WorldWideScience

Sample records for imaging mri study

  1. Imaging tools to study pharmacology: functional MRI on small rodents

    OpenAIRE

    Elisabeth eJonckers; Disha eShah; Julie eHamaide; Marleen eVerhoye; Annemie eVan Der Linden

    2015-01-01

    Functional Magnetic Resonance Imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimu...

  2. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  5. Magnetic Resonance Imaging (MRI) Safety

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how ... What is MRI and how does it work? Magnetic resonance imaging, or MRI, is a way of obtaining ...

  6. Actual imaging time in fetal MRI

    International Nuclear Information System (INIS)

    Brugger, Peter C.; Prayer, Daniela

    2012-01-01

    Objective: Safety issues in magnetic resonance imaging (MRI) are important, especially in fetal MRI. However, since basic data with respect of the effective exposure time in fetal MRI are not available, this study aimed to determine the actual imaging time during a fetal MRI study. Methods: 100 fetal MRI studies of singleton pregnancies performed on a 1.5 T system were analysed with respect to study duration (from starting the survey scan until the end of study), the number of sequences acquired, and the actual imaging time, which was calculated by adding up scan time of each sequence. Furthermore, each sequence type was analysed regarding the number of acquisitions, specific absorption rates (SAR), and duration. Results: Mean study duration was 34.6 min (range: 14–58 min; standard deviation (SD): 9.7 min), the average number of sequences acquired was 26.6 (range: 11–44, SD: 6.6). Actual scan time averaged 11.4 min (range: 4–19 min, SD: 4.0 min). Ultrafast T2-weighted and steady-state free-precession sequences accounted for 62.3% of actual scan time, and were distributed over the whole duration of the study. Conclusion: Actual imaging time only accounts for 33% of total study time and is not continuous. The remaining time is consumed by the preparation phases of the scanner, and is spent with planning sequences and the eventual repositioning of the coil and/or pregnant woman. These data may help to more accurately estimate the exposure to radiofrequency deposition and noise during fetal MRI studies.

  7. Multiparametric and molecular imaging of breast tumors with MRI and PET/MRI

    International Nuclear Information System (INIS)

    Pinker, K.; Marino, M.A.; Meyer-Baese, A.; Helbich, T.H.

    2016-01-01

    Magnetic resonance imaging (MRI) of the breast is an indispensable tool in breast imaging for many indications. Several functional parameters with MRI and positron emission tomography (PET) have been assessed for imaging of breast tumors and their combined application is defined as multiparametric imaging. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the hallmarks of cancer and may provide additional specificity. Multiparametric and molecular imaging of the breast comprises established MRI parameters, such as dynamic contrast-enhanced MRI, diffusion-weighted imaging (DWI), MR proton spectroscopy ( 1 H-MRSI) as well as combinations of radiological and MRI techniques (e.g. PET/CT and PET/MRI) using radiotracers, such as fluorodeoxyglucose (FDG). Multiparametric and molecular imaging of the breast can be performed at different field-strengths (range 1.5-7 T). Emerging parameters comprise novel promising techniques, such as sodium imaging ( 23 Na MRI), phosphorus spectroscopy ( 31 P-MRSI), chemical exchange saturation transfer (CEST) imaging, blood oxygen level-dependent (BOLD) and hyperpolarized MRI as well as various specific radiotracers. Multiparametric and molecular imaging has multiple applications in breast imaging. Multiparametric and molecular imaging of the breast is an evolving field that will enable improved detection, characterization, staging and monitoring for personalized medicine in breast cancer. (orig.) [de

  8. A technique to consider mismatches between fMRI and EEG/MEG sources for fMRI-constrained EEG/MEG source imaging: a preliminary simulation study

    International Nuclear Information System (INIS)

    Im, Chang-Hwan; Lee, Soo Yeol

    2006-01-01

    fMRI-constrained EEG/MEG source imaging can be a powerful tool in studying human brain functions with enhanced spatial and temporal resolutions. Recent studies on the combination of fMRI and EEG/MEG have suggested that fMRI prior information could be readily implemented by simply imposing different weighting factors to cortical sources overlapping with the fMRI activations. It has been also reported, however, that such a hard constraint may cause severe distortions or elimination of meaningful EEG/MEG sources when there are distinct mismatches between the fMRI activations and the EEG/MEG sources. If one wants to obtain the actual EEG/MEG source locations and uses the fMRI prior information as just an auxiliary tool to enhance focality of the distributed EEG/MEG sources, it is reasonable to weaken the strength of fMRI constraint when severe mismatches between fMRI and EEG/MEG sources are observed. The present study suggests an efficient technique to automatically adjust the strength of fMRI constraint according to the mismatch level. The use of the proposed technique rarely affects the results of conventional fMRI-constrained EEG/MEG source imaging if no major mismatch between the two modalities is detected; while the new results become similar to those of typical EEG/MEG source imaging without fMRI constraint if the mismatch level is significant. A preliminary simulation study using realistic EEG signals demonstrated that the proposed technique can be a promising tool to selectively apply fMRI prior information to EEG/MEG source imaging

  9. An MRI system for imaging neonates in the NICU: initial feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Tkach, Jean A.; Loew, Wolfgang; Pratt, Ron G.; Daniels, Barret R.; Giaquinto, Randy O.; Winter, Patrick M.; Li, Yu; Dumoulin, Charles L. [Cincinnati Children' s Hospital Medical Center, Imaging Research Center, Department of Radiology, Cincinnati, OH (United States); Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Hillman, Noah H.; Jobe, Alan H.; Kallapur, Suhas G.; Merhar, Stephanie L.; Ikegami, Machiko; Whitsett, Jeffrey A. [Perinatal Institute, Cincinnati Children' s Hospital Medical Center, Division of Neonatology and Pulmonary Biology, Cincinnati, OH (United States); Kline-Fath, Beth M. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2012-11-15

    Transporting premature infants from a neonatal intensive care unit (NICU) to a radiology department for MRI has medical risks and logistical challenges. To develop a small 1.5-T MRI system for neonatal imaging that can be easily installed in the NICU and to evaluate its performance using a sheep model of human prematurity. A 1.5-T MRI system designed for orthopedic use was adapted for neonatal imaging. The system was used for MRI examinations of the brain, chest and abdomen in 12 premature lambs during the first hours of life. Spin-echo, fast spin-echo and gradient-echo MR images were evaluated by two pediatric radiologists. All animals remained physiologically stable throughout the imaging sessions. Animals were imaged at two or three time points. Seven brain MRI examinations were performed in seven different animals, 23 chest examinations in 12 animals and 19 abdominal examinations in 11 animals. At each anatomical location, high-quality images demonstrating good spatial resolution, signal-to-noise ratio and tissue contrast were routinely obtained within 30 min using standard clinical protocols. Our preliminary experience demonstrates the feasibility and potential of the neonatal MRI system to provide state-of-the-art MRI capabilities within the NICU. Advantages include overall reduced cost and site demands, lower acoustic noise, improved ease of access and reduced medical risk to the neonate. (orig.)

  10. An MRI system for imaging neonates in the NICU: initial feasibility study

    International Nuclear Information System (INIS)

    Tkach, Jean A.; Loew, Wolfgang; Pratt, Ron G.; Daniels, Barret R.; Giaquinto, Randy O.; Winter, Patrick M.; Li, Yu; Dumoulin, Charles L.; Hillman, Noah H.; Jobe, Alan H.; Kallapur, Suhas G.; Merhar, Stephanie L.; Ikegami, Machiko; Whitsett, Jeffrey A.; Kline-Fath, Beth M.

    2012-01-01

    Transporting premature infants from a neonatal intensive care unit (NICU) to a radiology department for MRI has medical risks and logistical challenges. To develop a small 1.5-T MRI system for neonatal imaging that can be easily installed in the NICU and to evaluate its performance using a sheep model of human prematurity. A 1.5-T MRI system designed for orthopedic use was adapted for neonatal imaging. The system was used for MRI examinations of the brain, chest and abdomen in 12 premature lambs during the first hours of life. Spin-echo, fast spin-echo and gradient-echo MR images were evaluated by two pediatric radiologists. All animals remained physiologically stable throughout the imaging sessions. Animals were imaged at two or three time points. Seven brain MRI examinations were performed in seven different animals, 23 chest examinations in 12 animals and 19 abdominal examinations in 11 animals. At each anatomical location, high-quality images demonstrating good spatial resolution, signal-to-noise ratio and tissue contrast were routinely obtained within 30 min using standard clinical protocols. Our preliminary experience demonstrates the feasibility and potential of the neonatal MRI system to provide state-of-the-art MRI capabilities within the NICU. Advantages include overall reduced cost and site demands, lower acoustic noise, improved ease of access and reduced medical risk to the neonate. (orig.)

  11. An MRI system for imaging neonates in the NICU: initial feasibility study.

    Science.gov (United States)

    Tkach, Jean A; Hillman, Noah H; Jobe, Alan H; Loew, Wolfgang; Pratt, Ron G; Daniels, Barret R; Kallapur, Suhas G; Kline-Fath, Beth M; Merhar, Stephanie L; Giaquinto, Randy O; Winter, Patrick M; Li, Yu; Ikegami, Machiko; Whitsett, Jeffrey A; Dumoulin, Charles L

    2012-11-01

    Transporting premature infants from a neonatal intensive care unit (NICU) to a radiology department for MRI has medical risks and logistical challenges. To develop a small 1.5-T MRI system for neonatal imaging that can be easily installed in the NICU and to evaluate its performance using a sheep model of human prematurity. A 1.5-T MRI system designed for orthopedic use was adapted for neonatal imaging. The system was used for MRI examinations of the brain, chest and abdomen in 12 premature lambs during the first hours of life. Spin-echo, fast spin-echo and gradient-echo MR images were evaluated by two pediatric radiologists. All animals remained physiologically stable throughout the imaging sessions. Animals were imaged at two or three time points. Seven brain MRI examinations were performed in seven different animals, 23 chest examinations in 12 animals and 19 abdominal examinations in 11 animals. At each anatomical location, high-quality images demonstrating good spatial resolution, signal-to-noise ratio and tissue contrast were routinely obtained within 30 min using standard clinical protocols. Our preliminary experience demonstrates the feasibility and potential of the neonatal MRI system to provide state-of-the-art MRI capabilities within the NICU. Advantages include overall reduced cost and site demands, lower acoustic noise, improved ease of access and reduced medical risk to the neonate.

  12. Imaging tools to study pharmacology: functional MRI on small rodents

    Directory of Open Access Journals (Sweden)

    Elisabeth eJonckers

    2015-10-01

    Full Text Available Functional Magnetic Resonance Imaging (fMRI is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD fMRI techniques, including resting state (rsfMRI, stimulus-evoked (st-fMRI, and pharmacological MRI (phMRI. Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anaesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically-induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest (ROIs. In addition, fMRI techniques allow one to dissect how specific modifications (e.g. treatment, lesion etc. modulate the functioning of specific brain areas (st-fMRI, phMRI and how functional connectivity (rsfMRI between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with

  13. Imaging gait analysis: An fMRI dual task study.

    Science.gov (United States)

    Bürki, Céline N; Bridenbaugh, Stephanie A; Reinhardt, Julia; Stippich, Christoph; Kressig, Reto W; Blatow, Maria

    2017-08-01

    In geriatric clinical diagnostics, gait analysis with cognitive-motor dual tasking is used to predict fall risk and cognitive decline. To date, the neural correlates of cognitive-motor dual tasking processes are not fully understood. To investigate these underlying neural mechanisms, we designed an fMRI paradigm to reproduce the gait analysis. We tested the fMRI paradigm's feasibility in a substudy with fifteen young adults and assessed 31 healthy older adults in the main study. First, gait speed and variability were quantified using the GAITRite © electronic walkway. Then, participants lying in the MRI-scanner were stepping on pedals of an MRI-compatible stepping device used to imitate gait during functional imaging. In each session, participants performed cognitive and motor single tasks as well as cognitive-motor dual tasks. Behavioral results showed that the parameters of both gait analyses, GAITRite © and fMRI, were significantly positively correlated. FMRI results revealed significantly reduced brain activation during dual task compared to single task conditions. Functional ROI analysis showed that activation in the superior parietal lobe (SPL) decreased less from single to dual task condition than activation in primary motor cortex and in supplementary motor areas. Moreover, SPL activation was increased during dual tasks in subjects exhibiting lower stepping speed and lower executive control. We were able to simulate walking during functional imaging with valid results that reproduce those from the GAITRite © gait analysis. On the neural level, SPL seems to play a crucial role in cognitive-motor dual tasking and to be linked to divided attention processes, particularly when motor activity is involved.

  14. MR-Imaging of teeth and periodontal apparatus: an experimental study comparing high-resolution MRI with MDCT and CBCT

    International Nuclear Information System (INIS)

    Gaudino, Chiara; Csernus, Reka; Pham, Mirko; Bendszus, Martin; Rohde, Stefan; Cosgarea, Raluca; Kim, Ti-Sun; Heiland, Sabine; Beomonte Zobel, Bruno

    2011-01-01

    The aim of this study was (1) to assess the ability of magnetic resonance imaging (MRI) to visualize dental and periodontal structures and (2) to compare findings with multidetector computed tomography (MDCT) and cone beam CT (CBCT). Four porcine mandibles were examined with (1) 3T-MRI, (2) MDCT and (3) CBCT. Two observers independently reviewed MR, MDCT and CBCT images and assessed image quality of different dental and periodontal structures. To assess quantitatively the accuracy of the different imaging technique, both observers measured burr holes, previously drilled in the mandibles. Dental structures, e.g. teeth roots, pulpa chamber and dentin, were imaged accurately with all imaging sources. Periodontal space and cortical/trabecular bone were better visualized by MRI (p < 0.001). MRI could excellently display the lamina dura, not detectable with MDCT and only inconstant visible with CBCT (p < 0.001). Burr hole measurements were highly precise with all imaging techniques. This experimental study shows the diagnostic feasibility of MRI in visualization of teeth and periodontal anatomy. Detection of periodontal structures was significantly better with MRI than with MDCT or CBCT. Prospective trials have to evaluate further the potential benefit of MRI in a clinical setting. (orig.)

  15. MR-Imaging of teeth and periodontal apparatus: an experimental study comparing high-resolution MRI with MDCT and CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Gaudino, Chiara; Csernus, Reka; Pham, Mirko; Bendszus, Martin; Rohde, Stefan [University Hospital Heidelberg, Department of Neuroradiology, Heidelberg (Germany); Cosgarea, Raluca; Kim, Ti-Sun [University Hospital Heidelberg, Department of Periodontology, Heidelberg (Germany); Heiland, Sabine [University Hospital Heidelberg, Section of Experimental Radiology, Heidelberg (Germany); Beomonte Zobel, Bruno [University Campus Bio-Medico of Rome, Department of Radiology, Interdisciplinary Center for Biomedical Research, Rome (Italy)

    2011-12-15

    The aim of this study was (1) to assess the ability of magnetic resonance imaging (MRI) to visualize dental and periodontal structures and (2) to compare findings with multidetector computed tomography (MDCT) and cone beam CT (CBCT). Four porcine mandibles were examined with (1) 3T-MRI, (2) MDCT and (3) CBCT. Two observers independently reviewed MR, MDCT and CBCT images and assessed image quality of different dental and periodontal structures. To assess quantitatively the accuracy of the different imaging technique, both observers measured burr holes, previously drilled in the mandibles. Dental structures, e.g. teeth roots, pulpa chamber and dentin, were imaged accurately with all imaging sources. Periodontal space and cortical/trabecular bone were better visualized by MRI (p < 0.001). MRI could excellently display the lamina dura, not detectable with MDCT and only inconstant visible with CBCT (p < 0.001). Burr hole measurements were highly precise with all imaging techniques. This experimental study shows the diagnostic feasibility of MRI in visualization of teeth and periodontal anatomy. Detection of periodontal structures was significantly better with MRI than with MDCT or CBCT. Prospective trials have to evaluate further the potential benefit of MRI in a clinical setting. (orig.)

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... to a CD or uploaded to a digital cloud server. Currently, MRI is the most sensitive imaging ... over time. top of page What are the benefits vs. risks? Benefits MRI is a noninvasive imaging ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... claustrophobia. Newer open MRI units provide very high quality images for many types of exams. Older open MRI units may not provide this same image quality. Certain types of exams cannot be performed using ...

  18. MRI quality control: six imagers studied using eleven unified image quality parameters

    International Nuclear Information System (INIS)

    Ihalainen, T.; Sipilae, O.; Savolainen, S.

    2004-01-01

    Quality control of the magnetic resonance imagers of different vendors in the clinical environment is non-harmonised, and comparing the performance is difficult. The purpose of this study was to develop and apply a harmonised long-term quality control protocol for the six imagers in our organisation in order to assure that they fulfil the same basic image quality requirements. The same Eurospin phantom set and identical imaging parameters were used with each imager. Values of 11 comparable parameters describing the image quality were measured. Automatic image analysis software was developed to objectively analyse the images. The results proved that the imagers were operating at a performance level adequate for clinical imaging. Some deficiencies were detected in image uniformity and geometry. The automated analysis of the Eurospin phantom images was successful. The measurements were successfully repeated after 2 weeks on one imager and after half a year on all imagers. As an objective way of examining the image quality, this kind of comparable and objective quality control of different imagers is considered as an essential step towards harmonisation of the clinical MRI studies through a large hospital organisation. (orig.)

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. MRI ...

  20. [MRI methods for pulmonary ventilation and perfusion imaging].

    Science.gov (United States)

    Sommer, G; Bauman, G

    2016-02-01

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O2-enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies.

  1. MRI methods for pulmonary ventilation and perfusion imaging

    International Nuclear Information System (INIS)

    Sommer, G.; Bauman, G.

    2016-01-01

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O 2 -enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies. (orig.) [de

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... can also provide functional information (fMRI) in selected cases. MR images of the brain and other cranial structures are clearer and more detailed than with other imaging methods. This detail makes MRI an invaluable tool in early diagnosis and evaluation of many conditions, ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... or patients with claustrophobia. Other MRI machines are open on the sides (open MRI). Open units are especially helpful for examining larger patients or those with claustrophobia. Newer open MRI units provide very high quality images for ...

  4. PET/MRI in Oncological Imaging: State of the Art

    Science.gov (United States)

    Bashir, Usman; Mallia, Andrew; Stirling, James; Joemon, John; MacKewn, Jane; Charles-Edwards, Geoff; Goh, Vicky; Cook, Gary J.

    2015-01-01

    Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging. PMID:26854157

  5. PET/MRI in Oncological Imaging: State of the Art

    Directory of Open Access Journals (Sweden)

    Usman Bashir

    2015-07-01

    Full Text Available Positron emission tomography (PET combined with magnetic resonance imaging (MRI is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging.

  6. TH-A-BRF-11: Image Intensity Non-Uniformities Between MRI Simulation and Diagnostic MRI

    International Nuclear Information System (INIS)

    Paulson, E

    2014-01-01

    Purpose: MRI simulation for MRI-based radiotherapy demands that patients be setup in treatment position, which frequently involves use of alternative radiofrequency (RF) coil configurations to accommodate immobilized patients. However, alternative RF coil geometries may exacerbate image intensity non-uniformities (IINU) beyond those observed in diagnostic MRI, which may challenge image segmentation and registration accuracy as well as confound studies assessing radiotherapy response when MR simulation images are used as baselines for evaluation. The goal of this work was to determine whether differences in IINU exist between MR simulation and diagnostic MR images. Methods: ACR-MRI phantom images were acquired at 3T using a spin-echo sequence (TE/TR:20/500ms, rBW:62.5kHz, TH/skip:5/5mm). MR simulation images were obtained by wrapping two flexible phased-array RF coils around the phantom. Diagnostic MR images were obtained by placing the phantom into a commercial phased-array head coil. Pre-scan normalization was enabled in both cases. Images were transferred offline and corrected for IINU using the MNI N3 algorithm. Coefficients of variation (CV=σ/μ) were calculated for each slice. Wilcoxon matched-pairs and Mann-Whitney tests compared CV values between original and N3 images and between MR simulation and diagnostic MR images. Results: Significant differences in CV were detected between original and N3 images in both MRI simulation and diagnostic MRI groups (p=0.010, p=0.010). In addition, significant differences in CV were detected between original MR simulation and original and N3 diagnostic MR images (p=0.0256, p=0.0016). However, no significant differences in CV were detected between N3 MR simulation images and original or N3 diagnostic MR images, demonstrating the importance of correcting MR simulation images beyond pre-scan normalization prior to use in radiotherapy. Conclusions: Alternative RF coil configurations used in MRI simulation can Result in

  7. MRI: Imaging of stomach

    International Nuclear Information System (INIS)

    Lam, W. W. M; Lee, J. S. W.; Ho, G.

    2007-01-01

    Full text: The study is to determine the optimal MRI bowel preparation regime for visualization of the stomach anatomy, Eight healthy volunteers were asked to take water, 75% barium and blueberry juice. The image quality and tolerance of different stomach distension regime were evaluated. Blueberry juice gave the best distension, but the signal intensity was not very homogeneous. Taking into account the image quality, tolerability and adverse effects, it is concluded that water is the most desirable oral contrast for MR stomach imaging

  8. Multimodality imaging: transfer and fusion of SPECT and MRI data

    International Nuclear Information System (INIS)

    Knesaurek, K.

    1994-01-01

    Image fusion is a technique which offers the best of both worlds. It unites the two basic types of medical images: functional body images(PET or SPECT scans), which provide physiological information, and structural images (CT or MRI), which provide an anatomic map of the body. Control-point based registration technique was developed and used. Tc-99m point sources were used as external markers in SPECT studies while, for MRI and CT imaging only anatomic landmarks were used as a control points. The MRI images were acquired on GE Signa 1.2 system and CT data on a GE 9800 scanner. SPECT studies were performed 1h after intravenous injection of the 740 MBq of the Tc-99m-HMPAO on the triple-headed TRIONIX gamma camera. B-spline and bilinear interpolation were used for the rotation, scaling and translation of the images. In the process of creation of a single composite image, in order to retain information from the individual images, MRI (or CT) image was scaled to one color range and a SPECT image to another. In some situations the MRI image was kept black-and-white while the SPECT image was pasted on top of it in 'opaque' mode. Most errors which propagate through the matching process are due to sample size, imperfection of the acquisition system, noise and interpolations used. Accuracy of the registration was investigated by SPECT-CT study performed on a phantom study. The results has shown that accuracy of the matching process is better, or at worse, equal to 2 mm. (author)

  9. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    Science.gov (United States)

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  10. Functional MRI studies of human vision on a clinical imager

    International Nuclear Information System (INIS)

    George, J.S.; Lewine, J.D.; Aine, C.J.; van Hulsteyn, D.; Wood, C.C.; Sanders, J.; Maclin, E.; Belliveau, J.W.; Caprihan, A.

    1992-01-01

    During the past decade, Magnetic Resonance Imaging (MRI) has become the method of choice for imaging the anatomy of the human brain. Recently, Belliveau and colleagues have reported the use of echo planar magnetic resonance imaging (EPI) to image patterns of neural activity. Here, we report functional MR imaging in response to visual stimulation without the use of contrast agents, and without the extensive hardware modifications required for EPI. Regions of activity were observed near the expected locations of V1, V2 and possibly V3 and another active region was observed near the parietal-occipital sulcus on the superior surface of the cerebrum. These locations are consistent with sources observed in neuromagnetic studies of the human visual response

  11. Molecular imaging of head and neck cancers. Perspectives of PET/MRI

    International Nuclear Information System (INIS)

    Stumpp, P.; Kahn, T.; Purz, S.; Sabri, O.

