.; Gangadharan, Bijumon; Bani-Hashemi, Ali; Anderson, Carryn M.; Bhatia, Sudershan K.; Stiles, Jared; Edwards, Drake S.; Flynn, Ryan T.

    2011-01-01

    Purpose: To quantify the improvement in megavoltage cone beam computed tomography (MVCBCT) image quality enabled by the combination of a 4.2 MV imaging beam line (IBL) with a carbon electron target and a detector system equipped with a novel sintered pixelated array (SPA) of translucent Gd 2 O 2 S ceramic scintillator. Clinical MVCBCT images are traditionally acquired with the same 6 MV treatment beam line (TBL) that is used for cancer treatment, a standard amorphous Si (a-Si) flat panel imager, and the Kodak Lanex Fast-B (LFB) scintillator. The IBL produces a greater fluence of keV-range photons than the TBL, to which the detector response is more optimal, and the SPA is a more efficient scintillator than the LFB. Methods: A prototype IBL + SPA system was installed on a Siemens Oncor linear accelerator equipped with the MVision TM image guided radiation therapy (IGRT) system. A SPA strip consisting of four neighboring tiles and measuring 40 cm by 10.96 cm in the crossplane and inplane directions, respectively, was installed in the flat panel imager. Head- and pelvis-sized phantom images were acquired at doses ranging from 3 to 60 cGy with three MVCBCT configurations: TBL + LFB, IBL + LFB, and IBL + SPA. Phantom image quality at each dose was quantified using the contrast-to-noise ratio (CNR) and modulation transfer function (MTF) metrics. Head and neck, thoracic, and pelvic (prostate) cancer patients were imaged with the three imaging system configurations at multiple doses ranging from 3 to 15 cGy. The systems were assessed qualitatively from the patient image data. Results: For head and neck and pelvis-sized phantom images, imaging doses of 3 cGy or greater, and relative electron densities of 1.09 and 1.48, the CNR average improvement factors for imaging system change of TBL + LFB to IBL + LFB, IBL + LFB to IBL + SPA, and TBL + LFB to IBL + SPA were 1.63 (p -8 ), 1.64 (p -13 ), 2.66 (p -9 ), respectively. For all imaging doses, soft tissue contrast was more

  19. Assessment of spatial information for hyperspectral imaging of lesion

    Science.gov (United States)

    Yang, Xue; Li, Gang; Lin, Ling

    2016-10-01

    Multiple diseases such as breast tumor poses a great threat to women's health and life, while the traditional detection method is complex, costly and unsuitable for frequently self-examination, therefore, an inexpensive, convenient and efficient method for tumor self-inspection is needed urgently, and lesion localization is an important step. This paper proposes an self-examination method for positioning of a lesion. The method adopts transillumination to acquire the hyperspectral images and to assess the spatial information of lesion. Firstly, multi-wavelength sources are modulated with frequency division, which is advantageous to separate images of different wavelength, meanwhile, the source serves as fill light to each other to improve the sensitivity in the low-lightlevel imaging. Secondly, the signal-to-noise ratio of transmitted images after demodulation are improved by frame accumulation technology. Next, gray distributions of transmitted images are analyzed. The gray-level differences is constituted by the actual transmitted images and fitting transmitted images of tissue without lesion, which is to rule out individual differences. Due to scattering effect, there will be transition zones between tissue and lesion, and the zone changes with wavelength change, which will help to identify the structure details of lesion. Finally, image segmentation is adopted to extract the lesion and the transition zones, and the spatial features of lesion are confirmed according to the transition zones and the differences of transmitted light intensity distributions. Experiment using flat-shaped tissue as an example shows that the proposed method can extract the space information of lesion.

  20. Image processing system for videotape review

    International Nuclear Information System (INIS)

    Bettendroffer, E.

    1988-01-01

    In a nuclear plant, the areas in which fissile materials are stored or handled, have to be monitored continuously. One method of surveillance is to record pictures of TV cameras with determined time intervals on special video recorders. The 'time lapse' recorded tape is played back at normal speed and an inspector checks visually the pictures. This method requires much manpower and an automated method would be useful. The present report describes an automatic reviewing method based on an image processing system; the system detects scene changes in the picture sequence and stores the reduced data set on a separate video tape. The resulting reduction of reviewing time by inspector is important for surveillance data with few movements

  1. Seedling imaging analysis and traditional tests to assess okra seed vigor

    OpenAIRE

    Kikuti,Ana Lúcia Pereira; Marcos-Filho,Júlio

    2013-01-01

    Seed vigor testing is an important component of quality control programs adopted by seed industry. The software Seed Vigor Imaging System (SVIS) has been successfully used for seed vigor assessment in different species. The objective of this research was to verify the SVIS efficiency to assess okra seed vigor in comparison to other vigor tests used for this species. Five seed lots of 'Clemson Americano' and four of 'Santa Cruz' were submitted to germination (speed and percentage), cold germin...

  2. Image quality assessment using the CD-DISC phantom for vascular radiology and vascular surgery

    International Nuclear Information System (INIS)

    Struelens, Lara; Hambach, Lionel; Buls, Nico; Smans, Kristien; Malchair, Francoise; Hoornaert, Marie-Therese; Vanhavere, Filip; Bosmans, Hilde

    2008-01-01

    The purpose of the study was to evaluate image quality (IQ) associated with vascular radiology and vascular surgery procedures in Belgium and to determine reference values for future image quality assessment. IQ was evaluated with the CD-DISC contrast-detail phantom. This circular PMMA phantom contains 225 holes with different diameter and depth, to quantify resolution and contrast. Images of the phantom were acquired for both fluoroscopy and subtraction images on 21 systems. Three observers evaluated the images by determining the threshold contrast visible for every diameter. This results in contrast-detail curves and image quality figures. We observed a large difference in IQ between the centres. No straightforward correlation could be found with radiation dose or other exposure settings. A comparison was made with the image quality evaluation of the systems performed with the TOR[18FG] phantom for fluoroscopy. There is no clear correlation observed between the results of the CD-DISC phantom and the TOR phantom. However, systems with very poor or very good image quality could be detected by both phantoms. An important result is that a 75th percentile reference contrast-detail curve could be proposed to separate the best centres from these with poorer quality. Some centres had also a significantly better image quality than others. Therefore, we introduced also a 25th percentile. Centres with IQ above this value are recommended to lower the dose and work with acceptable rather than excellent image quality. The CD-DISC phantom thus allows to guide the image quality setting

  3. SORIS-A standoff radiation imaging system

    International Nuclear Information System (INIS)

    Zelakiewicz, Scott; Hoctor, Ralph; Ivan, Adrian; Ross, William; Nieters, Edward; Smith, William; McDevitt, Daniel; Wittbrodt, Michael; Milbrath, Brian

    2011-01-01

    The detection of radiological and special nuclear material within the country's borders is a crucial component of the national security network. Being able to detect small amounts of radiological material at large distances is especially important for search applications. To provide this capability General Electric's Research Center has developed, as a part of DNDO's standoff radiation detection system advanced technology demonstration (SORDS-ATD) program, a standoff radiation imaging system (SORIS). This vehicle-based system is capable of detecting weak sources at large distances in relatively short times. To accomplish this, GE has developed a novel coded aperture detector based on commercial components from GE Healthcare. An array of commercial gamma cameras modified to increase the system efficiency and energy range are used as position sensitive detectors. Unlike typical coded aperture systems, however, SORIS employs a non-planar mask and thus does not suffer the typical limitations of partially encoded regions giving it a wide field of view. Source identification is done using both low-statistics anomaly indicators and conventional high-statistics algorithms being developed by Pacific Northwest National Laboratory. The results of scanned areas and threats identified are displayed to the user and overlaid on satellite imagery.

  4. SORIS—A standoff radiation imaging system

    Science.gov (United States)

    Zelakiewicz, Scott; Hoctor, Ralph; Ivan, Adrian; Ross, William; Nieters, Edward; Smith, William; McDevitt, Daniel; Wittbrodt, Michael; Milbrath, Brian

    2011-10-01

    The detection of radiological and special nuclear material within the country's borders is a crucial component of the national security network. Being able to detect small amounts of radiological material at large distances is especially important for search applications. To provide this capability General Electric's Research Center has developed, as a part of DNDO's standoff radiation detection system advanced technology demonstration (SORDS-ATD) program, a standoff radiation imaging system (SORIS). This vehicle-based system is capable of detecting weak sources at large distances in relatively short times. To accomplish this, GE has developed a novel coded aperture detector based on commercial components from GE Healthcare. An array of commercial gamma cameras modified to increase the system efficiency and energy range are used as position sensitive detectors. Unlike typical coded aperture systems, however, SORIS employs a non-planar mask and thus does not suffer the typical limitations of partially encoded regions giving it a wide field of view. Source identification is done using both low-statistics anomaly indicators and conventional high-statistics algorithms being developed by Pacific Northwest National Laboratory. The results of scanned areas and threats identified are displayed to the user and overlaid on satellite imagery.

  5. A Practical and Portable Solids-State Electronic Terahertz Imaging System

    Directory of Open Access Journals (Sweden)

    Ken Smart

    2016-04-01

    Full Text Available A practical compact solid-state terahertz imaging system is presented. Various beam guiding architectures were explored and hardware performance assessed to improve its compactness, robustness, multi-functionality and simplicity of operation. The system performance in terms of image resolution, signal-to-noise ratio, the electronic signal modulation versus optical chopper, is evaluated and discussed. The system can be conveniently switched between transmission and reflection mode according to the application. A range of imaging application scenarios was explored and images of high visual quality were obtained in both transmission and reflection mode.

