WorldWideScience

Sample records for imaging plasma diagnostics

  1. Microwave imaging for plasma diagnostics and its applications

    International Nuclear Information System (INIS)

    Mase, A.; Kogi, Y.; Ito, N.

    2007-01-01

    Microwave to millimeter-wave diagnostic techniques such as interferometry, reflectometry, scattering, and radiometry have been powerful tools for diagnosing magnetically confined plasmas. Important plasma parameters were measured to clarify the physics issues such as stability, wave phenomena, and fluctuation-induced transport. Recent advances in microwave and millimeter-wave technology together with computer technology have enabled the development of advanced diagnostics for visualization of 2D and 3D structures of plasmas. Microwave/millimeter-wave imaging is expected to be one of the most promising diagnostic methods for this purpose. We report here on the representative microwave diagnostics and their industrial applications as well as application to magnetically-confined plasmas. (author)

  2. Three dimensional imaging technique for laser-plasma diagnostics

    International Nuclear Information System (INIS)

    Jiang Shaoen; Zheng Zhijian; Liu Zhongli

    2001-01-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments

  3. Three dimensional imaging technique for laser-plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Shaoen, Jiang; Zhijian, Zheng; Zhongli, Liu [China Academy of Engineering Physics, Chengdu (China)

    2001-04-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments.

  4. Recent Advancements in Microwave Imaging Plasma Diagnostics

    International Nuclear Information System (INIS)

    Park, H.; Chang, C.C.; Deng, B.H.; Domier, C.W.; Donni, A.J.H.; Kawahata, K.; Liang, C.; Liang, X.P.; Lu, H.J.; Luhmann, N.C. Jr.; Mase, A.; Matsuura, H.; Mazzucato, E.; Miura, A.; Mizuno, K.; Munsat, T.; Nagayama, K.; Nagayama, Y.; Pol, M.J. van de; Wang, J.; Xia, Z.G.; Zhang, W-K.

    2002-01-01

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented

  5. Picosecond image-converter diagnostics

    International Nuclear Information System (INIS)

    Schelev, M.Ya.

    1975-01-01

    A brief review is presented of the improvements in picosecond image-converter diagnostics carried out since the previous Congress in 1972. The account is given under the following headings: picosecond image converter cameras for visible and x-ray radiation diagnostics; Nd:glass and ruby mode-locked laser measurements; x-ray plasma emission diagnostics; computer treatment of pictures produced by picosecond cameras. (U.K.)

  6. Diagnostics of laser-produced plasmas

    Directory of Open Access Journals (Sweden)

    Batani Dimitri

    2016-12-01

    Full Text Available We present the general challenges of plasma diagnostics for laser-produced plasmas and give a few more detailed examples: spherically bent crystals for X-ray imaging, velocity interferometers (VISAR for shock studies, and proton radiography.

  7. X-ray hot plasma diagnostics

    International Nuclear Information System (INIS)

    Cojocaru, E.

    1984-11-01

    X-ray plasma emission study is powerful diagnostic tool of hot plasmas. In this review article the main techniques of X-ray plasma emission measurement are shortly presented: X-ray spectrometry using absorbent filters, crystal and grating spectrometers, imaging techniques using pinhole cameras, X-ray microscopes and Fresnel zone plate cameras, X-ray plasma emission calorimetry. Advances in these techniques with examples for different hot plasma devices are also presentes. (author)

  8. Diagnostics for Pioneer I imploding plasma experiments

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Benjamin, R.F.; Brownell, J.H.

    1985-01-01

    The Pioneer I series of imploding plasma experiments are aimed at collapsing a thin aluminum foil with a multimegampere, submicrosecond electrical pulse produced by an explosive flux compression generator and fast plasma compression opening switch. Anticipated experimental conditions are bounded by implosion velocities of 2 x 10 7 cm/s and maximum plasma temperatures of 100 eV. A comprehensive array of diagnostics have been deployed to measure implosion symmetry (gated microchannel plate array and other time-resolved imaging), temperature of the imploding plasma (visible/uv spectroscopy), stagnation geometry (x-ray pinhole imaging), radiation emission characteristics at pinch (XRD's, fast bolometry), and electrical drive history (Rogowski loops, Faraday rotation current detectors, and capacitive voltage probes). Diagnostic performance is discussed and preliminary results are presented

  9. Spectroscopic diagnostics of high temperature plasmas

    International Nuclear Information System (INIS)

    Moos, W.

    1990-01-01

    A three-year research program for the development of novel XUV spectroscopic diagnostics for magnetically confined fusion plasmas is proposed. The new diagnostic system will use layered synthetic microstructures (LSM) coated, flat and curved surfaces as dispersive elements in spectrometers and narrow band XUV filter arrays. In the framework of the proposed program we will develop impurity monitors for poloidal and toroidal resolved measurements on PBX-M and Alcator C-Mod, imaging XUV spectrometers for electron density and temperature fluctuation measurements in the hot plasma core in TEXT or other similar tokamaks and plasma imaging devices in soft x-ray light for impurity behavior studies during RF heating on Phaedrus T and carbon pellet ablation in Alcator C-Mod. Recent results related to use of multilayer in XUV plasma spectroscopy are presented. We also discuss the latest results reviewed to q o and local poloidal field measurements using Zeeman polarimetry

  10. Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Zaveryaev, V [Kurchatov Institute, Moscow (Russian Federation); others, and

    2012-09-15

    The success in achieving peaceful fusion power depends on the ability to control a high temperature plasma, which is an object with unique properties, possibly the most complicated object created by humans. Over years of fusion research a new branch of science has been created, namely plasma diagnostics, which involves knowledge of almost all fields of physics, from electromagnetism to nuclear physics, and up-to-date progress in engineering and technology (materials, electronics, mathematical methods of data treatment). Historically, work on controlled fusion started with pulsed systems and accordingly the methods of plasma parameter measurement were first developed for short lived and dense plasmas. Magnetically confined hot plasmas require the creation of special experimental techniques for diagnostics. The diagnostic set is the most scientifically intensive part of a plasma device. During many years of research operation some scientific tasks have been solved while new ones arose. New tasks often require significant changes in the diagnostic system, which is thus a very flexible part of plasma machines. Diagnostic systems are designed to solve several tasks. As an example here are the diagnostic tasks for the International Thermonuclear Experimental Reactor - ITER: (1) Measurements for machine protection and basic control; (2) Measurements for advanced control; (3) Additional measurements for performance evaluation and physics. Every new plasma machine is a further step along the path to the main goal - controlled fusion - and nobody knows in advance what new phenomena will be met on the way. So in the planning of diagnostic construction we should keep in mind further system upgrading to meet possible new scientific and technical challenges. (author)

  11. International Conference on Plasma Diagnostics. Slides, papers and posters of Plasma Diagnostics 2010

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Bonhomme, G.; Grisolia, C.; Hirsch, M.; Klos, Z.; Mazouffre, S.; Musielok, J.; Ratynskaya, S.; Sadowski, M.; Van de Sanden, R.; Sentis, M.; Stroth, U.; Tereshin, V.; Tichy, M.; Unterberg, B.; Weisen, H.; Zoletnik, S.

    2011-01-01

    Plasma diagnostics 2010 is an International Conference on Diagnostic Methods involved in Research and Applications of Plasmas, originating on combining the 5. German-Polish Conference on Plasma Diagnostics for Fusion and Applications and the 7. French-Polish Seminar on Thermal Plasma in Space and Laboratory. The Scientific Committee of 'Plasma 2007' decided to concentrate the attention of future conferences more on the diagnostic development and diagnostic interpretation in the fields of high and low temperature plasmas and plasma applications. It is aimed at involving all European activities in the fields. The Scientific Program will cover the fields from low temperature laboratory to fusion plasmas of various configurations as well as dusty and astrophysical plasmas and industrial plasma applications

  12. Image-converter diagnostics of laser and laser plasma in pico-femtosecond region

    International Nuclear Information System (INIS)

    Schelev, M.Ya.

    1979-01-01

    In the present communication we would like to outline some new trends in development of pico-femtosecond image-converter diagnostics for laser and laser plasma research on the basis of the recent works done in P.N.Lebedev Physical Institute. The discussion of the following subjects will be included: new generation of picosecond image-converter tubes (ICT), pulsed control circuitry, late prototype of picosecond image-converter cameras (ICC), test installation consisting of Nd: glass and YAG lasers for production the ultra-short pulses and sinusoidally modulated radiation, methods and techniques for image tube and camera dynamic measurements in IR, visible and X-ray spectral regions. Also discussed are the image processing technique for pictures taken with picosecond ICC in order to correct the geometrical distortions, enhance pictures quality and evaluate parameters of the input signals through their recorded images. (author)

  13. Development of gyrotrons for plasma diagnostics (invited)

    International Nuclear Information System (INIS)

    Woskoboinikow, P.

    1986-01-01

    Recent advances in high-frequency (>100 GHz) gyrotron technology are reviewed and application to millimeter/submillimeter wave plasma diagnostics is discussed. Gyrotrons have useful capabilities of high-power (>1 kW), long pulse/cw operation, narrow linewidth (<100 kHz), and good spatial mode quality with efficient (--90%) mode converters. These capabilities could be used to significantly improve collective Thomson scattering diagnostics for the study of instabilities, plasma waves, turbulence, and thermal ion fluctuations. Imaging applications with many detector arrays of plasma density, field direction, and microinstabilities may be possible with gyrotons. In a high-field compact ignition tokamak experiment a possible millimeter wave diagnostics window could be exploited by a gyrotron to measure a number of parameters, including alpha particle density and velocity distribution

  14. The neutron imaging diagnostic at NIF (invited).

    Science.gov (United States)

    Merrill, F E; Bower, D; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H; Wilson, D C

    2012-10-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  15. The neutron imaging diagnostic at NIF (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, F. E.; Clark, D. D.; Danly, C. R.; Drury, O. B.; Fatherley, V. E.; Gallegos, R.; Grim, G. P.; Guler, N.; Loomis, E. N.; Martinson, D. D.; Mares, D.; Morley, D. J.; Morgan, G. L.; Oertel, J. A.; Tregillis, I. L.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Bower, D.; Dzenitis, J. M. [Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-10-15

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  16. Design advances of the Core Plasma Thomson Scattering diagnostic for ITER.

    Czech Academy of Sciences Publication Activity Database

    Scannell, R.; Maslov, M.; Naylor, G.; O’Gorman, T.; Kempenaars, M.; Carr, M.; Bílková, Petra; Böhm, Petr; Giudicotti, L.; Pasqualotto, R.; Bassan, M.; Vayakis, G.; Walsh, M.; Huxford, R.

    2017-01-01

    Roč. 12, November (2017), č. článku C11010. ISSN 1748-0221. [International Symposium on Laser-Aided Plasma Diagnostics (LAPD2017) /18./. Prague, 24.09.2017-28.09.2017] Institutional support: RVO:61389021 Keywords : Nuclear instruments and methods for hot plasma diagnostics * Plasma diagnostics - interferometry * spectroscopy and imaging Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/12/11/C11010/pdf

  17. Spark gap produced plasma diagnostics

    International Nuclear Information System (INIS)

    Chang, H.Y.

    1990-01-01

    A Spark Gap (Applied voltage : 2-8KV, Capacitor : 4 Micro F. Dia of the tube : 1 inch, Electrode distance : .3 ∼.5 inch) was made to generate a small size dynamic plasma. To measure the plasma density and temperature as a function of time and position, we installed and have been installing four detection systems - Mach-Zehnder type Interferometer for the plasma refractivity, Expansion speed detector using two He-Ne laser beams, Image Processing using Lens and A Optical-Fiber Array for Pointwise Radiation Sensing, Faraday Rotation of a Optical Fiber to measure the azimuthal component of B-field generated by the plasma drift. These systems was used for the wire explosion diagnostics, and can be used for the Laser driven plasma also

  18. Plasma diagnostics discharge parameters and chemistry

    CERN Document Server

    Auciello, Orlando

    1989-01-01

    Plasma Diagnostics, Volume 1: Discharge Parameters and Chemistry covers seven chapters on the important diagnostic techniques for plasmas and details their use in particular applications. The book discusses optical diagnostic techniques for low pressure plasmas and plasma processing; plasma diagnostics for electrical discharge light sources; as well as Langmuir probes. The text also describes the mass spectroscopy of plasmas, microwave diagnostics, paramagnetic resonance diagnostics, and diagnostics in thermal plasma processing. Electrical engineers, nuclear engineers, microwave engineers, che

  19. Lectures in plasma diagnostics

    International Nuclear Information System (INIS)

    Hutchinson, I.H.

    1990-06-01

    This paper discusses the following topics on plasma diagnostics: Electric probes in flowing and magnetized plasmas; Electron cyclotron emission absorption; Magnetic diagnostics; Spectroscopy; and Thomson Scattering

  20. CO2 laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    International Nuclear Information System (INIS)

    Vyacheslavov, L.N.; Tanaka, K.; Kawahata, K.

    2001-04-01

    A CO 2 laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  1. Polychromatic holographic plasma diagnostics

    International Nuclear Information System (INIS)

    Zhiglinskij, A.G.; Morozov, A.O.

    1992-01-01

    Review of holographic interferometry properties is performed and advantages of this method by plasma diagnostics are indicated. Main results obtained by the method of holographic interferometry in studies of various-type plasmas are considered. Special attention is paid to multiwave plasma diagnostics, the necessity of which is related as a rule to multicomponent composition of plasma. The eight laser and gas-discharge sources and holographic schemes, which make it possible to realize plasma polychromatic and holographic interferometry, are considered. The advantages of the method are demonstrated by examples of polychromatic holographic diagnostics of arc discharge and discharge in a hollow cathode. Review of theoretical works determining the applicability area of resonance polychromatic interferometry is carried out

  2. Hypervelocity Dust Injection for Plasma Diagnostic Applications

    Science.gov (United States)

    Ticos, Catalin

    2005-10-01

    Hypervelocity micron-size dust grain injection was proposed for high-temperature magnetized plasma diagnosis. Multiple dust grains are launched simultaneously into high temperature plasmas at several km/s or more. The hypervelocity dust grains are ablated by the electron and ion fluxes. Fast imaging of the resulting luminous plumes attached to each grain is expected to yield local magnetic field vectors. Combination of multiple local magnetic field vectors reproduces 2D or even 3D maps of the internal magnetic field topology. Key features of HDI are: (1) a high spatial resolution, due to a relatively small transverse size of the elongated tail, and (2) a small perturbation level, as the dust grains introduce negligible number of particles compared to the plasma particle inventory. The latter advantage, however, could be seriously compromised if the gas load from the accelerator has an unobstructed access to the diagnosed plasma. Construction of a HDI diagnostic for National Spherical Torus Experiment (NSTX), which includes a coaxial plasma gun for dust grain acceleration, is underway. Hydrogen and deuterium gas discharges inside accelerator are created by a ˜ 1 mF capacitor bank pre-charged up to 10 kV. The diagnostic apparatus also comprises a dust dispenser for pre-loading the accelerator with dust grains, and an imaging system that has a high spatial and temporal resolution.

  3. CO{sub 2} laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Vyacheslavov, L.N. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Tanaka, K.; Kawahata, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-04-01

    A CO{sub 2} laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  4. Dual-wavelength differential spectroscopic imaging for diagnostics of laser-induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Motto-Ros, V., E-mail: vincent.motto-ros@univ-lyon1.fr [Universite de Lyon, F-69622, Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Ma, Q.L. [Universite de Lyon, F-69622, Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Gregoire, S. [CRITT Matriaux Alsace, 19 rue de St Junien, 67300 Schiltigheim (France); Lei, W.Q.; Wang, X.C. [Universite de Lyon, F-69622, Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Pelascini, F.; Surma, F. [CRITT Matriaux Alsace, 19 rue de St Junien, 67300 Schiltigheim (France); Detalle, V. [Laboratoire de Recherche des Monuments Historiques, 29 rue de Paris, 77420 Champs-sur-Marne (France); Yu, J. [Universite de Lyon, F-69622, Lyon, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France)

    2012-08-15

    A specific configuration for plasma fast spectroscopic imaging was developed, where a pair of narrowband filters, one fitting an emission line of a species to be studied and the other out of its emission line, allowed double images to be taken for a laser-induced plasma. A dedicated software was developed for the subtraction between the double images. The result represents therefore the monochromatic emission image of the species in the plasma. We have shown in this work that such configuration is especially efficient for the monitoring of a plasma generated under the atmospheric pressure at very short delays after the impact of the laser pulse on the target, when a strong continuum emission is observed. The efficiency of the technique has been particularly demonstrated in the study of laser-induced plasma on a polymer target. Molecular species, such as C{sub 2} and CN, as well as atomic species, such as C and N, were imaged starting from 50 ns after the laser impact. Moreover space segregation of different species, atomic or molecular, inside of the plasma was clearly observed. - Highlights: Black-Right-Pointing-Pointer Imaging to study species with time and space resolution in laser induced plasma. Black-Right-Pointing-Pointer Image display of multiple species is proposed based on RGB color model. Black-Right-Pointing-Pointer Molecular emission (CN and C{sub 2}) is observed at very short delays (50 ns). Black-Right-Pointing-Pointer Segregation of different species inside the plasma is clearly established.

  5. Corpuscular plasma diagnostics

    International Nuclear Information System (INIS)

    Afrosimov, V.; Petrov, M.

    1984-01-01

    An elementary explanation is presented of the physical principles and important methods of corpuscular plasma diagnostics. The invaluable role of corpuscular methods for measuring the hot plasma ion component in thermonuclear facilities, especially hydrogen ions in tokamaks, is emphasized. All corpuscular methods employ analysis of fast neutral atoms and therefore the mechanism of their creation inside a hot plasma is explained first. The ammount of information obtainable from spectra of fast neutrals is discussed. Multichannel analyzers developed at the FTI A.F. Ioffe in Leningrad are described in detail. Classical passive corpuscular diagnostics are examined as are active methods using artifitial beams of hydrogen atoms. The method used for obtaining local values of ion temperature and density is explained. Corpuscular spectroscopic diagnostics and its application for measuring impurities is mentioned. (J.U.)

  6. Synthetic Microwave Imaging Reflectometry diagnostic using 3D FDTD Simulations

    Science.gov (United States)

    Kruger, Scott; Jenkins, Thomas; Smithe, David; King, Jacob; Nimrod Team Team

    2017-10-01

    Microwave Imaging Reflectometry (MIR) has become a standard diagnostic for understanding tokamak edge perturbations, including the edge harmonic oscillations in QH mode operation. These long-wavelength perturbations are larger than the normal turbulent fluctuation levels and thus normal analysis of synthetic signals become more difficult. To investigate, we construct a synthetic MIR diagnostic for exploring density fluctuation amplitudes in the tokamak plasma edge by using the three-dimensional, full-wave FDTD code Vorpal. The source microwave beam for the diagnostic is generated and refelected at the cutoff surface that is distorted by 2D density fluctuations in the edge plasma. Synthetic imaging optics at the detector can be used to understand the fluctuation and background density profiles. We apply the diagnostic to understand the fluctuations in edge plasma density during QH-mode activity in the DIII-D tokamak, as modeled by the NIMROD code. This work was funded under DOE Grant Number DE-FC02-08ER54972.

  7. Development of a multi-channel horn mixer array for microwave imaging plasma diagnostics

    International Nuclear Information System (INIS)

    Ito, Naoki; Kuwahara, Daisuke; Nagayama, Yoshio

    2015-01-01

    Microwave to millimeter-wave diagnostics techniques, such as interferometry, reflectometry, scattering, and radiometry, have been powerful tools for diagnosing magnetically confined plasmas. The resultant measurements have clarified several physics issues, including instability, wave phenomena, and fluctuation-induced transport. Electron cyclotron emission imaging has been an important tool in the investigation of temperature fluctuations, while reflectometry has been employed to measure plasma density profiles and their fluctuations. We have developed a horn-antenna mixer array (HMA), a 50 - 110 GHz 1D antenna array, which can be easily stacked as a 2D array. This article describes an upgrade to the horn mixer array that combines well-characterized mixers, waveguide-to-microstrip line transitions, intermediate frequency amplifiers, and internal local oscillator modules using a monolithic microwave integrated circuit technology to improve system performance. We also report on the use of a multi-channel HMA system. (author)

  8. Plasma diagnostic reflectometry

    International Nuclear Information System (INIS)

    Cohen, B.I.; Afeyan, B.B.; Garrison, J.C.; Kaiser, T.B.; Luhmann, N.C. Jr.; Domier, C.W.; Chou, A.E.; Baang, S.

    1996-01-01

    Theoretical and experimental studies of plasma diagnostic reflectometry have been undertaken as a collaborative research project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Plasma Diagnostics Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. Theoretical analyses have explored the basic principles of reflectometry to understand its limitations, to address specific gaps in the understanding of reflectometry measurements in laboratory experiments, and to explore extensions of reflectometry such as ultra-short-pulse reflectometry. The theory has supported basic laboratory reflectometry experiments where reflectometry measurements can be corroborated by independent diagnostic measurements

  9. Plasma diagnostics on large tokamaks

    International Nuclear Information System (INIS)

    Orlinskij, D.V.; Magyar, G.

    1988-01-01

    The main tasks of the large tokamaks which are under construction (T-15 and Tore Supra) and of those which have already been built (TFTR, JET, JT-60 and DIII-D) together with their design features which are relevant to plasma diagnostics are briefly discussed. The structural features and principal characteristics of the diagnostic systems being developed or already being used on these devices are also examined. The different diagnostic methods are described according to the physical quantities to be measured: electric and magnetic diagnostics, measurements of electron density, electron temperature, the ion components of the plasma, radiation loss measurements, spectroscopy of impurities, edge diagnostics and study of plasma stability. The main parameters of the various diagnostic systems used on the six large tokamaks are summarized in tables. (author). 351 refs, 44 figs, 22 tabs

  10. Plasma diagnostics for tokamaks and stellarators

    International Nuclear Information System (INIS)

    Stott, P.E.; Sanchez, J.

    1994-01-01

    A collection of papers on plasma diagnostics is presented. The papers show the state of the art developments in a series of techniques: magnetic diagnostics, Edge diagnostics, Langmuir probes, Spectroscopy, Microwave and FIR diagnostics as well as Thomson Sattering. Special interest was focused on those diagnostics oriented to fluctuations measurements in the plasma

  11. Plasma diagnostics for tokamaks and stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Stott, P E; Sanchez, J

    1994-07-01

    A collection of papers on plasma diagnostics is presented. The papers show the state of the art developments in a series of techniques: Magnetic diagnostics, Edge diagnostics, Langmuir probes, Spectroscopy, Microwave and FIR diagnostics as well as Thomson Scattering. Special interest was focused on those diagnostics oriented to fluctuations measurements in the plasma. (Author) 451 refs.

  12. Plasma Diagnostics in High Density Reactors

    International Nuclear Information System (INIS)

    Daltrini, A. M.; Moshkalyov, S.; Monteiro, M. J. R.; Machida, M.; Kostryukov, A.; Besseler, E.; Biasotto, C.; Diniz, J. A.

    2006-01-01

    Langmuir electric probes and optical emission spectroscopy diagnostics were developed for applications in high density plasmas. These diagnostics were employed in two plasma sources: an electron cyclotron resonance (ECR) plasma and an RF driven inductively coupled plasma (ICP) plasma. Langmuir probes were tested using a number of probing dimensions, probe tip materials, circuits for probe bias and filters. Then, the results were compared with the optical spectroscopy measurements. With these diagnostics, analyses of various plasma processes were performed in both reactors. For example, it has been shown that species like NH radicals generated in gas phase can have critical impact on films deposited by ECR plasmas. In the ICP source, plasmas in atomic and molecular gases were shown to have different spatial distributions, likely due to nonlocal electron heating. The low-to-high density transitions in the ICP plasma were also studied. The role of metastables is shown to be significant in Ar plasmas, in contrast to plasmas with additions of molecular gases

  13. Microwave reflectometry for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    1992-01-01

    This document contains a collection of 26 papers on ''Microwave Reflectometry for Fusion Plasma Diagnostics'', presented at the IAEA Technical Committee Meeting of the same name held at the JET Joint Undertaking, Abingdon, United Kingdom, March 4-6, 1992. It contains five papers on the measurement of plasma density profiles, six papers on theory and simulations in support of the development and application of this type of plasma diagnostics, eight papers on the measurement of density transients and fluctuations, and seven on new approaches to reflectometry-based plasma diagnostics. Refs, figs and tabs

  14. Laser and plasma diagnostics for the OMEGA Upgrade Laser System (invited) (abstract)

    International Nuclear Information System (INIS)

    Letzring, S.A.

    1995-01-01

    The upgraded OMEGA laser system will be capable of delivering up to 30 kJ of 351-nm laser light with various temporal pulse shapes onto a variety of targets for both ICF and basic plasma physics experiments. ICF experiments will cover a wide parameter space up to near-ignition conditions, and basic interaction and plasma physics experiments will cover previously unattainable parameter spaces. The laser system is the tool with which the experiments are performed; the diagnostics, both of the laser system and the interaction between the laser and the target, form the heart of the experiment. A new suite of diagnostics is now being designed and constructed. Most of these are based on diagnostics previously fielded on the OMEGA laser system very successfully over the last ten years, but there are some new diagnostics, both for the laser and the interaction experiments, which have had to be invented. Laser system diagnostics include high-energy, full-beam calorimetry for all of the 60 beams of the upgrade; a novel, multispectral energy-measuring system for assessing the tuning of the frequency-multiplying crystals; a beam-balance diagnostic that forms the heart of the energy-balance system; and a peak power diagnostic that forms the heart of the power-balance system. Target diagnostics will include the usual time-integrated x-ray imaging systems, both pinhole cameras and x-ray microscopes; x-ray spectrometers, both imaging and spatially integrating; plamsa calorimeters, including x-ray calorimetry; and time-resolved x-ray diagnostics, both nonimaging and imaging in one and two dimensions. Neutron diagnostics will include several measurements of total yield, secondary, and possibly tertiary yield and neutron spectroscopy with several time-of-flight spectrometers. Other measurements will include ''knock-on'' particle measurements and neutron activation of shell materials as a diagnostic of compressed fuel and shell density

  15. Laser-aided plasma diagnostics

    NARCIS (Netherlands)

    Donne, A. J. H.; Barth, C. J.

    2008-01-01

    This paper will focus on two types of laser-aided diagnostics: Thomson scattering and laser-induced fluorescence. Thomson scattering is a very powerful diagnostic, which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can

  16. Two and three dimensional imaging of compact toroid plasmas using fast photography

    International Nuclear Information System (INIS)

    Englert, S.E.; Bell, D.E.; Coffey, S.K.

    1992-01-01

    As is discussed in a companion paper, Degnan el al, fast photography is used as a visual diagnostic tool for high energy plasma research at the Phillips Laboratory. Both, two dimensional and three dimensional images, are gathered by using nanosecond and microsecond range fast photography techniques. A set of microchannel plate cameras and a fast framing camera are used to record images of a compact toroid plasma during formation and acceleration stages. These images are subsequently digitized and enhanced to bring out detailed information of interest. This spatial information is combined with other diagnostic results as well as theoretical models in order to build a more complete picture of the fundamental physics associated with high-energy plasmas

  17. Electron cyclotron emission imaging in tokamak plasmas

    NARCIS (Netherlands)

    Munsat, T.; Domier, C.W.; Kong, X. Y.; Liang, T. R.; N C Luhmann Jr.,; Tobias, B. J.; Lee, W.; Park, H. K.; Yun, G.; Classen, I.G.J.; Donne, A. J. H.

    2010-01-01

    We discuss the recent history and latest developments of the electron cyclotron emission imaging diagnostic technique, wherein electron temperature is measured in magnetically confined plasmas with two-dimensional spatial resolution. The key enabling technologies for this technique are the

  18. Diagnostics and required R and D for control of DEMO grade plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyeon K., E-mail: hyeonpark@unist.ac.kr [Fusion Plasma Stability and Confinement Research Center, UNIST, 50 Unist-gil, Ulju-gun, Ulsan (Korea, Republic of)

    2014-08-21

    Even if the diagnostics of ITER performs as expected, installation and operation of the diagnostic systems in Demo device will be much harsher than those of the present ITER device. In order to operate the Demo grade plasmas, which may have a higher beta limit, safely with very limited number of simple diagnostic system, it requires a well defined predictable plasma modelling in conjunction with the reliable control system for burn control and potential harmful instabilities. Development of such modelling in ITER is too risky and the logical choice would be utilization of the present day steady state capable devices such as KSTAR and EAST. In order to fulfill this mission, sophisticated diagnostic systems such as 2D/3D imaging systems can validate the physics in the theoretical modeling and challenge the predictable capability.

  19. Diagnostic Suite for HyperV Coaxial Plasma Gun Development for the PLX- α Project

    Science.gov (United States)

    Case, Andrew; Brockington, Sam; Witherspoon, F. Douglas

    2015-11-01

    We present the diagnostic suite to be used during development of the coaxial guns HyperV will deliver to LANL in support of the ARPA-E Accelerating Low-Cost Plasma Heating And Assembly (ALPHA) program. For plasma jet diagnostics this includes fast photodiodes for velocimetry, a ballistic pendulum for measuring total plasmoid momentum, interferometry for line integrated plasma density, deflectometry for line integrated perpendicular density gradient measurements, and spectroscopy, both time resolved high resolution spectroscopy using a novel detector developed by HyperV and time integrated survey spectroscopy, for measurements of velocity and temperature as well as impurities. In addition, we plan to use fast pressure probes for stagnation pressure, a Faraday cup for density, fast imaging for plume geometry and time integrated imaging for overall light emission. A novel low resolution long record length camera developed by HyperV will also be used for plume diagnostics. For diagnostics of gun operation, we will use Rogowski coils to measure current, voltage dividers for voltages, B-dot probes for magnetic field, and time resolved fast photodiodes to measure plasmoid velocity inside the accelerator. This work supported by the ARPA-E ALPHA program.

  20. Diagnostics and results from coaxial plasma gun development for the PLX- α project

    Science.gov (United States)

    Case, A.; Brockington, S.; Cruz, E.; Witherspoon, F. D.

    2016-10-01

    We present results from the diagnostics used during development of the contoured gap coaxial plasma guns for the PLX- α project at LANL. Plasma-jet diagnostics include fast photodiodes for velocimetry, a ballistic pendulum for total plasmoid momentum, and interferometry for line integrated density. Deflectometry will be used for line integrated perpendicular density gradients. Time-resolved high-resolution spectroscopy using a novel detector and time-integrated survey spectroscopy are used for measurements of velocity and temperature, as well as impurities. We will also use a Faraday cup for density, fast imaging for plume geometry, and time-integrated imaging for overall light emission. Experimental results are compared to the desired target parameters for the plasma jets (up to n 2 ×1016cm-3 , v 50km / s , mass 5gm , radius = 4cm , and length 10cm). This work supported by the ARPA-E ALPHA Program.

  1. MTX [Microwave Tokamak Experiment] plasma diagnostic system

    International Nuclear Information System (INIS)

    Rice, B.W.; Hooper, E.B.; Brooksby, C.A.

    1987-01-01

    In this paper, a general overview of the MTX plasma diagnostics system is given. This includes a description of the MTX machine configuration and the overall facility layout. The data acquisition system and techniques for diagnostic signal transmission are also discussed. In addition, the diagnostic instruments planned for both an initial ohmic-heating set and a second FEL-heating set are described. The expected range of plasma parameters along with the planned plasma measurements will be reviewed. 7 refs., 5 figs

  2. ISTTOK plasma control with the tomography diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, H.; Caralho, P.J.; Duarte, P.; Pereira, T.; Coelho, R.; Silva, C. [Association Euratom/IST, Institute of Plasmas and Nuclear Fusion, Technology Graduate Institute, P-1049-001 Lisbon (Portugal)

    2011-07-01

    A real-time plasma position control system is mandatory to achieve long duration (up to 250 ms), Alternating Current (AC) discharges on the ISTTOK tokamak. Such a system has been used for some time supported only on magnetic field diagnostic data. However, this system does not function accurately when the plasma current is low, rendering it inoperative during the plasma current reversal. A tomography diagnostic with 3 pinhole cameras and 8 silicone photodiode channels per camera was installed and customized to supply alternative plasma position to be used for plasma position control. As no filtering is applied, most of the radiation detected is in the visible/near-UV range. This system (i) executes a tomographic reconstruction, (ii) determines the average emissivity position from it, (iii) calculates the shift from the required position and (iv) supplies the vertical field power supply unit with the desired current value, all in less than 100 {mu}s. The horizontal magnetic field power supply unit is expected to be included in the system and will have no impact in the process time. This paper presents the tomography diagnostic architecture together with results of its scientific exploitation in ISTTOK AC discharges, where it has proven to be capable of supplying an accurate plasma position during the current reversal. The use of the tomography diagnostic for plasma position overcomes some limitations of the magnetic diagnostics, but poses challenges of its own such as blindness to plasma current direction. (authors)

  3. Spectroscopic and imaging diagnostics of pulsed laser deposition laser plasmas

    International Nuclear Information System (INIS)

    Thareja, Raj K.

    2002-01-01

    An overview of laser spectroscopic techniques used in the diagnostics of laser ablated plumes used for thin film deposition is given. An emerging laser spectroscopic imaging technique for the laser ablation material processing is discussed. (author)

  4. UV Laser Diagnostics of the 1-MA Z-pinch Plasmas

    International Nuclear Information System (INIS)

    Altemara, S. D.; Ivanov, V. V.; Astanovitskiy, A. L.; Haboub, A.

    2009-01-01

    The 532 nm laser diagnostic set at the Zebra generator shows the details of the ablation and stagnation phases in cylindrical, planar, and star-like wire arrays but it cannot show the structure of the stagnated z-pinch and the implosion in small diameter loads, 1-3 mm in diameter. The absorption increment and the refraction angle of the 532 nm laser, when passing through the plasma, are too great to obtain quality images. An ultraviolet probing beam at the wavelength of 266 nm was developed to study small-diameter loads and to investigate the structure of the 1-MA z-pinch. The UV radiation has a much smaller absorption increment and refraction angles in plasmas than the 532 nm light and allows for better imaging of the z-pinch plasmas. Estimates showed that UV probing would be able to probe the high-density z-pinch plasma in experiments on the Zebra generator, and the early results of UV probing on the Zebra generator have shown promise.

  5. 3D Diagnostic Of Complex Plasma

    International Nuclear Information System (INIS)

    Hall, Edward; Samsonov, Dmitry

    2011-01-01

    This paper reports the development of a three-dimensional(3D) dust particle position diagnostic for complex plasmas. A beam produce by Light Emitting Diodes(LEDs) is formed into horizontal sheet, for the illumination of the particles. The light sheet has a vertical colour gradient across its width, from two opposing colours. The light scattered from the particles is imaged with the camera from above. The horizontal coordinates are measured from the positions on the image. The third coordinate is determined from the colour which represents a position on the gradient of the light sheet. The use of LEDs as a light source reduces a variation in Mie scattered intensity from the particles due to the particle size distribution. The variation would induce a large vertical positional error.

  6. MFTF-B plasma-diagnostic system

    International Nuclear Information System (INIS)

    Throop, A.L.; Goerz, D.A.; Thomas, S.R.

    1981-01-01

    This paper describes the current design status of the plasma diagnostic system for MFTF-B. In this paper we describe the system requirement changes which have occurred as a result of the funded rescoping of the original MFTF facility into MFTF-B. We outline the diagnostic instruments which are currently planned, and present an overview of the diagnostic system

  7. Optical fibres for fusion plasma diagnostics systems

    International Nuclear Information System (INIS)

    Brichard, B.

    2005-01-01

    The condition to achieve and maintain the ignition of a thermonuclear fusion plasma ignition calls for the construction of a large scale fusion reactor, namely ITER. This reactor is designed to deliver an average fusion power of 500 MW. The burning of fusion plasma at such high power level will release a tremendous amount of energy in the form of particle fluxes and ionising radiation. This energy release, primarily absorbed by the plasma facing components, can significantly degrade the performances of the plasma diagnostic equipment surrounding the machine. To ensure a correct operation of the Tokamak we need to develop highly radiation-resistance devices. In plasma diagnostic systems, optical fibre is viewed as a convenient tool to transport light from the plasma edge to the diagnostic area. Radiation affects the optical performances of the fibre mainly by the occurrence of radiation-induced absorption and luminescence. Both effects degrade the light signal used for plasma diagnostic. SCK-CEN is currently assessing radiation-resistant glasses for optical fibres and is developing the associated qualification procedure. The main objectives of this study were to increase the lifetime of optical components in high radiation background and to develop a radiation resistance optical fibre capable to operate in the radiation background of ITER

  8. Correlation measurements for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Pazsit, I.

    1995-01-01

    A list of a few methods for plasma diagnostics via fluctuations (noise) analysis of random (both temporally and spatially) system parameters is reviewed. Analogy is drawn with certain noise analysis methods, used in the diagnostics of fission reactors. These methods have been applied also to fusion measurements to some extent. However, the treatment of fusion plasma fluctuations is dominated by an approach that allows for temporal randomness, but assumes periodicity in space. This approach suits well a large class of phenomena such as magnetic fluctuations (MHD effects), but is much less suited to treat localised effects such as turbulence and density fluctuations. This paper discusses the potentials of the former approach, i.e. ordinary noise analysis methods of non-periodic variables in fusion plasma diagnostics. A new recommendation is to use the crossed beam correlation analysis of soft X-ray signals for determining the local short-range correlations in the plasma and to perform a systematic exploration of the plasma spatial correlation structure with that and other methods. 16 refs, 7 figs

  9. Visible Imaging Diagnostic on Tore-Supra

    Energy Technology Data Exchange (ETDEWEB)

    Dachicourt, R.; Monier Garbet, P.; Beaute, A.; Habib-Naiim, M. [Association Euratom-CEA, CEA/DSM/IRFM, CEA Cadarache (France); Marandet, Y. [PIIM, CNRS-Universite de Provence, Marseille (France)

    2011-07-01

    Full text of publication follows: Research for thermonuclear fusion aims at energy production using fusion reactions between deuterium and tritium nuclei. To this end, a deuterium/tritium mixture has to be heated to a very high temperature (about 100 millions degrees). Chemical and physical sputtering erodes the plasma facing components (PFC), leading to an impurity influx to the plasma. Estimating this erosion source is important both for the PFC lifetime and the quality of the confinement. In fact, impurities reaching the plasma core radiate energy and dilute the fuel. In this contribution, we describe an erosion diagnostic operated on the Tore Supra tokamak, consisting in the combination of visible spectroscopy and filtered imaging over a full TPL (Toroidal Pumped Limiter) sector. Quantitative measurements of spectral lines brightness on four spectrometer chords monitoring the TPL top are used to process the corresponding filtered images, namely to remove background emission or unwanted lines. The particle influx from the TPL's vicinity is obtained from photon fluxes measurements [1], which require absolute calibration in intensity of the system. Filtered images provide the spatial pattern of erosion, from which the total eroded carbon flux is reconstructed. The variation of the particle influx with the input power is studied by analyzing a dedicated experimental campaign. References: [1] Behringer K. et al. Plasma Physics and Controlled Fusion, Vol. 31, No. 14, pp. 2059 to 2099, 1989. (authors)

  10. Far-infrared fusion plasma diagnostics. Task IIIA. Final report

    International Nuclear Information System (INIS)

    Luhmann, N.C. Jr.

    1986-01-01

    The Task IIIA program at UCLA has been concerned with the development of innovative yet practical plasma diagnostic systems capable of providing detailed information essential to the success of the fusion program but not presently available within the fusion community. Historically, this has involved an initial development in the laboratory, followed by a test of feasibility on the Microtor tokamak prior to transfer of the technique/instrument to main line fusion devices. Strong emphasis has been placed upon the far-infrared (FIR) spectral region where novel diagnostic systems and technology have been developed and then distributed throughout the fusion program. The major diagnostics under development have been the measurement of plasma microturbulence and coherent modes via multichannel cw collective Thomson scattering, and the application of phase/polarization imaging techniques to provide accurate and detailed (>20 channel) electron density and current profiles not presently available using conventional methods. The eventual transfer of the above techniques to main line fusion devices is, of course, a major goal of the UCLA development program. The multichannel scattering development at UCLA was efficiently transferred to TEXT a few years ago. The apparatus has been employed to investigate the strong spectral and spatial asymmetries in the microturbulence uncovered through the unique multichannel and spatial scanning capabilities of the system. The scattering apparatus has also produced evidence for the ion pressure gradient driven eta/sub i/ modes thought responsible for anomalous transport in the edge regions of tokamak plasmas, as well as providing insight into the wave-wave coupling processes between various plasma modes

  11. Papers presented at the eleventh topical conference on high-temperature plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report contains the following eleven papers presented at the conference: Neutral Beam Diagnostics for Alcator C-Mod; A Study for the Installation of the TEXT HIBP on DIII-D; Time-domain Triple-probe Measurement of Edge Plasma Turbulence on TEXT-U; A Langmuir/Mach Probe Array for Edge Plasma Turbulence and Flow; Determination of Field Line Location and Safety Factor in TEXT-U; Hybrid ECE Imaging Array System for TEXT-U; First Results from the Phase Contrast Imaging System on TEXT-U; A Fast Tokamak Plasma Flux and Electron Density Reconstruction Technique; Time-series Analysis of Nonstationary Plasma Fluctuations Using Wavelet Transforms; Quantitative Modeling of 3-D Camera Views for Tokamak Divertors; and Variable-frequency Complex Demodulation Technique for Extracting Amplitude and Phase Information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  12. Papers presented at the eleventh topical conference on high-temperature plasma diagnostics

    International Nuclear Information System (INIS)

    1996-01-01

    This report contains the following eleven papers presented at the conference: Neutral Beam Diagnostics for Alcator C-Mod; A Study for the Installation of the TEXT HIBP on DIII-D; Time-domain Triple-probe Measurement of Edge Plasma Turbulence on TEXT-U; A Langmuir/Mach Probe Array for Edge Plasma Turbulence and Flow; Determination of Field Line Location and Safety Factor in TEXT-U; Hybrid ECE Imaging Array System for TEXT-U; First Results from the Phase Contrast Imaging System on TEXT-U; A Fast Tokamak Plasma Flux and Electron Density Reconstruction Technique; Time-series Analysis of Nonstationary Plasma Fluctuations Using Wavelet Transforms; Quantitative Modeling of 3-D Camera Views for Tokamak Divertors; and Variable-frequency Complex Demodulation Technique for Extracting Amplitude and Phase Information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  13. Diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Laux, C.O.; Kruger, C.H.; Zare, R.N.

    2001-01-01

    Atmospheric pressure air plasmas are often thought to be in Local Thermodynamics Equilibrium (LTE) owing to fast interspecies collisional exchanges at high pressure. As will be seen here, this assumption cannot be relied upon, particularly with respect to optical diagnostics. Large velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. Diagnostic techniques based on optical emission spectroscopy (OES) and Cavity Ring-Down Spectroscopy (CRDS) have been developed and applied at Stanford University to the investigation of atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium. This article presents a review of selected temperature and species concentration measurement techniques useful for the study of air and nitrogen plasmas

  14. Diagnostic Development for ST Plasmas on NSTX

    International Nuclear Information System (INIS)

    Johnson, D.

    2003-01-01

    Spherical tokamaks (STs) have much lower aspect ratio (a/R) and lower toroidal magnetic field, relative to tokamaks and stellarators. This paper will highlight some of the challenges and opportunities these features pose in the diagnosis of ST plasmas on the National Spherical Torus Experiment (NSTX), and discuss some of the corresponding diagnostic development that is underway. The low aspect ratio necessitates a small center stack, with tight space constraints and large thermal excursions, complicating the design of magnetic sensors in this region. The toroidal magnetic field on NSTX is less than or equal to 0.6 T, making it impossible to use ECE as a good monitor of electron temperature. A promising new development for diagnosing electron temperature is electron Bernstein wave (EBW) radiometry, which is currently being pursued on NSTX. A new high-resolution charge exchange recombination spectroscopy system is being installed. Since non-inductive current initiation and sustainment ar e top-level NSTX research goals, measurements of the current profile J(R) are essential to many planned experiments. On NSTX several modifications are planned to adapt the MSE technique to lower field, and two novel MSE systems are being prototyped. Several high speed 2-D imaging techniques are being developed, for viewing both visible and x-ray emission. The toroidal field is comparable to the poloidal field at the outside plasma edge, producing a large field pitch (>50 o ) at the outer mid-plane. The large shear in pitch angle makes some fluctuation diagnostics like beam emission spectroscopy very difficult, while providing a means of achieving spatial localization for microwave scattering investigations of high-k turbulence, which are predicted to be virulent for NSTX plasmas. A brief description of several of these techniques will be given in the context of the current NSTX diagnostic set

  15. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    International Nuclear Information System (INIS)

    Stratton, B.C.; Bitter, M.; Hill, K.W.; Hillis, D.L.; Hogan, J.T.

    2007-01-01

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  16. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  17. Laser-aided diagnostics of plasmas and gases

    CERN Document Server

    Muraoka, K

    2000-01-01

    Updated and expanded from the original Japanese edition, Laser-Aided Diagnostics of Gases and Plasmas takes a unique approach in treating laser-aided diagnostics. The book unifies the subject by joining applications instead of describing each application as a totally separate system. In taking this approach, it highlights the relative strengths of each method and shows how they can complement each other in the study of gases and plasmas.The first part of the book presents a general introduction to the laser-aided study of gases and plasmas, including the various principles and hardware needed for each method, while the second part describes the applications of each general system in detail.Beneficial to a wide spectrum of academic and industrial researchers, this book provides a solid examination of the various options and methods available when involved in the analysis and diagnostics of gases and plasmas.

  18. Development of the Megahertz Planar Laser-induced Fluorescence Diagnostic for Plasma Turbulence Visualization

    International Nuclear Information System (INIS)

    Kuritsyn, Aleksey; Levinton, Fred M.

    2004-01-01

    A megahertz LIF-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal 2D images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultra-fast CCD camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique

  19. X-ray imaging diagnostics for the inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Pawley, C.; Sethian, J.; Koch, J.A.; Holland, G.

    2000-01-01

    We report on our continued development of the advanced x-ray plasma diagnostics based on spherically curved crystals. The diagnostics include x-ray spectroscopy with 1-D spatial resolution, 2-D monochromatic self-imaging and back-lighting, and can be extended to the x-ray collimating and 2-D absorption and emission spectroscopy. The system is currently used, but not limited to the diagnostics of the targets ablatively accelerated by the NRL Nike KrF laser. In cooperation with LLNL a comprehensive test of the NIF prototype spherically curved crystal assembly has been performed on the Nova laser. (authors)

  20. X-ray imaging diagnostics for the inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aglitskiy, Y.; Lehecka, T. [Science Applications International Corp., McLean, VA (United States); Obenschain, S.; Pawley, C.; Sethian, J. [Naval Research Lab., Washington, DC (United States). Plasma Physics Div; Brown, C.M.; Seely, J. [Naval Research Lab., Space Sciences Div, Washington, DC (United States); Koch, J.A. [Lawrence Livermore National Lab., CA (United States); Holland, G. [SFA, Landover MD (United States)

    2000-07-01

    We report on our continued development of the advanced x-ray plasma diagnostics based on spherically curved crystals. The diagnostics include x-ray spectroscopy with 1-D spatial resolution, 2-D monochromatic self-imaging and back-lighting, and can be extended to the x-ray collimating and 2-D absorption and emission spectroscopy. The system is currently used, but not limited to the diagnostics of the targets ablatively accelerated by the NRL Nike KrF laser. In cooperation with LLNL a comprehensive test of the NIF prototype spherically curved crystal assembly has been performed on the Nova laser. (authors)

  1. PLASMA DIAGNOSTICS OF AN EIT WAVE OBSERVED BY HINODE/EIS AND SDO/AIA

    Energy Technology Data Exchange (ETDEWEB)

    Veronig, A. M.; Kienreich, I. W.; Muhr, N.; Temmer, M. [Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Goemoery, P. [Astronomical Institute, Slovak Academy of Sciences, SK-05960 Tatranska Lomnica (Slovakia); Vrsnak, B. [Hvar Observatory, Faculty of Geodesy, Kaciceva 26, 1000 Zagreb (Croatia); Warren, H. P., E-mail: astrid.veronig@uni-graz.at [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2011-12-10

    We present plasma diagnostics of an Extreme-Ultraviolet Imaging Telescope (EIT) wave observed with high cadence in Hinode/Extreme-Ultraviolet Imaging Spectrometer (EIS) sit-and-stare spectroscopy and Solar Dynamics Observatory/Atmospheric Imaging Assembly imagery obtained during the HOP-180 observing campaign on 2011 February 16. At the propagating EIT wave front, we observe downward plasma flows in the EIS Fe XII, Fe XIII, and Fe XVI spectral lines (log T Almost-Equal-To 6.1-6.4) with line-of-sight (LOS) velocities up to 20 km s{sup -1}. These redshifts are followed by blueshifts with upward velocities up to -5 km s{sup -1} indicating relaxation of the plasma behind the wave front. During the wave evolution, the downward velocity pulse steepens from a few km s{sup -1} up to 20 km s{sup -1} and subsequently decays, correlated with the relative changes of the line intensities. The expected increase of the plasma densities at the EIT wave front estimated from the observed intensity increase lies within the noise level of our density diagnostics from EIS Fe XIII 202/203 A line ratios. No significant LOS plasma motions are observed in the He II line, suggesting that the wave pulse was not strong enough to perturb the underlying chromosphere. This is consistent with the finding that no H{alpha} Moreton wave was associated with the event. The EIT wave propagating along the EIS slit reveals a strong deceleration of a Almost-Equal-To -540 m s{sup -2} and a start velocity of v{sub 0} Almost-Equal-To 590 km s{sup -1}. These findings are consistent with the passage of a coronal fast-mode MHD wave, pushing the plasma downward and compressing it at the coronal base.

  2. Optical diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Laux, C O; Spence, T G; Kruger, C H; Zare, R N

    2003-01-01

    Atmospheric pressure air plasmas are often thought to be in local thermodynamic equilibrium owing to fast interspecies collisional exchange at high pressure. This assumption cannot be relied upon, particularly with respect to optical diagnostics. Velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. This paper reviews diagnostic techniques based on optical emission spectroscopy and cavity ring-down spectroscopy that we have found useful for making temperature and concentration measurements in atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium

  3. Plasma diagnostics surface analysis and interactions

    CERN Document Server

    Auciello, Orlando

    2013-01-01

    Plasmas and their interaction with materials have become subjects of major interest because of their importance in modern forefront technologies such as microelectronics, fusion energy, and space. Plasmas are used in microelectronics to process semiconductors (etching of patterns for microcircuits, plasma-induced deposition of thin films, etc.); plasmas produce deleterious erosion effects on surfaces of materials used for fusion devices and spaceships exposed to the low earth environment.Diagnostics of plasmas and materials exposed to them are fundamental to the understanding of the physical a

  4. Vertical one-dimensional electron cyclotron emission imaging diagnostic for HT-7 tokamak

    International Nuclear Information System (INIS)

    Wang Jun; Xu Xiaoyuan; Wen Yizhi; Yu Changxuan; Wan Baonian; Luhmann, N.C.; Wang, Jian; Xia, Z.G.

    2005-01-01

    A vertical resolved 16-channel electron cyclotron emission imaging (ECEI) diagnostic has been developed and installed on the HT7 Tokamak for measuring plasma electron cyclotron emission with a temporal resolution of 0.5 us. The system is working on a fixed frequency 97.5 GHz in the first stage. The sample volumes of the system are aligned vertically with a vertical channel spacing of 11 mm, and can be shifted across the plasma cross-section by varying the toroidal magnetic field. The high spatial resolution of the system is achieved by utilizing a low cost linear mixer/receiver array and an optical imaging system. The focus location may be shifted horizontally via translation of one of the optical imaging elements. The detail of the system design and laboratory testing of the ECE Imaging optics are presented, together with HT7 plasma data. (author)

  5. Diagnostic Imaging Workshop

    International Nuclear Information System (INIS)

    Sociedad Argentina de Fisica Medica

    2012-01-01

    The American Association of Physicist in Medicine (AAPM), the International Organization for Medical Physics (IOMP) and the Argentina Society of Medical Physics (SAFIM) was organized the Diagnostic Imaging Workshop 2012, in the city of Buenos Aires, Argentina. This workshop was an oriented training and scientific exchange between professionals and technicians who work in medical physics, especially in the areas of diagnostic imaging, nuclear medicine and radiotherapy, with special emphasis on the use of multimodal imaging for radiation treatment, planning as well of quality assurance associates.

  6. Plasma impact on diagnostic mirrors in JET

    OpenAIRE

    A. Garcia-Carrasco; P. Petersson; M. Rubel; A. Widdowson; E. Fortuna-Zalesna; S. Jachmich; M. Brix; L. Marot

    2017-01-01

    Metallic mirrors will be essential components of all optical systems for plasma diagnosis in ITER. This contribution provides a comprehensive account on plasma impact on diagnostic mirrors in JET with the ITER-Like Wall. Specimens from the First Mirror Test and the lithium-beam diagnostic have been studied by spectrophotometry, ion beam analysis and electron microscopy. Test mirrors made of molybdenum were retrieved from the main chamber and the divertor after exposure to the 2013–2014 experi...

  7. Diagnostics of laser ablated plasma plumes

    DEFF Research Database (Denmark)

    Amoruso, S.; Toftmann, B.; Schou, Jørgen

    2004-01-01

    The effect of an ambient gas on the expansion dynamics of laser ablated plasmas has been studied for two systems by exploiting different diagnostic techniques. First, the dynamics of a MgB2 laser produced plasma plume in an Ar atmosphere has been investigated by space-and time-resolved optical...... of the laser ablated plasma plume propagation in a background gas. (C) 2003 Elsevier B.V All rights reserved....

  8. Spectroscopic diagnostics of industrial plasmas

    International Nuclear Information System (INIS)

    Joshi, N.K.

    2004-01-01

    Plasmas play key role in modern industry and are being used for processing micro electronic circuits to the destruction of toxic waste. Characterization of industrial plasmas which includes both 'thermal plasmas' and non-equilibrium plasmas or 'cold plasmas' in industrial environment offers quite a challenge. Numerous diagnostic techniques have been developed for the measurement of these partially ionized plasma and/or particulate parameters. The 'simple' non-invasive spectroscopic methods for characterization of industrial plasmas will be discussed in detail in this paper. The excitation temperature in thermal (DC/RF) plasma jets has been determined using atomic Boltzmann technique. The central axis temperature of thermal plasma jets in a spray torch can be determined using modified atomic Boltzmann technique with out using Abel inversion. The Stark broadening of H β and Ar-I (430 nm) lines have been used to determine the electron number density in thermal plasma jets. In low-pressure non-equilibrium argon plasma, electron temperature has been measured using the Corona model from the ratio of line intensities of atomic and ionic transitions. (author)

  9. Development of innovative thermal plasma and particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Benjamin-Leon

    2013-09-24

    Three original plasma diagnostic systems have been developed to investigate transient three-dimensional plasma processes with high spatial and temporal resolution. The developed diagnostics have been analyzed and tested by increasing the complexity from a stationary free burning Argon arc to a dc pulsed process and finally to a transient gas metal arc including droplet transfer through the plasma. The transient plasma parameters that have been determined include three-dimensional axially symmetric plasma densities (n{sub e}, n{sub A}, n{sub A+}, n{sub A++}), electron temperatures (T{sub e}), electrical conductivities (σ{sub el}), magnetic flux densities (B) and current densities (j{sub el}). In the case of a droplet transfer through an arc consisting of an Iron/Argon plasma, the droplet density, surface tension, viscosity, and temperature have been determined.

  10. Papers presented at the Tenth Topical Conference on High-Temperature Plasma Diagnostics

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains papers on the following topics: Effects of limited spatial resolution on fluctuation measurements; vertical viewing of electron-cyclotron radiation in Text-U; measurement of temperature fluctuations from electron-cyclotron emission; a varying cross section magnetic coil diagnostic used in digital feedback control of plasma position in Text-Upgrade; high-sensitivity, high resolution measurements of radiated power on Text-U; wave launching as a diagnostic tool to investigate plasma turbulence; edge parameters from an energy analyzer and particle transport on Text-U; initial results from a charge exchange q-Diagnostic on Text-U; a method for neutral spectra analysis taking ripple-trapped particle losses into account; application of a three sample volume S(k,ω ) estimate to optical measurements of turbulence on Text; initial operation of the 2D Firsis on Text-Upgrade; horizontal-view interferometer on Text-Upgrade; plasma potential measurements on Text-Upgrade with A 2 MeV heavy ion beam; fluctuation measurements using the 2 MeV heavy ion beam probe on Text-U; the time domain triple probe method; a phase contrast imaging system for Text-U; and development of rugged corner cube detectors for the Text-U-Fir interferometer. These papers have been placed on the database elsewhere

  11. Nonneutral plasma diagnostic commissioning for the ALPHA Antihydrogen experiment

    Science.gov (United States)

    Konewko, S.; Friesen, T.; Tharp, T. D.; Alpha Collaboration

    2017-10-01

    The ALPHA experiment at CERN creates antihydrogen by mixing antiproton and positron plasmas. Diagnostic measurements of the precursor plasmas are performed using a diagnostic suite, colloquially known as the ``stick.'' This stick has a variety of sensors and is able to move to various heights to align the desired diagnostic with the beamline. A cylindrical electrode, a faraday cup, an electron gun, and a microchannel-plate detector (MCP) are regularly used to control and diagnose plasmas in ALPHA. We have designed, built, and tested a new, upgraded stick which includes measurement capabilities in both beamline directions.