    2016-01-01

    The 18 F-fluorodeoxyglucose positron emission tomography-computed tomography ( 18 F-FDG-PET/CT) procedure is a cornerstone in the diagnostics of head and neck cancers. Several years ago PET-magnetic resonance imaging (PET/MRI) also became available as an alternative hybrid multimodal imaging method. Does PET/MRI have advantages over PET/CT in the diagnostics of head and neck cancers ?The diagnostic accuracy of the standard imaging methods CT, MRI and PET/CT is depicted according to currently available meta-analyses and studies concerning the use of PET/MRI for these indications are summarized. In all studies published up to now PET/MRI did not show superiority regarding the diagnostic accuracy in head and neck cancers; however, there is some evidence that in the future PET/MRI can contribute to tumor characterization and possibly be used to predict tumor response to therapy with the use of multiparametric imaging. Currently, 18 F-FDG-PET/CT is not outperformed by PET/MRI in the diagnostics of head and neck cancers. The additive value of PET/MRI due to the use of multiparametric imaging needs to be investigated in future research. (orig.) [de

  12. MRI Reporter Genes for Noninvasive Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Caixia Yang

    2016-05-01

    Full Text Available Magnetic resonance imaging (MRI is one of the most important imaging technologies used in clinical diagnosis. Reporter genes for MRI can be applied to accurately track the delivery of cell in cell therapy, evaluate the therapy effect of gene delivery, and monitor tissue/cell-specific microenvironments. Commonly used reporter genes for MRI usually include genes encoding the enzyme (e.g., tyrosinase and β-galactosidase, the receptor on the cells (e.g., transferrin receptor, and endogenous reporter genes (e.g., ferritin reporter gene. However, low sensitivity limits the application of MRI and reporter gene-based multimodal imaging strategies are common including optical imaging and radionuclide imaging. These can significantly improve diagnostic efficiency and accelerate the development of new therapies.

  13. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... of which shows a thin slice of the body. The images can then be studied from different angles by ... information please consult the ACR Manual on Contrast Media and its references. top of page What are the limitations of MRI of the Head? High-quality images are assured only if you are able to ...

  14. Feasibility study on 3D image reconstruction from 2D orthogonal cine-MRI for MRI-guided radiotherapy.

    Science.gov (United States)

    Paganelli, Chiara; Lee, Danny; Kipritidis, John; Whelan, Brendan; Greer, Peter B; Baroni, Guido; Riboldi, Marco; Keall, Paul

    2018-02-11

    In-room MRI is a promising image guidance strategy in external beam radiotherapy to acquire volumetric information for moving targets. However, limitations in spatio-temporal resolution led several authors to use 2D orthogonal images for guidance. The aim of this work is to present a method to concurrently compensate for non-rigid tumour motion and provide an approach for 3D reconstruction from 2D orthogonal cine-MRI slices for MRI-guided treatments. Free-breathing sagittal/coronal interleaved 2D cine-MRI were acquired in addition to a pre-treatment 3D volume in two patients. We performed deformable image registration (DIR) between cine-MRI slices and corresponding slices in the pre-treatment 3D volume. Based on an extrapolation of the interleaved 2D motion fields, the 3D motion field was estimated and used to warp the pre-treatment volume. Due to the lack of a ground truth for patients, the method was validated on a digital 4D lung phantom. On the phantom, the 3D reconstruction method was able to compensate for tumour motion and compared favourably to the results of previously adopted strategies. The difference in the 3D motion fields between the phantom and the extrapolated motion was 0.4 ± 0.3 mm for tumour and 0.8 ± 1.5 mm for whole anatomy, demonstrating feasibility of performing a 3D volumetric reconstruction directly from 2D orthogonal cine-MRI slices. Application of the method to patient data confirmed the feasibility of utilizing this method in real world scenarios. Preliminary results on phantom and patient cases confirm the feasibility of the proposed approach in an MRI-guided scenario, especially for non-rigid tumour motion compensation. © 2018 The Royal Australian and New Zealand College of Radiologists.

  15. Content Based Medical Image Retrieval for Histopathological, CT and MRI Images

    Directory of Open Access Journals (Sweden)

    Swarnambiga AYYACHAMY

    2013-09-01

    Full Text Available A content based approach is followed for medical images. The purpose of this study is to access the stability of these methods for medical image retrieval. The methods used in color based retrieval for histopathological images are color co-occurrence matrix (CCM and histogram with meta features. For texture based retrieval GLCM (gray level co-occurrence matrix and local binary pattern (LBP were used. For shape based retrieval canny edge detection and otsu‘s method with multivariable threshold were used. Texture and shape based retrieval were implemented using MRI (magnetic resonance images. The most remarkable characteristics of the article are its content based approach for each medical imaging modality. Our efforts were focused on the initial visual search. From our experiment, histogram with meta features in color based retrieval for histopathological images shows a precision of 60 % and recall of 30 %. Whereas GLCM in texture based retrieval for MRI images shows a precision of 70 % and recall of 20 %. Shape based retrieval for MRI images shows a precision of 50% and recall of 25 %. The retrieval results shows that this simple approach is successful.

  16. Comparative study on developmental stages of the clavicle by postmortem MRI and CT imaging

    DEFF Research Database (Denmark)

    Larsen, Sara Tangmose; Lynnerup, Niels; Jensen, K.E.

    2013-01-01

    Objectives: The developmental stages of the clavicles are important for forensic age estimation purposes in adolescents. This study compares the 4-stage system to evaluate the ossification of the medial end of the clavicle as visualized by magnetic resonance imaging (MRI) and computed tomography...... (CT). As several forensic institutes routinely perform CT scans, the large amount of available data may serve as reference sample for MRI in specific cases. Material and methods: This prospective study included an MRI and CT scan of 47 autopsy cases performed prior to medico-legal autopsy (age range...

  17. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning

    DEFF Research Database (Denmark)

    Arabi, H.; Koutsouvelis, N.; Rouzaud, M.

    2016-01-01

    Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial t......-CT images from conventional Dixon MRI sequences with improved bone extraction accuracy. The approach is promising for potential use in PET AC and MRI-only or hybrid PET/MRI-guided RT treatment planning. © 2016 Institute of Physics and Engineering in Medicine.......Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial...... the conventional MRI segmentation technique and a recently proposed multi-atlas approach. The clinical studies consisted of pelvic CT, PET and MRI scans of 12 patients with loco-regionally advanced rectal disease. In the first step, bone segmentation of the target image is optimized through local weighted atlas...

  18. PET-MRI and multimodal cancer imaging

    International Nuclear Information System (INIS)

    Wang Taisong; Zhao Jinhua; Song Jianhua

    2011-01-01

    Multimodality imaging, specifically PET-CT, brought a new perspective into the fields of clinical imaging. Clinical cases have shown that PET-CT has great value in clinical diagnosis and experimental research. But PET-CT still bears some limitations. A major drawback is that CT provides only limited soft tissue contrast and exposes the patient to a significant radiation dose. MRI overcome these limitations, it has excellent soft tissue contrast, high temporal and spatial resolution and no radiation damage. Additionally, since MRI provides also functional information, PET-MRI will show a new direction of multimodality imaging in the future. (authors)

  19. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Brain KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Brain What's in this article? What ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... items, which can distort MRI images removable dental work pens, pocket knives and eyeglasses body piercings In most cases, an MRI exam is safe for patients with metal implants, except for a ...

  1. IClinfMRI Software for Integrating Functional MRI Techniques in Presurgical Mapping and Clinical Studies.

    Science.gov (United States)

    Hsu, Ai-Ling; Hou, Ping; Johnson, Jason M; Wu, Changwei W; Noll, Kyle R; Prabhu, Sujit S; Ferguson, Sherise D; Kumar, Vinodh A; Schomer, Donald F; Hazle, John D; Chen, Jyh-Horng; Liu, Ho-Ling

    2018-01-01

    Task-evoked and resting-state (rs) functional magnetic resonance imaging (fMRI) techniques have been applied to the clinical management of neurological diseases, exemplified by presurgical localization of eloquent cortex, to assist neurosurgeons in maximizing resection while preserving brain functions. In addition, recent studies have recommended incorporating cerebrovascular reactivity (CVR) imaging into clinical fMRI to evaluate the risk of lesion-induced neurovascular uncoupling (NVU). Although each of these imaging techniques possesses its own advantage for presurgical mapping, a specialized clinical software that integrates the three complementary techniques and promptly outputs the analyzed results to radiology and surgical navigation systems in a clinical format is still lacking. We developed the Integrated fMRI for Clinical Research (IClinfMRI) software to facilitate these needs. Beyond the independent processing of task-fMRI, rs-fMRI, and CVR mapping, IClinfMRI encompasses three unique functions: (1) supporting the interactive rs-fMRI mapping while visualizing task-fMRI results (or results from published meta-analysis) as a guidance map, (2) indicating/visualizing the NVU potential on analyzed fMRI maps, and (3) exporting these advanced mapping results in a Digital Imaging and Communications in Medicine (DICOM) format that are ready to export to a picture archiving and communication system (PACS) and a surgical navigation system. In summary, IClinfMRI has the merits of efficiently translating and integrating state-of-the-art imaging techniques for presurgical functional mapping and clinical fMRI studies.

  2. Optimizing imaging in suspected appendicitis (OPTIMAP-study: A multicenter diagnostic accuracy study of MRI in patients with suspected acute appendicitis. Study Protocol

    Directory of Open Access Journals (Sweden)

    Bossuyt Patrick MM

    2010-10-01

    Full Text Available Abstract Background In patients with clinically suspected appendicitis, imaging is needed to substantiate the clinical diagnosis. Imaging accuracy of ultrasonography (US is suboptimal, while the most accurate technique (CT is associated with cancer related deaths through exposure to ionizing radiation. MRI is a potential replacement, without associated ionizing radiation and no need for contrast medium administration. If MRI is proven to be sufficiently accurate, it could be introduced in the diagnostic pathway of patients with suspected appendicitis, increasing diagnostic accuracy and improving clinical outcomes, without the risk of radiation induced cancer or iodinated contrast medium-related drawbacks. The multicenter OPTIMAP study was designed to estimate the diagnostic accuracy of MRI in patients with suspected acute appendicitis in the general population. Methods/Design Eligible for this study are consecutive patients presenting with clinically suspected appendicitis at the emergency department in six centers. All patients will undergo imaging according to the Dutch guideline for acute appendicitis: initial ultrasonography in all and subsequent CT whenever US does not confirm acute appendicitis. Then MRI is performed in all patients, but the results are not used for patient management. A final diagnosis assigned by an expert panel, based on all available information including 3-months follow-up, except MRI findings, is used as the reference standard in estimating accuracy. We will calculate the sensitivity, specificity, predictive values and inter-observer agreement of MRI, and aim to include 230 patients. Patient acceptance and total imaging costs will also be evaluated. Discussion If MRI is found to be sufficiently accurate, it could replace CT in some or all patients. This will limit or obviate the ionizing radiation exposure associated risk of cancer induction and contrast medium induced nephropathy with CT, preventing the burden and

  3. Diagnosis of magnetic resonance imaging (MRI) for blowout fracture. Three advantages of MRI

    International Nuclear Information System (INIS)

    Nishida, Yasuhiro; Aoki, Yoshiko; Hayashi, Osamu; Kimura, Makiko; Murata, Toyotaka; Ishida, Youichi; Iwami, Tatsuya; Kani, Kazutaka

    1999-01-01

    Magnetic resonance imaging (MRI) gives a much more detailed picture of the soft tissue than computerized tomography (CT). In blowout fracture cases, it is very easy to observe the incarcerated orbital tissue. We performed MRI in 19 blowout fracture cases. After evaluating the images, we found three advantages of MRI. The first is that even small herniation of the orbital contents can easily be detected because the orbital fatty tissue contrasts well around the other tissues in MRI. The second is that the incarcerated tissues can be clearly differentiated because a clear contrast between the orbital fatty tissue and the extraocular muscle can be seen in MRI. The third is that the running images of the incarcerated muscle belly can be observed because any necessary directional slies can be taken in MRI. These advantages are very important in the diagnosis of blowout fractures. MRI should be employed in blowout fracture cases in addition to CT. (author)

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... are the limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging ( ... brain) in routine clinical practice. top of page What are some common uses of the procedure? MR ...

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... metallic items, which can distort MRI images removable dental work pens, pocket knives and eyeglasses body piercings ... tomography (CT) scans, MRI does not utilize ionizing radiation. Instead, radiofrequency pulses re-align hydrogen atoms that ...

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... room. In addition to affecting the MRI images, these objects can become projectiles within the MRI scanner ... may cause you and/or others nearby harm. These items include: jewelry, watches, credit cards and hearing ...

  7. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... or headphones during the exam. MRI scanners are air-conditioned and well-lit. Music may be played ... the limitations of MRI of the Head? High-quality images are assured only if you are able ...

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... contrast for an MRI. If you have a history of kidney disease or liver transplant, it will ... claustrophobia. Newer open MRI units provide very high quality images for many types of exams. Older open ...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... used in tattoos may contain iron and could heat up during an MRI scan, but this is ... imaging based on the electrical activity of the heart, such as electrocardiography (EKG). MRI generally is not ...

  10. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. ... MRI an invaluable tool in early diagnosis and evaluation of many conditions, including tumors. MRI enables the ...

  11. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits MRI is a noninvasive imaging technique that ... than 30 minutes from the onset of symptoms. Risks The MRI examination poses almost no risk to ...

  12. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... metallic items, which can distort MRI images removable dental work pens, pocket knives and eyeglasses body piercings In most cases, an MRI exam is safe for patients with metal implants, except for a few types. ...

  13. Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI

    Directory of Open Access Journals (Sweden)

    Daniel Pflugfelder

    2017-11-01

    Full Text Available Abstract Background Root systems are highly plastic and adapt according to their soil environment. Studying the particular influence of soils on root development necessitates the adaptation and evaluation of imaging methods for multiple substrates. Non-invasive 3D root images in soil can be obtained using magnetic resonance imaging (MRI. Not all substrates, however, are suitable for MRI. Using barley as a model plant we investigated the achievable image quality and the suitability for root phenotyping of six commercially available natural soil substrates of commonly occurring soil textures. The results are compared with two artificially composed substrates previously documented for MRI root imaging. Results In five out of the eight tested substrates, barley lateral roots with diameters below 300 µm could still be resolved. In two other soils, only the thicker barley seminal roots were detectable. For these two substrates the minimal detectable root diameter was between 400 and 500 µm. Only one soil did not allow imaging of the roots with MRI. In the artificially composed substrates, soil moisture above 70% of the maximal water holding capacity (WHCmax impeded root imaging. For the natural soil substrates, soil moisture had no effect on MRI root image quality in the investigated range of 50–80% WHCmax. Conclusions Almost all tested natural soil substrates allowed for root imaging using MRI. Half of these substrates resulted in root images comparable to our current lab standard substrate, allowing root detection down to a diameter of 300 µm. These soils were used as supplied by the vendor and, in particular, removal of ferromagnetic particles was not necessary. With the characterization of different soils, investigations such as trait stability across substrates are now possible using noninvasive MRI.

  14. Population-based imaging and radiomics. Rational and perspective of the German National Cohort MRI study

    International Nuclear Information System (INIS)

    Schlett, C.L.; Weckbach, S.; Hendel, T.

    2016-01-01

    The MRI study within the German National Cohort, a large-scale, population-based, longitudinal study in Germany, comprises comprehensive characterization and phenotyping of a total of 30 000 participants using 3-Tesla whole-body MR imaging. A multi-centric study design was established together with dedicated core facilities for e.g. managing incidental findings or providing quality assurance. As such, the study represents a unique opportunity to substantially impact imaging-based risk stratification leading to personalized and precision medicine. Supported by the developments in the field of computational science, the newly developing scientific field of radiomics has large potential for the future. In the present article we provide an overview on population-based imaging and Radiomics and conceptualize the rationale and design of the MRI study within the German National Cohort.

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... structures of the brain and can also provide functional information (fMRI) in selected cases. MR images of ... Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us ... absolutely necessary for medical treatment. See the MRI Safety page for more information about pregnancy and MRI. ...

  17. SU-E-J-257: Image Artifacts Caused by Implanted Calypso Beacons in MRI Studies

    Energy Technology Data Exchange (ETDEWEB)

    Amro, H; Chetty, I; Gordon, J; Wen, N [Henry Ford Health System, Detroit, MI (United States)

    2014-06-01

    Purpose: The presence of Calypso Beacon-transponders in patients can cause artifacts during MRI imaging studies. This could be a problem for post-treatment follow up of cancer patients using MRI studies to evaluate metastasis and for functional imaging studies.This work assesses (1) the volume immediately surrounding the transponders that will not be visualized by the MRI due to the beacons, and (2) the dependence of the non-visualized volume on beacon orientation, and scanning techniques. Methods: Two phantoms were used in this study (1) water filled box, (2) and a 2300 cc block of pork meat. Calypso beacons were implanted in the phantoms both in parallel and perpendicular orientations with respect to the MR scanner magnetic field. MR image series of the phantom were obtained with on a 1.0T high field open MR-SIM with multiple pulse sequences, for example, T1-weighted fast field echo and T2-weighted turbo spin echo. Results: On average, a no-signal region with 2 cm radius and 3 cm length was measured. Image artifacts are more significant when beacons are placed parallel to scanner magnetic field; the no-signal area around the beacon was about 0.5 cm larger in orthogonal orientation. The no-signal region surrounding the beacons slightly varies in dimension for the different pulse sequences. Conclusion: The use of Calypso beacons can prohibit the use of MRI studies in post-treatment assessments, especially in the immediate region surrounding the implanted beacon. A characterization of the MR scanner by identifying the no-signal regions due to implanted beacons is essential. This may render the use of Calypso beacons useful for some cases and give the treating physician a chance to identify those patients prior to beacon implantation.

  18. SU-E-J-257: Image Artifacts Caused by Implanted Calypso Beacons in MRI Studies

    International Nuclear Information System (INIS)

    Amro, H; Chetty, I; Gordon, J; Wen, N

    2014-01-01

    Purpose: The presence of Calypso Beacon-transponders in patients can cause artifacts during MRI imaging studies. This could be a problem for post-treatment follow up of cancer patients using MRI studies to evaluate metastasis and for functional imaging studies.This work assesses (1) the volume immediately surrounding the transponders that will not be visualized by the MRI due to the beacons, and (2) the dependence of the non-visualized volume on beacon orientation, and scanning techniques. Methods: Two phantoms were used in this study (1) water filled box, (2) and a 2300 cc block of pork meat. Calypso beacons were implanted in the phantoms both in parallel and perpendicular orientations with respect to the MR scanner magnetic field. MR image series of the phantom were obtained with on a 1.0T high field open MR-SIM with multiple pulse sequences, for example, T1-weighted fast field echo and T2-weighted turbo spin echo. Results: On average, a no-signal region with 2 cm radius and 3 cm length was measured. Image artifacts are more significant when beacons are placed parallel to scanner magnetic field; the no-signal area around the beacon was about 0.5 cm larger in orthogonal orientation. The no-signal region surrounding the beacons slightly varies in dimension for the different pulse sequences. Conclusion: The use of Calypso beacons can prohibit the use of MRI studies in post-treatment assessments, especially in the immediate region surrounding the implanted beacon. A characterization of the MR scanner by identifying the no-signal regions due to implanted beacons is essential. This may render the use of Calypso beacons useful for some cases and give the treating physician a chance to identify those patients prior to beacon implantation

  19. Studies on improvement of diagnosis of neurosurgical lesions by magnetic resonance imaging (MRI), 2

    International Nuclear Information System (INIS)

    Shimizu, Kotoyuki

    1989-01-01

    Findings of magnetic resonance (MRI) imaging in 46 patients with sellar or parasellar mass were reviewed and compared with those of concurrently available X-ray CT. Intrasellar contents, the hypothalamic pituitary region, adjacent brain stem, optic nerves, and the surrounding cerebrospinal fluid were clearly depicted on T1-weighted images. The cavernous sinus and blood vessels, including the Willis circle, were visualized on T2-weighted images. In detecting pituitary macroadenoma, MRI seemed to be the most userful modality, because it was superior to CT in identifying abnormal changes of the infundibulum, diaphragma sellae, cavernous sinus and optic chiasm. Macroadenoma of the pituitary gland was usually isointense to the normal cerebral cortex on T1- and T2-weighted images. T1- and T2-weighted relaxation times for pituitary adenoma were slightly prolonged. The normal pituitary gland was distinguishable from adenomatous tissues. For microadenoma, MRI failed to show lesions or erosion of the sellar floor. Craniopharyngioma, meningioma of the tuberculum sellae, hypothalamic tumor, such as glioma and germinoma, and the other parasellar masses were clearly visualized on MRI. MRI was superior to CT in detecting tumor and its involvement, but inferior in detecting presence of calcification. T1-weighted imaging was useful in identifing the presence of intratumoral hemorrhage. Cysts of craniopharyngioma had various appearances on T1-weighted images. High signal cyst intensity corresponded to a high cholesterol content or the presence of methemoglobin. MRI depicted empty sella. The intrasellar content had the same appearance as that of the cerebrospinal fluid space, and the flattened pituitary gland and pituitary stalk were detected on T1-weighted images. (N.K.)

  20. PET/MRI for Oncologic Brain Imaging

    DEFF Research Database (Denmark)

    Rausch, Ivo; Rischka, Lucas; Ladefoged, Claes N

    2017-01-01

    The aim of this study was to compare attenuation-correction (AC) approaches for PET/MRI in clinical neurooncology.Methods:Forty-nine PET/MRI brain scans were included: brain tumor studies using18F-fluoro-ethyl-tyrosine (18F-FET) (n= 31) and68Ga-DOTANOC (n= 7) and studies of healthy subjects using18...... by Siemens Healthcare). As a reference, AC maps were derived from patient-specific CT images (CTref). PET data were reconstructed using standard settings after AC with all 4 AC methods. We report changes in diagnosis for all brain tumor patients and the following relative differences values (RDs...... of the whole brain and 10 anatomic regions segmented on MR images.Results:For brain tumor imaging (A and B), the standard PET-based diagnosis was not affected by any of the 3 MR-AC methods. For A, the average RDs of SUVmeanwere -10%, -4%, and -3% and of the VOIs 1%, 2%, and 7% for DIXON, UTE, and BD...

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... metallic items, which can distort MRI images removable dental work pens, pocket knives and eyeglasses body piercings In most cases, an MRI exam is safe for patients with metal implants, except for a few types. People with the ...

  2. Simultaneous MRI and PET imaging of a rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Majewski, Stan [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Lemieux, Susan K [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Velan, S Sendhil [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Kross, Brian [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Popov, Vladimir [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Smith, Mark F [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Weisenberger, Andrew G [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Zorn, Carl [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Marano, Gary D [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States)

    2006-12-21

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  3. Simultaneous MRI and PET imaging of a rat brain

    International Nuclear Information System (INIS)

    Raylman, Raymond R; Majewski, Stan; Lemieux, Susan K; Velan, S Sendhil; Kross, Brian; Popov, Vladimir; Smith, Mark F; Weisenberger, Andrew G; Zorn, Carl; Marano, Gary D

    2006-01-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging

  4. A study on utility of magnetic resonance imaging for female pelvic cavity using enteral MRI contrast media

    International Nuclear Information System (INIS)

    Kim, Ham Gyum

    1997-01-01

    For radiological test in soft tissue or neighboring part with same signal intensity, proper test method and equipment shall be selected as needed. In case of female pelvic cavity, ultrasonography or computed tomography alternatively used, but MRI can be more usefully applied to design treatment method or operation plan by improving the diagnostic accuracy and careful observation of lesion characteristics. Magnetic Resonance Imaging using recently developed Enteral MRI contrast media can acquire more diagnostic information than using only intravenous contrast media. Thus this study attempted to examine the utility of anatomic structure and diagnostic acquisition by imaging the female pelvic cavity using Enteral MRI contrast media. As a result of analyzing magnetic resonance imaging after administering Enteral MRI contrast media to pelvic cavity suspect patients, more diagnostic information media could be acquired than only using intravenous contrast. Especially, in the diagnosis of lesion position, shape, distinction from neighboring tissues it is thought that external Enteral MRI contrast media should be used

  5. Fusion of PET and MRI for Hybrid Imaging

    Science.gov (United States)

    Cho, Zang-Hee; Son, Young-Don; Kim, Young-Bo; Yoo, Seung-Schik

    Recently, the development of the fusion PET-MRI system has been actively studied to meet the increasing demand for integrated molecular and anatomical imaging. MRI can provide detailed anatomical information on the brain, such as the locations of gray and white matter, blood vessels, axonal tracts with high resolution, while PET can measure molecular and genetic information, such as glucose metabolism, neurotransmitter-neuroreceptor binding and affinity, protein-protein interactions, and gene trafficking among biological tissues. State-of-the-art MRI systems, such as the 7.0 T whole-body MRI, now can visualize super-fine structures including neuronal bundles in the pons, fine blood vessels (such as lenticulostriate arteries) without invasive contrast agents, in vivo hippocampal substructures, and substantia nigra with excellent image contrast. High-resolution PET, known as High-Resolution Research Tomograph (HRRT), is a brain-dedicated system capable of imaging minute changes of chemicals, such as neurotransmitters and -receptors, with high spatial resolution and sensitivity. The synergistic power of the two, i.e., ultra high-resolution anatomical information offered by a 7.0 T MRI system combined with the high-sensitivity molecular information offered by HRRT-PET, will significantly elevate the level of our current understanding of the human brain, one of the most delicate, complex, and mysterious biological organs. This chapter introduces MRI, PET, and PET-MRI fusion system, and its algorithms are discussed in detail.