  6. A Data Acquisition System for Medical Imaging

    International Nuclear Information System (INIS)

    Abellan, Carlos; Cachemiche, Jean-Pierre; Rethore, Frederic; Morel, Christian

    2013-06-01

    A data acquisition system for medical imaging applications is presented. Developed at CPPM, it provides high performance generic data acquisition and processing capabilities. The DAQ system is based on the PICMG xTCA standard and is composed of 1 up to 10 cards in a single rack, each one with 2 Altera Stratix IV FPGAs and a Fast Mezzanine Connector (FMC). Several mezzanines have been produced, each one with different functionalities. Some examples are: a mezzanine capable of receiving 36 optical fibres with up to 180 Gbps sustained data rates or a mezzanine with 12 x 5 Gbps input links, 12 x 5 Gbps output links and an SFP+ connector for control purposes. Several rack sizes are also available, thus making the system scalable from a one card desktop system useful for development purpose up to a full featured rack mounted DAQ for high end applications. Depending on the application, boards may exchange data at speeds of up to 25.6 Gbps bidirectional sustained rates in a double star topology through back-plane connections. Also, front panel optical fibres can be used when higher rates are required by the application. The system may be controlled by a standard Ethernet connection, thus providing easy integration with control computers and avoiding the need for drivers. Two control systems are foreseen. A Socket connection provides easy interaction with automation software regardless of the operating system used for the control PC. Moreover a web server may run on the Envision cards and provide an easy intuitive user interface. The system and its different components will be introduced. Some preliminary measurements with high speed signal links will be presented as well as the signal conditioning used to allow these rates. (authors)

  7. Triangular SPECT system for 3-D total organ volume imaging: Design concept and preliminary imaging results

    International Nuclear Information System (INIS)

    Lim, C.B.; Anderson, J.; Covic, J.

    1985-01-01

    SPECT systems based on 2-D detectors for projection data collection and filtered back-projection image reconstruction have the potential for true 3-D imaging, providing contiguous slice images in any orientation. Anger camera-based SPECT systems have the natural advantage supporting planar imaging clinical procedures. However, current systems suffer from two drawbacks; poor utilization of emitted photons, and inadequate system design for SPECT. A SPECT system consisting of three rectangular cameras with radial translation would offer the variable cylindrical FOV of 25 cm to 40 cm diameter allowing close detector access to the object. This system would provide optimized imaging for both brain and body organs in terms of sensitivity and resolution. For brain imaging a tight detector triangle with fan beam collimation, matching detector UFOV to the head, allows full 2 π utilization of emitted photons, resulting in >4 times sensitivity increase over the single detector system. Minification of intrinsic detector resolution in fan beam collimation further improves system resolution. For body organ imaging the three detectors with parallel hole collimators, rotating in non-circular orbit, provide both improved resolution and three-fold sensitivity increase. Practical challenges lie in ensuring perfect image overlap from three detectors without resolution degradation and artifact generation in order to benefit from the above improvements. An experimental system has been developed to test the above imaging concept and we have successfully demonstrated the superior image quality of the overlapped images. Design concept will be presented with preliminary imaging results

  8. Assessment of COTS IR image simulation tools for ATR development

    Science.gov (United States)

    Seidel, Heiko; Stahl, Christoph; Bjerkeli, Frode; Skaaren-Fystro, Paal

    2005-05-01

    recommendation. The synthetic image data that are used for the investigation are generated using the recommended tool. Within the scope of this study, ATR performance on IR imagery using classifiers trained on real, synthetic and mixed image sets was evaluated. The performance of the adapted classifiers is assessed using recorded IR imagery with known ground-truth and recommendations are given for the use of COTS IR image simulation tools for ATR development.

  9. Mobile phone based laser speckle contrast imager for assessment of skin blood flow

    Science.gov (United States)

    Jakovels, Dainis; Saknite, Inga; Krievina, Gita; Zaharans, Janis; Spigulis, Janis

    2014-10-01

    Assessment of skin blood flow is of interest for evaluation of skin viability as well as for reflection of the overall condition of the circulatory system. Laser Doppler perfusion imaging (LDPI) and laser speckle contrast imaging (LASCI) are optical techniques used for assessment of skin perfusion. However, these systems are still too expensive and bulky to be widely available. Implementation of such techniques as connection kits for mobile phones have a potential for primary diagnostics. In this work we demonstrate simple and low cost LASCI connection kit for mobile phone and its comparison to laser Doppler perfusion imager. Post-occlusive hyperemia and local thermal hyperemia tests are used to compare both techniques and to demonstrate the potential of LASCI device.

  10. Quantification of image persistence in a digital angiography system

    International Nuclear Information System (INIS)

    Okkalides, D.P.; Raptou, P.D.

    1993-01-01

    Image persistence, as a characteristic of video imaging systems affecting the quality of fast moving fluoroscopic images, is shown to vary considerably. A simple quantitative method for measuring image persistence in a digital angiography system is presented, together with a series of image intensifier exposure-response curves. For the Saticon tube, used with the Siemens 3VA Digitron, it was found that persistence increased for low exposure rates and may increase to 31% at a 120 ms interval. In addition, a sharp increase in image persistence, from 8.3% to 33%, was observed within 18 months from installation of the system. (author)

  11. Specific developed phantoms and software to assess radiological equipment image quality

    Energy Technology Data Exchange (ETDEWEB)

    Verdu, G., E-mail: gverdu@iqn.upv.es [Universidad Politecnica de Valencia (Spain). Dept. de Ingenieria Quimica y Nuclear; Mayo, P., E-mail: p.mayo@titaniast.com [TITANIA Servicios Teconologicos, Valencia (Spain); Rodenas, F., E-mail: frodenas@mat.upv.es [Universidad Politecnica de Valencia (Spain). Dept. de Matematica Aplicada; Campayo, J.M., E-mail: j.campayo@lainsa.com [Logistica y Acondicionamientos Industriales S.A.U (LAINSA), Valencia (Spain)

    2011-07-01

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be automatized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques, etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (mAs). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (author)

  12. Specific developed phantoms and software to assess radiological equipment image quality

    International Nuclear Information System (INIS)

    Verdu, G.; Rodenas, F.

    2011-01-01

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be automatized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques, etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (mAs). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (author)

  13. The information protection level assessment system implementation

    Science.gov (United States)

    Trapeznikov, E. V.

    2018-04-01

    Currently, the threat of various attacks increases significantly as automated systems become more widespread. On the basis of the conducted analysis the information protection level assessment system establishing objective was identified. The paper presents the information protection level assessment software implementation in the information system by applying the programming language C #. In conclusions the software features are identified and experimental results are represented.

  14. Performances of different digital mammography imaging systems: Evaluation and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Bisogni, M.G. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy)]. E-mail: giuseppina.bisogni@pi.infn.it; Bulajic, D. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); International Centre for Theoretical Physics, Trieste (Italy); Delogu, P. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Fantacci, M.E. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Novelli, M. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Quattrocchi, M. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Rosso, V. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Stefanini, A. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy)

    2005-07-01

    Digital mammography is entering routine clinical use and many commercial systems are now in use in the radiological units for screening and diagnostic mammography. At the same time, the research in the digital mammography field is very active in the development of more and more performing devices. In this paper we present the performance of single photon counting pixel detectors (MedipixI) tailored for digital mammographic applications. These devices are based on semiconductor (Si and GaAs) pixel detectors of different thickness, read-out by custom designed integrated circuits. To assess the imaging capability of such systems, the images of a mammographic phantom have been acquired in standard conditions for a clinical examination. The signal-to-noise ratio (SNR) of details simulating tumor masses has been evaluated. The same phantom has been also radiographed by three different commercial digital mammographic systems in the same reference conditions and a comparison in terms of SNR has been carried out. The spatial resolution of the single photon counting systems has also been evaluated by measuring the line spread function with the edge technique and then calculating the Modulation Transfer Function (MTF). The MTFs of the single photon counting systems have been compared with the MTFs of the commercial systems.

  15. Performances of different digital mammography imaging systems: Evaluation and comparison

    International Nuclear Information System (INIS)

    Bisogni, M.G.; Bulajic, D.; Delogu, P.; Fantacci, M.E.; Novelli, M.; Quattrocchi, M.; Rosso, V.; Stefanini, A.

    2005-01-01

    Digital mammography is entering routine clinical use and many commercial systems are now in use in the radiological units for screening and diagnostic mammography. At the same time, the research in the digital mammography field is very active in the development of more and more performing devices. In this paper we present the performance of single photon counting pixel detectors (MedipixI) tailored for digital mammographic applications. These devices are based on semiconductor (Si and GaAs) pixel detectors of different thickness, read-out by custom designed integrated circuits. To assess the imaging capability of such systems, the images of a mammographic phantom have been acquired in standard conditions for a clinical examination. The signal-to-noise ratio (SNR) of details simulating tumor masses has been evaluated. The same phantom has been also radiographed by three different commercial digital mammographic systems in the same reference conditions and a comparison in terms of SNR has been carried out. The spatial resolution of the single photon counting systems has also been evaluated by measuring the line spread function with the edge technique and then calculating the Modulation Transfer Function (MTF). The MTFs of the single photon counting systems have been compared with the MTFs of the commercial systems

  16. A phantom design for assessment of detectability in PET imaging

    International Nuclear Information System (INIS)

    Wollenweber, Scott D.; Alessio, Adam M.; Kinahan, Paul E.

    2016-01-01

    Purpose: The primary clinical role of positron emission tomography (PET) imaging is the detection of anomalous regions of 18 F-FDG uptake, which are often indicative of malignant lesions. The goal of this work was to create a task-configurable fillable phantom for realistic measurements of detectability in PET imaging. Design goals included simplicity, adjustable feature size, realistic size and contrast levels, and inclusion of a lumpy (i.e., heterogeneous) background. Methods: The detection targets were hollow 3D-printed dodecahedral nylon features. The exostructure sphere-like features created voids in a background of small, solid non-porous plastic (acrylic) spheres inside a fillable tank. The features filled at full concentration while the background concentration was reduced due to filling only between the solid spheres. Results: Multiple iterations of feature size and phantom construction were used to determine a configuration at the limit of detectability for a PET/CT system. A full-scale design used a 20 cm uniform cylinder (head-size) filled with a fixed pattern of features at a contrast of approximately 3:1. Known signal-present and signal-absent PET sub-images were extracted from multiple scans of the same phantom and with detectability in a challenging (i.e., useful) range. These images enabled calculation and comparison of the quantitative observer detectability metrics between scanner designs and image reconstruction methods. The phantom design has several advantages including filling simplicity, wall-less contrast features, the control of the detectability range via feature size, and a clinically realistic lumpy background. Conclusions: This phantom provides a practical method for testing and comparison of lesion detectability as a function of imaging system, acquisition parameters, and image reconstruction methods and parameters.

  17. Contractor Performance Assessment Reporting System

    Data.gov (United States)

    US Agency for International Development — CPARS is a web-based system used to input data on contractor performance. Reports from the system are used as an aid in awarding contracts to contractors that...