  12. Development in Diagnostics Application to Control Advanced Tokamak Plasma

    International Nuclear Information System (INIS)

    Koide, Y.

    2008-01-01

    For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)

  13. Far infrared fusion plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-01-01

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer's importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA's CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  14. Time resolved two- and three-dimensional plasma diagnostics

    International Nuclear Information System (INIS)

    1991-03-01

    This collection of papers on diagnostics in fusion plasmas contains work on the data analysis of inverse problems and on the experimental arrangements presently used to obtain spatially and temporally resolved plasma radial profiles, including electron and ion temperature, plasma density and plasma current profiles. Refs, figs and tabs

  15. Plasma Diagnostics of Coronal Dimming Events

    Science.gov (United States)

    Vanninathan, Kamalam; Veronig, Astrid M.; Dissauer, Karin; Temmer, Manuela

    2018-04-01

    Coronal mass ejections are often associated with coronal dimmings, i.e., transient dark regions that are most distinctly observed in Extreme Ultra-violet wavelengths. Using Atmospheric Imaging Assembly (AIA) data, we apply Differential Emission Measure diagnostics to study the plasma characteristics of six coronal dimming events. In the core dimming region, we find a steep and impulsive decrease of density with values up to 50%–70%. Five of the events also reveal an associated drop in temperature of 5%–25%. The secondary dimming regions also show a distinct decrease in density, but less strong, decreasing by 10%–45%. In both the core and the secondary dimming the density changes are much larger than the temperature changes, confirming that the dimming regions are mainly caused by plasma evacuation. In the core dimming, the plasma density reduces rapidly within the first 20–30 minutes after the flare start and does not recover for at least 10 hr later, whereas the secondary dimming tends to be more gradual and starts to replenish after 1–2 hr. The pre-event temperatures are higher in the core dimming (1.7–2.6 MK) than in the secondary dimming regions (1.6–2.0 MK). Both core and secondary dimmings are best observed in the AIA 211 and 193 Å filters. These findings suggest that the core dimming corresponds to the footpoints of the erupting flux rope rooted in the AR, while the secondary dimming represents plasma from overlying coronal structures that expand during the CME eruption.

  16. Magnetic diagnostic plasma position in the TCA/BR tokamak

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Kuznetsov, Yu.K.; Nascimento, I.C.

    1996-01-01

    The cross-section of the plasma column is TCA/BR has a nearly circular plasma shape. This allows implementation of simplified methods of magnetic diagnostics. Although these methods were in may tokamaks and are well described, their accuracies are not clearly defined because the very simplified theoretical model of plasma equilibrium on which they are based differs from the real conditions in tokamaks like TCA/BR. In this paper we present the methods of plasma position diagnostics in TCA/BR from external magnetic measurements with an error analysis. (author). 4 refs., 3 figs

  17. XII All-Russian conference Diagnostics of high-temperature plasma. Abstracts of reports and conference program

    International Nuclear Information System (INIS)

    2007-01-01

    Abstracts of reports made on the XII All-Russian conference on high-temperature plasma diagnostics are presented. The different methods of hot plasma diagnostics are considered, namely microwave diagnostic methods, laser diagnostic techniques, X-ray plasma diagnostics and corpuscular diagnostic methods. The particular attention is given to wall plasma diagnostics and diagnostics of inertial synthesis systems. Current diagnostic tools and metrological provision for plasma diagnostics are considered. The diagnostic complexes of thermonuclear devices are described. The problems of experimental data processing are discussed [ru

  18. Upgrades of imaging x-ray crystal spectrometers for high-resolution and high-temperature plasma diagnostics on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, B., E-mail: blu@ipp.ac.cn; Wang, F. D.; Fu, J.; Li, Y. Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Pan, X. Y.; Chen, J.; Wan, B. N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bitter, M.; Hill, K. W.; Delgado-Aparicio, L. F.; Pablant, N. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Lee, S. G. [National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Shi, Y. J. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); WCI for Fusion Theory, National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Ye, M. Y. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-11-15

    Upgrade of the imaging X-ray crystal spectrometers continues in order to fulfill the high-performance diagnostics requirements on EAST. For the tangential spectrometer, a new large pixelated two-dimensional detector was deployed on tokamaks for time-resolved X-ray imaging. This vacuum-compatible detector has an area of 83.8 × 325.3 mm{sup 2}, a framing rate over 150 Hz, and water-cooling capability for long-pulse discharges. To effectively extend the temperature limit, a double-crystal assembly was designed to replace the previous single crystals for He-like argon line measurement. The tangential spectrometer employed two crystal slices attached to a common substrate and part of He- and H-like Ar spectra could be recorded on the same detector when crystals were chosen to have similar Bragg angles. This setup cannot only extend the measurable Te up to 10 keV in the core region, but also extend the spatial coverage since He-like argon ions will be present in the outer plasma region. Similarly, crystal slices for He-like iron and argon spectra were adopted on the poloidal spectrometer. Wavelength calibration for absolute rotation velocity measurement will be studied using cadmium characteristic L-shell X-ray lines excited by plasma radiation. A Cd foil is placed before the crystal and can be inserted and retracted for in situ wavelength calibration. The Geant4 code was used to estimate X-ray fluorescence yield and optimize the thickness of the foil.

  19. Spectroscopic diagnostics of high temperature plasmas, January 1, 1991--December 31, 1991

    International Nuclear Information System (INIS)

    1991-01-01

    During 1991, the activities of the John Hopkins University Plasma Spectroscopy Group have covered several areas of research, in the domain of XUV spectroscopy of magnetically confined fusion plasmas. While the main effort concentrated on the development of novel diagnostics which utilize Layered Synthetic Microstructures (LSMs) as the dispersive/filtering elements, work has been done in the area of detector development and the physics of the tokamak edge plasma. An XUV monochromator for the 20--200 Angstrom range, which uses flat LSMs, has been built and is currently operated on the D3-D tokamak at General Atomics in San Diego. A design for a follow-up experiment at D3-D is now in progress. As a preliminary step toward tokamak plasma imaging in the XUV wavelength range using curved LSM coated substrates, a prototype XUV camera was built and operated in our laboratory in image the A1 3 emission at λ-175 Angstrom from a Penning Ionization Discharge plasma. Based on these laboratory results, the design of the XUV camera, which will image plasma in the Phaedrus T tokamak O VI emission (150 Angstrom), has been completed. This instrument is presently under construction. Also a detailed design of a system composed of four LSM based imaging devices for N e (0) and T e (0) fluctuation measurements on TEXT has been completed. The accuracy and the uniformity of the LSM coatings on flat and small curved surfaces used in the above-mentioned instruments have been evaluated in our laboratory using an in-house built calibration facility and at the SURF II synchrotron at the National Institute of Standards and Technology

  20. Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect

    International Nuclear Information System (INIS)

    Symes, D. R.; Wegner, U.; Ahlswede, H.-C.; Streeter, M. J. V.; Gallegos, P. L.; Divall, E. J.; Rajeev, P. P.; Neely, D.; Smith, R. A.

    2010-01-01

    Optical imaging is a versatile diagnostic for investigations of plasmas generated under intense laser irradiation. Electro-optic gating techniques operating on the >100 ps timescale are commonly used to reduce the amount of light detected from self-emission of hot plasma or improve the temporal resolution of the detector. The use of an optical Kerr gate enables a superior dynamic range and temporal resolution compared to electronically gated devices. The application of this method for enhanced imaging of laser produced plasmas with gate time ∼100 fs is demonstrated, and the possibility to produce a sub-10 fs, high dynamic range 'all optical' streak camera is discussed.

  1. Diagnostics of peripheric plasma in thermonuclear devices

    International Nuclear Information System (INIS)

    Vojtsenya, V.S.; Tereshin, V.I.

    1986-01-01

    Review of basic methods, applied or developed for peripheral plasma diagnostics is given, including electric probes of various types, collecting probes for studying impurity ion and main plasma component characteristics, spectroscopic and corpuscular-optical methods, laser fluorescence spectroscopy, mass-spectrometry, heavy ion and atom (lithium and hydrogen) beam methods. Ranges of plasma parameters their measurements being provided by the methods indicated are presented

  2. Microwave and optical diagnostics in a gadolinium plasma; Diagnostics hyperfrequence et optique dans un plasma magnetise de gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Larousse, B. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Procedes d`Enrichissement]|[Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)

    1997-12-31

    The optimization of the separation process of the gadolinium isotopes by Ion Cyclotron Resonance requires a precise knowledge of the physical characteristics of the plasma. Thus, two kinds of diagnostics have been developed: the first one to estimate the microwave power inside the source and the second one to measure the density of atomic and ionic of the gadolinium inside the plasma source and in front of the collector. Microwave diagnostic: A microstrip antenna has been designed and developed in order to characterize the microwave at 36 GHz frequency in the plasma source. The experimental results for different plasma regimes are presented. The measurements inside the plasma source show a maximum of microwave absorption for an argon pressure of 10{sup -4} mb (93% of absorption of the incident wave in the conditions of isotope separation). Laser absorption diagnostic: The theory of laser absorption in presence of a magnetic field is recalled and the first results are presented. In the spectral range between 560 and 620 nm, corresponding to high energy levels of gadolinium, no signal is obtained so that the density is below the detection limit 10{sup 10} cm{sup -3}. In the spectral range between 380 and 400 nm, two lines are observed, issue from the fundamental and metastable (633 cm{sup -1}) levels. The density of metastable level of gadolinium ions is about 10{sup 10} cm{sup -3} with a relative precision of 15 % and its variation is studied as a function of argon pressure, at different sections of the plasma column (source, collector). The achieved set of measurements has been performed in order to check the theoretical models. (author) 32 refs.

  3. Proceedings of the 13th international symposium on laser-aided plasma diagnostics

    International Nuclear Information System (INIS)

    Kawahata, Kazuo

    2007-09-01

    The 9th international symposium on LASER-AIDED PLASMA DIAGNOSTICS was held from 18th November to 21st September, 2007 at Takayama, Japan. This symposium was organized by the National Institute for Fusion Science, Toki, Japan. The topics of the symposium include laser diagnostics and diagnostics aided by lasers for fusion plasmas, industrial process plasmas, environmental plasmas as well as for other plasma applications and processes related to plasmas. Hardware development related to laser-aided plasma diagnostics is another topic. Over 80 participants attended this international symposium. 1 Akazaki lecture, 10 general talks, 10 topical talks, 12 short oral talks and 45 posters were presented. This issue is the collection of the papers presented at the title symposium. The 41 of the presented papers are indexed individually. (J.P.N.)

  4. A Diagnostic Ultrasound Imaging System

    International Nuclear Information System (INIS)

    Lee, Seong Woo

    1999-01-01

    The ability to see the internal organs of the human body in a noninvasive way is a powerful diagnostic tool of modern medicine. Among these imaging modalities such as X-ray, MRI, and ultrasound. MRI and ultrasound are presenting much less risk of undesirable damage of both patient and examiner. In fact, no deleterious effects have been reported as a result of clinical examination by using MRI and ultrasound diagnostic equipment. As a result, their market volume has been rapidly increased. MRI has a good resolution. but there are a few disadvantages such as high price. non-real-time imaging capability. and expensive diagnostic cost. On the other hand, the ultrasound imaging system has inherently poor resolution as compared with X-ray and MRI. In spite of its poor resolution, the ultrasound diagnostic equipment is lower in price and has an ability of real-time imaging as compared with the others. As a result, the ultrasound imaging system has become general and essential modality for imaging the internal organs of human body. In this review various researches and developments to enhance the resolution of the ultrasound images are explained and future trends of the ultrasound imaging technology are described

  5. Challenges for Plasma Diagnostic in a Next Step Device (FIRE)

    International Nuclear Information System (INIS)

    Young, Kenneth M.

    2002-01-01

    The physics program of any next-step tokamak such as FIRE [Fusion Ignition Research Experiment] sets demands for plasma measurement which are at least as comprehensive as on present tokamaks, with the additional capabilities needed for control of the plasma and for understanding the effects of the alpha-particles. The diagnostic instrumentation must be able to provide the fine spatial and temporal resolution required for the advanced tokamak plasma scenarios. It must also be able to overcome the effects of neutron- and gamma-induced electrical noise in ceramic components or detectors, and fluorescence and absorption in optical components. There are practical engineering issues of minimizing radiation streaming while providing essential diagnostic access to the plasma. Many diagnostics will require components at or close to the first wall, e.g., ceramics and MI cable for magnetic diagnostics and mirrors for optical diagnostics; these components must be mounted to operate, and survive, i n fluxes which require special material selection. A better set of diagnostics of alpha-particles than that available for the TFTR [Tokamak Fusion Test Reactor] is essential; it must be qualified well before moving into D-T [deuterim-tritium] experiments. A start has been made to assessing the potential implementation of key diagnostics for the FIRE device. The present status is described

  6. Plasma diagnostics for the compact ignition tokamak

    International Nuclear Information System (INIS)

    Medley, S.S.; Young, K.M.

    1988-06-01

    The primary mission of the Compact Ignition Tokamak (CIT) is to study the physics of alpha-particle heating in an ignited D-T plasma. A burn time of about 10 /tau//sub E/ is projected in a divertor configuration with baseline machine design parameters of R=2.10 m, 1=0.65 m, b=1.30 m, I/sub p/=11 MA, B/sub T/=10 T and 10-20 MW of auxiliary rf heating. Plasma temperatures and density are expected to reach T/sub e/(O) /approximately/20 keV, T/sub i/(O) /approximately/30 keV, and n/sub e/(O) /approximately/ 1 /times/ 10 21 m/sup /minus/3/. The combined effects of restricted port access to the plasma, the presence of severe neutron and gamma radiation backgrounds, and the necessity for remote of in-cell components create challenging design problems for all of the conventional diagnostic associated with tokamak operations. In addition, new techniques must be developed to diagnose the evolution in space, time, and energy of the confined alpha distribution as well as potential plasma instabilities driven by collective alpha-particle effects. The design effort for CIT diagnostics is presently in the conceptual phase with activity being focused on the selection of a viable diagnostic set and the identification of essential research and development projects to support this process. A review of these design issues and other aspects impacting the selection of diagnostic techniques for the CIT experiment will be presented. 28 refs., 10 figs., 2 tabs

  7. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Czarski, T., E-mail: tomasz.czarski@ifpilm.pl; Chernyshova, M.; Malinowski, K. [Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw (Poland); Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W. [Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw (Poland)

    2016-11-15

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  8. Active neutral particle diagnostics for high temperature plasma

    International Nuclear Information System (INIS)

    Tobita, Kenji

    1993-01-01

    This paper describes experimental studies related to active neutral particle diagnostics in the JT-60 tokamak. Detection efficiencies of a micro-channel plate (MCP), which has widely used in plasma diagnostics, were determined for ions and neutrals. Multi-step processes for a neutral beam is predicted to enhance the beam stopping cross section in a plasma. In order to confirm the predictions, shine-through for a hydrogen and for a helium beam was measured in the JT-60 ohmic plasmas. The measurements for a hydrogen beam resulted in the cross sectional enhancement in the beam stopping. The same experiment using a helium beam indicated that the cross sectional enhancement for helium was much smaller than that for hydrogen at almost same plasma parameters. Ion temperature diagnostic using active beam scattering was developed in data processing technique, in consideration of the device function of a neutral particle analyzer and in estimation of the effect of beam ion component. Fundamental experiments for detecting helium ions in a plasma were performed using two-electron transfer reaction between a helium atomic beam and helium ions, and the energy distribution and the density of the helium ions were determined. These experiments demonstrated promise of the two-electron transfer reaction as an alpha ash detection in a burning plasma. A parasitic neutral efflux accompanied by active beam injection was investigated. (J.P.N.)

  9. Optical diagnostics for plasma etching

    NARCIS (Netherlands)

    Bisschops, T.H.J.; Kroesen, G.M.W.; Veldhuizen, van E.M.; de Zeeuw, C.J.H.; Timmermans, C.J.

    1985-01-01

    Several optical diagnostics were used to det. plasma properties and etch rates in an single wafer etch reactor. Results of UV-visible spectroscopy and IR absorption spectroscopy, indicating different mol. species and their densities are presented. The construction of an interferometer to det. the

  10. Multi-probe ionization chamber system for nuclear-generated plasma diagnostics

    International Nuclear Information System (INIS)

    Choi, W.Y.; Ellis, W.H.

    1990-01-01

    This paper reports on the pulsed ionization chamber (PIC) plasma diagnostic system used in studies of nuclear seeded plasma kinetics upgraded to increase the capabilities and extend the range of plasma parameter measurements to higher densities and temperatures. The PIC plasma diagnostic chamber has been provided with additional measurement features in the form of conductivity and Langmuir probes, while the overall experimental system has been fully automated, with computerized control, measurement, data acquisition and analysis by means of IEEE-488 (GPIB) bus control and data transfer protocols using a Macintosh series microcomputer. The design and use of a simple TTL switching system enables remote switching among the various GPIB instruments comprising the multi-probe plasma diagnostic system using software, without the need for a microprocessor. The new system will be used to extend the present study of nuclear generated plasma in He, Ar, Xe, fissionable UF 6 and other fluorine containing gases

  11. Selection of suitable diagnostic techniques for an RF atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Kong, M.G.; Deng, X.T.

    2001-01-01

    As an early report of our study, this paper summaries the RF atmospheric pressure plasma system we intend to characterize and a number of diagnostic techniques presently under assessment for our plasma rig. By discussing the advantages and disadvantages of these diagnostic techniques at this meeting, we hope to gain feedback and comments to improve our choice of appropriate diagnostic techniques as well as our subsequent application of these techniques to nonthermal RF atmospheric pressure plasmas

  12. High speed photography diagnostics in laser-plasma interaction experiments

    International Nuclear Information System (INIS)

    Andre, M.L.

    1988-01-01

    The authors report on their effort in the development of techniques involved in laser-plasma experiments. This includes not only laser technology but also diagnostics studies and targets design and fabrication. Among the different kind of diagnostics currently used are high speed streak cameras, fast oscilloscopes and detectors sensitive in the i.r., visible, the u.v. region and the x-rays. In this presentation the authors describe the three high power lasers which are still in operation (P 102, OctAL and PHEBUS) and the main diagnostics used to characterize the plasma

  13. Distortion of plasma diagnostics by an ambient gas

    International Nuclear Information System (INIS)

    Pearlman, J.S.; Matzen, M.K.

    1978-03-01

    The effect of vacuum chamber background gas on the ion measurements of a laser-produced, expanding plasma is studied over a wide range of background gas pressures. Experimental measurements are compared with calculations from a coupled rate equation-hydrodynamics code. The code is then used for a parametric study of the effect of background gas pressure on plasma diagnostic measurements. Charge exchange is found to be an important process in our diagnostics above vacuum chamber pressures of 10 -5 Torr

  14. Molecular Diagnostics of Fusion and Laboratory Plasmas

    Science.gov (United States)

    Fantz, U.

    2005-05-01

    The presence of molecules in the cold scrape-off layer of fusion experiments and industrial plasmas requires an understanding of the molecular dynamics in these low temperature plasmas. Suitable diagnostic methods can provide an insight in molecular processes in the plasma volume as well as for plasma surface interactions. A very simple but powerful technique is the molecular emission spectroscopy. Spectra are obtained easily, whereas interpretation might be very complex and relies on the availability of atomic and molecular data. Examples are given for hydrogen plasmas and plasmas with hydrocarbons which both are of importance in industrial applications as well as in fusion experiments.

  15. Molecular Diagnostics of Fusion and Laboratory Plasmas

    International Nuclear Information System (INIS)

    Fantz, U.

    2005-01-01

    The presence of molecules in the cold scrape-off layer of fusion experiments and industrial plasmas requires an understanding of the molecular dynamics in these low temperature plasmas. Suitable diagnostic methods can provide an insight in molecular processes in the plasma volume as well as for plasma surface interactions. A very simple but powerful technique is the molecular emission spectroscopy. Spectra are obtained easily, whereas interpretation might be very complex and relies on the availability of atomic and molecular data. Examples are given for hydrogen plasmas and plasmas with hydrocarbons which both are of importance in industrial applications as well as in fusion experiments

  16. Diagnostics for PLX-alpha

    Science.gov (United States)

    Gilmore, Mark; Hsu, Scott

    2015-11-01

    The goal of the Plasma Liner eXperiment PLX-alpha at Los Alamos National Laboratory is to establish the viability of creating a spherically imploding plasma liner for MIF and HED applications, using a spherical array of supersonic plasma jets launched by innovative contoured-gap coaxial plasma guns. PLX- α experiments will focus in particular on establishing the ram pressure and uniformity scalings of partial and fully spherical plasma liners. In order to characterize these parameters experimentally, a suite of diagnostics is planned, including multi-camera fast imaging, a 16-channel visible interferometer (upgraded from 8 channels) with reconfigurable, fiber-coupled front end, and visible and VUV high-resolution and survey spectroscopy. Tomographic reconstruction and data fusion techniques will be used in conjunction with interferometry, imaging, and synthetic diagnostics from modeling to characterize liner uniformity in 3D. Diagnostic and data analysis design, implementation, and status will be presented. Supported by the Advanced Research Projects Agency - Energy - U.S. Department of Energy.

  17. Phase contrast imaging diagnostic for the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Boettger, Lukas-Georg; Grulke, Olaf [Max Planck Institute for Plasma Physics, 17491 Greifswald (Germany)

    2016-07-01

    The phase contrast imaging (PCI) diagnostic allows for non-invasive measurements of density fluctuations in high temperature plasmas. Since the index of refraction in a plasma is a function of the electron density, an incoming laser beam experiences a phase shift, which can be converted to intensity variations via interference after passing a phase plate. Generally speaking, the signal contains only the line-integrated information along the beam path. This limitation can be circumvented by using the fact that the density fluctuations form filamentary structures that are well aligned with the local magnetic field. If the magnetic field direction significantly varies along the beam path, optical filtering allows for localization of the density fluctuations. In order to identify the best diagnostic position regarding localization performance three figures of merit are introduced. They allow for quantitative comparison of different lines of sight and different magnetic field configurations. The results of the optimization process and a comparison with other fusion experiments are shown in this contribution.

  18. Measuring methods for the TFR plasma diagnostics

    International Nuclear Information System (INIS)

    Etievant, C.

    1975-02-01

    The measuring methods in operation or still under development for the diagnostics of the TFR plasma parameters (ion and electron temperatures, electron density, current density are reviewed, the diagnostics of the electrical behavior of the discharge, the neutral gas densities, the impurities and the parameters of the plasma turbulence being also investigated. Actual works are principally devoted to: improving ion temperature measurements by the possible use of the Doppler effect or infra-red incoherent scattering; improving n(e) and T(e) measurement by Thomson scattering; measuring the poloidal field and current density; measuring impurities by X and UV spectroscopy and measuring instabilities and turbulence [fr

  19. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 - 10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 gm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the article refractive index

  20. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 -10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 μm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the particle refractive index

  1. RF and microwave diagnostics of plasma

    International Nuclear Information System (INIS)

    Basu, J.

    1976-01-01

    A brief review of RF and microwave investigations carried out at laboratory plasma is presented. Both the immersive and non-immersive RF probes of various types are discussed, the major emphasis being laid on the work carried out in extending the scope of the immersive impedance probe and non-immersive coil probe. The standard microwave methods for plasma diagnosis are mentioned. The role of relatively new diagnostic tool, viz., a dielectric-rod waveguide, is described, and the technique of measuring the admittance of such a waveguide (or an antenna) enveloped in plasma is discussed. (K.B.)

  2. Plasma diagnostics by means of electric probes

    International Nuclear Information System (INIS)

    Colunga S, S.

    1991-04-01

    In this work a summary of the classical theoretical models to interpret the characteristic curve of a Langmuir electric probe placed in a plasma without magnetic field and with the one is made. The methodology for the electron temperature calculation and the density of the plasma in both cases is given, starting from the characteristic curve of the probe, as well as the approaches for the correct application of this diagnostic method of the plasma. (Author)

  3. Novel diagnostics for dust in space, Laboratory and fusion plasmas

    International Nuclear Information System (INIS)

    Castaldo, C.

    2011-01-01

    In situ diagnostics for mobile dust, based on dust impact ionization phenomena, as well as silica aerogel dust collectors are discussed for applications to space and fusion plasmas. The feasibility of an electro-optical probe to detect hypervelocity (>1 km/s) dust particles in tokamaks is evaluated. For quiescent plasmas, a diagnostic of submicron dust based on measurements of plasma fluctuation spectra can be used (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Diagnostics for the Plasma Liner Experiment

    International Nuclear Information System (INIS)

    Lynn, A. G.; Merritt, E.; Gilmore, M.; Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.

    2010-01-01

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical ''plasma liners'' via merging high Mach number plasma jets to reach peak liner pressures of ∼0.1 Mbar using ∼1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n i ∼10 16 cm -3 , T e ≅T i ∼1 eV at the plasma gun mouth to n i >10 19 cm -3 , T e ≅T i ∼0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  5. Miniature Coaxial Plasma injector Diagnostics by Beam Plasma Interaction

    International Nuclear Information System (INIS)

    El-Tayeb, H.; El-Gamal, H.

    2003-01-01

    A miniature coaxial gun has been used to study the interaction between plasma beam and low density plasma formed in glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 kA as a single pulse with pulse width of 60 mu. Investigations are carried out with argon gas at pressure 0.4 Torr. The plasma stream ejected from the coaxial discharge propagates in the neutral argon atoms with mean velocity of 1.2x10 5 cm/s. The plasma stream temperature and density were 4.2 eV and 2.4x10 13 cm -3 respectively. An argon negative glow has been used as base plasma where its electron temperature and density were 2.2 eV and 6.2x10 7 cm -3 respectively. When the plasma stream propagates through the negative glow discharge region its velocity decreased to 8.8 x 10 4 cm/s and also the plasma electron temperature decreased to 3.1 eV, while the stream density remained the same. An excited wave appeared on the electric probe having frequency equal to the plasma frequency of the plasma under consideration. Simulation of the problem showed that this method could be applied for plasma diagnostics within the region of investigation. Those further studies for high temperature, dense, and magnetized plasma will be considered

  6. Measurement of core plasma temperature and rotation on W7-X made available by the x-ray imaging crystal spectrometer (XICS)

    Energy Technology Data Exchange (ETDEWEB)

    Pablant, N A; Bitter, M; Burhenn, R; Delgado-Aparicio, L; Ellis, R; Gates, D; Goto, M; Hill, K W; Langenberg, A; Lazerson, S; Mardenfeld, M; Morita, S; Neilson, G H; Oishi, T; Pedersen, T S

    2014-07-01

    A new x-ray imaging crystal spectrometer diagnostic (XICS) is currently being built for installation on W7-X. This diagnostic will contribute to the study of ion and electron thermal transport and the evolution of the radial electric field by providing high resolution temperature and rotation measurements under many plasma conditions, including ECH heated plasmas. Installation is expected before the first experimental campaign (OP1.1), making an important set of measurements available for the first W7-X plasmas. This diagnostic will also work in concert with the HR-XCS diagnostic to provide an excellent diagnostic set for core impurity transport on W7-X.

  7. Density dependence of line intensities and application to plasma diagnostics

    International Nuclear Information System (INIS)

    Masai, Kuniaki.

    1993-02-01

    Electron density dependence of spectral lines are discussed in view of application to density diagnostics of plasmas. The dependence arises from competitive level population processes, radiative and collisional transitions from the excited states. Results of the measurement on tokamak plasmas are presented to demonstrate the usefulness of line intensity ratios for density diagnostics. Also general characteristics related to density dependence are discussed with atomic-number scaling for H-like and He-like systems to be helpful for application to higher density plasmas. (author)

  8. Diagnostics of ytterbium/aluminium laser plasmas

    International Nuclear Information System (INIS)

    Bailey, J.; Lee, R.W.; Landen, O.L.; Kilkenny, J.D.; Lewis, C.L.; Busquet, M.

    1986-11-01

    Microdot spectroscopy was used to study the x-ray emission from laser-produced plasmas consisting of 10% ytterbium, 90% aluminium. Spectra were recorded with a space-resolving flat crystal (PET) mini-spectrometer in the 4.0-8.0 A range. The Janus research laser at LLNL irradiated the targets with green (0.53 μm) light in a 1 nsec pulse. The power density was varied between 4x10 13 and 3x10 14 W/cm 2 . The plasma electron density and temperature were determined from the aluminium XI, XII and XIII line emission. By examining correlations between changes in the plasma conditions with changes in the ytterbium spectra, we will determine the potential for using ytterbium line emission as a plasma diagnostic

  9. The possibilities of laser scattering diagnostics in plasmas

    International Nuclear Information System (INIS)

    Doebele, H.F.

    1974-01-01

    The laser has opened many new possibilities for plasma diagnostics. Intensive monochromatic light sources with higher precision and better time resolution have helped to improve such well-known techniques as interferometry and Schlieren method. At the same time, the range of applicability was extended into the infrared range. Due to the wave length dependence of the plasma diffraction index, the effects increase approximately lambda in interferometry and approximately lambda 2 in the Schlieren methods. The laser also helped to develop entirely new methods such as utilization of the Faraday effect in the electrons of a plasma in a magnetic field which allows the calculation of the product nsub(e) x B from the rotation of the polarization plane of monochromatic light with linear polarization. Here, too, the effect increases approximately lambda 2 , and measurements have been carried out up to FIR (HCN,337 μ). The best diagnostic possibilities are offered by the Thomson scattering diagnostics. Electron and ion temperatures, electron densities, drift velocities, magnetic fields, wave propagation and dissipation can be measured by this method. (orig./AK) [de

  10. Complications in diagnostic imaging. 2. ed.

    International Nuclear Information System (INIS)

    Ansell, G.; Wilkins, R.A.; Medical Research Council, Harrow

    1987-01-01

    Thirty-seven chapters review various complications which may arise for patients and staff in medical diagnostic imaging. Five of these chapters are indexed separately covering topics on the complications of using radiopharmaceuticals, safety considerations in magnetic resonance imaging, radiation hazards of diagnostic radiology and medico-legal problems involving diagnostic radiology in both the UK and the USA. (UK)

  11. Multiframe, Single Line-of-Sight X-Ray Imager for Burning Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Kevin L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-28

    The purpose of this LDRD project was to demonstrate high spatial and temporal resolution x-ray imaging using optical detectors, and in particular the VISAR and OHRV diagnostics on the OMEGA laser. The x-ray source being imaged was a backlighter capsule being imploded by 39 beams of the OMEGA laser. In particular this approach utilized a semiconductor with the side facing the backlighter capsule coated with a thin aluminum layer to allow x rays to pass through the metal layer and then get absorbed in the semiconductor. The other side of the semiconductor was AR coated to allow the VISAR or OHRV probe beam to sample the phase change of the semiconductor as the x rays were absorbed in the semiconductor. This technique is capable of acquiring sub-picosecond 2-D or 1-D x-ray images, detector spatial resolution of better than 10 um and the ability to operate in a high neutron flux environment expected on ignition shots with burning plasmas. In addition to demonstrating this technique on the OMEGA laser, several designs were made to improve the phase sensitivity, temporal resolution and number of frames over the existing diagnostics currently implemented on the OMEGA laser. These designs included both 2-d imaging diagnostics as well as improved 1-D imaging diagnostics which were streaked in time.

  12. NSTX Diagnostics for Fusion Plasma Science Studies

    International Nuclear Information System (INIS)

    Kaita, R.; Johnson, D.; Roquemore, L.; Bitter, M.; Levinton, F.; Paoletti, F.; Stutman, D.

    2001-01-01

    This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community

  13. ICTP-IAEA Workshop on Dense Magnetized Plasma and Plasma Diagnostics: an executive summary

    Science.gov (United States)

    Gribkov, V. A.; Mank, G.; Markowicz, A.; Miklaszewski, R.; Tuniz, C.; Crespo, M. L.

    2011-12-01

    The Workshop on Dense Magnetized Plasma and Plasma Diagnostics was held from 15 to 26 November 2010 at the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. It was attended by 60 participants, including 15 lecturers, 2 tutors and 37 trainees, representing 25 countries.

  14. Diagnostics for the plasma liner experiment.

    Science.gov (United States)

    Lynn, A G; Merritt, E; Gilmore, M; Hsu, S C; Witherspoon, F D; Cassibry, J T

    2010-10-01

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical "plasma liners" via merging high Mach number plasma jets to reach peak liner pressures of ∼0.1 Mbar using ∼1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n(i)∼10(16) cm(-3), T(e)≈T(i)∼1 eV at the plasma gun mouth to n(i)>10(19) cm(-3), T(e)≈T(i)∼0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  15. Microwave and optical diagnostics in a gadolinium plasma

    International Nuclear Information System (INIS)

    Larousse, B.

    1997-01-01

    The optimization of the separation process of the gadolinium isotopes by Ion Cyclotron Resonance requires a precise knowledge of the physical characteristics of the plasma. Thus, two kinds of diagnostics have been developed: the first one to estimate the microwave power inside the source and the second one to measure the density of atomic and ionic of the gadolinium inside the plasma source and in front of the collector. Microwave diagnostic: A microstrip antenna has been designed and developed in order to characterize the microwave at 36 GHz frequency in the plasma source. The experimental results for different plasma regimes are presented. The measurements inside the plasma source show a maximum of microwave absorption for an argon pressure of 10 -4 mb (93% of absorption of the incident wave in the conditions of isotope separation). Laser absorption diagnostic: The theory of laser absorption in presence of a magnetic field is recalled and the first results are presented. In the spectral range between 560 and 620 nm, corresponding to high energy levels of gadolinium, no signal is obtained so that the density is below the detection limit 10 10 cm -3 . In the spectral range between 380 and 400 nm, two lines are observed, issue from the fundamental and metastable (633 cm -1 ) levels. The density of metastable level of gadolinium ions is about 10 10 cm -3 with a relative precision of 15 % and its variation is studied as a function of argon pressure, at different sections of the plasma column (source, collector). The achieved set of measurements has been performed in order to check the theoretical models. (author)

  16. Diagnostic setup for investigation of plasma wall interactions at Wendelstein 7-X

    International Nuclear Information System (INIS)

    Neubauer, Olaf; Biel, Wolfgang; Czymek, Guntram; Denner, Peter; Effenberg, Florian; Krämer-Flecken, Andreas; Liang, Yunfeng; Marchuk, Oleksandr; Offermanns, Guido; Rack, Michael; Samm, Ulrich; Schmitz, Oliver; Schweer, Bernd; Terra, Alexis

    2015-01-01

    Graphical abstract: - Highlights: • We are investigating plasma wall interactions at Wendelstein 7-X stellarator. • Steady state operation and island divertor are unique. • We are developing diagnostics for divertor plasma and plasma facing surfaces. • A multi-purpose fast manipulator allows for exposure of probes and samples. • Versatile endoscopes allow for local divertor spectroscopy from IR to UV. - Abstract: Wendelstein 7-X being the most advanced stellarator is currently prepared for commissioning at Greifswald. Forschungszentrum Jülich is preparing a research programme in the field of plasma wall interactions (PWI) by developing a dedicated set of diagnostic systems. The specific interest at Wendelstein 7-X is to understand PWI processes in presence of a 3D plasma boundary of an island divertor. Furthermore, for the first time steady state plasma at high density and low temperature in the divertor region will be available. Since PWI only could be understood in conjunction with the edge plasma properties the aim of the setup is to observe both the edge plasma as well as surface processes. For optimum combination of different diagnostic methods the edge diagnostic systems are aligned toroidally along one out of five magnetic islands. Main systems are a multipurpose fast probe manipulator, two gas boxes in opposite divertor modules together with two endoscopes each observing the divertor regions, a poloidal correlation reflectometer, a dispersion interferometer in the divertor, and VUV and X-ray spectroscopy in the plasma core. The concept of the diagnostic setup is presented in this paper.

  17. Diagnostic setup for investigation of plasma wall interactions at Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Olaf, E-mail: o.neubauer@fz-juelich.de [Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Biel, Wolfgang; Czymek, Guntram; Denner, Peter [Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Effenberg, Florian [University Wisconsin–Madison, Madison, WI (United States); Krämer-Flecken, Andreas; Liang, Yunfeng; Marchuk, Oleksandr; Offermanns, Guido; Rack, Michael; Samm, Ulrich [Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Schmitz, Oliver [University Wisconsin–Madison, Madison, WI (United States); Schweer, Bernd [Laboratoire de Physique des Plasmas – Laboratorium voor Plasmafysica, ERM/KMS, 1000 Brussels (Belgium); Terra, Alexis [Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany)

    2015-10-15

    Graphical abstract: - Highlights: • We are investigating plasma wall interactions at Wendelstein 7-X stellarator. • Steady state operation and island divertor are unique. • We are developing diagnostics for divertor plasma and plasma facing surfaces. • A multi-purpose fast manipulator allows for exposure of probes and samples. • Versatile endoscopes allow for local divertor spectroscopy from IR to UV. - Abstract: Wendelstein 7-X being the most advanced stellarator is currently prepared for commissioning at Greifswald. Forschungszentrum Jülich is preparing a research programme in the field of plasma wall interactions (PWI) by developing a dedicated set of diagnostic systems. The specific interest at Wendelstein 7-X is to understand PWI processes in presence of a 3D plasma boundary of an island divertor. Furthermore, for the first time steady state plasma at high density and low temperature in the divertor region will be available. Since PWI only could be understood in conjunction with the edge plasma properties the aim of the setup is to observe both the edge plasma as well as surface processes. For optimum combination of different diagnostic methods the edge diagnostic systems are aligned toroidally along one out of five magnetic islands. Main systems are a multipurpose fast probe manipulator, two gas boxes in opposite divertor modules together with two endoscopes each observing the divertor regions, a poloidal correlation reflectometer, a dispersion interferometer in the divertor, and VUV and X-ray spectroscopy in the plasma core. The concept of the diagnostic setup is presented in this paper.

  18. ICTP-IAEA Workshop on Dense Magnetized Plasma and Plasma Diagnostics: an executive summary

    International Nuclear Information System (INIS)

    Gribkov, V.A.; Mank, G.; Markowicz, A.; Miklaszewski, R.; Tuniz, C.; Crespo, M.L.

    2011-01-01

    The Workshop on Dense Magnetized Plasma and Plasma Diagnostics was held from 15 to 26 November 2010 at the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. It was attended by 60 participants, including 15 lecturers, 2 tutors and 37 trainees, representing 25 countries. (conference report)

  19. Development of new diagnostics for WEST

    International Nuclear Information System (INIS)

    Lotte, P.; Moreau, P.; Gil, C.

    2015-01-01

    WEST, the upgraded superconducting tokamak Tore Supra, will be an international experimental platform aimed to support ITER Physics program. The main objective of WEST is to provide relevant plasma conditions for validating plasma facing component (PFC) technology, in particular the actively cooled Tungsten divertor monoblocks, and also assessing high heat flux and high fluence plasma wall interactions with Tungsten in order to prepare ITER divertor operation. In parallel, WEST will also open new experimental opportunities for developing integrated H mode operation and exploring steady state scenarios in a metallic environment. In order to fulfil the Scientific Program of WEST, new diagnostics have been developed in addition to the already existing diagnostics of Tore Supra, modified and improved during the shutdown. For the PFC technology validation program, new tools have been implemented, like a full infrared survey of the PFC, a new calorimetry system, local temperature measurements (thermocouple and Bragg grating optical fiber), and several sets of Langmuir probes. For the analysis of long pulse H mode operation, new plasma diagnostics will be implemented, among which the Visible Spectroscopy diagnostic for W sources and transport studies, the Soft-Xray diagnostic based on gas electron multiplier detectors for transport and MHD studies, the X-ray imaging crystal spectroscopy diagnostic with advanced solid state detector properties for ion temperature, ion density and plasma rotation velocity measurements, and the ECE Imaging diagnostic for MHD and turbulence studies. Most of these new diagnostics are developed with the participation of French Universities or through international collaborations. This paper focuses on the description of these four plasma diagnostics. (author)

  20. Diagnostics of mobile dust in scrape-off layer plasmas

    International Nuclear Information System (INIS)

    Ratynskaia, S; Castaldo, C; Bergsaaker, H; Rudakov, D

    2011-01-01

    Dust production and accumulation pose serious safety and operational implications for the next generation fusion devices. Mobile dust particles can result in core plasma contamination with impurities, and those with high velocities can significantly contribute to the wall erosion. Diagnostics for monitoring dust in tokamaks during plasma discharges are hence important as they can provide information on dust velocity and size, and-in some cases-on dust composition. Such measurements are also valuable as an input for theoretical models of dust dynamics in scrape-off layer plasmas. Existing in situ dust diagnostics, focusing on the range of dust parameters they can detect, are reviewed. Particular attention is paid to the diagnostics which allow us to detect tails of the dust velocity and size distributions, e.g. small and very fast particles. Some of the techniques discussed have been adopted from space-related research and have been shown to be feasible and useful for tokamak applications as well.

  1. Diagnostic imaging in intensive care patients

    International Nuclear Information System (INIS)

    Afione, Cristina; Binda, Maria del C.

    2004-01-01

    Purpose: To determine the role of imaging diagnostic methods in the location of infection causes of unknown origin in the critical care patient. Material and methods: A comprehensive medical literature search has been done. Recommendations for the diagnostic imaging of septic focus in intensive care patients are presented for each case, with analysis based on evidence. The degree of evidence utilized has been that of Oxford Center for Evidence-based Medicine. Results: Nosocomial infection is the most frequent complication in the intensive care unit (25 to 33%) with high sepsis incidence rate. In order to locate the infection focus, imaging methods play an important role, as a diagnostic tool and to guide therapeutic procedures. The most frequent causes of infection are: ventilation associated pneumonia, sinusitis, intra-abdominal infections and an acute acalculous cholecystitis. This paper analyses the diagnostic imaging of hospital infection, with the evaluation of choice methods for each one and proposes an algorithm to assess the septic patient. Conclusion: There are evidences, with different degrees of recommendation, for the use of diagnostic imaging methods for infectious focuses in critical care patients. The studies have been selected based on their diagnostic precision, on the capacity of the medical team and on the availability of resources, considering the risk-benefit balance for the best safety of the patient. (author)

  2. Laser Induced Fluorescence Diagnostic for the Plasma Couette Experiment

    Science.gov (United States)

    Katz, Noam; Skiff, Fred; Collins, Cami; Weisberg, Dave; Wallace, John; Clark, Mike; Garot, Kristine; Forest, Cary

    2010-11-01

    The Plasma Couette Experiment (PCX) at U. Wisconsin-Madison consists of a rotating high-beta plasma and is well-suited to the study of flow-driven, astrophysically-relevant plasma phenomena. PCX confinement relies on alternating rings of 1kG permanent magnets and the rotation is driven by electrode rings, interspersed between the magnets, which provide an azimuthal ExB. I will discuss the development of a laser-induced fluorescence diagnostic (LIF) to characterize the ion distribution function of argon plasmas in PCX. The LIF system--which will be scanned radially--will be used to calibrate internal Mach probes, as well as to measure the time-resolved velocity profile, ion temperature and density non-perturbatively. These diagnostics will be applied to study the magneto-rotational instability in a plasma, as well as the buoyancy instability thought to be involved in producing the solar magnetic field. This work is supported by NSF and DOE.

  3. Multi-Directional Optical Diagnostics of Thermal Plasma Jets

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Chvála, František; Šonský, Jiří; Gruber, Jan

    2008-01-01

    Roč. 19, č. 1 (2008), s. 1-6 ISSN 0957-0233 R&D Projects: GA ČR(CZ) GA202/05/0728 Institutional research plan: CEZ:AV0Z20570509 Keywords : thermal plasma jet * optical diagnostics * Radon transform Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.493, year: 2008

  4. Electromagnetic analysis of ITER diagnostic equatorial port plugs during plasma disruptions

    International Nuclear Information System (INIS)

    Zhai, Y.; Feder, R.; Brooks, A.; Ulrickson, M.; Pitcher, C.S.; Loesser, G.D.

    2013-01-01

    Highlights: ► Disruption loads on ITER diagnostic equatorial port plugs are extracted. ► Upward major disruption produces the largest radial moment and radial force on diagnostic first walls and diagnostic shield modules. ► Large eddy currents on supporting rails, keys and water pipes are observed during disruption. -- Abstract: ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the diagnostic first walls (DFWs), diagnostic shield modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed

  5. Advanced diagnostics for laser plasma interaction studies and some recent experiments

    International Nuclear Information System (INIS)

    Chaurasia, S.; Munda, D.S.; Dhareshwar, L.J.

    2008-10-01

    The complete characterization of Laser plasma interaction studies related to inertial confinement fusion laser and Equation of state (EOS) studies needs many diagnostics to explain the several physical phenomena occurring simultaneously in the laser produced plasma. This involves many on ion emission are important to understand physical phenomena which are responsible for generation of laser plasma as well as its interaction with an intense laser. In this report we describe the development of various x-ray diagnostics which are used in determining temporal, spatial and spectral properties of x-rays radiated from laser produced plasma. Diagnostics which have been used in experiments for investigation of laser-produced plasma as a source of ions are also described. Techniques using an optical streak camera and VISAR which are being used in the Equation of States (EOS) studies of various materials, which are important for material science, astrophysics as well as ICF is described in details. (author)

  6. Imaging systems for medical diagnostics

    International Nuclear Information System (INIS)

    Krestel, E.

    1990-01-01

    This book provides physicians and clinical physicists with detailed information on today's imaging modalities and assists them in selecting the optimal system for each clinical application. Physicists, engineers and computer specialists engaged in research and development and sales departments will also find this book to be of considerable use. It may also be employed at universities, training centers and in technical seminars. The physiological and physical fundamentals are explained in part 1. The technical solutions contained in part 2 illustrate the numerous possibilities available in X-ray diagnostics, computed tomography, nuclear medical diagnostics, magnetic resonance imaging, sonography and biomagnetic diagnostics. (orig.)

  7. ECR plasma diagnostics with Langmuir probe

    International Nuclear Information System (INIS)

    Kenez, L.; Biri, S.; Valek, A.

    2000-01-01

    Complete text of publication follows. An Electron Cyclotron Resonance (ECR) Ion Source is a tool to generate highly charged ions. The ion beam is extracted from the plasma chamber of the ECRIS. Higher charge states and beam intensities are the main objectives of ECR research. The heart of an ion source is the confined plasma which should be well known to reach those objectives. Information about the plasma can be obtained by plasma diagnostics methods. Langmuir probes were successfully used in case of other plasmas, e.g. TOKAMAK. Until last year plasma diagnostics at the ATOMKI ECRIS was performed by X-ray and visible light measurements. While X-ray measurements give global information, the Langmuir probe method can give information on the local plasma parameters. This is an advantage because the local parameters are not known in detail. By Langmuir probe measurements it is possible to get information on plasma density, plasma potential and partly on the electron temperature. From the experimental point of view a Langmuir probe is very simple. However, the precise positioning of the probe in the plasma chamber (HV platform, strong magnetic field, RF waves) is a difficult task. Also the theory of probes is complicated: the ECR plasma is a special one because the confining magnetic field is inhomogeneous, beside hot electrons it contains cold ions with different charge states and it is heated with high frequency EM waves. What can be measured with a probe is a voltage-current (U-I) characteristics. Figure 1 shows a typical U-I curve measured in our lab. As it can be seen in the figure the diagram has three main parts. An ion saturation current region (I.), an electron saturation current region (III.) and a transition region (II.) between them. These measurements were performed using two different power supplies to bias the probe to positive and negative voltage. To perform more precise U-I measurements we need a special power supply which is presently being built in

  8. Mechanical considerations for MFTF-B plasma-diagnostic system

    International Nuclear Information System (INIS)

    Thomas, S.R. Jr.; Wells, C.W.

    1981-01-01

    The reconfiguration of MFTF to a tandem mirror machine with thermal barriers has caused a significant expansion in the physical scope of plasma diagnostics. From a mechanical perspective, it complicates the plasma access, system interfaces, growth and environmental considerations. Conceptual designs characterize the general scope of the design and fabrication which remains to be done

  9. Pre-ionization and spectroscopic diagnostic of plasma generated and confined by magnetic fields

    International Nuclear Information System (INIS)

    Honda, R.Y.

    1980-01-01

    A θ-pinch system has been constructed with pre-heating devices with a total energy of 2 kJ. During this experiment a He Plasma was studied using the following three different diagnostics. a) Magnetic Probes b) Visible Spectroscopy using the Optical Multichannel Analyser - OMA c) Image Converter Camera. The experimental results have been checked with existing theoretical models. The electrical characteristics of the system were determined with the magnetic probe. The Doppler and Stark broadening effects of the λ o = 4686 (angstrom) (HeII) have been used to determine the ionic temperature and electronic density respectively. The time evolution of these parameters was obtained using the OMA. The dynamics of the plasma were observed by high speed photography. Instabilities in the plasma columm have been observed. Good agreement between the experimental and theoretical values was obtained. (author) [pt

  10. Application of stereoscopic particle image velocimetry to studies of transport in a dusty (complex) plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Williams, Jeremiah D.; Silver, Jennifer

    2004-01-01

    Over the past 5 years, two-dimensional particle image velocimetry (PIV) techniques [E. Thomas, Jr., Phys. Plasmas 6, 2672 (1999)] have been used to obtain detailed measurements of microparticle transport in dusty plasmas. This Letter reports on an extension of these techniques to a three-dimensional velocity vector measurement approach using stereoscopic PIV. Initial measurements using the stereoscopic PIV diagnostic are presented

  11. Mirror fusion test facility plasma diagnostics system

    International Nuclear Information System (INIS)

    Thomas, S.R. Jr.; Coffield, F.E.; Davis, G.E.; Felker, B.

    1979-01-01

    During the past 25 years, experiments with several magnetic mirror machines were performed as part of the Magnetic Fusion Energy (MFE) Program at LLL. The latest MFE experiment, the Mirror Fusion Test Facility (MFTF), builds on the advances of earlier machines in initiating, stabilizing, heating, and sustaining plasmas formed with deuterium. The goals of this machine are to increase ion and electron temperatures and show a corresponding increase in containment time, to test theoretical scaling laws of plasma instabilities with increased physical dimensions, and to sustain high-beta plasmas for times that are long compared to the energy containment time. This paper describes the diagnostic system being developed to characterize these plasma parameters

  12. Electromagnetic diagnostics of ECR-Ion Sources plasmas: optical/X-ray imaging and spectroscopy

    Science.gov (United States)

    Mascali, D.; Castro, G.; Altana, C.; Caliri, C.; Mazzaglia, M.; Romano, F. P.; Leone, F.; Musumarra, A.; Naselli, E.; Reitano, R.; Torrisi, G.; Celona, L.; Cosentino, L. G.; Giarrusso, M.; Gammino, S.

    2017-12-01

    Magnetoplasmas in ECR-Ion Sources are excited from gaseous elements or vapours by microwaves in the range 2.45-28 GHz via Electron Cyclotron Resonance. A B-minimum, magnetohydrodynamic stable configuration is used for trapping the plasma. The values of plasma density, temperature and confinement times are typically ne= 1011-1013 cm-3, 01 eVSilicon Drift detectors with high energy resolution of 125 eV at 5.9 keV have been used for the characterization of plasma emission at 02imaging in the optical range and spectroscopic measurements have been carried out. Relative abundances of H/H2 atoms/molecules in the plasmas have been measured for different values of neutral pressure, microwave power and magnetic field profile (they are critical for high-power proton sources).

  13. Imaging of exploding wire plasmas by high-luminosity monochromatic X-ray backlighting using an X-pinch radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Pikuz, S A; Shelkovenko, T A; Romanova, V M [Russian Academy of Sciences, Moscow (Russian Federation). P.N. Lebedev Physical Inst.; Hammer, D A [Cornell Univ., Ithaca, NY (United States). Laboratory of Plasma Studies; Faenov, A Ya; Pikuz, T A [VNIIFTRI, Mendeleevo (Russian Federation). Multicharged Ions Spectral Data Center

    1997-12-31

    A new diagnostic method for dense plasmas, monochromatic x-ray backlighting, is described. In this method, shadow images of a bright, dense plasma can be obtained with high spatial resolution using monochromatic radiation from a separate plasma, permitting a major reduction in the required backlighting source power. The object plasma is imaged utilizing spherically bent mica crystals as the x-ray optical elements. Images of test objects obtained using x-ray radiation having different photon energies are presented. Shadow images of exploding Al wire plasmas in the ls{sup 2}-1s3p line radiation of He-like Al XII are also shown. Spatial resolution as fine as 4 {mu}m is demonstrated. The scheme described is useful for backlighting extended high density plasmas, and could be a less costly alternative to using X-ray lasers for such purposes. (author). 7 figs., 10 refs.

  14. Diagnostic Imaging in Snakes and Lizards

    OpenAIRE

    Banzato , Tommaso

    2013-01-01

    The increasing popularity of snakes and lizards as pets has led to an increasing demand of specialised veterinary duties in these animals. Diagnostic imaging is often a fundamental step of the clinical investigation. The interpretation of diagnostic images is complex and requires a broad knowledge of anatomy, physiology and pathology of the species object of the clinical investigation. Moreover, in order to achieve a correct diagnosis, the comparison between normal and abnormal diagnostic im...

  15. Development of local oscillator integrated antenna array for microwave imaging diagnostics

    International Nuclear Information System (INIS)

    Kuwahara, D.; Shinohara, S.; Ito, N.; Nagayama, Y.; Tsuchiya, H.; Yoshikawa, M.; Kohagura, J.; Yoshinaga, T.; Yamaguchi, S.; Kogi, Y.; Mase, A.

    2015-01-01

    Microwave imaging diagnostics are powerful tools that are used to obtain details of complex structures and behaviors of such systems as magnetically confined plasmas. For example, microwave imaging reflectometry and microwave imaging interferometers are suitable for observing phenomena that are involved with electron density fluctuations; moreover, electron cyclotron emission imaging diagnostics enable us to accomplish the significant task of observing MHD instabilities in large tokamaks. However, microwave imaging systems include difficulties in terms of multi-channelization and cost. Recently, we solved these problems by developing a Horn-antenna Mixer Array (HMA), a 50 - 110 GHz 1-D heterodyne- type antenna array, which can be easily stacked as a 2-D receiving array, because it uses an end-fire element. However, the HMA still evidenced problems owing to the requirement for local oscillation (LO) optics and an expensive high-power LO source. To solve this problem, we have developed an upgraded HMA, named the Local Integrated Antenna array (LIA), in which each channel has an internal LO supply using a frequency multiplier integrated circuit. Therefore, the proposed antenna array eliminates the need for both the LO optics and the high-power LO source. This paper describes the principle of the LIA, and provides details about an 8 channel prototype LIA

  16. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    International Nuclear Information System (INIS)

    Makili, L.; Vega, J.; Dormido-Canto, S.; Pastor, I.; Pereira, A.; Farias, G.; Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M.C.; Busch, P.

    2010-01-01

    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge, image during ECH phase, image during NBI phase and image after reaching the cut off density during ECH heating. Each kind of image implies the execution of different application software. Due to the fact that the recognition system is based on a learning system and major modifications have been carried out in both the diagnostic (optics) and TJ-II plasmas (injected power), the classifier model is no longer valid. A new SVM model has been developed with the current conditions. Also, specific error conditions in the data acquisition process can automatically be detected and managed now. The recovering process has been automated, thereby avoiding the loss of data in ensuing discharges.

  17. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    Energy Technology Data Exchange (ETDEWEB)

    Makili, L. [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Dormido-Canto, S., E-mail: sebas@dia.uned.e [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Pastor, I.; Pereira, A. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Farias, G. [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M.C. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Busch, P. [FOM Institut voor PlasmaFysica Rijnhuizen, Nieuwegein (Netherlands)

    2010-07-15

    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge, image during ECH phase, image during NBI phase and image after reaching the cut off density during ECH heating. Each kind of image implies the execution of different application software. Due to the fact that the recognition system is based on a learning system and major modifications have been carried out in both the diagnostic (optics) and TJ-II plasmas (injected power), the classifier model is no longer valid. A new SVM model has been developed with the current conditions. Also, specific error conditions in the data acquisition process can automatically be detected and managed now. The recovering process has been automated, thereby avoiding the loss of data in ensuing discharges.