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... it is useful to bring that to the attention of the scheduler before the exam and bring ... Image Gallery Magnetic Resonance Imaging (MRI) procedure View full size with caption Pediatric Content Some imaging tests ...

  7. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... As the hydrogen atoms return to their usual alignment, they emit different amounts of energy that vary ... story about radiology? Share your patient story here Images × Image Gallery Magnetic Resonance Imaging (MRI) procedure View ...

  8. Functional MRI of the patellofemoral joint: comparison of ultrafast MRI, motion-triggered cine MRI and static MRI

    Energy Technology Data Exchange (ETDEWEB)

    Muhle, C. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Brossmann, J. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Melchert, U.H. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Schroeder, C. [Radiologische Abt., Universitaets-Kinderklinik, Christian-Albrechts-Universitaet, Kiel (Germany); Boer, R. de [Philips Medical Systems, Best (Netherlands); Spielmann, R.P. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Heller, M. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany)

    1995-12-31

    To evaluate the feasibility and usefulness of ultrafast MRI (u), patellar tracking from 30 of flexion to knee extension (0 ) was analysed and compared with motion-triggered cine MRI (m) and a static MRI technique (s). The different imaging methods were compared in respect of the patellofemoral relationship, the examination time and image quality. Eight healthy subjects and four patients (in total 18 joints) with patellar subluxation or luxation were examined. Significant differences between the static MRI series without quadriceps contraction and the functional MRI studies (motion-triggered cine MRI and ultrafast MRI) were found for the patellar tilt angle. In the dynamic joint studies there was no statistical difference of the regression coefficients between the motion-triggered cine MRI studies and the ultrafast MRI studies. The findings of the functional MRI studies compared with the static MRI images were significantly different for the lateralisation of the patella, expressed by the lateral patellar displacement and bisect offset. No significant differences in patellar lateralisation were found between motion-triggered cine MRI and ultrafast MRI. Ultrafast MRI was superior to motion-triggered cine MRI in terms of the reduction in imaging time and improvement of the image quality. (orig.)

  9. Functional MRI of the patellofemoral joint: comparison of ultrafast MRI, motion-triggered cine MRI and static MRI

    International Nuclear Information System (INIS)

    Muhle, C.; Brossmann, J.; Melchert, U.H.; Schroeder, C.; Boer, R. de; Spielmann, R.P.; Heller, M.

    1995-01-01

    To evaluate the feasibility and usefulness of ultrafast MRI (u), patellar tracking from 30 of flexion to knee extension (0 ) was analysed and compared with motion-triggered cine MRI (m) and a static MRI technique (s). The different imaging methods were compared in respect of the patellofemoral relationship, the examination time and image quality. Eight healthy subjects and four patients (in total 18 joints) with patellar subluxation or luxation were examined. Significant differences between the static MRI series without quadriceps contraction and the functional MRI studies (motion-triggered cine MRI and ultrafast MRI) were found for the patellar tilt angle. In the dynamic joint studies there was no statistical difference of the regression coefficients between the motion-triggered cine MRI studies and the ultrafast MRI studies. The findings of the functional MRI studies compared with the static MRI images were significantly different for the lateralisation of the patella, expressed by the lateral patellar displacement and bisect offset. No significant differences in patellar lateralisation were found between motion-triggered cine MRI and ultrafast MRI. Ultrafast MRI was superior to motion-triggered cine MRI in terms of the reduction in imaging time and improvement of the image quality. (orig.)

  10. Pharmaceutical applications of magnetic resonance imaging (MRI).

    Science.gov (United States)

    Richardson, J Craig; Bowtell, Richard W; Mäder, Karsten; Melia, Colin D

    2005-06-15

    Magnetic resonance imaging (MRI) is a powerful imaging modality that provides internal images of materials and living organisms on a microscopic and macroscopic scale. It is non-invasive and non-destructive, and one of very few techniques that can observe internal events inside undisturbed specimens in situ. It is versatile, as a wide range of NMR modalities can be accessed, and 2D and 3D imaging can be undertaken. Despite widespread use and major advances in clinical MRI, it has seen limited application in the pharmaceutical sciences. In vitro studies have focussed on drug release mechanisms in polymeric delivery systems, but isolated studies of bioadhesion, tablet properties, and extrusion and mixing processes illustrate the wider potential. Perhaps the greatest potential however, lies in investigations of pharmaceuticals in vivo, where pilot human and animal studies have demonstrated we can obtain unique insights into the behaviour of gastrointestinal, topical, colloidal, and targeted drug delivery systems.

  11. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... Imaging (MRI) procedure View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. ...

  12. FWFusion: Fuzzy Whale Fusion model for MRI multimodal image ...

    Indian Academy of Sciences (India)

    Hanmant Venketrao Patil

    2018-03-14

    Mar 14, 2018 ... consider multi-modality medical images other than PET and MRI images. ... cipal component averaging based on DWT for fusing CT-. MRI and MRI ..... sub-band LH of the fused image, the distance measure is given based on the ...... sustainable integrated dynamic ship routing and scheduling optimization.

  13. PET-MRI: the likely future of molecular imaging

    International Nuclear Information System (INIS)

    Chen Xiang; Zhao Jinhua; Zhao Jun

    2008-01-01

    PET-CT is a successful combination of functional and morphologic information, and it has already been shown to have great value both in clinics and in scientific research. MRI is another kind of morphologic imaging method, in contrast to CT, MRI can yield images with higher soft-tissue contrast and better spatial resolution. The combination of PET and MRI for simultaneous data acquisition should have far- reaching consequences for molecular imaging. This review will talk about the problems met in the development of PET-MRI and describe the progress to date and look forward to its potential application. (authors)

  14. MRI and CBCT image registration of temporomandibular joint: a systematic review.

    Science.gov (United States)

    Al-Saleh, Mohammed A Q; Alsufyani, Noura A; Saltaji, Humam; Jaremko, Jacob L; Major, Paul W

    2016-05-10

    The purpose of the present review is to systematically and critically analyze the available literature regarding the importance, applicability, and practicality of (MRI), computerized tomography (CT) or cone-beam CT (CBCT) image registration for TMJ anatomy and assessment. A systematic search of 4 databases; MEDLINE, EMBASE, EBM reviews and Scopus, was conducted by 2 reviewers. An additional manual search of the bibliography was performed. All articles discussing the magnetic resonance imaging MRI and CT or CBCT image registration for temporomandibular joint (TMJ) visualization or assessment were included. Only 3 articles satisfied the inclusion criteria. All included articles were published within the last 7 years. Two articles described MRI to CT multimodality image registration as a complementary tool to visualize TMJ. Both articles used images of one patient only to introduce the complementary concept of MRI-CT fused image. One article assessed the reliability of using MRI-CBCT registration to evaluate the TMJ disc position and osseous pathology for 10 temporomandibular disorder (TMD) patients. There are very limited studies of MRI-CT/CBCT registration to reach a conclusion regarding its accuracy or clinical use in the temporomandibular joints.

  15. Wavelet-space correlation imaging for high-speed MRI without motion monitoring or data segmentation.

    Science.gov (United States)

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2015-12-01

    This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. © 2014 Wiley Periodicals, Inc.

  16. Studying neuroanatomy using MRI.

    Science.gov (United States)

    Lerch, Jason P; van der Kouwe, André J W; Raznahan, Armin; Paus, Tomáš; Johansen-Berg, Heidi; Miller, Karla L; Smith, Stephen M; Fischl, Bruce; Sotiropoulos, Stamatios N

    2017-02-23

    The study of neuroanatomy using imaging enables key insights into how our brains function, are shaped by genes and environment, and change with development, aging and disease. Developments in MRI acquisition, image processing and data modeling have been key to these advances. However, MRI provides an indirect measurement of the biological signals we aim to investigate. Thus, artifacts and key questions of correct interpretation can confound the readouts provided by anatomical MRI. In this review we provide an overview of the methods for measuring macro- and mesoscopic structure and for inferring microstructural properties; we also describe key artifacts and confounds that can lead to incorrect conclusions. Ultimately, we believe that, although methods need to improve and caution is required in interpretation, structural MRI continues to have great promise in furthering our understanding of how the brain works.

  17. Magnetic Resonance Imaging (MRI): Lumbar Spine (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Lumbar Spine KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Lumbar Spine What's in this article? ...

  18. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... fitting and has no metal fasteners. Guidelines about eating and drinking before an MRI exam vary with the specific exam and with the imaging facility. Unless you are told otherwise, you may follow your regular daily routine and take food and medications as usual. Some MRI examinations may ...

  19. MRI imaging in pediatric appendicitis

    Directory of Open Access Journals (Sweden)

    Robin Riley

    2018-04-01

    Full Text Available An 8-year-old male presents with two days of abdominal pain and emesis. Computed tomography was concerning for obstruction or reactive ileus with an apparent transition point in the right lower quadrant, possibly due to Crohn's. Magnetic resonance imaging was concerning for perforated appendicitis. As demonstrated by this case MRI can be as sensitive as CT in detecting pediatric appendicitis [2]. We recommend using MRI instead of CT to diagnose appendicitis to avoid ionizing radiation and increased cancer risk in the pediatric population. Keywords: Computer tomography, Magnetic resonance imaging, Pediatric appendicitis

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - ...

  1. Virtual phantom magnetic resonance imaging (ViP MRI) on a clinical MRI platform.

    Science.gov (United States)

    Saint-Jalmes, Hervé; Bordelois, Alejandro; Gambarota, Giulio

    2018-01-01

    The purpose of this study was to implement Virtual Phantom Magnetic Resonance Imaging (ViP MRI), a technique that allows for generating reference signals in MR images using radiofrequency (RF) signals, on a clinical MR system and to test newly designed virtual phantoms. MRI experiments were conducted on a 1.5 T MRI scanner. Electromagnetic modelling of the ViP system was done using the principle of reciprocity. The ViP RF signals were generated using a compact waveform generator (dimensions of 26 cm × 18 cm × 16 cm), connected to a homebuilt 25 mm-diameter RF coil. The ViP RF signals were transmitted to the MRI scanner bore, simultaneously with the acquisition of the signal from the object of interest. Different types of MRI data acquisition (2D and 3D gradient-echo) as well as different phantoms, including the Shepp-Logan phantom, were tested. Furthermore, a uniquely designed virtual phantom - in the shape of a grid - was generated; this newly proposed phantom allows for the investigations of the vendor distortion correction field. High quality MR images of virtual phantoms were obtained. An excellent agreement was found between the experimental data and the inverse cube law, which was the expected functional dependence obtained from the electromagnetic modelling of the ViP system. Short-term time stability measurements yielded a coefficient of variation in the signal intensity over time equal to 0.23% and 0.13% for virtual and physical phantom, respectively. MR images of the virtual grid-shaped phantom were reconstructed with the vendor distortion correction; this allowed for a direct visualization of the vendor distortion correction field. Furthermore, as expected from the electromagnetic modelling of the ViP system, a very compact coil (diameter ~ cm) and very small currents (intensity ~ mA) were sufficient to generate a signal comparable to that of physical phantoms in MRI experiments. The ViP MRI technique was successfully implemented on a clinical MR

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... six weeks) before being safe for MRI examinations. Examples include but are not limited to: artificial heart ... the area to be imaged. Furthermore, the examination takes longer than other imaging modalities (typically x-ray ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... Most MRI exams are painless. However, some patients find it uncomfortable to remain still during MR imaging. ... anxious, confused or in severe pain, you may find it difficult to lie still during imaging. A ...

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... by the interpreting radiologist. Frequently, the differentiation of abnormal (diseased) tissue from normal tissues is better with ... Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic ...

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... are clearer and more detailed than other imaging methods. This exam does not use ionizing radiation and ... clearer and more detailed than with other imaging methods. This detail makes MRI an invaluable tool in ...

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... other imaging methods. This exam does not use ionizing radiation and may require an injection of a contrast ... other internal body structures. MRI does not use ionizing radiation (x-rays). Detailed MR images allow physicians to ...

  7. SU-G-JeP2-14: MRI-Based HDR Prostate Brachytherapy: A Phantom Study for Interstitial Catheter Reconstruction with 0.35T MRI Images

    International Nuclear Information System (INIS)

    Park, S; Kamrava, M; Yang, Y

    2016-01-01

    Purpose: To evaluate the accuracy of interstitial catheter reconstruction with 0.35T MRI images for MRI-based HDR prostate brachytherapy. Methods: Recently, a real-time MRI-guided radiotherapy system combining a 0.35T MRI system and three cobalt 60 heads (MRIdian System, ViewRay, Cleveland, OH, USA) was installed in our department. A TrueFISP sequence for MRI acquisition at lower field on Viewray was chosen due to its fast speed and high signal-to-noise efficiency. Interstitial FlexiGuide needles were implanted into a tissue equivalent ultrasound prostate phantom (CIRS, Norfolk, Virginia, USA). After an initial 15s pilot MRI to confirm the location of the phantom, planning MRI was acquired with a 172s TrueFISP sequence. The pulse sequence parameters included: flip angle = 60 degree, echo time (TE) =1.45 ms, repetition time (TR) = 3.37 ms, slice thickness = 1.5 mm, field of view (FOV) =500 × 450mm. For a reference image, a CT scan was followed. The CT and MR scans were then fused with the MIM Maestro (MIM software Inc., Cleveland, OH, USA) and sent to the Oncentra Brachy planning system (Elekta, Veenendaal, Netherlands). Automatic catheter reconstruction using CT and MR image intensities followed by manual reconstruction was used to digitize catheters. The accuracy of catheter reconstruction was evaluated from the catheter tip location. Results: The average difference between the catheter tip locations reconstructed from the CT and MR in the transverse, anteroposterior, and craniocaudal directions was −0.1 ± 0.1 mm (left), 0.2 ± 0.2 mm (anterior), and −2.3 ± 0.5 mm (cranio). The average distance in 3D was 2.3 mm ± 0.5 mm. Conclusion: This feasibility study proved that interstitial catheters can be reconstructed with 0.35T MRI images. For more accurate catheter reconstruction which can affect final dose distribution, a systematic shift should be applied to the MR based catheter reconstruction in HDR prostate brachytherapy.

  8. The OMERACT rheumatoid arthritis magnetic resonance imaging (MRI) scoring system

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Peterfy, Charles G.; Bird, Paul

    2017-01-01

    Objective: The Outcome Measures in Rheumatology (OMERACT) Rheumatoid Arthritis (RA) Magnetic Resonance Imaging (MRI) scoring system (RAMRIS), evaluating bone erosion, bone marrow edema/osteitis, and synovitis, was introduced in 2002, and is now the standard method of objectively quantifying...... inflammation and damage by MRI in RA trials. The objective of this paper was to identify subsequent advances and based on them, to provide updated recommendations for the RAMRIS. Methods: MRI studies relevant for RAMRIS and technical and scientific advances were analyzed by the OMERACT MRI in Arthritis Working...... Group, which used these data to provide updated considerations on image acquisition, RAMRIS definitions, and scoring systems for the original and new RA pathologies. Further, a research agenda was outlined. Results: Since 2002, longitudinal studies and clinical trials have documented RAMRIS variables...

  9. Elemental imaging of MRI contrast agents: benchmarking of LA-ICP-MS to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, J.A.T. [University of Sheffield, Centre for Analytical Sciences, Sheffield (United Kingdom); University of Sheffield, Department of Chemical and Biological Engineering, Sheffield (United Kingdom); Cox, A.G.; McLeod, C.W. [University of Sheffield, Centre for Analytical Sciences, Sheffield (United Kingdom); Bunch, J. [University of Birmingham, School of Chemistry, Birmingham (United Kingdom); Writer, M.J.; Hart, S.L. [UCL Institute of Child Health, Wolfson Centre for Gene Therapy of Childhood Disease, London (United Kingdom); Bienemann, A.; White, E. [University of Bristol, School of Clinical Sciences, Southmead Hospital, Bristol (United Kingdom); Bell, J. [Hammersmith Hospital, Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London (United Kingdom)

    2012-06-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been used to map the spatial distribution of magnetic resonance imaging (MRI) contrast agents (Gd-based) in histological sections in order to explore synergies with in vivo MRI. Images from respective techniques are presented for two separate studies namely (1) convection enhanced delivery of a Gd nanocomplex (developmental therapeutic) into rat brain and (2) convection enhanced delivery, with co-infusion of Magnevist (commercial Gd contrast agent) and Carboplatin (chemotherapy drug), into pig brain. The LA technique was shown to be a powerful compliment to MRI not only in offering improved sensitivity, spatial resolution and signal quantitation but also in giving added value regarding the fate of administered agents (Gd and Pt agents). Furthermore simultaneous measurement of Fe enabled assignment of an anomalous contrast enhancement region in rat brain to haemorrhage at the infusion site. (orig.)

  10. Imaging features of colovesical fistulae on MRI.

    Science.gov (United States)

    Tang, Y Z; Booth, T C; Swallow, D; Shahabuddin, K; Thomas, M; Hanbury, D; Chang, S; King, C

    2012-10-01

    MRI is routinely used in the investigation of colovesical fistulae at our institute. Several papers have alluded to its usefulness in achieving the diagnosis; however, there is a paucity of literature on its imaging findings. Our objective was to quantify the MRI characteristics of these fistulae. We selected all cases over a 4-year period with a final clinical diagnosis of colovesical fistula which had been investigated with MRI. The MRI scans were reviewed in a consensus fashion by two consultant uroradiologists. Their MRI features were quantified. There were 40 cases of colovesical fistulae. On MRI, the fistula morphology consistently fell into three patterns. The most common pattern (71%) demonstrated an intervening abscess between the bowel wall and bladder wall. The second pattern (15%) had a visible track between the affected bowel and bladder. The third pattern (13%) was a complete loss of fat plane between the affected bladder and bowel wall. MRI correctly determined the underlying aetiology in 63% of cases. MRI is a useful imaging modality in the diagnosis of colovesical fistulae. The fistulae appear to have three characteristic morphological patterns that may aid future diagnoses of colovesical fistulae. To the authors' knowledge, this is the first publication of the MRI findings in colovesical fistulae.

  11. Magnetic resonance imaging (MRI) of an intraventricular hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ryungchan; Higashi, Tooru; Ito, Shotaro; Kadoya, Satoru; Takarada, Akira; Sato, Shuji; Kurauchi, Manabu.

    1987-08-01

    The utility of MRI was investigated in 10 patients with intraventricular hemorrhage. MRI was found to be, in many respects, superior to CT: 1) MRI is able to detect to some extent the aging of an intraventricular hematoma. 2) It can determine the character of intraventricular cerebrospinal fluid, whether it is normal, bloody, or hyperprotein. 3) It can detect the cause of hemorrhage in the case of arterio-venous malformation. 4) MRI permits the detection of the penetration course and the location of a ventricular hematoma. 5) It can clearly detect periventricular lesions of early-stage hydrocephalus, accompanied by increased intracranial pressure and followed by intraventricular hemorrhage, by imaging the periventricular high-signal-intensity area. 6) MRI can clearly diagnose complications of intracranial lesions. For instance, it can distinguish subdural fluid collection from chronic subdural hematoma and can detect whether a cerebral infarction is new or old. On the other hand, MRI also has some disadvantages: 1) The imaging time is long, and clinical application is difficult, in serious and/or infant cases. 2) It is impossible to use MRI in some patients who have magnetic material in their bodies. 3) The spatial-image resolution is not good.

  12. Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging

    International Nuclear Information System (INIS)

    Wang, Ge; Xi, Yan; Gjesteby, Lars; Getzin, Matthew; Yang, Qingsong; Cong, Wenxiang; Kalra, Mannudeep; Murugan, Venkatesh; Vannier, Michael

    2015-01-01

    Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRI are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine

  13. Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ge, E-mail: wangg6@rpi.edu; Xi, Yan; Gjesteby, Lars; Getzin, Matthew; Yang, Qingsong; Cong, Wenxiang [Biomedical Imaging Center/Cluster, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Kalra, Mannudeep; Murugan, Venkatesh [Department of Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114 (United States); Vannier, Michael [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-10-15

    Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRI are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine.

  14. Morphometric MRI changes in intracranial hypertension due to cerebral venous thrombosis: a retrospective imaging study

    International Nuclear Information System (INIS)

    Dong, Cheng; Zheng, Ying-mei; Li, Xiao-li; Wang, He-xiang; Hao, Da-peng; Nie, Pei; Pang, Jing; Xu, Wen-jian

    2016-01-01

    Aim: To evaluate whether some magnetic resonance imaging (MRI) signs suggesting idiopathic intracranial hypertension (IIH) could also be found in intracranial hypertension (IH) due to cerebral venous thrombosis (CVT) and to assess their possible contribution to diagnosing this disorder. Materials and methods: Thirty-one patients with IH due to CVT were evaluated prospectively using MRI. A group of 33 age- and sex-matched healthy volunteers served as controls. The optic nerve and sheath, pituitary gland, and ventricles were assessed. The prevalence of each imaging feature was compared between the two groups. Results: Optic nerve sheath (ONS) dilatation and decreased pituitary gland height were the most valid signs suggesting IH in CVT patients: sensitivity 70.97% and 87.1%, respectively; specificity 96.97% and 72.73%, respectively; area under the curve 0.840 and 0.809, respectively. The MRI finding that showed the strongest association with IH in CVT patients was ONS dilatation (odds ratio 78.5). Conclusions: The combination of T1-weighted volumetric MRI and magnetic resonance venography could be helpful for diagnosing IH with CVT. Abnormalities of the ONS and the pituitary gland were reliable diagnostic signs for IH due to CVT. - Highlights: • We compared the prevalence of MRI imaging features between IH patients due to CVT and healthy volunteers. • Several MRI imaging features occur more frequently in IH patients due to CVT. • Abnormalities of the ONS and the pituitary gland were reliable diagnostic signs for IH due to CVT.

  15. Contactless Abdominal Fat Reduction With Selective RF™ Evaluated by Magnetic Resonance Imaging (MRI): Case Study.

    Science.gov (United States)

    Downie, Jeanine; Kaspar, Miroslav

    2016-04-01

    Noninvasive body shaping methods seem to be an ascending part of the aesthetics market. As a result, the pressure to develop reliable methods for the collection and presentation of their results has also increased. The most used techniques currently include ultrasound measurements of fat thickness in the treated area, caliper measurements, bioimpedance-based scale measurements or circumferential tape measurements. Although these are the most used techniques, almost all of them have some limitations in reproducibility and/or accuracy. This study shows Magnetic Resonance Imaging (MRI) as the new method for the presentation of results in the body shaping industry. Six subjects were treated by a contactless selective radiofrequency device (BTL Vanquish ME, BTL Industries Inc., Boston, MA). The MRI fat thickness was measured at the baseline and at 4-weeks following the treatment. In addition to MRI images and measurements, digital photographs and anthropometric evaluations such as weight, abdominal circumference, and caliper fat thickness measurements were recorded. Abdominal fat thickness measurements from the MRI were performed from the same slices determined by the same tissue artefacts. The MRI fat thickness difference between the baseline measurement and follow up visit showed an average reduction of 5.36 mm as calculated from the data of 5 subjects. One subject dropped out of study due to non-study related issues. The results were statistically significant based on the Student's T-test evaluation. Magnetic resonance imaging abdominal fat thickness measurements seems to be the best method for the evaluation of fat thickness reduction after non-invasive body shaping treatments. In this study, this method shows average fat thickness reduction of 5.36 mm while the weight of the subjects didn't change significantly. A large spot size measuring 1317 cm(2) (204 square inches) covers the abdomen flank to flank. The average thickness of 5.36 mm of the fat layer reduced

  16. Opening the black box: imaging nanoparticle transport with MRI

    Science.gov (United States)

    Phoenix, V.; Holmes, W. M.