  18. Millimeter-wave Imaging Systems with Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Löffler, Torsten; Krozer, Viktor; Zhurbenko, Vitaliy

    2010-01-01

    The paper describes development of a millimetre-wave imaging system using multi-element aperture filling techniques [1]. Such imaging systems are increasingly demonstrated for security applications and in particular standoff imaging of persons and bonding flaw and defect detection [2]. The major ...

  19. Prototype of Microwave Imaging System for Breast-Cancer Screening

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2009-01-01

    Microwave imaging for breast-cancer detection has received the attention of a large number of research groups in the last decade. In this paper, the imaging system currently being developed at the Technical university of Denmark is presented. This includes a description of the antenna system......, the microwave hardware, and the imaging algorithm....

  20. Recent developments of MR imaging system and future trends

    International Nuclear Information System (INIS)

    Fujieda, Kunimi

    1996-01-01

    Because MR imaging technique has no limitation of slice direction, uses none of mechanically moving components and can employ electronic scanning method for data acquisition, the most advanced electronics and CPU techniques have been applied to develop MR imaging systems. Along with pursuance of better equipment performance as clinical diagnostic equipment, cost reduction, improvement of operability and safety, easy siting, comfortable examination and economical operation cost by remarkable reduction of running cost have become important factors in development of MR imaging system. From this viewpoint, MR imaging systems incorporating an open gantry with a relatively low field strength and of vertical field system have been developed recently and they are being accepted as clinically useful equipment. The vertical field, open gantry system has an optimum structure capable of performing interventional imaging, thus clinical application of the system have been actively attempted. Thanks to recent development of various MRI techniques, image quality quite acceptable for routine clinical diagnosis can now be obtained by using the systems with permanent magnet and resistive magnet. Thus, it is considered that evaluation of not only equipment performance but also the total performances of the MR imaging system as described above will become important. The MR imaging technique has a possibility to substitute itself for other conventional imaging modalities because the technique can visualize physiological and metabolic functions in addition to morphological imaging. It is expected that application of MR imaging modality will be further expanded by continuous investigation of applicable clinical fields and development of imaging technologies. (J.P.N.)

  1. Content-based image retrieval applied to bone age assessment

    Science.gov (United States)

    Fischer, Benedikt; Brosig, André; Welter, Petra; Grouls, Christoph; Günther, Rolf W.; Deserno, Thomas M.

    2010-03-01

    Radiological bone age assessment is based on local image regions of interest (ROI), such as the epiphysis or the area of carpal bones. These are compared to a standardized reference and scores determining the skeletal maturity are calculated. For computer-aided diagnosis, automatic ROI extraction and analysis is done so far mainly by heuristic approaches. Due to high variations in the imaged biological material and differences in age, gender and ethnic origin, automatic analysis is difficult and frequently requires manual interactions. On the contrary, epiphyseal regions (eROIs) can be compared to previous cases with known age by content-based image retrieval (CBIR). This requires a sufficient number of cases with reliable positioning of the eROI centers. In this first approach to bone age assessment by CBIR, we conduct leaving-oneout experiments on 1,102 left hand radiographs and 15,428 metacarpal and phalangeal eROIs from the USC hand atlas. The similarity of the eROIs is assessed by cross-correlation of 16x16 scaled eROIs. The effects of the number of eROIs, two age computation methods as well as the number of considered CBIR references are analyzed. The best results yield an error rate of 1.16 years and a standard deviation of 0.85 years. As the appearance of the hand varies naturally by up to two years, these results clearly demonstrate the applicability of the CBIR approach for bone age estimation.

  2. Image Navigation and Registration Performance Assessment Tool Set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    Science.gov (United States)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24-hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24-hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  3. Assessment of fusion operators for medical imaging: application to MR images fusion

    International Nuclear Information System (INIS)

    Barra, V.; Boire, J.Y.

    2000-01-01

    We propose in the article to assess the results provided by several fusion operators in the case of T 1 - and T 2 -weighted magnetic resonance images fusion of the brain. This assessment deals with an expert visual inspection of the results and with a numerical analysis of some comparison measures found in the literature. The aim of this assessment is to find the 'best' operator according to the clinical study. This method is here applied to the quantification of brain tissue volumes on a brain phantom, and allows to select a fusion operator in any clinical study where several information is available. (authors)

  4. Real-time beam profile imaging system for actinotherapy accelerator

    International Nuclear Information System (INIS)

    Lin Yong; Wang Jingjin; Song Zheng; Zheng Putang; Wang Jianguo

    2003-01-01

    This paper describes a real-time beam profile imaging system for actinotheraphy accelerator. With the flash X-ray imager and the technique of digital image processing, a real-time 3-dimension dosage image is created from the intensity profile of the accelerator beam in real time. This system helps to obtain all the physical characters of the beam in any section plane, such as FWHM, penumbra, peak value, symmetry and homogeneity. This system has been used to acquire a 3-dimension dosage distribution of dynamic wedge modulator and the transient process of beam dosage. The system configure and the tested beam profile images are also presented

  5. Dependency of image quality on system configuration parameters in a stationary digital breast tomosynthesis system

    Science.gov (United States)

    Tucker, Andrew W.; Lu, Jianping; Zhou, Otto

    2013-01-01

    Purpose: In principle, a stationary digital breast tomosynthesis (s-DBT) system has better image quality when compared to continuous motion DBT systems due to zero motion blur of the source. The authors have developed a s-DBT system by using a linear carbon nanotube x-ray source array. The purpose of the current study was to quantitatively evaluate the performance of the s-DBT system; and investigate the dependence of imaging quality on the system configuration parameters. Methods: Physical phantoms were used to assess the image quality of each configuration including inplane resolution as measured by the modulation transfer function (MTF), inplane contrast as measured by the signal difference to noise ratio (SdNR), and depth resolution as measured by the z-axis artifact spread function. Five parameters were varied to create five groups of configurations: (1) total angular span; (2) total number of projection images; (3) distribution of exposure (mAs) across the projection images; (4) entrance dose; (5) detector pixel size. Results: It was found that the z-axis depth resolution increased with the total angular span but was insensitive to the number of projection images, mAs distribution, entrance dose, and detector pixel size. The SdNR was not affected by the angular span or the number of projection images. A decrease in SdNR was observed when the mAs was not evenly distributed across the projection images. As expected, the SdNR increased with entrance dose and when larger pixel sizes were used. For a given detector pixel size, the inplane resolution was found to be insensitive to the total angular span, number of projection images, mAs distribution, and entrance dose. A 25% increase in the MTF was observed when the detector was operating in full resolution mode (70 μm pixel size) compared to 2 × 2 binned mode (140 μm pixel size). Conclusions: The results suggest that the optimal imaging configuration for a s-DBT system is a large angular span, an intermittent

  6. Image processing for safety assessment in civil engineering.

    Science.gov (United States)

    Ferrer, Belen; Pomares, Juan C; Irles, Ramon; Espinosa, Julian; Mas, David

    2013-06-20

    Behavior analysis of construction safety systems is of fundamental importance to avoid accidental injuries. Traditionally, measurements of dynamic actions in civil engineering have been done through accelerometers, but high-speed cameras and image processing techniques can play an important role in this area. Here, we propose using morphological image filtering and Hough transform on high-speed video sequence as tools for dynamic measurements on that field. The presented method is applied to obtain the trajectory and acceleration of a cylindrical ballast falling from a building and trapped by a thread net. Results show that safety recommendations given in construction codes can be potentially dangerous for workers.

  7. IMIS: An intelligence microscope imaging system

    Science.gov (United States)

    Caputo, Michael; Hunter, Norwood; Taylor, Gerald

    1994-01-01

    Until recently microscope users in space relied on traditional microscopy techniques that required manual operation of the microscope and recording of observations in the form of written notes, drawings, or photographs. This method was time consuming and required the return of film and drawings from space for analysis. No real-time data analysis was possible. Advances in digital and video technologies along with recent developments in article intelligence will allow future space microscopists to have a choice of three additional modes of microscopy: remote coaching, remote control, and automation. Remote coaching requires manual operations of the microscope with instructions given by two-way audio/video transmission during critical phases of the experiment. When using the remote mode of microscopy, the Principal Investigator controls the microscope from the ground. The automated mode employs artificial intelligence to control microscope functions and is the only mode that can be operated in the other three modes as well. The purpose of this presentation is to discuss the advantages and disadvantages of the four modes of of microscopy and how the IMIS, a proposed intelligent microscope imaging system, can be used as a model for developing and testing concepts, operating procedures, and equipment design of specifications required to provide a comprehensive microscopy/imaging capability onboard Space Station Freedom.

  8. Self-assessed performance improves statistical fusion of image labels

    International Nuclear Information System (INIS)

    Bryan, Frederick W.; Xu, Zhoubing; Asman, Andrew J.; Allen, Wade M.; Reich, Daniel S.; Landman, Bennett A.

    2014-01-01

    Purpose: Expert manual labeling is the gold standard for image segmentation, but this process is difficult, time-consuming, and prone to inter-individual differences. While fully automated methods have successfully targeted many anatomies, automated methods have not yet been developed for numerous essential structures (e.g., the internal structure of the spinal cord as seen on magnetic resonance imaging). Collaborative labeling is a new paradigm that offers a robust alternative that may realize both the throughput of automation and the guidance of experts. Yet, distributing manual labeling expertise across individuals and sites introduces potential human factors concerns (e.g., training, software usability) and statistical considerations (e.g., fusion of information, assessment of confidence, bias) that must be further explored. During the labeling process, it is simple to ask raters to self-assess the confidence of their labels, but this is rarely done and has not been previously quantitatively studied. Herein, the authors explore the utility of self-assessment in relation to automated assessment of rater performance in the context of statistical fusion. Methods: The authors conducted a study of 66 volumes manually labeled by 75 minimally trained human raters recruited from the university undergraduate population. Raters were given 15 min of training during which they were shown examples of correct segmentation, and the online segmentation tool was demonstrated. The volumes were labeled 2D slice-wise, and the slices were unordered. A self-assessed quality metric was produced by raters for each slice by marking a confidence bar superimposed on the slice. Volumes produced by both voting and statistical fusion algorithms were compared against a set of expert segmentations of the same volumes. Results: Labels for 8825 distinct slices were obtained. Simple majority voting resulted in statistically poorer performance than voting weighted by self-assessed performance