  18. Diagnostic imaging of shoulder impingement

    International Nuclear Information System (INIS)

    Merl, T.; Weinhardt, H.; Oettl, G.; Lenz, M.; Riel, K.A.

    1996-01-01

    Magnetic resonance imaging is a method that has been advancing in the last few years to the modality of choice for diagnostic evaluation of the bone joints, as the method is capable of imaging not only the ossous but also the soft tissue components of the joint. MRI likewise has become an accepted method for diagnostic evaluation of syndromes of the shoulder, with high diagnostic accuracy in detecting rotator cuff lesions, or as an efficient MRI arthrography for evaluation of the instability or lesions of the labrocapsular complex. In the evaluation of early stages of shoulder impingement, the conventional MRI technique as a static technique yields indirect signs which in many cases do not provide the diagnostic certainty required in order to do justice to the functional nature of the syndrome. In these cases, functional MRI for imaging of the arm in abducted position and in rotational movement may offer a chance to early detect impingement and thus identify patients who will profit from treatment at an early stage [de

  19. User interface on networked workstations for MFTF plasma diagnostic instruments

    International Nuclear Information System (INIS)

    Renbarger, V.L.; Balch, T.R.

    1985-01-01

    A network of Sun-2/170 workstations is used to provide an interface to the MFTF-B Plasma Diagnostics System at Lawrence Livermore National Laboratory. The Plasma Diagnostics System (PDS) is responsible for control of MFTF-B plasma diagnostic instrumentation. An EtherNet Local Area Network links the workstations to a central multiprocessing system which furnishes data processing, data storage and control services for PDS. These workstations permit a physicist to command data acquisition, data processing, instrument control, and display of results. The interface is implemented as a metaphorical desktop, which helps the operator form a mental model of how the system works. As on a real desktop, functions are provided by sheets of paper (windows on a CRT screen) called worksheets. The worksheets may be invoked by pop-up menus and may be manipulated with a mouse. These worksheets are actually tasks that communicate with other tasks running in the central computer system. By making entries in the appropriate worksheet, a physicist may specify data acquisition or processing, control a diagnostic, or view a result

  20. Proceedings of the fifth Australia-Japan workshop on plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The fifth Australia-Japan Workshop on Plasma Diagnostics was held at Japan Atomic Energy Research Institute (JAERI), Naka, Japan, from December 15 to 17 in 1999. The first workshop was held at JAERI, Naka in 1989, and the workshops have been held almost every two years in Australia and Japan under the Agreement between the Government of Japan and the Government of Australia on cooperation in the field of Science and Technology. In the workshops, latest research works for plasma diagnostics and plasma experiment have been presented and discussed. The research works of both countries have been developed, and the mutual understanding became deeper through the workshops. In the fifth workshop, the statuses of JT-60U (JAERI), LHD (National Institute for Fusion Science) and H-1NF (Australian National University) were introduced, and the latest research works for plasma diagnostics were also presented. The active and deeper discussions were performed. This report contains twenty-eight papers presented at the workshop. The 25 of the presented papers are indexed individually. (J.P.N.)

  1. Diagnostics of ST Plasmas in NSTX: Challenges and Opportunities

    International Nuclear Information System (INIS)

    Johnson, D.; Efthimion, P.; Foley, J.; Jones, B.; Mazzucato, E.; Park, H.; Taylor, G.; Levinton, F.; Luhmann, N.

    2001-01-01

    This paper will highlight some of the challenges and opportunities present in the diagnosis of spherical torus (ST) plasmas on the National Spherical Torus Experiment (NSTX) and discuss the corresponding diagnostic development that is presently underway. After a brief description of diagnostic systems currently installed, examples of ST-specific diagnostic challenges will be highlighted, as will another case, where the ST configuration offers opportunities for new measurements

  2. Role of teleradiology in modern diagnostic imaging

    International Nuclear Information System (INIS)

    Chrzan, R.; Urbanik, A.; Wyrobek -Renczynska, M.; Podsiadlo, L.

    2004-01-01

    Teleradiology is a dynamically expanding technology of electronic transmission of radiologic images. History of teleradiology development, methods of obtaining images in digital form, media used for their transmission, factors affecting time of transmission, methods of visualization of transmitted images, attempts at standardization of new technology and at last typical applications of teleradiology were presented. Teleradiology from the position of technical curiosity advanced to the role of everyday work tool. Possibility of specialist diagnostic imaging assurance in poorly developed regions, not possessing sufficient number of radiologists, turned out particularly important. Cooperation of regional hospitals with specialist centers of diagnostic images reporting and archiving created a chance for making better use of owned equipment and reducing the costs of diagnostics. For the sake of broader and broader access to teleradiology not only over the world but also in Poland it is advisable to familiarize with its possibilities by both radiologists and clinicists using the results of diagnostic imaging. (author)

  3. Status and challenges in electrical diagnostics of processing plasmas

    DEFF Research Database (Denmark)

    Stamate, Eugen

    2014-01-01

    Dry processing based on reactive plasmas was the main driven force for micro- and recently nano-electronic industry. Once with the increasing in plasma complexity new diagnostics methods have been developed to ensure a proper process control during etching, thin film deposition, ion implantation...

  4. Improved Temperature Diagnostic for Non-Neutral Plasmas with Single-Electron Resolution

    Science.gov (United States)

    Shanman, Sabrina; Evans, Lenny; Fajans, Joel; Hunter, Eric; Nelson, Cheyenne; Sierra, Carlos; Wurtele, Jonathan

    2016-10-01

    Plasma temperature diagnostics in a Penning-Malmberg trap are essential for reliably obtaining cold, non-neutral plasmas. We have developed a setup for detecting the initial electrons that escape from a trapped pure electron plasma as the confining electrode potential is slowly reduced. The setup minimizes external noise by using a silicon photomultiplier to capture light emitted from an MCP-amplified phosphor screen. To take advantage of this enhanced resolution, we have developed a new plasma temperature diagnostic analysis procedure which takes discrete electron arrival times as input. We have run extensive simulations comparing this new discrete algorithm to our existing exponential fitting algorithm. These simulations are used to explore the behavior of these two temperature diagnostic procedures at low N and at high electronic noise. This work was supported by the DOE DE-FG02-06ER54904, and the NSF 1500538-PHY.

  5. Structured diagnostic imaging in patients with multiple trauma

    International Nuclear Information System (INIS)

    Linsenmaier, U.; Rieger, J.; Rock, C.; Pfeifer, K.J.; Reiser, M.; Kanz, K.G.

    2002-01-01

    Purpose. Development of a concept for structured diagnostic imaging in patients with multiple trauma.Material and methods. Evaluation of data from a prospective trial with over 2400 documented patients with multiple trauma. All diagnostic and therapeutic steps, primary and secondary death and the 90 days lethality were documented.Structured diagnostic imaging of multiple injured patients requires the integration of an experienced radiologist in an interdisciplinary trauma team consisting of anesthesia, radiology and trauma surgery. Radiology itself deserves standardized concepts for equipment, personnel and logistics to perform diagnostic imaging for a 24-h-coverage with constant quality.Results. This paper describes criteria for initiation of a shock room or emergency room treatment, strategies for documentation and interdisciplinary algorithms for the early clinical care coordinating diagnostic imaging and therapeutic procedures following standardized guidelines. Diagnostic imaging consists of basic diagnosis, radiological ABC-rule, radiological follow-up and structured organ diagnosis using CT. Radiological trauma scoring allows improved quality control of diagnosis and therapy of multiple injured patients.Conclusion. Structured diagnostic imaging of multiple injured patients leads to a standardization of diagnosis and therapy and ensures constant process quality. (orig.) [de

  6. Plasma diagnostics by Abel inversion in hyperbolic geometry

    International Nuclear Information System (INIS)

    Alhasi, A.S.; Elliott, J.A.

    1992-01-01

    Plasma confined in the UMIST linear quadrupole adopts a configuration with approximately hyperbolic symmetry. The normal diagnostic is a Langmuir probe, but we have developed an alternative method using optical emission tomography based upon an analytic Abel inversion. Plasma radiance is obtained as a function of a parameter identifying magnetic flux surfaces. The inversion algorithm has been tested using artificial data. Experimentally, the results show that ionizing collisions cause the confined plasma distribution to broaden as the plasma travels through the confining field. This is shown to be a consequence of the approximate incompressibility of the E x B flow. (author)

  7. Fast imaging diagnostics on the C-2U advanced beam-driven field-reversed configuration device

    Energy Technology Data Exchange (ETDEWEB)

    Granstedt, E. M., E-mail: egranstedt@trialphaenergy.com; Petrov, P.; Knapp, K.; Cordero, M.; Patel, V. [Tri Alpha Energy, P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    The C-2U device employed neutral beam injection, end-biasing, and various particle fueling techniques to sustain a Field-Reversed Configuration (FRC) plasma. As part of the diagnostic suite, two fast imaging instruments with radial and nearly axial plasma views were developed using a common camera platform. To achieve the necessary viewing geometry, imaging lenses were mounted behind re-entrant viewports attached to welded bellows. During gettering, the vacuum optics were retracted and isolated behind a gate valve permitting their removal if cleaning was necessary. The axial view incorporated a stainless-steel mirror in a protective cap assembly attached to the vacuum-side of the viewport. For each system, a custom lens-based, high-throughput optical periscope was designed to relay the plasma image about half a meter to a high-speed camera. Each instrument also contained a remote-controlled filter wheel, set between shots to isolate a particular hydrogen or impurity emission line. The design of the camera platform, imaging performance, and sample data for each view is presented.

  8. Emissions from heavy current carrying high density plasma and their diagnostics

    International Nuclear Information System (INIS)

    Hirano, Katsumi

    1987-06-01

    Workshop on ''Emissions from heavy current carrying high density plasma and diagnostics'' was held at Institute of Plasma Physics, Nagoya University on 3. and 4. December 1986 under a collaborating research Program. The workshop was attended by 43 researchers from 19 labolatories. A total of 22 papers were submitted and are presented in these proceedings. The largest group of papers was that on soft X-ray emission. It seems this topic is a foremost interest for groups which engaged in research of the Z pinch and the plasma focus. A variety of problems in pinched dense plasmas, namely spectroscopy, diagnostics, pinch dynamics, and related engineering aspects were also discussed. (author)

  9. Polarizer design for millimeter-wave plasma diagnostics

    DEFF Research Database (Denmark)

    Leipold, Frank; Salewski, Mirko; Jacobsen, Asger Schou

    2013-01-01

    Radiation from magnetized plasmas is in general elliptically polarized. In order to convert the elliptical polarization to linear polarization, mirrors with grooved surfaces are currently employed in our collective Thomson scattering diagnostic at ASDEX Upgrade. If these mirrors can be substituted...

  10. Current profile reconstruction using electron temperature imaging diagnostics

    International Nuclear Information System (INIS)

    Tritz, K.; Stutman, D.; Delgado-Aparicio, L.F.; Finkenthal, M.; Pacella, D.; Kaita, R.; Stratton, B.; Sabbagh, S.

    2004-01-01

    Flux surface shape information can be used to constrain the current profile for reconstruction of the plasma equilibrium. One method of inferring flux surface shape relies on plasma x-ray emission; however, deviations from the flux surfaces due to impurity and density asymmetries complicate the interpretation. Electron isotherm surfaces should correspond well to the plasma flux surfaces, and equilibrium constraint modeling using this isotherm information constrains the current profile. The KFIT code is used to assess the profile uncertainty and to optimize the number, location and SNR required for the Te detectors. As Te imaging detectors we consider tangentially viewing, vertically spaced, linear gas electron multiplier arrays operated in pulse height analysis (PHA) mode and multifoil soft x-ray arrays. Isoflux coordinate sets provided by T e measurements offer a strong constraint on the equilibrium reconstruction in both a stacked horizontal array configuration and a crossed horizontal and vertical beam system, with q 0 determined to within ±4%. The required SNR can be provided with either PHA or multicolor diagnostic techniques, though the multicolor system requires ∼x4 better statistics for comparable final errors

  11. Plasma impact on diagnostic mirrors in JET

    Directory of Open Access Journals (Sweden)

    A. Garcia-Carrasco

    2017-08-01

    Full Text Available Metallic mirrors will be essential components of all optical systems for plasma diagnosis in ITER. This contribution provides a comprehensive account on plasma impact on diagnostic mirrors in JET with the ITER-Like Wall. Specimens from the First Mirror Test and the lithium-beam diagnostic have been studied by spectrophotometry, ion beam analysis and electron microscopy. Test mirrors made of molybdenum were retrieved from the main chamber and the divertor after exposure to the 2013–2014 experimental campaign. In the main chamber, only mirrors located at the entrance of the carrier lost reflectivity (Be deposition, while those located deeper in the carrier were only slightly affected. The performance of mirrors in the JET divertor was strongly degraded by deposition of beryllium, tungsten and other species. Mirrors from the lithium-beam diagnostic have been studied for the first time. Gold coatings were severely damaged by intense arcing. As a consequence, material mixing of the gold layer with the stainless steel substrate occurred. Total reflectivity dropped from over 90% to less than 60%, i.e. to the level typical for stainless steel.

  12. Recent diagnostic developments on LHD

    International Nuclear Information System (INIS)

    Sudo, S.; Nagayama, Y.; Peterson, B.J.

    2003-01-01

    Standard diagnostics for fundamental plasma parameters and for plasma physics are routinely utilized for daily operation and physics study in the large helical device (LHD) with high reliability. Diagnostics for steady state plasma are intensively developed, especially for T e , n e (YAG laser Thomson, CO 2 laser polarimeter), data acquisition in steady state, heat resistant probes. To clarify the plasma property of the helical structure, 2-D or 3-D diagnostics are intensively developed: Tangential cameras (Fast SX TV, Photon counting CCD, H α TV); Tomography (Tangential SX CCD, Bolometer); Imaging (Bolometer, ECE, Reflectometer). Divertor and edge physics are one of important key issues for steady state operation. Diagnostics for neutral flux (H α array, Zeeman spectroscopy) and n e (Fast scanning probe, Li beam probe, Pulsed radar reflectometer). In addition to these, advanced diagnostics are being intensively developed with national and international collaborations in LHD. (author)

  13. Diagnostics of plasma jet instabilities using fast shutter imaging

    Czech Academy of Sciences Publication Activity Database

    Chumak, Oleksiy; Hrabovský, Milan

    2006-01-01

    Roč. 56, suppl.B (2006), B767-B773 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /22nd./. Praha, 26.6.2006-29.6.2006] R&D Projects: GA ČR GA202/05/0669 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma jet * jet instabilities * plasma fluctuation * visualization Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  14. Second topical conference on high-temperature plasma diagnostics

    International Nuclear Information System (INIS)

    Jahoda, F.C.; Freese, K.B.

    1978-02-01

    This report contains the program and abstracts of papers presented at the Second American Physical Society Topical Conference on High Temperature Plasma Diagnostics, March 1-3, 1978, Santa Fe, New Mexico

  15. Note: Additionally refined new possibilities of plasma probe diagnostics

    Science.gov (United States)

    Riaby, V. A.; Savinov, V. P.; Masherov, P. E.; Yakunin, V. G.

    2018-03-01

    In two previous Notes published in this journal, a method of measuring probe sheath thickness and ion mass was described using Langmuir probe diagnostics in low pressure xenon plasma close to Maxwellian substance. According to the first Note, this method includes two stages: (i) in a special experiment with known ion mass, the Bohm and Child-Langmuir-Boguslavsky (CLB) equations for cylindrical Langmuir probes used in this xenon plasma were solved jointly to determine the probe sheath thicknesses and Bohm coefficient CBCyl ≈ 1.13; and (ii) in a general experiment, with known CBCyl, the same equations could be solved to obtain the probe sheath thicknesses and the mean ion mass. In the second Note, the (i) stage of this method was refined: the results of the CLB probe sheath model application, which were termed "evaluations," were corrected using the step-front probe sheath model, which was closer to reality in the special experiment with the xenon plasma. This process resulted in a Bohm coefficient of CBCyl ≈ 1.23 for the cylindrical probe. In the present Note, corrected xenon plasma parameters without the influence of the bare probe protective shield were used for the (i) stage of this diagnostic method. This action also refined the Bohm coefficient, lowering it to CBCyl ≈ 0.745 for cylindrical probes. This advance makes the new diagnostics method more objective and reliable.

  16. Image enhancement of digital periapical radiographs according to diagnostic tasks

    International Nuclear Information System (INIS)

    Choi, Jin Woo; Han, Won Jeong; Kim, Eun Kyung

    2014-01-01

    his study was performed to investigate the effect of image enhancement of periapical radiographs according to the diagnostic task. Eighty digital intraoral radiographs were obtained from patients and classified into four groups according to the diagnostic tasks of dental caries, periodontal diseases, periapical lesions, and endodontic files. All images were enhanced differently by using five processing techniques. Three radiologists blindly compared the subjective image quality of the original images and the processed images using a 5-point scale. There were significant differences between the image quality of the processed images and that of the original images (P<0.01) in all the diagnostic task groups. Processing techniques showed significantly different efficacy according to the diagnostic task (P<0.01). Image enhancement affects the image quality differently depending on the diagnostic task. And the use of optimal parameters is important for each diagnostic task.

  17. Image enhancement of digital periapical radiographs according to diagnostic tasks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Han, Won Jeong; Kim, Eun Kyung [Dept. of Oral and Maxillofacial Radiology, Dankook University College of Dentistry, Cheonan (Korea, Republic of)

    2014-03-15

    his study was performed to investigate the effect of image enhancement of periapical radiographs according to the diagnostic task. Eighty digital intraoral radiographs were obtained from patients and classified into four groups according to the diagnostic tasks of dental caries, periodontal diseases, periapical lesions, and endodontic files. All images were enhanced differently by using five processing techniques. Three radiologists blindly compared the subjective image quality of the original images and the processed images using a 5-point scale. There were significant differences between the image quality of the processed images and that of the original images (P<0.01) in all the diagnostic task groups. Processing techniques showed significantly different efficacy according to the diagnostic task (P<0.01). Image enhancement affects the image quality differently depending on the diagnostic task. And the use of optimal parameters is important for each diagnostic task.

  18. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    NARCIS (Netherlands)

    Makili, L.; Vega, J.; Dormido-Canto, S.; Pastor, I.; Pereira, A.; Farias, G.; Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M. C.; Busch, P.

    2010-01-01

    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge,

  19. Diagnostics for real-time plasma control in PBX-M

    Science.gov (United States)

    Kaita, R.; Batha, S.; Bell, R. E.; Bernabei, S.; Hatcher, R.; Kozub, T.; Kugel, H.; Levinton, F.; Okabayashi, M.; Sesnic, S.; von Goeler, S.; Zolfaghari, A.; PBX-M Group

    1995-01-01

    An important issue for future tokamaks is real-time plasma control for the avoidance of magnetohydrodynamic instabilities and other applications that require detailed plasma profile and fluctuation data. Although measurements from diagnostics providing this information require significantly more processing than magnetic flux data, recent advancements could make them practical for adjusting operational settings for plasma heating and current drive systems as well as field coil currents. On the Princeton Beta Experiment-Modification (PBX-M), the lower hybrid current drive phasing can be varied during a plasma shot using digitally programmable ferrite phase shifters, and neural beam functions can be fully computer controlled. PBX-M diagnostics that may be used for control purposes include motional Stark-effect polarimetry for magnetic field pitch angle profiles, soft x-ray arrays for plasma position control and the separation of βp from li, hard x-ray detectors for energetic electron distributions, a multichannel electron cyclotron emission radiometer for ballooning mode identification, and passive plate eddy current monitors for kink stabilization. We will describe the present status of these systems on PBX-M, and discuss their suitability for feedback applications.

  20. Diagnostics for real-time plasma control in PBX-M

    International Nuclear Information System (INIS)

    Kaita, R.; Batha, S.; Bell, R.E.; Bernabei, S.; Hatcher, R.; Kozub, T.; Kugel, H.; Levinton, F.; Okabayashi, M.; Sesnic, S.; Goeler, S. von; Zolfaghari, A.

    1995-01-01

    An important issue for future tokamaks is real-time plasma control for the avoidance of magnetohydrodynamic instabilities and other applications that require detailed plasma profile and fluctuation data. Although measurements from diagnostics providing this information require significantly more processing than magnetic flux data, recent advancements could make them practical for adjusting operational settings for plasma heating and current drive systems as well as field coil currents. On the Princeton Beta Experiment-Modification (PBX-M), the lower hybrid current drive phasing can be varied during a plasma shot using digitally programmable ferrite phase shifters, and neural beam functions can be fully computer controlled. PBX-M diagnostics that may be used for control purposes include motional Stark-effect polarimetry for magnetic field pitch angle profiles, soft x-ray arrays for plasma position control and the separation of β p from l i , hard x-ray detectors for energetic electron distributions, a multichannel electron cyclotron emission radiometer for ballooning mode identification, and passive plate eddy current monitors for kink stabilization. We will describe the present status of these systems on PBX-M, and discuss their suitability for feedback applications

  1. Edge Plasma Physics and Relevant Diagnostics on the CASTOR tokamak

    Czech Academy of Sciences Publication Activity Database

    Stöckel, Jan; Devynck, P.; Gunn, J.; Martines, E.; Bonhomme, G.; Van Oost, G.; Hron, Martin; Ďuran, Ivan; Pánek, Radomír; Stejskal, Pavel; Adámek, Jiří

    2004-01-01

    Roč. 3, - (2004), s. 1-6 ISSN 1433-5581. [First Cairo Conference on Plasma Physics & Applications. Cairo, 11.10.2003-15.10.2003] R&D Projects: GA ČR GA202/03/0786; GA ČR GP202/03/P062 Keywords : tokamak * edge plasma * probe diagnostics * biasing * turbulence * polarization Subject RIV: BL - Plasma and Gas Discharge Physics

  2. Advanced probes for edge plasma diagnostics on the CASTOR tokamak

    Czech Academy of Sciences Publication Activity Database

    Stöckel, Jan; Adámek, Jiří; Balan, P.; Hronová-Bilyková, Olena; Brotánková, Jana; Dejarnac, Renaud; Devynck, P.; Ďuran, Ivan; Gunn, J. P.; Hron, Martin; Horáček, Jan; Ionita, C.; Kocan, M.; Martines, E.; Pánek, Radomír; Peleman, P.; Schrittwieser, R.; Van Oost, G.; Žáček, František

    2006-01-01

    Roč. 63, č. 0 (2006), 012001-012002 E-ISSN 1742-6596. [SECOND INTERNATIONAL WORKSHOP AND SUMMER SCHOOL ON PLASMA PHYSICS. Kiten, 03.07.2006-09.07.2006] R&D Projects: GA AV ČR KJB100430504 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma * tokamak * electric probes * diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics

  3. Some optical diagnostics for the plasma focus

    International Nuclear Information System (INIS)

    Korzhavin, V.M.

    1980-01-01

    Some aspects of studying plasma focus dynamics are reported. Particular efforts were made to develop an infrared (IR) diagnostics. The plasma focus is formed in a discharge chamber, when shock waves and plasma sheath cumulate on the axis as a result of the break-down of filling gas by the application of high voltage. The current J was measured with a Rogovsky coil, and the voltage U was measured with a capacitor divider. The current derivative was measured with magnetic probes, and X-ray and neutron emission intensities were measured with a plastic scintillator. The total neutron yield were measured by the activation method. The time-integrated soft X-ray pictures of plasma focus were taken with a pin-hole camera. The formation and disruption of plasma focus were studied by multi-picture speed photography. Laser interferometry was used to study the time-space distribution of plasma density. For the study of turbulence phenomena in plasma focus, a new type IR detector was employed. The results of measurements suggest that there exists some superthermal radiation during the second compression of plasma focus, but it is not so strong. (Kato, T.)

  4. On improving of efficiency of plasma diagnostics with the help of computer

    International Nuclear Information System (INIS)

    Temko, S.W.; Temko, K.W.; Kuz'min, S.K.

    1994-01-01

    The cloud of weakly ionized plasma contaminated by impurities is considered. Impurities are the large-size particles, resulting under influence of adhesion and coagulation. Impurities cause decrease conduction and increase of radiation energy losses. To precipitate impurities one can use ultrasonic coagulation. However, under the acting ultrasonics the turbulence arises and instabilities, disturbing the plasma state, can develop. To stabilize plasma state and to deposit impurities on the walls of gas-discharge camera one needs both the data on diagnostics and the results of calculations as well as the system of situation adaptive controlling. The situations are time-dependent plasma states. The control system is formed from the distributed microprocessors network and from controlling computer. Microprocessors are installed on diagnostic installations, on energy sources and on ultrasonic signals supplies. To improve reliability and refusal-stability of the control system an apparatus, program and time excessivenesses are used. An effective methods of diagnostics can be SHF-methods and laser diagnostics. To find optical calculating data the authors apply statistical thermodynamics of spatial clusters, which was proposed by the authors earlier. Computer compares under the given program the diagnostic data with the results of calculations and produces control responses both on power sources and on generators of ultrasonic signals

  5. The Downside of Diagnostic Imaging

    Science.gov (United States)

    An article about radiation exposure during computed tomography and nuclear imaging procedures and the risk of cancer. Several studies released in 2009 have helped to quantify the risk and the growing use of these diagnostic imaging methods.

  6. Preparing diagnostic 3D images for image registration with planning CT images

    International Nuclear Information System (INIS)

    Tracton, Gregg S.; Miller, Elizabeth P.; Rosenman, Julian; Chang, Sha X.; Sailer, Scott; Boxwala, Azaz; Chaney, Edward L.

    1997-01-01

    Purpose: Pre-radiotherapy (pre-RT) tomographic images acquired for diagnostic purposes often contain important tumor and/or normal tissue information which is poorly defined or absent in planning CT images. Our two years of clinical experience has shown that computer-assisted 3D registration of pre-RT images with planning CT images often plays an indispensable role in accurate treatment volume definition. Often the only available format of the diagnostic images is film from which the original 3D digital data must be reconstructed. In addition, any digital data, whether reconstructed or not, must be put into a form suitable for incorporation into the treatment planning system. The purpose of this investigation was to identify all problems that must be overcome before this data is suitable for clinical use. Materials and Methods: In the past two years we have 3D-reconstructed 300 diagnostic images from film and digital sources. As a problem was discovered we built a software tool to correct it. In time we collected a large set of such tools and found that they must be applied in a specific order to achieve the correct reconstruction. Finally, a toolkit (ediScan) was built that made all these tools available in the proper manner via a pleasant yet efficient mouse-based user interface. Results: Problems we discovered included different magnifications, shifted display centers, non-parallel image planes, image planes not perpendicular to the long axis of the table-top (shearing), irregularly spaced scans, non contiguous scan volumes, multiple slices per film, different orientations for slice axes (e.g. left-right reversal), slices printed at window settings corresponding to tissues of interest for diagnostic purposes, and printing artifacts. We have learned that the specific steps to correct these problems, in order of application, are: Also, we found that fast feedback and large image capacity (at least 2000 x 2000 12-bit pixels) are essential for practical application

  7. Some non-LTE diagnostic methods for hydrogen plasmas

    International Nuclear Information System (INIS)

    Eddy, T.L.; Cho, K.Y.

    1986-01-01

    This paper shows that if electric and magnetic fields are not negligible, then the 2-T model assumed by many non-LTE plasma diagnostic techniques may lead to serious errors. Significant difference between T e and T ex have been shown to exist with electric field strengths as low as ∼10 V/cm. Multithermal equilibrium (MTE) calculations show significant deviations in line emission coefficients when T e ≠ T ex compared to equivalent T e ≠ T q . A quasi non-dimentional MTE continuum relation is present to assist in diagnostics. Normalized line emission coefficients verses N e are used to indicate the type and extent of non-LTE. The MTE state diagram for hydrogen is used to show why non-LTE plasmas often appear to be in LTE based on N e determinations

  8. Data needs for diagnostics of low pressure plasmas

    International Nuclear Information System (INIS)

    Graham, Bill

    2000-01-01

    The low pressure plasma processing environment is complex and presents many diagnostic challenges. Here the diagnostic techniques used for accurate and detailed measurement of the density and energy distributions of charged and neutral species are reviewed. Most of the techniques rely heavily on atomic and molecular data. The specific data needs of each diagnostic are outlined. It is shown that in total these data needs are vast and diverse and cannot all be met from specific measurements or calculations. The real need is for generic scaling rules for each of the significant atomic and molecular processes

  9. Experimental and theoretical research in applied plasma physics

    International Nuclear Information System (INIS)

    Porkolab, M.

    1992-01-01

    This report discusses research in the following areas: fusion theory and computations; theory of thermonuclear plasmas; user service center; high poloidal beta studies on PBX-M; fast ECE fluctuation diagnostic for balloning mode studies; x-ray imaging diagnostic; millimeter/submillimeter-wave fusion ion diagnostics; small scale turbulence and nonlinear dynamics in plasmas; plasma turbulence and transport; phase contrast interferometer diagnostic for long wavelength fluctuations in DIII-D; and charged and neutral fusion production for fusio plasmas

  10. MFTF plasma diagnostics data acquisition system

    International Nuclear Information System (INIS)

    Davis, G.E.; Coffield, F.E.

    1979-01-01

    The initial goal of the Data Acquisition System (DAS) is to control 11 instruments chosen as the startup diagnostic set and to collect, process, and display the data that these instruments produce. These instruments are described in a paper by Stan Thomas, et. al. entitled ''MFTF Plasma Diagnostics System.'' The DAS must be modular and flexible enough to allow upgrades in the quantity of data taken by an instrument, and also to allow new instruments to be added to the system. This is particularly necessary to support a research project where needs and requirements may change rapidly as a result of experimental findings. Typically, the startup configuration of the diagnostic instruments will contain only a fraction of the planned detectors, and produce approximately one half the data that the expanded version is designed to generate. Expansion of the system will occur in fiscal year 1982

  11. Development of Diagnostics for Large-Scale Experiments with Dense Magnetized Plasmas - MJ Plasma-focus diagnostics systems

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, M.; Karpinski, L.; Paduch, M.; Pisarczyk, T.; Zielinska, E.; Chodukowski, T. [Institute of Plasma Physics and Laser Microfusion IPPLM, 01-497 Warsaw (Poland); Sadowski, M.J. [Institute of Plasma Physics and Laser Microfusion IPPLM, 01-497 Warsaw (Poland)] [The Andrzej Soltan Institute for Nuclear Studies IPJ, 05-400 Otwock-Swiert (Poland); Skladnik-Sadowska, E.; Czaus, K.; Kwiatkowski, R.; Malinowski, K. [The Andrzej Soltan Institute for Nuclear Studies IPJ, 05-400 Otwock-Swiert (Poland); Krauz, S. [RNC Kurchatov Institute, Moscow (Russian Federation); Mitrovanov, K. [FGUP GNC RF Triniti, Troick (Russian Federation)

    2011-07-01

    This document presents the diagnostics arrangements and interesting results of research on fusion pulsed plasma, which was generated within the large PF-1000 facility operated in the Institute of Plasma Physics and Laser Microfusion (Warsaw, Poland). Experimental studies were carried out with the following diagnostic techniques: 1) Rogovski coil for current measurements; 2) Four dI/dt probes in different places around the collector of PF-1000; 3) Voltage divider; 4) Mach-Zender interferometer (16 frames); 5) Fast scintillation probes for X-ray and neutron detection; 6) Silver activation counters; 7) Specially prepared current probes; 8) Thomson spectrometer for mass- and energy-analysis of deuterium beams; 9) Ion-pinhole cameras equipped with nuclear-track detectors, etc. The studies have been carried out with the pure deuterium filling, and particular attention was paid to correlations between the fast-neutron emission and an evolution of plasma parameters. The total fusion-neutron yield, as measured with four silver-activation counters, was found to be up to 7*10{sup 11} per shot, depending on the experimental conditions. Correlations of the neutron pulses with interferometric frame-pictures of the PF pinch column were studied. From time-of-flight (ToF) measurements of the fusion neutrons it was possible to estimate a CM velocity of deuterons involved in the D-D reactions. The fast fusion-produced protons have also been recorded and analyzed by means pinhole cameras and shielded track detectors. The document is composed of an abstract followed by the slides of the presentation. (authors)

  12. Edge and Plasma -Wall Interaction Diagnostics in the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Tabares, F. L.; Tafalla, D.; Branas, B.; Hidalgo, A.; Garcia-Cortes, I.; Lopez-Fraguas, A.; Ortiz, P.

    2003-07-01

    The operation of the TJ-II stellarator, carried out under ECR heating conditions until now, the plasma edge parameters and those processes has been identified. Therefore, an important , has implieda careful control of partied e sources and the associated plasma-wall interaction processes. A clear coupling between the plasma edge parameters and those processes has been identified. Therefore, an important effort has been devoted to the development of dedicated diagnostics in both fields. Remarkable success has been attained in the development of atomic-beam based edge diagnostics, namely, thermal Li and supersonic He beams. In particular, fast (up to 200 Hz) sampling of temperature and density profiles has been made possible thorough an upgraded version of the pulsed, supersonic He beam diagnostic. In this paper, whorl devoted to the upgrading of these techniques is described. Also, preliminary experiments oriented to the validation of the collisional radiative models use din the beam-based diagnostic interpretaron as well as simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. (Author) 17 refs.

  13. Edge and Plasma-Wall Interaction Diagnostics in the TJ-II Stellarator

    International Nuclear Information System (INIS)

    Tabares, F.L.; Tafalla, D.; Branas, B.; Hidalgo, A.; Garcia-Cortes, I.; Lopez-Fraguas, A.; Ortiz, P.

    2003-01-01

    The operation of the TJ-II stellarator, carried out under ECR heating conditions until now, the plasma edge parameters and those processes has been identified. Therefore, an important, has implied a careful control of partied e sources and the associated plasma-wall interaction processes. A clear coupling between the plasma edge parameters and those processes has been identified. Therefore, an important effort has been devoted to the development of dedicated diagnostics in both fields. Remarkable success has been attained in the development of atomic-beam based edge diagnostics, namely, thermal Li and supersonic He beams. In particular, fast (up to 200 Hz) sampling of temperature and density profiles has been made possible thorough an upgraded version of the pulsed, supersonic He beam diagnostic. In this paper, whorl devoted to the upgrading of these techniques is described. Also, preliminary experiments oriented to the validation of the collisional radiative models used in the beam-based diagnostic interpretaron as well as simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. (Author) 17 refs

  14. Plasma diagnostic development and UHV testing for the ALPHA collaboration at Marquette University

    Science.gov (United States)

    Tharp, T. D.; Alpha Collaboration

    2017-10-01

    At Marquette, we are developing the next generation of nonneutral plasma diagnostics for the ALPHA experiment at CERN. ALPHA is building a new vertical experiment to test the gravitational interaction of antihydrogen with Earth. This expansion requires significant changes to the design of our plasma diagnostic suites: the next generation of tools must be able to measure plasmas from two directions, and must be capable of operating in a horizontal position. The diagnostic suite includes measurements of plasma density, shape, and temperature. The hardware used includes a MicroChannel Plate (MCP), a Faraday Cup, and an electron gun. In addition, we are building a vacuum chamber to test the viability of 3-d printed components for UHV compatibility, with target pressures of 10-10 mbar.

  15. Progress in diagnostics of the COMPASS tokamak.

    Czech Academy of Sciences Publication Activity Database

    Weinzettl, Vladimír; Adámek, Jiří; Berta, Miklós; Bílková, Petra; Bogár, Ondrej; Böhm, Petr; Cavalier, Jordan; Dejarnac, Renaud; Dimitrova, Miglena; Ficker, Ondřej; Fridrich, David; Grover, Ondřej; Háček, Pavel; Havlíček, Josef; Havránek, Aleš; Horáček, Jan; Hron, Martin; Imríšek, Martin; Komm, Michael; Kovařík, Karel; Krbec, Jaroslav; Markovič, Tomáš; Matveeva, Ekaterina; Mitošinková, Klára; Mlynář, Jan; Naydenkova, Diana; Pánek, Radomír; Papřok, Richard; Peterka, Matěj; Podolník, Aleš; Seidl, Jakub; Šos, Miroslav; Stöckel, Jan; Tomeš, Matěj; Varavin, Mykyta; Varju, Jozef; Vlainic, Milos; Vondráček, Petr; Zajac, Jaromír; Žáček, František; Stano, M.; Anda, G.; Dunai, D.; Krizsanóczi, T.; Refy, D.; Zoletnik, S.; Silva, A.; Gomes, R.; Pereira, T.; Popov, Tsv.; Sarychev, D.; Ermak, G.P.; Zebrowski, J.; Jakubowski, M.; Rabinski, M.; Malinowski, K.; Nanobashvili, S.; Spolaore, M.; Vianello, N.; Gauthier, E.; Gunn, J. P.; Devitre, A.

    2017-01-01

    Roč. 12, December (2017), č. článku C12015. ISSN 1748-0221. [European Conference on Plasma Diagnostics (ECPD2017)/2./. Bordeaux, 18.04.2017-21.04.2017] R&D Projects: GA MŠk(CZ) LM2015045; GA ČR(CZ) GA15-10723S; GA ČR(CZ) GA16-25074S; GA ČR(CZ) GA14-35260S Institutional support: RVO:61389021 Keywords : Detector design and construction technologies and materials * Nuclear instruments and methods for hot plasma diagnostics * Plasma diagnostics - interferometry,spectroscopy and imaging * Plasma diagnostics - probes Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/12/12/C12015/pdf

  16. Some historic and current aspects of plasma diagnostics using atomic spectroscopy

    Science.gov (United States)

    Hutton, Roger; Zou, Yaming; Andersson, Martin; Brage, Tomas; Martinson, Indrek

    2010-07-01

    In this paper we give a short introduction to the use of atomic spectroscopy in plasma diagnostics. Both older works and exciting new branches of atomic physics, which have relevance to diagnostics, are discussed. In particular we focus on forbidden lines in Be-like ions, lines sensitive to magnetic fields and levels which have a lifetime dependence on the nuclear spin of the ion, i.e. f-dependent lifetimes. Finally we mention a few examples of where tokamaks, instead of needing atomic data, actually provide new data and lead to developments in atomic structure studies. This paper is dedicated to the memory of Nicol J Peacock (1931-2008), a distinguished plasma scientist who contributed much to the field of spectroscopy applied to plasma, and in particular, fusion plasma diagnostics. During the final stages of the preparation of this paper Professor Indrek Martinson passed away peacefully in his sleep on 14 November 2009. Indrek will be greatly missed by many people, both for his contributions to atomic spectroscopy and for his great kindness and friendliness, which many of us experienced.

  17. Nondispersive x-ray diagnostics of short lived plasmas

    International Nuclear Information System (INIS)

    Day, R.H.

    1983-01-01

    In this NATO Advanced Study Institute, we have discussed in detail the diagnosis of many pulse power machine properties, including their electrical behavior, grounding and shielding, and related data acquisition techniques. The purpose for many of these machines is to create high temperature/high density plasmas and, therefore, the subsequent behavior of these plasmas is of critical concern. The energy density of these plasmas is such that they will naturally radiate in the x-ray regime and thus the diagnosis of their x-ray emission is a crucial measurement of the entire system performance. In this lecture, I describe the general techniques used to perform nondispersive x-ray diagnostics of these short lived plasmas

  18. Serial data acquisition for the X-ray plasma diagnostics with selected GEM detector structures

    Science.gov (United States)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Zabolotny, W.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zienkiewicz, P.

    2015-10-01

    The measurement system based on GEM—Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement tokamak plasmas. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. The required data processing have two steps: 1—processing in the time domain, i.e. events selections for bunches of coinciding clusters, 2—processing in the planar space domain, i.e. cluster identification for the given detector structure. So, it is the software part of the project between the electronic hardware and physics applications. The whole project is original and it was developed by the paper authors. The previous version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures for the new data acquisition system. The fast and accurate mode of data acquisition implemented in the hardware in real time can be applied for the dynamic plasma diagnostics. Several detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Final data processing is presented by histograms for selected range of position, time interval and cluster charge values. Exemplary radiation source properties are measured by the basic cumulative characteristics: the cluster position distribution and cluster charge value distribution corresponding to the energy spectra. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  19. Serial data acquisition for the X-ray plasma diagnostics with selected GEM detector structures

    International Nuclear Information System (INIS)

    Czarski, T.; Chernyshova, M.; Pozniak, K.T.; Kasprowicz, G.; Zabolotny, W.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zienkiewicz, P.

    2015-01-01

    The measurement system based on GEM—Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement tokamak plasmas. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. The required data processing have two steps: 1—processing in the time domain, i.e. events selections for bunches of coinciding clusters, 2—processing in the planar space domain, i.e. cluster identification for the given detector structure. So, it is the software part of the project between the electronic hardware and physics applications. The whole project is original and it was developed by the paper authors. The previous version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures for the new data acquisition system. The fast and accurate mode of data acquisition implemented in the hardware in real time can be applied for the dynamic plasma diagnostics. Several detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Final data processing is presented by histograms for selected range of position, time interval and cluster charge values. Exemplary radiation source properties are measured by the basic cumulative characteristics: the cluster position distribution and cluster charge value distribution corresponding to the energy spectra. A shorter version of this contribution is due to be published in PoS at: 1 st EPS conference on Plasma Diagnostics

  20. Overuse of Diagnostic Imaging for Work-Related Injuries.

    Science.gov (United States)

    Clendenin, Brianna Rebecca; Conlon, Helen Acree; Burns, Candace

    2017-02-01

    Overuse of health care in the United States is a growing concern. This article addresses the use of diagnostic imaging for work-related injuries. Diagnostic imaging drives substantial cost for increases in workers' compensation. Despite guidelines published by the American College of Radiology and the American College of Occupational Medicine and the Official Disability Guidelines, practitioners are prematurely ordering imaging sooner than recommended. Workers are exposed to unnecessary radiation and are incurring increasing costs without evidence of better outcomes. Practitioners caring for workers and submitting workers' compensation claims should adhere to official guidelines, using their professional judgment to consider financial impact and health outcomes of diagnostic imaging including computed tomography, magnetic resonance imaging, nuclear medicine imaging, radiography, and ultrasound.

  1. Advancements of microwave diagnostics in magnetically confined plasmas

    NARCIS (Netherlands)

    Mase, A.; Kogi, Y.; Ito, N.; Yokota, Y.; Akaki, K.; Kawahata, K.; Nagayama, Y.; Tokuzawa, T.; Yamaguchi, S.; Hojo, H.; Oyama, N.; N C Luhmann Jr.,; Park, H. K.; Donne, A. J. H.

    2009-01-01

    Microwave to millimeter-wave diagnostic techniques such as interferometry, reflectometry, scattering and radiometry have been powerful tools for diagnosing magnetically confined plasmas. Recent advances in electronic devices and components together with computer technology have enabled the

  2. X-ray imaging spectroscopic diagnostics on Nike

    Science.gov (United States)

    Aglitskiy, Y.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.; Ralchenko, Yu.

    2017-10-01

    Electron temperature and density diagnostics of the laser plasma produced within the focal spot of the NRL's Nike laser are being explored with the help of X-ray imaging spectroscopy. Spectra of He-like and H-like ions were taken by Nike focusing spectrometers in a range of lower (1.8 kev, Si XIV) and higher (6.7 kev, Fe XXV) x-ray energies. Data that were obtained with spatial resolution were translated into the temperature and density as functions of distance from the target. As an example electron density was determined from He-like satellites to Ly-alpha in Si XIV. The dielectronic satellites with intensity ratios that are sensitive to collisional transfer of population between different triplet groups of double-excited states 2l2l' in Si XIII were observed with high spatial and spectral resolution Lineouts taken at different axial distances from the planar Si target show changing spectral shapes due to the different electron densities as determined by supporting non-LTE simulations. These shapes are relatively insensitive to the plasma temperature which was measured using different spectral lines. This work was supported by the US DOE/NNSA.

  3. Managing digitally formatted diagnostic image data

    International Nuclear Information System (INIS)

    Templeton, A.W.; Dwyer, S.J.

    1985-01-01

    Diagnostic radiologists are very comfortable using analog radiographic film and interpreting its recorded images. To improve patient care, the radiologist has sought the finest quality radiographic film for use with the best radiographic imaging systems. The proper choice and use of x-ray tubes, generators, film-screen combinations, and contrast media has occupied the professional attention of the radiologist since the inception of radiology. Image quality can be significantly improved with digitally formatted diagnostic imaging systems by providing dynamic ranges in excess of those possible with analog x-ray films. In a CT scanner, the digital acquisition and reconstruction system can obtain a dynamic range (contrast resolution) of 10,000 to 1. Digital subtraction angiography systems achieve 10-bit dynamic ranges for each of the acquired television frames. Increases in the dynamic ranges of the various imaging modalities have been coupled with improved spatial resolution. A digitally formatted image is a two-dimensional, numerical array of discrete image elements. Each picture element is called a pixel. Each pixel has a discrete size. Figure 15.1 illustrates a digitally formatted image depicting the spatial resolution, array size, and quantization or numerical range of the pixel values. Currently, 512 x 512 image arrays are standard. Development of 1024 x 1024 digital arrays are underway. Significant improvements have also been achieved in the rates at which digital diagnostic imaging data can be acquired, manipulated, and archived

  4. Does MR imaging effectively replace diagnostic arthroscopy

    International Nuclear Information System (INIS)

    Ruwe, P.; McCarthy, S.; Wright, J.; Randall, L.; Lynch, K.; Jokyl, P.

    1990-01-01

    This paper determines if MR imaging reduces the number of diagnostic arthroscopic procedures required in patients with knee complaints and if MR imaging is cost-effective compared with diagnostic arthroscopy. The cohort analysis consists of 100 patients seen in a sports medicine clinic by two orthopedic surgeons who agreed on well-defined criteria for performing MR imaging and arthroscopy. Each orthopedic surgeon referring a patient for MR imaging checked a form regarding the plans for arthroscopy. Outcome analysis was conducted at 6 months

  5. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    Science.gov (United States)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  6. The general optics structure of millimeter-wave imaging diagnostic on TOKAMAK

    International Nuclear Information System (INIS)

    Zhu, Y.; Xie, J.; Liu, W.D.; Luo, C.; Zhao, Z.; Chen, D.; Domier, C.W.; Luhmann, N.C. Jr.; Chen, M.; Hu, X.

    2016-01-01

    Advanced imaging optics techniques have significantly improved the performance of millimeter-wave imaging diagnostics, such as Electron Cyclotron Emission imaging and Microwave Imaging of Reflectometry. The fundamental functions of millimeter-wave imaging optics are focusing, collecting the emission or reflected microwave signal from the target area in the plasma and focusing the emitted (reflected) signal on the detector array. The location of the observation area can be changed using the focus lens. Another important function of the imaging optics is zooming. The size of the observation area in poloidal direction can be adjusted by the zoom lenses and the poloidal spatial resolution is determined by the level of zoom. The field curvature adjustment lenses are employed to adjust the shape of the image plane in the poloidal direction to reduce crosstalk between neighboring channels. The incident angle on each channel is controlled using the specific surface type of the front-side lenses to increase the signal-to-noise ratio. All functions are decoupled with the minimum number of lenses. Successful applications are given

  7. Advantages of digital imaging for radiological diagnostic

    International Nuclear Information System (INIS)

    Trapero, M. A.; Gonzalez, S.; Albillos, J. C.; Martel, J.; Rebollo, M.

    2006-01-01

    The advantages and limitations of radiological digital images in comparison with analogic ones are analyzed. We discuss three main topics: acquisition, post-procedure manipulation, and visualization, archive and communication. Digital acquisition with computed radiology systems present a global sensitivity very close to conventional film for diagnostic purposes. However, flat panel digital systems seems to achieve some advantages in particular clinical situations. A critical issue is the radiation dose-reduction that can be accomplished without reducing image quality nor diagnostic exactitude. The post-procedure manipulation allows, particularly in multiplanar modalities like CT or MR, to extract all implicit diagnostic information in the images: Main procedures are multiplanar and three-dimensional reformations, dynamic acquisitions, functional studies and image fusion. The use of PACS for visualization, archive and communication of images, improves the effectiveness and the efficiency of the workflow, allows a more comfortable diagnosis for the radiologist and gives way to improvements in the communication of images, allowing tele consulting and the tele radiology. (Author) 6 refs

  8. Topical Conference on High Temperature Plasma Diagnostics, 7th, Napa, CA, Mar. 13-17, 1988, Proceedings

    International Nuclear Information System (INIS)

    Luhmann, N.C. Jr.; Peebles, W.A.

    1988-01-01

    Various papers concerning scientific instruments are presented. The general topics addressed include: laser scattering and optical diagnostics, collective scattering and interferometry, millimeter wave and current profile measurements, particle-based diagnostics, data acquisition and analysis, X-ray diagnostics, and particle- and photon-based diagnostics. Individual subjects discussed include: atomic hydrogen density measurements in an ion source plasma using VUV absorption spectrometer, resonant diagnostics of laser-produced Ba plasmas, radiative and diffusional effects to the population densities of the excited-state atoms in hydrogen plasma, and Watt-level millimeter-wave monolithic diode-grid frequency multipliers

  9. A new method of diagnostics for the magnetospheric plasma

    International Nuclear Information System (INIS)

    Etcheto, Jacqueline; Petit, Michel

    1977-01-01

    A new diagnostic technique for magnetospheric plasma, based on in situ excitation of the plasma resonances, has been used for the first time on board the Geos satellite. The preliminary results are very gratifying: electron density and magnetic field intensity are derived reliably and accurately from the resonances observed; hopefully, temperature and electric field will be deduced from the data as well [fr

  10. EDITORIAL: The 9th Workshop on Frontiers in Low Temperature Plasma Diagnostics The 9th Workshop on Frontiers in Low Temperature Plasma Diagnostics

    Science.gov (United States)

    SAME ADDRESS--> Nader Sadeghi,

  1. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; van Tilborg, J.; Toth, Cs.; Leemans, W. P.

    2010-06-01

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  2. Radiogenomics: Creating a link between molecular diagnostics and diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rutman, Aaron M. [Department of Radiology, University of California San Diego Medical Center, San Diego, CA 92103 (United States); Kuo, Michael D. [Department of Radiology, University of California San Diego Medical Center, San Diego, CA 92103 (United States); Center for Translational Medical Systems, University of California San Diego Medical Center, San Diego, CA 92103 (United States)], E-mail: mkuo@ucsd.edu

    2009-05-15

    Studies employing high-throughput biological techniques have recently contributed to an improved characterization of human cancers, allowing for novel sub-classification, better diagnostic accuracy, and more precise prognostication. However, requirement of surgical procurement of tissue among other things limits the clinical application of such methods in everyday patient care. Radiographic imaging is routine in clinical practice but is currently histopathology based. The use of routine radiographic imaging provides a potential platform for linking specific imaging traits with specific gene expression patterns that inform the underlying cellular pathophysiology; imaging features could then serve as molecular surrogates that contribute to the diagnosis, prognosis, and likely gene-expression-associated treatment response of various forms of human cancer. This review focuses on high-throughput methods such as microarray analysis of gene expression, their role in cancer research, and in particular, on novel methods of associating gene expression patterns with radiographic imaging phenotypes, known as 'radiogenomics.' These findings underline a potential future role of both diagnostic and interventional radiologists in genetic assessment of cancer patients with radiographic imaging studies.

  3. Radiogenomics: Creating a link between molecular diagnostics and diagnostic imaging

    International Nuclear Information System (INIS)

    Rutman, Aaron M.; Kuo, Michael D.

    2009-01-01

    Studies employing high-throughput biological techniques have recently contributed to an improved characterization of human cancers, allowing for novel sub-classification, better diagnostic accuracy, and more precise prognostication. However, requirement of surgical procurement of tissue among other things limits the clinical application of such methods in everyday patient care. Radiographic imaging is routine in clinical practice but is currently histopathology based. The use of routine radiographic imaging provides a potential platform for linking specific imaging traits with specific gene expression patterns that inform the underlying cellular pathophysiology; imaging features could then serve as molecular surrogates that contribute to the diagnosis, prognosis, and likely gene-expression-associated treatment response of various forms of human cancer. This review focuses on high-throughput methods such as microarray analysis of gene expression, their role in cancer research, and in particular, on novel methods of associating gene expression patterns with radiographic imaging phenotypes, known as 'radiogenomics.' These findings underline a potential future role of both diagnostic and interventional radiologists in genetic assessment of cancer patients with radiographic imaging studies.

  4. Diagnostic imaging procedure volume in the United States

    International Nuclear Information System (INIS)

    Johnson, J.L.; Abernathy, D.L.

    1983-01-01

    Comprehensive data on 1979 and 1980 diagnostic imaging procedure volume were collected from a stratified random sample of U.S. short-term general-care hospitals and private practices of radiologists, cardiologists, obstetricians/gynecologists, orthopedic surgeons, and neurologists/neurosurgeons. Approximately 181 million imaging procedures (within the study scope) were performed in 1980. Despite the rapidly increasing use of newer imaging methods, plain film radiography (140.3 million procedures) and contrast studies (22.9 million procedures) continue to comprise the vast majority of diagnostic imaging volume. Ultrasound, computed tomography, nuclear medicine, and special procedures make up less than 10% of total diagnostic imaging procedures. Comparison of the data from this study with data from an earlier study indicates that imaging procedure volume in hospitals expanded at an annual growth rate of almost 8% from 1973 to 1980

  5. Plasma diagnostics by means of electric probes; Diagnostico del plasma por medio de sondas electricas

    Energy Technology Data Exchange (ETDEWEB)

    Colunga S, S

    1991-04-15

    In this work a summary of the classical theoretical models to interpret the characteristic curve of a Langmuir electric probe placed in a plasma without magnetic field and with the one is made. The methodology for the electron temperature calculation and the density of the plasma in both cases is given, starting from the characteristic curve of the probe, as well as the approaches for the correct application of this diagnostic method of the plasma. (Author)

  6. Investigation of relativistic laser-plasmas using nuclear diagnostics

    International Nuclear Information System (INIS)

    Guenther, Marc M.

    2011-01-01

    The present work explores with the development of a novel nuclear diagnostic method for the investigation of the electron dynamics in relativistic laser-plasma interactions. An additional aim of this work was the determination of the real laser peak intensity via the interaction of an intense laser short-pulse with a solid target. The nuclear diagnostics is based on a photo-neutron disintegration nuclear activation method. The main constituent of the nuclear diagnostic are novel pseudoalloic activation targets as a kind of calorimeter to measure the high-energy bremsstrahlung produced by relativistic electrons. The targets are composed of several stable isotopes with different (γ,xn)-reaction thresholds. The activated nuclides were identified via the characteristic gamma-ray decay spectrum by using high-resolution gamma spectroscopy after the laser irradiation. Via the gamma spectroscopy the (γ,xn)-reaction yields were determined. The high-energy bremsstrahlung spectrum has been deconvolved using a novel analysis method based on a modified Penfold-Leiss method. This facilitates the reconstruction of the spectrum of bremsstrahlung photons without any anticipated fit procedures. Furthermore, the characterization of the corresponding bremsstrahlung electrons in the interaction zone is accessible immediately. The consolidated findings about the properties of the relativistic electrons were used to determine the real peak intensity at the laser-plasma interaction zone. In the context of this work, experiments were performed at three different laser facilities. First Experiments were carried out at the 100 TW laser facility at Laboratoire pour l'Utilisation des Lasers Intense (LULI) in France and supplementary at the Vulcan laser facility at Rutherford Appleton Laboratory (RAL) in United Kingdom. The main part of the activation experiments were performed at the PHELIX laser facility (Petawatt High Energy Laser for heavy Ion EXperiments) at GSI-Helmholtzzentrum fuer

  7. Optical fiber imaging for high speed plasma motion diagnostics: Applied to low voltage circuit breakers

    International Nuclear Information System (INIS)

    McBride, J. W.; Balestrero, A.; Tribulato, G.; Ghezzi, L.; Cross, K. J.

    2010-01-01

    An integrated portable measurement system is described for the study of high speed and high temperature unsteady plasma flows such as those found in the vicinity of high current switching arcs. An array of optical fibers allows the formation of low spatial resolution images, with a maximum capture rate of 1x10 6 images per second (1 MHz), with 8 bit intensity resolution. Novel software techniques are reported to allow imaging of the arc; and to measure arc trajectories. Results are presented on high current (2 kA) discharge events in a model test fixture and on the application to a commercial low voltage circuit breaker.

  8. Encyclopedia of diagnostic imaging

    International Nuclear Information System (INIS)

    Baert, A.L.

    2008-01-01

    The simple A to Z format provides easy access to relevant information in the field of imaging. Extensive cross references between keywords and related articles enable efficient searches in a user-friendly manner. Fully searchable and hyperlinked electronic online edition. The aim of this comprehensive encyclopedia is to provide detailed information on diagnostic radiology contributing to the broad field of imaging. The wide range of entries are written by leading experts. They will provide basic and clinical scientists in academia, practice and industry with valuable information about the field of diagnostic imaging. Those in related fields, students, teachers, and interested laypeople will also benefit from the important and relevant information on the most recent developments. Please note that this publication is available as print only or online only or print + online set. Save 75% of the online list price when purchasing the bundle. For more information on the online version please type the publication title into the search box above, then click on the eReference version in the results list. (orig.)