    2009-12-01

    While most renown for its use in medicine, magnetic resonance imaging (MRI) has tremendous potential in the study of environmental processes. Its ability to non-invasively image inside materials that are opaque to other imaging methods (in particular light based techniques) is a particular strength. MRI has already been used, for example, to study fluid flow in rocks and image mass transport and biogeochemical processes in biofilms [1-4]. Here, we report of the use of MRI to image nanoparticle transport through porous geologic media (in this case packed gravel columns). Packed column experiments are key to understanding nanoparticulate transport in porous geologic media. Whilst highly informative, the data obtained can be a bulk average of a complex and heterogeneous array of interactions within the column. Natural environmental systems are often complex, displaying heterogeneity in geometry, hydrodynamics, geochemistry and microbiology throughout. MRI enables us to quantify better how this heterogeneity may influence nanoparticle transport and fate by enabling us to look inside the column and image the movement of nanoparticles within. To make the nanoparticle readily visible to MRI, it is labelled with a paramagnetic tag (commonly gadolinium). Indeed, a wide variety of off-the-shelf paramagnetically tagged nanoparticles and macromolecules are available, each with different properties enabling us to explore the impact of particle charge, size etc on their transport behaviour. In this preliminary study, packed columns of quartz or marble based gravels (approx 5 mm diameter) were first imaged to check their suitability for MR imaging. This was done as geologic material can contain sufficiently high concentrations of ferro- and paramagnetic ions to induce unwanted artefacts in the MR image. All gravels imaged (Rose quartz, Creswick quartz gravel and Ben Deulin white marble) produced minimal or no artefacts. A solution of the nanoparticle GadoCELLTrack (BioPAL), was

  17. A study on the clinical significance of magnetic resonance imaging (MRI) findings in patients with cervical spondylotic myelopathy

    International Nuclear Information System (INIS)

    Toyooka, Satoshi

    1997-01-01

    This study was designed to evaluate magnetic resonance (MR) images of the cervical compressive myelopathy. It was also meant to serve as a review of clinical symptoms and an investigation of the usefulness of MRI. Comparative studies were carried out on 110 cases concerning the shape and signal intensity of the spinal cord, anterior epidural venous plexus MR images and clinical symptoms. The shape of the spinal cord and pre- and post-surgical conditions revealed by MRI correlated with clinical symptoms. As for the signal intensity of the spinal cord, in cases in which both high (T2-weighted image) and low (T1-weighted image) signals detected prior to surgery continued after surgery, as well as cases with high and low signals appearing after surgery, had the lower improvement than average. Low signal intensity on T1-weighted images are assumed to indicate irreversible changes of the spinal cord. High signal intensity on T2-weighted images is assumed to indicate both reversible and irreversible changes of the spinal cord. Epidural venous plexus can also be observed in healthy people and is not directly bound to clinical manifestations. Nevertheless, changes in the shape of the epidural venous plexus and signal intensity can reflect venous plexus compression and circulatory changes caused by compression. In the application of MRI to cervical compressive myelopathies, images of changes in the shape and signal intensity of the spinal cord and anterior epidural venous plexus images were considered important observations linked to clinical symptoms. MRI is an essential non-invasive imaging technique for the diagnosis of cervical compressive myelopathy, estimation of prognosis and postoperative follow-up. More investigations of compressive factors, circulatory dynamics of the spinal cord and high quality image are necessary. (author)

  18. Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor

    Science.gov (United States)

    ... to a CD or uploaded to a digital cloud server. Dynamic pelvic floor MRI provides detailed pictures ... with you. top of page What are the benefits vs. risks? Benefits MRI is a noninvasive imaging ...

  19. Brain Tumor Image Segmentation in MRI Image

    Science.gov (United States)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  20. Imaging of postthalamic visual fiber tracts by anisotropic diffusion weighted MRI and diffusion tensor imaging: principles and applications

    International Nuclear Information System (INIS)

    Reinges, Marcus H.T.; Schoth, Felix; Coenen, Volker A.; Krings, Timo

    2004-01-01

    Diffusion weighted MRI offers the possibility to study the course of the cerebral white matter tracts. In the present manuscript, the basics, the technique and the limitations of diffusion tensor imaging and anisotropic diffusion weighted MRI are presented and their applications in various neurological and neurosurgical diseases are discussed with special emphasis on the visual system. A special focus is laid on the combination of fiber tract imaging, anatomical imaging and functional MRI for presurgical planning and intraoperative neuronavigation of lesions near the visual system

  1. Imaging children suffering from lymphoma: an evaluation of different 18F-FDG PET/MRI protocols compared to whole-body DW-MRI.

    Science.gov (United States)

    Kirchner, Julian; Deuschl, Cornelius; Schweiger, Bernd; Herrmann, Ken; Forsting, Michael; Buchbender, Christian; Antoch, Gerald; Umutlu, Lale

    2017-09-01

    The objectives of this study were to evaluate and compare the diagnostic potential of different PET/MRI reading protocols, entailing non-enhanced / contrast-enhanced and diffusion-weighted 18 F-FDG PET/MR imaging and whole-body diffusion-weighted MRI for lesion detection and determination of the tumor stage in pediatric lymphoma patients. A total of 28 18 F-FDG PET/MRI datasets were included for analysis of four different reading protocols: (1) PET/MRI utilizing sole unenhanced T2w and T1w imaging, (2) PET/MRI utilizing additional contrast enhanced sequences, (3) PET/MR imaging utilizing unenhanced, contrast enhanced and DW imaging or (4) WB-DW-MRI. Statistical analyses were performed on a per-patient and a per-lesion basis. Follow-up and prior examinations as well as histopathology served as reference standards. PET/MRI correctly identified all 17 examinations with active lymphoma disease, while WB-DW-MRI correctly identified 15/17 examinations. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy were 96%, 96.5%, 97%, 95%, and 96% for PET/MRI 1 ; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI 2 ; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI 3 and 77%, 96%, 96%, 78.5% and 86% for MRI-DWI. 18 F-FDG PET/MRI is superior to WB-DW-MRI in staging pediatric lymphoma patients. Neither application of contrast media nor DWI leads to a noticeable improvement of the diagnostic accuracy of PET/MRI. Thus, unenhanced PET/MRI may play a crucial role for the diagnostic work-up of pediatric lymphoma patients in the future.

  2. Initial tests of a prototype MRI-compatible PET imager

    International Nuclear Information System (INIS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan; Velan, S. Sendhil; Kross, Brain; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy

    2006-01-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5x5x4 cm 3 . Each MRI-PET detector module consists of an array of LSO detector elements (2.5x2.5x15 mm 3 ) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of ∼60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to ∼85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy

  3. Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Delakis, Ioannis; Hammad, Omer; Kitney, Richard I

    2007-01-01

    Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting

  4. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging.

    Science.gov (United States)

    De Ciantis, Alessio; Barba, Carmen; Tassi, Laura; Cosottini, Mirco; Tosetti, Michela; Costagli, Mauro; Bramerio, Manuela; Bartolini, Emanuele; Biagi, Laura; Cossu, Massimo; Pelliccia, Veronica; Symms, Mark R; Guerrini, Renzo

    2016-03-01

    To assess the diagnostic yield of 7T magnetic resonance imaging (MRI) in detecting and characterizing structural lesions in patients with intractable focal epilepsy and unrevealing conventional (1.5 or 3T) MRI. We conducted an observational clinical imaging study on 21 patients (17 adults and 4 children) with intractable focal epilepsy, exhibiting clinical and electroencephalographic features consistent with a single seizure-onset zone (SOZ) and unrevealing conventional MRI. Patients were enrolled at two tertiary epilepsy surgery centers and imaged at 7T, including whole brain (three-dimensional [3D] T1 -weighted [T1W] fast-spoiled gradient echo (FSPGR), 3D susceptibility-weighted angiography [SWAN], 3D fluid-attenuated inversion recovery [FLAIR]) and targeted imaging (2D T2*-weighted dual-echo gradient-recalled echo [GRE] and 2D gray-white matter tissue border enhancement [TBE] fast spin echo inversion recovery [FSE-IR]). MRI studies at 1.5 or 3T deemed unrevealing at the referral center were reviewed by three experts in epilepsy imaging. Reviewers were provided information regarding the suspected localization of the SOZ. The same team subsequently reviewed 7T images. Agreement in imaging interpretation was reached through consensus-based discussions based on visual identification of structural abnormalities and their likely correlation with clinical and electrographic data. 7T MRI revealed structural lesions in 6 (29%) of 21 patients. The diagnostic gain in detection was obtained using GRE and FLAIR images. Four of the six patients with abnormal 7T underwent epilepsy surgery. Histopathology revealed focal cortical dysplasia (FCD) in all. In the remaining 15 patients (71%), 7T MRI remained unrevealing; 4 of the patients underwent epilepsy surgery and histopathologic evaluation revealed gliosis. 7T MRI improves detection of epileptogenic FCD that is not visible at conventional field strengths. A dedicated protocol including whole brain FLAIR and GRE images at 7T

  5. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning

    Science.gov (United States)

    Arabi, Hossein; Koutsouvelis, Nikolaos; Rouzaud, Michel; Miralbell, Raymond; Zaidi, Habib

    2016-09-01

    Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial task, a pseudo-computed tomography (CT) image must be predicted from MRI alone. In this work, we propose a two-step (segmentation and fusion) atlas-based algorithm focusing on bone tissue identification to create a pseudo-CT image from conventional MRI sequences and evaluate its performance against the conventional MRI segmentation technique and a recently proposed multi-atlas approach. The clinical studies consisted of pelvic CT, PET and MRI scans of 12 patients with loco-regionally advanced rectal disease. In the first step, bone segmentation of the target image is optimized through local weighted atlas voting. The obtained bone map is then used to assess the quality of deformed atlases to perform voxel-wise weighted atlas fusion. To evaluate the performance of the method, a leave-one-out cross-validation (LOOCV) scheme was devised to find optimal parameters for the model. Geometric evaluation of the produced pseudo-CT images and quantitative analysis of the accuracy of PET AC were performed. Moreover, a dosimetric evaluation of volumetric modulated arc therapy photon treatment plans calculated using the different pseudo-CT images was carried out and compared to those produced using CT images serving as references. The pseudo-CT images produced using the proposed method exhibit bone identification accuracy of 0.89 based on the Dice similarity metric compared to 0.75 achieved by the other atlas-based method. The superior bone extraction resulted in a mean standard uptake value bias of  -1.5  ±  5.0% (mean  ±  SD) in bony structures compared to  -19.9  ±  11.8% and  -8.1  ±  8.2% achieved by MRI segmentation-based (water

  6. Brain activation studies with PET and functional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, Yoshiharu [Fukui Medical Univ., Matsuoka (Japan). Biomedical Imaging Research Center; Sadato, Norihiro [Okazaki National Research Inst., Aichi (Japan). National Inst. for Physiological Sciences

    2002-01-01

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H{sub 2}{sup 15}O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H{sub 2}{sup 15}O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  7. Brain activation studies with PET and functional MRI

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Sadato, Norihiro

    2002-01-01

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H 2 15 O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H 2 15 O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  8. The functional magnetic resonance imaging (fMRI) procedure as experienced by healthy participants and stroke patients – A pilot study

    International Nuclear Information System (INIS)

    Szameitat, André J; Shen, Shan; Sterr, Annette

    2009-01-01

    An important aspect in functional imaging research employing magnetic resonance imaging (MRI) is how participants perceive the MRI scanning itself. For instance, the knowledge of how (un)comfortable MRI scanning is perceived may help institutional review boards (IRBs) or ethics committees to decide on the approval of a study, or researchers to design their experiments. We provide empirical data from our lab gained from 70 neurologically healthy mainly student subjects and from 22 mainly elderly patients suffering from motor deficits after brain damage. All participants took part in various basic research fMRI studies using a 3T MRI scanner. Directly after the scanning, all participants completed a questionnaire assessing their experience with the fMRI procedure. 87.2% of the healthy subjects and 77.3% of the patients rated the MRI procedure as acceptable to comfortable. In healthy subjects, males found the procedure more comfortable, while the opposite was true for patients. 12.1% of healthy subjects considered scanning durations between 30 and 60 min as too long, while no patient considered their 30 min scanning interval as too long. 93.4% of the healthy subjects would like to participate in an fMRI study again, with a significantly lower rate for the subjects who considered the scanning as too long. Further factors, such as inclusion of a diffusion tensor imaging (DTI) scan, age, and study duration had no effect on the questionnaire responses. Of the few negative comments, the main issues were noise, the restriction to keep still for the whole time, and occasional feelings of dizziness. MRI scanning in the basic research setting is an acceptable procedure for elderly and patient participants as well as young healthy subjects

  9. Imaging brain microstructure with diffusion MRI

    DEFF Research Database (Denmark)

    Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus

    2018-01-01

    This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging ...

  10. Primary ureteral carcinoma: MRI diagnosis and comparison with other diagnostic imaging facilities

    International Nuclear Information System (INIS)

    An Ningyu; Jiang Bo; Cai Youquan; Liang Yan

    2004-01-01

    Objective: To investigate MRI examination methods and imaging manifestations of primary ureteral carcinoma, and to evaluate its clinical values when comparing with other diagnostic imaging facilities. Methods: Eighty-seven cases of primary ureteral carcinoma who were operated within recent 8 years came into the study, among which, 35 cases had MRI examinations. For MRI examination, coronal heavy T 2 WI (water imaging) was performed to show the dilated ureter, then axial T 2 WI and T 1 WI were scanned at the obstruction level. 11 cases underwent additional Gd-DTPA dynamic contrast enhanced scans. The original pre-operative diagnostic reports of various imaging facilities were analyzed comparing with the results of operation and pathology. Results: MRI showed ureteral dilatation in 33 of 35 cases, no abnormal appearance in 1 case, and only primary kidney atrophy post renal transplantation in 1 case. Among the 33 cases with ureteral obstruction, soft mass at the obstruction level was detected on axial scans in 32 cases. The lesions showed gradual and homogeneous mild to moderate enhancement on contrast MRI. The overall employment rate of imaging facilities was as follows: ultrasound (94.3%), IVU (59.8%), CT (52.9%), MRI (40.2%), and RUP (35.6%). The accurate diagnostic rate was as follows :MRI (91.4%), RUP (80.6%), CT (63.0%), ultrasound (47.6%), and IVU (11.5%). Conclusion: Combination of MR water imaging and conventional sequences can demonstrate most primary ureteral carcinoma lesions and has a highest diagnostic accuracy among the current diagnostic imaging facilities. It should be taken as the first diagnostic imaging method of choice when primary ureteral carcinoma is suspected after ultrasound screening

  11. Coronary imaging techniques with emphasis on CT and MRI

    International Nuclear Information System (INIS)

    Lederlin, Mathieu; Latrabe, Valerie; Corneloup, Olivier; Cochet, Hubert; Montaudon, Michel; Laurent, Francois; Thambo, Jean-Benoit

    2011-01-01

    Coronary artery imaging in children is challenging, with high demands both on temporal and spatial resolution due to high heart rates and smaller anatomy. Although invasive conventional coronary angiography remains the benchmark technique, over the past 10 years, CT and MRI have emerged in the field of coronary imaging. The choice of hardware is important. For CT, the minimum requirement is a 64-channel scanner. The temporal resolution of the scanner is most important for optimising image quality and minimising radiation dose. Manufacturers have developed several modes of electrocardiographic (ECG) triggering to facilitate dose reduction. Recent technical advances have opened new possibilities in MRI coronary imaging. As a non-ionising radiation technique, MRI is of great interest in paediatric imaging. It is currently recommended in centres with appropriate expertise for the screening of patients with suspected congenital coronary anomalies. However, MRI is still not feasible in infants. This review describes and discusses the technical requirements and the pros and cons of all three techniques. (orig.)

  12. Initial tests of a prototype MRI-compatible PET imager

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R. [Center for Advanced Imaging, Department of Radiology, West Virginia University, HSB Box 9236, Morgantown, WV (United States)]. E-mail: rraylman@wvu.edu; Majewski, Stan [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Lemieux, Susan [Center for Advanced Imaging, Department of Radiology, West Virginia University, HSB Box 9236, Morgantown, WV (United States); Velan, S. Sendhil [Center for Advanced Imaging, Department of Radiology, West Virginia University, HSB Box 9236, Morgantown, WV (United States); Kross, Brain [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Popov, Vladimir [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Smith, Mark F. [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Weisenberger, Andrew G. [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Wojcik, Randy [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2006-12-20

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5x5x4 cm{sup 3}. Each MRI-PET detector module consists of an array of LSO detector elements (2.5x2.5x15 mm{sup 3}) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of {approx}60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to {approx}85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy.

  13. Visualization of pulmonary nodules with magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Plathow, C.; Deutsches Krebsforschungszentrum; Meinzer, H.-P.; Kauczor, H.-U.

    2006-01-01

    Visualization of pulmonary nodules using magnetic resonance imaging (MRI) plays a minor role compared with computed tomography (CT). Technical developments made it possible to apply MRI more and more frequently in functional imaging. Imaging of the motion of pulmonary nodules during respiration, e.g., to optimize high precision therapy techniques, is a new field of research. This paper describes developments in analysis and visualization of pulmonary nodules during respiration using MRI. Besides actual 2D techniques new 3D techniques to quantify motion of pulmonary nodules during respiration are presented. (orig.) [de

  14. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: a postmortem study.

    Science.gov (United States)

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q; Ducote, Justin L; Su, Min-Ying; Molloi, Sabee

    2013-12-01

    Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left-right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left-right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left-right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. The investigated CLIC method

  15. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: A postmortem study

    International Nuclear Information System (INIS)

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee

    2013-01-01

    Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson'sr, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson'sr increased from 0.86 to 0.92 with the bias field correction

  16. Imaging children suffering from lymphoma: an evaluation of different {sup 18}F-FDG PET/MRI protocols compared to whole-body DW-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kirchner, Julian; Buchbender, Christian; Antoch, Gerald [University Dusseldorf, Department of Diagnostic and Interventional Radiology, Medical Faculty, Dusseldorf (Germany); Deuschl, Cornelius; Schweiger, Bernd; Forsting, Michael; Umutlu, Lale [University Hospital Essen, University of Duisburg-Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Herrmann, Ken [University Hospital Essen, University of Duisburg-Essen, Department of Nuclear Medicine, Essen (Germany)

    2017-09-15

    The objectives of this study were to evaluate and compare the diagnostic potential of different PET/MRI reading protocols, entailing non-enhanced / contrast-enhanced and diffusion-weighted {sup 18}F-FDG PET/MR imaging and whole-body diffusion-weighted MRI for lesion detection and determination of the tumor stage in pediatric lymphoma patients. A total of 28 {sup 18}F-FDG PET/MRI datasets were included for analysis of four different reading protocols: (1) PET/MRI utilizing sole unenhanced T2w and T1w imaging, (2) PET/MRI utilizing additional contrast enhanced sequences, (3) PET/MR imaging utilizing unenhanced, contrast enhanced and DW imaging or (4) WB-DW-MRI. Statistical analyses were performed on a per-patient and a per-lesion basis. Follow-up and prior examinations as well as histopathology served as reference standards. PET/MRI correctly identified all 17 examinations with active lymphoma disease, while WB-DW-MRI correctly identified 15/17 examinations. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy were 96%, 96.5%, 97%, 95%, and 96% for PET/MRI{sub 1}; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI{sub 2}; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI{sub 3} and 77%, 96%, 96%, 78.5% and 86% for MRI-DWI. {sup 18}F-FDG PET/MRI is superior to WB-DW-MRI in staging pediatric lymphoma patients. Neither application of contrast media nor DWI leads to a noticeable improvement of the diagnostic accuracy of PET/MRI. Thus, unenhanced PET/MRI may play a crucial role for the diagnostic work-up of pediatric lymphoma patients in the future. (orig.)

  17. Understanding Patient Preference in Female Pelvic Imaging: Transvaginal Ultrasound and MRI.

    Science.gov (United States)

    Sakala, Michelle D; Carlos, Ruth C; Mendiratta-Lala, Mishal; Quint, Elisabeth H; Maturen, Katherine E

    2018-04-01

    Women with pelvic pain or abnormal uterine bleeding may undergo diagnostic imaging. This study evaluates patient experience in transvaginal ultrasound (TVUS) and magnetic resonance imaging (MRI) and explores correlations between preference and symptom severity. Institutional review board approval was obtained for this Health Insurance Portability and Accountability Act-compliant prospective study. Fifty premenopausal women with pelvic symptoms evaluated by recent TVUS and MRI and without history of gynecologic cancer or hysterectomy were included. A phone questionnaire used validated survey instruments including Uterine Fibroid Symptoms Quality of Life index, Testing Morbidities Index, and Wait Trade Off for TVUS and MRI examinations. Using Wait Trade Off, patients preferred TVUS over MRI (3.58 vs 2.80 weeks, 95% confidence interval [CI] -1.63, 0.12; P = .08). Summary test utility of Testing Morbidities Index for MRI was worse than for TVUS (81.64 vs 87.42, 95%CI 0.41, 11.15; P = .03). Patients reported greater embarrassment during TVUS than during MRI (P MRI, and greater mental (P = .02) and physical (P = .02) problems after MRI versus TVUS. Subscale correlations showed physically inactive women rated TVUS more negatively (R = -0.32, P = .03), whereas women with more severe symptoms of loss of control of health (R = -0.28, P = .04) and sexual dysfunction (R = -0.30, P = .03) rated MRI more negatively. Women with pelvic symptoms had a slight but significant preference for TVUS over MRI. Identifying specific distressing aspects of each test and patient factors contributing to negative perceptions can direct improvement in both test environment and patient preparation. Improved patient experience may increase imaging value. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. Fundamental Tongue Motions for Trumpet Playing: A Study Using Cine Magnetic Resonance Imaging (Cine MRI).

    Science.gov (United States)

    Furuhashi, Hiroko; Chikui, Toru; Inadomi, Daisuke; Shiraishi, Tomoko; Yoshiura, Kazunori

    2017-12-01

    Though the motions of structures outside the mouth in trumpet performance have been reported, the dynamics of intraoral structures remain unelucidated. This study explored the tongue's movement in trumpet playing using cine magnetic resonance imaging (cine MRI) and demonstrated the effects of intraoral anatomical structures on changes in pitch and dynamics. Cine MRI was applied to 18 trumpet players, who were divided into two groups (7 beginner, 11 advanced) based on their ability to play a certain high note. They were instructed to play a custom-made MRI-compatible simulated trumpet. Pitch-change tasks and dynamics-change tasks were assigned. The positions of the anatomical points and intraoral areas were identified on outlined images, and the changes associated with each task were evaluated. A forward and upward projection of the tongue was observed in the production of higher pitches, and there were no significant differences in all areas. In louder dynamics, a backward and downward bending of the tongue occurred, the tongue area became smaller (pcine MRI that certain tongue movements were associated with each task. Tongue protrusion in the production of higher pitch and bending in louder dynamics can be rationalized using acoustics theory and the movements of anatomical structures. These findings seem to be consistent regardless of the player's proficiency.

  19. Whole-body MRI, dynamic contrast-enhanced MRI, and diffusion-weighted imaging for the staging of multiple myeloma

    Energy Technology Data Exchange (ETDEWEB)

    Dutoit, Julie C.; Verstraete, Koenraad L. [Ghent University Hospital, Department of Radiology, Ghent (Belgium)

    2017-06-15

    Magnetic resonance imaging (MRI) is the most sensitive imaging technique for the detection of bone marrow infiltration, and has therefore recently been included in the new diagnostic myeloma criteria, as proposed by the International Myeloma Working Group. Nevertheless, conventional MRI only provides anatomical information and is therefore only of limited use in the response assessment of patients with multiple myeloma. The additional information from functional MRI techniques, such as diffusion-weighted imaging and dynamic contrast-enhanced MRI, can improve the detection rate of bone marrow infiltration and the assessment of response. This can further enhance the sensitivity and specificity of MRI in the staging of multiple myeloma patients. This article provides an overview of the technical aspects of conventional and functional MRI techniques with practical recommendations. It reviews the diagnostic performance, prognostic value, and role in therapy assessment in multiple myeloma and its precursor stages. (orig.)