  9. Self-assessed performance improves statistical fusion of image labels

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Frederick W., E-mail: frederick.w.bryan@vanderbilt.edu; Xu, Zhoubing; Asman, Andrew J.; Allen, Wade M. [Electrical Engineering, Vanderbilt University, Nashville, Tennessee 37235 (United States); Reich, Daniel S. [Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 (United States); Landman, Bennett A. [Electrical Engineering, Vanderbilt University, Nashville, Tennessee 37235 (United States); Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235 (United States); and Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee 37235 (United States)

    2014-03-15

    Purpose: Expert manual labeling is the gold standard for image segmentation, but this process is difficult, time-consuming, and prone to inter-individual differences. While fully automated methods have successfully targeted many anatomies, automated methods have not yet been developed for numerous essential structures (e.g., the internal structure of the spinal cord as seen on magnetic resonance imaging). Collaborative labeling is a new paradigm that offers a robust alternative that may realize both the throughput of automation and the guidance of experts. Yet, distributing manual labeling expertise across individuals and sites introduces potential human factors concerns (e.g., training, software usability) and statistical considerations (e.g., fusion of information, assessment of confidence, bias) that must be further explored. During the labeling process, it is simple to ask raters to self-assess the confidence of their labels, but this is rarely done and has not been previously quantitatively studied. Herein, the authors explore the utility of self-assessment in relation to automated assessment of rater performance in the context of statistical fusion. Methods: The authors conducted a study of 66 volumes manually labeled by 75 minimally trained human raters recruited from the university undergraduate population. Raters were given 15 min of training during which they were shown examples of correct segmentation, and the online segmentation tool was demonstrated. The volumes were labeled 2D slice-wise, and the slices were unordered. A self-assessed quality metric was produced by raters for each slice by marking a confidence bar superimposed on the slice. Volumes produced by both voting and statistical fusion algorithms were compared against a set of expert segmentations of the same volumes. Results: Labels for 8825 distinct slices were obtained. Simple majority voting resulted in statistically poorer performance than voting weighted by self-assessed performance

  10. Development of a quantitative assessment method of pigmentary skin disease using ultraviolet optical imaging.

    Science.gov (United States)

    Lee, Onseok; Park, Sunup; Kim, Jaeyoung; Oh, Chilhwan

    2017-11-01

    The visual scoring method has been used as a subjective evaluation of pigmentary skin disorders. Severity of pigmentary skin disease, especially melasma, is evaluated using a visual scoring method, the MASI (melasma area severity index). This study differentiates between epidermal and dermal pigmented disease. The study was undertaken to determine methods to quantitatively measure the severity of pigmentary skin disorders under ultraviolet illumination. The optical imaging system consists of illumination (white LED, UV-A lamp) and image acquisition (DSLR camera, air cooling CMOS CCD camera). Each camera is equipped with a polarizing filter to remove glare. To analyze images of visible and UV light, images are divided into frontal, cheek, and chin regions of melasma patients. Each image must undergo image processing. To reduce the curvature error in facial contours, a gradient mask is used. The new method of segmentation of front and lateral facial images is more objective for face-area-measurement than the MASI score. Image analysis of darkness and homogeneity is adequate to quantify the conventional MASI score. Under visible light, active lesion margins appear in both epidermal and dermal melanin, whereas melanin is found in the epidermis under UV light. This study objectively analyzes severity of melasma and attempts to develop new methods of image analysis with ultraviolet optical imaging equipment. Based on the results of this study, our optical imaging system could be used as a valuable tool to assess the severity of pigmentary skin disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Design and Configuration of a Medical Imaging Systems Computer Laboratory Syllabus

    Science.gov (United States)

    Selver, M. Alper

    2016-01-01

    Medical imaging systems (MIS) constitute an important emergent subdiscipline of engineering studies. In the context of electrical and electronics engineering (EEE) education, MIS courses cover physics, instrumentation, data acquisition, image formation, modeling, and quality assessment of various modalities. Many well-structured MIS courses are…

  12. Standard practice for determining relative image quality response of industrial radiographic imaging systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This standard provides a practice whereby industrial radiographic imaging systems may be comparatively assessed using the concept of relative image quality response (RIQR). The RIQR method presented within this practice is based upon the use of equivalent penetrameter sensitivity (EPS) described within Practice E 1025 and subsection 5.2 of this practice. Figure 1 illustrates a relative image quality indicator (RIQI) that has four different steel plaque thicknesses (.015, .010, .008, and .005 in.) sequentially positioned (from top to bottom) on a ¾-in. thick steel plate. The four plaques contain a total of 14 different arrays of penetrameter-type hole sizes designed to render varied conditions of threshold visibility ranging from 1.92 % EPS (at the top) to .94 % EPS (at the bottom) when exposed to nominal 200 keV X-ray radiation. Each “EPS” array consists of 30 identical holes; thus, providing the user with a quantity of threshold sensitivity levels suitable for relative image qualitative response com...

  13. An Airborne Multispectral Imaging System Based on Two Consumer-Grade Cameras for Agricultural Remote Sensing

    Directory of Open Access Journals (Sweden)

    Chenghai Yang

    2014-06-01

    Full Text Available This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS sensor with 5616 × 3744 pixels. One camera captures normal color images, while the other is modified to obtain near-infrared (NIR images. The color camera is also equipped with a GPS receiver to allow geotagged images. A remote control is used to trigger both cameras simultaneously. Images are stored in 14-bit RAW and 8-bit JPEG files in CompactFlash cards. The second-order transformation was used to align the color and NIR images to achieve subpixel alignment in four-band images. The imaging system was tested under various flight and land cover conditions and optimal camera settings were determined for airborne image acquisition. Images were captured at altitudes of 305–3050 m (1000–10,000 ft and pixel sizes of 0.1–1.0 m were achieved. Four practical application examples are presented to illustrate how the imaging system was used to estimate cotton canopy cover, detect cotton root rot, and map henbit and giant reed infestations. Preliminary analysis of example images has shown that this system has potential for crop condition assessment, pest detection, and other agricultural applications.

  14. Data acquisition system for radiographic imaging

    International Nuclear Information System (INIS)

    Lanza, R.C.; Votano, J.R.; Russ, T.

    1992-01-01

    This patent describes a continuous data acquisition system for radiographic imaging without interrupting acquisition activity the acquisition system. It comprises at least two memory means for storing radiographic data from a radiation detector wherein each of the memory means having a plurality of addressable memory locations and each of the memory means are such that the locations of the memory means correspond to spatial locations in the radiation detector; logic control means for sensing radiographic data transmitted by the radiation detector, for selecting one of the memory means for storage of the data, for transferring data to the selected memory means, and for switching form one memory means to another memory means according to a predefined schedule and according to memory capacity level, the logic control means further comprising a logic device which receives data and increments the contents of locations in a memory means in response to such data; and interface control means for reading data from one or the other memory means when such memory means is not actively acquiring data such that data can be acquired continuously by the system

  15. Automatic system for detecting pornographic images

    Science.gov (United States)

    Ho, Kevin I. C.; Chen, Tung-Shou; Ho, Jun-Der

    2002-09-01

    Due to the dramatic growth of network and multimedia technology, people can more easily get variant information by using Internet. Unfortunately, it also makes the diffusion of illegal and harmful content much easier. So, it becomes an important topic for the Internet society to protect and safeguard Internet users from these content that may be encountered while surfing on the Net, especially children. Among these content, porno graphs cause more serious harm. Therefore, in this study, we propose an automatic system to detect still colour porno graphs. Starting from this result, we plan to develop an automatic system to search porno graphs or to filter porno graphs. Almost all the porno graphs possess one common characteristic that is the ratio of the size of skin region and non-skin region is high. Based on this characteristic, our system first converts the colour space from RGB colour space to HSV colour space so as to segment all the possible skin-colour regions from scene background. We also apply the texture analysis on the selected skin-colour regions to separate the skin regions from non-skin regions. Then, we try to group the adjacent pixels located in skin regions. If the ratio is over a given threshold, we can tell if the given image is a possible porno graph. Based on our experiment, less than 10% of non-porno graphs are classified as pornography, and over 80% of the most harmful porno graphs are classified correctly.

  16. Test objects for evaluating the performance of radiological imaging systems. Leeds radiological test objects

    International Nuclear Information System (INIS)

    Cowen, A.R.; Clarke, O.F.; Haywood, J.M.; Parker, R.P.

    1985-01-01

    A range of test objects has been developed to assess the imaging performance of conventional and digital radiological imaging systems. These test objects have arisen as a result of involvement in both the laboratory evaluation of radiological imaging systems and the routine maintenance of such equipment in a large diagnostic radiology department. The philosophy behind the design and application of the test objects is briefly described. Particular attention is paid to the advantages of using the threshold-contrast detail-detectability technique to assess overall imaging performance. The great importance of ensuring optimum imaging performance prior to clinical acceptance is stressed. A strategy for implementing the test objects in a clinical department is present. The diagnostic information content of the clinical images which result measures the success of the quality control procedure adopted. (author)

  17. The objective assessment of experts' and novices' suturing skills using an image analysis program.

    Science.gov (United States)

    Frischknecht, Adam C; Kasten, Steven J; Hamstra, Stanley J; Perkins, Noel C; Gillespie, R Brent; Armstrong, Thomas J; Minter, Rebecca M

    2013-02-01

    To objectively assess suturing performance using an image analysis program and to provide validity evidence for this assessment method by comparing experts' and novices' performance. In 2009, the authors used an image analysis program to extract objective variables from digital images of suturing end products obtained during a previous study involving third-year medical students (novices) and surgical faculty and residents (experts). Variables included number of stitches, stitch length, total bite size, travel, stitch orientation, total bite-size-to-travel ratio, and symmetry across the incision ratio. The authors compared all variables between groups to detect significant differences and two variables (total bite-size-to-travel ratio and symmetry across the incision ratio) to ideal values. Five experts and 15 novices participated. Experts' and novices' performances differed significantly (P 0.8) for total bite size (P = .009, d = 1.5), travel (P = .045, d = 1.1), total bite-size-to-travel ratio (P algorithm can extract variables from digital images of a running suture and rapidly provide quantitative summative assessment feedback. The significant differences found between groups confirm that this system can discriminate between skill levels. This image analysis program represents a viable training tool for objectively assessing trainees' suturing, a foundational skill for many medical specialties.