  9. Microwave-plasma interactions studied via mode diagnostics in ALPHA

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, T., E-mail: tim.friesen@cern.ch [University of Calgary, Department of Physics and Astronomy (Canada); Andresen, G. B. [Aarhus University, Department of Physics and Astronomy (Denmark); Ashkezari, M. D. [Simon Fraser University, Department of Physics (Canada); Baquero-Ruiz, M. [University of California, Department of Physics (United States); Bertsche, W. [Swansea University, Department of Physics (United Kingdom); Bowe, P. D. [Aarhus University, Department of Physics and Astronomy (Denmark); Butler, E. [CERN, Physics Department (Switzerland); Cesar, C. L. [Universidade Federal do Rio de Janeiro, Instituto de Fisica (Brazil); Chapman, S. [University of California, Department of Physics (United States); Charlton, M.; Eriksson, S. [Swansea University, Department of Physics (United Kingdom); Fajans, J. [University of California, Department of Physics (United States); Fujiwara, M. C. [University of Calgary, Department of Physics and Astronomy (Canada); Gill, D. R. [TRIUMF (Canada); Gutierrez, A. [University of British Columbia, Department of Physics and Astronomy (Canada); Hangst, J. S. [Aarhus University, Department of Physics and Astronomy (Denmark); Hardy, W. N. [University of British Columbia, Department of Physics and Astronomy (Canada); Hayano, R. S. [University of Tokyo, Department of Physics (Japan); Hayden, M. E. [Simon Fraser University, Department of Physics (Canada); Humphries, A. J. [Swansea University, Department of Physics (United Kingdom); Collaboration: ALPHA Collaboration; and others

    2012-12-15

    The goal of the ALPHA experiment is the production, trapping and spectroscopy of antihydrogen. A direct comparison of the ground state hyperfine spectra in hydrogen and antihydrogen has the potential to be a high-precision test of CPT symmetry. We present a novel method for measuring the strength of a microwave field for hyperfine spectroscopy in a Penning trap. This method incorporates a non-destructive plasma diagnostic system based on electrostatic modes within an electron plasma. We also show how this technique can be used to measure the cyclotron resonance of the electron plasma, which can potentially serve as a non-destructive measurement of plasma temperature.

  10. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  11. Workshop on extremely high energy density plasmas and their diagnostics

    International Nuclear Information System (INIS)

    Ishii, Shozo

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  12. Frontiers of beam diagnostics in plasma accelerators: Measuring the ultra-fast and ultra-cold

    Science.gov (United States)

    Cianchi, A.; Anania, M. P.; Bisesto, F.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Giribono, A.; Marocchino, A.; Pompili, R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Mostacci, A.; Bacci, A.; Rossi, A. R.; Serafini, L.; Zigler, A.

    2018-05-01

    Advanced diagnostics are essential tools in the development of plasma-based accelerators. The accurate measurement of the quality of beams at the exit of the plasma channel is crucial to optimize the parameters of the plasma accelerator. 6D electron beam diagnostics will be reviewed with emphasis on emittance measurement, which is particularly complex due to large energy spread and divergence of the emerging beams, and on femtosecond bunch length measurements.

  13. A user interface on networked workstations for MFTF-B plasma diagnostic instruments

    International Nuclear Information System (INIS)

    Balch, T.R.; Renbarger, V.L.

    1986-01-01

    A network of Sun-2/170 workstations is used to provide an interface to the MFTF-B Plasma Diagnostics System at Lawrence Livermore National Laboratory. The Plasma Diagnostics System (PDS) is responsible for control of MFTF-B plasma diagnostic instrumentation. An EtherNet Local Area Network links the workstations to a central multiprocessing system which furnishes data processing, data storage and control services for PDS. These workstations permit a physicist to command data acquisition, data processing, instrument control, and display of results. The interface is implemented as a metaphorical desktop, which helps the operator form a mental model of how the system works. As on a real desktop, functions are provided by sheets of paper (windows on a CRT screen) called worksheets. The worksheets may be invoked by pop-up menus and may be manipulated with a mouse. These worksheets are actually tasks that communicate with other tasks running in the central computer system. By making entries in the appropriate worksheet, a physicist may specify data acquisition or processing, control a diagnostic, or view a result

  14. Charge Diagnostics for Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakamura, K.; Gonsalves, A.J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W.P.

    2010-01-01

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1percent per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm2 and 0.4 pC/ps/mm2, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within +/-10 percent.

  15. Charge Diagnostics for Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P.

    2010-01-01

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1% per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm 2 and 0.4 pC/ps/mm 2 , respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within ±10%.

  16. A revolution in diagnostic imaging.

    Science.gov (United States)

    Mamula, Paul W

    2003-03-01

    In November 1966, Sandy Koufax, the star left-handed pitcher of the Los Angeles Dodgers, retired after spending his final season coping with traumatic arthritis in his elbow, the compounded effects of a sliding injury to his pitching arm the previous season and 12 years of hard throwing.1 Had his career begun a few years later, he might have been able to benefit from the advances in diagnostic imaging and treatment that were introduced at that time. Modern arthroscopy and computed tomography (CT) did not become available until the mid 1970s,2 and the first elbow reconstruction was done by Frank Jobe, MD, about 10 years after Koufax retired.1 Arthroscopy was first used as a diagnostic tool, but it later became a surgical tool, affecting treatment of knees, then, later, shoulders. Since 1973, when The Physician and Sportsmedicine was launched, we have witnessed a revolution in diagnostic imaging and are continuing to see an evolution of modalities.

  17. Analysis of licensed South African diagnostic imaging equipment ...

    African Journals Online (AJOL)

    Analysis of licensed South African diagnostic imaging equipment. ... Pan African Medical Journal ... Introduction: Objective: To conduct an analysis of all registered South Africa (SA) diagnostic radiology equipment, assess the number of equipment units per capita by imaging modality, and compare SA figures with published ...

  18. 2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas

    Science.gov (United States)

    Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.

    2016-02-01

    Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.

  19. Diagnostic imaging in medicine. 2. ed.

    International Nuclear Information System (INIS)

    Reba, R.C.; Goodenough, D.J.

    1984-01-01

    This book describes to practitioners the evolutionary progression of new non-invasive diagnostic imaging techniques. The utility of the procedures is also described in a series of state-of-the-art lectures given by outstanding international clinical investigators from NATO countries. Subjects of the papers include the following: advances in source and detector technology, acoustical imaging, NMR and microwave imaging, positron and single photon emission tomography, digital radiography and image processing and display techniques. Fundamental papers describing the theory of non-invasive procedures are included along with papers describing clinical examinations. Examples of utility and studies of diseases of the abdomen and pelvis, heart and lung, and central nervous system are included. Cost-effective and cost-benefit assessment of the new high technology procedures, as well as the use of diagnostic imaging techniques in developing countries are also presented. An index of leading topics completes the volume. (orig.)

  20. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Rácz, R., E-mail: rracz@atomki.hu; Biri, S.; Pálinkás, J. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Mascali, D.; Castro, G.; Caliri, C.; Gammino, S. [Instituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Romano, F. P. [Instituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy)

    2016-02-15

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  1. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics.

    Science.gov (United States)

    Rácz, R; Biri, S; Pálinkás, J; Mascali, D; Castro, G; Caliri, C; Romano, F P; Gammino, S

    2016-02-01

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  2. UV laser ionization and electron beam diagnostics for plasma lenses

    International Nuclear Information System (INIS)

    Govil, R.; Volfbeyn, P.; Leemans, W.

    1995-04-01

    A comprehensive study of focusing of relativistic electron beams with overdense and underdense plasma lenses requires careful control of plasma density and scale lengths. Plasma lens experiments are planned at the Beam Test Facility of the LBL Center for Beam Physics, using the 50 MeV electron beam delivered by the linac injector from the Advanced Light Source. Here we present results from an interferometric study of plasmas produced in tri-propylamine vapor with a frequency quadrupled Nd:YAG laser at 266 nm. To study temporal dynamics of plasma lenses we have developed an electron beam diagnostic using optical transition radiation to time resolve beam size and divergence. Electron beam ionization of the plasma has also been investigated

  3. Applying Quantum Cascade Laser Spectroscopy in Plasma Diagnostics

    Directory of Open Access Journals (Sweden)

    Jürgen Röpcke

    2016-07-01

    Full Text Available The considerably higher power and wider frequency coverage available from quantum cascade lasers (QCLs in comparison to lead salt diode lasers has led to substantial advances when QCLs are used in pure and applied infrared spectroscopy. Furthermore, they can be used in both pulsed and continuous wave (cw operation, opening up new possibilities in quantitative time resolved applications in plasmas both in the laboratory and in industry as shown in this article. However, in order to determine absolute concentrations accurately using pulsed QCLs, careful attention has to be paid to features like power saturation phenomena. Hence, we begin with a discussion of the non-linear effects which must be considered when using short or long pulse mode operation. More recently, cw QCLs have been introduced which have the advantage of higher power, better spectral resolution and lower fluctuations in light intensity compared to pulsed devices. They have proved particularly useful in sensing applications in plasmas when very low concentrations have to be monitored. Finally, the use of cw external cavity QCLs (EC-QCLs for multi species detection is described, using a diagnostics study of a methane/nitrogen plasma as an example. The wide frequency coverage of this type of QCL laser, which is significantly broader than from a distributed feedback QCL (DFB-QCL, is a substantial advantage for multi species detection. Therefore, cw EC-QCLs are state of the art devices and have enormous potential for future plasma diagnostic studies.

  4. Recent progress in thin film processing by magnetron sputtering with plasma diagnostics

    International Nuclear Information System (INIS)

    Han, Jeon G

    2009-01-01

    The precise control of the structure and related properties becomes crucial for sophisticated applications of thin films deposited by magnetron sputtering in emerging industries including the flat panel display, digital electronics and nano- and bio-industries. The film structure is closely related to the total energy delivered to the substrate surface for nucleation and growth during all kinds of thin film processes, including magnetron sputtering. Therefore, the energy delivered to the surface for nucleation and growth during magnetron sputtering should be measured and analysed by integrated diagnostics of the plasma parameters which are closely associated with the process parameters and other external process conditions. This paper reviews the background of thin film nucleation and growth, the status of magnetron sputtering technology and the progress of plasma diagnostics for plasma processing. The evolution of the microstructure during magnetron sputtering is then discussed with respect to the change in the process variables in terms of the plasma parameters along with empirical data of the integrated plasma diagnostics for various magnetron sputtering conditions with conventional dc, pulsed dc and high power pulsed dc sputtering modes. Among the major energy terms to be discussed are the temperature change in the top surface region and the energies of ions and neutral species. (topical review)

  5. Applications of quantum cascade lasers in plasma diagnostics: a review

    International Nuclear Information System (INIS)

    Röpcke, J; Lang, N; Davies, P B; Rousseau, A; Welzel, S

    2012-01-01

    Over the past few years mid-infrared absorption spectroscopy based on quantum cascade lasers operating over the region from 3 to 12 µm and called quantum cascade laser absorption spectroscopy or QCLAS has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry of molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, nitrogen oxides and organo-silicon compounds has led to further applications of QCLAS because most of these compounds and their decomposition products are infrared active. QCLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species at time resolutions below a microsecond, which is of particular importance for the investigation of reaction kinetics and dynamics. Information about gas temperature and population densities can also be derived from QCLAS measurements. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of QCLAS techniques to industrial requirements including the development of new diagnostic equipment. The recent availability of external cavity (EC) QCLs offers a further new option for multi-component detection. The aim of this paper is fourfold: (i) to briefly review spectroscopic issues arising from applying pulsed QCLs, (ii) to report on recent achievements in our understanding of molecular phenomena in plasmas and at surfaces, (iii) to describe the current status of industrial process monitoring in the mid-infrared and (iv) to discuss the potential of advanced instrumentation based on EC-QCLs for plasma diagnostics. (topical review)

  6. ICIT contribution to JET gamma-ray diagnostics enhancement

    International Nuclear Information System (INIS)

    Soare, S.; Curuia, M.; Zoita, V.

    2010-01-01

    Full text: Gamma-ray emission of tokamak plasmas is the result of the interaction of fast ions (fusion reaction products, including alpha particles, NBI ions, ICRH-accelerated ions) with main plasma impurities (e.g., carbon, beryllium). Gamma-ray diagnostics involve both gamma-ray imaging (cameras) and gamma-ray spectrometry (spectrometers). For the JET tokamak, gamma-ray diagnostics have been used to provide information on the characteristics of the fast ion population in plasmas. Two gamma-ray diagnostics enhancements project have been launched by JET and the MEdC/EURATOM Association has agreed to lead both of them with ICIT as projects leader. (authors)

  7. [Diagnostic imaging and acute abdominal pain].

    Science.gov (United States)

    Liljekvist, Mads Svane; Pommergaard, Hans-Christian; Burcharth, Jakob; Rosenberg, Jacob

    2015-01-19

    Acute abdominal pain is a common clinical condition. Clinical signs and symptoms can be difficult to interpret, and diagnostic imaging may help to identify intra-abdominal disease. Conventional X-ray, ultrasound (US) and computed tomography (CT) of the abdomen vary in usability between common surgical causes of acute abdominal pain. Overall, conventional X-ray cannot confidently diagnose or rule out disease. US and CT are equally trustworthy for most diseases. US with subsequent CT may enhance diagnostic precision. Magnetic resonance seems promising for future use in acute abdominal imaging.

  8. Image quality enhancement for skin cancer optical diagnostics

    Science.gov (United States)

    Bliznuks, Dmitrijs; Kuzmina, Ilona; Bolocko, Katrina; Lihachev, Alexey

    2017-12-01

    The research presents image quality analysis and enhancement proposals in biophotonic area. The sources of image problems are reviewed and analyzed. The problems with most impact in biophotonic area are analyzed in terms of specific biophotonic task - skin cancer diagnostics. The results point out that main problem for skin cancer analysis is the skin illumination problems. Since it is often not possible to prevent illumination problems, the paper proposes image post processing algorithm - low frequency filtering. Practical results show diagnostic results improvement after using proposed filter. Along that, filter do not reduces diagnostic results' quality for images without illumination defects. Current filtering algorithm requires empirical tuning of filter parameters. Further work needed to test the algorithm in other biophotonic applications and propose automatic filter parameter selection.

  9. A study of diagnostic imaging in pancreatic trauma

    International Nuclear Information System (INIS)

    Hirota, Masashi; Kanazumi, Naohito; Kato, Koichi; Eguchi, Takehiko; Kobayashi, Hironobu; Suzuki, Yuichi; Kimura, Jiro; Ishii, Masataka

    2002-01-01

    Pancreatic trauma treatment depends on pancreatic ductal injury. We examined the usefulness and problems of diagnostic imaging, such as enhanced CT, ERP, and CT after ERP, in pancreatic trauma. Subjects were 12 patients with pancreatic trauma treated in our hospital between April 1993 and March 2000. Enhanced CT was performed in 6 patients undergoing diagnostic imagings and ERP in 4 of the 6. Overall diagnostic accuracy of pancreatic ductal injury in enhanced CT was 16.7% and accuracy in ERP with CT after ERP was 100%. Intraoperative diagnosis of main pancreatic ductal injury was difficult in 1 of 2 patients in whom ERP failed. The importance of preoperative diagnostic imaging is thus clear. We expect that MRCP, recently evaluated in pancreatic disease diagnosis, will become a new pancreatic trauma modality. (author)

  10. Diagnostic reference levels in medical imaging

    International Nuclear Information System (INIS)

    Rosenstein, M.

    2001-01-01

    The paper proposes additional advice to national or local authorities and the clinical community on the application of diagnostic reference levels as a practical tool to manage radiation doses to patients in diagnostic radiology and nuclear medicine. A survey was made of the various approaches that have been taken by authoritative bodies to establish diagnostic reference levels for medical imaging tasks. There are a variety of ways to implement the idea of diagnostic reference levels, depending on the medical imaging task of interest, the national or local state of practice and the national or local preferences for technical implementation. The existing International Commission on Radiological Protection (ICRP) guidance is reviewed, the survey information is summarized, a set of unifying principles is espoused and a statement of additional advice that has been proposed to ICRP Committee 3 is presented. The proposed advice would meet a need for a unifying set of principles to provide a framework for diagnostic reference levels but would allow flexibility in their selection and use. While some illustrative examples are given, the proposed advice does not specify the specific quantities to be used, the numerical values to be set for the quantities or the technical details of how national or local authorities should implement diagnostic reference levels. (author)

  11. PREFACE: IX International Conference on Modern Techniques of Plasma Diagnostics and their Application

    Science.gov (United States)

    Savjolov, A. S.; Dodulad, E. I.

    2016-01-01

    The IX Conference on ''Modern Techniques of Plasma Diagnosis and their Application'' was held on 5 - 7 November, 2014 at National Research Nuclear University MEPhI (NRNU MEPhI). The goal of the conference was an exchange of information on both high-temperature and low-temperature plasma diagnostics as well as deliberation and analysis of various diagnostic techniques and their applicability in science, industry, ecology, medicine and other fields. The Conference also provided young scientists from scientific centres and universities engaged in plasma diagnostics with an opportunity to attend the lectures given by the leading specialists in this field as well as present their own results and findings. The first workshop titled ''Modern problems of plasma diagnostics and their application for control of chemicals and the environment'' took place at Moscow Engineering and Physics Institute (MEPhI) in June 1998 with the support of the Section on Diagnostics of the Council of Russian Academic of Science on Plasma Physics and since then these forums have been held at MEPhI every two years. In 2008 the workshop was assigned a conference status. More than 150 specialists on plasma diagnostics and students took part in the last conference. They represented leading Russian scientific centres (such as Troitsk Institute of Innovative and Thermonuclear Research, National Research Centre ''Kurchatov Institute'', Russian Federal Nuclear Centre - All-Russian Scientific Research Institute of Experimental Physics and others) and universities from Belarus, Ukraine, Germany, USA, Belgium and Sweden. About 30 reports were made by young researchers, students and post-graduate students. All presentations during the conference were broadcasted online over the internet with viewers in Moscow, Prague, St. Petersburgh and other cities. The Conference was held within the framework of the Centre of Plasma, Laser Research and Technology supported by MEPhI Academic Excellence Project (Russian

  12. RANZAR Body Systems Framework of diagnostic imaging examination descriptors

    International Nuclear Information System (INIS)

    Pitman, Alexander D.; Penlington, Lisa; Doromal, Darren; Vukolova, Natalia; Slater, Gregory

    2014-01-01

    A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were ‘greyed out’. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities.

  13. RANZCR Body Systems Framework of diagnostic imaging examination descriptors.

    Science.gov (United States)

    Pitman, Alexander G; Penlington, Lisa; Doromal, Darren; Slater, Gregory; Vukolova, Natalia

    2014-08-01

    A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were 'greyed out'. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities. © 2014 The Royal Australian and New Zealand College of Radiologists.

  14. Two novel plasma diagnostic tools: fiber sensors and phase conjugation

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1985-01-01

    A rapidly developing technology (single-mode optical fiber sensors) and recent fundamental research in nonlinear optics (phase conjugation) both offer opportunities for novel plasma diagnostics. Single-mode fiber sensors can replace electrical wire probes for current and magnetic field measurements with advantages in voltage insulation requirements, electromagnetic noise immunity, much greater bandwidth, and some configuration flexibility. Faraday rotation measurements through fibers wound on the ZT-40M RFP have demonstrated quantitative results, but competing linear birefringence effects still hinder independent interpretation. Twisted fiber may solve this problem. Optical phase conjugation (in which a phase reversed copy of a laser beam is generated) allows real time distortion corrections in laser diagnostics. Self-pumped phase conjugation in BaTiO 3 improves the quality of phase conjugation imagery and greatly simplifies experimentation directed toward plasma diagnostics. Our initial applications are a) time-differential refractometry with high spatial resolution and b) intracavity absorption Zeeman spectroscopy

  15. Examples for application and diagnostics in plasma-powder interaction

    International Nuclear Information System (INIS)

    Kersten, H; Wiese, R; Thieme, G; Froehlich, M; Kopitov, A; Bojic, D; Scholze, F; Neumann, H; Quaas, M; Wulff, H; Hippler, R

    2003-01-01

    Low-pressure plasmas offer a unique possibility of confinement, control and fine tailoring of particle properties. Hence, dusty plasmas have grown into a vast field and new applications of plasma-processed dust particles are emerging. There is demand for particles with special properties and for particle-seeded composite materials. For example, the stability of luminophore particles could be improved by coating with protective Al 2 O 3 films which are deposited by a PECVD process using a metal-organic precursor gas. Alternatively, the interaction between plasma and injected micro-disperse powder particles can also be used as a diagnostic tool for the study of plasma surface processes. Two examples will be provided: the interaction of micro-sized (SiO 2 ) grains confined in a radiofrequency plasma with an external ion beam as well as the effect of a dc-magnetron discharge on confined particles during deposition have been investigated

  16. Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics

    Science.gov (United States)

    King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.

    2011-03-01

    The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.

  17. Precise signal amplitude retrieval for a non-homogeneous diagnostic beam using complex interferometry approach

    Czech Academy of Sciences Publication Activity Database

    Krupka, Michal; Kálal, Milan; Dostál, Jan; Dudžák, Roman; Juha, Libor

    2017-01-01

    Roč. 12, August (2017), č. článku C08012. ISSN 1748-0221. [European Conference on Plasma Diagnostics (ECPD2017)/2./. Bordeaux, 18.04.2017-21.04.2017] R&D Projects: GA MŠk(CZ) LM2015083 Institutional support: RVO:61389021 Keywords : Image processing * Interferometry * Plasma diagnostics - interferometry * Spectroscopy and imaging Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.220, year: 2016

  18. Millimeter-wave imaging of magnetic fusion plasmas: technology innovations advancing physics understanding

    Science.gov (United States)

    Wang, Y.; Tobias, B.; Chang, Y.-T.; Yu, J.-H.; Li, M.; Hu, F.; Chen, M.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Gu, J.; Liu, X.; Zhu, Y.; Domier, C. W.; Shi, L.; Valeo, E.; Kramer, G. J.; Kuwahara, D.; Nagayama, Y.; Mase, A.; Luhmann, N. C., Jr.

    2017-07-01

    Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. Microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These have the potential to greatly advance microwave fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfvén eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today’s most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.

  19. Paul Ion Trap as a Diagnostic for Plasma Focus

    Science.gov (United States)

    Sadat Kiai, S. M.; Adlparvar, S.; Zirak, A.; Alhooie, Samira; Elahi, M.; Sheibani, S.; Safarien, A.; Farhangi, S.; Dabirzadeh, A. A.; Khalaj, M. M.; Mahlooji, M. S.; KaKaei, S.; Talaei, A.; Kashani, A.; Tajik Ahmadi, H.; Zahedi, F.

    2010-02-01

    The plasma discharge contamination by high and low Z Impurities affect the rate of nuclear fusion reaction products, specially when light particles have to be confined. These impurities should be analyzed and can be fairly controlled. This paper reports on the development of a Paul ion trap with ion sources by impact electron ionization as a diagnostic for the 10 kJ Iranian sunshine plasma focus device. Preliminary results of the residual gas are analyzed and presented.

  20. Digital imaging in diagnostic radiology. Image quality - radiation exposure

    International Nuclear Information System (INIS)

    Schmidt, T.; Stieve, F.E.

    1996-01-01

    The publication contains the 37 lectures of the symposium on digital imaging in diagnostic radiology, held in November 1995 at Kloster Seeon, as well as contributions enhancing the information presented in the lectures. The publication reflects the state of the art in this subject field, discusses future trends and gives recommendations and information relating to current practice in radiology. In-depth information is given about R and D activities for the digitalisation of X-ray pictures and the image quality required to meet the purposes of modern diagnostics. Further aspects encompass radiological protection and dose optimization as well as optimization of examination methods. (vhe) [de

  1. Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows

    Science.gov (United States)

    Lempert, Walter R.; Adamovich, Igor V.

    2014-10-01

    The paper provides an overview of the use of coherent anti-Stokes Raman scattering (CARS) and spontaneous Raman scattering for diagnostics of low-temperature nonequilibrium plasmas and nonequilibrium high-enthalpy flows. A brief review of the theoretical background of CARS, four-wave mixing and Raman scattering, as well as a discussion of experimental techniques and data reduction, are included. The experimental results reviewed include measurements of vibrational level populations, rotational/translational temperature, electric fields in a quasi-steady-state and transient molecular plasmas and afterglow, in nonequilibrium expansion flows, and behind strong shock waves. Insight into the kinetics of vibrational energy transfer, energy thermalization mechanisms and dynamics of the pulse discharge development, provided by these experiments, is discussed. Availability of short pulse duration, high peak power lasers, as well as broadband dye lasers, makes possible the use of these diagnostics at relatively low pressures, potentially with a sub-nanosecond time resolution, as well as obtaining single laser shot, high signal-to-noise spectra at higher pressures. Possibilities for the development of single-shot 2D CARS imaging and spectroscopy, using picosecond and femtosecond lasers, as well as novel phase matching and detection techniques, are discussed.

  2. Development of frequency tunable gyrotrons for plasma diagnostics

    International Nuclear Information System (INIS)

    Idehara, T.; Mitsudo, S.; Sabchevski, S.; Glyavin, M.; Ogawa, I.; Sato, M.; Kawahata, K.; Brand, G.F.

    2000-01-01

    Development of two types of frequency tunable gyrotrons are described. One is frequency step-tunable gyrotrons (Gyrotron FU Series) which cover wide range from millimeter to submillimeter wavelength region. The other is a quasi-optical gyrotron operating in 90 and 180 GHz bands. Both are applicable for plasma diagnostics as power sources. (author)

  3. Infrared laser scattering system for the plasma diagnostics

    International Nuclear Information System (INIS)

    Hiraki, Naoji; Kawasaki, Shoji; Muraoka, Katsunori

    1975-01-01

    As the results of the parametric studies of the double discharge TEA CO 2 laser, the required properties on the laser system for the scattering diagnostics of plasmas are shown to be realized with our CO 2 laser. The direction of the future improvements of the laser performance is also discussed. (auth.)

  4. Diagnostic imaging of the hand

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Rainer [Hospital for Cardiovascular Diseases, Bad Neustadt an der Saale (Germany). Dept. of Radiology; Lanz, Ulrich [Perlach Hospital, Munich (Germany). Dept. of Hand Surgery

    2008-07-01

    With its complex anatomy and specialized biomechanics, the human hand has always presented physicians with a unique challenge when it comes to diagnosing and treating the diseases that afflict it. And while recent decades have seen a rapid increase in the number of therapeutic options, many diseases and injuries of the hand are still commonly misinterpreted. In diagnostic imaging of the hand, an interdisciplinary team, comprisingspecialists in radiology, surgery, and rheumatology, presents a comprehensive,reliable guide to this topographically intricate area. Highlights include: - More than 1000 high-quality illustrations - All state-of-the-art imaging modalities-including multidetector CT, with 2D displays and 3D reconstructions, and contrast-enhanced MRI with multi-channel, phased-array coils - An overview of all currently used methods of examination - A detailed presentation of the anatomic and functional foundations necessary for diagnosis - Full coverage of all disorders of the hand - Systematic treatment of each disease's definition, pathogenesis, and clinical symptoms, according to a graduated diagnostic plan - Easy-to-use format, featuring crisp images and line drawings seamlessly integrated with concise text, summary tables, and handy checklists - A heavily cross-referenced appendix of differential diagnosis tables - Emphasis on interdisciplinary consultation throughout designed to help both radiologists and clinicians develop the most efficient and effective strategies for evaluating and treating patients, Diagnostic imaging of the hand will leave specialists of all levels with a fresh appreciation for - and a richer understanding of - the expanding array of cutting-edge alternatives for diagnosing and treating disorders of the hand. (orig.)

  5. Diagnostic imaging of the hand

    International Nuclear Information System (INIS)

    Schmitt, Rainer; Lanz, Ulrich

    2008-01-01

    With its complex anatomy and specialized biomechanics, the human hand has always presented physicians with a unique challenge when it comes to diagnosing and treating the diseases that afflict it. And while recent decades have seen a rapid increase in the number of therapeutic options, many diseases and injuries of the hand are still commonly misinterpreted. In diagnostic imaging of the hand, an interdisciplinary team, comprisingspecialists in radiology, surgery, and rheumatology, presents a comprehensive,reliable guide to this topographically intricate area. Highlights include: - More than 1000 high-quality illustrations - All state-of-the-art imaging modalities-including multidetector CT, with 2D displays and 3D reconstructions, and contrast-enhanced MRI with multi-channel, phased-array coils - An overview of all currently used methods of examination - A detailed presentation of the anatomic and functional foundations necessary for diagnosis - Full coverage of all disorders of the hand - Systematic treatment of each disease's definition, pathogenesis, and clinical symptoms, according to a graduated diagnostic plan - Easy-to-use format, featuring crisp images and line drawings seamlessly integrated with concise text, summary tables, and handy checklists - A heavily cross-referenced appendix of differential diagnosis tables - Emphasis on interdisciplinary consultation throughout designed to help both radiologists and clinicians develop the most efficient and effective strategies for evaluating and treating patients, Diagnostic imaging of the hand will leave specialists of all levels with a fresh appreciation for - and a richer understanding of - the expanding array of cutting-edge alternatives for diagnosing and treating disorders of the hand. (orig.)

  6. Meniscal tear. Diagnostic errors in MR imaging

    International Nuclear Information System (INIS)

    Barrera, M. C.; Recondo, J. A.; Gervas, C.; Fernandez, E.; Villanua, J. A.M.; Salvador, E.

    2003-01-01

    To analyze diagnostic discrepancies found between magnetic resonance (MR) and arthroscopy, and the determine the reasons that they occur. Two-hundred and forty-eight MR knee explorations were retrospectively checked. Forty of these showed diagnostic discrepancies between MR and arthroscopy. Two radiologists independently re-analyzed the images from 29 of the 40 studies without knowing which diagnosis had resulted from which of the two techniques. Their interpretations were correlated with the initial MR diagnosis, MR images and arthroscopic results. Initial errors in MR imaging were classified as either unavoidable, interpretive, or secondary to equivocal findings. Eleven MR examinations could not be checked since their corresponding imaging results could not be located. Of 34 errors found in the original diagnoses, 12 (35.5%)were classified as unavoidable, 14 (41.2%) as interpretative and 8 (23.5%) as secondary to equivocal findings. 41.2% of the errors were avoided in the retrospective study probably due to our department having greater experience in interpreting MR images, 25.5% were unavailable even in the retrospective study. A small percentage of diagnostic errors were due to the presence of subtle equivocal findings. (Author) 15 refs

  7. Diagnostics of MCF plasmas using Lyman-α fluorescence excited by one or two photons

    International Nuclear Information System (INIS)

    Voslamber, D.

    1998-11-01

    Laser-induced Lyman-α fluorescence of the hydrogen isotopes is investigated with regard to diagnostic applications in magnetically confined fusion plasmas. A formal analysis is presented for two excitation schemes: one-photon and Doppler-free two-photon excitation. The analysis includes estimates of the expected experimental errors arising from the photon noise and from the sensitivity of the observed fluorescence signals to variations of the plasma and laser parameters. Both excitation schemes are suitable primarily for application in the plasma edge, but even in the plasma bulk of large machines they can still be applied in combination with a diagnostic neutral beam. The two-photon excitation scheme is particularly attractive because it involves absorption spectra that are resolved within the Doppler width. This implies a large diagnostic potential and in particular offers a way to measure the deuterium-tritium fuel mix in fusion reactors. (author)

  8. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beama)

    Science.gov (United States)

    Froula, D. H.; Boni, R.; Bedzyk, M.; Craxton, R. S.; Ehrne, F.; Ivancic, S.; Jungquist, R.; Shoup, M. J.; Theobald, W.; Weiner, D.; Kugland, N. L.; Rushford, M. C.

    2012-10-01

    A 10-ps, 263-nm (4ω) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)], 10.1051/jp4:2006133015. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution (˜1 - μm full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 104 with respect to all wavelengths outside of the 263 ± 2 nm measurement range.

  9. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam

    Energy Technology Data Exchange (ETDEWEB)

    Froula, D. H.; Boni, R.; Bedzyk, M.; Craxton, R. S.; Ehrne, F.; Ivancic, S.; Jungquist, R.; Shoup, M. J.; Theobald, W.; Weiner, D. [Laboratory for Laser Energetics, University of Rochester, 250 E. River Rd., Rochester, New York 14616 (United States); Kugland, N. L.; Rushford, M. C. [Lawrence Livermore National Laboratory, University of California, P. O. Box 808, Livermore, California 94551 (United States)

    2012-10-15

    A 10-ps, 263-nm (4{omega}) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution ({approx}1 -{mu}m full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10{sup 4} with respect to all wavelengths outside of the 263 {+-} 2 nm measurement range.

  10. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam.

    Science.gov (United States)

    Froula, D H; Boni, R; Bedzyk, M; Craxton, R S; Ehrne, F; Ivancic, S; Jungquist, R; Shoup, M J; Theobald, W; Weiner, D; Kugland, N L; Rushford, M C

    2012-10-01

    A 10-ps, 263-nm (4ω) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution (~1 - μm full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10(4) with respect to all wavelengths outside of the 263 ± 2 nm measurement range.

  11. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam

    International Nuclear Information System (INIS)

    Froula, D. H.; Boni, R.; Bedzyk, M.; Craxton, R. S.; Ehrne, F.; Ivancic, S.; Jungquist, R.; Shoup, M. J.; Theobald, W.; Weiner, D.; Kugland, N. L.; Rushford, M. C.

    2012-01-01

    A 10-ps, 263-nm (4ω) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75–80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution (∼1 −μm full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10 4 with respect to all wavelengths outside of the 263 ± 2 nm measurement range.

  12. Current means for plasma diagnostics and their application for materials and environment control. Materials of IV Russian seminar

    International Nuclear Information System (INIS)

    2003-01-01

    The collection contains reports made at the Fourth Russian seminar Current means of plasma diagnostics and their application for materials and environment control. The seminar took place in Moscow, November 12-14, 2003. The content of the collection covers both questions of plasma diagnostics in thermonuclear reactors and problems of diagnostics of pulsed and stationary gas discharges in research and technological installations. The reports on plasma diagnostics applied for some tasks of medicine and environment control are presented [ru

  13. [Diagnostic imaging of breast cancer : An update].

    Science.gov (United States)

    Funke, M

    2016-10-01

    Advances in imaging of the female breast have substantially influenced the diagnosis and probably also the therapy and prognosis of breast cancer in the past few years. This article gives an overview of the most important imaging modalities in the diagnosis of breast cancer. Digital mammography is considered to be the gold standard for the early detection of breast cancer. Digital breast tomosynthesis can increase the diagnostic accuracy of mammography and is used for the assessment of equivocal or suspicious mammography findings. Other modalities, such as ultrasound and contrast-enhanced magnetic resonance imaging (MRI) play an important role in the diagnostics, staging and follow-up of breast cancer. Percutaneous needle biopsy is a rapid and minimally invasive method for the histological verification of breast cancer. New breast imaging modalities, such as contrast-enhanced spectral mammography, diffusion-weighted MRI and MR spectroscopy can possibly further improve breast cancer diagnostics; however, further studies are necessary to prove the advantages of these methods so that they cannot yet be recommended for routine clinical use.

  14. Diagnostic information management system for the evaluation of medical images

    Energy Technology Data Exchange (ETDEWEB)

    Higa, Toshiaki; Torizuka, Kanji; Minato, Kotaro; Komori, Masaru; Hirakawa, Akina

    1985-04-01

    A practical, small and low-cost diagnostic information management system has been developed for a comparative study of various medical imaging procedures, including ordinary radiography, X-ray computed tomography, emission computed tomography, and so forth. The purpose of the system is to effectively manage the original image data files and diagnostic descriptions during the various imaging procedures. A diagnostic description of each imaging procedure for each patient is made on a hand-sort punched-card with line-drawings and ordinary medical terminology and then coded and computerized using Index for Roentgen Diagnoses (American College of Radiology). A database management software (DB Master) on a personal computer (Apple II) is used for searching for patients' records on hand-sort punched-cards and finally original medical images. Discussed are realistic use of medical images and an effective form of diagnostic descriptions.

  15. Diagnostic information management system for the evaluation of medical images

    International Nuclear Information System (INIS)

    Higa, Toshiaki; Torizuka, Kanji; Minato, Kotaro; Komori, Masaru; Hirakawa, Akina.

    1985-01-01

    A practical, small and low-cost diagnostic information management system has been developed for a comparative study of various medical imaging procedures, including ordinary radiography, X-ray computed tomography, emission computed tomography, and so forth. The purpose of the system is to effectively manage the original image data files and diagnostic descriptions during the various imaging procedures. A diagnostic description of each imaging procedure for each patient is made on a hand-sort punched-card with line-drawings and ordinary medical terminology and then coded and computerized using Index for Roentgen Diagnoses (American College of Radiology). A database management software (DB Master) on a personal computer (Apple II) is used for searching for patients' records on hand-sort punched-cards and finally original medical images. Discussed are realistic use of medical images and an effective form of diagnostic descriptions. (author)

  16. WE-AB-206-01: Diagnostic Ultrasound Imaging Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Zagzebski, J. [University of Wisconsin (United States)

    2016-06-15

    The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.

  17. WE-AB-206-01: Diagnostic Ultrasound Imaging Quality Assurance

    International Nuclear Information System (INIS)

    Zagzebski, J.

    2016-01-01

    The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.

  18. Physicians' use of plasma methylmalonic acid as a diagnostic tool

    DEFF Research Database (Denmark)

    Hvas, A M; Vestergaard, H; Gerdes, Lars Ulrik

    2000-01-01

    with a plasma methylmalonic acid measurement above the reference interval. Information on diagnostic decisions was available for 177 patients. MAIN OUTCOME MEASURES: Reasons for requesting plasma methylmalonic acid and the reactions to the finding of elevated plasma methylmalonic acid. RESULTS: An explicit......OBJECTIVES: To investigate physicians' reasons for requesting plasma methylmalonic acid and their reactions to an increased concentration of plasma methylmalonic acid. DESIGN: Study of medical records. SETTING: Three somatic district hospitals in Denmark. SUBJECTS: Medical records of 198 patients...... reason for requesting plasma methylmalonic acid was stated in 57% of 198 examined medical records, known or suspected anaemia being the most frequent reason. No further action was taken in 109 (62%) of the 177 cases available for follow-up. Amongst the remaining 68 patients, the finding of an increased...

  19. The diagnostic neutral beam injector with arc-discharge plasma source on the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Karpushov, Alexander N. [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH-1015 Lausanne (Switzerland)], E-mail: alexander.karpushov@epfl.ch; Andrebe, Yanis; Duval, Basil P.; Bortolon, Alessandro [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH-1015 Lausanne (Switzerland)

    2009-06-15

    The diagnostic neutral beam injector (DNBI) together with a charge exchange recombination spectroscopy (CXRS) system has been used on the TCV Tokamak as a diagnostic tool for local measurements of plasma ion temperature, velocity and carbon impurity density based on analysis of the beam induced impurity radiation emission since 2000. To improve the performance of the CXRS diagnostic, several upgrades of both the optical system and the neutral beam were performed. An increase of the plasma source size together with beam optimization in 2003 resulted in a twofold increase the beam current. The RF plasma generator was replaced by an arc-discharge plasma source together with a new ion optical system (IOS) in 2006 and subsequent beam optimization is presented herein. This was designed to increase the line brightness of the beam in the CXRS observation region without increasing of the injected power (to avoid plasma perturbation by the beam). The beam characteristics are measured by a multi-chord scanning of Doppler-shifted H{sub {alpha}} emission, thermal measurements on a movable calorimeter and visible optical measurements inside the Tokamak vessel.

  20. X-ray diodes for laser fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Day, R.H.; Lee, P.; Saloman, E.B.; Nagel, D.J.

    1981-02-01

    Photodiodes with x-ray sensitive photocathodes are commonly used as broadband x-ray detectors in fusion plasma diagnostics. We have measured the risetime of the detector system and have measured the quantum efficiency between 1 to 500 A of numerous photocathode materials of practical interest. The materials studied include aluminum, copper, nickel, gold, three forms of carbon, chromium, and cesium iodide. The results of the measurements are compared with Henke's semiempirical model of photoyield. We have studied the effects of long-term cathode aging and use as a plasma diagnostic on cathode quantum efficiency. In addition, we have measured the x-ray mass-absorption coefficient of several ultrasoft x-ray windows in energy regions where data were unavailable. Windows studied were made of aluminum, Formvar, polypropylene, and Kimfoil. Measurements between 1 to 50 A were performed with the Los Alamos Scientific Laboratory's low-energy x-ray calibration facility, and the measurements between 50 to 550 A were performed at the National Bureau of Standard's synchrotron ultraviolet radiation facility

  1. Trends in utilization: has extremity MR imaging replaced diagnostic arthroscopy?

    International Nuclear Information System (INIS)

    Glynn, Nicole; Morrison, William B.; Parker, Laurence; Schweitzer, Mark E.; Carrino, John A.

    2004-01-01

    To examine the relative change in utilization of magnetic resonance (MR) imaging of the extremities versus diagnostic and therapeutic arthroscopy. Using the 1993, 1996, and 1999 nationwide Medicare Part B databases, utilization rates (per 100,000) were determined for upper and lower extremity MR imaging, diagnostic arthroscopy and therapeutic arthroscopy using CPT-4 codes. Utilization of extremity MR imaging was compared with that of diagnostic and therapeutic arthroscopy in 10 geographic regions of the United States and tracked over time. Combined lower and upper extremity MR imaging utilization per 100,000 increased from 393 to 1,056 in 1999 (+168.7%). Utilization of diagnostic arthroscopy of the extremities decreased from 18 in 1993 to 8 in 1999 (-55.6%); therapeutic arthroscopy rates increased from 461 in 1993 to 636 in 1999 (+40.0%). Specifically, from 1993 to 1999, utilization of lower extremity MR imaging increased from 270 to 661 (+144.8%). Utilization of diagnostic arthroscopy of the knee over the same time period decreased from 11 to 5 (-54.5%); therapeutic arthroscopy increased from 394 to 501 (+27.2%). Similarly, utilization rates for upper extremity MR imaging increased from 123 to 395 (+221.1%). Utilization of diagnostic arthroscopy of the shoulder over the same time period decreased from 7 to 2 (-71.4%); therapeutic arthroscopy increased from 44 to 104 (+136.4%). No specific geographic trends were ascertained. The utilization of MR imaging of the extremities has markedly increased from 1993 to 1999. During the same time period the utilization of diagnostic arthroscopy has decreased and that of therapeutic arthroscopy has increased. These findings support the hypothesis that there is increased reliance of clinical practitioners on the diagnostic information provided by MR imaging in preoperative clinical decision-making. (orig.)

  2. Rationale diagnostic approach to biliary tract imaging

    International Nuclear Information System (INIS)

    Helmberger, H.; Huppertz, A.; Ruell, T.; Zillinger, C.; Ehrenberg, C.; Roesch, T.

    1998-01-01

    Since the introduction of MR cholangiography (MRC) diagnostic imaging of the biliary tract has been significantly improved. While percutaneous ultrasonography is still the primary examination, computed tomography (CT), conventional magnetic resonance imaging (MRI), as well as the direct imaging modalities of the biliary tract - iv cholangiography, endoscopic-retrograde-cholangiography (ERC), and percutaneous-transhepatic-cholangiography (PTC) are in use. This article discusses the clinical value of the different diagnostic techniques for the various biliary pathologies with special attention to recent developments in MRC techniques. An algorithm is presented offering a rational approach to biliary disorders. With further technical improvement shifts from ERC(P) to MRC(P) for biliary imaging could be envisioned, ERCP further concentrating on its role as a minimal invasive treatment option. (orig.) [de

  3. Possibility of image converter application to X ray diagnostics in tokamaks

    International Nuclear Information System (INIS)

    Bryzgunov, V.A.; Chuvatin, S.A.

    1980-01-01

    To improve the sensitivity of spectral roentgen diagnostics of tokamak plasma possibilities for using a light amplifier having a PMU-1 microchannel plate for photorecording of roentgen spectra have been estimated. Amplification homogeneity over an image field has been improved 5-10 times by means of a screen. In bench tests spectra with an exposure 100 times lesser as compared with the RT-1 roentgen film have been taken. Five-layer protective screen has been developed for experiments in scattered magnetic fields of the tokamak. It is concluded that from the point of view of a number of parameters the PMU-1 electron optical converter quite meets the requirements of roentgen diagnostics. It has a sufficient amplification, small dark noises, small distortion. However, it is very desirable to have an instrument of a better resolution as compared with an obtained one as well as having a more light and comfortable magnetic protection

  4. Use of the shearing interferometry for dense inhomogeneous plasma diagnostics

    International Nuclear Information System (INIS)

    Zakharenkov, Yu.A.; Sklizkov, G.V.; Shikanov, A.S.

    1980-01-01

    Investigated is a possibility of applying the shearing interferometry for diagnostics of a dense inhomogeneous laser plasma which makes it possible to measure the electron density without losses in accuracy near the critical surface. A shearing interferogram is formed upon interference of two identical images of the object under study shifted at some fixed distance. The value of the interference band deflection inside phase inhomogeneity depends on the gradient of the index of refraction in the direction of shift. It has been found that for studying the inner region of the laser plasma a small shift should be used, and for the external one - a large one. The version of a radial shift interferometry is shown to be optimum. For the inner region of the interferogram the error of the electron density restoration does not exceed 10%, and for the external one the error is comparable with that for the version of standard interferometry. A systematic analysis of the optimum type interferometers shows advantages of shearing interferometers. The maximum electron density recorded in experiments makes up approximately equal to 10 20 cm -3 , which is 3-5 times higher than the corresponding value obtained by a standard double-slit type interferometer at equal limiting parameters of the optical system applied

  5. Child abuse. Diagnostic imaging of skeletal injuries

    International Nuclear Information System (INIS)

    Stenzel, Martin; Mentzel, Hans-Joachim

    2012-01-01

    Diagnostic imaging, besides medical history and clinical examination, is a major component in assessment of cases of suspected physical child abuse. Performance of proper imaging technique, and knowledge of specific injury patterns is required for accurate image interpretation by the radiologist, and serves protection of the child in case of proven abuse. On the other side, it is essential to protect the family in unjustified accusations. The reader will be familiarised with essentials of the topic 'Physical child abuse', in order to be able to correctly assess quality, completeness, and results of X-ray films. Moreover, opportunities and limitations of alternative diagnostic modalities will be discussed. (orig.)

  6. Applications of digital processing for noise removal from plasma diagnostics

    International Nuclear Information System (INIS)

    Kane, R.J.; Candy, J.V.; Casper, T.A.

    1985-01-01

    The use of digital signal techniques for removal of noise components present in plasma diagnostic signals is discussed, particularly with reference to diamagnetic loop signals. These signals contain noise due to power supply ripple in addition to plasma characteristics. The application of noise canceling techniques, such as adaptive noise canceling and model-based estimation, will be discussed. The use of computer codes such as SIG is described. 19 refs., 5 figs

  7. Evaluation of two-beam spectroscopy as a plasma diagnostic

    International Nuclear Information System (INIS)

    Billard, B.D.

    1980-04-01

    A two-beam spectroscopy (TBS) system is evaluated theoretically and experimentally. This new spectroscopic technique uses correlations between components of emitted light separated by a small difference in angle of propagation. It is thus a non-perturbing plasma diagnostic which is shown to provide local (as opposed to line-of-sight averaged) information about fluctuations in the density of light sources within a plasma - information not obtainable by the usual spectroscopic methods. The present design is an improvement on earlier systems proposed in a thesis by Rostler

  8. Development and Integration of a Data Acquisition System for SST-1 Phase-1 Plasma Diagnostics

    International Nuclear Information System (INIS)

    Srivastava, Amit K; Sharma, Manika; Mansuri, Imran; Sharma, Atish; Raval, Tushar; Pradhan, Subrata

    2012-01-01

    Long pulse (of the order of 1000 s or more) SST-1 tokamak experiments demand a data acquisition system that is capable of acquiring data from various diagnostics channels without losing useful data (and hence physics information) while avoiding unnecessary generation of a large volume data. SST-1 Phase-1 tokamak operation has been envisaged with data acquisition of several essential diagnostics channels. These channels demand data acquisition at a sampling rate ranging from 1 kilo samples per second (KSPS) to 1 mega samples per second (MSPS). Considering the technical characteristics and requirements of the diagnostics, a data acquisition system based on PXI and CAMAC has been developed for SST-1 plasma diagnostics. Both these data acquisition systems are scalable. Present data acquisition needs involving slow plasma diagnostics are catered by the PXI based data acquisition system. On the other hand, CAMAC data acquisition hardware meets all requirements of the SST-1 Phase-1 fast plasma diagnostics channels. A graphical user interface for both data acquisition systems (PXI and CAMAC) has been developed using LabVIEW application development software. The collected data on the local hard disk are directly streaming to the central server through a dedicated network for post-shot data analysis. This paper describes the development and integration of the data acquisition system for SST-1 Phase-1 plasma diagnostics. The integrated testing of the developed data acquisition system has been performed using SST-1 central control and diagnostics signal conditioning units. In the absence of plasma shots, the integrated testing of the data acquisition system for the initial diagnostics of SST-1 Phase-1 operation has been performed with simulated physical signals. The primary engineering objective of this integrated testing is to validate the performance of the developed data acquisition system under simulated conditions close to that of actual tokamak operation. The data

  9. X-ray diagnostics for laser matter interaction experiments; Diagnostics X pour les experiences d'interaction laser-matiere

    Energy Technology Data Exchange (ETDEWEB)

    Troussel, Ph

    2000-07-01

    Advances in the field of laser-driven inertially confined thermonuclear fusion research since the early 1990's are reviewed. It covers the experimental techniques used to study the interaction of laser radiation with matter and high density plasma. A high performance instrumentation (diagnostics) for observation of X radiation (from a few eV to a few keV) will be required to understand the physical processes involved in the interaction. This paper is a three-part: first part, describes diagnostics metrology realized around different X-ray sources (synchrotron, laser plasma...); a second part, synthesizes theoretical and experimental X-ray optics studies and show the interest for direct applications as X-ray spectroscopy and X-ray imaging around laser-produced plasma; a third part, is a review of high resolution X-ray imaging, performances of these optical system were summarized. (author)

  10. Plasma diagnostics using the He I 447.1 nm line at high and low densities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Manuel A [Departamento de Fisica Aplicada, E.T.S.I. Informatica, Universidad de Valladolid, 47071 Valladolid (Spain); Ivkovic, Milivoje; Jovicevic, Sonja; Konjevic, Nikola [Institute of Physics, University of Belgrade, 11081 Belgrade, PO Box 68 (Serbia); Gigosos, Marco A; Lara, Natividad, E-mail: manuelgd@termo.uva.es, E-mail: gigosos@coyanza.opt.cie.uva.es [Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid (Spain)

    2011-05-18

    The broadening of the He I 447.1 nm line and its forbidden components in plasmas is studied using computer simulation techniques and the results are compared with our and other experiments. In these calculations wide ranges of electron densities and temperatures are considered. Experimental measurements are performed with a high electron density pulsed discharge and with a low electron density microwave torch at atmospheric pressure. Both calculations and experimental measurements are extended from previous works towards low electron densities in order to study the accuracy of plasma diagnostics using this line in ranges of interest in different practical applications. The calculation results are compared with experimental profiles registered in plasmas diagnosed using independent techniques. The obtained agreement justifies the use of these line parameters for plasma diagnostics. The influence of self-absorption on line parameters is also analysed. It is shown that the separation between the peaks of the allowed and forbidden components exhibits a clear dependence upon plasma electron density free of self-absorption influence. This allows the peak separation to be used as a good parameter for plasma diagnostics. From the simulation results, a simple fitting formula is applied that permits obtaining the electron number density plasma diagnostics in the range 5 x 10{sup 22}-7 x 10{sup 23} m{sup -3}. At lower densities the fitting of simulated to experimental full profiles is a reliable method for N{sub e} determination.

  11. Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials.

    Science.gov (United States)

    Van Heertum, Ronald L; Scarimbolo, Robert; Ford, Robert; Berdougo, Eli; O'Neal, Michael

    2015-01-01

    In the era of personalized medicine, diagnostic approaches are helping pharmaceutical and biotechnology sponsors streamline the clinical trial process. Molecular assays and diagnostic imaging are routinely being used to stratify patients for treatment, monitor disease, and provide reliable early clinical phase assessments. The importance of diagnostic approaches in drug development is highlighted by the rapidly expanding global cancer diagnostics market and the emergent attention of regulatory agencies worldwide, who are beginning to offer more structured platforms and guidance for this area. In this paper, we highlight the key benefits of using companion diagnostics and diagnostic imaging with a focus on oncology clinical trials. Nuclear imaging using widely available radiopharmaceuticals in conjunction with molecular imaging of oncology targets has opened the door to more accurate disease assessment and the modernization of standard criteria for the evaluation, staging, and treatment responses of cancer patients. Furthermore, the introduction and validation of quantitative molecular imaging continues to drive and optimize the field of oncology diagnostics. Given their pivotal role in disease assessment and treatment, the validation and commercialization of diagnostic tools will continue to advance oncology clinical trials, support new oncology drugs, and promote better patient outcomes.

  12. DIAGNOSTICS FOR EROSION AND DEPOSITION PROCESSES IN FUSION PLASMAS

    NARCIS (Netherlands)

    van Rooij, G. J.; Wright, G. M.

    2010-01-01

    An overview is given of the wide range of diagnostics that is providing valuable information on the interaction between plasma and the material wall in a fusion device. Of each technique, a brief description is given in combination with the main advantages and disadvantages for PSI research.

  13. Diagnostics for erosion and deposition processes in fusion plasmas

    NARCIS (Netherlands)

    van Rooij, G. J.; Wright, G. M.

    2012-01-01

    An overview is given of the wide range of diagnostics that is providing valuable information on the interaction between plasma and the material wall in a fusion device. Of each technique, a brief description is given in combination with the main advantages and disadvantages for PSI research.

  14. Diagnostics for erosion and deposition processes in fusion plasmas

    NARCIS (Netherlands)

    van Rooij, G. J.; Wright, G. M.

    2008-01-01

    An overview is given of the wide range of diagnostics that is providing valuable information on the interaction between plasma and the material wall in a fusion device. Of each technique, a brief description is given in combination with the main advantages and disadvantages for PSI research.

  15. Electron bunch diagnostics for laser-plasma accelerators, from THz to X-rays

    International Nuclear Information System (INIS)

    Plateau, G.

    2011-10-01

    This thesis presents a series of single-shot non-intrusive diagnostics of key attributes of electron bunches produced by a laser-plasma accelerator (LPA). Three injection mechanisms of the LPA are characterized: channeled and self-guided self-injection, plasma down-ramp injection, and two-beam colliding pulse injection. New diagnostic techniques are successfully demonstrated: up to 8 times higher sensitivity wavefront sensor-based plasma density measurements, strong spatio-temporal coupling of the focused THz pulse is demonstrated using the temporal electric-field cross-correlation (TEX) of a long chirped probe with a short probe and confirms the two-component structure of the bunch observed by electron spectrometry, and normalized transverse emittances as low as 0.1 mm mrad are demonstrated for 0.5 GeV-class beams produced in a capillary-guided LPA by characterizing the betatron radiation emitted by the electrons inside the plasma using a new single-shot X-ray spectroscopy technique. (author)

  16. Diagnostic imaging in medicine. 2nd ed

    Energy Technology Data Exchange (ETDEWEB)

    Reba, R C; Goodenough, D J; Davidson, H F

    1984-01-01

    This book describes to practitioners the evolutionary progression of new non-invasive diagnostic imaging techniques. The utility of the procedures is also described in a series of state-of-the-art lectures given by outstanding international clinical investigators from NATO countries. Subjects of the papers include the following: advances in source and detector technology, acoustical imaging, NMR and microwave imaging, positron and single photon emission tomography, digital radiography and image processing and display techniques. Fundamental papers describing the theory of non-invasive procedures are included along with papers describing clinical examinations. Examples of utility and studies of diseases of the abdomen and pelvis, heart and lung, and central nervous system are included. Cost-effective and cost-benefit assessment of the new high technology procedures, as well as the use of diagnostic imaging techniques in developing countries are also presented. An index of leading topics completes the volume.

  17. The inverse problem for the refractometry diagnostics of electromagnetic turbulence in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lazarian, A [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics

    1994-06-01

    Turbulence is an important property of laboratory plasmas. A number of relevant diagnostics are based on the interaction of an electromagnetic beam with plasma. Here we discuss a refractometry technique, where information on plasma properties is obtained by probing plasma with a plane polarized electromagnetic beam. It is shown that the problem of recovering statistical properties of plasma turbulence from the line integrated data can be solved uniquely using a realistic model of plasma. Analytical expressions relating statistics of both the random density and random magnetic fields to the measured statistics have been found. This information is of importance in studies of plasma turbulence. (author).