  20. Prospective assessment of MRI for imaging retroperitoneal metastases from testicular germ cell tumours

    Energy Technology Data Exchange (ETDEWEB)

    Sohaib, S.A. [Department of Radiology, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey (United Kingdom)], E-mail: aslam.sohaib@rmh.nhs.uk; Koh, D.M. [Department of Radiology, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey (United Kingdom); Barbachano, Y. [Department of Computing and Statistics, Royal Marsden Hospital, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey (United Kingdom); Parikh, J.; Husband, J.E.S. [Department of Radiology, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey (United Kingdom); Dearnaley, D.P.; Horwich, A.; Huddart, R. [Department of Academic Urology Unit, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey (United Kingdom)

    2009-04-15

    Aim: To determine the sensitivity of magnetic resonance imaging (MRI) in the detection of retroperitoneal lymph nodes in patients with testicular germ cell tumours (TGCT). Methods and materials: A prospective study of 52 patients (mean age 34 years, range 18-54 years) was performed. Imaging of the retroperitoneum was performed using multidetector computed tomography (CT) and 1.5 T MRI systems. The CT and MRI images were read independently by three observers. The number, size, and site of enlarged nodes ({>=}10 mm maximum short axis diameter) were recorded. Retroperitoneal nodal detection on MRI was compared to CT. Results: Twenty-two (42%) of the 52 patients had no retroperitoneal disease; in remaining 30 patients 51 enlarged nodes were identified. On a per patient basis readers 1, 2, and 3 identified nodal disease in 28 of 29, 29 of 30, and 24 of 30 patients, respectively, using MRI compared to CT. Thus for experienced radiologists (readers 1 and 2) MRI is comparable to CT for nodal detection (i.e., this study excludes MRI being inferior to CT with 80% power and 5% type 1 error). Conclusion: MRI offers an alternative method for staging the retroperitoneum in young patients being followed for TGCT and has the major advantage of avoiding exposure to ionizing radiation.

  1. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.

    Science.gov (United States)

    Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-11-01

    Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes

  2. Rapid ex vivo imaging of PAIII prostate to bone tumor with SWIFT-MRI.

    Science.gov (United States)

    Luhach, Ihor; Idiyatullin, Djaudat; Lynch, Conor C; Corum, Curt; Martinez, Gary V; Garwood, Michael; Gillies, Robert J

    2014-09-01

    The limiting factor for MRI of skeletal/mineralized tissue is fast transverse relaxation. A recent advancement in MRI technology, SWIFT (Sweep Imaging with Fourier Transform), is emerging as a new approach to overcome this difficulty. Among other techniques like UTE, ZTE, and WASPI, the application of SWIFT technology has the strong potential to impact preclinical and clinical imaging, particularly in the context of primary or metastatic bone cancers because it has the added advantage of imaging water in mineralized tissues of bone allowing MRI images to be obtained of tissues previously visible only with modalities such as computed tomography (CT). The goal of the current study is to examine the feasibility of SWIFT for the assessment of the prostate cancer induced changes in bone formation (osteogenesis) and destruction (osteolysis) in ex vivo specimens. A luciferase expressing prostate cancer cell line (PAIII) or saline control was inoculated directly into the tibia of 6-week-old immunocompromised male mice. Tumor growth was assessed weekly for 3 weeks before euthanasia and dissection of the tumor bearing and sham tibias. The ex vivo mouse tibia specimens were imaged with a 9.4 Tesla (T) and 7T MRI systems. SWIFT images are compared with traditional gradient-echo and spin-echo MRI images as well as CT and histological sections. SWIFT images with nominal resolution of 78 μm are obtained with the tumor and different bone structures identified. Prostate cancer induced changes in the bone microstructure are visible in SWIFT images, which is supported by spin-echo, high resolution CT and histological analysis. SWIFT MRI is capable of high-quality high-resolution ex vivo imaging of bone tumor and surrounding bone and soft tissues. Furthermore, SWIFT MRI shows promise for in vivo bone tumor imaging, with the added benefits of nonexposure to ionizing radiation, quietness, and speed. Copyright © 2013 Wiley Periodicals, Inc.

  3. Image processing techniques for quantification and assessment of brain MRI

    NARCIS (Netherlands)

    Kuijf, H.J.

    2013-01-01

    Magnetic resonance imaging (MRI) is a widely used technique to acquire digital images of the human brain. A variety of acquisition protocols is available to generate images in vivo and noninvasively, giving great opportunities to study the anatomy and physiology of the human brain. In my thesis,

  4. Manual and computerized measurement of coronal vertebral inclination on MRI images: A pilot study

    International Nuclear Information System (INIS)

    Vrtovec, T.; Likar, B.; Pernuš, F.

    2013-01-01

    Aim: A pilot study that presents a systematic approach for evaluating the variability of manual and computerized measurements of coronal vertebral inclination (CVI) on images acquired by magnetic resonance imaging (MRI). Materials and methods: Three observers identified the vertebral body corners of 28 vertebrae on two occasions on two-dimensional (2D) coronal MRI cross-sections, which served to evaluate CVI using six manual measurements (superior and inferior tangents, left and right tangents, mid-endplate and mid-wall lines). Computerized measurements were performed by evaluating CVI from the symmetry of vertebral anatomical structures of the same 28 vertebrae in 2D coronal MRI cross-sections and in three-dimensional (3D) MRI images. Results: In terms of standard deviation (SD), the mid-endplate lines proved to be the manual measurements with the lowest intra- (1.0° SD) and interobserver (1.4° SD) variability. The computerized measurements in 3D yielded even lower intra- (0.8° SD) and interobserver (1.3° SD) variability. The strongest inter-method agreement (1.2° SD) was found among lines parallel to vertebral endplates (superior tangents, inferior tangents, mid-endplate lines). The computerized measurements in 3D were most in agreement with the mid-endplate lines (1.9° SD). The estimated intra- and interobserver variabilities of standard Cobb angle measurements were equal to 1.6° SD and 2.5° SD, respectively, for manual measurements, and to 1.1° SD and 1.8° SD, respectively, for computerized measurements. Conclusion: The mid-endplate lines proved to be the most reproducible and reliable manual CVI measurements. Computerized CVI measurements based on the evaluation of the symmetry of vertebral anatomical structures in 3D were more reproducible and reliable than manual measurements

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... structures of the brain and can also provide functional information (fMRI) in selected cases. MR images of the brain and other cranial structures are clearer and more detailed than with other ...

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI) procedure View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic ...

  7. Soft tissue manifestations of early rheumatic disease. Imaging with MRI

    International Nuclear Information System (INIS)

    Treitl, M.; Panteleon, A.; Koerner, M.; Becker-Gaab, C.; Reiser, M.; Wirth, S.

    2006-01-01

    The aim of this study was to evaluate typical magnetic resonance imaging (MRI) findings in early rheumatic diseases manifesting at the soft tissues of the hand using a retrospective analysis. A total of 186 MRI examinations of patients with clinical suspicion of a rheumatic disease were evaluated in a consensus reading by two experienced radiologists. All imaging patterns were assessed with respect to their type and localization. Under blinded and non-blinded conditions diagnoses were correlated with final clinical diagnosis. The most frequent diagnoses were rheumatoid arthritis (RA, 45.7%) and psoriatic arthritis (PsA, 15.6%). The mean correlation between clinical and MRI diagnosis (r) was 0.75 in blinded and 0.853 in non-blinded reading (p [de

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... is not harmful, but it may cause some medical devices to malfunction. Most orthopedic implants pose no ... Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. ...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... a CD or uploaded to a digital cloud server. Currently, MRI is the most sensitive imaging test ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  10. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... metallic items, which can distort MRI images removable dental work pens, pocket knives and eyeglasses body piercings ... and send a signed report to your primary care or referring physician, who will share the results ...

  11. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... the exam. MRI scanners are air-conditioned and well-lit. Music may be played through the headphones ... full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy ...

  12. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI can detect stroke at a very early stage by mapping the motion of water molecules in ... is because traction devices and many types of life support equipment may distort the MR images and ...

  13. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... images removable dental work pens, pocket knives and eyeglasses body piercings In most cases, an MRI exam ... and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media ...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... and may add approximately 15 minutes to the total exam time. top of page What will I ... the limitations of MRI of the Head? High-quality images are assured only if you are able ...

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... it may cause some medical devices to malfunction. Most orthopedic implants pose no risk, but you should ... a digital cloud server. Currently, MRI is the most sensitive imaging test of the head (particularly the ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... a risk, depending on their nature and the strength of the MRI magnet. Many implanted devices will ... full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... tissue from which they come. The MR scanner captures this energy and creates a picture of the ... imaging based on the electrical activity of the heart, such as electrocardiography (EKG). MRI generally is not ...

  18. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... used in tattoos may contain iron and could heat up during an MRI scan, but this is ... called MR angiography (MRA) provides detailed images of blood vessels in the brain—often without the need ...

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... others nearby harm. These items include: jewelry, watches, credit cards and hearing aids, all of which can ... top of page What are the benefits vs. risks? Benefits MRI is a noninvasive imaging technique that ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... to produce detailed pictures of organs, soft tissues, bone and virtually all other internal body structures. MRI ... discovery of abnormalities that might be obscured by bone with other imaging methods. The contrast material used ...

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... Examples include but are not limited to: artificial heart valves implanted drug infusion ports artificial limbs or ... imaging based on the electrical activity of the heart, such as electrocardiography (EKG). MRI generally is not ...

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... to a CD or uploaded to a digital cloud server. Currently, MRI is the most sensitive imaging ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... distort images of the facial area or brain, so you should let the radiologist know about them. ... MRI units, called short-bore systems , are designed so that the magnet does not completely surround you. ...

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... tissue and fluid, known as edema . MRI typically costs more and may take more time to perform ... accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, ...

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI. For more information, consult your radiologist. The computer workstation that processes the imaging information is located ... not come in contact with the patient. A computer then processes the signals and generates a series ...

  6. Trends in magnetic resonance imaging. Technical trends in MRI, noise reduction and fast imaging

    International Nuclear Information System (INIS)

    Sugimoto, Hiroshi

    2007-01-01

    At MRI examination, patients suffer the machine noise and long tight lying as well as an oppressive feeling. This paper describes the technological efforts against the former two. The noise is generated from the force (thumb-ward) to vibrate the magnetic field gradient coil according to the left-hand rule. Authors have developed a MRI machine (Pianissimo) where the coil is placed in vacuum and its actual noise level is found reduced from 105 - 112 to 84 dB(A) at 1.5T. Fast imaging to shorten the imaging time is attained by combination of parallel imaging where MR signals are into multiple high frequency receiver coils, and the usual pulse sequence imaging, which results in the increased encoding in a given time. Together with these, MR angiography and diffusion weighted imaging of abdomen for cancer examination are becoming popular as an additional MRI diagnosis, also acceptable to patients. Future progress of MRI machines conceivably accompanies the unavoidable noise increase and possibly significant magnetic effects on human body, and efforts for their reduction will be continued at patients' viewpoint. (T.I.)

  7. Guidelines for imaging retinoblastoma: imaging principles and MRI standardization

    Energy Technology Data Exchange (ETDEWEB)

    Graaf, Pim de; Rodjan, Firazia; Castelijns, Jonas A. [VU University Medical Center, Department of Radiology, Amsterdam (Netherlands); Goericke, Sophia [University Hospital, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Galluzzi, Paolo [Azienda Ospedaliera e Universitaria Senese, Policlinico ' ' Le Scotte' ' , Unit of Diagnostic and Therapeutic Neuroradiology, Siena (Italy); Maeder, Philippe [CHUV, Service de Radiodiagnostic et Radiologie Interventionelle, Lausanne (Switzerland); Brisse, Herve J. [Institut Curie, Departement d' Imagerie, Paris (France)

    2012-01-15

    Retinoblastoma is the most common intraocular tumor in children. The diagnosis is usually established by the ophthalmologist on the basis of fundoscopy and US. Together with US, high-resolution MRI has emerged as an important imaging modality for pretreatment assessment, i.e. for diagnostic confirmation, detection of local tumor extent, detection of associated developmental malformation of the brain and detection of associated intracranial primitive neuroectodermal tumor (trilateral retinoblastoma). Minimum requirements for pretreatment diagnostic evaluation of retinoblastoma or mimicking lesions are presented, based on consensus among members of the European Retinoblastoma Imaging Collaboration (ERIC). The most appropriate techniques for imaging in a child with leukocoria are reviewed. CT is no longer recommended. Implementation of a standardized MRI protocol for retinoblastoma in clinical practice may benefit children worldwide, especially those with hereditary retinoblastoma, since a decreased use of CT reduces the exposure to ionizing radiation. (orig.)

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... an MRI scan, but this is rare. Tooth fillings and braces usually are not affected by the magnetic field, but they may distort images of the facial area or brain, so you should let the ...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... for Brain Tumors Radiation Therapy for Head and Neck Cancer Others : American Stroke Association National Stroke Association ... MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging ( ...

  10. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... top of page Additional Information and Resources RTAnswers.org : Radiation Therapy for Brain Tumors Radiation Therapy for ... Imaging (MRI) - Head Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ...

  11. The G-spot: an observational MRI pilot study.

    Science.gov (United States)

    Maratos, Y K; Gombergh, R; Cornier, E; Minart, J P; Amoretti, N; Mpotsaris, A

    2016-08-01

    To identify a G-spot complex (GSC) in vivo in MRI examinations at 1.5 Tesla field strength. Observational study. Single centre. Twenty-one consecutive patients (January-March 2014). Imaging analysis of routine imaging protocols for usual medical indications with and without concomitant opacification of the vaginal cavity with inert ultrasound gel. The gel distends the otherwise collapsed vaginal walls, allowing for an improved discrimination of anatomic features. The macroscopic and histological results recently derived from the dissections of fresh cadavers by Ostrzenski et al. were translated into imaging characteristics to be expected in the respective MRI sequences (e.g. T1- and T2-weighted) in search of an in vivo correlate of the GSC. Age, menopause status, medical indication and diagnosis were co-variables. To analyse primarily whether MRI imaging is able to depict a distinct morphological entity in vivo matching the GSC, based on anatomical descriptions published recently. The elaboration of an appropriate MRI-imaging protocol was a secondary aim. A total of 21 studies were obtained. A GSC was identified within the anterior vaginal wall in 13/21 patients (62%). In all, 10/21 (48%) had vaginal gel opacification. We identified a GSC in 10/10 patients (100%) with opacification in all three planes of the T2 images. This was only true for 3/11 cases (27%) without opacification. There is evidence for an in vivo morphological correlate to the postmortem anatomical findings of a GSC described by Ostrzenski et al.; its visibility in MRI imaging can be significantly improved with vaginal opacification by ultrasound gel. Identification of G-spot by MRI with vaginal gel-opacification in 13/21 patients. © 2016 Royal College of Obstetricians and Gynaecologists.

  12. Advanced imaging techniques in pediatric body MRI

    Energy Technology Data Exchange (ETDEWEB)

    Courtier, Jesse [UCSF Benioff Children' s Hospital, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Rao, Anil G. [Medical University of South Carolina, Department of Radiology, Charleston, SC (United States); Anupindi, Sudha A. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2017-05-15

    While there are many challenges specific to pediatric abdomino-pelvic MRI, many recent advances are addressing these challenges. It is therefore essential for radiologists to be familiar with the latest advances in MR imaging. Laudable efforts have also recently been implemented in many centers to improve the overall experience of pediatric patients, including the use of dedicated radiology child life specialists, MRI video goggles, and improved MR suite environments. These efforts have allowed a larger number of children to be scanned while awake, with fewer studies being done under sedation or anesthesia; this has resulted in additional challenges from patient motion and difficulties with breath-holding and tolerating longer scan times. In this review, we highlight common challenges faced in imaging the pediatric abdomen and pelvis and discuss the application of the newest techniques to address these challenges. Additionally, we highlight the newest advances in quantified imaging techniques, specifically in MR liver iron quantification. The techniques described in this review are all commercially available and can be readily implemented. (orig.)

  13. Optimized workflow and imaging protocols for whole-body oncologic PET/MRI.

    Science.gov (United States)

    Ishii, Shirou; Hara, Takamitsu; Nanbu, Takeyuki; Suenaga, Hiroki; Sugawara, Shigeyasu; Kuroiwa, Daichi; Sekino, Hirofumi; Miyajima, Masayuki; Kubo, Hitoshi; Oriuchi, Noboru; Ito, Hiroshi

    2016-11-01

    Although PET/MRI has the advantages of a simultaneous acquisition of PET and MRI, high soft-tissue contrast of the MRI images, and reduction of radiation exposure, its low profitability and long acquisition time are significant problems in clinical settings. Thus, MRI protocols that meet oncological purposes need to be used in order to reduce examination time while securing detectability. Currently, half-Fourier acquisition single-shot turbo spin echo and 3D-T1 volumetric interpolated breath-hold examination may be the most commonly used sequences for whole-body imaging due to their shorter acquisition time and higher diagnostic accuracy. Although there have been several reports that adding diffusion weighted image (DWI) to PET/MRI protocol has had no effect on tumor detection to date, in cases of liver, kidney, bladder, and prostate cancer, the use of DWI may be beneficial in detecting lesions. Another possible option is to scan each region with different MRI sequences instead of scanning the whole body using one sequence continuously. We herein report a workflow and imaging protocols for whole-body oncologic PET/MRI using an integrated system in the clinical routine, designed for the detection, for example by cancer screening, of metastatic lesions, in order to help future users optimize their workflow and imaging protocols.

  14. MRI of persistent cloaca: Can it substitute conventional imaging?

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, Shaimaa Abdelsattar, E-mail: shaimaa96@hotmail.com [Department of Radiodiagnosis, Faculty of Medicine, Ain-Shams University (Egypt); AbouZeid, Amr Abdelhamid, E-mail: amrabdelhamid@hotmail.com [Department of Pediatric Surgery, Faculty of Medicine, Ain-Shams University (Egypt)

    2013-02-15

    Purpose: To define the role of MRI in the preoperative assessment of patients with persistent cloaca and whether it can substitute other imaging modalities. Methods: We prospectively examined eleven patients with persistent cloaca between July 2007 and March 2012. Non contrast MRI examinations were performed on 1.5 T magnet using head coil. Multiple pulse sequences (T1WI, T2WI, fat suppression) were obtained in axial, sagittal and coronal planes of the pelvis, abdomen, and spine. The scans were reviewed for the following: the level and type of rectal termination, the developmental state of striated muscle complex (SMC), associated genitourinary and spinal anomalies. MRI findings were compared to conventional fluoroscopic imaging, operative and endoscopic findings. We applied novel MRI parameters (urethral length, relative hiatal distance and vaginal volume). The relation between different parameters was tested statistically using Pearson correlation test. Results: MRI could accurately demonstrate the level of bowel termination in patients with persistent cloaca, in addition to its high sensitivity for detection of mullerian anomalies which were present in 73% of patients. Furthermore, MRI could disclose associating renal and spinal anomalies, and assess the developmental state of SMC. The shorter the urethra (higher urogenital confluence), the narrower the pelvic hiatus, and the more was the obstruction (vaginal distension). Conclusion: MRI is a valuable tool in exploring the different internal anatomical features of the cloacal anomaly; and when combined with endoscopy, MRI can make other preoperative conventional imaging unnecessary.

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... On very rare occasions, a few patients experience side effects from the contrast material, including nausea, headache and ... structures of the brain and can also provide functional information (fMRI) in selected cases. MR images of ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... body structures. MRI does not use ionizing radiation (x-rays). Detailed MR images allow physicians to evaluate various ... kind, such as an allergy to iodine or x-ray contrast material, drugs, food, or the environment, or ...

  17. Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI.

    Science.gov (United States)

    Utsumi, Hideo; Hyodo, Fuminori

    2015-01-01

    Redox reactions that generate free radical intermediates are essential to metabolic processes, and their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. The development of an in vivo electron spin resonance (ESR) spectrometer and its imaging enables us noninvasive and direct measurement of in vivo free radical reactions in living organisms. The dynamic nuclear polarization magnetic resonance imaging (DNP-MRI), also called PEDRI or OMRI, is also a new imaging method for observing free radical species in vivo. The spatiotemporal resolution of free radical imaging with DNP-MRI is comparable with that in MRI, and each of the radical species can be distinguished in the spectroscopic images by changing the frequency or magnetic field of ESR irradiation. Several kinds of stable nitroxyl radicals were used as spin probes to detect in vivo redox reactions. The signal decay of nitroxyl probes, which is determined with in vivo DNP-MRI, reflects the redox status under oxidative stress, and the signal decay is suppressed by prior administration of antioxidants. In addition, DNP-MRI can also visualize various intermediate free radicals from the intrinsic redox molecules. This noninvasive method, in vivo DNP-MRI, could become a useful tool for investigating the mechanism of oxidative injuries in animal disease models and the in vivo effects of antioxidant drugs. © 2015 Elsevier Inc. All rights reserved.

  18. MRI case studies

    International Nuclear Information System (INIS)

    Huggett, S.; Barber, J.

    1989-01-01

    Three case studies are presented to show the value of magnetic resonance imaging used in conjunction with other imaging techniques. In each case MRI proved a vital diagnostic tool and superior to CT in showing firstly the haematoma in a patient with aphasia and right-sided weakness, secondly the size of the disc herniation in a patient with severe leg and ankle pains and thirdly the existence of a metastatic lesion in a patient with a previous history of breast cancer. 11 figs

  19. Reducing sedation for pediatric body MRI using accelerated and abbreviated imaging protocols

    International Nuclear Information System (INIS)

    Ahmad, Rizwan; Hu, Houchun Harry; Krishnamurthy, Ramkumar; Krishnamurthy, Rajesh

    2018-01-01

    Magnetic resonance imaging (MRI) is an established diagnostic imaging tool for investigating pediatric disease. MRI allows assessment of structure, function, and morphology in cardiovascular imaging, as well as tissue characterization in body imaging, without the use of ionizing radiation. For MRI in children, sedation and general anesthesia (GA) are often utilized to suppress patient motion, which can otherwise compromise image quality and diagnostic efficacy. However, evidence is emerging that use of sedation and GA in children might have long-term neurocognitive side effects, in addition to the short-term procedure-related risks. These concerns make risk-benefit assessment of sedation and GA more challenging. Therefore, reducing or eliminating the need for sedation and GA is an important goal of imaging innovation and research in pediatric MRI. In this review, the authors focus on technical and clinical approaches to reducing and eliminating the use of sedation in the pediatric population based on image acquisition acceleration and imaging protocols abbreviation. This paper covers important physiological and technical considerations for pediatric body MR imaging and discusses MRI techniques that offer the potential of recovering diagnostic-quality images from accelerated scans. In this review, the authors also introduce the concept of reporting elements for important indications for pediatric body MRI and use this as a basis for abbreviating the MR protocols. By employing appropriate accelerated and abbreviated approaches based on an understanding of the imaging needs and reporting elements for a given clinical indication, it is possible to reduce sedation and GA for pediatric chest, cardiovascular and abdominal MRI. (orig.)