  18. MO-DE-209-03: Assessing Image Quality

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W. [Stony Brook Medicine (United States)

    2016-06-15

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support

  19. MO-DE-209-03: Assessing Image Quality

    International Nuclear Information System (INIS)

    Zhao, W.

    2016-01-01

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support

  20. PC imaging system for reactor NDE

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    PC-based systems have been given recent attention by EPRI to organize and manage inspection data (RP-2405-15, TestPro system); integrate with larger, mainframe computers to maintain dialogue for on-site and remote applications; and, in this project, to aid the operator in providing guidance to render decisions on the data. The PC system configuration for this project consisted of a central processing unit (CPU), a hard disk and a floppy disk, 640K bytes of system memory, a high-resolution graphics card and compatible color monitor, and a mouse for operator interaction with software. The software package was written in FORTRAN under the PC Disk Operating System (PC-DOS) and utilized a graphics package for image display. Application of this package to crack-counterbore discrimination in piping welds was investigated. Present automatic techniques utilize signal features from single, A-scan data to render a decision on whether the reflector is benign (i.e., counterbore, weld root) or a crack. However, experienced manual operators in the field make reliable decisions based on the integrated response from the reflector as the transducer is scanned past the suspicious region. Since this software package could display and manipulate ensemble A-scans, spatial features - similar to those used by experts - were developed as discriminants. Ultrasonic responses from intergranular stress corrosion cracks (IGSCCs) were discovered to vary both in time-of-flight and in their amplitude, whereas counterbore responses were more consistent. The software package contains methods for viewing and quantifying these spatial features

  1. River Protection Project information systems assessment

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, A.L.

    1999-07-28

    The Information Systems Assessment Report documents the results from assessing the Project Hanford Management Contract (PHMC) Hanford Data Integrator 2000 (HANDI 2000) system, Business Management System (BMS) and Work Management System phases (WMS), with respect to the System Engineering Capability Assessment Model (CAM). The assessment was performed in accordance with the expectations stated in the fiscal year (FY) 1999 Performance Agreement 7.1.1, item (2) which reads, ''Provide an assessment report on the selected Integrated Information System by July 31, 1999.'' This report assesses the BMS and WMS as implemented and planned for the River Protection Project (RPP). The systems implementation is being performed under the PHMC HANDI 2000 information system project. The project began in FY 1998 with the BMS, proceeded in FY 1999 with the Master Equipment List portion of the WMS, and will continue the WMS implementation as funding provides. This report constitutes an interim quality assessment providing information necessary for planning RPP's information systems activities. To avoid confusion, HANDI 2000 will be used when referring to the entire system, encompassing both the BMS and WMS. A graphical depiction of the system is shown in Figure 2-1 of this report.

  2. River Protection Project information systems assessment

    International Nuclear Information System (INIS)

    JOHNSON, A.L.

    1999-01-01

    The Information Systems Assessment Report documents the results from assessing the Project Hanford Management Contract (PHMC) Hanford Data Integrator 2000 (HANDI 2000) system, Business Management System (BMS) and Work Management System phases (WMS), with respect to the System Engineering Capability Assessment Model (CAM). The assessment was performed in accordance with the expectations stated in the fiscal year (FY) 1999 Performance Agreement 7.1.1, item (2) which reads, ''Provide an assessment report on the selected Integrated Information System by July 31, 1999.'' This report assesses the BMS and WMS as implemented and planned for the River Protection Project (RPP). The systems implementation is being performed under the PHMC HANDI 2000 information system project. The project began in FY 1998 with the BMS, proceeded in FY 1999 with the Master Equipment List portion of the WMS, and will continue the WMS implementation as funding provides. This report constitutes an interim quality assessment providing information necessary for planning RPP's information systems activities. To avoid confusion, HANDI 2000 will be used when referring to the entire system, encompassing both the BMS and WMS. A graphical depiction of the system is shown in Figure 2-1 of this report

  3. An integrated compact airborne multispectral imaging system using embedded computer

    Science.gov (United States)

    Zhang, Yuedong; Wang, Li; Zhang, Xuguo

    2015-08-01

    An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.

  4. A proposed assessment method for image of regional educational institutions

    Directory of Open Access Journals (Sweden)

    Kataeva Natalya

    2017-01-01

    Full Text Available Market of educational services in the current Russian economic conditions is a complex of a huge variety of educational institutions. Market of educational services is already experiencing a significant influence of the demographic situation in Russia. This means that higher education institutions are forced to fight in a tough competition for high school students. Increased competition in the educational market forces universities to find new methods of non-price competition in attraction of potential students and throughout own educational and economic activities. Commercialization of education places universities in a single plane with commercial companies who study a positive perception of the image and reputation as a competitive advantage, which is quite acceptable for use in strategic and current activities of higher education institutions to ensure the competitiveness of educational services and educational institution in whole. Nevertheless, due to lack of evidence-based proposals in this area there is a need for scientific research in terms of justification of organizational and methodological aspects of image use as a factor in the competitiveness of the higher education institution. Theoretically and practically there are different methods and ways of evaluating the company’s image. The article provides a comparative assessment of the existing valuation methods of corporate image and the author’s method of estimating the image of higher education institutions based on the key influencing factors. The method has been tested on the Vyatka State Agricultural Academy (Russia. The results also indicate the strengths and weaknesses of the institution, highlights ways of improving, and adjusts the efforts for image improvement.

  5. Multi region based image retrieval system

    Indian Academy of Sciences (India)

    data mining, information theory, statistics and psychology. ∗ .... ground complication and independent of image size and orientation (Zhang 2007). ..... Figure 2. Significant regions: (a) the input image, (b) the primary significant region, (c) the ...

  6. Safety management system needs assessment.

    Science.gov (United States)

    2016-04-01

    The safety of the traveling public is critical as each year there are approximately 200 highway fatalities in Nebraska and numerous crash injuries. The objective of this research was to conduct a needs assessment to identify the requirements of a sta...

  7. Bone marrow oedema assessment by magnetic resonance imaging in rheumatoid arthritis wrist and metacarpophalangeal joints

    DEFF Research Database (Denmark)

    Krabbe, Simon; Eshed, Iris; Pedersen, Susanne Juhl

    2014-01-01

    OBJECTIVE: The aim of this study was to examine the influence of different MRI unit field strengths, coil types and image resolutions on the OMERACT RA MRI scoring system (RAMRIS) of bone marrow oedema (BME) and image quality. METHODS: Forty-one patients and 12 healthy controls participated in th...... resolutions, suggesting that these are equally suited for assessment of BME in RA. However, parameters of image quality and intrareader reliability (favouring 0.6, 1.5 and 3T) should be considered when selecting the MRI acquisition strategy.......OBJECTIVE: The aim of this study was to examine the influence of different MRI unit field strengths, coil types and image resolutions on the OMERACT RA MRI scoring system (RAMRIS) of bone marrow oedema (BME) and image quality. METHODS: Forty-one patients and 12 healthy controls participated...... STIR image sets were anonymized and scored according to RAMRIS and parameters of image quality were measured. RESULTS: The BME sum scores were similar overall when comparing the different MRI units, coil types and voxel sizes, yet significantly higher at the higher resolution of 1.5T Extr compared...

  8. Content Based Retrieval System for Magnetic Resonance Images

    International Nuclear Information System (INIS)

    Trojachanets, Katarina

    2010-01-01

    The amount of medical images is continuously increasing as a consequence of the constant growth and development of techniques for digital image acquisition. Manual annotation and description of each image is impractical, expensive and time consuming approach. Moreover, it is an imprecise and insufficient way for describing all information stored in medical images. This induces the necessity for developing efficient image storage, annotation and retrieval systems. Content based image retrieval (CBIR) emerges as an efficient approach for digital image retrieval from large databases. It includes two phases. In the first phase, the visual content of the image is analyzed and the feature extraction process is performed. An appropriate descriptor, namely, feature vector is then associated with each image. These descriptors are used in the second phase, i.e. the retrieval process. With the aim to improve the efficiency and precision of the content based image retrieval systems, feature extraction and automatic image annotation techniques are subject of continuous researches and development. Including the classification techniques in the retrieval process enables automatic image annotation in an existing CBIR system. It contributes to more efficient and easier image organization in the system.Applying content based retrieval in the field of magnetic resonance is a big challenge. Magnetic resonance imaging is an image based diagnostic technique which is widely used in medical environment. According to this, the number of magnetic resonance images is enormously growing. Magnetic resonance images provide plentiful medical information, high resolution and specific nature. Thus, the capability of CBIR systems for image retrieval from large database is of great importance for efficient analysis of this kind of images. The aim of this thesis is to propose content based retrieval system architecture for magnetic resonance images. To provide the system efficiency, feature

  9. Gallium-67 citrate imaging for the assessment of radiation pneumonitis

    International Nuclear Information System (INIS)

    Kataoka, Masaaki

    1989-01-01

    In order to evaluate its usefulness in the assessment of radiation pneumotinis, gallium-67 citrate ( 67 Ga) imaging was performed before and after radiation therapy (RT) on 103 patients with lung cancer. In 23 patients with radiation pneumonitis detected radiographically, abnormal 67 Ga uptake in sites other than tumors was found in all post-RT 67 Ga lung images. Three patterns of uptake were found: (A) focal uptake corresponding to the RT field (n=10); (B) diffuse uptake including the RT field (n=4); and (C) diffuse uptake outside the RT field (n=9). The area of 67 Ga uptake was consistent with that of interstitial pneumonitis as revealed histopathologically in 7 cases. 67 Ga uptake in pattern (C) was an indicator of poor prognosis for the patients with radiation pneumonitis. 67 Ga uptake in the patients with reversible pneumonitis disappeared with steroid therapy. Sixteen (20%) of 80 asymptomatic patients, in whose chest radiographs there was no finding of radiation pneumonitis, showed transient 67 Ga uptake. These were considered to occur in the subclinical radiation pneumonitis. These data suggest that 67 Ga imaging is more sensitive than chest radiography in the detection of radiation pneumonitis and is useful in the assessment of the extent and clinical course of radiation pneumonitis. (author)

  10. Assessment of tumors of the lung apex by imaging techniques

    International Nuclear Information System (INIS)

    Rueda, J.; Serrano, F.; Pain, M.I.; Rodriguez, F.