  18. The inverse problem for the refractometry diagnostics of electromagnetic turbulence in plasma

    International Nuclear Information System (INIS)

    Lazarian, A.

    1994-01-01

    Turbulence is an important property of laboratory plasmas. A number of relevant diagnostics are based on the interaction of an electromagnetic beam with plasma. Here we discuss a refractometry technique, where information on plasma properties is obtained by probing plasma with a plane polarized electromagnetic beam. It is shown that the problem of recovering statistical properties of plasma turbulence from the line integrated data can be solved uniquely using a realistic model of plasma. Analytical expressions relating statistics of both the random density and random magnetic fields to the measured statistics have been found. This information is of importance in studies of plasma turbulence. (author)

  19. Diagnostic imaging in internal medicine

    International Nuclear Information System (INIS)

    Eisenberg, R.L.

    1985-01-01

    This book examines medical diagnostic techniques. Topics considered include biological considerations in the approach to clinical medicines; infectious diseases; disorders of the heart; disorders of the vascular system; disorders of the respiratory system; diseases of the kidneys and urinary tract; disorders of the alimentary tract; disorders of the hepatobiliary system and pancreas; disorders of the hematopoietic system; disorders of bone and bone mineralization; disorders of the joints, connective tissues, and striated muscles; disorders of the nervous system; miscellaneous disorders; and procedures in diagnostic imaging

  20. Whispering Gallery Mode Spectroscopy as a Diagnostic for Dusty Plasmas

    International Nuclear Information System (INIS)

    Thieme, G.; Basner, R.; Ehlbeck, J.; Roepcke, J.; Maurer, H.; Kersten, H.; Davies, P. B.

    2008-01-01

    Whispering-gallery-mode spectroscopy is being assessed as a diagnostic method for the characterisation of size and chemical composition of spherical particles levitated in a plasma. With a pulsed laser whispering gallery modes (cavity resonances) are excited in individual microspheres leading to enhanced Raman scattering or fluorescence at characteristic wavelengths. This method can be used to gain specific information from the particle surface and is thus of great interest for the characterisation of layers deposited on microparticles, e.g. in molecular plasmas. We present investigations of different microparticles in air and results from fluorescent particles levitated in an Argon rf plasma.

  1. Investigating the link between radiologists’ gaze, diagnostic decision, and image content

    Science.gov (United States)

    Tourassi, Georgia; Voisin, Sophie; Paquit, Vincent; Krupinski, Elizabeth

    2013-01-01

    Objective To investigate machine learning for linking image content, human perception, cognition, and error in the diagnostic interpretation of mammograms. Methods Gaze data and diagnostic decisions were collected from three breast imaging radiologists and three radiology residents who reviewed 20 screening mammograms while wearing a head-mounted eye-tracker. Image analysis was performed in mammographic regions that attracted radiologists’ attention and in all abnormal regions. Machine learning algorithms were investigated to develop predictive models that link: (i) image content with gaze, (ii) image content and gaze with cognition, and (iii) image content, gaze, and cognition with diagnostic error. Both group-based and individualized models were explored. Results By pooling the data from all readers, machine learning produced highly accurate predictive models linking image content, gaze, and cognition. Potential linking of those with diagnostic error was also supported to some extent. Merging readers’ gaze metrics and cognitive opinions with computer-extracted image features identified 59% of the readers’ diagnostic errors while confirming 97.3% of their correct diagnoses. The readers’ individual perceptual and cognitive behaviors could be adequately predicted by modeling the behavior of others. However, personalized tuning was in many cases beneficial for capturing more accurately individual behavior. Conclusions There is clearly an interaction between radiologists’ gaze, diagnostic decision, and image content which can be modeled with machine learning algorithms. PMID:23788627

  2. Diagnostic image quality of video-digitized chest images

    International Nuclear Information System (INIS)

    Winter, L.H.; Butler, R.B.; Becking, W.B.; Warnars, G.A.O.; Haar Romeny, B. ter; Ottes, F.P.; Valk, J.-P.J. de

    1989-01-01

    The diagnostic accuracy obtained with the Philips picture archiving and communications subsystem was investigated by means of an observer performance study using receiver operating characteristic (ROC) analysis. The image qualities of conventional films and video digitized images were compared. The scanner had a 1024 x 1024 x 8 bit memory. The digitized images were displayed on a 60 Hz interlaced display monitor 1024 lines. Posteroanterior (AP) roetgenograms of a chest phantom with superimposed simulated interstitial pattern disease (IPD) were produced; there were 28 normal and 40 abnormal films. Normal films were produced by the chest phantom alone. Abnormal films were taken of the chest phantom with varying degrees of superimposed simulated intersitial disease (PND) for an observer performance study, because the results of a simulated interstitial pattern disease study are less likely to be influenced by perceptual capabilities. The conventional films and the video digitized images were viewed by five experienced observers during four separate sessions. Conventional films were presented on a viewing box, the digital images were displayed on the monitor described above. The presence of simulated intersitial disease was indicated on a 5-point ROC certainty scale by each observer. We analyzed the differences between ROC curves derived from correlated data statistically. The mean time required to evaluate 68 digitized images is approximately four times the mean time needed to read the convential films. The diagnostic quality of the video digitized images was significantly lower (at the 5% level) than that of the conventional films (median area under the curve (AUC) of 0.71 and 0.94, respectively). (author). 25 refs.; 2 figs.; 4 tabs

  3. Plasma levels and diagnostic utility of VEGF, MMP-2 and TIMP-2 in the diagnostics of breast cancer patients.

    Science.gov (United States)

    Ławicki, Sławomir; Zajkowska, Monika; Głażewska, Edyta Katarzyna; Będkowska, Grażyna Ewa; Szmitkowski, Maciej

    2017-03-01

    We investigated plasma levels and diagnostic utility of vascular endothelial growth factor VEGF, matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinase-2 (TIMP-2) in comparison to cancer antigen 15-3 (CA 15-3). Plasma levels of tested parameters were determined using enzyme-linked immunosorbent assay (ELISA) while CA 15-3 with chemiluminescent microparticle immunoassay (CMIA). The plasma levels of VEGF, TIMP-2 showed significantly higher than CA 15-3 values of the diagnostic sensitivity, the predictive values of positive and negative test results (PPV, NPV) and the area under the receiver-operating characteristics (ROC) curve (AUC) in early stages of breast cancer (BC). The combined use of the tested parameters with CA 15-3 resulted in the increase in sensitivity, NPV and AUC, especially in the combination with VEGF (83%; 72%; 0.888) and TIMP-2 (83%; 72%; 0.894). The highest values were obtained for combination of all three parameters (93%; 85%; 0.923). These findings suggest the usefulness of the tested parameters in the diagnosis of BC, especially VEGF and TIMP-2 with CA 15-3 in early stages of BC, which could be a new diagnostic panel.

  4. Solar Prominence Modelling and Plasma Diagnostics at ALMA Wavelengths

    Science.gov (United States)

    Rodger, Andrew; Labrosse, Nicolas

    2017-09-01

    Our aim is to test potential solar prominence plasma diagnostics as obtained with the new solar capability of the Atacama Large Millimeter/submillimeter Array (ALMA). We investigate the thermal and plasma diagnostic potential of ALMA for solar prominences through the computation of brightness temperatures at ALMA wavelengths. The brightness temperature, for a chosen line of sight, is calculated using the densities of electrons, hydrogen, and helium obtained from a radiative transfer code under non-local thermodynamic equilibrium (non-LTE) conditions, as well as the input internal parameters of the prominence model in consideration. Two distinct sets of prominence models were used: isothermal-isobaric fine-structure threads, and large-scale structures with radially increasing temperature distributions representing the prominence-to-corona transition region. We compute brightness temperatures over the range of wavelengths in which ALMA is capable of observing (0.32 - 9.6 mm), however, we particularly focus on the bands available to solar observers in ALMA cycles 4 and 5, namely 2.6 - 3.6 mm (Band 3) and 1.1 - 1.4 mm (Band 6). We show how the computed brightness temperatures and optical thicknesses in our models vary with the plasma parameters (temperature and pressure) and the wavelength of observation. We then study how ALMA observables such as the ratio of brightness temperatures at two frequencies can be used to estimate the optical thickness and the emission measure for isothermal and non-isothermal prominences. From this study we conclude that for both sets of models, ALMA presents a strong thermal diagnostic capability, provided that the interpretation of observations is supported by the use of non-LTE simulation results.

  5. Investigating the Link Between Radiologists Gaze, Diagnostic Decision, and Image Content

    Energy Technology Data Exchange (ETDEWEB)

    Tourassi, Georgia [ORNL; Voisin, Sophie [ORNL; Paquit, Vincent C [ORNL; Krupinski, Elizabeth [University of Arizona

    2013-01-01

    Objective: To investigate machine learning for linking image content, human perception, cognition, and error in the diagnostic interpretation of mammograms. Methods: Gaze data and diagnostic decisions were collected from six radiologists who reviewed 20 screening mammograms while wearing a head-mounted eye-tracker. Texture analysis was performed in mammographic regions that attracted radiologists attention and in all abnormal regions. Machine learning algorithms were investigated to develop predictive models that link: (i) image content with gaze, (ii) image content and gaze with cognition, and (iii) image content, gaze, and cognition with diagnostic error. Both group-based and individualized models were explored. Results: By pooling the data from all radiologists machine learning produced highly accurate predictive models linking image content, gaze, cognition, and error. Merging radiologists gaze metrics and cognitive opinions with computer-extracted image features identified 59% of the radiologists diagnostic errors while confirming 96.2% of their correct diagnoses. The radiologists individual errors could be adequately predicted by modeling the behavior of their peers. However, personalized tuning appears to be beneficial in many cases to capture more accurately individual behavior. Conclusions: Machine learning algorithms combining image features with radiologists gaze data and diagnostic decisions can be effectively developed to recognize cognitive and perceptual errors associated with the diagnostic interpretation of mammograms.

  6. HAIFA: A modular, fiber-optic coupled, spectroscopic diagnostic for plasmas

    International Nuclear Information System (INIS)

    Ramsey, A.T.; Turner, S.L.

    1987-01-01

    HAIFA is a modular, multichannel, fiber optically coupled spectroscopy diagnostic for tokamak plasmas. It operates in the visible, measuring H/sub α/ radiation, the visible continuum from thermal bremsstrahlung, and selected impurity lines. HAIFA is characterized by high modularity and flexibility, good radiation resistance, high noise immunity, and low cost. Details of design, construction, and calibration are given. The analysis of visible bremsstrahlung radiation measurements to deduce the effective ionic charge in a plasma is discussed

  7. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    International Nuclear Information System (INIS)

    Silver, E.H.; Clauser, J.F.; Carter, M.R.; Failor, B.H.; Foote, J.H.; Hornady, R.S.; James, R.A.; Lasnier, C.J.; Perkins, D.E.

    1986-01-01

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented

  8. 13. TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM

    International Nuclear Information System (INIS)

    Barnes, C.

    2000-01-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. ω pe >> (Omega) ce in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition (τ > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large K i . This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B 0 ∼ 2 kG, e > ∼ 10 13 cm -3 and T e ∼ 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be ≤ T e and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below T e . Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where ω pe >> (Omega) ce

  9. Diagnostic imaging of craniopharyngioma

    International Nuclear Information System (INIS)

    Gradzki, J.; Nowak, S.; Paprzycki, W.

    1993-01-01

    40 patients have been examined with operational and histological confirmation of craniopharyngioma. CT image and X-ray plane of skull were performed in case all of these patients. TMR was conformed to examine 4 patients. X-ray planes was compared to CT. CT permits tumor cyst detection. The efficacy of mentioned above diagnostic techniques was compared with surgical findings. (author)

  10. Picosecond imaging of inertial confinement fusion plasmas using electron pulse-dilation

    Science.gov (United States)

    Hilsabeck, T. J.; Nagel, S. R.; Hares, J. D.; Kilkenny, J. D.; Bell, P. M.; Bradley, D. K.; Dymoke-Bradshaw, A. K. L.; Piston, K.; Chung, T. M.

    2017-02-01

    Laser driven inertial confinement fusion (ICF) plasmas typically have burn durations on the order of 100 ps. Time resolved imaging of the x-ray self emission during the hot spot formation is an important diagnostic tool which gives information on implosion symmetry, transient features and stagnation time. Traditional x-ray gated imagers for ICF use microchannel plate detectors to obtain gate widths of 40-100 ps. The development of electron pulse-dilation imaging has enabled a 10X improvement in temporal resolution over legacy instruments. In this technique, the incoming x-ray image is converted to electrons at a photocathode. The electrons are accelerated with a time-varying potential that leads to temporal expansion as the electron signal transits the tube. This expanded signal is recorded with a gated detector and the effective temporal resolution of the composite system can be as low as several picoseconds. An instrument based on this principle, known as the Dilation X-ray Imager (DIXI) has been constructed and fielded at the National Ignition Facility. Design features and experimental results from DIXI will be presented.

  11. Optimum image compression rate maintaining diagnostic image quality of digital intraoral radiographs

    International Nuclear Information System (INIS)

    Song, Ju Seop; Koh, Kwang Joon

    2000-01-01

    The aims of the present study are to determine the optimum compression rate in terms of file size reduction and diagnostic quality of the images after compression and evaluate the transmission speed of original or each compressed images. The material consisted of 24 extracted human premolars and molars. The occlusal surfaces and proximal surfaces of the teeth had a clinical disease spectrum that ranged from sound to varying degrees of fissure discoloration and cavitation. The images from Digora system were exported in TIFF and the images from conventional intraoral film were scanned and digitalized in TIFF by Nikon SF-200 scanner(Nikon, Japan). And six compression factors were chosen and applied on the basis of the results from a pilot study. The total number of images to be assessed were 336. Three radiologists assessed the occlusal and proximal surfaces of the teeth with 5-rank scale. Finally diagnosed as either sound or carious lesion by one expert oral pathologist. And sensitivity and specificity and kappa value for diagnostic agreement was calculated. Also the area (Az) values under the ROC curve were calculated and paired t-test and oneway ANOVA test was performed. Thereafter, transmission time of the image files of the each compression level were compared with that of the original image files. No significant difference was found between original and the corresponding images up to 7% (1:14) compression ratio for both the occlusal and proximal caries (p<0.05). JPEG3 (1:14) image files are transmitted fast more than 10 times, maintained diagnostic information in image, compared with original image files. 1:14 compressed image file may be used instead of the original image and reduce storage needs and transmission time.

  12. Laser Thomson scattering diagnostics of non-equilibrium high pressure plasmas

    International Nuclear Information System (INIS)

    Muraoka, K.; Uchino, K.; Bowden, M.D.; Noguchi, Y.

    2001-01-01

    For various applications of non-equilibrium high pressure plasmas, knowledge of electron properties, such as electron density, electron temperature and/or electron energy distribution function (eedf), is prerequisite for any rational approach to understanding physical and chemical processes occurring in the plasmas. For this purpose, laser Thomson scattering has been successfully applied for the first time to measure the electron properties in plasmas for excimer laser pumping and in microdischarges. Although this diagnostic technique is well established for measurements in high temperature plasmas, its applications to these glow discharge plasmas have had various inherent difficulties, such as a presence of high density neutral particles (>10 21 m -3 ) in the excimer laser pumping discharges and an extremely small plasma size (<0.1 mm) and the presence of nearby walls for microdischarges. These difficulties have been overcome and clear signals have been obtained. The measured results are presented and their implications in the respective discharge phenomena are discussed

  13. Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam

    International Nuclear Information System (INIS)

    Davies, A.; Haberberger, D.; Boni, R.; Ivancic, S.; Brown, R.; Froula, D. H.

    2014-01-01

    A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry

  14. Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam.

    Science.gov (United States)

    Davies, A; Haberberger, D; Boni, R; Ivancic, S; Brown, R; Froula, D H

    2014-11-01

    A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry.

  15. Imaging diagnostics of the foot; Bildgebende Diagnostik des Fusses

    Energy Technology Data Exchange (ETDEWEB)

    Szeimies, Ulrike; Staebler, Axel [Radiologie in Muenchen-Harlaching, Muenchen (Germany); Walther, Markus (eds.) [Schoen-Klinik Muenchen-Harlaching, Muenchen (Germany). Zentrum fuer Fuss- und Sprunggelenkchirurgie

    2012-11-01

    The book on imaging diagnostics of the foot contains the following chapters: (1) Imaging techniques. (2) Clinical diagnostics. (3) Ankle joint and hind foot. (4) Metatarsus. (5) Forefoot. (6) Pathology of plantar soft tissue. (7) Nervous system diseases. (8) Diseases without specific anatomic localization. (9) System diseases including the foot. (10) Tumor like lesions. (11) Normative variants.

  16. Imaging back scattered and near back scattered light in ignition scale plasmas

    International Nuclear Information System (INIS)

    Kirkwood, R.K.; Back, C.A.; Glenzer, S.H.; Moody, J.D.

    1996-01-01

    Diagnostics have been developed and fielded at the Nova laser facility that image scattered light in the vicinity of the final laser focusing lens. The absolute calibration of optical components exposed to the target debris have been achieved by a combination of routine in situ calibration and maintenance. The scattering observed from plasmas relevant to ignition experiments indicates that light scattered just outside the lens can be larger than that collected by the lens, and is a significant factor in the energy balance when the f number is high

  17. Feasibility of arc-discharge and plasma-sputtering methods in cleaning plasma-facing and diagnostics components of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hakola, Antti, E-mail: antti.hakola@vtt.fi [VTT Technical Research Centre of Finland, VTT (Finland); Likonen, Jari [VTT Technical Research Centre of Finland, VTT (Finland); Karhunen, Juuso; Korhonen, Juuso T. [Department of Applied Physics, Aalto University (Finland); Aints, Märt; Laan, Matti; Paris, Peeter [Department of Physics, University of Tartu (Estonia); Kolehmainen, Jukka; Koskinen, Mika; Tervakangas, Sanna [DIARC-Technology Oy, Espoo (Finland)

    2015-10-15

    Highlights: • Feasibility of the arc-discharge and plasma-sputtering techniques in removing deposited layers from ITER-relevant samples demonstrated. • Samples with the size of an A4 paper can be cleaned from 1-μm thick deposited layers in 10–20 minutes by the arc-discharge method. • The plasma-sputtering method is 5–10 times slower but the resulting surfaces are very smooth. • Arc-discharge method could be used for rapid cleaning of plasma-facing components during maintenance shutdowns of ITER, plasma sputtering is preferred for diagnostics mirrors. - Abstract: We have studied the feasibility of arc-discharge and plasma-sputtering methods in removing deposited layers from ITER-relevant test samples. Prototype devices have been designed and constructed for the experiments and the cleaning process is monitored by a spectral detection system. The present version of the arc-discharge device is capable of removing 1-μm thick layers from 350-mm{sup 2} areas in 4–8 s, but due to the increased roughness of the cleaned surfaces and signs of local melting, mirror-like surfaces cannot be treated by this technique. The plasma-sputtering approach, for its part, is some 5–10 times slower in removing the deposited layers but no changes in surface roughness or morphology of the samples could be observed after the cleaning phase. The arc-discharge technique could therefore be used for rapid cleaning of plasma-facing components during maintenance shutdowns of ITER while in the case of diagnostics mirrors plasma sputtering is preferred.

  18. Remote network control plasma diagnostic system for Tokamak T-10

    International Nuclear Information System (INIS)

    Troynov, V I; Zimin, A M; Krupin, V A; Notkin, G E; Nurgaliev, M R

    2016-01-01

    The parameters of molecular plasma in closed magnetic trap is studied in this paper. Using the system of molecular diagnostics, which was designed by the authors on the «Tokamak T-10» facility, the radiation of hydrogen isotopes at the plasma edge is investigated. The scheme of optical radiation registration within visible spectrum is described. For visualization, identification and processing of registered molecular spectra a new software is developed using MatLab environment. The software also includes electronic atlas of electronic-vibrational-rotational transitions for molecules of protium and deuterium. To register radiation from limiter cross-section a network control system is designed using the means of the Internet/Intranet. Remote control system diagram and methods are given. The examples of web-interfaces for working out equipment control scenarios and viewing of results are provided. After test run in Intranet, the remote diagnostic system will be accessible through Internet. (paper)

  19. Development of a test bed plasma and diagnostic methods for detailed K-shell spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Hall, I.M.; Chambers, D.M.; Courtois, C.; Förster, E.; Gregory, C.D.; Howe, J.; Renner, Oldřich; Uschmann, I.; Woolsey, N.C.

    2006-01-01

    Roč. 133, - (2006), s. 1009-1011 ISSN 1155-4339 R&D Projects: GA MŠk LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-produced plasmas * x-ray and optical emission * plasma modelling * plasma diagnostics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.315, year: 2006

  20. PREFACE: The 8th Workshop on Frontiers in Low Temperature Plasma Diagnostics The 8th Workshop on Frontiers in Low Temperature Plasma Diagnostics

    Science.gov (United States)

    Sadeghi, Nader; Czarnetzki, Uwe

    2010-03-01

    The 8th Workshop on Frontiers in Low Temperature Plasma Diagnostics (FLTPD) was held in Blansko, near Brno, Czech Republic. FLTPD is a biennial European event in which scientists working on low temperature plasmas present their recent results, pointing out in particular the originality of the diagnostic techniques used. The idea of starting this series of workshops was born out of a discussion between Frieder Döbele, Bill Graham and one of us when travelling together from Bar Harbor, USA (after the 6th LAPD) to Montreal, Canada, in October 1993. It became evident that we had been lacking a European meeting that could bring together experts in the field of low temperature plasma diagnostics and facilitate sharing the knowledge of these diagnostics with a new generation of scientists. The first FLTPD was held in Les Houches, France, in February 1995. Since then it has been held in the spring of every other year in different European countries, as shown below. The next meeting will be held in Zinnowitz, near Greifswald, Germany, in May 2011. Year Location Chair of LOC 1995 Les Houches, France J Derouard 1997 Bad Honnef, Germany F Döbele 1999 Saillon, Switzerland Ch Hollenstein 2001 Rolduc, The Netherlands R van de Sanden 2003 Specchia, Italy S De Benedictis 2005 Les Houches, France N Sadeghi 2007 Cumbria, United Kingdom M Bowden 2009 Blansko, Czech Republic F Krčma To favour brainstorming and extended discussions between participants, FLTPD meetings have always been organized in isolated locations with the number of attendees limited to about 70. Workshops are held over three and a half days with about ten expert presentations by invited speakers (a few from overseas), as well as short oral or poster contributions. This special issue of Journal of Physics D: Applied Physics contains 20 articles representative of contributions to the last FLTPD in Blansko. All invited speakers and others who gave presentations, as selected by the Scientific Committee, were invited

  1. Electron Impact Excitation Cross Sections of Xenon for Optical Plasma Diagnostic

    National Research Council Canada - National Science Library

    Srivastava, Rajesh

    2007-01-01

    In this project the researcher had taken up the calculation of xenon apparent emission-excitation cross sections for emission lines that have diagnostic value in the analysis of Xe-propelled electric thruster plasmas...

  2. Validation of Diagnostic Imaging Based on Repeat Examinations. An Image Interpretation Model

    International Nuclear Information System (INIS)

    Isberg, B.; Jorulf, H.; Thorstensen, Oe.

    2004-01-01

    Purpose: To develop an interpretation model, based on repeatedly acquired images, aimed at improving assessments of technical efficacy and diagnostic accuracy in the detection of small lesions. Material and Methods: A theoretical model is proposed. The studied population consists of subjects that develop focal lesions which increase in size in organs of interest during the study period. The imaging modality produces images that can be re-interpreted with high precision, e.g. conventional radiography, computed tomography, and magnetic resonance imaging. At least four repeat examinations are carried out. Results: The interpretation is performed in four or five steps: 1. Independent readers interpret the examinations chronologically without access to previous or subsequent films. 2. Lesions found on images at the last examination are included in the analysis, with interpretation in consensus. 3. By concurrent back-reading in consensus, the lesions are identified on previous images until they are so small that even in retrospect they are undetectable. The earliest examination at which included lesions appear is recorded, and the lesions are verified by their growth (imaging reference standard). Lesion size and other characteristics may be recorded. 4. Records made at step 1 are corrected to those of steps 2 and 3. False positives are recorded. 5. (Optional) Lesion type is confirmed by another diagnostic test. Conclusion: Applied on subjects with progressive disease, the proposed image interpretation model may improve assessments of technical efficacy and diagnostic accuracy in the detection of small focal lesions. The model may provide an accurate imaging reference standard as well as repeated detection rates and false-positive rates for tested imaging modalities. However, potential review bias necessitates a strict protocol

  3. Ordering of diagnostic information in encoded medical images. Accuracy progression

    Science.gov (United States)

    Przelaskowski, A.; Jóźwiak, R.; Krzyżewski, T.; Wróblewska, A.

    2008-03-01

    A concept of diagnostic accuracy progression for embedded coding of medical images was presented. Implementation of JPEG2000 encoder with a modified PCRD optimization algorithm was realized and initially verified as a tool for accurate medical image streaming. Mean square error as a distortion measure was replaced by other numerical measures to revise quality progression according to diagnostic importance of successively encoded image information. A faster increment of image diagnostic importance during reconstruction of initial packets of code stream was reached. Modified Jasper code was initially tested on a set of mammograms containing clusters of microcalcifications and malignant masses, and other radiograms. Teleradiologic applications were considered as the first area of interests.

  4. Plasma-focus neutron diagnostics by means of high-sensitivity bubble detectors

    International Nuclear Information System (INIS)

    Zoita, V.; Pantea, A.; Patran, A.; Lee, P.; Springham, S.V.; Koh, M.; Rawat, R.S.; Zhang, T.; Hassan, M.

    2005-01-01

    A new type of bubble detector (a superheated fluid detector), the DEFENDER TM , was tested as a neutron diagnostics device on the NX2 plasma focus (PF) device at the NIE/NTU, Singapore. The DEFENDER TM detector was recently developed and commercialised by BTI, Canada, and it is characterised by a very high sensitivity (a factor of about 30 higher than the standard detectors) to fast neutrons (energy above 100 keV). Together with its particular energy response this high sensitivity allows for the development of improved neutron diagnostics for the PF devices. The NX2 plasma focus device has the following typical operating parameters: condenser bank charging voltage: 15 kV; stored energy: 2.3 kJ; peak current: 420 kA; current rise-time: 1.35 μs; deuterium pressure: 20 mbar. During most of the experiments reported here the NX2 device was operated at 14 kV charging voltage and 20 mbar deuterium pressure. A few shots were done at voltages of 14.5 and 15 kV and the same gas pressure. The bubble detector neutron diagnostics experiments carried out on the NX2 machine involved the following measurements: 1. Relative calibration of the four detectors. The detectors were irradiated simultaneously, in identical conditions, by plasma focus neutron pulses and their neutron responses were compared.; 2. angular distribution of the neutron fluence (single shot). The distribution of the neutron fluence was measured at four angles with respect to the PF electrode axis: 0, 30, 60 and 90 deg; 3. Reproducibility of the neutron yield at high repetition rate operation. The NX2 device was operated at 1 Hz repetition rate.; 4. Bubble detector response time. The response time of the DEFENDER TM detector was tested by using the short PF neutron pulses and a high-speed video camera. The paper will present the results of these experiments and their implications for the development of neutron plasma diagnostics techniques based on the bubble detectors and their broader class of superheated

  5. X-ray diagnostics for laser matter interaction experiments

    International Nuclear Information System (INIS)

    Troussel, Ph.

    2000-01-01

    Advances in the field of laser-driven inertially confined thermonuclear fusion research since the early 1990's are reviewed. It covers the experimental techniques used to study the interaction of laser radiation with matter and high density plasma. A high performance instrumentation (diagnostics) for observation of X radiation (from a few eV to a few keV) will be required to understand the physical processes involved in the interaction. This paper is a three-part: first part, describes diagnostics metrology realized around different X-ray sources (synchrotron, laser plasma...); a second part, synthesizes theoretical and experimental X-ray optics studies and show the interest for direct applications as X-ray spectroscopy and X-ray imaging around laser-produced plasma; a third part, is a review of high resolution X-ray imaging, performances of these optical system were summarized. (author)

  6. Mass spectrometric identification of diagnostic markers for chronic prostatitis in seminal plasma by analysis of seminal plasma protein clinical samples.

    Science.gov (United States)

    Rokka, A; Mehik, A; Tonttila, P; Vaarala, M

    2017-08-15

    There are few specific diagnostic markers for chronic prostatitis. Therefore, we used mass spectrometry to evaluate differences in seminal plasma protein expression among patients with prostatitis and young and middle-aged healthy controls. We analysed pooled seminal plasma protein samples from four prostatitis patients (two pools), three young controls (one pool), and three middle-aged controls (one pool). The samples were analysed by liquid chromatography-tandem mass spectrometry. Of the 349 proteins identified, 16 were differentially expressed between the two control pools. Five proteins were up- or down-regulated in both of the prostatitis pools compared to middle-aged controls but not between young and middle-aged pools. Progestagen-associated endometrial protein (PAEP) was over-expressed in prostatitis samples compared to young and middle-aged controls. Our findings and those of previous studies indicate that PAEP is a potential seminal plasma marker for chronic prostatitis. In conclusion, we found age-related changes in seminal plasma protein expression. PAEP expression in seminal plasma should be investigated further to evaluate its potential as a diagnostic marker for chronic prostatitis.

  7. Overview of the data acquisition and control system for plasma diagnostics on MFTF-B

    International Nuclear Information System (INIS)

    Wyman, R.H.; Deadrick, F.J.; Lau, N.H.; Nelson, B.C.; Preckshot, G.G.; Throop, A.L.

    1983-01-01

    For MFTF-B, the plasma diagnostics system is expected to grow from a collection of 12 types of diagnostic instruments, initially producing about 1 Megabyte of data per shot, to an expanded set of 22 diagnostics producing about 8 Megabytes of data per shot. To control these diagnostics and acquire and process the data, a system design has been developed which uses an architecture similar to the supervisory/local-control computer system which is used to control other MFTF-B subsystems. This paper presents an overview of the hardware and software that will control and acquire data from the plasma diagnostics system. Data flow paths from the instruments, through processing, and into final archived storage will be described. A discussion of anticipated data rates, including anticipated software overhead at various points of the system, is included, along with the identification of possible bottlenecks. A methodology for processing of the data is described, along with the approach to handle the planned growth in the diagnostic system. Motivations are presented for various design choices which have been made

  8. Temperature diagnostics of a non-thermal plasma jet at atmospheric pressure

    Science.gov (United States)

    Schäfer, Jan

    2013-09-01

    The study reflects the concept of the temperature as a physical quantity resulting from the second thermodynamic law. The reliability of different approaches of the temperature diagnostics of open non-equilibrium systems is discussed using examples of low temperature atmospheric pressure discharges. The focus of this work is a miniaturized non-thermal atmospheric pressure plasma jet for local surface treatment at ambient atmosphere. The micro-discharge is driven with a capacitively coupled radio frequency electric field at 27.12 MHz and fed with argon at rates of about 1 slm through the capillary with an inner diameter of 4 mm. The discharge consists of several contracted filaments with diameter around 300 μm which are rotating azimuthally in the capillary in a self-organized manner. While the measured temperatures of the filament core exceed 700 K, the heat impact on a target below the plasma jet remains limited leading to target temperatures below 400 K. Different kinds of temperatures and energy transport processes are proposed and experimentally investigated. Nevertheless, a reliable and detailed temperature diagnostics is a challenge. We report on a novel diagnostics approach for the spatially and temporally resolved measurement of the gas temperature based on the optical properties of the plasma. Laser Schlieren Deflectometry is adapted to explore temperature profiles of filaments and their behaviour. In parallel, the method demonstrates a fundamental Fermat's principle of minimal energy. Information acquired with this method plays an important role for the optimization of local thin film deposition and surface functionalization by means of the atmospheric pressure plasma jet. The work was supported in part by the Deutsche Forschungsgemeinschaft within SFB-TR 24.

  9. Proceedings on US-Japan workshop A-56 'irradiation effects on plasma diagnostic equipment'

    International Nuclear Information System (INIS)

    1986-06-01

    This is a collection of abstracts and papers for the US-Japan Workshop A-56 on ''Irradiation Effects on Plasma Diagnostic Equipments'' held at the Institute of Plasma Physics, Nagoya University, on January 28 through 30, 1986. The topics presented at the workshop are classified as follows: 1) Definition of the problems and general views. 2) Radiation levels estimated from recent experiments and analysis on large tokamaks. 3) Radiation sensitivities of diagnostic components. 4) Neutron sources for irradiation testing. 5) Discussion on suggested experiments on radiation hardening and conclusions. The conclusions summarized by Dr. K. M. Young are also included. (author)

  10. High speed manyframe optical methods for plasma diagnostics

    International Nuclear Information System (INIS)

    Erokhin, A.A.; Shikanov, A.S.; Sklizkov, G.V.; Zakharenkov, Yu.A.; Zorev, N.N.

    1979-01-01

    A complex of active optical plasma and strong ionized shock wave diagnostics is described. The complex consisted of a specially developed high speed manyframe systems of shadow, schlieren and interferometric photography. The comparison of results obtained by a simultaneous registration of investigated object by means of different optical methods allowed us to determine optimal employment range for the methods. The sensitivity, temporal and space resolution of each optical method under conditions of high probe radiation refraction are discussed. The application boundaries of these methods for ionized shock wave investigation were found to depend on the shock wave front width. The methods described were used for the study of laser-produced plasma phenomena, occuring in the experiments on powerful nine-channel laser installation ''Kalmar''. (author)

  11. Diagnostic imaging in undergraduate medical education: an expanding role

    International Nuclear Information System (INIS)

    Miles, K.A.

    2005-01-01

    Radiologists have been involved in anatomy instruction for medical students for decades. However, recent technical advances in radiology, such as multiplanar imaging, 'virtual endoscopy', functional and molecular imaging, and spectroscopy, offer new ways in which to use imaging for teaching basic sciences to medical students. The broad dissemination of picture archiving and communications systems is making such images readily available to medical schools, providing new opportunities for the incorporation of diagnostic imaging into the undergraduate medical curriculum. Current reforms in the medical curriculum and the establishment of new medical schools in the UK further underline the prospects for an expanding role for imaging in medical education. This article reviews the methods by which diagnostic imaging can be used to support the learning of anatomy and other basic sciences

  12. Present practice of diagnostic imaging in the newborn infants

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi

    1994-01-01

    The present practice of diagnostic imaging in our NICU (which includes premature unit) was studied, surveying the total 637 admitted newborn infants during the year of 1992. The total number of diagnostic imaging performed other than scout radiography was 939. The number of ultrasonography of the heart and the brain, and brain CT was 752 or 80.0% of the total. These were done more frequently in the cases of very low birth weight infants. In our NICU, ultrasonography including pulse-doppler method, is performed for diagnosis of structural and functional abnormality of the cardiopulmonary systems and also for finding intracranial lesion, on the basis of finding in plain chest films. In spite of various limitation, we are performing, as the necessity commands, fluoroscopic contrast study, angiography, scintigraphy and MRI for the low birth weight (≥1,500g) and mature infants. Some of the actual cases in which diagnostic imaging was helpful were presented. Recently, upon admittance to the NICU for the specific abnormality of the newborn and premature infants, orginally, asymptomatic diseases are often found and diagnosed. This should be the results of progress in diagnostic imaging in recent years. (author)

  13. Plasma Fluctuation Studies in the TCV Tokamak: Modeling of Shaping Effects and Advanced Diagnostic Development

    International Nuclear Information System (INIS)

    Marinoni, A.

    2009-10-01

    One of the most important issues for magnetic-confinement fusion research is the so-called anomalous transport across magnetic field lines, i.e. transport that is in excess of that caused by collisional processes. The need to reduce anomalous transport in order to increase the efficiency of a prospective fusion reactor must be addressed through an investigation of its fundamental underlying causes. This thesis is divided into two distinct components: one experimental and instrumental, and the other theoretical and based on numerical modeling. The experimental part consists of the design and installation of a new diagnostic for core turbulence fluctuations in the TCV tokamak. An extensive conceptual investigation of a number of possible solutions, including Beam Emission Spectroscopy, Reflectometry, Cross Polarization, Collective Scattering and different Imaging techniques, was carried out at first. A number of criteria, such as difficulties in data interpretation, costs, variety of physics issues that could be addressed and expected performance, were used to compare the different techniques for specific application to the TCV tokamak. The expected signal to noise ratio and the required sampling frequency for TCV were estimated on the basis of a large number of linear, local gyrokinetic simulations of plasma fluctuations. This work led to the choice of a Zernike phase contrast imaging system in a tangential launching configuration. The diagnostic was specifically designed to provide information on turbulence features up to now unknown. In particular, it is characterized by an outstanding spatial resolution and by the capability to measure a very broad range of fluctuations, from ion to electron Larmor radius scales, thus covering the major part of the instabilities expected to be at play in TCV. The spectrum accessible covers the wavenumber region from 0.9 cm -1 to 60 cm -1 at 24 radial positions with 3 MHz bandwidth. The diagnostic is an imaging technique and is

  14. Diagnostic Medical Imaging in Pediatric Patients and Subsequent Cancer Risk.

    Science.gov (United States)

    Mulvihill, David J; Jhawar, Sachin; Kostis, John B; Goyal, Sharad

    2017-11-01

    The use of diagnostic medical imaging is becoming increasingly more commonplace in the pediatric setting. However, many medical imaging modalities expose pediatric patients to ionizing radiation, which has been shown to increase the risk of cancer development in later life. This review article provides a comprehensive overview of the available data regarding the risk of cancer development following exposure to ionizing radiation from diagnostic medical imaging. Attention is paid to modalities such as computed tomography scans and fluoroscopic procedures that can expose children to radiation doses orders of magnitude higher than standard diagnostic x-rays. Ongoing studies that seek to more precisely determine the relationship of diagnostic medical radiation in children and subsequent cancer development are discussed, as well as modern strategies to better quantify this risk. Finally, as cardiovascular imaging and intervention contribute substantially to medical radiation exposure, we discuss strategies to enhance radiation safety in these areas. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  15. Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome.

    Science.gov (United States)

    Davatzikos, Christos; Rathore, Saima; Bakas, Spyridon; Pati, Sarthak; Bergman, Mark; Kalarot, Ratheesh; Sridharan, Patmaa; Gastounioti, Aimilia; Jahani, Nariman; Cohen, Eric; Akbari, Hamed; Tunc, Birkan; Doshi, Jimit; Parker, Drew; Hsieh, Michael; Sotiras, Aristeidis; Li, Hongming; Ou, Yangming; Doot, Robert K; Bilello, Michel; Fan, Yong; Shinohara, Russell T; Yushkevich, Paul; Verma, Ragini; Kontos, Despina

    2018-01-01

    The growth of multiparametric imaging protocols has paved the way for quantitative imaging phenotypes that predict treatment response and clinical outcome, reflect underlying cancer molecular characteristics and spatiotemporal heterogeneity, and can guide personalized treatment planning. This growth has underlined the need for efficient quantitative analytics to derive high-dimensional imaging signatures of diagnostic and predictive value in this emerging era of integrated precision diagnostics. This paper presents cancer imaging phenomics toolkit (CaPTk), a new and dynamically growing software platform for analysis of radiographic images of cancer, currently focusing on brain, breast, and lung cancer. CaPTk leverages the value of quantitative imaging analytics along with machine learning to derive phenotypic imaging signatures, based on two-level functionality. First, image analysis algorithms are used to extract comprehensive panels of diverse and complementary features, such as multiparametric intensity histogram distributions, texture, shape, kinetics, connectomics, and spatial patterns. At the second level, these quantitative imaging signatures are fed into multivariate machine learning models to produce diagnostic, prognostic, and predictive biomarkers. Results from clinical studies in three areas are shown: (i) computational neuro-oncology of brain gliomas for precision diagnostics, prediction of outcome, and treatment planning; (ii) prediction of treatment response for breast and lung cancer, and (iii) risk assessment for breast cancer.

  16. Hot and dense plasma probing by soft X-ray lasers

    Czech Academy of Sciences Publication Activity Database

    Krůs, Miroslav; Kozlová, Michaela; Nejdl, Jaroslav; Rus, B.

    2018-01-01

    Roč. 13, č. 1 (2018), č. článku C01004. ISSN 1748-0221. [International Symposium on Laser-Aided Plasma Diagnostics/18./. Prague, 24.09.2017-28.09.2017] R&D Projects: GA MŠk LM2010014; GA MŠk(CZ) LM2015083 Institutional support: RVO:61389021 Keywords : Plasma diagnostics - interferometry * spectroscopy and imaging * Plasma diagnostics - probes * Plasma generation (laser-produced, RF, x ray-produced) Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/13/01/C01004

  17. Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology

    International Nuclear Information System (INIS)

    Doi, Kunio

    2006-01-01

    Over the last 50 years, diagnostic imaging has grown from a state of infancy to a high level of maturity. Many new imaging modalities have been developed. However, modern medical imaging includes not only image production but also image processing, computer-aided diagnosis (CAD), image recording and storage, and image transmission, most of which are included in a picture archiving and communication system (PACS). The content of this paper includes a short review of research and development in medical imaging science and technology, which covers (a) diagnostic imaging in the 1950s, (b) the importance of image quality and diagnostic performance, (c) MTF, Wiener spectrum, NEQ and DQE, (d) ROC analysis, (e) analogue imaging systems, (f) digital imaging systems, (g) image processing, (h) computer-aided diagnosis, (i) PACS, (j) 3D imaging and (k) future directions. Although some of the modalities are already very sophisticated, further improvements will be made in image quality for MRI, ultrasound and molecular imaging. The infrastructure of PACS is likely to be improved further in terms of its reliability, speed and capacity. However, CAD is currently still in its infancy, and is likely to be a subject of research for a long time. (review)

  18. MR imaging diagnostic protocol for unilocular lesions of the jaw

    Directory of Open Access Journals (Sweden)

    Hironobu Konouchi

    2012-08-01

    Using our MR imaging diagnostic protocol to diagnose 31 cases, we obtained a positivity rate of 71.0%. The use of our MR imaging diagnostic protocol for unilocular lesions, which are especially difficult to differentiate by radiography, would improve the morphological and qualitative diagnosis of soft tissue lesions.

  19. Improving plasma shaping accuracy through consolidation of control model maintenance, diagnostic calibration, and hardware change control

    International Nuclear Information System (INIS)

    Baggest, D.S.; Rothweil, D.A.; Pang, S.

    1995-12-01

    With the advent of more sophisticated techniques for control of tokamak plasmas comes the requirement for increasingly more accurate models of plasma processes and tokamak systems. Development of accurate models for DIII-D power systems, vessel, and poloidal coils is already complete, while work continues in development of general plasma response modeling techniques. Increased accuracy in estimates of parameters to be controlled is also required. It is important to ensure that errors in supporting systems such as diagnostic and command circuits do not limit the accuracy of plasma parameter estimates or inhibit the ability to derive accurate plasma/tokamak system models. To address this issue, we have developed more formal power systems change control and power system/magnetic diagnostics calibration procedures. This paper discusses our approach to consolidating the tasks in these closely related areas. This includes, for example, defining criteria for when diagnostics should be re-calibrated along with required calibration tolerances, and implementing methods for tracking power systems hardware modifications and the resultant changes to control models

  20. Plenoptic Imaging for Three-Dimensional Particle Field Diagnostics.

    Energy Technology Data Exchange (ETDEWEB)

    Guildenbecher, Daniel Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hall, Elise Munz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Plenoptic imaging is a promising emerging technology for single-camera, 3D diagnostics of particle fields. In this work, recent developments towards quantitative measurements of particle size, positions, and velocities are discussed. First, the technique is proven viable with measurements of the particle field generated by the impact of a water drop on a thin film of water. Next, well cont rolled experiments are used to verify diagnostic uncertainty. Finally, an example is presented of 3D plenoptic imaging of a laboratory scale, explosively generated fragment field.

  1. Two-dimensional imaging of edge plasma electron density and temperature by the passive helium emission ratio technique in TJ-II

    International Nuclear Information System (INIS)

    De la Cal, E; Guasp, J

    2011-01-01

    An intensified visible camera looks tangentially at a poloidal limiter where helium recycles, acting as a wide neutral source, and the atomic line emission due to plasma excitation becomes strongly localized there. It includes a bifurcated coherent bundle, each end with a different interference filter to select helium atomic lines, so that two simultaneous filtered images are captured in one single frame. The object of the proposed technique is to apply the well-known helium-beam line-ratio technique to obtain from selected filtered images the two-dimensional (2D) edge plasma n e and T e . The code EIRENE was used to demonstrate that the helium emission from recycling neutrals dominates the emission for the lines of view passing close above the limiter. Since these chords are nearly parallel to magnetic field lines in the emission region, the images can be approximated to poloidal cuts of the plasma emission within the tolerances discussed in the paper. The absolute radial profiles of T e and n e obtained with the method presented here were checked in the TJ-II stellarator to be in relatively good agreement with other diagnostics within a wide range of plasma parameters for both ECRH and NBI plasmas. The method is finally used to get 2D images of edge plasma T e and n e .

  2. Diagnostic study of multiple double layer formation in expanding RF plasma

    Science.gov (United States)

    Chakraborty, Shamik; Paul, Manash Kumar; Roy, Jitendra Nath; Nath, Aparna

    2018-03-01

    Intensely luminous double layers develop and then expand in size in a visibly glowing RF discharge produced using a plasma source consisting of a semi-transparent cylindrical mesh with a central electrode, in a linear plasma chamber. Although RF discharge is known to be independent of device geometry in the absence of magnetic field, the initiation of RF discharge using such a plasma source results in electron drift and further expansion of the plasma in the vessel. The dynamics of complex plasma structures are studied through electric probe diagnostics in the expanding RF plasma. The measurements made to study the parametric dependence of evolution of double layer structures are analyzed and presented here. The plasma parameter measurements suggest that the complex potential structures initially form with low potential difference between the layers and then gradually expand producing burst oscillations. The present study provides interesting information about the stability of plasma sheath and charge particle dynamics in it that are important to understand the underlying basic sheath physics along with applications in plasma acceleration and propulsion.

  3. Plasma diagnostics in the CECI device through visible spectroscopy

    International Nuclear Information System (INIS)

    Ueda, M.; Kayama, M.E.; Aso, Y.

    1991-11-01

    In this paper we discuss the application of a visible spectrometer which was used to diagnose a plasma produced in an RFP device, called CECI. A Jobin Yvon, HR-640 S spectrometer with a photomultiplier detector was used to measure the Doppler broadening of lines emitted by the plasma, and allowed to measure the ion temperatures of the order of 2-3 eV. The electron temperature of 40-50 eV was determined by the method of He I line intensity ratio. The spectroscopically determined ion temperature is in better accordance with the 10 eV electron temperature obtained with an electrostatic probe. The line emissions of He II, H I, C II and O II were compared with signals from other diagnostics, and their correlations indicated the presence of MHD instabilities in the plasma. (author)

  4. Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam

    Energy Technology Data Exchange (ETDEWEB)

    Davies, A., E-mail: adavies@lle.rochester.edu; Haberberger, D.; Boni, R.; Ivancic, S.; Brown, R.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-11-15

    A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry.

  5. A Versatile Image Processor For Digital Diagnostic Imaging And Its Application In Computed Radiography

    Science.gov (United States)

    Blume, H.; Alexandru, R.; Applegate, R.; Giordano, T.; Kamiya, K.; Kresina, R.

    1986-06-01

    In a digital diagnostic imaging department, the majority of operations for handling and processing of images can be grouped into a small set of basic operations, such as image data buffering and storage, image processing and analysis, image display, image data transmission and image data compression. These operations occur in almost all nodes of the diagnostic imaging communications network of the department. An image processor architecture was developed in which each of these functions has been mapped into hardware and software modules. The modular approach has advantages in terms of economics, service, expandability and upgradeability. The architectural design is based on the principles of hierarchical functionality, distributed and parallel processing and aims at real time response. Parallel processing and real time response is facilitated in part by a dual bus system: a VME control bus and a high speed image data bus, consisting of 8 independent parallel 16-bit busses, capable of handling combined up to 144 MBytes/sec. The presented image processor is versatile enough to meet the video rate processing needs of digital subtraction angiography, the large pixel matrix processing requirements of static projection radiography, or the broad range of manipulation and display needs of a multi-modality diagnostic work station. Several hardware modules are described in detail. For illustrating the capabilities of the image processor, processed 2000 x 2000 pixel computed radiographs are shown and estimated computation times for executing the processing opera-tions are presented.

  6. Proceeding of JSPS-CAS core university program seminar on production and control of high performance plasmas with advanced plasma heating and diagnostic systems

    International Nuclear Information System (INIS)

    Gao Xiang; Morita, Shigeru

    2009-01-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and control of high performance plasmas with advanced plasma heating and diagnostic systems' took place in Shiner hotel, Lijiang, China, 4-7 November 2008. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. One special talk and 34 oral talks were presented in the seminar including 16 Japanese attendees. Production and control of high performance plasmas is a crucial issue for realizing an advanced nuclear fusion reactor in addition to developments of advanced plasma heating and diagnostics. This seminar was motivated along the issues. Results obtained from CUP activities during recent four years were summarized. Several crucial issues to be resolved near future were also extracted in this seminar. The 31 of the papers are indexed individually. (J.P.N.)

  7. The diagnostic value of plasma N-terminal connective tissue growth factor levels in children with heart failure.

    Science.gov (United States)

    Li, Gang; Song, Xueqing; Xia, Jiyi; Li, Jing; Jia, Peng; Chen, Pengyuan; Zhao, Jian; Liu, Bin

    2017-01-01

    The aim of this study was to assess the diagnostic value of plasma N-terminal connective tissue growth factor in children with heart failure. Methods and results Plasma N-terminal connective tissue growth factor was determined in 61 children, including 41 children with heart failure, 20 children without heart failure, and 30 healthy volunteers. The correlations between plasma N-terminal connective tissue growth factor levels and clinical parameters were investigated. Moreover, the diagnostic value of N-terminal connective tissue growth factor levels was evaluated. Compared with healthy volunteers and children without heart failure, plasma N-terminal connective tissue growth factor levels were significantly elevated in those with heart failure (p0.05), but it obviously improved the ability of diagnosing heart failure in children, as demonstrated by the integrated discrimination improvement (6.2%, p=0.013) and net re-classification improvement (13.2%, p=0.017) indices. Plasma N-terminal connective tissue growth factor is a promising diagnostic biomarker for heart failure in children.

  8. Diagnostics of helium plasma by collisional-radiative modeling and optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonwook; Kwon, Duck-Hee [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Optical diagnostics for the electron temperature (T{sub e}) and the electron density (n{sub e}) of fusion plasma is important for understanding and controlling the edge and the divertor plasmas in tokamak. Since the line intensity ratio method using the collisional-radiative modeling and OES (optical emission spectroscopy) is simple and does not disturb the plasma, many fusion devices with TEXTOR, JET, JT-60U, LHD, and so on, have employed the line intensity ratio method as a basic diagnostic tool for neutral helium (He I). The accuracy of the line intensity ratio method depends on the reliability of the cross sections and rate coefficients. We performed state-of-the-art R-matrix calculations including couplings up to n=7 states and the distorted wave (DW) calculations for the electron-impact excitation (EIE) cross sections of He I using the flexible atomic code (FAC). The collisional-radiative model for He I was constructed using the calculated the cross sections. The helium collisional-radiative model for He I was constructed to diagnose the electron temperature and the electron density of the plasma. The electron temperature and density were determined by using the line intensity ratio method.

  9. Diagnostic imaging in focal epilepsy

    International Nuclear Information System (INIS)

    Zlatareva, D.

    2013-01-01

    Focal epilepsies account for 60% of all seizure disorders worldwide. In this review the classic and new classification system of epileptic seizures and syndromes as well as genetic forms are discussed. Magnetic resonance (MR) is the technique of choice for diagnostic imaging in focal epilepsy because of its sensitivity and high tissue contrast. The review is focused on the lack of consensus of imaging protocols and reported findings in refractory epilepsy. The most frequently encountered MRI findings in epilepsy are reported and their imaging characteristics are depicted. Diagnosis of hippocampal sclerosis and malformations of cortical development as two major causes of refractory focal epilepsy is described in details. Some promising new techniques as positron emission tomography computed tomography (PET/CT) and MR and PET/CT fusion are briefly discussed. Also the relevance of adequate imaging in focal epilepsy, some practical points in imaging interpretation and differential diagnosis are highlighted. (author)

  10. X-ray Imaging and preliminary studies of the X-ray self-emission from an innovative plasma-trap based on the Bernstein waves heating mechanism

    Science.gov (United States)

    Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.

  11. A recommender system for medical imaging diagnostic.

    Science.gov (United States)

    Monteiro, Eriksson; Valente, Frederico; Costa, Carlos; Oliveira, José Luís

    2015-01-01

    The large volume of data captured daily in healthcare institutions is opening new and great perspectives about the best ways to use it towards improving clinical practice. In this paper we present a context-based recommender system to support medical imaging diagnostic. The system relies on data mining and context-based retrieval techniques to automatically lookup for relevant information that may help physicians in the diagnostic decision.

  12. 13th TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    C. BARNES

    2000-07-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. {omega}{sub pe} >> {Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau} > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large K{sub i}. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub 0} {approx} 2 kG, {approx} 10{sup 13} cm{sup -3} and T{sub e} {approx} 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be {le} T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below T{sub e}. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where {omega}{sub pe} >> {Omega}{sub ce}.

  13. Diagnostic imaging in fertility disorders

    International Nuclear Information System (INIS)

    Winfield, A.C.; Fleischer, A.C.

    1987-01-01

    Some 10%-15% of married couples are affected by a fertility disorder. The number of infertile couples seeking medical assistance has increased dramatically in the past decade. The roles of diagnostic imaging with radiography and US (conventional and transvaginal) is emphasized in the assessment of couples with fertility disorders and an unexpectedly higher incidence of fetal wastage secondary to unsuspected uterine anomalies. The most frequently utilized radiographic examination in infertile patients is hysterosalpingography (HSG). Techniques and complications of HSG are illustrated. The normal anatomy, variants, and congenital anomalies of the uterus and fallopian tubes are demonstrated, as are the numerous abnormalities such as filling defects of the uterine cavity, synechiae, effects of maternal diethylstilbestrol exposure, inflammatory tubal disease, and the more common HSG findings following uterine and tubal surgery. The role of diagnostic imaging in male infertility, including vasography and varicocele detection, are addressed. Conventional and transvaginal US in the management of gynecologic fertility disorders are examined, with an emphasis on follicular monitoring, guided follicular aspirations, endometrial evaluations, and evaluation of other disorders (such as endometriosis) associated with infertility

  14. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices.

    Science.gov (United States)

    Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G

    2013-12-01

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  15. A Plasma Diagnostic Set for the Study of a Variable Specific Impulse Magnetoplasma Rocket

    Science.gov (United States)

    Squire, J. P.; Chang-Diaz, F. R.; Bengtson Bussell, R., Jr.; Jacobson, V. T.; Wootton, A. J.; Bering, E. A.; Jack, T.; Rabeau, A.

    1997-11-01

    The Advanced Space Propulsion Laboratory (ASPL) is developing a Variable Specific Impulse Magnetoplasma Rocket (VASIMR) using an RF heated magnetic mirror operated asymmetrically. We will describe the initial set of plasma diagnostics and data acquisition system being developed and installed on the VASIMR experiment. A U.T. Austin team is installing two fast reciprocating probes: a quadruple Langmuir and a Mach probe. These measure electron density and temperature profiles, electrostatic plasma fluctuations, and plasma flow profiles. The University of Houston is developing an array of 20 highly directional Retarding Potential Analyzers (RPA) for measuring ion energy distribution function profiles in the rocket plume, giving a measurement of total thrust. We have also developed a CAMAC based data acquisition system using LabView running on a Power Macintosh communicating through a 2 MB/s serial highway. We will present data from initial plasma operations and discuss future diagnostic development.

  16. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  17. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    International Nuclear Information System (INIS)

    Geohegan, D.B.

    1994-01-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume

  18. Fast, fat-suppressed diagnostic imaging of the breast

    International Nuclear Information System (INIS)

    Metzger, G.J.; Weatherall, P.