  20. Reducing sedation for pediatric body MRI using accelerated and abbreviated imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Rizwan [The Ohio State University, Department of Biomedical Engineering, Columbus, OH (United States); Hu, Houchun Harry; Krishnamurthy, Ramkumar; Krishnamurthy, Rajesh [Nationwide Children' s Hospital, Department of Radiology, Columbus, OH (United States)

    2018-01-15

    Magnetic resonance imaging (MRI) is an established diagnostic imaging tool for investigating pediatric disease. MRI allows assessment of structure, function, and morphology in cardiovascular imaging, as well as tissue characterization in body imaging, without the use of ionizing radiation. For MRI in children, sedation and general anesthesia (GA) are often utilized to suppress patient motion, which can otherwise compromise image quality and diagnostic efficacy. However, evidence is emerging that use of sedation and GA in children might have long-term neurocognitive side effects, in addition to the short-term procedure-related risks. These concerns make risk-benefit assessment of sedation and GA more challenging. Therefore, reducing or eliminating the need for sedation and GA is an important goal of imaging innovation and research in pediatric MRI. In this review, the authors focus on technical and clinical approaches to reducing and eliminating the use of sedation in the pediatric population based on image acquisition acceleration and imaging protocols abbreviation. This paper covers important physiological and technical considerations for pediatric body MR imaging and discusses MRI techniques that offer the potential of recovering diagnostic-quality images from accelerated scans. In this review, the authors also introduce the concept of reporting elements for important indications for pediatric body MRI and use this as a basis for abbreviating the MR protocols. By employing appropriate accelerated and abbreviated approaches based on an understanding of the imaging needs and reporting elements for a given clinical indication, it is possible to reduce sedation and GA for pediatric chest, cardiovascular and abdominal MRI. (orig.)

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... internal body structures. MRI does not use ionizing radiation (x-rays). Detailed MR images allow physicians to evaluate various ... kind, such as an allergy to iodine or x-ray contrast material, drugs, food, or the environment, or ...

  2. Visual grading of 2D and 3D functional MRI compared with image-based descriptive measures

    Energy Technology Data Exchange (ETDEWEB)

    Ragnehed, Mattias [Linkoeping University, Division of Radiological Sciences, Radiology, IMH, Linkoeping (Sweden); Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden); Linkoeping University, Department of Medical and Health Sciences, Division of Radiological Sciences/Radiology, Faculty of Health Sciences, Linkoeping (Sweden); Leinhard, Olof Dahlqvist; Pihlsgaard, Johan; Lundberg, Peter [Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden); Linkoeping University, Division of Radiological Sciences, Radiation Physics, IMH, Linkoeping (Sweden); Wirell, Staffan [Linkoeping University, Division of Radiological Sciences, Radiology, IMH, Linkoeping (Sweden); Linkoeping University Hospital, Department of Radiology, Linkoeping (Sweden); Soekjer, Hannibal; Faegerstam, Patrik [Linkoeping University Hospital, Department of Radiology, Linkoeping (Sweden); Jiang, Bo [Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden); Smedby, Oerjan; Engstroem, Maria [Linkoeping University, Division of Radiological Sciences, Radiology, IMH, Linkoeping (Sweden); Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden)

    2010-03-15

    A prerequisite for successful clinical use of functional magnetic resonance imaging (fMRI) is the selection of an appropriate imaging sequence. The aim of this study was to compare 2D and 3D fMRI sequences using different image quality assessment methods. Descriptive image measures, such as activation volume and temporal signal-to-noise ratio (TSNR), were compared with results from visual grading characteristics (VGC) analysis of the fMRI results. Significant differences in activation volume and TSNR were not directly reflected by differences in VGC scores. The results suggest that better performance on descriptive image measures is not always an indicator of improved diagnostic quality of the fMRI results. In addition to descriptive image measures, it is important to include measures of diagnostic quality when comparing different fMRI data acquisition methods. (orig.)

  3. Clinico-pathomorphological study on schizophrenia using magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Uematsu, Masayuki

    1990-01-01

    Forty two schizophrenic patients and 28 normal controls underwent magnetic resonance imaging (MRI) examination of the brain. All subjects were consenting males under 50 years old. The enlargement of the third ventricle, anterior one third of the corpus callosum, and the septum pellucidum significantly differentiated schizophrenics from controls by a discriminant analysis. These findings may not be changes that appeared in the process of illness, but might have existed before the onset of the disorder. MRI measurements which significantly differentiated familial patients from non-familial patients using a discriminant analysis included the enlargement of the third ventricle, the cerebellar vermis, and the septum pellucidum. Negative symptoms and anergia symptoms depended on the degree of atrophy of the frontal lobe and the enlargement of the septum pellucidum. Poor heterosexual relations and low levels of education depended on the enlargement of the anterior one third of the corpus callosum. The good therapeutic response to neuroleptics in schizophrenics was associated with a small cerebellar vermis. All these findings suggested that combining morphological changes in the brain as illustrated by MRI with clinical variables may provide a useful new approach to subclassifying of schizophrenia. (author) 77 refs

  4. Prospective comparison of T2w-MRI and dynamic-contrast-enhanced MRI, 3D-MR spectroscopic imaging or diffusion-weighted MRI in repeat TRUS-guided biopsies

    Energy Technology Data Exchange (ETDEWEB)

    Portalez, Daniel [Clinique Pasteur, 45, Department of Radiology, Toulouse (France); Rollin, Gautier; Mouly, Patrick; Jonca, Frederic; Malavaud, Bernard [Hopital de Rangueil, Department of Urology, Toulouse Cedex 9 (France); Leandri, Pierre [Clinique Saint Jean, 20, Department of Urology, Toulouse (France); Elman, Benjamin [Clinique Pasteur, 45, Department of Urology, Toulouse (France)

    2010-12-15

    To compare T2-weighted MRI and functional MRI techniques in guiding repeat prostate biopsies. Sixty-eight patients with a history of negative biopsies, negative digital rectal examination and elevated PSA were imaged before repeat biopsies. Dichotomous criteria were used with visual validation of T2-weighted MRI, dynamic contrast-enhanced MRI and literature-derived cut-offs for 3D-spectroscopy MRI (choline-creatine-to-citrate ratio >0.86) and diffusion-weighted imaging (ADC x 10{sup 3} mm{sup 2}/s < 1.24). For each segment and MRI technique, results were rendered as being suspicious/non-suspicious for malignancy. Sextant biopsies, transition zone biopsies and at least two additional biopsies of suspicious areas were taken. In the peripheral zones, 105/408 segments and in the transition zones 19/136 segments were suspicious according to at least one MRI technique. A total of 28/68 (41.2%) patients were found to have cancer. Diffusion-weighted imaging exhibited the highest positive predictive value (0.52) compared with T2-weighted MRI (0.29), dynamic contrast-enhanced MRI (0.33) and 3D-spectroscopy MRI (0.25). Logistic regression showed the probability of cancer in a segment increasing 12-fold when T2-weighted and diffusion-weighted imaging MRI were both suspicious (63.4%) compared with both being non-suspicious (5.2%). The proposed system of analysis and reporting could prove clinically relevant in the decision whether to repeat targeted biopsies. (orig.)

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... very early stage by mapping the motion of water molecules in the tissue. This water motion, known as diffusion, is impaired by most ... the limitations of MRI of the Head? High-quality images are assured only if you are able ...

  6. Developments in boron magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Schweizer, M.

    1995-01-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain

  7. STUDY OF POSTERIOR FOSSA TUMORS BY HIGH RESOLUTION MRI

    Directory of Open Access Journals (Sweden)

    Sree Hari

    2016-01-01

    Full Text Available INTRODUCTION Magnetic Resonance Imaging (MRI is the imaging modality used for the assessment of infratentorial neoplasms. Although Computed Tomography (CT provides better demonstration of small or subtle calcifications within tumors. OBJECTIVES Study is done to assess the potential of MRI in characterisation of different tumors in posterior fossa by evaluating various unenhanced and gadolinium enhanced sequences and to compare high resolution FSE MRI sequences with routine FSE MRI sequences in diagnosing posterior fossa brain tumors. Also correlate findings on Magnetic Resonance Imaging with Pathological diagnosis. MATERIALS AND METHODS A total of 52 patients were diagnosed by CT brain as having posterior fossa brain for a year of 2 years were included in the study. In all studies MR imaging was performed with a clinical 1.5 T system (General electrical medical systems. A dedicated phased-array coil was used. RESULTS The age group ranged from 1 year to 60 years, majority were between 1 to 20 years (39%. Slight male preponderance was seen (males 29, females 23. Commonest tumor encountered in our study was vestibular schwannoma. DWI alone can differentiate different pediatric posterior fossa brain tumors. One case of pilocytic astrocytoma showed solid lesion instead of typical cystic lesion with mural nodule. One case AT-RT showed 2 lesions one in cerebrum, one in CP angle. Common feature being intra-axial lesion involving cerebellum. MRI was able to predict diagnosis in 50 of the 52 tumors. CONCLUSION Magnetic Resonance Imaging was found to be a highly sensitive imaging procedure and method of choice for posterior fossa brain tumors.

  8. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study.

    Science.gov (United States)

    Miao, Wen; Man, Fengyuan; Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A; He, Huiguang; Jiao, Yonghong

    2015-01-01

    To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender-matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (pleft precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1.

  9. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study

    Science.gov (United States)

    Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A.; He, Huiguang; Jiao, Yonghong

    2015-01-01

    Purpose To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. Methods T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender- matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Results Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (pleft precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. Conclusions CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1. PMID:26186732

  10. Functional and molecular imaging with MRI: potential applications in paediatric radiology

    International Nuclear Information System (INIS)

    Arthurs, Owen J.; Gallagher, Ferdia A.

    2011-01-01

    MRI is a very versatile tool for noninvasive imaging and it is particularly attractive as an imaging technique in paediatric patients given the absence of ionizing radiation. Recent advances in the field of MRI have enabled tissue function to be probed noninvasively, and increasingly MRI is being used to assess cellular and molecular processes. For example, dynamic contrast-enhanced MRI has been used to assess tissue vascularity, diffusion-weighted imaging can quantify molecular movements of water in tissue compartments and MR spectroscopy provides a quantitative assessment of metabolite levels. A number of targeted contrast agents have been developed that bind specifically to receptors on the vascular endothelium or cell surface and there are several MR methods for labelling cells and tracking cellular movements. Hyperpolarization techniques have the capability of massively increasing the sensitivity of MRI and these have been used to image tissue pH, successful response to drug treatment as well as imaging the microstructure of the lungs. Although there are many challenges to be overcome before these techniques can be translated into routine paediatric imaging, they could potentially be used to aid diagnosis, predict disease outcome, target biopsies and determine treatment response noninvasively. (orig.)

  11. Memory Deficits in Schizophrenia: A Selective Review of Functional Magnetic Resonance Imaging (fMRI Studies

    Directory of Open Access Journals (Sweden)

    Adrienne C. Lahti

    2013-06-01

    Full Text Available Schizophrenia is a complex chronic mental illness that is characterized by positive, negative and cognitive symptoms. Cognitive deficits are most predictive of long-term outcomes, with abnormalities in memory being the most robust finding. The advent of functional magnetic resonance imaging (fMRI has allowed exploring neural correlates of memory deficits in vivo. In this article, we will give a selective review of fMRI studies probing brain regions and functional networks that are thought to be related to abnormal memory performance in two memory systems prominently affected in schizophrenia; working memory and episodic memory. We revisit the classic “hypofrontality” hypothesis of working memory deficits and explore evidence for frontotemporal dysconnectivity underlying episodic memory abnormalities. We conclude that fMRI studies of memory deficits in schizophrenia are far from universal. However, the current literature does suggest that alterations are not isolated to a few brain regions, but are characterized by abnormalities within large-scale brain networks.

  12. MRI of Creutzfeldt-Jakob disease: Imaging features and recommended MRI protocol

    Energy Technology Data Exchange (ETDEWEB)

    Collie, D.A.; Sellar, R.J.; Zeidler, M.; Colchester, A.C.F.; Knight, R.; Will, R.G

    2001-09-01

    Creutzfeldt-Jakob Disease (CJD) is a rare, progressive and invariably fatal neurodegenerative disease characterized by specific histopathological features. Of the four subtypes of CJD described, the commonest is sporadic CJD (sCJD). More recently, a new clinically distinct form of the disease affecting younger patients, known as variant CJD (vCJD), has been identified, and this has been causally linked to the bovine spongiform encephalopathy (BSE) agent in cattle. Characteristic appearances on magnetic resonance imaging (MRI) have been identified in several forms of CJD; sCJD may be associated with high signal changes in the putamen and caudate head and vCJD is usually associated with hyperintensity of the pulvinar (posterior nuclei) of the thalamus. These appearances and other imaging features are described in this article. Using appropriate clinical and radiological criteria and tailored imaging protocols, MRI plays an important part in the in vivodiagnosis of this disease. Collie, D.A. et al. (2001)

  13. MRI of Creutzfeldt-Jakob disease: Imaging features and recommended MRI protocol

    International Nuclear Information System (INIS)

    Collie, D.A.; Sellar, R.J.; Zeidler, M.; Colchester, A.C.F.; Knight, R.; Will, R.G.

    2001-01-01

    Creutzfeldt-Jakob Disease (CJD) is a rare, progressive and invariably fatal neurodegenerative disease characterized by specific histopathological features. Of the four subtypes of CJD described, the commonest is sporadic CJD (sCJD). More recently, a new clinically distinct form of the disease affecting younger patients, known as variant CJD (vCJD), has been identified, and this has been causally linked to the bovine spongiform encephalopathy (BSE) agent in cattle. Characteristic appearances on magnetic resonance imaging (MRI) have been identified in several forms of CJD; sCJD may be associated with high signal changes in the putamen and caudate head and vCJD is usually associated with hyperintensity of the pulvinar (posterior nuclei) of the thalamus. These appearances and other imaging features are described in this article. Using appropriate clinical and radiological criteria and tailored imaging protocols, MRI plays an important part in the in vivodiagnosis of this disease. Collie, D.A. et al. (2001)

  14. Multi-modal image registration: matching MRI with histology

    Science.gov (United States)

    Alic, Lejla; Haeck, Joost C.; Klein, Stefan; Bol, Karin; van Tiel, Sandra T.; Wielopolski, Piotr A.; Bijster, Magda; Niessen, Wiro J.; Bernsen, Monique; Veenland, Jifke F.; de Jong, Marion

    2010-03-01

    Spatial correspondence between histology and multi sequence MRI can provide information about the capabilities of non-invasive imaging to characterize cancerous tissue. However, shrinkage and deformation occurring during the excision of the tumor and the histological processing complicate the co registration of MR images with histological sections. This work proposes a methodology to establish a detailed 3D relation between histology sections and in vivo MRI tumor data. The key features of the methodology are a very dense histological sampling (up to 100 histology slices per tumor), mutual information based non-rigid B-spline registration, the utilization of the whole 3D data sets, and the exploitation of an intermediate ex vivo MRI. In this proof of concept paper, the methodology was applied to one tumor. We found that, after registration, the visual alignment of tumor borders and internal structures was fairly accurate. Utilizing the intermediate ex vivo MRI, it was possible to account for changes caused by the excision of the tumor: we observed a tumor expansion of 20%. Also the effects of fixation, dehydration and histological sectioning could be determined: 26% shrinkage of the tumor was found. The annotation of viable tissue, performed in histology and transformed to the in vivo MRI, matched clearly with high intensity regions in MRI. With this methodology, histological annotation can be directly related to the corresponding in vivo MRI. This is a vital step for the evaluation of the feasibility of multi-spectral MRI to depict histological groundtruth.

  15. AUTOMATED CLASSIFICATION AND SEGREGATION OF BRAIN MRI IMAGES INTO IMAGES CAPTURED WITH RESPECT TO VENTRICULAR REGION AND EYE-BALL REGION

    Directory of Open Access Journals (Sweden)

    C. Arunkumar

    2014-05-01

    Full Text Available Magnetic Resonance Imaging (MRI images of the brain are used for detection of various brain diseases including tumor. In such cases, classification of MRI images captured with respect to ventricular and eye ball regions helps in automated location and classification of such diseases. The methods employed in the paper can segregate the given MRI images of brain into images of brain captured with respect to ventricular region and images of brain captured with respect to eye ball region. First, the given MRI image of brain is segmented using Particle Swarm Optimization (PSO algorithm, which is an optimized algorithm for MRI image segmentation. The algorithm proposed in the paper is then applied on the segmented image. The algorithm detects whether the image consist of a ventricular region or an eye ball region and classifies it accordingly.

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... provides detailed images of blood vessels in the brain—often without the need for contrast material. See the MRA page for more information. MRI can detect stroke at a very early stage by mapping the motion of water molecules in the tissue. ...

  17. Study on localization diagnosis with SPECT rCBF image in childhood epilepsy: in comparison with EEG and MRI findings

    International Nuclear Information System (INIS)

    Wu Meiqian; Tang Jihong; Wu Jinchang; Shi Yizhen

    1999-01-01

    Objective: To evaluate the diagnostic value of SPECT rCBF imaging in localization of childhood epileptic foci. Methods: rCBF imaging was performed in 74 epileptic patients not in seizure and 10 epileptic patients right in seizure. EEG was performed in 84, MRI in 67 of the subjects mentioned above. All the results of three modalities were compared with each other. Results: The highest positive rate (82.14%) was found in SPECT rCBF imaging, the positive rate in EEG or MRI was 71.43 or 47.76%. The epileptic foci localized by EEG (60 abnormalities) and by MRI (32 abnormalities) were 70.59% or 58.82% in concordance with those by SPECT, respectively. Conclusions: SPECT rCBF imaging is a sensitive and effective method for epileptic foci localization. It may have some advantages over EEG and MRI in detecting and localizing epileptic foci. However, abnormal SPECT areas may cover some abnormalities which do not belong to epileptic category. A combination of these three methods (SPECT, EEG and MRI) will improve the positive rate and accuracy for localizing

  18. Clinically relevant magnetic resonance imaging (MRI) findings in ...

    African Journals Online (AJOL)

    Background: Shoulder pain is the most common and well-documented site of musculoskeletal pain in elite swimmers. Structural abnormalities on magnetic resonance imaging (MRI) of elite swimmers' symptomatic shoulders are common. Little has been documented about the association between MRI findings in the ...

  19. Studies on improvement of diagnosis of neurosurgical lesions by magnetic resonance imaging (MRI), 2; Advantages of MRI on diagnosis of parasellar lesions and comparison with X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Kotoyuki (Kagoshima Univ. (Japan). Faculty of Medicine)

    1989-05-01

    Findings of magnetic resonance (MRI) imaging in 46 patients with sellar or parasellar mass were reviewed and compared with those of concurrently available X-ray CT. Intrasellar contents, the hypothalamic pituitary region, adjacent brain stem, optic nerves, and the surrounding cerebrospinal fluid were clearly depicted on T1-weighted images. The cavernous sinus and blood vessels, including the Willis circle, were visualized on T2-weighted images. In detecting pituitary macroadenoma, MRI seemed to be the most userful modality, because it was superior to CT in identifying abnormal changes of the infundibulum, diaphragma sellae, cavernous sinus and optic chiasm. Macroadenoma of the pituitary gland was usually isointense to the normal cerebral cortex on T1- and T2-weighted images. T1- and T2-weighted relaxation times for pituitary adenoma were slightly prolonged. The normal pituitary gland was distinguishable from adenomatous tissues. For microadenoma, MRI failed to show lesions or erosion of the sellar floor. Craniopharyngioma, meningioma of the tuberculum sellae, hypothalamic tumor, such as glioma and germinoma, and the other parasellar masses were clearly visualized on MRI. MRI was superior to CT in detecting tumor and its involvement, but inferior in detecting presence of calcification. T1-weighted imaging was useful in identifing the presence of intratumoral hemorrhage. Cysts of craniopharyngioma had various appearances on T1-weighted images. High signal cyst intensity corresponded to a high cholesterol content or the presence of methemoglobin. MRI depicted empty sella. The intrasellar content had the same appearance as that of the cerebrospinal fluid space, and the flattened pituitary gland and pituitary stalk were detected on T1-weighted images. (N.K.).

  20. Diffusion-weighted imaging and dynamic contrast-enhanced MRI of experimental breast cancer bone metastases – A correlation study with histology

    Energy Technology Data Exchange (ETDEWEB)

    Merz, Maximilian [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg (Germany); Seyler, Lisa; Bretschi, Maren; Semmler, Wolfhard [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Bäuerle, Tobias, E-mail: tobias.baeuerle@uk-erlangen.de [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Institute of Radiology, University Medical Center Erlangen, Palmsanlage 5, 90154 Erlangen (Germany)

    2015-04-15

    Purpose: To validate imaging parameters from diffusion-weighted imaging and dynamic contrast-enhanced MRI with immunohistology and to non-invasively assess microstructure of experimental breast cancer bone metastases. Materials and methods: Animals bearing breast cancer bone metastases were imaged in a clinical 1.5 T MRI scanner. HASTE sequences were performed to calculate apparent diffusion coefficients. Saturation recovery turbo FLASH sequences were conducted while infusing 0.1 mmol/l Gd–DTPA for dynamic contrast-enhanced MRI to quantify parameters amplitude A and exchange rate constant k{sub ep}. After imaging, bone metastases were analyzed immunohistologically. Results: We found correlations of the apparent diffusion coefficients from diffusion-weighted imaging with tumor cellularity as assessed with cell nuclei staining. Histological vessel maturity was correlated negatively with parameters A and k{sub ep} from dynamic contrast-enhanced MRI. Tumor size correlated inversely with cell density and vessel permeability as well as positively with mean vessel calibers. Parameters from the rim of bone metastases differed significantly from values of the center. Conclusion: In vivo diffusion-weighted imaging and dynamic contrast-enhanced MRI in experimental bone metastases provide information about tumor cellularity and vascularity and correlate well with immunohistology.

  1. Learning Computational Models of Video Memorability from fMRI Brain Imaging.

    Science.gov (United States)

    Han, Junwei; Chen, Changyuan; Shao, Ling; Hu, Xintao; Han, Jungong; Liu, Tianming

    2015-08-01

    Generally, various visual media are unequally memorable by the human brain. This paper looks into a new direction of modeling the memorability of video clips and automatically predicting how memorable they are by learning from brain functional magnetic resonance imaging (fMRI). We propose a novel computational framework by integrating the power of low-level audiovisual features and brain activity decoding via fMRI. Initially, a user study experiment is performed to create a ground truth database for measuring video memorability and a set of effective low-level audiovisual features is examined in this database. Then, human subjects' brain fMRI data are obtained when they are watching the video clips. The fMRI-derived features that convey the brain activity of memorizing videos are extracted using a universal brain reference system. Finally, due to the fact that fMRI scanning is expensive and time-consuming, a computational model is learned on our benchmark dataset with the objective of maximizing the correlation between the low-level audiovisual features and the fMRI-derived features using joint subspace learning. The learned model can then automatically predict the memorability of videos without fMRI scans. Evaluations on publically available image and video databases demonstrate the effectiveness of the proposed framework.

  2. The diagnostic and therapeutic impact of MRI: an observational multi-centre study

    International Nuclear Information System (INIS)

    Hollingworth, William; Todd, Christopher J.; Bell, Matthew I.; Arafat, Qais; Girling, Simon; Karia, Kanti R.; Dixon, Adrian K.