    1996-01-01

    The purpose of this study was to analyze the value of MR in the preoperative staging of tumors of the lung apex and detection of local invasion of adjacent structures to determine its influence on the therapeutic approach. We obtained plain X-ray images in two planes, as well as CT and Mr images, in 12 patients with Pan coast tumor in whom there was surgical (n=8) or clinical (n=4) evidence of invasion. The objective was to assess local infiltration of brain stem and chest wall soft tissue, enveloping of the subclavian artery, substantial involvement of the brachial plexus and destruction of the vertebral body. In our series, MR was superior to the other imaging techniques in predicting the involvement of the structures surrounding the tumor. In conclusion, MR should be performed in a patient diagnosed by plain radiography as having an apical tumors to assess local tumor extension, while CT should be done to detect mediastinal lymph node involvement and distant metastases. 19 refs

  11. Information loss in visual assessments of medical images

    International Nuclear Information System (INIS)

    Niimi, Takanaga; Imai, Kuniharu; Maeda, Hisatoshi; Ikeda, Mitsuru

    2007-01-01

    We applied information theory to quantify information losses in assessing contrast-detail (C-D) analysis. Images of a C-D phantom were acquired with a flat panel detector (FPD) and a computed radiography (CR) by changing surface entrance doses. Six phantom radiographs (FPD: five images; CR: one image) were prepared for visual evaluations. Thirteen radiographers and two radiologists participated in the observation test. Detectability was defined as the shortest length of the cylinders of which border the observers could recognize from the background, and was recorded using row number. Information content was defined as the entropy Σp i log(1/p i ) with detection probabilities p i , which were calculated from distribution of detection rate of the ith column. Information loss, in unit of bits, was calculated as the difference between information obtained and information content when all the columns were detected. The information losses decreased with the increase in cylinder diameters and with the increase in surface entrance dose. Because the information loss varies depending on distribution of detection rate, this method of using the information theory was expected to be more sensitive in evaluating the C-D image quality than using the averaged values of detectability

  12. Assessing natural hazard risk using images and data

    Science.gov (United States)

    Mccullough, H. L.; Dunbar, P. K.; Varner, J. D.; Mungov, G.

    2012-12-01

    Photographs and other visual media provide valuable pre- and post-event data for natural hazard assessment. Scientific research, mitigation, and forecasting rely on visual data for risk analysis, inundation mapping and historic records. Instrumental data only reveal a portion of the whole story; photographs explicitly illustrate the physical and societal impacts from the event. Visual data is rapidly increasing as the availability of portable high resolution cameras and video recorders becomes more attainable. Incorporating these data into archives ensures a more complete historical account of events. Integrating natural hazards data, such as tsunami, earthquake and volcanic eruption events, socio-economic information, and tsunami deposits and runups along with images and photographs enhances event comprehension. Global historic databases at NOAA's National Geophysical Data Center (NGDC) consolidate these data, providing the user with easy access to a network of information. NGDC's Natural Hazards Image Database (ngdc.noaa.gov/hazardimages) was recently improved to provide a more efficient and dynamic user interface. It uses the Google Maps API and Keyhole Markup Language (KML) to provide geographic context to the images and events. Descriptive tags, or keywords, have been applied to each image, enabling easier navigation and discovery. In addition, the Natural Hazards Map Viewer (maps.ngdc.noaa.gov/viewers/hazards) provides the ability to search and browse data layers on a Mercator-projection globe with a variety of map backgrounds. This combination of features creates a simple and effective way to enhance our understanding of hazard events and risks using imagery.

  13. Subwavelength image manipulation through oblique and herringbone layered acoustic systems

    International Nuclear Information System (INIS)

    Li, Chunhui; Jia, Han; Ke, Manzhu; Li, Yixiang; Liu, Zhengyou

    2014-01-01

    In this paper, an oblique and a herringbone layered acoustic structure are experimentally and theoretically demonstrated to manipulate acoustic subwavelength images. An imaging resolution of less than one tenth of a wavelength is achieved with both optimized systems, and lateral image shift has been realized by an oblique layered system. The thicknesses of both the oblique and the herringbone layered acoustic systems are largely reduced through utilizing the oblique or herringbone wave propagation path instead of the vertical wave propagation path in the rectangular layered planar acoustic system. With smaller size and subwavelength image manipulation, the acoustic systems are more favourable for practical application. (paper)

  14. MDCT imaging of calcinosis in systemic sclerosis

    International Nuclear Information System (INIS)

    Freire, V.; Becce, F.; Feydy, A.; Guérini, H.; Campagna, R.; Allanore, Y.; Drapé, J.-L.

    2013-01-01

    Calcinosis is a typical feature of systemic sclerosis (SSc) and can be found in many different tissues including the superficial soft tissues, periarticular structures, muscles, and tendons. It can also provoke erosive changes on bones. Investigation is conducted most often with plain radiographs. However, when a more detailed assessment is necessary, multidetector computed tomography (MDCT) is helpful owing to its multiplanar reformat (MPR) ability. The purpose of this review is to provide an overview of the various appearances of calcinosis in SSc patients as visualized at MDCT

  15. Assessing the sustainability of small wastewater systems

    DEFF Research Database (Denmark)

    Hoffmann, Birgitte; Nielsen, Susanne Balslev; Elle, Morten

    1999-01-01

    The authors present a planning tool for comparing and assessing the sustainability of different wastewater systems. The core of the planning tool is an assessment method based on both technical and social elements. The point of departure is that no technique is inherently sustainable or ecological...... in itself, but that the sustainability of the total system of technologies for a particular settlement in a given location must be assessed in a holistic and transparent manner. A pilot case is used to demonstrate the structure and the results of the assessment method. The assessment method is still under...

  16. Spain; Financial System Stability Assessment

    OpenAIRE

    International Monetary Fund

    2012-01-01

    This report summarizes the findings of the Financial Sector Assessment Program (FSAP) Update for Spain. Although there is a core of strong banks that are well managed and appear resilient to further shocks, vulnerabilities remain. Substantial progress has been made in reforming the former savings banks, and the most vulnerable institutions have either been resolved or are being restructured. Recent measures address the most problematic part of banks’ portfolios. Moving ahead, a further restru...

  17. Evaluations of UltraiQ software for objective ultrasound image quality assessment using images from a commercial scanner.

    Science.gov (United States)

    Long, Zaiyang; Tradup, Donald J; Stekel, Scott F; Gorny, Krzysztof R; Hangiandreou, Nicholas J

    2018-03-01

    We evaluated a commercially available software package that uses B-mode images to semi-automatically measure quantitative metrics of ultrasound image quality, such as contrast response, depth of penetration (DOP), and spatial resolution (lateral, axial, and elevational). Since measurement of elevational resolution is not a part of the software package, we achieved it by acquiring phantom images with transducers tilted at 45 degrees relative to the phantom. Each measurement was assessed in terms of measurement stability, sensitivity, repeatability, and semi-automated measurement success rate. All assessments were performed on a GE Logiq E9 ultrasound system with linear (9L or 11L), curved (C1-5), and sector (S1-5) transducers, using a CIRS model 040GSE phantom. In stability tests, the measurements of contrast, DOP, and spatial resolution remained within a ±10% variation threshold in 90%, 100%, and 69% of cases, respectively. In sensitivity tests, contrast, DOP, and spatial resolution measurements followed the expected behavior in 100%, 100%, and 72% of cases, respectively. In repeatability testing, intra- and inter-individual coefficients of variations were equal to or less than 3.2%, 1.3%, and 4.4% for contrast, DOP, and spatial resolution (lateral and axial), respectively. The coefficients of variation corresponding to the elevational resolution test were all within 9.5%. Overall, in our assessment, the evaluated package performed well for objective and quantitative assessment of the above-mentioned image qualities under well-controlled acquisition conditions. We are finding it to be useful for various clinical ultrasound applications including performance comparison between scanners from different vendors. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  18. Professional Growth & Support System Self-Assessment

    Science.gov (United States)

    Education Resource Strategies, 2013

    2013-01-01

    The "Professional Growth & Support System Self-Assessment" is designed to help school systems evaluate their current Professional Growth & Support strategy. The self-assessment is organized around the "Eight Principles of Strategic Professional Growth & Support." Each section allows school leaders to identify the…

  19. 1998 FFTF annual system assessment reports

    International Nuclear Information System (INIS)

    Guttenberg, S.

    1998-01-01

    The health of FFTF systems was assessed assuming a continued facility standby condition. The review was accomplished in accordance with the guidelines of FFTF-EI-083, Plant Evaluation Program. The attached document includes an executive summary of the significant conclusions and assessment reports for each system evaluated

  20. 1998 FFTF annual system assessment reports

    Energy Technology Data Exchange (ETDEWEB)

    Guttenberg, S.

    1998-03-19

    The health of FFTF systems was assessed assuming a continued facility standby condition. The review was accomplished in accordance with the guidelines of FFTF-EI-083, Plant Evaluation Program. The attached document includes an executive summary of the significant conclusions and assessment reports for each system evaluated.

  1. Radionuclide Imaging Technologies for Biological Systems

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Calvin R. [Duke Univ., Durham, NC (United States); Reid, Chantal D. [Duke Univ., Durham, NC (United States); Weisenberger, Andrew G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2014-05-14

    The main objective of this project is to develop technologies and experimental techniques for studying the dynamics of physiological responses of plants to changes in their interface with the local environment and to educate a new generation of scientists in an interdisciplinary environment of biology, physics and engineering. Also an important goal is to perform measurements to demonstrate the new data that can be produced and made available to the plant-biology community using the imaging technologies and experimental techniques developed in this project. The study of the plant-environment interface includes a wide range of topics in plant physiology, e.g., the root-soil interface, resource availability, impact of herbivores, influence of microbes on root surface, and responses to toxins in the air and soil. The initial scientific motivation for our work is to improve understanding of the mechanisms for physiological responses to abrupt changes in the local environment, in particular, the responses that result in short-term adjustments in resource (e.g., sugars, nutrients and water) allocations. Data of time-dependent responses of plants to environmental changes are essential in developing mechanistic models for substance intake and resource allocation. Our approach is to use radioisotope tracing techniques to study whole-plant and plant organ (e.g., leaves, stems, roots) dynamical responses to abrupt changes in environmental conditions such as concentration of CO2 in the atmosphere, nutrient availability and lighting. To this aim we are collaborating with the Radiation Detector and Imaging Group at the Thomas Jefferson National Laboratory Facility (JLab) to develop gamma-ray and beta particle imaging systems optimized for plant studies. The radioisotope tracing measurements are conducted at the Phytotron facility at Duke University. The Phytotron is a controlled environment plant research facility with a variety of plant growth chambers. One chamber

  2. Dynamic MR imaging in the musculoskeletal system

    International Nuclear Information System (INIS)

    Hedlund, L.; Vogler, J.; Utz, J.A.; Herfkens, R.J.; Martinez, S.; Urbaniak, J.; Evans, A.