    1999-01-01

    Maximum sensitivity and diagnostic precision of MR imaging of the breast can be achieved only with fat-suppressed diagnostic scans with high resolution. Optimal results were obtained with a 3D-FFE sequence and excitation by a binomial pulse and an amplitude-modulated binomial pulse. (orig./CB) [de

  19. Additive manufacture (3d printing) of plasma diagnostic components and assemblies for fusion experiments

    Science.gov (United States)

    Sieck, Paul; Woodruff, Simon; Stuber, James; Romero-Talamas, Carlos; Rivera, William; You, Setthivoine; Card, Alexander

    2015-11-01

    Additive manufacturing (or 3D printing) is now becoming sufficiently accurate with a large range of materials for use in printing sensors needed universally in fusion energy research. Decreasing production cost and significantly lowering design time of energy subsystems would realize significant cost reduction for standard diagnostics commonly obtained through research grants. There is now a well-established set of plasma diagnostics, but these expensive since they are often highly complex and require customization, sometimes pace the project. Additive manufacturing (3D printing) is developing rapidly, including open source designs. Basic components can be printed for (in some cases) less than 1/100th costs of conventional manufacturing. We have examined the impact that AM can have on plasma diagnostic cost by taking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) techniques to determine costs of components and labor costs associated with getting the diagnostic to work as intended. With that information in hand, we set about optimizing the design to exploit the benefits of AM. Work performed under DOE Contract DE-SC0011858.

  20. Local area network for the plasma diagnostics system of MFTF-B

    International Nuclear Information System (INIS)

    Lau, N.H.; Minor, E.G.

    1983-01-01

    The MFTF-B Plasma Diagnostics System will be implemented in stages, beginning with a start-up set of diagnostics and evolving toward a basic set. The start-up set contains 12 diagnostics which will acquire a total of about 800 Kbytes of data per machine pulse; the basic set contains 23 diagnostics which will acquire a total of about 8 Mbytes of data per pulse. Each diagnostic is controlled by a Foundation System consisting of a DEC LSI-11/23 microcomputer connected to CAMAC via a 5 Mbits/second serial fiber-optic link and connected to a supervisory computer (Perkin-Elmer 3250) via a 9600 baud RS232 link. The Foundation System is a building block used throughout MFTF-B for control and status monitoring. However, its 9600 baud link to the supervisor presents a bottleneck for the large data transfers required by diagnostics. To overcome this bottleneck the diagnostics Foundation Systems will be connected together with an additional LSI-11/23 called the master to form a Local Area Network (LAN) for data acquisition

  1. Magnetic resonance imaging of the wrist: Diagnostic performance statistics

    International Nuclear Information System (INIS)

    Hobby, Jonathan L.; Tom, Brian D.M.; Bearcroft, Philip W.P.; Dixon, Adrian K.

    2001-01-01

    AIM: To review the published diagnostic performance statistics for magnetic resonance imaging (MRI) of the wrist for tears of the triangular fibrocartilage complex, the intrinsic carpal ligaments, and for osteonecrosis of the carpal bones. MATERIALS AND METHODS: We used Medline and Embase to search the English language literature. Studies evaluating the diagnostic performance of MRI of the wrist in living patients with surgical confirmation of MR findings were identified. RESULTS: We identified 11 studies reporting the diagnostic performance of MRI for tears of the triangular fibrocartilage complex for a total of 410 patients, six studies for the scapho-lunate ligament (159 patients), six studies for the luno-triquetral ligament (142 patients) and four studies (56 patients) for osteonecrosis of the carpal bones. CONCLUSIONS: Magnetic resonance imaging is an accurate means of diagnosing tears of the triangular fibrocartilage and carpal osteonecrosis. Although MRI is highly specific for tears of the intrinsic carpal ligaments, its sensitivity is low. The diagnostic performance of MRI in the wrist is improved by using high-resolution T2* weighted 3D gradient echo sequences. Using current imaging techniques without intra-articular contrast medium, magnetic resonance imaging cannot reliably exclude tears of the intrinsic carpal ligaments. Hobby, J.L. (2001)

  2. Diagnostic imaging of exotic pets

    International Nuclear Information System (INIS)

    Silverman, S.

    1993-01-01

    Radiographic, ultrasonographic, and computed tomographic (CT) imaging are important diagnostic modalities in exotic pets. The use of appropriate radiographic equipment, film-screen combinations, and radiographic projections enhances the information obtained from radiographs. Both normal findings and common radiographic abnormalities are discussed. The use of ultrasonography and CT scanning for exotic small mammals and reptiles is described

  3. Neutral Beam Injection for Plasma and Magnetic Field Diagnostics

    International Nuclear Information System (INIS)

    Vainionpaa, Jaakko Hannes; Leung, Ka Ngo; Kwan, Joe W.; Levinton, Fred

    2007-01-01

    At the Lawrence Berkeley National Laboratory (LBNL) a diagnostic neutral beam injection system for measuring plasma parameters, flow velocity, and local magnetic field is being developed. High proton fraction and small divergence is essential for diagnostic neutral beams. In our design, a neutral hydrogen beam with an 8 cm x 11 cm (or smaller) elliptical beam spot at 2.5 m from the end of the extraction column is produced. The beam will deliver up to 5 A of hydrogen beam to the target with a pulse width of ∼1 s, once every 1-2 min. The H1+ ion species of the hydrogen beam will be over 90 percent. For this application, we have compared two types of RF driven multicusp ion sources operating at 13.56MHz. The first one is an ion source with an external spiral antenna behind a dielectric RF-window. The second one uses an internal antenna in similar ion source geometry. The source needs to generate uniform plasma over a large (8 cm x 5 cm) extraction area. We expect that the ion source with internal antenna will be more efficient at producing the desired plasma density but might have the issue of limited antenna lifetime, depending on the duty factor. For both approaches there is a need for extra shielding to protect the dielectric materials from the backstreaming electrons. The source walls will be made of insulator material such as quartz that has been observed to generate plasma with higher atomic fraction than sources with metal walls. The ion beam will be extracted and accelerated by a set of grids with slits, thus forming an array of 6 sheet-shaped beamlets. The multiple grid extraction will be optimized using computer simulation programs. Neutralization of the beam will be done in neutralization chamber, which has over 70 percent neutralization efficiency

  4. Construction of a nitrogen laser for plasma diagnostics

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.

    1994-07-01

    The challenge faced in finding new sources of energy to bridge the gap between the availability and demand of energy is difficult to be overemphasized. Nuclear fusion seems to provide a potentially limitless source of energy which offers a bright prospect for solving this problem. Although an elaborate programme in fusion may be beyond the economic reach of most third world countries, some modest experiments are necessary to provide an indigenous expertise capable of enhancing international fusion studies. In order to initiate experimental research sufficient for plasma studies at an affordable cost to developing countries, this paper illustrates the construction of a simple, low cost, high power nitrogen laser and investigates some of its performance characteristics. Also, the laser is utilized as a source of illumination in the techniques of shadowgraphy. A series of shadowgrams depicting the temporal development of the plasma discharge is presented. The constructed laser is found to be cost-effective and useful in small-scale researches in laser-plasma diagnostics. (author). 6 refs, 5 figs

  5. On the potential of CARS spectroscopy in low-temperature plasma diagnostics

    International Nuclear Information System (INIS)

    Ambrazyavichyus, A.B.; Gladkov, S.M.; Grigajtis, Yu.P.; Koroteev, N.I.

    1989-01-01

    The principles of coherent anti-Stokes Raman spectroscopy (CARS) and its application to the diagnostics of technological plasmas are briefly discussed. THe CARS spectrometer is described, developed in IPTPE, Caunas for investigations of a nitrogen plasma stream generated by an industrial plasmatron, and several CARS spectra of nitrogen molecules are presented. As the CARS signal from vibrational-rotational energy levels decreases substantially at plasma temperatures above 2000 K, an alternative scheme using electronlevels of atoms or ions has to be used. To test the method, CARS signals from the lines of the first nitrogen ion were studied in a low-voltage spark discharge. (J.U.)

  6. Diagnostic imaging in pregraduate integrated curricula

    International Nuclear Information System (INIS)

    Kainberger, F.; Kletter, K.

    2007-01-01

    Pregraduate medical curricula are currently undergoing a reform process that is moving away from a traditional discipline-related structure and towards problem-based integrated forms of teaching. Imaging sciences, with their inherently technical advances, are specifically influenced by the effects of paradigm shifts in medical education. The teaching of diagnostic radiology should be based on the definition of three core competencies: in vivo visualization of normal and abnormal morphology and function, diagnostic reasoning, and interventional treatment. On the basis of these goals, adequate teaching methods and e-learning tools should be implemented by focusing on case-based teaching. Teaching materials used in the fields of normal anatomy, pathology, and clinical diagnosis may help diagnostic radiology to play a central role in modern pregraduate curricula. (orig.)

  7. [Diagnostic imaging in pregraduate integrated curricula].

    Science.gov (United States)

    Kainberger, F; Kletter, K

    2007-11-01

    Pregraduate medical curricula are currently undergoing a reform process that is moving away from a traditional discipline-related structure and towards problem-based integrated forms of teaching. Imaging sciences, with their inherently technical advances, are specifically influenced by the effects of paradigm shifts in medical education. The teaching of diagnostic radiology should be based on the definition of three core competencies: in vivo visualization of normal and abnormal morphology and function, diagnostic reasoning, and interventional treatment. On the basis of these goals, adequate teaching methods and e-learning tools should be implemented by focusing on case-based teaching. Teaching materials used in the fields of normal anatomy, pathology, and clinical diagnosis may help diagnostic radiology to play a central role in modern pregraduate curricula.

  8. Progress On The Thomson Scattering Diagnostic For The Helicon Plasma Experiment (HPX)

    Science.gov (United States)

    Green, A.; Emami, T.; Davies, R.; Frank, J.; Hopson, J.; Karama, J.; James, R. W.; Hopson, J.; Paolino, R. N.; Sandri, E.; Turk, J.; Wicke, M.; Cgapl Team

    2017-10-01

    A high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 has been assembled on HPX at the Coast Guard Academy Plasma Laboratory (CGAPL). This spectrometer will collect doppler shifted photons, emitted from the plasma by the first harmonic (1064 nm) of a 2.5 J Nd:YAG laser. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) single spatial point diagnostic system. A zero order half wave plate rotates the polarization of the second harmonic TS laser beam when operating at a wavelength of 532 nm. A linear actuated periscope has been constructed to remotely redirect the beam so that 532 and 1064 nm wavelengths can both be used. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. Operating at both 532 and 1064 nm results in a self-consistent measurement and better use our existing spectrometer and soon to be constructed polychrometer. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. The current status of the diagnostic development, spectrometer, and collection optics system will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY17.

  9. Flight Plasma Diagnostics for High-Power, Solar-Electric Deep-Space Spacecraft

    Science.gov (United States)

    Johnson, Lee; De Soria-Santacruz Pich, Maria; Conroy, David; Lobbia, Robert; Huang, Wensheng; Choi, Maria; Sekerak, Michael J.

    2018-01-01

    NASA's Asteroid Redirect Robotic Mission (ARRM) project plans included a set of plasma and space environment instruments, the Plasma Diagnostic Package (PDP), to fulfill ARRM requirements for technology extensibility to future missions. The PDP objectives were divided into the classes of 1) Plasma thruster dynamics, 2) Solar array-specific environmental effects, 3) Plasma environmental spacecraft effects, and 4) Energetic particle spacecraft environment. A reference design approach and interface requirements for ARRM's PDP was generated by the PDP team at JPL and GRC. The reference design consisted of redundant single-string avionics located on the ARRM spacecraft bus as well as solar array, driving and processing signals from multiple copies of several types of plasma, effects, and environments sensors distributed over the spacecraft and array. The reference design sensor types were derived in part from sensors previously developed for USAF Research Laboratory (AFRL) plasma effects campaigns such as those aboard TacSat-2 in 2007 and AEHF-2 in 2012.

  10. Quantitative single shot and spatially resolved plasma wakefield diagnostics

    CERN Document Server

    Kasim, Muhammad Firmansyah; Ceurvorst, Luke; Levy, Matthew C; Ratan, Naren; Sadler, James; Bingham, Robert; Burrows, Philip N; Trines, Raoul; Wing, Matthew; Norreys, Peter

    2015-01-01

    Diagnosing plasma conditions can give great advantages in optimizing plasma wakefield accelerator experiments. One possible method is that of photon acceleration. By propagating a laser probe pulse through a plasma wakefield and extracting the imposed frequency modulation, one can obtain an image of the density modulation of the wakefield. In order to diagnose the wakefield parameters at a chosen point in the plasma, the probe pulse crosses the plasma at oblique angles relative to the wakefield. In this paper, mathematical expressions relating the frequency modulation of the laser pulse and the wakefield density profile of the plasma for oblique crossing angles are derived. Multidimensional particle-in-cell simulation results presented in this paper confirm that the frequency modulation profiles and the density modulation profiles agree to within 10%. Limitations to the accuracy of the measurement are discussed in this paper. This technique opens new possibilities to quantitatively diagnose the plasma wakefie...

  11. Application of optical phase conjugation to plasma diagnostics (invited)

    International Nuclear Information System (INIS)

    Jahoda, F.C.; Anderson, B.T.; Forman, P.R.; Weber, P.G.

    1985-01-01

    Several possibilities for plasma diagnostics provided by optical phase conjugation and, in particular, self-pumped phase conjugation in barium titanate (BaTiO 3 ) are discussed. These include placing a plasma within a dye laser cavity equipped with a phase conjugate mirror for intracavity absorption measurements, time differential refractometry with high spatial resolution, and simplified real-time holographic interferometry. The principles of phase conjugation with particular reference to photorefractive media and the special advantages of self-pumped phase conjugation are reviewed prior to the discussion of the applications. Distinctions are made in the applications between those for which photorefractive conjugators are essential and those for which they only offer experimental simplification relative to other types of phase conjugators

  12. Post-graduate training in imaging diagnostics, nuclear medicine and radiotherapy for radiographers

    International Nuclear Information System (INIS)

    Petkova, E.; Velkova, K.; Shangova, M.; Karidova, S.

    2006-01-01

    Full text: The application of new technologies in imaging diagnostics, as well as the use of digital processing and storing of information, has increased the quality and scope of imaging diagnostics. The potentials of therapeutic methods connected with imaging diagnostics and nuclear medicine, interventional therapeutic procedures (dilatation, embolism, stent, etc.), basins with radio-pharmaceuticals, etc., are constantly increasing. The constant training of radiographers in working with the new, advanced image-diagnostic equipment has become an established international practice in the process of training the human resources of the imaging-diagnostic departments and centers. Objectives: 1. Investigating the potentials of post-graduate training for monitoring the dynamics in the development of the principles, methods and techniques in imaging diagnostics; 2. The attitude of radiographers towards post-graduate training. Systematic approach and critical analysis of published data and mathematical-statistical methods with regard to the need of post-graduate training. The processed data of the survey on the necessity for post-graduate training conducted among 3rd year students in the last 3 years - 75 % consider post-graduate training mandatory, 11% deem it necessary, and 14% have no opinion on the issue; and among the working radiographers in the last 3 years the results are as follows: mandatory - 91%, necessary - 7%, no opinion - 2%. The improvement and advances in imaging diagnostic equipment and apparatuses have considerably outstripped the professional training of radiographers. The key word in the race for knowledge is constant learning and training, which can successfully be achieved within the framework of post-graduate training

  13. Cross-calibrating Spatial Positions of Light-viewing Diagnostics using Plasma Edge Sweeps in DIII-D

    International Nuclear Information System (INIS)

    Solomon, W.M.; Burrell, K.H.; Gohil, P.; Groebner, R.; Kaplan, D.

    2003-01-01

    An experimental technique is presented that permits diagnostics viewing light from the plasma edge to be spatially calibrated relative to one another. By sweeping the plasma edge, each chord of each diagnostic sweeps out a portion of the light emission profile. A nonlinear least-squares fit to such data provides superior cross-calibration of diagnostics located at different toroidal locations compared with simple surveying. Another advantage of the technique is that it can be used to monitor the position of viewing chords during an experimental campaign to ensure that alignment does not change over time. Moreover, should such a change occur, the data can still be cross-calibrated and its usefulness retained

  14. Diagnostics developments and applications for laser fusion experiments

    International Nuclear Information System (INIS)

    Coleman, L.W.

    1977-01-01

    Some diagnostics techniques applied to current laser fusion target experiments are reviewed. Specifically, holographic interferometry of target plasmas, coded aperture imaging of thermonuclear alpha-particles and neutron energy spectrum measurements are discussed

  15. Plasma diagnostics for tokamaks and stellarators. Proceedings of the IV Course and Workshop on Magnetic Confinement Fusion. UIMP Santander (Spain), June 1992

    International Nuclear Information System (INIS)

    Stott, P. E.; Sanchez, J.

    1994-01-01

    A collection of papers on plasma diagnostics is presented. The papers show the state of the art developments in a series of techniques: Magnetic diagnostics, Edge diagnostics, Langmuir probes, Spectroscopy, Microwave and FIR diagnostics as well as Thomson Scattering. Special interest was focused on those diagnostics oriented to fluctuations measurements in the plasma. (Author) 451 refs

  16. Precise signal amplitude retrieval for a non-homogeneous diagnostic beam using complex interferometry approach

    Czech Academy of Sciences Publication Activity Database

    Krupka, M.; Kálal, M.; Dostál, Jan; Dudžák, Roman; Juha, Libor

    2017-01-01

    Roč. 12, Aug (2017), s. 1-6, č. článku C08012. ISSN 1748-0221 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Institutional support: RVO:68378271 Keywords : magnetic-field measurements * fully automated-analysis * laser-produced plasmas * image processing * interferometry * plasma diagnostics - interferometry * spectroscopy and imaging Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.220, year: 2016

  17. Diagnostic accuracy of imaging modalities for internal derangements of temporomandibular joint

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru; Igarashi, Chinami; Yuasa, Masao; Imanaka, Masahiro; Kondoh, Toshirou

    1998-01-01

    The purpose of this study was to evaluate and review the diagnostic accuracy, sensitivity, specificity, positive predictive value and negative predictive value of imaging diagnosis for temporomandibular disorders. The role of diagnostic imaging is to detect and document specific anatomic abnormalities associated with the signs and symptoms in the temporomandibular joint. Magnetic resonance imaging (MR imaging) can accurately depict disc displacement and disc deformity. MR imaging is our first choice among the various imaging modalities for the patients with clinical signs and symptoms. However, it has been shown that intra-capsular adhesions and perforations of the disc and retrodiscal tissue are sometimes not detected by MR imaging. To improve the diagnostic technique for adhesions and perforations, double-contrast arthrotomography with fluoroscopy should be employed. The irregular surface of the eminences and the glenoid fossae shown by MR imaging and tomography are correlated with subchondral bone exposure by arthroscopy. Erosion of the condyles detected by MR imaging, tomography and rotational panoramic radiography is correlated with subchondral bone exposure detected by arthroscopy. (author). 69 refs

  18. The clinician's guide to diagnostic imaging: Cost-effective pathways. Second edition

    International Nuclear Information System (INIS)

    Grossman, Z.D.; Chew, F.S.; Ellis, D.A.; Brigham, S.C.

    1987-01-01

    The authors developed a cost-effective approach to imaging studies, based on initial selection of an exam that best addresses the specific clinical problem and obviates the need for additional diagnostic tests. Tightly reasoned arguments compare available imaging options with respect to diagnostic yield, feasibility, risk, and cost. To aid the clinician in making cost comparisons, each paper of the Second Edition lists the dollar cost of relevant imaging studies. The Second Edition has been thoroughly revised to reflect the important advances in diagnostic imaging of the past three years, highlighting CT's expanding role in thoracic and abdominal problems, magnetic resonance imaging as a spectacular diagnostic tool for the central nervous system, and the clinical application of many newly-developed radiopharmaceuticals. New chapters cover breast cancer screening, acute spinal trauma, search for primary cancer of unknown origin, acute anuria, blunt chest trauma, new onset seizures, and spinal cord compression from metastases. Other papers have been rewritten for greater clarity and to incorporate new techniques, like dipyridamole stress testing. A glossary and an introduction define and explain the capabilities and limitations of current techniques

  19. Diagnostic imaging of lymphomas in pediatric patients

    International Nuclear Information System (INIS)

    Petrova, A.

    2010-01-01

    Lymphoma is the third most common malignancy in children, after leukemias and brain tumors, most commonly during early childhood before 14 years. In definite stages cancer can engage all organs and systems. These conditions associate with immunodeficiency, increased susceptibility to infections and second neoplasms. The social importance of the problem requires early diagnosis, accurate staging, and assessment of the treatment and determination of the risk for relapse of the disease. The aim of the present review is to represent the role of the modern methods of diagnostic imaging - ultrasonography (US), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Positron Emisson Tomography (PET) scan in the process of diagnostics, in the decision of therapeutic strategy and the follow-up of children with lymphomas

  20. Basic artefacts of diagnostic imaging by the magnetic resonance method

    International Nuclear Information System (INIS)

    Vitak, T.; Seidl, Z.; Obenberger, J.; Vaneckova, M.; Danes, J.; Krasensky, J.; Peterkova, V

    2000-01-01

    Artefacts in diagnostic imaging are defined as a geometric or anatomic misrepresentation of the reality by the image formed. The article deals with artefacts due to field and frequency shifts, in particular due to the water-fat chemical shift and due to magnetic susceptibility. The physical nature of the artefacts is explained and their diagnostic significance is discussed. (P.A.)

  1. Overview of ion source characterization diagnostics in INTF

    Science.gov (United States)

    Bandyopadhyay, M.; Sudhir, Dass; Bhuyan, M.; Soni, J.; Tyagi, H.; Joshi, J.; Yadav, A.; Rotti, C.; Parmar, Deepak; Patel, H.; Pillai, S.; Chakraborty, A.

    2016-02-01

    INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.

  2. Proceeding of JSPS-CAS Core University Program seminar on production and control of high performance plasmas with advanced plasma heating and diagnostic systems

    International Nuclear Information System (INIS)

    Gao Xiang; Morita, Shigeru

    2011-02-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and control of high performance plasmas with advanced plasma heating and diagnostic systems' took place in Guilin Bravo Hotel, Guilin, China, 1-4 November 2010. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. Two special talks and 46 oral talks were presented in the seminar including 36 Chinese, 18 Japanese and 4 Korean attendees. Production and control of high performance plasmas is a crucial issue for realizing an advanced nuclear fusion reactor in addition to developments of advanced plasma heating and diagnostics. This seminar was motivated along the issues. Results in the field of fusion experiments obtained through CUP activities during recent two years were summarized. Possible direction of future collaboration and further encouragement of scientific activity of younger scientists were also discussed in this seminar with future experimental plans in both countries. (author)

  3. Diagnostic imaging in child abuse

    International Nuclear Information System (INIS)

    Stoever, B.

    2007-01-01

    Diagnostic imaging in child abuse plays an important role and includes the depiction of skeletal injuries, soft tissue lesions, visceral injuries in ''battered child syndrome'' and brain injuries in ''shaken baby syndrome''. The use of appropriate imaging modalities allows specific fractures to be detected, skeletal lesions to be dated and the underlying mechanism of the lesion to be described. The imaging results must be taken into account when assessing the clinical history, clinical findings and differential diagnoses. Computed tomography (CT) and magnetic resonance imaging (MRI) examinations must be performed in order to detect lesions of the central nervous system (CNS) immediately. CT is necessary in the initial diagnosis to delineate oedema and haemorrhages. Early detection of brain injuries in children with severe neurological symptoms can prevent serious late sequelae. MRI is performed in follow-up investigations and is used to describe residual lesions, including parenchymal findings. (orig.) [de

  4. Proton Radiography for the Diagnostics of a Dense Plasma

    Science.gov (United States)

    Barminova, H. Y.

    2017-12-01

    The possibility of using high-energy proton radiography for dense plasma diagnostics is discussed. The designed telescopic ion optical system for a proton radiography installation with a 1 GeV beam is presented. The schematic diagram of the proton microscope is given. It is shown that the estimate of spatial resolution for the installation obtained with consideration of chromatic aberrations of magnetic quadrupole lenses is limited from below.

  5. Ion-beam Plasma Neutralization Interaction Images

    Energy Technology Data Exchange (ETDEWEB)

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-09

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

  6. Ion-beam Plasma Neutralization Interaction Images

    International Nuclear Information System (INIS)

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-01

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented

  7. Some new possibilities for the diagnostics of single-phase and two-phase plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, V M

    1979-02-01

    The literature on three classes of methods for the diagnostics of plasma jets is reviewed. These classes include nonintrusive measurements (spectroscopy, refractometry, scatterometry, and plasma velocimetry) intrusive measurements (electrostatic probes and calorimeters) and measurements of solid-phase properties (pyrometry, particle track records, diffractometry, light attenuation measurements, and laser Doppler velocimeters).

  8. TH-A-BRF-11: Image Intensity Non-Uniformities Between MRI Simulation and Diagnostic MRI

    International Nuclear Information System (INIS)

    Paulson, E

    2014-01-01

    Purpose: MRI simulation for MRI-based radiotherapy demands that patients be setup in treatment position, which frequently involves use of alternative radiofrequency (RF) coil configurations to accommodate immobilized patients. However, alternative RF coil geometries may exacerbate image intensity non-uniformities (IINU) beyond those observed in diagnostic MRI, which may challenge image segmentation and registration accuracy as well as confound studies assessing radiotherapy response when MR simulation images are used as baselines for evaluation. The goal of this work was to determine whether differences in IINU exist between MR simulation and diagnostic MR images. Methods: ACR-MRI phantom images were acquired at 3T using a spin-echo sequence (TE/TR:20/500ms, rBW:62.5kHz, TH/skip:5/5mm). MR simulation images were obtained by wrapping two flexible phased-array RF coils around the phantom. Diagnostic MR images were obtained by placing the phantom into a commercial phased-array head coil. Pre-scan normalization was enabled in both cases. Images were transferred offline and corrected for IINU using the MNI N3 algorithm. Coefficients of variation (CV=σ/μ) were calculated for each slice. Wilcoxon matched-pairs and Mann-Whitney tests compared CV values between original and N3 images and between MR simulation and diagnostic MR images. Results: Significant differences in CV were detected between original and N3 images in both MRI simulation and diagnostic MRI groups (p=0.010, p=0.010). In addition, significant differences in CV were detected between original MR simulation and original and N3 diagnostic MR images (p=0.0256, p=0.0016). However, no significant differences in CV were detected between N3 MR simulation images and original or N3 diagnostic MR images, demonstrating the importance of correcting MR simulation images beyond pre-scan normalization prior to use in radiotherapy. Conclusions: Alternative RF coil configurations used in MRI simulation can Result in

  9. Far infrared fusion plasma diagnostics. Task 3A, Progress report, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-12-31

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer`s importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA`s CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  10. Diagnostic value of imaging in infective endocarditis: a systematic review.

    Science.gov (United States)

    Gomes, Anna; Glaudemans, Andor W J M; Touw, Daan J; van Melle, Joost P; Willems, Tineke P; Maass, Alexander H; Natour, Ehsan; Prakken, Niek H J; Borra, Ronald J H; van Geel, Peter Paul; Slart, Riemer H J A; van Assen, Sander; Sinha, Bhanu

    2017-01-01

    Sensitivity and specificity of the modified Duke criteria for native valve endocarditis are both suboptimal, at approximately 80%. Diagnostic accuracy for intracardiac prosthetic material-related infection is even lower. Non-invasive imaging modalities could potentially improve diagnosis of infective endocarditis; however, their diagnostic value is unclear. We did a systematic literature review to critically appraise the evidence for the diagnostic performance of these imaging modalities, according to PRISMA and GRADE criteria. We searched PubMed, Embase, and Cochrane databases. 31 studies were included that presented original data on the performance of electrocardiogram (ECG)-gated multidetector CT angiography (MDCTA), ECG-gated MRI, 18 F-fluorodeoxyglucose ( 18 F-FDG) PET/CT, and leucocyte scintigraphy in diagnosis of native valve endocarditis, intracardiac prosthetic material-related infection, and extracardiac foci in adults. We consistently found positive albeit weak evidence for the diagnostic benefit of 18 F-FDG PET/CT and MDCTA. We conclude that additional imaging techniques should be considered if infective endocarditis is suspected. We propose an evidence-based diagnostic work-up for infective endocarditis including these non-invasive techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. X-ray optical diagnostic of laser produced plasmas for nuclear fusion and X-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Butzbach, R.

    2001-07-01

    In the present work, the conception, design and appliance of toroidally bent crystals for the X-ray optical diagnostics of laser produced plasmas is discussed. The first part of this work deals with the development, design and characterization of an X-Ray microscope for the observation of Rayleigh-Taylor instabilities, which act against the confinement and ignition of the fuel in the inertial confinement fusion process. The aim of the second part of the present work was the diagnostic of the lasing medium for amplified spontaneous emission close to the water window. For this purpose, an one-dimensionally (1-D) imaging X-ray spectrometer based on toroidally bent quartz crystals was developed for the observation of the Ni-like 4f-3d transition of Yb, Hf, Ta, and W ions, which should be related to the amplified 4d-4p emission, since the 4f niveau is very close to the 4d niveau. Thus, the 4f-3d transition can serve as an indicator for the population of the 4d niveau. (orig.)

  12. Development of a visible framing camera diagnostic for the study of current initiation in z-pinch plasmas

    International Nuclear Information System (INIS)

    Muron, D.J.; Hurst, M.J.; Derzon, M.S.

    1996-01-01

    The authors assembled and tested a visible framing camera system to take 5 ns FWHM images of the early time emission from a z-pinch plasma. This diagnostic was used in conjunction with a visible streak camera allowing early time emissions measurements to diagnose current initiation. Individual frames from gated image intensifiers were proximity coupled to charge injection device (CID) cameras and read out at video rate and 8-bit resolution. A mirror was used to view the pinch from a 90-degree angle. The authors observed the destruction of the mirror surface, due to the high surface heating, and the subsequent reduction in signal reflected from the mirror. Images were obtained that showed early time ejecta and a nonuniform emission from the target. This initial test of the equipment highlighted problems with this measurement. They observed non-uniformities in early time emission. This is believed to be due to either spatially varying current density or heating of the foam. Images were obtained that showed early time ejecta from the target. The results and suggestions for improvement are discussed in the text

  13. Image quality - physical and diagnostic parameters. The radiologist's viewpoint

    International Nuclear Information System (INIS)

    Stender, H.St.

    1985-01-01

    The quality of a radiograph is determined by the diagnostic information it provides. This depends upon the visual detection of diagnostically relevant structures. The technical radiographic requirements are dependent upon the physical measurements and the physiological and optical conditions. Such physical factors as spatial resolution, contrast and noise are quantitative measurements, which must be oriented to the qualitative visual characteristics of the radiograph. The influence of subjective perception and complexity of structural noise on the detectability of details and structures particularly demands attention. Since radiographic quality depends upon the detection of diagnostically relevant structure and features, it is important to define these parameters on the basis of extensive radiographic analysis and the corresponding clinical findings. The diagnostically relevant radiographic parameters and image details and critical structures have been worked out for the examination of the lungs, colon, stomach, urinary tract and skeleton. Good image quality requires coordination of the physical-technical parameters with the visual ability of the observer, since only in this way can the diagnostic information be represented with sufficient clarity. (author)

  14. Diagnostic imaging of the pancreas

    International Nuclear Information System (INIS)

    Araki, Tsutomu; Itai, Yuji

    1981-01-01

    Diagnostic imaging of the pancreas, ultrasonography (US), computed tomography (CT), radionuclide (RN) scintigraphy, angiography, and endoscopic retrograde pancreaticography (ERP). First three noninvasive methods, were the most effective to diagnose psudo-cyst or cystoadenoma. Especially, CT gives the clear image of inflammation and shows pancreatic stones and calcification, with high sensitivity. As for pancreatic carcinomas there was no noninvasive methods to apply at an early stage. In order to diagnose the cancer the combination of angiography and ERP was preferable. The problem was how to select the candidates for the investigation of combined method out of the patients with negative CT or US. (Tsunoda, M.)

  15. An overview of SST-1 diagnostics and results from recent campaigns

    International Nuclear Information System (INIS)

    Kumar, Ajai; Adhiya, Asha N.; Joshi, Hemchandra C.

    2015-01-01

    SST-1 is a large aspect ratio tokomak with superconducting magnets designed to operate in steady-state mode for around 1000 seconds. All essential diagnostics for the machine operation and advance diagnostics are commissioned in SST-1 during the different phases of its operation. This report describes the various diagnostics in SST-1 and the results of recent SST-1 campaign with Plasma Facing components. The chord averaged electron density of SST-1 plasma is recorded in the range of 2-5 x 10 12 /cc and the electron temperature is estimated around 100 eV. Various spectral line emissions from plasma and temporal evolutions of some of them have been recorded by spectroscopy diagnostics to understand the impurity behaviour in the SST-1 plasma. The radiation power loss and the power deposited on limiter has been estimated using bolometry and IR thermography respectively. Plasma evolution recorded using visible imaging diagnostics. The energy distribution of non-thermal electron has been characterised using LaBr spectrometer and NaI detector. This article will also be discussing about the possible additions and modification planned for the near future. (author)

  16. Optical diagnostics of lead and PbGa2S4 layered crystal laser plasmas

    International Nuclear Information System (INIS)

    Shuaibov, A.K.; Dashchenko, A.I.; Shevera, I.V.

    2001-01-01

    Laser plasmas produced at the surfaces of lead and a PbGa 2 S 4 layered crystal irradiated by a neodymium laser with λ = 1.06 μm, pulse duration τ = 20 ns, and intensity W = (1-2) x 10 9 W/cm 2 are studied using optical diagnostics. It is shown that, in a lead plasma, the most intense (characteristic) lines are the PbI 405.7-nm, PbI 368.3-nm, PbI 364-nm, and PbII 220.4-nm lines. In a layered crystal plasma, the emission spectrum is an aggregation of the most intense PbI and GaI lines, whereas sulfur lines are absent. The bottlenecks of the recombination of the ionic and atomic components of the lead and PbGa 2 S 4 crystal plasmas are determined. The average propagation velocity of the lead laser plume is 18-20 km/s. A comparative analysis of the emission dynamics of PbI and GaI lines in the laser plasmas of these metals and in the plasma of a PbGa 2 S 4 crystal is carried out. The results obtained are important for the optical diagnostics of the plasmas of lead- and gallium-containing crystals and for the optimization of laser deposition of the thin films of these substances

  17. Periscope-camera system for visible and infrared imaging diagnostics on TFTR

    International Nuclear Information System (INIS)

    Medley, S.S.; Dimock, D.L.; Hayes, S.; Long, D.; Lowrence, J.L.; Mastrocola, V.; Renda, G.; Ulrickson, M.; Young, K.M.

    1985-05-01

    An optical diagnostic consisting of a periscope which relays images of the torus interior to an array of cameras is used on the Tokamak Fusion Test Reactor (TFTR) to view plasma discharge phenomena and inspect vacuum vessel internal structures in both visible and near-infrared wavelength regions. Three periscopes view through 20-cm-diameter fused-silica windows which are spaced around the torus midplane to provide a viewing coverage of approximately 75% of the vacuum vessel internal surface area. The periscopes have f/8 optics and motor-driven controls for focusing, magnification selection (5 0 , 20 0 , and 60 0 field of view), elevation and azimuth setting, mast rotation, filter selection, iris aperture, and viewing port selection. The four viewing ports on each periscope are equipped with multiple imaging devices which include: (1) an inspection eyepiece, (2) standard (RCA TC2900) and fast (RETICON) framing rate television cameras, (3) a PtSi CCD infrared imaging camera, (4) a 35 mm Nikon F3 still camera, or (5) a 16 mm Locam II movie camera with variable framing up to 500 fps. Operation of the periscope-camera system is controlled either locally or remotely through a computer-CAMAC interface. A description of the equipment and examples of its application are presented

  18. Periscope-camera system for visible and infrared imaging diagnostics on TFTR

    International Nuclear Information System (INIS)

    Medley, S.S.; Dimock, D.L.; Hayes, S.; Long, D.; Lowrance, J.L.; Mastrocola, V.; Renda, G.; Ulrickson, M.; Young, K.M.

    1985-01-01

    An optical diagnostic consisting of a periscope which relays images of the torus interior to an array of cameras is used on the Tokamak Fusion Test Reactor (TFTR) to view plasma discharge phenomena and inspect the vacuum vessel internal structures in both the visible and near-infrared wavelength regions. Three periscopes view through 20-cm-diam fused-silica windows which are spaced around the torus midplane to provide a viewing coverage of approximately 75% of the vacuum vessel internal surface area. The periscopes have f/8 optics and motor-driven controls for focusing, magnification selection (5 0 , 20 0 , and 60 0 field of view), elevation and azimuth setting, mast rotation, filter selection, iris aperture, and viewing port selection. The four viewing ports on each periscope are equipped with multiple imaging devices which include: (1) an inspection eyepiece, (2) standard (RCA TC2900) and fast (RETICON) framing rate television cameras, (3) a PtSi CCD infrared imaging camera, (4) a 35-mm Nikon F3 still camera, or (5) a 16-mm Locam II movie camera with variable framing rate up to 500 fps. Operation of the periscope-camera system is controlled either locally or remotely through a computer-CAMAC interface. A description of the equipment and examples of its application are presented

  19. Primary ureteral carcinoma: MRI diagnosis and comparison with other diagnostic imaging facilities

    International Nuclear Information System (INIS)

    An Ningyu; Jiang Bo; Cai Youquan; Liang Yan

    2004-01-01

    Objective: To investigate MRI examination methods and imaging manifestations of primary ureteral carcinoma, and to evaluate its clinical values when comparing with other diagnostic imaging facilities. Methods: Eighty-seven cases of primary ureteral carcinoma who were operated within recent 8 years came into the study, among which, 35 cases had MRI examinations. For MRI examination, coronal heavy T 2 WI (water imaging) was performed to show the dilated ureter, then axial T 2 WI and T 1 WI were scanned at the obstruction level. 11 cases underwent additional Gd-DTPA dynamic contrast enhanced scans. The original pre-operative diagnostic reports of various imaging facilities were analyzed comparing with the results of operation and pathology. Results: MRI showed ureteral dilatation in 33 of 35 cases, no abnormal appearance in 1 case, and only primary kidney atrophy post renal transplantation in 1 case. Among the 33 cases with ureteral obstruction, soft mass at the obstruction level was detected on axial scans in 32 cases. The lesions showed gradual and homogeneous mild to moderate enhancement on contrast MRI. The overall employment rate of imaging facilities was as follows: ultrasound (94.3%), IVU (59.8%), CT (52.9%), MRI (40.2%), and RUP (35.6%). The accurate diagnostic rate was as follows :MRI (91.4%), RUP (80.6%), CT (63.0%), ultrasound (47.6%), and IVU (11.5%). Conclusion: Combination of MR water imaging and conventional sequences can demonstrate most primary ureteral carcinoma lesions and has a highest diagnostic accuracy among the current diagnostic imaging facilities. It should be taken as the first diagnostic imaging method of choice when primary ureteral carcinoma is suspected after ultrasound screening

  20. Diagnostic imaging of compression neuropathy

    International Nuclear Information System (INIS)

    Weishaupt, D.; Andreisek, G.

    2007-01-01

    Compression-induced neuropathy of peripheral nerves can cause severe pain of the foot and ankle. Early diagnosis is important to institute prompt treatment and to minimize potential injury. Although clinical examination combined with electrophysiological studies remain the cornerstone of the diagnostic work-up, in certain cases, imaging may provide key information with regard to the exact anatomic location of the lesion or aid in narrowing the differential diagnosis. In other patients with peripheral neuropathies of the foot and ankle, imaging may establish the etiology of the condition and provide information crucial for management and/or surgical planning. MR imaging and ultrasound provide direct visualization of the nerve and surrounding abnormalities. Bony abnormalities contributing to nerve compression are best assessed by radiographs and CT. Knowledge of the anatomy, the etiology, typical clinical findings, and imaging features of peripheral neuropathies affecting the peripheral nerves of the foot and ankle will allow for a more confident diagnosis. (orig.) [de

  1. Spectroscopic diagnostics of tungsten-doped CH plasmas

    Science.gov (United States)

    Klapisch, M.; Colombant, D.; Lehecka, T.

    1998-11-01

    Spectra of CH with different concentrations of W dopant and laser intensities ( 2.5-10 x10^12 W/cm^2 ) were obtained at NRL with the Nike Laser. They were recorded in the 100-500 eV range with an XUV grating spectrometer. The hydrodynamic simulations are performed with the 1D code FAST1D(J. H. Gardner et al., Phys. Plasmas, 5, May (1998).) where non LTE effects are introduced by Busquet's model( M. Busquet, Phys. Fluids B, 5, 4191 (1993); M. Klapisch, A. Bar-Shalom, J. Oreg and D. Colombant, Phys. Plasmas, 5, May (1998).). They are then post-processed with TRANSPEC( O. Peyrusse, J. Quant. Spectrosc. Radiat. Transfer, 51, 281 (1994)), a time dependent collisional radiative code with radiation coupling. The necessary atomic data are obtained from the HULLAC code( M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transfer, 58, 687 (1997).). The post processing and diagnostics were performed on carbon lines and the results are compared with the experimental data.

  2. Heavy ion beam probe (HIBP) diagnostics as a tool for investigations into the plasma turbulence and the local electric field of dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Krupnik, L.I.; Chmyga, A.A.; Komarov, A.D.; Kozachok, A.S.; Zhezhera, A.I. [Institute of Plasma Physics, NSC KIPT, 310108 Kharkov (Ukraine); Melnikov, A.V.; Eliseev, L.G.; Lysenko, S.E.; Mavrin, V.A.; Perfilov, S.V. [Institute of Nuclear Fusion, RRC ' Kurchatov Institute' , Moscow (Russian Federation); Hidalgo, C.; Ascasibar, E.; Estrada, T.; Liniers, M.; Ochando, M.A.; Pablos, J.L. de; Pedrosa, M.A.; Tabares, F. [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion EURATOM-CIEMAT, 28040-Madrid (Spain)

    2011-07-01

    One of essential achievements of the Heavy Ion Beam Probe (HIBP) diagnostics is the possibility to use it for investigation of plasma confinement by measuring the fluctuations of electric field and plasma density; the method is based on the important role of the plasma electric fields. Both edge and core transport barriers are related to a large increase in the E*B sheared flows in a fusion device. In the TJ-II stellarator the HIBP diagnostics has recently been upgraded for two-point measurements with a good spatial (1 cm) and temporal (10 {mu}s) resolution of the plasma electric potential and density, as well as their fluctuations and poloidal component of electric field, E{sub p} equals ({phi}1 - {phi}2)/{Delta}r [V/cm]; these data give chance to extract the radial turbulent particle flux: {Gamma}(r) equals {Gamma}(Epol*Btor) equals {Gamma}(E*B). (authors)

  3. Multi-layer distributed storage of LHD plasma diagnostic database

    International Nuclear Information System (INIS)

    Nakanishi, Hideya; Kojima, Mamoru; Ohsuna, Masaki; Nonomura, Miki; Imazu, Setsuo; Nagayama, Yoshio

    2006-01-01

    At the end of LHD experimental campaign in 2003, the amount of whole plasma diagnostics raw data had reached 3.16 GB in a long-pulse experiment. This is a new world record in fusion plasma experiments, far beyond the previous value of 1.5 GB/shot. The total size of the LHD diagnostic data is about 21.6 TB for the whole six years of experiments, and it continues to grow at an increasing rate. The LHD diagnostic database and storage system, i.e. the LABCOM system, has a completely distributed architecture to be sufficiently flexible and easily expandable to maintain integrity of the total amount of data. It has three categories of the storage layer: OODBMS volumes in data acquisition servers, RAID servers, and mass storage systems, such as MO jukeboxes and DVD-R changers. These are equally accessible through the network. By data migration between them, they can be considered a virtual OODB extension area. Their data contents have been listed in a 'facilitator' PostgreSQL RDBMS, which contains about 6.2 million entries, and informs the optimized priority to clients requesting data. Using the 'glib' compression for all of the binary data and applying the three-tier application model for the OODB data transfer/retrieval, an optimized OODB read-out rate of 1.7 MB/s and effective client access speed of 3-25 MB/s have been achieved. As a result, the LABCOM data system has succeeded in combination of the use of RDBMS, OODBMS, RAID, and MSS to enable a virtual and always expandable storage volume, simultaneously with rapid data access. (author)

  4. Formation of Imploding Plasma Liners for HEDP and MIF Applications - Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering. Dept. of Physics and Astronomy; Hsu, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Witherspoon, F. Douglas [HyperV Technologies Corp., Chantilly, VA (United States); Cassibry, Jason [Univ. of Alabama, Huntsville, AL (United States); Bauer, Bruno S. [Univ. of Nevada, Reno, NV (United States)

    2015-04-27

    The goal of the plasma liner experiment (PLX) was to explore and demonstrate the feasibility of forming imploding spherical plasma liners that can reach High Energy Density (HED)-relevant (~ 0.1 Mbar) pressures upon stagnation. The plasma liners were to be formed by a spherical array of 30 – 36 railgun-driven hypervelocity plasma jets (Mach 10 – 50). Due to funding and project scope reductions in year two of the project, this initial goal was revised to focus on studies of individual jet propagation, and on two jet merging physics. PLX was a collaboration between a number of partners including Los Alamos National Laboratory, HyperV Technologies, University of New Mexico (UNM), University of Alabama, Huntsville, and University of Nevada, Reno. UNM’s part in the collaboration was primary responsibility for plasma diagnostics. Though full plasma liner experiments could not be performed, the results of single and two jet experiments nevertheless laid important groundwork for future plasma liner investigations. Though challenges were encountered, the results obtained with one and two jets were overwhelmingly positive from a liner formation point of view, and were largely in agreement with predictions of hydrodynamic models.

  5. Development of GEM detector for plasma diagnostics application: simulations addressing optimization of its performance

    Science.gov (United States)

    Chernyshova, M.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Czarski, T.; Linczuk, P.; Wojeński, A.; Krawczyk, R. D.

    2017-12-01

    The advanced Soft X-ray (SXR) diagnostics setup devoted to studies of the SXR plasma emissivity is at the moment a highly relevant and important for ITER/DEMO application. Especially focusing on the energy range of tungsten emission lines, as plasma contamination by W and its transport in the plasma must be understood and monitored for W plasma-facing material. The Gas Electron Multiplier, with a spatial and energy-resolved photon detecting chamber, based SXR radiation detection system under development by our group may become such a diagnostic setup considering and solving many physical, technical and technological aspects. This work presents the results of simulations aimed to optimize a design of the detector's internal chamber and its performance. The study of the effect of electrodes alignment allowed choosing the gap distances which maximizes electron transmission and choosing the optimal magnitudes of the applied electric fields. Finally, the optimal readout structure design was identified suitable to collect a total formed charge effectively, basing on the range of the simulated electron cloud at the readout plane which was in the order of ~ 2 mm.

  6. The diagnostic value of ventilation-perfusion scintigraphy combined with plasma D-dimer assay in diagnosis of pulmonary embolism

    International Nuclear Information System (INIS)

    Wang Qian; Huang Lili; Qin Shuling; Yue Minggang; Wang Yu; Nie Yuxin; Liang Tiejun

    2005-01-01

    Objective: To investigate the clinical diagnostic value of ventilation-perfusion scintigraphy combined with plasma D-dimer assay in diagnosis of pulmonary embolism (PE). Methods: One hundred and four patients with clinically suspected PE underwent both pulmonary ventilation-perfusion scintigraphy and plasma D-dimer assay. According to the criteria of prospective investigation of the pulmonary embolism diagnosis (PIOPED), ventilation-perfusion scintigraphy was interpreted as normal, very low or low probability of PE, intermediate probability of PE and high probability of PE. High probability was considered as positive; normal and very low or low probability as negative and intermediate probability as non-diagnostic. Plasma D-dimer levels were measured using a quantitative immunoturbidimetric method, and a cut-off value of 500 mg/L was used in the diagnosis of PE. Clinical diagnostic value of ventilation-perfusion scintigraphy, D-dimer assay and combined use of ventilation-perfusion scintigraphy and D-dimer assay for diagnosing PE was evaluated, respectively, comparing with the final clinical diagnosis that was based on the clinical findings. Results: Among the 104 patients, 44 were diagnosed with PE and 60 were excluded. Ventilation-perfusion scintigraphy provided diagnostic interpretations for 86 (82.7%) patients, and non-diagnostic interpretations for 18 (17.3%) patients. For diagnosing PE, the sensitivity, specificity, accuracy, positive predictive value and negative predictive value of ventilation-perfusion scintigraphy was 84.1%, 75.0%, 78.8%, 71.2% and 86.5%, respectively, and with D-dimer assay was 93.2%, 60.0%, 74.0%, 63.1% and 92.3%, respectively. If a plasma D-dimer level of < 500 mg/L was taken as a criterion to exclude PE for those intermediate probability of ventilation-perfusion scintigraphy, the diagnostic specificity and accuracy would be raised to 85.0% and 84.6%, respectively. Conclusions: When a non-diagnostic interpretation was occurred on

  7. [EYECUBE as 3D multimedia imaging in macular diagnostics].

    Science.gov (United States)

    Hassenstein, Andrea; Scholz, F; Richard, G

    2011-11-01

    In the new generation of EYECUBE devices, the angiography image and the OCT are included in a 3D illustration as an integration. Other diagnostic procedures such as autofluorescence and ICG can also be correlated to the OCT. The aim was to precisely classify various two-dimensional findings in relation to each other. The new generation of OCT devices enables imaging with a low incidence of motion artefacts with very good fundus image quality - and with that, permits a largely automatic classification. The feature enabling the integration of the EYECUBE was further developed with new software, so that not only the topographic image (red-free, autofluorescence) can be correlated to the Cirrus OCT, but also all other findings gathered within the same time frame can be correlated to each other. These were brightened and projected onto the cube surface in a defined interval. The imaging procedures can be selected in a menu toolbar. Topographic volumetry OCT images can be overlayed. The practical application of the new method was tested on patients with macular disorders. By lightening up the results from various diagnostic procedures, it is possible of late to directly compare pathologies to each other and to the OCT results. In all patients (n = 45 eyes) with good single-image quality, the automated integration into the EYECUBE was possible (to a great extent). The application is not dependent on a certain type of device used in the procedures performed. The increasing level of precision in imaging procedures and the handling of large data volumes has led to the possibility of examining each macular diagnostics procedure from the comparative perspective: imaging (photo) with perfusion (FLA, ICG) and morphology (OCT). The exclusion of motion artefacts and the reliable scan position in the course of the imaging process increases the informative value of OCT. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Schlieren method diagnostics of plasma compression in front of coaxial gun

    International Nuclear Information System (INIS)

    Kravarik, J.; Kubes, P.; Hruska, J.; Bacilek, J.

    1983-01-01

    The schlieren method employing a movable knife edge placed in the focal plane of a laser beam was used for the diagnostics of plasma produced by a coaxial plasma gun. When compared with the interferometric method reported earlier, spatial resolution was improved by more than one order of magnitude. In the determination of electron density near the gun orifice, spherical symmetry of the current sheath inhomogeneities and cylindrical symmetry of the compression maximum were assumed. Radial variation of electron density could be reconstructed from the photometric measurements of the transversal variation of schlieren light intensity. Due to small plasma dimensions, electron density was determined directly from the knife edge shift necessary for shadowing the corresponding part of the picture. (J.U.)

  9. Diagnostics of microwave assisted electron cyclotron resonance plasma source for surface modification of nylon 6

    Science.gov (United States)

    More, Supriya E.; Das, Partha Sarathi; Bansode, Avinash; Dhamale, Gayatri; Ghorui, S.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Mathe, Vikas L.

    2018-01-01

    Looking at the increasing scope of plasma processing of materials surface, here we present the development and diagnostics of a microwave assisted Electron Cyclotron Resonance (ECR) plasma system suitable for surface modification of polymers. Prior to the surface-treatment, a detailed diagnostic mapping of the plasma parameters throughout the reactor chamber was carried out by using single and double Langmuir probe measurements in Ar plasma. Conventional analysis of I-V curves as well as the elucidation form of the Electron Energy Distribution Function (EEDF) has become the source of calibration of plasma parameters in the reaction chamber. The high energy tail in the EEDF of electron temperature is seen to extend beyond 60 eV, at much larger distances from the ECR zone. This proves the suitability of the rector for plasma processing, since the electron energy is much beyond the threshold energy of bond breaking in most of the polymers. Nylon 6 is used as a representative candidate for surface processing in the presence of Ar, H2 + N2, and O2 plasma, treated at different locations inside the plasma chamber. In a typical case, the work of adhesion is seen to almost get doubled when treated with oxygen plasma. Morphology of the plasma treated surface and its hydrophilicity are discussed in view of the variation in electron density and electron temperature at these locations. Nano-protrusions arising from plasma treatment are set to be responsible for the hydrophobicity. Chemical sputtering and physical sputtering are seen to influence the surface morphology on account of sufficient electron energies and increased plasma potential.

  10. FAR-TECH's Nanoparticle Plasma Jet System and its Application to Disruptions, Deep Fueling, and Diagnostics

    Science.gov (United States)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2012-10-01

    Hyper-velocity plasma jets have potential applications in tokamaks for disruption mitigation, deep fueling and diagnostics. Pulsed power based solid-state sources and plasma accelerators offer advantages of rapid response and mass delivery at high velocities. Fast response is critical for some disruption mitigation scenario needs, while high velocity is especially important for penetration into tokamak plasma and its confining magnetic field, as in the case of deep fueling. FAR-TECH is developing the capability of producing large-mass hyper-velocity plasma jets. The prototype solid-state source has produced: 1) >8.4 mg of H2 gas only, and 2) >25 mg of H2 and >180 mg of C60 in a H2/C60 gas mixture. Using a coaxial plasma gun coupled to the source, we have successfully demonstrated the acceleration of composite H/C60 plasma jets, with momentum as high as 0.6 g.km/s, and containing an estimated C60 mass of ˜75 mg. We present the status of FAR-TECH's nanoparticle plasma jet system and discuss its application to disruptions, deep fueling, and diagnostics. A new TiH2/C60 solid-state source capable of generating significantly higher quantities of H2 and C60 in <0.5 ms will be discussed.

  11. Diagnostic radionuclide imaging of amyloid: biological targeting by circulating human serum amyloid P component

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, P.N.; Lavender, J.P.; Myers, M.J.; Pepys, M.B.

    1988-06-25

    The specific molecular affinity of the normal plasma protein, serum amyloid P component (SAP), for all known types of amyloid fibrils was used to develop a new general diagnostic method for in-vivo radionuclide imaging of amyloid deposits. After intravenous injection of /sup 123/I-labelled purified human SAP there was specific uptake into amyloid deposits in all affected patients, 7 with systematic AL amyloid, 5 with AA amyloid, and 2 with ..beta../sub 2/M amyloid, in contrast to the complete absence of any tissue localisation in 5 control subjects. Distinctive high-resolution scintigraphic images, even of minor deposits in the carpal regions, bone marrow, or adrenals, were obtained. This procedure should yield much information on the natural history and the management of amyloidosis, the presence of which has hitherto been confirmed only by biopsy. Clearance and metabolic studies indicated that, in the presence of extensive amyloidosis, the rate of synthesis of SAP was greatly increased despite maintenance of normal plasma levels. Futhermore, once localised to amyloid deposits the /sup 123/I-SAP persisted for long periods and was apparently protected from its normal rapid degradation. These findings shed new light on the pathophysiology of amyloid and may have implications for therapeutic strategies based upon specific molecular targeting with SAP.

  12. Soft x-ray imaging system for measurement of noncircular tokamak plasmas

    International Nuclear Information System (INIS)

    Fonck, R.J.; Reusch, M.; Jaehnig, K.P.; Hulse, R.; Roney, P.

    1986-08-01

    A soft x-ray camera and image processing system has been constructed to provide measurements of the internal shape of high temperature tokamak plasmas. The camera consists of a metallic-foil-filtered pinhole aperture and a microchannel plate image intensifier/convertor which produces a visible image for detection by a CCD TV camera. A wide-angle tangential view of the toroidal plasma allows a single compact camera to view the entire plasma cross section. With Be filters 12 to 50 μm thick, the signal from the microchannel plate is produced mostly by nickel L-line emissions which orignate in the hot plasma core. The measured toroidal image is numerically inverted to produce a cross-sectional soft x-ray image of the plasma. Since the internal magnetic flux surfaces are usually isothermal and the nickel emissivity depends strongly on the local electron temperature, the x-ray emission contours reflect the shape of the magnetic surfaces in the plasma interior. Initial results from the PBX tokamak experiment show clear differences in internal plasma shapes for circular and bean-shaped discharges

  13. Development of Laser Based Plasma Diagnostics for Fusion Research on NSTX-U

    Science.gov (United States)

    Barchfeld, Robert Adam

    plasma diagnostics. Plasma diagnostics collect data from fusion reactors in a number of different ways. Among these are far infrared (FIR) laser based systems. By probing a fusion plasma with FIR lasers, many properties can be measured, such as density and density fluctuations. This dissertation discusses the theory and design of two laser based diagnostic instruments: 1) the Far Infrared Tangential Interferometer and Polarimeter (FIReTIP) systems, and 2) the High-ktheta Scattering System. Both of these systems have been designed and fabricated at UC Davis for use on the National Spherical Torus Experiment - Upgrade (NSTX-U), located at Princeton Plasma Physics Laboratory (PPPL). These systems will aid PPPL scientists in fusion research. The FIReTIP system uses 119 ?m methanol lasers to pass through the plasma core to measure a chord averaged plasma density through interferometry. It can also measure the toroidal magnetic field strength by the way of polarimetery. The High-ktheta Scattering System uses a 693 GHz formic acid laser to measure electron scale turbulence. Through collective Thomson scattering, as the probe beam passes through the plasma, collective electron motion will scatter power to a receiver with the angle determined by the turbulence wavenumber. This diagnostic will measure ktheta from 7 to 40 cm-1 with a 4-channel receiver array. The High-ktheta Scattering system was designed to facilitate research on electron temperature gradient (ETG) modes, which are believed to be a major contributor to anomalous transport on NSTX-U. The design and testing of these plasma diagnostics are described in detail. There are a broad range of components detailed including: optically pumped gas FIR lasers, overmoded low loss waveguide, launching and receiving optical designs, quasi-optical mixers, electronics, and monitoring and control systems. Additionally, details are provided for laser maintenance, alignment techniques, and the fundamentals of nano-CNC-machining.