    2000-01-01

    AIM: To provide information about the diagnostic and therapeutic impact of magnetic resonance imaging (MRI) and to compare the findings across diagnostic groups. MATERIALS AND METHODS: A prospective, observational study of 2017 consecutive referrals for MRI of the head, spine or knee at four imaging centres. Clinicians completed questionnaires before MRI stating initial diagnoses, diagnostic confidence and treatment plans. After imaging, a second questionnaire evaluated clinicians' revised diagnosis and treatment plans in the light of imaging findings. Patients were grouped into nine diagnostic categories for analysis. Comparison between pre- and post-imaging was used to assess the diagnostic and therapeutic impact of MRI. RESULTS: In seven of nine diagnostic groups MRI findings were associated with a diagnostic impact. Diagnoses were revised or discarded following normal MR findings and diagnostic confidence was increased by confirmative MR findings. There was no statistically significant diagnostic impact for suspected pituitary or cerebello-pontine angle lesions. In five of nine diagnostic groups (knee meniscus, knee ligament, multiple sclerosis, lumbar and cervical spine) MRI findings had a clear impact on treatment plans. CONCLUSION: This study demonstrates that in most diagnostic categories, MRI influences diagnosis and treatment. However, experimental studies are needed to prove that these diagnostic and therapeutic impacts lead to improved health. Hollingworth (2000)

  3. The diagnostic and therapeutic impact of MRI: an observational multi-centre study

    Energy Technology Data Exchange (ETDEWEB)

    Hollingworth, William; Todd, Christopher J.; Bell, Matthew I.; Arafat, Qais; Girling, Simon; Karia, Kanti R.; Dixon, Adrian K

    2000-11-01

    AIM: To provide information about the diagnostic and therapeutic impact of magnetic resonance imaging (MRI) and to compare the findings across diagnostic groups. MATERIALS AND METHODS: A prospective, observational study of 2017 consecutive referrals for MRI of the head, spine or knee at four imaging centres. Clinicians completed questionnaires before MRI stating initial diagnoses, diagnostic confidence and treatment plans. After imaging, a second questionnaire evaluated clinicians' revised diagnosis and treatment plans in the light of imaging findings. Patients were grouped into nine diagnostic categories for analysis. Comparison between pre- and post-imaging was used to assess the diagnostic and therapeutic impact of MRI. RESULTS: In seven of nine diagnostic groups MRI findings were associated with a diagnostic impact. Diagnoses were revised or discarded following normal MR findings and diagnostic confidence was increased by confirmative MR findings. There was no statistically significant diagnostic impact for suspected pituitary or cerebello-pontine angle lesions. In five of nine diagnostic groups (knee meniscus, knee ligament, multiple sclerosis, lumbar and cervical spine) MRI findings had a clear impact on treatment plans. CONCLUSION: This study demonstrates that in most diagnostic categories, MRI influences diagnosis and treatment. However, experimental studies are needed to prove that these diagnostic and therapeutic impacts lead to improved health. Hollingworth (2000)

  4. Precise fusion of MRI and dual energy 111In WBC/99mTc HDP SPECT/CT in the diabetic foot using companion CT: an example of SPECT/MRI imaging

    International Nuclear Information System (INIS)

    Knešaurek, K.; Heiba, S.; Kolker, D.; Vatti, S.

    2015-01-01

    The purpose of our study was to correctly fuse MRI and SPECT 111 In WBC and 99m Tc HDP images using companion CT images. The fused images could be used to assess proper surgical approach in treatment of the diabetic foot. Nine patients who had dual energy 111 In WBC/ 99 m Tc HDP SPECT/CT and MRI studies within a week were investigated in an ongoing project. A GE Infinia SPECT/CT camera and Siemens MAGNETOM 1.5T MR system were used in this study. First, the MRI and corresponding CT images were coregistrated using a transformation based on normalized mutual information. The transformation was saved and used for MRI and 111 In WBC/ 99 m Tc HDP SPECT fusion. A Jaszczak phantom study was also performed in order to estimate accuracy of MRI/ SPECT fusion. The Jaszczak phantom study with 3.7 MBq 111 In hot sphere showed that MRI/SPECT alignment using the approach described above produced registration with 0.7±0.4 mm accuracy in all three dimensions (3D). The nine clinical cases were visually evaluated and showed 1-2 mm 3D fusion accuracy. MRI provides almost perfect anatomy of soft tissue and bony structures but it may exaggerate the extent of infection. 111 In WBC/ 99 m Tc HDP SPECT imaging is more accurate for infection detection but lacks anatomical reference. Combination of these images proved an essential adjunct to diagnosis. A clinical utility of the approach is illustrated in two clinical examples. In conclusion, the CT in dual energy 111 In WBC/ 99 m Tc HDP SPECT/CT studies can be used to accurately fuse and compare 111 In WBC/ 99 m Tc HDP SPECT and MRI images of the diabetic foot. This can significantly help in conservative treatment planning and limb salvage procedures in treatment of diabetic foot infections.

  5. Automatic delineation of brain regions on MRI and PET images from the pig

    DEFF Research Database (Denmark)

    Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M

    2018-01-01

    : Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. NEW METHOD: A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer....... RESULTS: MRI and [11C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same...... the MRI template with individual MRI images and 0.92±0.26mm using the PET template with individual [11C]Cimbi-36 PET images. We tested the automatic procedure by assessing eleven PET radiotracers with different kinetics and spatial distributions by using perfusion-weighted images of early PET time frames...

  6. Hemorrhage detection in MRI brain images using images features

    Science.gov (United States)

    Moraru, Luminita; Moldovanu, Simona; Bibicu, Dorin; Stratulat (Visan), Mirela

    2013-11-01

    The abnormalities appear frequently on Magnetic Resonance Images (MRI) of brain in elderly patients presenting either stroke or cognitive impairment. Detection of brain hemorrhage lesions in MRI is an important but very time-consuming task. This research aims to develop a method to extract brain tissue features from T2-weighted MR images of the brain using a selection of the most valuable texture features in order to discriminate between normal and affected areas of the brain. Due to textural similarity between normal and affected areas in brain MR images these operation are very challenging. A trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection, but they could be detected by using a texture analysis. The proposed analysis is developed in five steps: i) in the pre-processing step: the de-noising operation is performed using the Daubechies wavelets; ii) the original images were transformed in image features using the first order descriptors; iii) the regions of interest (ROIs) were cropped from images feature following up the axial symmetry properties with respect to the mid - sagittal plan; iv) the variation in the measurement of features was quantified using the two descriptors of the co-occurrence matrix, namely energy and homogeneity; v) finally, the meaningful of the image features is analyzed by using the t-test method. P-value has been applied to the pair of features in order to measure they efficacy.

  7. SPECT data acquisition and image reconstruction in a stationary small animal SPECT/MRI system

    Science.gov (United States)

    Xu, Jingyan; Chen, Si; Yu, Jianhua; Meier, Dirk; Wagenaar, Douglas J.; Patt, Bradley E.; Tsui, Benjamin M. W.

    2010-04-01

    The goal of the study was to investigate data acquisition strategies and image reconstruction methods for a stationary SPECT insert that can operate inside an MRI scanner with a 12 cm bore diameter for simultaneous SPECT/MRI imaging of small animals. The SPECT insert consists of 3 octagonal rings of 8 MR-compatible CZT detectors per ring surrounding a multi-pinhole (MPH) collimator sleeve. Each pinhole is constructed to project the field-of-view (FOV) to one CZT detector. All 24 pinholes are focused to a cylindrical FOV of 25 mm in diameter and 34 mm in length. The data acquisition strategies we evaluated were optional collimator rotations to improve tomographic sampling; and the image reconstruction methods were iterative ML-EM with and without compensation for the geometric response function (GRF) of the MPH collimator. For this purpose, we developed an analytic simulator that calculates the system matrix with the GRF models of the MPH collimator. The simulator was used to generate projection data of a digital rod phantom with pinhole aperture sizes of 1 mm and 2 mm and with different collimator rotation patterns. Iterative ML-EM reconstruction with and without GRF compensation were used to reconstruct the projection data from the central ring of 8 detectors only, and from all 24 detectors. Our results indicated that without GRF compensation and at the default design of 24 projection views, the reconstructed images had significant artifacts. Accurate GRF compensation substantially improved the reconstructed image resolution and reduced image artifacts. With accurate GRF compensation, useful reconstructed images can be obtained using 24 projection views only. This last finding potentially enables dynamic SPECT (and/or MRI) studies in small animals, one of many possible application areas of the SPECT/MRI system. Further research efforts are warranted including experimentally measuring the system matrix for improved geometrical accuracy, incorporating the co

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us ... the equipment look like? How does the procedure work? How is the ... use to diagnose medical conditions. MRI uses a powerful magnetic field, radio frequency ...

  9. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    Science.gov (United States)

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  10. CT and MRI techniques for imaging around orthopedic hardware

    Energy Technology Data Exchange (ETDEWEB)

    Do, Thuy Duong; Skornitzke, Stephan; Weber, Marc-Andre [Heidelberg Univ. (Germany). Dept. of Clinical Radiology; Sutter, Reto [Uniklinik Balgrist, Zurich (Switzerland). Radiology

    2018-01-15

    Orthopedic hardware impairs image quality in cross-sectional imaging. With an increasing number of orthopedic implants in an aging population, the need to mitigate metal artifacts in computed tomography and magnetic resonance imaging is becoming increasingly relevant. This review provides an overview of the major artifacts in CT and MRI and state-of-the-art solutions to improve image quality. All steps of image acquisition from device selection, scan preparations and parameters to image post-processing influence the magnitude of metal artifacts. Technological advances like dual-energy CT with the possibility of virtual monochromatic imaging (VMI) and new materials offer opportunities to further reduce artifacts in CT and MRI. Dedicated metal artifact reduction sequences contain algorithms to reduce artifacts and improve imaging of surrounding tissue and are essential tools in orthopedic imaging to detect postoperative complications in early stages.

  11. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study.

    Directory of Open Access Journals (Sweden)

    Wen Miao

    Full Text Available To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1 patients using multimodal MRI imaging.T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender-matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls.Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus.CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1.

  12. Magnetic resonance imaging (MRI) of congenital cardiovascular malformations

    International Nuclear Information System (INIS)

    Sakakibara, Makoto; Kobayashi, Shirou; Imai, Hitoshi; Watanabe, Shigeru; Masuda, Yoshiaki; Inagaki, Yoshiaki; Morita, Huminori; Uematsu, Sadao; Arimizu, Noboru

    1986-01-01

    In order to determine the value of MRI in diagnosing congenital cardiovascular malformations, MR Images were obtained in 25 adult patients with congenital cardiovascular malformations. Gated MRI detected all of 13 atrial septal defects, and all of 4 ventricular septal defects, but ungated MRI detected none of 3 atrial septal defects. Other congenital cardiovascular malformations (2 with Ebstein's disease, 1 with Fallot's pentalogy, and 1 with Pulmonary stenosis) were well visualized. Vascular malformations (1 with Patent ducts arteriosus, 1 with Supravalvelar aortic stenosis, 1 with Coarctation of Aorta, 1 with Right Aortic Arch) were well visualized in all of 7 patients by ungated MRI. MRI was a valuable noninvasive method of diagnosing congenital heart disease. (author)

  13. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    Science.gov (United States)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  14. Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI group

    DEFF Research Database (Denmark)

    Rudwaleit, M; Jurik, A G; Hermann, K-G A

    2009-01-01

    BACKGROUND: Magnetic resonance imaging (MRI) of sacroiliac joints has evolved as the most relevant imaging modality for diagnosis and classification of early axial spondyloarthritis (SpA) including early ankylosing spondylitis. OBJECTIVES: To identify and describe MRI findings in sacroiliitis and...... relevant for sacroiliitis have been defined by consensus by a group of rheumatologists and radiologists. These definitions should help in applying correctly the imaging feature "active sacroiliitis by MRI" in the new ASAS classification criteria for axial SpA.......BACKGROUND: Magnetic resonance imaging (MRI) of sacroiliac joints has evolved as the most relevant imaging modality for diagnosis and classification of early axial spondyloarthritis (SpA) including early ankylosing spondylitis. OBJECTIVES: To identify and describe MRI findings in sacroiliitis...... conditions which may mimic SpA. Descriptions of the pathological findings and technical requirements for the appropriate acquisition were formulated. In a consensual approach MRI findings considered to be essential for sacroiliitis were defined. RESULTS: Active inflammatory lesions such as bone marrow oedema...

  15. Magnetic Resonance Medical Imaging (MRI)-from the inside

    Science.gov (United States)

    Bottomley, Paul

    There are about 36,000 magnetic resonance imaging (MRI) scanners in the world, with annual sales of 2500. In the USA about 34 million MRI studies are done annually, and 60-70% of all scanners operate at 1.5 Tesla (T). In 1982 there were none. How MRI got to be-and how it got to1.5T is the subject of this talk. Its an insider's view-mine-as a physics PhD student at Nottingham University when MRI (almost) began, through to the invention of the 1.5T clinical MRI scanner at GE's research center in Schenectady NY.Before 1977 all MRI was done on laboratory nuclear magnetic resonance instruments used for analyzing small specimens via chemical shift spectroscopy (MRS). It began with Lauterbur's 1973 observation that turning up the spectrometer's linear gradient magnetic field, generated a spectrum that was a 1D projection of the sample in the direction of the gradient. What followed in the 70's was the development of 3 key methods of 3D spatial localization that remain fundamental to MRI today.As the 1980's began, the once unimaginable prospect of upscaling from 2cm test-tubes to human body-sized magnets, gradient and RF transmit/receive systems, was well underway, evolving from arm-sized, to whole-body electromagnet-based systems operating at plan was to drop the field to 0.3T. We opted to make MRI work at 1.5T instead. The result was a scanner that could study both anatomy and metabolism with a SNR way beyond its lower field rivals. MRI's success truly reflects the team efforts of many: from the NMR physics to the engineering of magnets, gradient and RF systems.

  16. The use of MRI and CT in Imaging Occult Hip Fractures

    Directory of Open Access Journals (Sweden)

    Obadă B.

    2014-11-01

    Full Text Available Diagnosis of hip fractures is particularly important due to the high dependence on the integrity of this structure for people to function in their daily lives. Left unrecognized, patients face increasing morbidity and mortality as time from the original injury lengthens. A delay of just 2 days in surgical treatment for an acute hip fracture doubles mortality. In addition, an unrecognized non-displaced fracture may displace, requiring surgery of much higher risk. This may be part of the reason that the most frequent lawsuit against Emergency Physicians is for missed orthopedic injury. We reviewed the use of MRI and CT for occult hip fractures (OHF detection at a major urban trauma unit. Our study is a retrospective review. Inclusion criteria: all patients presenting to the Emergency Clinical Hospital of Constanta with a suspected, posttraumatic, occult hip fracture, over a 5 years period were included. All patients had negative initial radiographs and underwent further imaging with either CT or MRI. A total of 185 cases meeting the inclusion criteria were identified. 72 occult hip fractures were detected with both imaging modalities. Although MRI certainly enables greater image detail, in our experience both modalities are able to provide satisfactory fracture characterization. The choice of imaging should be determined by availability and indication. MRI provides superior imaging of soft tissue but is less sensitive for degenerative changes in presence of bone edema.

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... types of clips used for brain aneurysms some types of metal coils placed within blood vessels nearly all cardiac defibrillators and pacemakers You ... called MR angiography (MRA) provides detailed images of blood vessels in the ... the opening of certain types of MRI machines. The presence of an implant ...

  18. Brain tumor segmentation using holistically nested neural networks in MRI images.

    Science.gov (United States)

    Zhuge, Ying; Krauze, Andra V; Ning, Holly; Cheng, Jason Y; Arora, Barbara C; Camphausen, Kevin; Miller, Robert W

    2017-10-01

    Gliomas are rapidly progressive, neurologically devastating, largely fatal brain tumors. Magnetic resonance imaging (MRI) is a widely used technique employed in the diagnosis and management of gliomas in clinical practice. MRI is also the standard imaging modality used to delineate the brain tumor target as part of treatment planning for the administration of radiation therapy. Despite more than 20 yr of research and development, computational brain tumor segmentation in MRI images remains a challenging task. We are presenting a novel method of automatic image segmentation based on holistically nested neural networks that could be employed for brain tumor segmentation of MRI images. Two preprocessing techniques were applied to MRI images. The N4ITK method was employed for correction of bias field distortion. A novel landmark-based intensity normalization method was developed so that tissue types have a similar intensity scale in images of different subjects for the same MRI protocol. The holistically nested neural networks (HNN), which extend from the convolutional neural networks (CNN) with a deep supervision through an additional weighted-fusion output layer, was trained to learn the multiscale and multilevel hierarchical appearance representation of the brain tumor in MRI images and was subsequently applied to produce a prediction map of the brain tumor on test images. Finally, the brain tumor was obtained through an optimum thresholding on the prediction map. The proposed method was evaluated on both the Multimodal Brain Tumor Image Segmentation (BRATS) Benchmark 2013 training datasets, and clinical data from our institute. A dice similarity coefficient (DSC) and sensitivity of 0.78 and 0.81 were achieved on 20 BRATS 2013 training datasets with high-grade gliomas (HGG), based on a two-fold cross-validation. The HNN model built on the BRATS 2013 training data was applied to ten clinical datasets with HGG from a locally developed database. DSC and sensitivity of

  19. A survey of MRI-based medical image analysis for brain tumor studies

    Science.gov (United States)

    Bauer, Stefan; Wiest, Roland; Nolte, Lutz-P.; Reyes, Mauricio

    2013-07-01

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines.

  20. A survey of MRI-based medical image analysis for brain tumor studies

    International Nuclear Information System (INIS)

    Bauer, Stefan; Nolte, Lutz-P; Reyes, Mauricio; Wiest, Roland

    2013-01-01

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines. (topical review)

  1. Development and application of PET-MRI image fusion technology

    International Nuclear Information System (INIS)

    Song Jianhua; Zhao Jinhua; Qiao Wenli

    2011-01-01

    The emerging and growing in popularity of PET-CT scanner brings us the convenience and cognizes the advantages such as diagnosis, staging, curative effect evaluation and prognosis for malignant tumor. And the PET-MRI installing maybe a new upsurge when the machine gradually mature, because of the MRI examination without the radiation exposure and with the higher soft tissue resolution. This paper summarized the developing course of image fusion technology and some researches of clinical application about PET-MRI at present, in order to help people to understand the functions and know its wide application of the upcoming new instrument, mainly focuses the application on the central nervous system and some soft tissue lesions. And before PET-MRI popularization, people can still carry out some researches of various image fusion and clinical application on the current equipment. (authors)

  2. Use of dynamic images in radiology education: Movies of CT and MRI in the anatomy classroom.

    Science.gov (United States)

    Jang, Hye Won; Oh, Chang-Seok; Choe, Yeon Hyeon; Jang, Dong Su

    2018-04-19

    Radiology education is a key component in many preclinical anatomy courses. However, the reported effectiveness of radiology education within such anatomy classrooms has varied. This study was conducted to determine if a novel educational method using dynamic images of movies of computed tomography (CT) and magnetic resonance imaging (MRI) was effective in radiology education during a preclinical anatomy course, aided by clay modeling, specific hand gestures (digit anatomy), and reports from dissection findings uploaded to the anatomy course website (digital reports). Feedback surveys using a five-point Likert scale were administered to better clarify students' opinions regarding their understanding of CT and MRI of anatomical structures, as well as to determine if such preclinical radiology education was helpful in their clinical studies. After completion of the anatomy course taught with dynamic images of CT and MRI, most students demonstrated an adequate understanding of basic CT and MR images. Additionally, students in later clinical years generally believed that their study of radiologic images during the preclinical anatomy course was helpful for their clinical studies and clerkship rotations. Moreover, student scores on imaging anatomy examinations demonstrated meaningful improvements in performance after using dynamic images from movies of CT and MRI. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.

  3. Prediction of standard-dose brain PET image by using MRI and low-dose brain [{sup 18}F]FDG PET images

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jiayin [School of Electronics Engineering, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China and IDEA Laboratory, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Gao, Yaozong [IDEA Laboratory, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Shi, Feng [IDEA Laboratory, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Lalush, David S. [Joint UNC-NCSU Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Lin, Weili [MRI Laboratory, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Shen, Dinggang, E-mail: dgshen@med.unc.edu [IDEA Laboratory, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2015-09-15

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [{sup 18}F]FDG PET image by using a low-dose brain [{sup 18}F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [{sup 18}F]FDG PET image by low-dose brain [{sup 18}F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [{sup 18}F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [{sup 18}F]FDG PET

  4. Prediction of standard-dose brain PET image by using MRI and low-dose brain ["1"8F]FDG PET images

    International Nuclear Information System (INIS)

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S.; Lin, Weili; Shen, Dinggang

    2015-01-01

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain ["1"8F]FDG PET image by using a low-dose brain ["1"8F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain ["1"8F]FDG PET image by low-dose brain ["1"8F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain ["1"8F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain ["1"8F]FDG PET image and substantially

  5. Multimodality Functional Imaging in Radiation Therapy Planning: Relationships between Dynamic Contrast-Enhanced MRI, Diffusion-Weighted MRI, and 18F-FDG PET

    Directory of Open Access Journals (Sweden)

    Moisés Mera Iglesias

    2015-01-01

    Full Text Available Objectives. Biologically guided radiotherapy needs an understanding of how different functional imaging techniques interact and link together. We analyse three functional imaging techniques that can be useful tools for achieving this objective. Materials and Methods. The three different imaging modalities from one selected patient are ADC maps, DCE-MRI, and 18F-FDG PET/CT, because they are widely used and give a great amount of complementary information. We show the relationship between these three datasets and evaluate them as markers for tumour response or hypoxia marker. Thus, vascularization measured using DCE-MRI parameters can determine tumour hypoxia, and ADC maps can be used for evaluating tumour response. Results. ADC and DCE-MRI include information from 18F-FDG, as glucose metabolism is associated with hypoxia and tumour cell density, although 18F-FDG includes more information about the malignancy of the tumour. The main disadvantage of ADC maps is the distortion, and we used only low distorted regions, and extracellular volume calculated from DCE-MRI can be considered equivalent to ADC in well-vascularized areas. Conclusion. A dataset for achieving the biologically guided radiotherapy must include a tumour density study and a hypoxia marker. This information can be achieved using only MRI data or only PET/CT studies or mixing both datasets.

  6. Image fusion between whole body FDG PET images and whole body MRI images using a full-automatic mutual information-based multimodality image registration software

    International Nuclear Information System (INIS)

    Uchida, Yoshitaka; Nakano, Yoshitada; Fujibuchi, Toshiou; Isobe, Tomoko; Kazama, Toshiki; Ito, Hisao

    2006-01-01

    We attempted image fusion between whole body PET and whole body MRI of thirty patients using a full-automatic mutual information (MI) -based multimodality image registration software and evaluated accuracy of this method and impact of the coregistrated imaging on diagnostic accuracy. For 25 of 30 fused images in body area, translating gaps were within 6 mm in all axes and rotating gaps were within 2 degrees around all axes. In head and neck area, considerably much gaps caused by difference of head inclination at imaging occurred in 16 patients, however these gaps were able to decrease by fused separately. In 6 patients, diagnostic accuracy using PET/MRI fused images was superior compared by PET image alone. This work shows that whole body FDG PET images and whole body MRI images can be automatically fused using MI-based multimodality image registration software accurately and this technique can add useful information when evaluating FDG PET images. (author)

  7. Testing the quality of images for permanent magnet desktop MRI systems using specially designed phantoms.

    Science.gov (United States)

    Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng

    2013-12-21

    Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.

  8. Testing the quality of images for permanent magnet desktop MRI systems using specially designed phantoms

    International Nuclear Information System (INIS)

    Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng

    2013-01-01

    Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards. (paper)

  9. An image acquisition and registration strategy for the fusion of hyperpolarized helium-3 MRI and x-ray CT images of the lung

    Science.gov (United States)

    Ireland, Rob H.; Woodhouse, Neil; Hoggard, Nigel; Swinscoe, James A.; Foran, Bernadette H.; Hatton, Matthew Q.; Wild, Jim M.

    2008-11-01

    The purpose of this ethics committee approved prospective study was to evaluate an image acquisition and registration protocol for hyperpolarized helium-3 magnetic resonance imaging (3He-MRI) and x-ray computed tomography. Nine patients with non-small cell lung cancer (NSCLC) gave written informed consent to undergo a free-breathing CT, an inspiration breath-hold CT and a 3D ventilation 3He-MRI in CT position using an elliptical birdcage radiofrequency (RF) body coil. 3He-MRI to CT image fusion was performed using a rigid registration algorithm which was assessed by two observers using anatomical landmarks and a percentage volume overlap coefficient. Registration of 3He-MRI to breath-hold CT was more accurate than to free-breathing CT; overlap 82.9 ± 4.2% versus 59.8 ± 9.0% (p < 0.001) and mean landmark error 0.75 ± 0.24 cm versus 1.25 ± 0.60 cm (p = 0.002). Image registration is significantly improved by using an imaging protocol that enables both 3He-MRI and CT to be acquired with similar breath holds and body position through the use of a birdcage 3He-MRI body RF coil and an inspiration breath-hold CT. Fusion of 3He-MRI to CT may be useful for the assessment of patients with lung diseases.

  10. Imaging of abdominal tumours: CT or MRI?

    International Nuclear Information System (INIS)

    Olsen, Oeystein E.