    1986-01-01

    Many joint disorders are related to movement, and lack of dynamic imaging has thus far been a limitation of MR imaging. A recently developed dynamic MR imaging technique utilizing a gradient refocused echo (TE = 12 msec, TR = 21 msec) coupled to a physiologic trigger allows dynamic images of the moving joint to be obtained. Controlled joint articulation is produced using an air-driven nonmagnetic device. Imaging of the wrist by this technique demonstrated the dynamic motion of the carpal rows. The method displays cartilage with more sensitivity than does conventional MR imaging; thus, ligamentous and triangular cartilage alignment could be evaluated during motion. In the wrist, potential applications include imaging of carpal instability syndromes, ligamentous interruption, and tears of the triangular cartilage

  3. Systems of imaging digital systems in case of glaucoma

    International Nuclear Information System (INIS)

    Fernandez Argones, Liamet; Piloto Diaz, Ibrain; Coba Penna, Maria Josefa; Perez Tamayo, Bertila; Dominguez Randulfe, Marerneda; Trujillo Fonseca, Katia

    2009-01-01

    Now a day we can't consider the strict follow up in Glaucoma without the use of the digital analysis of image system of the optic nerve head and the retinal nerve fiber layer. This is a review about some contributions of Scanning Laser Polarimetry (GDx VCC, Carl Zeiss Meditec, Dublin, CA), Confocal Scanning Laser (Heidelberg Retina Tomograph HRT, Heidelberg Engineering Inc.) and Optical Coherence Tomography (Stratus OCT, Carl Zeiss Meditec, Alemania) in the diagnosis and follow up of Glaucoma. It's considered that objective measurement giving by them must be incorporate in the rigorous analysis of each glaucomatous patient

  4. Simultaneous Microwave Imaging System for Density and Temperature Fluctuation Measurements on TEXTOR

    International Nuclear Information System (INIS)

    Park, H.; Mazzucato, E.; Munsat, T.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.; Wang, J.; Xia, Z.; Classen, I.G.J.; Donne, A.J.H.; Pol, M.J. van de

    2004-01-01

    Diagnostic systems for fluctuation measurements in plasmas have, of necessity, evolved from simple 1-D systems to multi-dimensional systems due to the complexity of the MHD and turbulence physics of plasmas illustrated by advanced numerical simulations. Using the recent significant advancements in millimeter wave imaging technology, Microwave Imaging Reflectometry (MIR) and Electron Cyclotron Emission Imaging (ECEI), simultaneously measuring density and temperature fluctuations, are developed for TEXTOR. The MIR system was installed on TEXTOR and the first experiment was performed in September, 2003. Subsequent MIR campaigns have yielded poloidally resolved spectra and assessments of poloidal velocity. The new 2-D ECE Imaging system (with a total of 128 channels), installed on TEXTOR in December, 2003, successfully captured a true 2-D images of Te fluctuations of m=1 oscillation (''sawteeth'') near the q ∼ 1 surface for the first time

  5. Investigation of physical imaging properties in various digital radiography systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hoi Woun [Dept. of Radiological Science, Baekseok Culture University, Cheonan (Korea, Republic of); Min, Jung Hwan [Dept. of Radiological technology, Shingu University, Seongnam (Korea, Republic of); Yoon, Yong Su [Dept. of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Kyushu (Japan); Kim, Jung Min [Dept. of Health and Environmental Science, College of Health Science, Korea University, Seoul (Korea, Republic of)

    2017-09-15

    We aimed to evaluate the physical imaging properties in various digital radiography systems with charged coupled device (CCD), computed radiography (CR), and indirect flat panel detector (FPD). The imaging properties measured in this study were modulation transfer function (MTF) wiener spectrum (WS), and detective quantum efficiency (DQE) to compare the performance of each digital radiography system. The system response of CCD were in a linear relationship with exposure and that of CR and FPD were proportional to the logarithm of exposure. The MTF of both CR and FPD indicated a similar tendency but in case of CCD, it showed lower MTF than that of CR and FPD. FPD showed the lowest WS and also indicated the highest DQE among three systems. According to the results, digital radiography system with different type of image receptor had its own image characteristics. Therefore, it is important to know the physical imaging characteristics of the digital radiography system accurately to obtain proper image quality.

  6. Optimization of a Biometric System Based on Acoustic Images

    Directory of Open Access Journals (Sweden)

    Alberto Izquierdo Fuente

    2014-01-01

    Full Text Available On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced.

  7. Optimization of a Biometric System Based on Acoustic Images

    Science.gov (United States)

    Izquierdo Fuente, Alberto; Del Val Puente, Lara; Villacorta Calvo, Juan J.; Raboso Mateos, Mariano

    2014-01-01

    On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced. PMID:24616643

  8. Characteristics of a New X-Ray Imaging System for Interventional Procedures: Improved Image Quality and Reduced Radiation Dose.

    Science.gov (United States)

    Schernthaner, Ruediger E; Haroun, Reham R; Nguyen, Sonny; Duran, Rafael; Sohn, Jae Ho; Sahu, Sonia; Chapiro, Julius; Zhao, Yan; Radaelli, Alessandro; van der Bom, Imramsjah M; Mauti, Maria; Hong, Kelvin; Geschwind, Jean-François H; Lin, MingDe

    2018-03-01

    To compare image quality and radiation exposure between a new angiographic imaging system and the preceding generation system during uterine artery embolization (UAE). In this retrospective, IRB-approved two-arm study, 54 patients with symptomatic uterine fibroids were treated with UAE on two different angiographic imaging systems. The new system includes optimized acquisition parameters and real-time image processing algorithms. Air kerma (AK), dose area product (DAP) and acquisition time for digital fluoroscopy (DF) and digital subtraction angiography (DSA) were recorded. Body mass index was noted as well. DF image quality was assessed objectively by image noise measurements. DSA image quality was rated by two blinded, independent readers on a four-rank scale. Statistical differences were assessed with unpaired t tests and Wilcoxon rank-sum tests. There was no significant difference between the patients treated on the new (n = 36) and the old system (n = 18) regarding age (p = 0.10), BMI (p = 0.18), DF time (p = 0.35) and DSA time (p = 0.17). The new system significantly reduced the cumulative AK and DAP by 64 and 72%, respectively (median 0.58 Gy and 145.9 Gy*cm 2 vs. 1.62 Gy and 526.8 Gy*cm 2 , p < 0.01 for both). Specifically, DAP for DF and DSA decreased by 59% (75.3 vs. 181.9 Gy*cm 2 , p < 0.01) and 78% (67.6 vs. 312.2 Gy*cm 2 , p < 0.01), respectively. The new system achieved a significant decrease in DF image noise (p < 0.01) and a significantly better DSA image quality (p < 0.01). The new angiographic imaging system significantly improved image quality and reduced radiation exposure during UAE procedures.

  9. Assessment of hybrid rotation-translation scan schemes for in vivo animal SPECT imaging

    International Nuclear Information System (INIS)

    Xia Yan; Liu Yaqiang; Wang Shi; Ma Tianyu; Yao Rutao; Deng Xiao

    2013-01-01

    To perform in vivo animal single photon emission computed tomography imaging on a stationary detector gantry, we introduced a hybrid rotation-translation (HRT) tomographic scan, a combination of translational and limited angle rotational movements of the image object, to minimize gravity-induced animal motion. To quantitatively assess the performance of ten HRT scan schemes and the conventional rotation-only scan scheme, two simulated phantoms were first scanned with each scheme to derive the corresponding image resolution (IR) in the image field of view. The IR results of all the scan schemes were visually assessed and compared with corresponding outputs of four scan scheme evaluation indices, i.e. sampling completeness (SC), sensitivity (S), conventional system resolution (SR), and a newly devised directional spatial resolution (DR) that measures the resolution in any specified orientation. A representative HRT scheme was tested with an experimental phantom study. Eight of the ten HRT scan schemes evaluated achieved a superior performance compared to two other HRT schemes and the rotation-only scheme in terms of phantom image resolution. The same eight HRT scan schemes also achieved equivalent or better performance in terms of the four quantitative indices than the conventional rotation-only scheme. As compared to the conventional index SR, the new index DR appears to be a more relevant indicator of system resolution performance. The experimental phantom image obtained from the selected HRT scheme was satisfactory. We conclude that it is feasible to perform in vivo animal imaging with a HRT scan scheme and SC and DR are useful predictors for quantitatively assessing the performance of a scan scheme. (paper)

  10. Systemic assessment as a new tool to assess student learning

    African Journals Online (AJOL)

    IICBA01

    students' systemic thinking level developed in organic chemistry is strongly related to a deeper understanding of the relevant chemistry concepts (7) .In this regards we will illustrate five types of SAQ,s in heterocyclic chemistry based on systemics to assess students at synthesis and analysis learning levels. We experiment ...

  11. Operator reliability assessment system (OPERAS)

    International Nuclear Information System (INIS)

    Spurgin, A.J.; Hallam, J.W.; Spurgin, J.P.; Singh, A.