  14. [Future perspectives for diagnostic imaging in urology: from anatomic and functional to molecular imaging].

    Science.gov (United States)

    Macis, Giuseppe; Di Giovanni, Silvia; Di Franco, Davide; Bonomo, Lorenzo

    2013-01-01

    The future approach of diagnostic imaging in urology follows the technological progress, which made the visualization of in vivo molecular processes possible. From anatomo-morphological diagnostic imaging and through functional imaging molecular radiology is reached. Based on molecular probes, imaging is aimed at assessing the in vivo molecular processes, their physiology and function at cellular level. The future imaging will investigate the complex tumor functioning as metabolism, aerobic glycolysis in particular, angiogenesis, cell proliferation, metastatic potential, hypoxia, apoptosis and receptors expressed by neoplastic cells. Methods for performing molecular radiology are CT, MRI, PET-CT, PET-MRI, SPECT and optical imaging. Molecular ultrasound combines technological advancement with targeted contrast media based on microbubbles, this allowing the selective registration of microbubble signal while that of stationary tissues is suppressed. An experimental study was carried out where the ultrasound molecular probe BR55 strictly bound to prostate tumor results in strong enhancement in the early phase after contrast, this contrast being maintained in the late phase. This late enhancement is markedly significant for the detection of prostatic cancer foci and to guide the biopsy sampling. The 124I-cG250 molecular antibody which is strictly linked to cellular carbonic anhydrase IX of clear cell renal carcinoma, allows the acquisition of diagnostic PET images of clear cell renal carcinoma without biopsy. This WG-250 (RENCAREX) antibody was used as a therapy in metastatic clear cell renal carcinoma. Future advancements and applications will result in early cancer diagnosis, personalized therapy that will be specific according to the molecular features of cancer and leading to the development of catheter-based multichannel molecular imaging devices for cystoscopy-based molecular imaging diagnosis and intervention.

  15. Artificial intelligence as a diagnostic adjunct in cardiovascular nuclear imaging

    International Nuclear Information System (INIS)

    Duncan, J.S.

    1988-01-01

    The radiologist and/or nuclear medicine physician is literally bombarded with information from today's diagnostic imaging technologies. As a consequence of this, whereas a decade ago the emphasis in medical image analysis was on improving the extraction of diagnostic information by developing and using more sophisticated imaging modalities, today those working on the development of medical imaging technology are struggling to find ways to handle all gathered information effectively. This chapter gives an introduction to the area of artificial intelligence, with an emphasis on the research ongoing in cardiovascular nuclear imaging. This chapter has reviewed the place of artificial intelligence in cardiovascular nuclear imaging. It is intended to provide a general sense of this new and emerging field, an insight into some of its specific methodologies and applications, and a closer look at the several AI approaches currently being applied in cardiovascular nuclear imaging

  16. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-01-01

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm 2 and 0.4 pC/(ps mm 2 ), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within ±8%, showing that they all can provide accurate charge measurements for LPAs.

  17. Electron beam charge diagnostics for laser plasma accelerators

    Directory of Open Access Journals (Sweden)

    K. Nakamura

    2011-06-01

    Full Text Available A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs. First, a scintillating screen (Lanex was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160  pC/mm^{2} and 0.4  pC/(ps  mm^{2}, respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within ±8%, showing that they all can provide accurate charge measurements for LPAs.

  18. The radioenzymatic determination of adrenaline and noradrenaline in plasma and its use in the diagnostic of pheochromocytomas

    International Nuclear Information System (INIS)

    Neuhaus, C.P.E.

    1982-01-01

    The radioenzymatic determination of adrenaline and noradrenaline in human plasma for the diagnosis of pheochromocytomas was put to use after improvements were made with respect to extraction and separation steps. The plasma catecholamines at rest were distinctly higher in patients with pheochromocytomas. The plasma catecholamine level showed a significant increase as well with the glucagon test between the second and fifth minute. The method was not well suited for the localisation diagnostic where the plasma catecholamines were determined in selectively taken blood from the lower vena cava. Overall, however, the radioenzymatic determination of catecholamines in plasma proved itself to be a relatively ponderous, but exact and sensitive method for the measuring of basal catecholamine level and its changes. In the clinical area it is used as a valuable supplement to the contemporary diagnostic of pheochromocytomas. (orig./TRV) [de

  19. Machine and plasma diagnostic instrumentation systems for the Tandem Mirror Experiment Upgrade

    International Nuclear Information System (INIS)

    Coutts, G.W.; Coffield, F.E.; Lang, D.D.; Hornady, R.S.

    1981-01-01

    To evaluate performance of a second generation Tandem Mirror Machine, an extensive instrumentation system is being designed and installed as part of the major device fabrication. The systems listed will be operational during the start-up phase of the TMX Upgrade machine and provide bench marks for future performance data. In addition to plasma diagnostic instrumentation, machine parameter monitoring systems will be installed prior to machine operation. Simultaneous recording of machine parameters will permit evaluation of plasma parameters sensitive to machine conditions

  20. The local area network for the plasma Diagnostics System of MFTF-B

    International Nuclear Information System (INIS)

    Lau, N.H.; Minor, E.G.

    1983-01-01

    The MFTF-B Plasma Diagnostics System will be implemented in stages, beginning with a start-up set of diagnostics and evolving toward a basic set. The start-up set contains 12 diagnostics which will acquire a total of about 800 Kbytes of data per machine pulse; the basic set contains 23 diagnostics which will acquire a total of about 8 Mbytes of data per pulse. Each diagnostic is controlled by a ''Foundation System'' consisting of a DEC LSI-11/23 microcomputer connected to CAMAC via a 5 Mbits/second serial fiber-optic link and connected to a supervisory computer (Perkin-Elmer 3250) via a 9600 baud RS232 link. The Foundation System is a building block used throughout MFTF-B for control and status monitoring. However, its 9600 baud link to the supervisor presents a bottleneck for the large data transfers required by diagnostics. To overcome this bottleneck the diagnostics Foundation Systems will be connected together with an additional LSI-11/23 called the ''master'' to form a Local Area Network (LAN) for data acquisition. The Diagnostics LAN has a ring architecture with token passing arbitration

  1. Automatic volumetry on MR brain images can support diagnostic decision making

    Directory of Open Access Journals (Sweden)

    Aviv Richard I

    2008-05-01

    Full Text Available Abstract Background Diagnostic decisions in clinical imaging currently rely almost exclusively on visual image interpretation. This can lead to uncertainty, for example in dementia disease, where some of the changes resemble those of normal ageing. We hypothesized that extracting volumetric data from patients' MR brain images, relating them to reference data and presenting the results as a colour overlay on the grey scale data would aid diagnostic readers in classifying dementia disease versus normal ageing. Methods A proof-of-concept forced-choice reader study was designed using MR brain images from 36 subjects. Images were segmented into 43 regions using an automatic atlas registration-based label propagation procedure. Seven subjects had clinically probable AD, the remaining 29 of a similar age range were used as controls. Seven of the control subject data sets were selected at random to be presented along with the seven AD datasets to two readers, who were blinded to all clinical and demographic information except age and gender. Readers were asked to review the grey scale MR images and to record their choice of diagnosis (AD or non-AD along with their confidence in this decision. Afterwards, readers were given the option to switch on a false-colour overlay representing the relative size of the segmented structures. Colorization was based on the size rank of the test subject when compared with a reference group consisting of the 22 control subjects who were not used as review subjects. The readers were then asked to record whether and how the additional information had an impact on their diagnostic confidence. Results The size rank colour overlays were useful in 18 of 28 diagnoses, as determined by their impact on readers' diagnostic confidence. A not useful result was found in 6 of 28 cases. The impact of the additional information on diagnostic confidence was significant (p Conclusion Volumetric anatomical information extracted from brain

  2. Electron density and temperature profile diagnostics for C-2 field reversed configuration plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Deng, B. H.; Kinley, J. S.; Schroeder, J. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2012-10-15

    The 9-point Thomson scattering diagnostic system for the C-2 field reversed configuration plasmas is improved and the measured electron temperature profiles are consistent with theoretical expectations. Rayleigh scattering revealed a finite line width of the ruby laser emission, which complicates density calibration. Taking advantage of the plasma wobble motion, density profile reconstruction accuracy from the 6-chord two-color CO{sub 2}/HeNe interferometer data is improved.

  3. Mapping the different methods adopted for diagnostic imaging instruction at medical schools in Brazil.

    Science.gov (United States)

    Chojniak, Rubens; Carneiro, Dominique Piacenti; Moterani, Gustavo Simonetto Peres; Duarte, Ivone da Silva; Bitencourt, Almir Galvão Vieira; Muglia, Valdair Francisco; D'Ippolito, Giuseppe

    2017-01-01

    To map the different methods for diagnostic imaging instruction at medical schools in Brazil. In this cross-sectional study, a questionnaire was sent to each of the coordinators of 178 Brazilian medical schools. The following characteristics were assessed: teaching model; total course hours; infrastructure; numbers of students and professionals involved; themes addressed; diagnostic imaging modalities covered; and education policies related to diagnostic imaging. Of the 178 questionnaires sent, 45 (25.3%) were completed and returned. Of those 45 responses, 17 (37.8%) were from public medical schools, whereas 28 (62.2%) were from private medical schools. Among the 45 medical schools evaluated, the method of diagnostic imaging instruction was modular at 21 (46.7%), classic (independent discipline) at 13 (28.9%), hybrid (classical and modular) at 9 (20.0%), and none of the preceding at 3 (6.7%). Diagnostic imaging is part of the formal curriculum at 36 (80.0%) of the schools, an elective course at 3 (6.7%), and included within another modality at 6 (13.3%). Professors involved in diagnostic imaging teaching are radiologists at 43 (95.5%) of the institutions. The survey showed that medical courses in Brazil tend to offer diagnostic imaging instruction in courses that include other content and at different time points during the course. Radiologists are extensively involved in undergraduate medical education, regardless of the teaching methodology employed at the institution.

  4. Wave launching as a diagnostic tool to investigate plasma turbulence

    International Nuclear Information System (INIS)

    Tsui, H.Y.W.; Bengtson, R.D.; Li, G.X.; Richards, B.; Uglum, J.; Wootton, A.J.; Uckan, T.

    1994-01-01

    An experimental scheme to extend the investigation of plasma turbulence has been implemented. It involves driving waves into the plasma to modify the statistical properties of the fluctuations; the dynamic balance of the turbulence is perturbed via the injection of waves at selected spectral regions. A conditional sampling technique is used in conjunction with correlation analyses to study the wave launching and the wave-wave coupling processes. Experimental results from TEXT-U tokamak show that the launched waves interact with the intrinsic fluctuations both linearly and nonlinearly. The attainment of driven nonlinearity is necessary for this diagnostic scheme to work. It is also the key to an active modification and control of edge turbulence in tokamaks

  5. Proposed neutral-beam diagnostics for fast confined alpha particles in a burning plasma

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Cooper, W.S.

    1986-10-01

    Diagnostic methods for fast confined alpha particles are essential for a burning plasma experiment. Several methods which use energetic neutral beams have been proposed. We review these methods and discuss system considerations for their implementation

  6. Development and Implementation of a New HELIOS Diagnostic using a Fast Piezoelectric Valve on the Prototype Material Plasma Exposure eXperiment

    Science.gov (United States)

    Ray, Holly; Biewer, Theodore; Caneses, Juan; Green, Jonathan; Lindquist, Elizabeth; McQuown, Levon; Schmitz, Oliver

    2017-10-01

    A new helium line-ratio spectral monitoring (HELIOS) diagnostic, using a piezoelectric valve with high duty cycles (on/off times ms), allowing for good background correction, and measured particle flowrates on the order of 1020 particles/second is being implemented on Oak Ridge National Laboratory's (ORNL) Prototype Material Plasma Exposure eXperiment (Proto-MPEX). Built in collaboration with the University of Wisconsin - Madison, the HELIOS diagnostic communicates with a Labview program for controlled bursts of helium into the vessel. The open magnetic geometry of Proto-MPEX is ideal for testing and characterizing a HELIOS diagnostic. The circular cross-section with four ports allows for cross comparison between different diagnostics: 1) Helium injection with the piezoelectric puff valve, 2) HELIOS line-of-sight high-gain observation, 3) scan-able Double Langmuir probe, and 4) HELIOS 2D imaging observation. Electron density and temperature measurements from the various techniques will be compared. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725 and DE-SC00013911.

  7. Diagnostics and characterization of nanodust and nanodusty plasmas★

    Science.gov (United States)

    Greiner, Franko; Melzer, Andrè; Tadsen, Benjamin; Groth, Sebastian; Killer, Carsten; Kirchschlager, Florian; Wieben, Frank; Pilch, Iris; Krüger, Harald; Block, Dietmar; Piel, Alexander; Wolf, Sebastian

    2018-05-01

    Plasmas growing or containing nanometric dust particles are widely used and proposed in plasma technological applications for production of nano-crystals and surface deposition. Here, we give a compact review of in situ methods for the diagnostics of nanodust and nanodusty plasmas, which have been developed in the framework of the SFB-TR24 to fully characterize these systems. The methods include kinetic Mie ellipsometry, angular-resolved Mie scattering, and 2D imaging Mie ellipsometry to get information about particle growth processes, particle sizes and particle size distributions. There, also the role of multiple scattering events is analyzed using radiative transfer simulations. Computed tomography and Abel inversion techniques to get the 3D dust density profiles of the particle cloud will be presented. Diagnostics of the dust dynamics yields fundamental dust and plasma properties like particle charges and electron and ion densities. Since nanodusty plasmas usually form dense dust clouds electron depletion (Havnes effect) is found to be significant.

  8. Improvements to a high-frequency fiber-optic system for plasma diagnostics

    International Nuclear Information System (INIS)

    Ogle, J.W.; Lyons, P.B.; Looney, L.; Hocker, L.; Nelson, M.A.; Zagarino, P.A.; Davies, T.J.; Simmons, R.D.; Selk, R.; Hopkins, B.

    1981-01-01

    A system for high-frequency recording of plasma diagnostics has previously been reported. Substantial improvements have been made in the system response, dynamic range, and calibration of the system. Plastic-clad silica fiber is used as a radiation-to-light converter using the Cerenkov process. A spectral equalizer device is used to compensate for the material dispersion in the fiber, increasing the frequency response (approx. = 1 GHz-km) and the dynamic range (a factor of > 20 over a FWHM 1 nm, 50% transmitting interference filter). The calibration system uses a pulsed injection laser diode (< 100 ps FWHM) injected into the fiber at the radiation end of the fiber and detected by a microchannel plate photomultiplier tube on the recording end. The injection laser diode is triggered by a synchronous trigger delay unit, which also triggers a sampling or real time scope after as much as 10 μs delay with < 50 ps jitter. The system improvements are described in detail and the utility of these components in other plasma diagnostic systems is discussed

  9. ECR plasma photographs as a plasma diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Racz, R; Biri, S; Palinkas, J [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary)

    2011-04-15

    Low, medium or highly charged ions delivered by electron cyclotron resonance (ECR) ion sources all are produced in the ECR plasma. In order to study such plasmas, high-resolution visible light plasma photographs were taken at the ATOMKI ECR ion source. An 8 megapixel digital camera was used to photograph plasmas made from He, methane, N, O, Ne, Ar, Kr, Xe gases and from their mixtures. The analysis of the photo series gave many qualitative and some valuable physical information on the nature of ECR plasmas. A comparison was made between the plasma photos and computer simulations, and conclusions were drawn regarding the cold electron component of the plasma. The warm electron component of similar simulation was compared with x-ray photos emitted by plasma ions. While the simulations are in good agreement with the photos, a significant difference was found between the spatial distribution of the cold and warm electrons.

  10. Investigation of the possibility of gamma-ray diagnostic imaging of target compression at NIF.

    Science.gov (United States)

    Lemieux, Daniel A; Baudet, Camille; Grim, Gary P; Barber, H Bradford; Miller, Brian W; Fasje, David; Furenlid, Lars R

    2011-09-23

    The National Ignition Facility at Lawrence Livermore National Laboratory is the world's leading facility to study the physics of igniting plasmas. Plasmas of hot deuterium and tritium, undergo d(t,n)α reactions that produce a 14.1 MeV neutron and 3.5 MeV a particle, in the center of mass. As these neutrons pass through the materials surrounding the hot core, they may undergo subsequent (n,x) reactions. For example, (12)C(n,n'γ)(12)C reactions occur in remnant debris from the polymer ablator resulting in a significant fluence of 4.44 MeV gamma-rays. Imaging of these gammas will enable the determination of the volumetric size and symmetry of the ablation; large size and high asymmetry is expected to correlate with poor compression and lower fusion yield. Results from a gamma-ray imaging system are expected to be complimentary to a neutron imaging diagnostic system already in place at the NIF. This paper describes initial efforts to design a gamma-ray imaging system for the NIF using the existing neutron imaging system as a baseline for study. Due to the cross-section and expected range of ablator areal densities, the gamma flux should be approximately 10(-3) of the neutron flux. For this reason, care must be taken to maximize the efficiency of the gamma-ray imaging system because it will be gamma starved. As with the neutron imager, use of pinholes and/or coded apertures are anticipated. Along with aperture and detector design, the selection of an appropriate scintillator is discussed. The volume of energy deposition of the interacting 4.44 MeV gamma-rays is a critical parameter limiting the imaging system spatial resolution. The volume of energy deposition is simulated with GEANT4, and plans to measure the volume of energy deposition experimentally are described. Results of tests on a pixellated LYSO scintillator are also presented.

  11. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine

    Science.gov (United States)

    Laroussi, M.; Lu, X.; Keidar, M.

    2017-07-01

    Low temperature plasmas have been used in various plasma processing applications for several decades. But it is only in the last thirty years or so that sources generating such plasmas at atmospheric pressure in reliable and stable ways have become more prevalent. First, in the late 1980s, the dielectric barrier discharge was used to generate relatively large volume diffuse plasmas at atmospheric pressure. Then, in the early 2000s, plasma jets that can launch cold plasma plumes in ambient air were developed. Extensive experimental and modeling work was carried out on both methods and much of the physics governing such sources was elucidated. Starting in the mid-1990s, low temperature plasma discharges have been used as sources of chemically reactive species that can be transported to interact with biological media, cells, and tissues and induce impactful biological effects. However, many of the biochemical pathways whereby plasma affects cells remain not well understood. This situation is changing rather quickly because the field, known today as "plasma medicine," has experienced exponential growth in the last few years thanks to a global research community that engaged in fundamental and applied research involving the use of cold plasma for the inactivation of bacteria, dental applications, wound healing, and the destruction of cancer cells/tumors. In this perspective, the authors first review the physics as well as the diagnostics of the principal plasma sources used in plasma medicine. Then, brief descriptions of their biomedical applications are presented. To conclude, the authors' personal assessment of the present status and future outlook of the field is given.

  12. In situ electromagnetic field diagnostics with an electron plasma in a Penning-Malmberg trap

    CERN Document Server

    Amole, C; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C.L.; Charlton, M.; Deller, A.; Evetts, N.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M.C.; Gill, D.R.; Gutierrez, A.; Hangst, J.S.; Hardy, W.N.; Hayden, M.E.; Isaac, C.A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J.T.K.; Menary, S.; Napoli, S.C.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C.; Robicheaux, F.; Sarid, E.; Silveira, D.M.; So, C.; Stracka, S.; Tharp, T.; Thompson, R.I.; van der Werf, D.P.; Wurtele, J.S.

    2014-01-01

    We demonstrate a novel detection method for the cyclotron resonance frequency of an electron plasma in a Penning-Malmberg trap. With this technique, the electron plasma is used as an in situ diagnostic tool for measurement of the static magnetic field and the microwave electric field in the trap. The cyclotron motion of the electron plasma is excited by microwave radiation and the temperature change of the plasma is measured non-destructively by monitoring the plasma's quadrupole mode frequency. The spatially-resolved microwave electric field strength can be inferred from the plasma temperature change and the magnetic field is found through the cyclotron resonance frequency. These measurements were used extensively in the recently reported demonstration of resonant quantum interactions with antihydrogen.

  13. Diagnostic imaging of craniofacial trauma and fractures and their sequelae

    International Nuclear Information System (INIS)

    Buitrago-Tellez, C.H.; Kunz, C.

    2001-01-01

    The value and applications of the CT modalities are on the rise, particularly since the availability of spiral CT techniques, while conventional native diagnostics is increasingly used for special imaging purposes. Multiplanar spiral CT enables high-quality coronary 2D reconstructions which, in the acute phase, make redundant primary coronary imaging modalities. Exact knowledge of typical fracture patterns facilitates the analysis of images of the relevant facial areas. 3D reconstructions are indispensable in pin-pointed surgery planning, generation of stereolithographic models, and image-guided interventions for examination of post-traumatic deformities. Since a secondary correction only very rarely leads to restitutio ad integrum, it is necessary to detect the therapy-relevant injuries very early, during acute diagnostic imaging, in order to lay the basis for subsequent therapy and restoration of the craniofacial structures and functions. (orig./CB) [de

  14. Ion temperature profiles along a hydrogen diagnostic beam in a TORE SUPRA tokamak plasma

    International Nuclear Information System (INIS)

    Romannikov, A.; Petrov, Yu.; Platts, P.; Khess, V.; Khutter, T.; Farzhon, Zh.; Moro, F.

    2002-01-01

    By means of corpuscular diagnostics one studies temperature of ions along a diagnostic hydrogen beam. Paper presents comparison of temperature of plasma (deuterium) basic ions measures by means of the active corpuscular diagnostics with temperature of C + carbon ions along a beam. One studies behavior peculiarities of T i ion temperature profiles for TORE-SUPRA different modes, such as: formation of plane and even hollow T i profiles for ohmic modes, variation of T i profiles under operation of an ergodic diverter, difference of temperature of basic ions measured by means of the active corpuscular diagnostics from C +5 temperature. Paper offers clear explanation of these peculiarities [ru

  15. Infrared and far-infrared laser development for plasma diagnostics at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Casson, W.H.; Bennett, C.A.; Fletcher, L.K.; Hunter, H.T.; Hutchinson, D.P.; Lee, J.; Ma, C.DH.; Richards, R.K.; Vander Sluis, K.L.

    1987-01-01

    Three IR and FIR based diagnostics will be developed ann installed on the Advanced Toroidal Facility (ATF) at ORNL. An interferometer operating at 119 mu m will measure plasma density along 14 vertical chords across the plasma cross-section. A small-angle Thomson scattering experiment using a 10.6-mu m pulsed laser will determine the feasibility of measuring alpha particle distribution in a burning plasma. Plans are being developed for installing an FIR-based scattering experiment on ATF to measure density fluctuations. 4 refs., 4 figs

  16. Appropriate use of diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, P.E.S.; Cockshott, W.P.

    1984-11-16

    This article discusses ways in which more appropriate use can be made of roentgenography with a resulting decrease in radiation doses to the patient population. The authors recommend that fewer films be made and that traditional roentgenography be replaced with endoscopy, ultrasound, computerized tomography, or angiography where appropriate. They also recommend that medical schools and medical subspecialty groups study the World Health Organization document which provides indications for diagnostic imaging, the choice of procedure and the limitations of each.

  17. Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.

    Science.gov (United States)

    Handels, H; Ehrhardt, J

    2009-01-01

    Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or

  18. Observation of plasma-facing-wall via high dynamic range imaging

    International Nuclear Information System (INIS)

    Villamayor, Michelle Marie S.; Rosario, Leo Mendel D.; Viloan, Rommel Paulo B.

    2013-01-01

    Pictures of plasmas and deposits in a discharge chamber taken by varying shutter speeds have been integrated into high dynamic range (HDR) images. The HDR images of a graphite target surface of a compact planar magnetron (CPM) discharge device have clearly indicated the erosion pattern of the target, which are correlated to the light intensity distribution of plasma during operation. Based upon the HDR image technique coupled to colorimetry, a formation history of dust-like deposits inside of the CPM chamber has been recorded. The obtained HDR images have shown how the patterns of deposits changed in accordance with discharge duration. Results show that deposition takes place near the evacuation ports during the early stage of the plasma discharge. Discoloration of the plasma-facing-walls indicating erosion and redeposition eventually spreads at the periphery after several hours of operation. (author)

  19. Tree-structured vector quantization of CT chest scans: Image quality and diagnostic accuracy

    International Nuclear Information System (INIS)

    Cosman, P.C.; Tseng, C.; Gray, R.M.; Olshen, R.A.; Moses, L.E.; Davidson, H.C.; Bergin, C.J.; Riskin, E.A.

    1993-01-01

    The quality of lossy compressed images is often characterized by signal-to-noise ratios, informal tests of subjective quality, or receiver operating characteristic (ROC) curves that include subjective appraisals of the value of an image for a particular application. The authors believe that for medical applications, lossy compressed images should be judged by a more natural and fundamental aspect of relative image quality: their use in making accurate diagnoses. They apply a lossy compression algorithm to medical images, and quantify the quality of the images by the diagnostic performance of radiologists, as well as by traditional signal-to-noise ratios and subjective ratings. The study is unlike previous studies of the effects of lossy compression in that they consider non-binary detection tasks, simulate actual diagnostic practice instead of using paired tests or confidence rankings, use statistical methods that are more appropriate for non-binary clinical data than are the popular ROC curves, and use low-complexity predictive tree-structured vector quantization for compression rather than DCT-based transform codes combined with entropy coding. Their diagnostic tasks are the identification of nodules (tumors) in the lungs and lymphadenopathy in the mediastinum from computerized tomography (CT) chest scans. For the image modality, compression algorithm, and diagnostic tasks they consider, the original 12 bit per pixel (bpp) CT image can be compressed to between 1 bpp and 2 bpp with no significant changes in diagnostic accuracy

  20. 2D imaging X-ray diagnostic for measuring the current density distribution in a wide-area electron beam produced in a multiaperture diode with plasma cathode

    Science.gov (United States)

    Kurkuchekov, V.; Kandaurov, I.; Trunev, Y.

    2018-05-01

    A simple and inexpensive X-ray diagnostic tool was designed for measuring the cross-sectional current density distribution in a low-relativistic pulsed electron beam produced in a source based on an arc-discharge plasma cathode and multiaperture diode-type electron optical system. The beam parameters were as follows: Uacc = 50–110 kV, Ibeam = 20–100 A, τbeam = 0.1–0.3 ms. The beam effective diameter was ca. 7 cm. Based on a pinhole camera, the diagnostic allows one to obtain a 2D profile of electron beam flux distribution on a flat metal target in a single shot. The linearity of the diagnostic system response to the electron flux density was established experimentally. Spatial resolution of the diagnostic was also estimated in special test experiments. The optimal choice of the main components of the diagnostic technique is discussed.

  1. Data acquisition and real-time signal processing of plasma diagnostics on ASDEX Upgrade using LabVIEW RT

    International Nuclear Information System (INIS)

    Giannone, L.; Cerna, M.; Cole, R.; Fitzek, M.; Kallenbach, A.; Lueddecke, K.; McCarthy, P.J.; Scarabosio, A.; Schneider, W.; Sips, A.C.C.; Treutterer, W.; Vrancic, A.; Wenzel, L.; Yi, H.; Behler, K.; Eich, T.; Eixenberger, H.; Fuchs, J.C.; Haas, G.; Lexa, G.

    2010-01-01

    The existing VxWorks real-time system for the position and shape control in ASDEX Upgrade has been extended to calculate magnetic flux surfaces in real-time using a multi-core PCI Express system running LabVIEW RT 8.6. real-time signal processing of bolometers and manometers is performed with the on-board FPGA to calculate the measured radiated power flux and particle flux respectively from the raw data. Radiation feedback experiments use halo current measurements from the outer divertor with real-time median filter pre-processing to remove the excursions produced by ELMs. Integration of these plasma diagnostics into the control system by the exchange of XML sheets for communicating the real-time variables to be produced and consumed is in operation. Reflective memory and UDP are employed by the LabVIEW RT plasma diagnostics to communicate with the control system and other plasma diagnostics in a multi-platform real-time network.

  2. Data acquisition and real-time signal processing of plasma diagnostics on ASDEX Upgrade using LabVIEW RT

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L., E-mail: Louis.Giannone@ipp.mpg.d [Max-Planck-Institut fuer Plasmaphysik, EURATOM-IPP Association, D-85748 Garching (Germany); Cerna, M. [National Instruments, Austin, TX 78759-3504 (United States); Cole, R.; Fitzek, M. [Unlimited Computer Systems GmbH, 82393 Iffeldorf (Germany); Kallenbach, A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-IPP Association, D-85748 Garching (Germany); Lueddecke, K. [Unlimited Computer Systems GmbH, 82393 Iffeldorf (Germany); McCarthy, P.J. [Department of Physics, University College Cork, Association EURATOM-DCU, Cork (Ireland); Scarabosio, A.; Schneider, W.; Sips, A.C.C.; Treutterer, W. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-IPP Association, D-85748 Garching (Germany); Vrancic, A.; Wenzel, L.; Yi, H. [National Instruments, Austin, TX 78759-3504 (United States); Behler, K.; Eich, T.; Eixenberger, H.; Fuchs, J.C.; Haas, G.; Lexa, G. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-IPP Association, D-85748 Garching (Germany)

    2010-07-15

    The existing VxWorks real-time system for the position and shape control in ASDEX Upgrade has been extended to calculate magnetic flux surfaces in real-time using a multi-core PCI Express system running LabVIEW RT 8.6. real-time signal processing of bolometers and manometers is performed with the on-board FPGA to calculate the measured radiated power flux and particle flux respectively from the raw data. Radiation feedback experiments use halo current measurements from the outer divertor with real-time median filter pre-processing to remove the excursions produced by ELMs. Integration of these plasma diagnostics into the control system by the exchange of XML sheets for communicating the real-time variables to be produced and consumed is in operation. Reflective memory and UDP are employed by the LabVIEW RT plasma diagnostics to communicate with the control system and other plasma diagnostics in a multi-platform real-time network.

  3. Optically pumped FIR lasers and their application in plasma diagnostics

    International Nuclear Information System (INIS)

    Bakos, J.S.

    1986-06-01

    The pysics and the construction of the far infrared lasers (FIRL) and of the infrared lasers pumping them are reviewed. The details of the construction, resonating and pumping systems, spectral and power characteristics of the FIRLs are discussed. Recently more than 1000 laser lines are known and used in the 27-80 mm wavelength range, but in many cases the laser kinetics are not fully understood, and some instability phenomena cannot be prevented. New nonlinear processes were found: two-photon pumping, hyper Raman laser tuning and relaxation phenomena. A broad application field, the plasma diagnostics by far infrared lasers is described. Scattering of infrared laser radiation can give new interesting information on the not understood effect of the anomalous transport in the high temperature plasma. (D.Gy.)

  4. MRI-based diagnostic imaging of the intratemporal facial nerve

    International Nuclear Information System (INIS)

    Kress, B.; Baehren, W.

    2001-01-01

    Detailed imaging of the five sections of the full intratemporal course of the facial nerve can be achieved by MRI and using thin tomographic section techniques and surface coils. Contrast media are required for tomographic imaging of pathological processes. Established methods are available for diagnostic evaluation of cerebellopontine angle tumors and chronic Bell's palsy, as well as hemifacial spasms. A method still under discussion is MRI for diagnostic evaluation of Bell's palsy in the presence of fractures of the petrous bone, when blood volumes in the petrous bone make evaluation even more difficult. MRI-based diagnostic evaluation of the idiopatic facial paralysis currently is subject to change. Its usual application cannot be recommended for routine evaluation at present. However, a quantitative analysis of contrast medium uptake of the nerve may be an approach to improve the prognostic value of MRI in acute phases of Bell's palsy. (orig./CB) [de

  5. Characterization of nova plasmas using an x-ray spectrometer with temporal and spatial resolution

    International Nuclear Information System (INIS)

    Back, C.A.; Kauffman, R.L.; Bell, P.; Kilkenny, J.D.

    1994-05-01

    Spectroscopic diagnostics have great potential to obtain high temperature measurements of plasmas created in ICF targets. The plasmas may be over 1 mm in size and therefore, one of the first steps in making accurate spectroscopic measurements has been to improve the resolution of the instrument. A spectrograph is now available for Nova experiments which takes advantage of gated technology by coupling a Bragg crystal to a microchannel plate that can record data over a 250 ps time frame. The crystal disperses the x-rays, while slits add the ability to image the plasmas in the perpendicular direction. The characteristics of this diagnostic, TSPEC, will be evaluated for laser-produced plasmas. Recent data will be presented from colliding plasmas and large-scale hohlraums which indicate that imaging can greatly enhance the ability to diagnose these plasmas

  6. Study design for concurrent development, assessment, and implementation of new diagnostic imaging technology

    NARCIS (Netherlands)

    M.G.M. Hunink (Myriam); G.P. Krestin (Gabriel)

    2002-01-01

    textabstractWith current constraints on health care resources and emphasis on value for money, new diagnostic imaging technologies must be assessed and their value demonstrated. The state of the art in the field of diagnostic imaging technology assessment advocates a hierarchical

  7. Probing colliding Calcium plasmas with emission and VUV absorption imaging

    International Nuclear Information System (INIS)

    Kavanagh, K.D.; Hirsch, J.S.; Kennedy, E.T.; Costello, T.; Poletto, L.; Nicolosi, P.

    2004-01-01

    Full text: Laser produced plasmas are formed when a short pulse and high power laser is focused onto a surface. Applications range from VUV/X-ray sources for lithography, microscopy and radiography to X-ray lasers, thin film deposition, analytical spectroscopy and electron/ion beam generation (and even acceleration). A battery of particle and optical techniques are now used to diagnose laser plasmas. One highly successful technique is gated-CCD (Charged Coupled Device) imaging of plasma plumes. It provides critical data on the early (creation) and late (expansion) phases of plasma plumes. However, this technique is limited to detecting only the excited (emitting) species in the plume. Recently, we developed a vacuum-UV (VUV) photoabsorption imaging facility called VPIF which enables one can track the evolution of dark plume matter or non-emitting plasma species residing in ground and metastable states. Although much is known about the dynamics of single laser plasma plumes expanding freely, little is known about the overlap between colliding plasma plumes. We are currently performing combined conventional gated CCD imaging and spectroscopy with VUV absorption imaging to map the evolution of the overlap volume of two colliding and interpenetrating plasma plumes. We are specifically tracking ground state singly ionized calcium in the plasmas by tuning into the inner shell 3p to 3d transition at 33.2 eV while the excited state species are tracked using transitions in the UV -NIR spectral range. The experiment may be cast as a model system for atmospheric and/or astrophysical colliding systems, e.g., when tracer elements are injected into supersonic winds at high altitude or when supernovae eject plasma into the solar wind

  8. Features of laser spectroscopy and diagnostics of plasma ions in high magnetic fields

    International Nuclear Information System (INIS)

    Semerok, A F; Fomichev, S V

    2003-01-01

    Laser induced fluorescence and laser absorption spectroscopies of plasma ions in high magnetic fields have been investigated. Both the high degree of Zeeman splitting of the resonant transitions and the ion rotational movement drastically change the properties of the resonance interaction of the continuous wave laser radiation with ions in highly magnetized plasma. Numerical solution of the density matrix equation for a dissipative two-level system with time-dependent detuning from resonance was used to analyse this interaction. A theoretical simulation was performed and compared with the experimental results obtained from the laser spectroscopy diagnostics of barium plasma ions in high magnetic fields in the several tesla range

  9. Studies of neutron measurement methods for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Beimer, K.H.

    1986-03-01

    This thesis comprises several studies mainly devoted to neutron measurement systems for plasma diagnostics at JET (Joint European Torus). An in situ calibration of the U-235 fission chamber detectors located at JET is presented. These detectors are used for measuring the neutron yield from the thermonuclear reactions in the plasma. The energy spectrum of the neutrons from the reactions D(d,n) 3 He has been studied by means of a 3 He spectrometer. Especially, it was found that by measuring the width of the full energy peak in the response spectrum of the 3 He-spectrometer, the deuterium distribution in the deuterium targets used can be estimated. In order to measure different neutron energies it is necessary to obtain a detailed knowledge of the response of the spectrometer. Therefore, the response function to monoenergetic neutrons in the energy range 130-3030 keV was experimentally determined. Some work has been related to a design study of a 14 MeV spectrometer for neutron diagnostics. It is a combined proton-recoil and time-of-flight spectrometer for high resolution measurements. The main parts of it are the collimator, the scattering foil, and the detectors for the recoil protons and the scattered neutrons. The influence of proton straggling in the foil on the resolution and efficiency of the spectrometer has been studied. Furthermore, a three dimensional Monte Carlo code has been written and used for the design of the collimator. (author)

  10. Laser-Induced Fluorescence diagnostic of barium ion plasmas in the Paul Trap Simulator Experiment

    International Nuclear Information System (INIS)

    Chung, Moses; Gilson, Erik P.; Davidson, Ronald C.; Efthimion, Philip C.; Majeski, Richard; Startsev, Edward A.

    2005-01-01

    The Paul Trap Simulator Experiment (PTSX) is a cylindrical Paul trap whose purpose is to simulate the nonlinear dynamics of intense charged particle beam propagation in alternating-gradient magnetic transport systems. To investigate the ion plasma microstate in PTSX, including the ion density profile and the ion velocity distribution function, a laser-induced fluorescence diagnostic system is being developed as a nondestructive diagnostic. Instead of cesium, which has been used in the initial phase of the PTSX experiment, barium has been selected as the preferred ion for the laser-induced fluorescence diagnostic. A feasibility study of the laser-induced fluorescence diagnostic using barium ions is presented with the characterization of a tunable dye laser. The installation of the barium ion source and the development of the laser-induced fluorescence diagnostic system are also discussed

  11. Challenges of video monitoring for phenomenological diagnostics in present and future tokamaks

    International Nuclear Information System (INIS)

    Martin, Vincent; Mondana, Victor; Travere, Jean-Marcel

    2011-01-01

    With the development of heterogeneous camera networks working at different wavelengths and frame rates and covering a large surface of vacuum vessel, the visual observation of a large variety of plasma and thermal phenomena (e.g., hot spots, ELMs, MARFE, arcs, dusts, etc.) becomes possible. In the domain of machine protection, a phenomenological diagnostic is a key-element towards plasma/thermal event dangerousness assessment during real time operation. It is also of primary importance to automate the extraction and the storage of phenomena information for further off-line event retrieval and analysis, thus leading to a better use of massive image data bases for plasma physics studies. To this end, efforts have been devoted to the development of image processing algorithms dedicated to the recognition of specific events. But a need arises now for the integration of techniques developed so far in both hardware and software directions. We present in this paper our latest results in the field of real time phenomena recognition and management through our image understanding software platform. T his platform has been validated on Tore Supra during operation and is under evaluation for the foreseen imaging diagnostic of ITER. (authors)

  12. Double-grating polychromator for laser-aided plasma diagnostics

    International Nuclear Information System (INIS)

    Mukhin, E.E.; Razdobarin, G.T.; Semenov, V.V.; Shilnikov, A.N.; Sukhanov, V.L.; Tolstjakov, S.Yu.; Kochergin, M.M.; Mihailovskij, Yu.K.; Bakh, L.I.

    2004-01-01

    A wide bandpass double-grating polychromator with high rejection and high transmission has been designed and manufactured for laser-aided plasma diagnostics. The special mount utilizes subtractive dispersion in the second stage of the double polychromator such that the larger dispersion of the second stage is reduced by that of the first stage. This affects the intensity of the stray light background at the laser wavelength. The background at the edge of the laser line was measured at 10 -5 of the light incident on the input slit. At the short end of the 200 nm bandpass, the stray light relative intensity approached 10 -7

  13. Present status on atomic and molecular data relevant to fusion plasma diagnostics and modeling

    International Nuclear Information System (INIS)

    Tawara, H.

    1997-01-01

    This issue is the collection of the paper presented status on atomic and molecular data relevant to fusion plasma diagnostics and modeling. The 10 of the presented papers are indexed individually. (J.P.N.)

  14. Application and Continued Development of Thin Faraday Collectors as a Lost Ion Diagnostic for Tokamak Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    F. Ed Cecil

    2011-06-30

    This report summarizes the accomplishment of sixteen years of work toward the development of thin foil Faraday collectors as a lost energetic ion diagnostic for high temperature magnetic confinement fusion plasmas. Following initial, proof of principle accelerator based studies, devices have been tested on TFTR, NSTX, ALCATOR, DIII-D, and JET (KA-1 and KA-2). The reference numbers refer to the attached list of publications. The JET diagnostic KA-2 continues in operation and hopefully will provide valuable diagnostic information during a possible d-t campaign on JET in the coming years. A thin Faraday foil spectrometer, by virtue of its radiation hardness, may likewise provide a solution to the very challenging problem of lost alpha particle measurements on ITER and other future burning plasma machines.

  15. Applications of 'edge-on' illuminated porous plate detectors for diagnostic X-ray imaging

    CERN Document Server

    Shikhaliev, P M

    2002-01-01

    Scanning X-ray imaging systems for non-invasive diagnostics have several advantages over conventional imaging systems using area detectors. They significantly reduce the detected scatter radiation, cover large areas and potentially provide high spatial resolution. Applications of one-dimensional gaseous detectors and 'edge-on' illuminated silicon strip detectors for scanning imaging systems are currently under intensive investigation. The purpose of this work is to investigate 'edge-on' illuminated Porous Plate (PP) detectors for applications in diagnostic X-ray imaging. MicroChannel Plate (MCP), which is a common type of PP, has previously been investigated as a detector in surface-on illumination mode for medical X-ray imaging. However, its detection efficiency was too low for medical imaging applications. In the present study, the PP are used in the 'edge-on' illumination mode. Furthermore, the structural parameters of different PP types are optimized to improve the detection efficiency in the diagnostic X...

  16. Image standards in Tissue-Based Diagnosis (Diagnostic Surgical Pathology

    Directory of Open Access Journals (Sweden)

    Vollmer Ekkehard

    2008-04-01

    Full Text Available Abstract Background Progress in automated image analysis, virtual microscopy, hospital information systems, and interdisciplinary data exchange require image standards to be applied in tissue-based diagnosis. Aims To describe the theoretical background, practical experiences and comparable solutions in other medical fields to promote image standards applicable for diagnostic pathology. Theory and experiences Images used in tissue-based diagnosis present with pathology – specific characteristics. It seems appropriate to discuss their characteristics and potential standardization in relation to the levels of hierarchy in which they appear. All levels can be divided into legal, medical, and technological properties. Standards applied to the first level include regulations or aims to be fulfilled. In legal properties, they have to regulate features of privacy, image documentation, transmission, and presentation; in medical properties, features of disease – image combination, human – diagnostics, automated information extraction, archive retrieval and access; and in technological properties features of image acquisition, display, formats, transfer speed, safety, and system dynamics. The next lower second level has to implement the prescriptions of the upper one, i.e. describe how they are implemented. Legal aspects should demand secure encryption for privacy of all patient related data, image archives that include all images used for diagnostics for a period of 10 years at minimum, accurate annotations of dates and viewing, and precise hardware and software information. Medical aspects should demand standardized patients' files such as DICOM 3 or HL 7 including history and previous examinations, information of image display hardware and software, of image resolution and fields of view, of relation between sizes of biological objects and image sizes, and of access to archives and retrieval. Technological aspects should deal with image

  17. Patient dose with quality image under diagnostic reference levels

    International Nuclear Information System (INIS)

    Akula, Suresh Kumar; Singh, Gurvinder; Chougule, Arun

    2016-01-01

    Need to set Diagnostic Reference Level (DRL) for locations for all diagnostic procedures in local as compared to National. The review of DRL's should compare local with national or referenced averages and a note made of any significant variances to these averages and the justification for it. To survey and asses radiation doses to patient and reduce the redundancy in patient imaging to maintain DRLs

  18. Quantitative Methods for Molecular Diagnostic and Therapeutic Imaging

    OpenAIRE

    Li, Quanzheng

    2013-01-01

    This theme issue provides an overview on the basic quantitative methods, an in-depth discussion on the cutting-edge quantitative analysis approaches as well as their applications for both static and dynamic molecular diagnostic and therapeutic imaging.

  19. Diagnostics of a stationary MPD-type plasma jet with a HCN laser interferometer

    International Nuclear Information System (INIS)

    Graser, W.; Hoffmann, P.

    1975-01-01

    A HCN laser interferometer of the Ashby-Jephcott type operating at a wavelength of 337 μm was used to measure spatially resolved electron densities in a stationary MPD-type plasma jet with non-LTE behavior. Experiments were performed with and without superimposed magnetic fields up to 0.1 T at the exit of the plasma accelerator. Electron densities were obtained within the limits of 5times10 12 and 10 15 cm -3 with an accuracy better than 10%. Within the axially symmetric expanding plasma of about 15-cm average diameter and 50-cm length the radial resolving power came to less than 1 cm. So this technique has proved to be suitable to fill a gap in the diagnostics of stationary magnetized plasmas in the mean range of electron densities. (auth)

  20. Diagnostic imaging of the nose and paranasal sinuses

    International Nuclear Information System (INIS)

    Lloyd, G.A.S.

    1988-01-01

    This book offers extensively illustrated and comprehensive coverage of diagnostic imaging techniques of the nose and paranasal sinuses. The important feature of the work is the way it correlates histology with CT and MRI and includes magnetic resonance contrast studies using Gadolinium DTPA. Furthermore, it is the first text to treat the imaging of the various types of tumors of the nose and paranasal sinuses on an individual basis

  1. Study of Anti-Hydrogen and Plasma Physics 4.Observation of Antiproton Beams and Nonneutral Plasmas

    CERN Document Server

    Hori, Masaki; Fujiwara, Makoto; Kuroda, Naofumi

    2004-01-01

    Diagnostics of antiproton beams and nonneutral plasmas are described in this chapter. Parallel plate secondary electron emission detectors are used to non-destructively observe the beam position and intensity without loss. Plastic scintillation tracking detectors are useful in determining the position of annihilations of antiprotons in the trap. Three-dimensional imaging of antiprotons in a Penning trap is discussed. The unique capability of antimatter particle imaging has allowed the observation of the spatial distribution of particle loss in a trap. Radial loss is localized to small spots, strongly breaking the azimuthal symmetry expected for an ideal trap. By observing electrostatic eigen-modes of nonneutral plasmas trapped in the Multi-ring electrode trap, the non-destructive measurement of plasma parameters is performed.

  2. Development of reconfigurable analog and digital circuits for plasma diagnostics measurement systems

    International Nuclear Information System (INIS)

    Srivastava, Amit Kumar; Sharma, Atish; Raval, Tushar

    2009-01-01

    In long pulse discharge tokamak, a large number of diagnostic channels are being used to understand the complex behavior of plasma. Different diagnostics demand different types of analog and digital processing for plasma parameters measurement. This leads to variable requirements of signal processing for diagnostic measurement. For such types of requirements, we have developed hardware with reconfigurable electronic devices, which provide flexible solution for rapid development of measurement system. Here the analog processing is achieved by Field Programmable Analog Array (FPAA) integrated circuit while reconfigurable digital devices (CPLD/FPGA) achieve digital processing. FPAA's provide an ideal integrated platform for implementing low to medium complexity analog signal processing. With dynamic reconfigurability, the functionality of the FPAA can be reconfigured in-system by the designer or on the fly by a microprocessor. This feature is quite useful to manipulate the tuning or the construction of any part of the analog circuit without interrupting operation of the FPAA, thus maintaining system integrity. The hardware operation control logic circuits are configured in the reconfigurable digital devices (CPLD/FPGA) to control proper hardware functioning. These reconfigurable devices provide the design flexibility and save the component space on the board. It also provides the flexibility for various setting through software. The circuit controlling commands are either issued by computer/processor or generated by circuit itself. (author)

  3. Analysis and Interpretation of the Plasma Dynamic Response to Additional Heating Power using different Diagnostics

    International Nuclear Information System (INIS)

    Manini, A.

    2002-07-01

    The main goal in the research of nuclear fusion, and therefore in tokamak research as well, is the development of a high power, steady-state power plant. To obtain the high power required for igniting the plasma, the size of the device must be very large. The performance of the tokamak plasma depends in particular on the plasma shape and on the internal plasma profiles. These profiles include those of the current density and the pressure, two quantities that can be modified by means of auxiliary heating methods such as Electron Cyclotron Heating (ECH). ECH is a very important tool due to its capability of injecting highly localised and intense power. Off-axis ECH and Electron Cyclotron Current Drive (ECCD) modify both current density and electron temperature profiles, leading to modification of confinement and stability properties. in particular, complete stabilisation of magnetohydrodynamic modes using ECCD is feasible. Furthermore, ECH is crucial as a mean of increasing the bootstrap current fraction through the formation of internal transport barriers, so that confinement is also improved. Finally, it is also noted that modulated ECH (MECH) is a very effective tool for perturbative energy transport experiments in many different regimes. Experiments performed in the TCV and the ASDEX Upgrade tokamaks are presented. The role of TCV is very important due to its flexibility of varying the plasma shape, its versatile high power ECH system at both the second and third electron cyclotron harmonics, and due to the numerous diagnostics installed, e.g. the two soft X-ray (SXR) diagnostics which simultaneously allow high temporal and spatial resolutions. The importance of ASDEX Upgrade is related to its large size, which makes it a reactor-relevant experimental facility, and to the Neutral Beam Injection (NBI) and ECH heating facilities, which allow a study of heat and particle transport in either mostly ion-heated or mostly electron-heated regimes. Moreover, for the

  4. Extraordinary mode absorption at the electron cyclotron harmonic frequencies as a Tokamak plasma diagnostic

    International Nuclear Information System (INIS)

    Pachtman, A.

    1986-09-01

    Measurements of Extraordinary mode absorption at the electron cyclotron harmonic frequencies are of unique value in high temperature, high density Tokamak plasma diagnostic applications. An experimental study of Extraordinary mode absorption at the semi-opaque second and third harmonics has been performed on the ALCATOR C Tokamak. A narrow beam of submillimeter laser radiation was used to illuminate the plasma in a horizontal plane, providing a continuous measurement of the one-pass, quasi-perpendicular transmission

  5. Parkinson's disease: diagnostic utility of volumetric imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wei-Che; Chen, Meng-Hsiang [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Diagnostic Radiology, Kaohsiung (China); Chou, Kun-Hsien [National Yang-Ming University, Brain Research Center, Taipei (China); Lee, Pei-Lin [National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Tsai, Nai-Wen; Lu, Cheng-Hsien [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Neurology, Kaohsiung (China); Chen, Hsiu-Ling [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Diagnostic Radiology, Kaohsiung (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Hsu, Ai-Ling [National Taiwan University, Institute of Biomedical Electronics and Bioinformatics, Taipei (China); Huang, Yung-Cheng [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Nuclear Medicine, Kaohsiung (China); Lin, Ching-Po [National Yang-Ming University, Brain Research Center, Taipei (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China)

    2017-04-15

    This paper aims to examine the effectiveness of structural imaging as an aid in the diagnosis of Parkinson's disease (PD). High-resolution T{sub 1}-weighted magnetic resonance imaging was performed in 72 patients with idiopathic PD (mean age, 61.08 years) and 73 healthy subjects (mean age, 58.96 years). The whole brain was parcellated into 95 regions of interest using composite anatomical atlases, and region volumes were calculated. Three diagnostic classifiers were constructed using binary multiple logistic regression modeling: the (i) basal ganglion prior classifier, (ii) data-driven classifier, and (iii) basal ganglion prior/data-driven hybrid classifier. Leave-one-out cross validation was used to unbiasedly evaluate the predictive accuracy of imaging features. Pearson's correlation analysis was further performed to correlate outcome measurement using the best PD classifier with disease severity. Smaller volume in susceptible regions is diagnostic for Parkinson's disease. Compared with the other two classifiers, the basal ganglion prior/data-driven hybrid classifier had the highest diagnostic reliability with a sensitivity of 74%, specificity of 75%, and accuracy of 74%. Furthermore, outcome measurement using this classifier was associated with disease severity. Brain structural volumetric analysis with multiple logistic regression modeling can be a complementary tool for diagnosing PD. (orig.)

  6. Development of an EMC3-EIRENE Synthetic Imaging Diagnostic

    Science.gov (United States)

    Meyer, William; Allen, Steve; Samuell, Cameron; Lore, Jeremy

    2017-10-01

    2D and 3D flow measurements are critical for validating numerical codes such as EMC3-EIRENE. Toroidal symmetry assumptions preclude tomographic reconstruction of 3D flows from single camera views. In addition, the resolution of the grids utilized in numerical code models can easily surpass the resolution of physical camera diagnostic geometries. For these reasons we have developed a Synthetic Imaging Diagnostic capability for forward projection comparisons of EMC3-EIRENE model solutions with the line integrated images from the Doppler Coherence Imaging diagnostic on DIII-D. The forward projection matrix is 2.8 Mpixel by 6.4 Mcells for the non-axisymmetric case we present. For flow comparisons, both simple line integral, and field aligned component matrices must be calculated. The calculation of these matrices is a massive embarrassingly parallel problem and performed with a custom dispatcher that allows processing platforms to join mid-problem as they become available, or drop out if resources are needed for higher priority tasks. The matrices are handled using standard sparse matrix techniques. Prepared by LLNL under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. DOE, Office of Science, Office of Fusion Energy Sciences. LLNL-ABS-734800.

  7. Construction and characterization of a plasma focus device and diagnostic test ion

    International Nuclear Information System (INIS)

    Morales Arango, Diana Marsela

    2013-01-01

    In this work we designed and built a Plasma Focus device 2kJ power in order to extend the energy range of devices designed in DPTN CCHEN and study the scaling laws type Plasma Focus Device. The operating parameters of this device are: T/ 4 =907ns, C = 8000nF, L = 42nH, E = 2kJ, lo = 276kA. In such a way to optimize the device tests were performed with various electrode configurations, insulator length, to determine the conditions under which it operates in Plasma Focus mode. Subsequent to the construction tests were performed on devices PF-400J (T /4 = 300ns, C = 880nF, L = 38nH, E = 400J, lo = 168kA) y PF-2kJ (device between the hundreds of joules and kilojoules of energy) diagnostic charged particle emission used the Faraday Cup consisting of a biased graphite collector. For a series of shots on the PF-400J and PF-2kJ operated at 27kV and 20kV respectively kinetic energy distribution of proton between 60keV-150keV were found, deuterons between 60KeV-300KeV. With the idea of optimizing the results in future diagnostic type spectrometer Thompson, spectroscopy and diffraction networks in gas mixture will be implemented

  8. Methodology for quantitative evaluation of diagnostic medical imaging

    International Nuclear Information System (INIS)

    Metz, C.

    1980-01-01

    This report deals with the evaluation of the performance of diagnostic medical imaging procedures using the Receiver Operating Characteristic or ROC analysis. The development of new tests for the statistical significance of apparent differences between ROC curves is discussed

  9. Thymic hyperplasia - clinical course and imaging diagnostic

    International Nuclear Information System (INIS)

    Drebov, R.; Panov, M.; Totev, M.; Deliverski, T.; Tcandev, I.; Velkovski, I.

    2006-01-01

    The real thymic hyperplasia is benign disease sometimes simulating malignant tumours. The aim of this study is to analyse the clinical symptoms of real thymic hyperplasia and the results from imaging diagnostic based on our clinical material. Clinical material include 27 children, aged from two months to 15 years, admitted in department of thoracic surgery, for a period of 20 years (1985 - 2004). We retrospectively analyze the clinical signs and results from X-ray investigation, CT (Siemens Somatom DRG and Philips Secura) and echocardiography (Acuson TX, 5 and 7 MHz). We discuss the diagnostic value of different methods as well as typical and atypical findings. (authors)

  10. Analytical investigation of microwave resonances of a curling probe for low and high-pressure plasma diagnostics

    Science.gov (United States)

    Arshadi, Ali; Brinkmann, Ralf Peter

    2017-01-01

    The concept of ‘active plasma resonance spectroscopy’ (APRS) has attracted greater interest in recent years as an established plasma diagnostic technique. The APRS describes a class of related methods utilizing the intrinsic ability of plasma to resonate at or near the electron plasma frequency {ω\\text{pe}} . The Curling probe (CP) as a novel realization of the APRS idea, is a miniaturized spiral slot embedded flatly in the chamber wall. Consequently, a plasma diagnostic technique with minimum disturbance and without metal contamination can be developed. To measure the plasma parameters the CP is fed with a weak frequency-swept signal from the exterior of the plasma chamber by a network analyzer which also records the response of the plasma versus the frequency. The resonance behavior is strongly dependent on the electron density and the gas pressure. The CP has also the advantage of resonating at a frequency greater than {ω\\text{pe}} which is dependent on the spiral’s length. The double resonance characteristic gives the CP the ability to be applied in varying plasma regimes. Assuming that the spiralization does not have a considerable effect on the resonances, a ‘straightened’ infinite length CP has recently been investigated (Arshadi and Brinkmann 2016 Plasma Sources Sci. Technol. 25 045014) to obtain the surface wave resonances. This work generalizes the approach and models the CP by a rectangular slot-type resonator located between plasma and quartz. Cold plasma theory and Maxwell’s equations are utilized to compute the electromagnetic fields propagating into the plasma by the diffraction of an incident plane wave at the slot. A mathematical model is employed and both kinds of resonances are derived. The analytical study of this paper shows good agreement with the numerical results of the probe inventors.

  11. X-ray emission characteristics of foam target plasmas

    International Nuclear Information System (INIS)

    Fronya, A.A.; Borisenko, N.G.; Chernodub, M.L.; Merkuliev, Yu.A.; Osipov, M.V.; Puzyrev, V.N.; Sahakyan, A.T.; Starodub, A.N.; Vasin, B.L.; Yakushev, O.F.

    2010-01-01

    Complete text of publication follows. Experimental results of laser radiation interaction with a foam targets are presented. The spatial, temporal and energy characteristics of x-ray plasma radiation have been investigated. The pinhole-camera and Schwarzschild objective have been used for the plasma image formation in different spectral ranges. The plasma image is registered by the Schwarzschild objective in a narrow spectral range 180 - 200 A. Spectral characteristics of x-ray radiation registered by pinhole-camera have been defined by means outer filters. The use of the filters with different transmission curves allowed one the determine the localization of x-ray radiation with fixed wavelength. Spatial resolution accounts 16 μm in the pinhole-camera diagnostic channel and 2.5 μm in the Schwarzschild objective diagnostic channel. The plasma images in the intrinsic x-ray radiation show that the emission area in the transverse direction with respect to the direction of the propagating heating radiation exceeds the focal spot size. This fact indicates that the target heating in the transverse direction is due to internal energy of the created plasma. The average value of plasma electron temperature is ∼ 0.4 - 1.4 keV. Acknowledgements. The work is partly supported by the Russian Foundation for Basic Researches, grant no. 10-02-00113 and by Federal Target Program 'Research and scientific-pedagogical cadres of Innovative Russia' (grant 2009-1.1-122-052-025).

  12. Neutron measurements as fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Hoek, M.

    1993-01-01

    Neutron measurements play important roles as the diagnostics of many aspects of the plasma in large tokamak devices such as JT-60U and JET. In the d-d discharges of JT-60U, the most important application of the neutron measurement is the investigation of the fusion performance using fission chambers. The ion velocity distribution function, and the triton slowing down are investigated by the neutron spectrometer and the 14 MeV neutron detector, respectively. TANSY is a combined proton-recoil and neutron time-of flight spectrometer for 14 MeV neutrons to be used during the d-t phase at JET. The detection principle is based on the measurements of the flight time of a scattered initial neutron and the energy of a corresponding recoil proton. The scattering medium is a polyethylene foil. The resolution and efficiency, using a thin foil (0.95 mg/cm 2 ), is 155 keV and 1.4x10 -5 cm 2 , respectively. (author)

  13. Internal plasma diagnostic with a multichannel magnetic probe system using automatic data acquisition

    International Nuclear Information System (INIS)

    Korten, M.; Carolan, P.G.; Sand, F.; Waelbroeck, F.

    1975-04-01

    A 20-channel magnetic probe system inserted into the plasma is used to measure spatial distributions of poloidal and toroidal magnetic fields in the pulsed toroidal high β-experiment TEE. Plasma parameters, e.g. the β-value, toroidal current density and radial pressure distribution were derived applying static equilibrium theory and can be calculated from the measurements. A data acquisition system used in conjuction with a process computer was operated to obtain the experimental data automatically and to perform the multiple computational tasks. The program system described was built to serve as a first stage of a more common software system applicable for computational data handling for different diagnostics of a plasma physics confinement experiment. (orig.) [de

  14. Diagnostic Accuracy of Clinical Examination and Imaging Findings for Identifying Subacromial Pain.

    Science.gov (United States)

    Cadogan, Angela; McNair, Peter J; Laslett, Mark; Hing, Wayne A

    2016-01-01

    The diagnosis of subacromial pathology is limited by the poor accuracy of clinical tests for specific pathologies. The aim of this study was to estimate the diagnostic accuracy of clinical examination and imaging features for identifying subacromial pain (SAP) defined by a positive response to diagnostic injection, and to evaluate the influence of imaging findings on the clinical diagnosis of SAP. In a prospective, diagnostic accuracy design, 208 consecutive patients presenting to their primary healthcare practitioner for the first time with a new episode of shoulder pain were recruited. All participants underwent a standardized clinical examination, shoulder x-ray series and diagnostic ultrasound scan. Results were compared with the response to a diagnostic block of xylocaineTM injected into the SAB under ultrasound guidance using ≥80% post-injection reduction in pain intensity as the positive anaesthetic response (PAR) criterion. Diagnostic accuracy statistics were calculated for combinations of clinical and imaging variables demonstrating the highest likelihood of a PAR. A PAR was reported by 34% of participants. In participants with no loss of passive external rotation, combinations of three clinical variables (anterior shoulder pain, strain injury, absence of symptoms at end-range external rotation (in abduction)) demonstrated 100% specificity for a PAR when all three were positive (LR+ infinity; 95%CI 2.9, infinity). A full-thickness supraspinatus tear on ultrasound increased the likelihood of a PAR irrespective of age (specificity 98% (95%CI 94, 100); LR+ 6.2; 95% CI 1.5, 25.7)). Imaging did not improve the ability to rule-out a PAR. Combinations of clinical examination findings and a full-thickness supraspinatus tear on ultrasound scan can help confirm, but not exclude, the presence of subacromial pain. Other imaging findings were of limited value for diagnosing SAP.

  15. Oncology Patient Perceptions of the Use of Ionizing Radiation in Diagnostic Imaging.

    Science.gov (United States)

    Steele, Joseph R; Jones, Aaron K; Clarke, Ryan K; Giordano, Sharon H; Shoemaker, Stowe

    2016-07-01

    To measure the knowledge of oncology patients regarding use and potential risks of ionizing radiation in diagnostic imaging. A 30-question survey was developed and e-mailed to 48,736 randomly selected patients who had undergone a diagnostic imaging study at a comprehensive cancer center between November 1, 2013 and January 31, 2014. The survey was designed to measure patients' knowledge about use of ionizing radiation in diagnostic imaging and attitudes about radiation. Nonresponse bias was quantified by sending an abbreviated survey to patients who did not respond to the original survey. Of the 48,736 individuals who were sent the initial survey, 9,098 (18.7%) opened it, and 5,462 (11.2%) completed it. A total of 21.7% of respondents reported knowing the definition of ionizing radiation; 35.1% stated correctly that CT used ionizing radiation; and 29.4% stated incorrectly that MRI used ionizing radiation. Many respondents did not understand risks from exposure to diagnostic doses of ionizing radiation: Of 3,139 respondents who believed that an abdominopelvic CT scan carried risk, 1,283 (40.9%) believed sterility was a risk; 669 (21.3%) believed heritable mutations were a risk; 657 (20.9%) believed acute radiation sickness was a risk; and 135 (4.3%) believed cataracts were a risk. Most patients and caregivers do not possess basic knowledge regarding the use of ionizing radiation in oncologic diagnostic imaging. To ensure health literacy and high-quality patient decision making, efforts to educate patients and caregivers should be increased. Such education might begin with information about effects that are not risks of diagnostic imaging. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  16. Coherence imaging spectro-polarimetry for magnetic fusion diagnostics

    International Nuclear Information System (INIS)

    Howard, J

    2010-01-01

    This paper presents an overview of developments in imaging spectro-polarimetry for magnetic fusion diagnostics. Using various multiplexing strategies, it is possible to construct optical polarization interferometers that deliver images of underlying physical parameters such as flow speed, temperature (Doppler effect) or magnetic pitch angle (motional Stark and Zeeman effects). This paper also describes and presents first results for a new spatial heterodyne interferometric system used for both Doppler and polarization spectroscopy.

  17. Diagnostic imaging of the kidney and the urinary tract in infancy

    International Nuclear Information System (INIS)

    Troeger, J.; Darge, K.; Rohrschneider, W.

    1999-01-01

    Imaging flow charts differ in pediatric and general radiology. The reasons are: Different illnesses, different consequences arising out of imaging results and different sequence of imaging methods. Ultrasound is always the first imaging method of the urinary tract in infancy and childhood starts with ultrasound with the exception of severe abdominal trauma which is investigated by computertomography. The decision 'normal or abnormal' is possible using ultrasound in the most pediatric cases. The diagnostic value and significance of ultrasound in infancy and childhood is far better than in general radiology because of the higher resolution of the high-frequency units taken. The result of the ultrasound examination should be the basis for the following imaging procedures. We will describe diagnostic flow charts starting with three important clinical symptoms: Prenatal pathology, urinary tract obstruction and urinary tract infection. (orig.) [de

  18. Diagnostic imaging of the diabetic foot

    International Nuclear Information System (INIS)

    Ranachowska, C.; Lass, P.; Korzon-Burakowska, A.; Dobosz, M.

    2010-01-01

    Diabetic foot syndrome is a significant complication of diabetes. Diagnostic imaging is a crucial factor determining surgical decision and extent of surgical intervention. At present the gold standard is MRI scanning, whilst the role of bone scanning is decreasing, although in some cases it brings valuable information. In particular, in early stages of osteitis and Charcot neuro-osteoarthropathy, radionuclide imaging may be superior to MRI. Additionally, a significant contribution of inflammation-targeted scintigraphy should be noted. Probably the role of PET scanning will grow, although its high cost and low availability may be a limiting factor. In every case, vascular status should be determined, at least with Doppler ultrasound, with following conventional angiography or MR angiography. (authors)

  19. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y. L.; Xie, J. L., E-mail: jlxie@ustc.edu.cn; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C. [School of Physics, University of Science and Technology of China, Anhui 230026 (China); Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X. [University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-11-15

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This “4th generation” MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy “general optics structure” has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.

  20. Neutral Beam Source and Target Plasma for Development of a Local Electric Field Fluctuation Diagnostic

    Science.gov (United States)

    Bakken, M. R.; Burke, M. G.; Fonck, R. J.; Lewicki, B. T.; Rhodes, A. T.; Winz, G. R.

    2016-10-01

    A new diagnostic measuring local E-> (r , t) fluctuations is being developed for plasma turbulence studies in tokamaks. This is accomplished by measuring fluctuations in the separation of the π components in the Hα motional Stark spectrum. Fluctuations in this separation are expected to be Ẽ / ẼEMSE 10-3EMSE 10-3 . In addition to a high throughput, high speed spectrometer, the project requires a low divergence (Ω 0 .5°) , 80 keV, 2.5 A H0 beam and a target plasma test stand. The beam employs a washer-stack arc ion source to achieve a high species fraction at full energy. Laboratory tests of the ion source demonstrate repeatable plasmas with Te 10 eV and ne 1.6 ×1017 m-3, sufficient for the beam ion optics requirements. Te and ne scalings of the ion source plasma are presented with respect to operational parameters. A novel three-phase resonant converter power supply will provide 6 mA/cm2 of 80 keV H0 at the focal plane for pulse lengths up to 15 ms, with low ripple δV / 80 keV 0.05 % at 280 kHz. Diagnostic development and validation tests will be performed on a magnetized plasma test stand with 0.5 T field. The test chamber will utilize a washer-stack arc source to produce a target plasma comparable to edge tokamak plasmas. A bias-plate with programmable power supply will be used to impose Ẽ within the target plasma. Work supported by US DOE Grant DE-FG02-89ER53296.

  1. Plasma spectroscopy diagnostics in pulsed-power X-ray radiography diode research

    International Nuclear Information System (INIS)

    Maron, Yitzhak; Oliver, Bryan Velten; Portillo, Salvador; Johnston, Mark D.; Rose, David Vincent; Hahn, Kelly Denise; Schamiloglu, Edl; Welch, Dale R.; Droemer, Darryl W.; Rovang, Dean Curtis; Maenchen, John Eric

    2005-01-01

    Spectroscopic investigations in the visible and near UV are underway to study plasmas present in X-ray radiography diodes during the time of the electron beam propagation. These studies are being performed on the RITS-3 accelerator (5.25 MV and 120 kA) at Sandia National Laboratories using several diode configurations. The proper characterization of the plasmas occurring during the time of the X-ray pulse can lead to a greater understanding of diode behavior and X-ray spot size evolution. By studying these plasmas along with the use of selective dopants, insights into such phenomena as impedance collapse, thermal and non-thermal species behavior, charge and current neutralization, anode and cathode plasma formation and propagation, and beam/foil interactions, can be obtained. Information from line and continuum emission and absorption can give key plasma parameters such as temperatures, densities, charge states, and expansion velocities. This information is important for proper modeling and future predictive capabilities for the design and improvement of flash X-ray radiography diodes. Diagnostics include a gated, intensified multichannel plate camera combined with a 1 meter Czerny-Turner monochromator with a multi-fiber spectral input, allowing for both temporal and spatial resolution. Recent results are presented.

  2. Diagnostic imaging in psychiatry; Bildgebende Verfahren in der Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Stoppe, G.; Hentschel, F.; Munz, D.L. (eds.)

    2000-07-01

    The textbook presents an exhaustive survey of diagnostic imaging methods available for clinical evaluation of the entire range of significant psychiatric symptoms via imaging of the anatomy and functions of the brain. The chapters discuss: The methods and their efficient use for given diagnostic objectives, image analysis, description and interpretation of findings with respect to the clinical symptoms. Morphology and functional correlation of findings. The book is intended to help psychiatrists and neurologists as well as doctors in the radiology and nuclear medicine departments. (orig./CB) [German] Die Entwicklung der modernen Bildgebung ermoeglicht faszinierende Einblicke in Anatomie und Funktionen des Gehirns und ihre Veraenderungen bei psychiatrischen Erkrankungen. Die Methodik der Untersuchungsverfahren und die Befunde bei allen wichtigen psychiatrischen Krankheitsbildern sind in diesem Buch systematisch und umfassend beschrieben: - gezielter und effizienter Einsatz der Verfahren, - Bildanalyse und Befundbeschreibung, - Bewertung der Befunde und Beziehung zum klinischen Bild, - morphologische und funktionelle Korrelate der Befunde. Psychiater und Neurologen werden ebenso angesprochen wie Radiologen und Nuklearmediziner. (orig.)

  3. Diagnostic imaging, a 'parallel' discipline. Can current technology provide a reliable digital diagnostic radiology department

    International Nuclear Information System (INIS)

    Moore, C.J.; Eddleston, B.

    1985-01-01

    Only recently has any detailed criticism been voiced about the practicalities of the introduction of generalised, digital, imaging complexes in diagnostic radiology. Although attendant technological problems are highlighted the authors argue that the fundamental causes of current difficulties are not in the generation but in the processing, filing and subsequent retrieval for display of digital image records. In the real world, looking at images is a parallel process of some complexity and so it is perhaps untimely to expect versatile handling of vast image data bases by existing computer hardware and software which, by their current nature, perform tasks serially. (author)

  4. Diagnostic imaging of psoriatic arthritis. Part II: magnetic resonance imaging and ultrasonography

    Directory of Open Access Journals (Sweden)

    Iwona Sudoł-Szopińska

    2016-06-01

    Full Text Available Plain radiography reveals specific, yet late changes of advanced psoriatic arthritis. Early inflammatory changes are seen both on magnetic resonance imaging and ultrasound within peripheral joints (arthritis, synovitis, tendons sheaths (tenosynovitis, tendovaginitis and entheses (enthesitis, enthesopathy. In addition, magnetic resonance imaging enables the assessment of inflammatory features in the sacroiliac joints (sacroiliitis, and the spine (spondylitis. In this article, we review current opinions on the diagnostics of some selective, and distinctive features of psoriatic arthritis concerning magnetic resonance imaging and ultrasound and present some hypotheses on psoriatic arthritis etiopathogenesis, which have been studied with the use of magnetic resonance imaging. The following elements of the psoriatic arthritis are discussed: enthesitis, extracapsular inflammation, dactylitis, distal interphalangeal joint and nail disease, and the ability of magnetic resonance imaging to differentiate undifferentiated arthritis, the value of whole-body magnetic resonance imaging and dynamic contrast-enhanced magnetic resonance imaging.

  5. Broadband notch filter design for millimeter-wave plasma diagnostics

    DEFF Research Database (Denmark)

    Furtula, Vedran; Michelsen, Poul; Leipold, Frank

    2010-01-01

    Notch filters are integrated in plasma diagnostic systems to protect millimeter-wave receivers from intensive stray radiation. Here we present a design of a notch filter with a center frequency of 140 GHz, a rejection bandwidth of ∼ 900 MHz, and a typical insertion loss below 2 dB in the passband...... of ±9 GHz. The design is based on a fundamental rectangular waveguide with eight cylindrical cavities coupled by T-junction apertures formed as thin slits. Parameters that affect the notch performance such as physical lengths and conductor materials are discussed. The excited resonance mode...

  6. Optical diagnostics of lead and PbGa2S4 layered crystal laser plasmas

    International Nuclear Information System (INIS)

    Shuaibov, A.K.; Dashchenko, A.I.; Shevera, I.V.

    2001-01-01

    Paper presents the results of the optic diagnostics of plasma of laser flames formed from lead surface and PbGa 2 S 4 laminar crystal using a neodymium laser. It is shown that the most intensive lines in the lead laser plasma are as follows: 405.7, 368.3, 364.0 nm PbI and 220.4 nm PbII while for the laminar crystal base plasma - the combination of the most intensive lines of PbI and GaI emission. One determined the narrow point of recombination fluxes for the ion and the atomic components of laser plasma of lead and of PbGa 2 S 4 crystal. One conducted comparison study of emission dynamics of PbI and GaI lines in laser plasma of the respective metals and of PbGa 2 S 4 crystal [ru

  7. Recent progress on microwave imaging technology and new physics results

    International Nuclear Information System (INIS)

    Tobias, Benjamin; Luhmann, Neville C. Jr.; Domier, Calvin W.

    2011-01-01

    Techniques for visualizing turbulent flow in nature and in the laboratory have evolved over half a millennium from Leonardo da Vinci's sketches of cascading waterfalls to the advanced imaging technologies which are now pervasive in our daily lives. Advancements in millimeter wave imaging have served to usher in a new era in plasma diagnostics, characterized by ever improving 2D, and even 3D, images of complex phenomena in tokamak and stellarator plasmas. Examples at the forefront of this revolution are electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR). ECEI has proved to be a powerful tool as it has provided immediate physics results following successful diagnostic installations on TEXTOR, ASDEX-U, DIII-D, and KSTAR. Recent results from the MIR system on LHD are demonstrating that this technique has the potential for comparable impact in the diagnosis of electron density fluctuations. This has motivated a recent resurgence in MIR research and development, building on a prototype system demonstrated on TEXTOR, toward the realization of combined ECEI/MIR systems on DIII-D and KSTAR for simultaneous imaging of electron temperature and density fluctuations. The systems discussed raise the standard for fusion plasma diagnostics and present a powerful new capability for the validation of theoretical models and numerical simulations. (author)

  8. Diagnostic Imaging of Reproductive Tract Disorders in Reptiles.

    Science.gov (United States)

    Gumpenberger, Michaela

    2017-05-01

    Diagnostic imaging of the reproductive tract in reptiles is used for gender determination, evaluation of breeding status, detection of pathologic changes, and supervising treatment. Whole-body radiographs provide an overview and support detection of mineralized egg shells. Sonography is used to evaluate follicles, nonmineralized eggs, and the salpinx in all reptiles. Computed tomography is able to overcome imaging limitations in chelonian species. This article provides detailed information about the performance of different imaging techniques. Multiple images demonstrate the physiologic appearance of the male and female reproductive tract in various reptile species and pathologic changes. Advantages and disadvantages of radiography, sonography, and computed tomography are described. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Experimental investigation of plasma relaxation using a compact coaxial magnetized plasma gun in a background plasma

    Science.gov (United States)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration

    2013-10-01

    A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.

  10. Edge plasma diagnostics in the compact helical system (CHS) device using fast neutral lithium beam

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Mario

    1992-05-01

    This paper reports the research activities of the author on using fast neutral lithium beam edge plasma diagnostic, at the Japanese National Institute for Fusion Science compact helical system (CHS). (author). 20 figs.

  11. Diagnostic imaging in pediatric renal inflammatory disease

    International Nuclear Information System (INIS)

    Sty, J.R.; Wells, R.G.; Schroeder, B.A.; Starshak, R.J.

    1986-01-01

    Some form of imaging procedure should be used to document the presence of infection of the upper urinary tract in troublesome cases in children. During the past several years, sonography, nuclear radiology, and computed tomography (CT) have had a significant influence on renal imaging. The purpose of this article is to reevaluate the noninvasive imaging procedures that can be used to diagnose pediatric renal inflammatory disease and to assess the relative value of each modality in the various types of renal infection. The authors will not discuss the radiologic evaluation of the child who has had a previous renal infection, in whom cortical scarring or reflux nephropathy is a possibility; these are different clinical problems and require different diagnostic evaluation

  12. Comparison of diagnostic performance for perinatal and paediatric post-mortem imaging: CT versus MRI

    International Nuclear Information System (INIS)

    Arthurs, Owen J.; Jacques, Thomas S.; Sebire, Neil J.; Guy, Anna; Chong, W.K.; Gunny, Roxanna; Saunders, Dawn; Olsen, Oystein E.; Thayyil, Sudhin; Wade, Angie; Jones, Rod; Norman, Wendy; Taylor, Andrew M.; Scott, Rosemary; Robertson, Nicola J.; Owens, Catherine M.; Offiah, Amaka C.; Chitty, Lyn S.

    2016-01-01

    To compare the diagnostic yield of whole-body post-mortem computed tomography (PMCT) imaging to post-mortem magnetic resonance (PMMR) imaging in a prospective study of fetuses and children. We compared PMCT and PMMR to conventional autopsy as the gold standard for the detection of (a) major pathological abnormalities related to the cause of death and (b) all diagnostic findings in five different body organ systems. Eighty two cases (53 fetuses and 29 children) underwent PMCT and PMMR prior to autopsy, at which 55 major abnormalities were identified. Significantly more PMCT than PMMR examinations were non-diagnostic (18/82 vs. 4/82; 21.9 % vs. 4.9 %, diff 17.1 % (95 % CI 6.7, 27.6; p < 0.05)). PMMR gave an accurate diagnosis in 24/55 (43.64 %; 95 % CI 31.37, 56.73 %) compared to 18/55 PMCT (32.73 %; 95 % CI 21.81, 45.90). PMCT was particularly poor in fetuses <24 weeks, with 28.6 % (8.1, 46.4 %) more non-diagnostic scans. Where both PMCT and PMMR were diagnostic, PMMR gave slightly higher diagnostic accuracy than PMCT (62.8 % vs. 59.4 %). Unenhanced PMCT has limited value in detection of major pathology primarily because of poor-quality, non-diagnostic fetal images. On this basis, PMMR should be the modality of choice for non-invasive PM imaging in fetuses and children. (orig.)

  13. Thermal and mechanical design of the plasma core CXRS diagnostics for the fusion reactor ITER; Thermische und mechanische Auslegung der Plasma Core CXRS Diagnostik des ITER Kernfusionsreaktors

    Energy Technology Data Exchange (ETDEWEB)

    Greza, H. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany); Neubauer, O.; Wolters, J. [Forschungszentrum Juelich GmbH (Germany)

    2009-07-01

    In the frame of the research project ITER (international thermonuclear experimental reactor) the plasma state is monitored using the plasma core diagnostics CXRS (charge exchange recombination spectroscopy).The authors describe the thermal and mechanical design of the first mirror of the CXRS diagnostics. The components of the first mirror are exposed to high heat and neutron irradiation. The surface temperature will be 300 to 400 deg C. The misalignment tolerance is plus or minus 0.1 degree. The maximum mechanical stresses in the mirror have to be minimized. The design calculations use the finite element code ANSYS. The results indicate that the heat input from the plasma can be removed by the coolant flow. Further calculation shave to concern the brazed joints between mirror and cooling block.

  14. Thermal and mechanical design of the plasma core CXRS diagnostics for the fusion reactor ITER; Thermische und mechanische Auslegung der Plasma Core CXRS Diagnostik des ITER Kernfusionsreaktors

    Energy Technology Data Exchange (ETDEWEB)

    Greza, H.; Knauff, R. [Wissenschaftlich-Technische Ingenieurberatung GmbH (WTI), Juelich (Germany); Neubauer, O.; Wolters, J.; Offermanns, G.; Biel, W. [Forschungszentrum Juelich GmbH (Germany)

    2011-07-01

    In the frame of the research project ITER (international thermonuclear experimental reactor) the plasma state is monitored using the plasma core diagnostics CXRS (charge exchange recombination spectroscopy).The authors describe the thermal and mechanical design of the first mirror of the CXRS diagnostics. The components of the first mirror are exposed to high heat and neutron irradiation. The surface temperature will be 300 to 400 deg C. The misalignment tolerance is plus or minus 0.1 degree. The maximum mechanical stresses in the mirror have to be minimized. The design calculations use the finite element code ANSYS. The results indicate that the heat input from the plasma can be removed by the coolant flow. Further calculation shave to concern the brazed joints between mirror and cooling block.

  15. Investigation of relativistic laser-plasmas using nuclear diagnostics; Untersuchung relativistischer Laserplasmen mittels nukleardiagnostischer Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Marc M.

    2011-01-19

    The present work explores with the development of a novel nuclear diagnostic method for the investigation of the electron dynamics in relativistic laser-plasma interactions. An additional aim of this work was the determination of the real laser peak intensity via the interaction of an intense laser short-pulse with a solid target. The nuclear diagnostics is based on a photo-neutron disintegration nuclear activation method. The main constituent of the nuclear diagnostic are novel pseudoalloic activation targets as a kind of calorimeter to measure the high-energy bremsstrahlung produced by relativistic electrons. The targets are composed of several stable isotopes with different ({gamma},xn)-reaction thresholds. The activated nuclides were identified via the characteristic gamma-ray decay spectrum by using high-resolution gamma spectroscopy after the laser irradiation. Via the gamma spectroscopy the ({gamma},xn)-reaction yields were determined. The high-energy bremsstrahlung spectrum has been deconvolved using a novel analysis method based on a modified Penfold-Leiss method. This facilitates the reconstruction of the spectrum of bremsstrahlung photons without any anticipated fit procedures. Furthermore, the characterization of the corresponding bremsstrahlung electrons in the interaction zone is accessible immediately. The consolidated findings about the properties of the relativistic electrons were used to determine the real peak intensity at the laser-plasma interaction zone. In the context of this work, experiments were performed at three different laser facilities. First Experiments were carried out at the 100 TW laser facility at Laboratoire pour l'Utilisation des Lasers Intense (LULI) in France and supplementary at the Vulcan laser facility at Rutherford Appleton Laboratory (RAL) in United Kingdom. The main part of the activation experiments were performed at the PHELIX laser facility (Petawatt High Energy Laser for heavy Ion EXperiments) at GSI

  16. Plasma water as a diagnostic tool in the assessment of dehydration in children with acute gastroenteritis.

    Science.gov (United States)

    Plaisier, Annemarie; Maingay-de Groof, Femke; Mast-Harwig, Roechama; Kalkman, Patricia M J; Wulkan, Remi W; Verwers, Renee; Neele, Marjolein; Hop, Wim C J; Groeneweg, Michael

    2010-07-01

    Acute gastroenteritis is common in childhood. The estimation of the degree of dehydration is essential for management of acute gastroenteritis. Plasma water was assessed as a diagnostic tool in children with acute gastroenteritis and dehydration admitted to hospital. In a prospective cohort study, 101 patients presenting at the emergency department with dehydration were included. Clinical assessment, routine laboratory tests, and plasma water measurement were performed. Plasma water was measured as a percentage of water content using dry weight method. During admission, patients were rehydrated in 12 h. Weight gain at the end of the rehydration period and 2 weeks thereafter was used to determine the percentage of weight loss as a gold standard for the severity of dehydration. Clinical assessment of dehydration was not significantly associated with the percentage of weight loss. Blood urea nitrogen (r = 0.3, p = 0.03), base excess (r =-0.31, p = 0.03), and serum bicarbonate (r = 0.32, p = 0.02) were significantly correlated with the percentage of weight loss. Plasma water did not correlate with the percentage of weight loss. On the basis of the presented data, plasma water should not be used as a diagnostic tool in the assessment of dehydration in children with acute gastroenteritis.

  17. Diagnostic imaging of the hand. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Schmitt, R.

    2004-01-01

    The second edition contains the following new features: Focus on cogenital, degenerative, inflammatory, tumourous, neurogenic and vascular diseases of the hands; new images of multiline spiral CT including 2D pictures and 3D reconstructions; new MRT images with examination protocols; synoptic presentation of all diseases according to their pathoanatomy, clinical symptoms, diagnostic imaging, differential diagnosis, therapeutic options; checklists for the doctor's everyday work. (orig.)

  18. Development of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics for the free electron density of laser-generated plasma

    International Nuclear Information System (INIS)

    Boerner, M.; Frank, A.; Pelka, A.; Schaumann, G.; Schoekel, A.; Schumacher, D.; Roth, M.; Fils, J.; Blazevic, A.; Hessling, T.; Basko, M. M.; Maruhn, J.; Tauschwitz, An.

    2012-01-01

    This article reports on the development and set-up of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics of the free electron density in laser-generated plasma. The interferometer allows the recording of a series of 4 images within 6 ns of a single laser-plasma interaction. For the setup presented here, the minimal accessible free electron density is 5 x 10 18 cm -3 , the maximal one is 2 x 10 20 cm -3 . Furthermore, it provides a resolution of the electron density in space of 50 μm and in time of 0.5 ns for one image with a customizable magnification in space for each of the 4 images. The electron density was evaluated from the interferograms using an Abel inversion algorithm. The functionality of the system was proven during first experiments and the experimental results are presented and discussed. A ray tracing procedure was realized to verify the interferometry pictures taken. In particular, the experimental results are compared to simulations and show excellent agreement, providing a conclusive picture of the evolution of the electron density distribution.

  19. Simulated plasma facing component measurements for an in situ surface diagnostic on Alcator C-Moda)

    Science.gov (United States)

    Hartwig, Z. S.; Whyte, D. G.

    2010-10-01

    The ideal in situ plasma facing component (PFC) diagnostic for magnetic fusion devices would perform surface element and isotope composition measurements on a shot-to-shot (˜10 min) time scale with ˜1 μm depth and ˜1 cm spatial resolution over large areas of PFCs. To this end, the experimental adaptation of the customary laboratory surface diagnostic—nuclear scattering of MeV ions—to the Alcator C-Mod tokamak is being guided by ACRONYM, a Geant4 synthetic diagnostic. The diagnostic technique and ACRONYM are described, and synthetic measurements of film thickness for boron-coated PFCs are presented.

  20. Consideration on the diagnostic ability of various imaging techniques in relation to renal tumor

    International Nuclear Information System (INIS)

    Ike, Katsushi

    1984-01-01

    Radiological diagnosis of renal tumors is being improved with the increased imaging accuracy which has resulted from advancement in the various equipment used and improvement in techniques. However, at the clinical level, diagnostic procedures based on the characteristics of the delineated images are not yet established and the diverse diagnostic procedures are being conducted currently in a stereotyped manner. In this study, the images of 61 cases diagnosed as renal tumor were analysed retrospectively with the purpose of establishing the imaging accuracy, capacity for diagnosis based on image characteristics and a subseguent proper diagnostic procedure. It was found that CT and Angio gave similar diagnostic accuracy. It was further revealed that US images enabled to differentiate renal tumors from the more commonly experienced renal cystic disease. For determination of tunica involucrum infiltration, which is essential to diagnose Stage I and II renal tumors, CT was proved to be superior to Angio. CT and US were also to be so in the determination of metastasis to para-aortic lymph nodes which is a Stage III criterion. In recent years, CT and US imaging accuracies have increased, hence the improvement in the capacity to diagnose non-observable renal tumors is highly expected. (author)

  1. Electronic roentgenographic images in presurgical X-ray diagnostics

    International Nuclear Information System (INIS)

    Haendle, J.; Hohmann, D.; Maass, W.; Siemens A.G., Erlangen

    1981-01-01

    An essential part of radiation exposure in surgery is due to devices and results from the required radiation time interval for continuous X-ray play-back up to the point at which all diagnostically relevant information can be retrieved from the screening image. With single-image storage and short exposure times as well as instant image play-back, this superfluous i.e. redundant radiation can be avoided. The electronic X-ray image is realized by means of a laboratory prototype and evaluated in hospitals. There is a report on clinical results and new technical developments. Remarkable are: the high radiation reduction that could be obtained, the problem - free instant image technique, and especially the advantages of automated exposure in direct film settings. The positive results yield the basis for the product development. (orig./MG) [de

  2. Technical aspects and preliminary results of the CCD camera diagnostics on Extrap T2

    International Nuclear Information System (INIS)

    Cecconello, M.; Brzozowski, J.

    1999-01-01

    During the last months of Extrap T2 operations an imaging acquisition system, based on charge-coupled devices (CCD) cameras, has been operated. CCD cameras are a standard diagnostic used in many fusion experiments: i) to obtain a direct insight of the plasma behaviour during the pulse, of the evolution of plasma-wall interactions and, eventually, of locked modes, ii) to measure local quantities such as the wall temperature and the impurity influxes, iii) to study the hydrogen recycling behaviour and iv) to estimate the poloidal and toroidal mode numbers. One of the aims of our imaging campaign was to check the utility of such diagnostic for T2. The purpose of this report is to describe the technical aspects involved in the use of such diagnostic and to briefly describe the results obtained. In this view, this report aims to be a guide to the development of a dedicated image acquisition system for Extrap T2, after the planned rebuild, by stressing the problems and limitations encountered during this campaign

  3. Radio images of the interplanetary turbulent plasma

    International Nuclear Information System (INIS)

    Vlasov, V.I.

    1979-01-01

    The results of the interplanetary scintillation daily observations of approximately 140 radio sources are given. The observations were carried out at the radiotelescope VLPA FIAN during 24 days in October-November 1975 and 6 days in April 1976. The maps (radio images) of interplanetary turbulent plasma are presented. The analysis of the maps reveals the presence of large-scale irregularities in the interplanetary plasma. The variability in large-scale structure of the interplanetary plasma is due mainly to transport of matter from the Sun. A comparison of the scintillation with the geomagnetic activity index detected the presence of a straight connection between them

  4. Nonstop lose-less data acquisition and storing method for plasma motion images

    International Nuclear Information System (INIS)

    Nakanishi, Hideya; Ohsuna, Masaki; Kojima, Mamoru; Nonomura, Miki; Nagayama, Yoshio; Kawahata, Kazuo; Imazu, Setsuo; Okumura, Haruhiko

    2007-01-01

    Plasma diagnostic data analysis often requires the original raw data as they are, in other words, at the same frame rate and resolution of the CCD camera sensor. As a non-interlace VGA camera typically generates over 70 MB/s video stream, usual frame grabber cards apply the lossy compression encoder, such as mpeg-1/-2 or mpeg-4, to drastically lessen the bit rate. In this study, a new approach, which makes it possible to acquire and store such the wideband video stream without any quality reduction, has been successfully achieved. Simultaneously, the real-time video streaming is even possible at the original frame rate. For minimising the exclusive access time in every data storing, it has adopted the directory structure to hold every frame files separately, instead of one long consecutive file. The popular 'zip' archive method improves the portability of data files, however, the JPEG-LS image compression is applied inside by replacing its intrinsic deflate/inflate algorithm that has less performances for image data. (author)

  5. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    Science.gov (United States)

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  6. Diagnostic accuracy of artificially induced vertical root fractures: a comparison of direct digital periapical images with conventional periapical images

    International Nuclear Information System (INIS)

    Lee, Ji Un; Kwon, Ki Jeong; Koh, Kwang Joon

    2004-01-01

    To compare the diagnostic accuracy for the detection of root fractures in CMOS-based digital periapical images with conventional film-based periapical images. Sixty extracted single-root human teeth with closed apices were prepared endodontically and divided into two groups; artificially induced vertical root fracture group and control group. All radiographs were obtained using the paralleling technique. The radiographs were examined by 4 observers three times within a 4 week interval. Receiver operating characteristic (ROC) analysis was carried out using data obtained from four observers. Intra- and inter-examiner agreements were computed using kappa analysis. The area under the ROC curve (Az) was used as an indicator of the diagnostic accuracy of the imaging system. Az values were as follows: direct-digital images; 0.93, film-based images; 0.92, and inverted digital images; 0.91. There was no significant difference between imaging modalities(P<0.05). The kappa value of inter-observer agreement was 0.42(range:0.28-0.60) and intra-observer agreement was 0.57(range:0.44-0.75). There is no statistical difference in diagnostic accuracy for the detection of vertical root fractures between digital periapical images and conventional periapical images. The results indicate that the CMOS sensor is a good image detector for the evaluation of vertical root fractures.

  7. Image-guided pleural biopsy: diagnostic yield and complications

    International Nuclear Information System (INIS)

    Benamore, R.E.; Scott, K.; Richards, C.J.; Entwisle, J.J.

    2006-01-01

    Background: Pleural biopsy and cytology are standard procedures for the investigation of pleural disease. Recent medical literature has suggested that image-guided pleural biopsy shows improved sensitivity for the diagnosis of pleural malignancy, when compared with the more commonly performed reverse bevel needle biopsy such as Abrams' needle. In our centre there has been an increasing trend towards performing image-guided pleural biopsies, and to our knowledge there is no large published series documenting the complication rate and diagnostic yield. Methods: The radiology and pathology databases were searched for all image-guided [computed tomography (CT) and ultrasound (US)] pleural biopsies from January 2001 to December 2004. All imaging and histology were reviewed, and final diagnostic information about patients was obtained from the respiratory multidisciplinary team database and patient notes. A record was made of complications following biopsy, presence of pleura in the biopsy, and adequacy of tissue for histological diagnosis. Results: A total of 82 patients underwent 85 image-guided pleural biopsies over a 4-year period. 80 cases were performed under CT and five under US guidance. The rate of new pneumothorax detected by chest radiography was 4.7%. No patient required a chest drain or blood transfusion to treat complications. In 10 (12%) cases, there was inadequate tissue to reach a confident histological diagnosis and in eight (9%) of these, no pleura was present. Assuming all suspicious and inadequate biopsies are treated as benign, which is the worst case scenario, image-guided pleural biopsy has a sensitivity and specificity of 76% and 100%, respectively, for the diagnosis of malignant disease. Conclusions: Image-guided pleural biopsy is a safe procedure with few associated complications and has a higher sensitivity than previously published series for reverse cutting needle biopsy in the diagnosis of malignant pleural disease

  8. Image-guided pleural biopsy: diagnostic yield and complications

    Energy Technology Data Exchange (ETDEWEB)

    Benamore, R.E. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom)]. E-mail: rachelbenamore@doctors.org.uk; Scott, K. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom); Richards, C.J. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom); Entwisle, J.J. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom)

    2006-08-15

    Background: Pleural biopsy and cytology are standard procedures for the investigation of pleural disease. Recent medical literature has suggested that image-guided pleural biopsy shows improved sensitivity for the diagnosis of pleural malignancy, when compared with the more commonly performed reverse bevel needle biopsy such as Abrams' needle. In our centre there has been an increasing trend towards performing image-guided pleural biopsies, and to our knowledge there is no large published series documenting the complication rate and diagnostic yield. Methods: The radiology and pathology databases were searched for all image-guided [computed tomography (CT) and ultrasound (US)] pleural biopsies from January 2001 to December 2004. All imaging and histology were reviewed, and final diagnostic information about patients was obtained from the respiratory multidisciplinary team database and patient notes. A record was made of complications following biopsy, presence of pleura in the biopsy, and adequacy of tissue for histological diagnosis. Results: A total of 82 patients underwent 85 image-guided pleural biopsies over a 4-year period. 80 cases were performed under CT and five under US guidance. The rate of new pneumothorax detected by chest radiography was 4.7%. No patient required a chest drain or blood transfusion to treat complications. In 10 (12%) cases, there was inadequate tissue to reach a confident histological diagnosis and in eight (9%) of these, no pleura was present. Assuming all suspicious and inadequate biopsies are treated as benign, which is the worst case scenario, image-guided pleural biopsy has a sensitivity and specificity of 76% and 100%, respectively, for the diagnosis of malignant disease. Conclusions: Image-guided pleural biopsy is a safe procedure with few associated complications and has a higher sensitivity than previously published series for reverse cutting needle biopsy in the diagnosis of malignant pleural disease.

  9. On scattering diagnostics with periodically pulsed lasers to follow the continuous evolution of time dependent plasma parameters

    International Nuclear Information System (INIS)

    Hellermann, M. von; Hirsch, K.; Doeble, H.F.

    1977-04-01

    The possibilities to use periodically pulsed lasers for plasma scattering diagnostics are discussed. An experiment with succesful application of a periodically pulsed frequency-doubled Nd:YAG laser is described and results are given. Application of the method to monitor continuously, with millisecond time resolution, parameters of Tokamak type plasmas, is considered. (orig.) [de

  10. Contribution to the electron density diagnostics of a plasma by means of three-wave interferometry

    International Nuclear Information System (INIS)

    Says, L.P.

    1988-01-01

    Plasma use can be considered as an acceleration technique but a high precision diagnostic is necessary. This can be provided by refractive index determination. A three wave interferometer gives an accuracy in the range of a few nanometers in optical path measurements. Such an apparatus has been designed, built and tested on a discharge plasma, previously diagnosed by conventional methods. Results are in good agreement and the expected accuracy is achieved [fr

  11. Density-dependent lines of one- and two-electron ions in diagnostics of laboratory plasma. I. The rates of collision relaxation of excited levels

    Energy Technology Data Exchange (ETDEWEB)

    Shevelko, V P; Skobelev, I Yu; Vinogradov, A V [Lebedev Physical Institute, Academy of Sciences of the USSR, Moscow, USSR

    1977-01-01

    Plasma devices with inertial plasma confinement such as laser produced plasmas, exploding wires, plasma focus, etc., which have been rapidly developed during recent years., appear to be very intensive sources of spectral line radiation in far UV and X-ray regions. Analysis of this radiation provides a good tool for plasma diagnostics with very high electron densities up to 10/sup 22/cm/sup -3/. In this work, consisting of two parts, the authors consider the mechanism of the formation of spectral lines in hot and dense plasma. The key point for density diagnostics is the fact that for some ion levels the rate of collisional relaxation has the same order of magnitude as the radiative decay. Thus the intensities of spectral lines arising from these levels show a strong dependence on electron density which makes diagnostics possible. In this paper, emphasis is laid on the calculation of rates of transition between close ion levels induced by electron or ion impact, which usually gives the main contribution to the collisional relaxation constants. The influence of plasma polarization effects on the collision frequency in a dense plasma is also considered.

  12. Diagnostic accuracy of postmortem imaging vs autopsy—A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Anders, E-mail: anders.eriksson@rmv.se [Section of Forensic Medicine, Dept of Community Medicine and Rehabilitation, Umeå University, PO Box 7016, SE-907 12 Umeå (Sweden); Gustafsson, Torfinn [Section of Forensic Medicine, Dept of Community Medicine and Rehabilitation, Umeå University, PO Box 7016, SE-907 12 Umeå (Sweden); Höistad, Malin; Hultcrantz, Monica [Swedish Agency for Health Technology Assessment and Assessment of Social Services, PO Box 3657, SE-103 59 Stockholm (Sweden); Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Jacobson, Stella; Mejare, Ingegerd [Swedish Agency for Health Technology Assessment and Assessment of Social Services, PO Box 3657, SE-103 59 Stockholm (Sweden); Persson, Anders [Department of Medical and Health Sciences, Center for Medical Image Science and Visualization (CMIV), Linköping University, SE-581 85, Linköping Sweden (Sweden)

    2017-04-15

    Highlights: • The search generated 340 possibly relevant publications, of which 49 were assessed as having high risk of bias and 22 as moderate risk. • Due to considerable heterogeneity of included studies it was impossible to estimate the diagnostic accuracy of the various findings. • Future studies need larger materials and improved planning and methodological quality, preferentially from multi-center studies. - Abstract: Background Postmortem imaging has been used for more than a century as a complement to medico-legal autopsies. The technique has also emerged as a possible alternative to compensate for the continuous decline in the number of clinical autopsies. To evaluate the diagnostic accuracy of postmortem imaging for various types of findings, we performed this systematic literature review. Data sources The literature search was performed in the databases PubMed, Embase and Cochrane Library through January 7, 2015. Relevant publications were assessed for risk of bias using the QUADAS tool and were classified as low, moderate or high risk of bias according to pre-defined criteria. Autopsy and/or histopathology were used as reference standard. Findings The search generated 2600 abstracts, of which 340 were assessed as possibly relevant and read in full-text. After further evaluation 71 studies were finally included, of which 49 were assessed as having high risk of bias and 22 as moderate risk of bias. Due to considerable heterogeneity – in populations, techniques, analyses and reporting – of included studies it was impossible to combine data to get a summary estimate of the diagnostic accuracy of the various findings. Individual studies indicate, however, that imaging techniques might be useful for determining organ weights, and that the techniques seem superior to autopsy for detecting gas Conclusions and Implications In general, based on the current scientific literature, it was not possible to determine the diagnostic accuracy of postmortem

  13. Diagnostic accuracy of postmortem imaging vs autopsy—A systematic review

    International Nuclear Information System (INIS)

    Eriksson, Anders; Gustafsson, Torfinn; Höistad, Malin; Hultcrantz, Monica; Jacobson, Stella; Mejare, Ingegerd; Persson, Anders

    2017-01-01

    Highlights: • The search generated 340 possibly relevant publications, of which 49 were assessed as having high risk of bias and 22 as moderate risk. • Due to considerable heterogeneity of included studies it was impossible to estimate the diagnostic accuracy of the various findings. • Future studies need larger materials and improved planning and methodological quality, preferentially from multi-center studies. - Abstract: Background Postmortem imaging has been used for more than a century as a complement to medico-legal autopsies. The technique has also emerged as a possible alternative to compensate for the continuous decline in the number of clinical autopsies. To evaluate the diagnostic accuracy of postmortem imaging for various types of findings, we performed this systematic literature review. Data sources The literature search was performed in the databases PubMed, Embase and Cochrane Library through January 7, 2015. Relevant publications were assessed for risk of bias using the QUADAS tool and were classified as low, moderate or high risk of bias according to pre-defined criteria. Autopsy and/or histopathology were used as reference standard. Findings The search generated 2600 abstracts, of which 340 were assessed as possibly relevant and read in full-text. After further evaluation 71 studies were finally included, of which 49 were assessed as having high risk of bias and 22 as moderate risk of bias. Due to considerable heterogeneity – in populations, techniques, analyses and reporting – of included studies it was impossible to combine data to get a summary estimate of the diagnostic accuracy of the various findings. Individual studies indicate, however, that imaging techniques might be useful for determining organ weights, and that the techniques seem superior to autopsy for detecting gas Conclusions and Implications In general, based on the current scientific literature, it was not possible to determine the diagnostic accuracy of postmortem

  14. [Diagnostic imaging and radiation hazards].

    Science.gov (United States)

    Claudon, Michel; Guillaume, Luc

    2015-01-01

    For the last 20 years, the exposure of the population to medical radiation has been increased by 600%, mainly due to the extension of new imaging modalities such as CT or interventional radiology. The risk for radio-induced hazards is especially marked for children, because of the high sensivity of tissues to radiation especially during the first decade of the life. Two main ways allow to better control and reduce the mean effective dose per patient in diagnostic imaging: the introduction of recent technical improvement (i.e. low dose CT scans using iterative reconstruction algorithms, low dose technique for pediatric spine), and the substitution to non-radiating techniques such as ultrasound and MRI. The French National institute of Radioprotection and Nuclear Safety periodically publishes dose reference levels for conventional films and CT examinations, for both adults and pediatric patients. A close relationship between clinicians and radiologists remains essential for a better appreciation of the risk/benefit ratio of each individual examination using X-Rays.

  15. Doctoral theses in diagnostic imaging: a study of Spanish production between 1976 and 2011.

    Science.gov (United States)

    Machan, K; Sendra Portero, F

    2018-05-15

    To analyze the production of doctoral theses in diagnostic imaging in Spain in the period comprising 1976 through 2011 with the aim of a) determining the number of theses and their distribution over time, b) describing the production in terms of universities and directors, and c) analyzing the content of the theses according to the imaging technique, anatomic site, and type of research used. The TESEO database was searched for "radiología" and/or "diagnóstico por imagen" and for terms related to diagnostic imaging in the title of the thesis. A total of 1036 theses related to diagnostic imaging were produced in 37 Spanish universities (mean, 29.6 theses/year; range, 4-59). A total of 963 thesis directors were identified; 10 of these supervised 10 or more theses. Most candidates and directors were men, although since the 2000-2001 academic year the number of male and female candidates has been similar. The anatomic regions most often included in diagnostic imaging theses were the abdomen (22.5%), musculoskeletal system (21.8%), central nervous system (16.4%), and neck and face (15.6%). The imaging techniques most often included were ultrasonography in the entire period (25.5%) and magnetic resonance imaging in the last 5 years. Most theses (63.8%) were related to clinical research. Despite certain limitations, the TESEO database makes it possible to analyze the production of doctoral theses in Spain effectively. The annual mean production of theses in diagnostic imaging is higher than in other medical specialties. This analysis reflects the historic evolution of imaging techniques and research in radiology as well as the development of Spanish universities. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Studies of Turbulence and Transport in Alcator C-Mod H-Mode Plasmas with Phase Contrast Imaging and Comparisons with GYRO

    Science.gov (United States)

    Porkolab, M.; Lin, L.; Edlund, E. M.; Rost, J. C.; Fiore, C. L.; Greenwald, M.; Mikkelsen, D.

    2008-11-01

    We present recent experimental measurements of turbulence and transport in C-Mod H-Mode plasmas with and without internal transport barriers (ITB) using the phase contrast imaging (PCI) diagnostic and compare the results with GYRO predictions. In plasmas without ITB, the fluctuation above 300 kHz observed by PCI agrees with ITG in GYRO simulation, including the direction of propagation, wavenumber spectrum, and absolute intensity within experimental uncertainly (+/-75%). After transition to ITBs, the observed overall fluctuation intensity increases. GYRO simulation in the core shows that ITG dominates in ITBs but its intensity is lower than the overall experimental measurements which may also include contributions from the plasma edge. These results, as well as the impact of varying ∇Ti, ∇n, and ExB shear on turbulence will be discussed. C.L. Fiore et al., Fusion Sci. Technol., 51, 303 (2007). M. Porkolab et al., IEEE Trans. Plasma Sci. 34, 229 (2006). J. Candy et al., Phys. Rev. Lett., 91, 045001 (2003).

  17. Plasma diagnostic tools for optimizing negative hydrogen ion sources

    International Nuclear Information System (INIS)

    Fantz, U.; Falter, H.D.; Franzen, P.; Speth, E.; Hemsworth, R.; Boilson, D.; Krylov, A.

    2006-01-01

    The powerful diagnostic tool of optical emission spectroscopy is used to measure the plasma parameters in negative hydrogen ion sources based on the surface mechanism. Results for electron temperature, electron density, atomic-to-molecular hydrogen density ratio, and gas temperature are presented for two types of sources, a rf source and an arc source, which are currently under development for a neutral beam heating system of ITER. The amount of cesium in the plasma volume is obtained from cesium radiation: the Cs neutral density is five to ten orders of magnitude lower than the hydrogen density and the Cs ion density is two to three orders of magnitude lower than the electron density in front of the grid. It is shown that monitoring of cesium lines is very useful for monitoring the cesium balance in the source. From a line-ratio method negative ion densities are determined. In a well-conditioned source the negative ion density is of the same order of magnitude as the electron density and correlates with extracted current densities

  18. Balloon-assisted enteroscopy for suspected Meckel’s diverticulum and indefinite diagnostic imaging workup

    Science.gov (United States)

    Gomes, Guilherme Francisco; Bonin, Eduardo Aimore; Noda, Rafael William; Cavazzola, Leandro Totti; Bartholomei, Thiago Ferreira

    2016-01-01

    Meckel’s diverticulum (MD) is estimated to affect 1%-2% of the general population, and it represents a clinically silent finding of a congenital anomaly in up to 85% of the cases. In adults, MD may cause symptoms, such as overt occult lower gastrointestinal bleeding. The diagnostic imaging workup includes computed tomography scan, magnetic resonance imaging enterography, technetium 99m scintigraphy (99mTc) using either labeled red blood cells or pertechnetate (known as the Meckel’s scan) and angiography. The preoperative detection rate of MD in adults is low, and many patients ultimately undergo exploratory laparoscopy. More recently, however, endoscopic identification of MD has been possible with the use of balloon-assisted enteroscopy via direct luminal access, which also provides visualization of the diverticular ostium. The aim of this study was to review the diagnosis by double-balloon enteroscopy of 4 adults with symptomatic MD but who had negative diagnostic imaging workups. These cases indicate that balloon-assisted enteroscopy is a valuable diagnostic method and should be considered in adult patients who have suspected MD and indefinite findings on diagnostic imaging workup, including negative Meckel’s scan. PMID:27803776

  19. DIAGNOSTIC SPECTROSCOPIQUE EN TEMPERATURE ELECTRONIQUE DES PLASMAS PHOTOIONISES

    Directory of Open Access Journals (Sweden)

    A. K Ferouani

    2009-12-01

    Full Text Available In this work, we are interested in the diagnostics in electronic temperature of a plasma purely photoionized, based on the intensity ration of lines emitted by ions helium-like, witch have an atomic number Z relatively small. We considered the three lines corresponding to the transitions starting from the excited levels 1s2l towards the fundamental level 1s2 1S0, like appropriate lines. More precisely, the line of resonance w due to the transition 1s2p 1P1 1s2 1 S0, the line of intercombinaison (x,y 1s2p 3 P2,1 1s2 1 S0 as well as prohibited line z due to the transition 1s2 3 S1 1s2 1 S0. These lines appear clearly in the spectra of astrophysical plasmas. As helium-like ion, we chose two, the oxygen O6+ (Z=8 and neon Ne8+ (Z=10. We carried out calculations of the ration of lines intensity G=(zxy/w of O6+ and Ne8+ according to the electronic temperature in the range going from 105 to 107 K. We will see that, like it was shown by Gabriel and Jordan in 1969, this intensity ration can be very sensitive to the temperature electronic and practically independent of the electronic density. Consequently, the ration G can be used to determine in a reliable way the electronic temperature of plasma observed.

  20. Tomography of laser fusion plasmas

    International Nuclear Information System (INIS)

    Ceglio, N.M.

    1977-01-01

    Experimental programs exist in a number of laboratories throughout the world to test the feasibility of using powerful laser systems to drive the implosion of hydrogen isotope fuel to thermonuclear burn conditions. In a typical experiment multiple laser beams are focused onto a glass microshell (typically 50 μm to 200 μm diameter) filled with an equimolar D-T gas mixture. X-ray and particle emissions from the target provide important information about the hydrodynamic implosion of the glass shell and the associated compression and heating of the D-T fuel. Standard diagnostics for imaging such emissions are the grazing incidence reflection (GIR) x-ray microscope and the pinhole camera. Recently, a particular coded imaging technique, Zone Plate Coded Imaging (ZPCI), has been successfully used for x-ray and particle microscopy of laser fusion plasmas. ZPCI is highly attractive for investigating laser produced plasmas because it possesses a tomographic capability not shared by either the GIR or pinhole imaging techniques. This presentation provides a brief discussion of the tomographic potential of ZPCI. In addition, the first tomographic x-ray images (tomographic resolution approximately 74 μm) of a laser produced plasma are presented