    1991-01-01

    The paper gives an overview of the OPERAS project. It discusses the background which led to the design of the PC-based data collection and analysis system connected to plant training simulators including those used for nuclear power plants. The usefulness of a system like OPERAS was perceived during an earlier EPRI project, the Operator Reliability Experiments project, by EPRI and PG and E. The data collection and analysis approaches used in OPERAS were developed during the ORE project. The paper not only discusses the design of OPERAS but discusses the functions performed and the current experiences with the two prototype systems. Also listed are potential uses of OPERAS by utility personnel in Operations, Training and PRA groups

  12. SU-F-J-178: A Computer Simulation Model Observer for Task-Based Image Quality Assessment in Radiation Therapy

    International Nuclear Information System (INIS)

    Dolly, S; Mutic, S; Anastasio, M; Li, H; Yu, L

    2016-01-01

    Purpose: Traditionally, image quality in radiation therapy is assessed subjectively or by utilizing physically-based metrics. Some model observers exist for task-based medical image quality assessment, but almost exclusively for diagnostic imaging tasks. As opposed to disease diagnosis, the task for image observers in radiation therapy is to utilize the available images to design and deliver a radiation dose which maximizes patient disease control while minimizing normal tissue damage. The purpose of this study was to design and implement a new computer simulation model observer to enable task-based image quality assessment in radiation therapy. Methods: A modular computer simulation framework was developed to resemble the radiotherapy observer by simulating an end-to-end radiation therapy treatment. Given images and the ground-truth organ boundaries from a numerical phantom as inputs, the framework simulates an external beam radiation therapy treatment and quantifies patient treatment outcomes using the previously defined therapeutic operating characteristic (TOC) curve. As a preliminary demonstration, TOC curves were calculated for various CT acquisition and reconstruction parameters, with the goal of assessing and optimizing simulation CT image quality for radiation therapy. Sources of randomness and bias within the system were analyzed. Results: The relationship between CT imaging dose and patient treatment outcome was objectively quantified in terms of a singular value, the area under the TOC (AUTOC) curve. The AUTOC decreases more rapidly for low-dose imaging protocols. AUTOC variation introduced by the dose optimization algorithm was approximately 0.02%, at the 95% confidence interval. Conclusion: A model observer has been developed and implemented to assess image quality based on radiation therapy treatment efficacy. It enables objective determination of appropriate imaging parameter values (e.g. imaging dose). Framework flexibility allows for incorporation

  13. Development of a PET/Cerenkov-light hybrid imaging system

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Hamamura, Fuka; Kato, Katsuhiko; Ogata, Yoshimune; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun; Watabe, Hiroshi

    2014-01-01

    Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light. The dual-head PET system employed a 1.2 × 1.2 × 10 mm 3 GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a 22 Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that 18 F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid imaging

  14. A new remote-imaging diagnosis system at Komazawa University

    International Nuclear Information System (INIS)

    Shimada, Morio; Kohda, Eiichi; Yoshikawa, Kohki

    2007-01-01

    We developed a remote-imaging diagnosis system that links the highly experienced radiologists at Komazawa University with Fuji Electric Hospital, where no such radiologists are present. MRI or CT images from Fuji Electric hospital are transmitted to Komazawa University via private line (INS64). The radiologists at Komazawa University then read the MRI or CT images, and relay the results to Fuji Electric Hospital. We describe the advantages and disadvantages of this system. MRI or CT imaging data from 80 cases were used. The data were stored in the imaging system server at Fuji Electric Hospital and were evaluated by experienced radiologists at Komazawa University. The images were sent one by one to the diagnostic support system server at Komazawa University through the private INS64 line. We examined transmission time per case and the security of transmission. Transmission of MRI or CT images from the 80 cases required a mean duration of 63 minutes 30 seconds per image. The quality of all images was highly satisfactory. In addition, there was no evidence of weaknesses in security. A physician at Fuji Electric Hospital was able to readily explain to the patient the results of the images by referring to the findings written by a radiologist at Komazawa University. We were able to transmit MRI or CT images by using this system safely and readily. The primary disadvantage of this system was the slow transmission speed. This will be improved by upgrading to an optical fibers. (author)

  15. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines the... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... include signal analysis and display equipment, patient and equipment supports, component parts, and...

  16. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... receiver. This generic type of device may include signal analysis and display equipment, patient and...

  17. A simple polarized-based diffused reflectance colour imaging system

    African Journals Online (AJOL)

    A simple polarized-based diffuse reflectance imaging system has been developed. The system is designed for both in vivo and in vitro imaging of agricultural specimen in the visible region. The system uses a commercial web camera and a halogen lamp that makes it relatively simple and less expensive for diagnostic ...

  18. Digital image processing software system using an array processor

    International Nuclear Information System (INIS)

    Sherwood, R.J.; Portnoff, M.R.; Journeay, C.H.; Twogood, R.E.

    1981-01-01

    A versatile array processor-based system for general-purpose image processing was developed. At the heart of this system is an extensive, flexible software package that incorporates the array processor for effective interactive image processing. The software system is described in detail, and its application to a diverse set of applications at LLNL is briefly discussed. 4 figures, 1 table

  19. System for assessing classroom attention.

    OpenAIRE

    Raca Mirko; Dillenbourg Pierre

    2013-01-01

    In this paper we give a preview of our system for automatically evaluating attention in the classroom. We demonstrate our current behaviour metrics and preliminary observations on how they reflect the reactions of people to the given lecture. We also introduce foundations of our hypothesis on peripheral awareness of students during lectures.

  20. Accuracy of Dose Calibrators for 68Ga PET Imaging: Unexpected Findings in a Multicenter Clinical Pretrial Assessment.

    Science.gov (United States)

    Bailey, Dale L; Hofman, Michael S; Forwood, Nicholas J; O'Keefe, Graeme J; Scott, Andrew M; van Wyngaardt, Winifred M; Howe, Bonnie; Kovacev, Olga; Francis, Roslyn J

    2018-04-01

    We report the discovery of a systematic miscalibration during the work-up process for site validation of a multicenter clinical PET imaging trial using 68 Ga, which manifested as a consistent and reproducible underestimation in the quantitative accuracy (assessed by SUV) of a range of PET systems from different manufacturers at several different facilities around Australia. Methods: Sites were asked to follow a strict preparation protocol to create a radioactive phantom with 68 Ga to be imaged using a standard clinical protocol before commencing imaging in the trial. All sites had routinely used 68 Ga for clinical PET imaging for many years. The reconstructed image data were transferred to an imaging core laboratory for analysis, along with information about ancillary equipment such as the radionuclide dose calibrator. Fourteen PET systems were assessed from 10 nuclear medicine facilities in Australia, with the aim for each PET system being to produce images within 5% of the true SUV. Results: At initial testing, 10 of the 14 PET systems underestimated the SUV by 15% on average (range, 13%-23%). Multiple PET systems at one site, from two different manufacturers, were all similarly affected, suggesting a common cause. We eventually identified an incorrect factory-shipped dose calibrator setting from a single manufacturer as being the cause. The calibrator setting for 68 Ga was subsequently adjusted by the users so that the reconstructed images produced accurate values. Conclusion: PET imaging involves a chain of measurements and calibrations to produce accurate quantitative performance. Testing of the entire chain is simple, however, and should form part of any quality assurance program or prequalifying site assessment before commencing a quantitative imaging trial or clinical imaging. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  1. Added value of multiphase CTA imaging for thrombus perviousness assessment

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E.M.M. [Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Erasmus Medical Center, Department of Medical Informatics, Rotterdam (Netherlands); D' Esterre, C.D.; Najm, M.; Goyal, M.; Demchuk, A.M.; Menon, B.K. [University of Calgary, Departments of Neurosciences, Radiology and Community Health Sciences, Calgary (Canada); Treurniet, K.M.; Majoie, C.B. [Academic Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Niessen, W.J. [Erasmus Medical Center, Department of Medical Informatics, Rotterdam (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Delft (Netherlands); Marquering, H.A. [Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Academic Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Mandzia, Jennifer; Fainardi, Enrico; Rubiera, Marta; Khaw, Alexander V.; Zini, Andrea; Shankar, JJ.; Collaboration: PRove-IT investigators

    2018-01-15

    Thrombus perviousness has been associated with favorable functional outcome in acute ischemic stroke (AIS) patients. Measuring thrombus perviousness on CTA may be suboptimal due to potential delay in contrast agent arrival in occluded arteries at the moment of imaging. Dynamic sequences acquired over time can potentially overcome this issue. We investigate if dynamic CTA has added value in assessing thrombus perviousness. Prospectively collected image data of AIS patients with proven occlusion of the anterior or posterior circulation with thin-slice multi-phase CTA (MCTA) and non-contrast CT were co-registered (n = 221). Thrombus attenuation increase (TAI; a perviousness measure) was measured for the arterial, venous, and delayed phase of the MCTA and time-invariant CTAs (TiCTA). Associations with favorable clinical outcome (90-day mRS ≤ 2) were assessed using univariate and multivariable regressions and calculating areas under receiver operating curves (AUC). TAI determined from the arterial phase CTA was superior in the association with favorable outcome with OR = 1.21 per 10 HU increase (95%CI 1.04-1.41, AUC 0.62, p = 0.014) compared to any other phase (venous 1.14(95%CI 1.01-1.30, AUC 0.58, p = 0.033), delayed 1.046(95%CI 0.919-1.19, AUC 0.53, p = 0.50)), and TiCTA 1.15(95%CI 1.02-1.30, AUC 0.60, p = 0.022). In the multivariable model, only TAI on arterial phase was significantly associated with favorable outcome (aOR 1.59, 95%CI 1.04-2.43, p = 0.032). Association between TAI with functional outcome was optimal on arterial-phase CTA such that dynamic CTA imaging has no additional benefits in current thrombus perviousness assessment, thereby suggesting that the delay of contrast arrival at the clot is a key variable for patient functional outcome. (orig.)

  2. Evaluation of HVS models in the application of medical image quality assessment

    Science.gov (United States)

    Zhang, L.; Cavaro-Menard, C.; Le Callet, P.

    2012-03-01

    In this study, four of the most widely used Human Visual System (HVS) models are applied on Magnetic Resonance (MR) images for signal detection task. Their performances are evaluated against gold standard derived from radiologists' majority decision. The task-based image quality assessment requires taking into account the human perception specificities, for which various HVS models have been proposed. However to our knowledge, no work was conducted to evaluate and compare the suitability of these models with respect to the assessment of medical image qualities. This pioneering study investigates the performances of different HVS models on medical images in terms of approximation to radiologist performance. We propose to score the performance of each HVS model using the AUC (Area Under the receiver operating characteristic Curve) and its variance estimate as the figure of merit. The radiologists' majority decision is used as gold standard so that the estimated AUC measures the distance between the HVS model and the radiologist perception. To calculate the variance estimate of AUC, we adopted the one-shot method that is independent of the HVS model's output range. The results of this study will help to provide arguments to the application of some HVS model on our future medical image quality assessment metric.

  3. [Advantages and Application Prospects of Deep Learning in Image Recognition and Bone Age Assessment].

    Science.gov (United States)

    Hu, T H; Wan, L; Liu, T A; Wang, M W; Chen, T; Wang, Y H

    2017-12-01

    Deep learning and neural network models have been new research directions and hot issues in the fields of machine learning and artificial intelligence in recent years. Deep learning has made a breakthrou