    2009-01-01

    The scope of this review is to discuss a theoretical approach to imaging policy, particularly in the perspective of radiation risk reduction. Decisions are ideally driven by empirical evidence about efficacy and risk, e.g., in classical hierarchical efficacy model. As a result of the paucity of empirical evidence (inevitable because of rapid technological development), a pragmatic model is needed. This should avoid overemphasis of factors that currently seem to hamper change, namely personal preference, local expertise, infrastructure, availability. Extrapolation of current general knowledge about CT and MRI demonstrates how a pragmatic approach can be applied in the real world with intermediate goals such as (1) channeling patients from CT to MRI, and (2) reducing CT-delivered radiation. Increased utilisation of MRI in body imaging requires optimisation of scan protocols and equipment, and, being a very operator-dependent modality, the active involvement of the radiologist. In CT dose reduction the main challenge is to benchmark the minimum radiation-dose requirement, and therefore the minimum required image quality that is diagnostically acceptable. As this will ultimately depend on pre-test likelihoods in institutional populations, it is difficult to issue general guidance, and local assessment remains a cornerstone in this effort. (orig.)

  11. The studies on the salivary scintigraphy and magnetic resonance imaging (MRI) in patients with Sjoegren's syndrome

    International Nuclear Information System (INIS)

    Ogawa, Yoshimi

    1997-01-01

    In order to establish more precise diagnostic criteria for the salivary gland disorder in patients with Sjoegren's syndrome (SS), the scintigraphic (SG) and magnetic resonance imaging (MRI) studies were performed on the salivary glands. The subjects consisted to 180 SS patients, 26 suspected of having SS and 27 normal subjects. Judging from the the grade 1.5 disorder which was set by our new grading of SG, the diagnostic sensitivity of SS was 80.6% and the specificity was 88.9%. This result was better than criteria reported in previous literature. The Speaman rank correlation coefficient of the grading of SG with the Saxon test was 0.56, with the gum test 0.47 and the focus score of the labial gland biopsy 0.40. There was a weak correlation of SG with other serologic tests such as the level of the gamma globulin, IgG and anti-Ro/SS-A autoantibody. The MRI was graded from 0 to 4 according to the change of the signal intensity and the pattern evaluated by T1- and T2-weighted images. There was a correlation of the MRI grading with SG, the focus score and the gum test. This result indicates that MRI is a useful tool to evaluate salivary gland disorders in SS patients. According to our results, a proposal of a revised criteria of salivary gland disorders in SS was presented. (author)

  12. MRI-based diagnostic imaging of the intratemporal facial nerve

    International Nuclear Information System (INIS)

    Kress, B.; Baehren, W.

    2001-01-01

    Detailed imaging of the five sections of the full intratemporal course of the facial nerve can be achieved by MRI and using thin tomographic section techniques and surface coils. Contrast media are required for tomographic imaging of pathological processes. Established methods are available for diagnostic evaluation of cerebellopontine angle tumors and chronic Bell's palsy, as well as hemifacial spasms. A method still under discussion is MRI for diagnostic evaluation of Bell's palsy in the presence of fractures of the petrous bone, when blood volumes in the petrous bone make evaluation even more difficult. MRI-based diagnostic evaluation of the idiopatic facial paralysis currently is subject to change. Its usual application cannot be recommended for routine evaluation at present. However, a quantitative analysis of contrast medium uptake of the nerve may be an approach to improve the prognostic value of MRI in acute phases of Bell's palsy. (orig./CB) [de

  13. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children.

    Science.gov (United States)

    Sreedharan, Ruma Madhu; Menon, Amitha C; James, Jija S; Kesavadas, Chandrasekharan; Thomas, Sanjeev V

    2015-03-01

    Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms--visual verb generation and word pair task--were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p laterality in children with a high degree of correlation between the two imaging modalities.

  14. A novel nitroreductase-enhanced MRI contrast agent and its potential application in bacterial imaging

    Directory of Open Access Journals (Sweden)

    Yun Liu

    2018-05-01

    Full Text Available Nitroreductases (NTRs are known to be able to metabolize nitro-substituted compounds in the presence of reduced nicotinamide adenine dinucleotide (NADH as an electron donor. NTRs are present in a wide range of bacterial genera and, to a lesser extent, in eukaryotes hypoxic tumour cells and tumorous tissues, which makes it an appropriate biomarker for an imaging target to detect the hypoxic status of cancer cells and potential bacterial infections. To evaluate the specific activation level of NTR, great efforts have been devoted to the development of fluorescent probes to detect NTR activities using fluorogenic methods to probe its behaviour in a cellular context; however, NTR-responsive MRI contrast agents are still by far underexplored. In this study, para-nitrobenzyl substituted T1-weighted magnetic resonance imaging (MRI contrast agent Gd-DOTA-PNB (probe 1 has been designed and explored for the possible detection of NTR. Our experimental results show that probe 1 could serve as an MRI-enhanced contrast agent for monitoring NTR activity. The in vitro response and mechanism of the NTR catalysed reduction of probe 1 have been investigated through LC–MS and MRI. Para-nitrobenzyl substituted probe 1 was catalytically reduced by NTR to the intermediate para-aminobenzyl substituted probe which then underwent a rearrangement elimination reaction to Gd-DOTA, generating the enhanced T1-weighted MR imaging. Further, LC–MS and MRI studies of living Escherichia coli have confirmed the NTR activity detection ability of probe 1 at a cellular level. This method may potentially be used for the diagnosis of bacterial infections. KEY WORDS: Nitroreductase, MRI contrast agent, Smart imaging probes, Bacterial imaging, Bacterial infection

  15. Initial clinical assessment of CT-MRI image fusion software in localization of the prostate for 3D conformal radiation therapy

    International Nuclear Information System (INIS)

    Kagawa, Kazufumi; Lee, W. Robert; Schultheiss, Timothy E.; Hunt, Margie A.; Shaer, Andrew H.; Hanks, Gerald E.

    1997-01-01

    Purpose: To assess the utility of image fusion software and compare MRI prostate localization with CT localization in patients undergoing 3D conformal radiation therapy of prostate cancer. Materials and Methods: After a phantom study was performed to ensure the accuracy of image fusion procedure, 22 prostate cancer patients had CT and MRI studies before the start of radiotherapy. Immobilization casts used during radiation treatment were also used for both imaging studies. After the clinical target volume (CTV) (prostate or prostate + seminal vesicles) was defined on CT, slices from the MRI study were reconstructed to precisely match the CT slices by identifying three common bony landmarks on each study. The CTV was separately defined on the matched MRI slices. Data related to the size and location of the prostate were compared between CT and MRI. The spatial relationship between the tip of urethrogram cone on CT and prostate apex seen on MRI was also estimated. Results: The phantom study showed the registration discrepancies between CT and MRI smaller than 1.0 mm in any pair in comparison. The patient study showed a mean image registration error of 0.9 (± 0.6) mm. The average prostate volume was 63.0 (± 25.8) cm 3 and 50.9 (± 22.9) cm 3 determined by CT and MRI, respectively. The difference in prostate location with the two studies usually differed at the base and at the apex of the prostate. On the transverse MRI, the prostate apex was situated 7.1 (± 4.5) mm dorsal and 15.1 (± 4.0) mm cephalad to the tip of urethrogram cone. Conclusions: CT-MRI image fusion study made it possible to compare the two modalities directly. MRI localization of the prostate is more accurate than CT, and indicates the distance from cone to apex is 15 mm. CT-MRI image fusion technique provides valuable supplements to CT technology for more precise targeting of the prostate cancer

  16. Clinical assessment of CT-MRI image fusion software in localization of the prostate for 3D conformal radiation therapy

    International Nuclear Information System (INIS)

    Kagawa, Kazufumi; Lee, W. Robert; Schultheiss, Timothy E.; Hunt, Margie A.; Shaer, Andrew H.; Hanks, Gerald E.

    1996-01-01

    Purpose: To assess the utility of image fusion software and compare MRI prostate localization with CT localization in patients undergoing 3D conformal radiation therapy of prostate cancer. Materials and Methods: After a phantom study was performed to ensure the accuracy of image fusion procedure, 22 prostate cancer patients had CT and MRI studies before the start of radiotherapy. Immobilization casts used during radiation treatment were also used for both imaging studies. After the clinical target volume (CTV) (prostate or prostate + seminal vesicles) was defined on CT, slices from MRI study were reconstructed to match precisely the corresponding CT slices by identifying three common bony landmarks on each study. The CTV was separately defined on the matched MRI slices. Data related to the size and location of the prostate were compared between CT and MRI. The spatial relationship between the tip of urethrogram cone on CT and prostate apex seen on MRI was also scrutinized. Results: The phantom study showed the registration discrepancies between CT and MRI smaller than 1.0 mm in any pair of comparison. The patient study showed mean image registration error of 0.9 (± 0.6) mm. The average prostate volume was 63.0 (± 25.8) cm 3 and 50.9 (± 22.9) cm 3 determined by CT and MRI respectively (Fig. 1). The difference in prostate location with the two studies most commonly differed at the base and at the apex of the prostate (Fig. 2). On transverse MRI, the prostate apex was situated 7.1 (± 4.5) mm dorsal and 15.1 (± 4.0) mm cephalad to the tip of urethrogram cone (Fig. 3). Conclusions: CT-MRI image fusion study made it possible to compare the two modalities directly. MRI localization of the prostate is more accurate than CT, and indicates the distance from cone to apex is 15 mm. In view of excellent treatment results obtained with current CT localization of the prostate, still it may not be wise to reduce target volume to that demonstrated on MRI

  17. Degeneration of pyramidal tract of MRI (magnetic resonance imaging)

    International Nuclear Information System (INIS)

    Yamagami, Tatsuhito; Harada, Noboru; Gotoh, Yasunobu; Imataka, Kiyoharu; Kinuta, Yuji; Okumura, Teizo; Niijima, Kyo; Taki, Waro; Kikuchi, Haruhiko.

    1988-01-01

    MRI (magnetic resonance imaging) examinaion was performed on cases of hemiplegia and hemiparesis. These included seven cases of intracerebral hemorrhage, four cases of subarachnoid hemorrhage, one case of cerebral infarct, and two cases of head trauma. The pyramidal tract in the brain stem was studied in five patients with complete hemiplegia and in nine with incomplete hemiparesis. The scanner of the MRI was a resistive type operating at a field of 0.2 Tesla. The inversion recovery (IR) and saturation recovery (SR) techniques were utilized. The pyramidal tract at the level of the midbrain and the pons was recognized as a low intensity area on the T 1 image (IR 1500/43) in the cases of complete hemiplegia. However, it was recognized as a high intensity area on the SR image (SR 1000/60) and the T 2 image (SR 2000/100). No abnormal signal intensity was found in the cases of incomplete hemiparesis. A low intensity area on the T 1 image and a high intensity area on the T 2 image were recognized in the ventral portion of the midbrain and the pons on the affected side. These findings indicate a degeneration of the pyramidal tract at the level of the brain stem in patients with complete hemiplegia. (author)

  18. Fetal cerebral imaging - ultrasound vs. MRI: an update.

    Science.gov (United States)

    Blondiaux, Eléonore; Garel, Catherine

    2013-11-01

    The purpose of this article is to analyze the advantages and limitations of prenatal ultrasonography (US) and magnetic resonance imaging (MRI) in the evaluation of the fetal brain. These imaging modalities should not be seen as competitive but rather as complementary. There are wide variations in the world regarding screening policies, technology, skills, and legislation about termination of pregnancy, and these variations markedly impact on the way of using prenatal imaging. According to the contribution expected from each technique and to local working conditions, one should choose the most appropriate imaging modality on a case-by-case basis. The advantages and limitations of US and MRI in the setting of fetal brain imaging are displayed. Different anatomical regions (midline, ventricles, subependymal area, cerebral parenchyma, pericerebral space, posterior fossa) and pathological conditions are analyzed and illustrated in order to compare the respective contribution of each technique. An accurate prenatal diagnosis of cerebral abnormalities is of utmost importance for prenatal counseling.

  19. MRI, CT and TRUS imaging of seminal vesicle metastasis

    International Nuclear Information System (INIS)

    Larsson, P.; Blomqvist, L.; Norming, U.

    1997-01-01

    We present a case of a testicular germ-cell metastasis in the seminal vesicle. Diagnostic imaging with transrectal ultrasonography (TRUS), CT, and MRI was performed. This case emphasizes the role of MRI in the evaluation of patients with pathology in the pelvic region. (orig.)

  20. Image registration/fusion software for PET and CT/MRI by using simultaneous emission and transmission scans

    International Nuclear Information System (INIS)

    Kitamura, Keishi; Amano, Masaharu; Sato, Tomohiko; Okumura, Takeshi; Konishi, Norihiro; Komatsu, Masahiko

    2003-01-01

    When PET (positron emission tomography) is used for oncology studies, it is important to register and over-lay PET images with the images of other anatomical modalities, such as those obtained by CT (computed tomography) or MRI (magnetic resonance imaging), in order for the lesions to be anatomically located with high accuracy. The Shimadzu SET-2000W Series PET scanners provide simultaneous acquisition of emission and transmission data, which is capable of complete spatial alignment of both functional and attenuation images. This report describes our newly developed image registration/fusion software, which reformats PET emission images to the CT/MRI grid by using the transform matrix obtained by matching PET transmission images with CT/MRI images. Transmission images are registered and fused either automatically or manually, through 3-dimensional rotation and translation, with the transaxial, sagittal, and coronal fused images being monitored on the screen. This new method permits sufficiently accurate registration and efficient data processing with promoting effective use of CT/MRI images of the DICOM format, without using markers in data acquisition or any special equipment, such as a combined PET/CT scanner. (author)

  1. Whole body MRI, including diffusion-weighted imaging in follow-up of patients with testicular cancer.

    Science.gov (United States)

    Mosavi, Firas; Laurell, Anna; Ahlström, Håkan

    2015-11-01

    Whole body (WB) magnetic resonance imaging (MRI), including diffusion-weighted imaging (DWI) has become increasingly utilized in cancer imaging, yet the clinical utility of these techniques in follow-up of testicular cancer patients has not been evaluated. The purpose of this study was to evaluate the feasibility of WB MRI with continuous table movement (CTM) technique, including multistep DWI in follow-up of patients with testicular cancer. WB MRI including DWI was performed in follow-up of 71 consecutive patients (median age, 37 years; range 19-84) with histologically confirmed testicular cancer. WB MRI protocol included axial T1-Dixon and T2-BLADE sequences using CTM technique. Furthermore, multi-step DWI was performed using b-value 50 and 1000 s/mm(2). One criterion for feasibility was patient tolerance and satisfactory image quality. Another criterion was the accuracy in detection of any pathological mass, compared to standard of reference. Signal intensity in DWI was used for evaluation of residual mass activity. Clinical, laboratory and imaging follow-up were applied as standard of reference for the evaluation of WB MRI. WB MRI was tolerated in nearly all patients (69/71 patients, 97%) and the image quality was satisfactory. Metal artifacts deteriorated the image quality in six patients, but it did not influence the overall results. No case of clinical relapse was observed during the follow-up time. There was a good agreement between conventional WB MRI and standard of reference in all patients. Three patients showed residual masses and DWI signal was not restricted in these patients. Furthermore, DWI showed abnormally high signal intensity in a normal-sized retroperitoneal lymph node indicating metastasis. The subsequent (18)F-FDG PET/CT could verify the finding. WB MRI with CTM technique including multi-step DWI is feasible in follow-up of patients with testicular cancer. DWI may contribute to important added-value data to conventional MRI sequences

  2. WE-DE-206-03: MRI Image Formation - Slice Selection, Phase Encoding, Frequency Encoding, K-Space, SNR

    International Nuclear Information System (INIS)

    Lin, C.

    2016-01-01

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner, and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.

  3. WE-DE-206-03: MRI Image Formation - Slice Selection, Phase Encoding, Frequency Encoding, K-Space, SNR

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C. [Indiana University School of Medicine (United States)

    2016-06-15

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner, and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.

  4. Evaluation of pneumonia in children: comparison of MRI with fast imaging sequences at 1.5T with chest radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Yikilmaz, Ali; Koc, Ali; Coskun, Abdulhakim (Dept. of Radiology, Erciyes Medical School, Kayseri (Turkey)); Ozturk, Mustafa K (Dept. of Pediatric Infectious Diseases, Erciyes Medical School, Kayseri (Turkey)); Mulkern, Robert V; Lee, Edward Y (Dept. of Radiology and Dept. of Medicine, Pulmonary Div., Children' s Hospital Boston and Harvard Medical School, Boston (United States)), email: Edward.lee@childrens.harvard.edu

    2011-10-15

    Background Although there has been a study aimed at magnetic resonance imaging (MRI) evaluation of pneumonia in children at a low magnetic field (0.2T), there is no study which assessed the efficacy of MRI, particularly with fast imaging sequences at 1.5T, for evaluating pneumonia in children. Purpose To investigate the efficacy of chest MRI with fast imaging sequences at 1.5T for evaluating pneumonia in children by comparing MRI findings with those of chest radiographs. Material and Methods This was an Institutional Review Board-approved, HIPPA-compliant prospective study of 40 consecutive pediatric patients (24 boys, 16 girls; mean age 7.3 years +- 6.6 years) with pneumonia, who underwent PA and lateral chest radiographs followed by MRI within 24 h. All MRI studies were obtained in axial and coronal planes with two different fast imaging sequences: T1-weighted FFE (Fast Field Echo) (TR/TE: 83/4.6) and T2-weighted B-FFE M2D (Balanced Fast Field Echo Multiple 2D Dimensional) (TR/TE: 3.2/1.6). Two experienced pediatric radiologists reviewed each chest radiograph and MRI for the presence of consolidation, necrosis/abscess, bronchiectasis, and pleural effusion. Chest radiograph and MRI findings were compared with Kappa statistics. Results All consolidation, lung necrosis/abscess, bronchiectasis, and pleural effusion detected with chest radiographs were also detected with MRI. There was statistically substantial agreement between chest radiographs and MRI in detecting consolidation (k = 0.78) and bronchiectasis (k = 0.72) in children with pneumonia. The agreement between chest radiographs and MRI was moderate for detecting necrosis/abscess (k = 0.49) and fair for detecting pleural effusion (k = 0.30). Conclusion MRI with fast imaging sequences is comparable to chest radiographs for evaluating underlying pulmonary consolidation, bronchiectasis, necrosis/abscess, and pleural effusion often associated with pneumonia in children

  5. Cortical phase changes in Alzheimer's disease at 7T MRI: a novel imaging marker

    NARCIS (Netherlands)

    van Rooden, S.; Versluis, M.J.; Liem, M.K.; Milles, J.; Maier, A.B.; Oleksik, A.M.; Webb, A.G.; van Buchem, M.A.; van der Grond, J.

    2014-01-01

    Background: Postmortem studies have indicated the potential of high-field magnetic resonance imaging (MRI) to visualize amyloid depositions in the cerebral cortex. The aim of this study is to test this hypothesis in patients with Alzheimer's disease (AD). Methods: T2*-weighted MRI was performed in

  6. PCA-based groupwise image registration for quantitative MRI

    NARCIS (Netherlands)

    Huizinga, W.; Poot, D. H. J.; Guyader, J.-M.; Klaassen, R.; Coolen, B. F.; van Kranenburg, M.; van Geuns, R. J. M.; Uitterdijk, A.; Polfliet, M.; Vandemeulebroucke, J.; Leemans, A.; Niessen, W. J.; Klein, S.

    2016-01-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T5 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different

  7. Evaluation of electrode position in deep brain stimulation by image fusion (MRI and CT)

    Energy Technology Data Exchange (ETDEWEB)

    Barnaure, I.; Lovblad, K.O.; Vargas, M.I. [Geneva University Hospital, Department of Neuroradiology, Geneva 14 (Switzerland); Pollak, P.; Horvath, J.; Boex, C.; Burkhard, P. [Geneva University Hospital, Department of Neurology, Geneva (Switzerland); Momjian, S. [Geneva University Hospital, Department of Neurosurgery, Geneva (Switzerland); Remuinan, J. [Geneva University Hospital, Department of Radiology, Geneva (Switzerland)

    2015-09-15

    Imaging has an essential role in the evaluation of correct positioning of electrodes implanted for deep brain stimulation (DBS). Although MRI offers superior anatomic visualization of target sites, there are safety concerns in patients with implanted material; imaging guidelines are inconsistent and vary. The fusion of postoperative CT with preoperative MRI images can be an alternative for the assessment of electrode positioning. The purpose of this study was to assess the accuracy of measurements realized on fused images (acquired without a stereotactic frame) using a manufacturer-provided software. Data from 23 Parkinson's disease patients who underwent bilateral electrode placement for subthalamic nucleus (STN) DBS were acquired. Preoperative high-resolution T2-weighted sequences at 3 T, and postoperative CT series were fused using a commercially available software. Electrode tip position was measured on the obtained images in three directions (in relation to the midline, the AC-PC line and an AC-PC line orthogonal, respectively) and assessed in relation to measures realized on postoperative 3D T1 images acquired at 1.5 T. Mean differences between measures carried out on fused images and on postoperative MRI lay between 0.17 and 0.97 mm. Fusion of CT and MRI images provides a safe and fast technique for postoperative assessment of electrode position in DBS. (orig.)

  8. 2D dose distribution images of a hybrid low field MRI-γ detector

    Energy Technology Data Exchange (ETDEWEB)

    Abril, A., E-mail: ajabrilf@unal.edu.co; Agulles-Pedrós, L., E-mail: lagullesp@unal.edu.co [Medical Physics Group, Physics department, Universidad Nacional de Colombia, Bogotá (Colombia)

    2016-07-07

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the {sup 99m}Tc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  9. 2D dose distribution images of a hybrid low field MRI-γ detector

    International Nuclear Information System (INIS)

    Abril, A.; Agulles-Pedrós, L.

    2016-01-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the "9"9"mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  10. 2D dose distribution images of a hybrid low field MRI-γ detector

    Science.gov (United States)

    Abril, A.; Agulles-Pedrós, L.

    2016-07-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  11. MRI and contrast-enhanced ultrasound imaging for evaluation of focal irreversible electroporation treatment: results from a phase I-II study in patients undergoing IRE followed by radical prostatectomy

    International Nuclear Information System (INIS)

    Bos, Willemien van den; Bruin, D.M. de; Randen, A. van; Engelbrecht, M.R.W.; Postema, A.W.; Muller, B.G.; Zondervan, P.J.; Laguna Pes, M.P.; Reijke, T.M. de; Rosette, J.J.M.C.H. de la; Varkarakis, I.M.; Skolarikos, A.; Savci-Heijink, C.D.; Jurhill, R.R.; Wijkstra, H.

    2016-01-01

    Irreversible electroporation (IRE) is an ablative therapy with a low side-effect profile in prostate cancer. The objective was: 1) To compare the volumetric IRE ablation zone on grey-scale transrectal ultrasound (TRUS), contrast-enhanced ultrasound (CEUS) and multiparametric MRI (mpMRI) with histopathology findings; 2) To determine a reliable imaging modality to visualize the IRE ablation effects accurately. A prospective phase I-II study was performed in 16 patients scheduled for radical prostatectomy (RP). IRE of the prostate was performed 4 weeks before RP. Prior to, and 4 weeks after the IRE treatment, imaging was performed by TRUS, CEUS, and mpMRI. 3D-analysis of the ablation volumes on imaging and on H and E-stained whole-mount sections was performed. The volumes were compared and the correlation was calculated. Evaluation of the imaging demonstrated that with T2-weighted MRI, dynamic contrast enhanced (DCE) MRI, and CEUS, effects of IRE are visible. T2MRI and CEUS closely match the volumes on histopathology (Pearson correlation r = 0.88 resp. 0.80). However, IRE is not visible with TRUS. mpMRI and CEUS are appropriate for assessing IRE effects and are the most feasible imaging modalities to visualize IRE ablation zone. The imaging is concordant with results of histopathological examination. (orig.)

  12. An image acquisition and registration strategy for the fusion of hyperpolarized helium-3 MRI and x-ray CT images of the lung

    International Nuclear Information System (INIS)

    Ireland, Rob H; Woodhouse, Neil; Hoggard, Nigel; Swinscoe, James A; Foran, Bernadette H; Hatton, Matthew Q; Wild, Jim M

    2008-01-01

    The purpose of this ethics committee approved prospective study was to evaluate an image acquisition and registration protocol for hyperpolarized helium-3 magnetic resonance imaging ( 3 He-MRI) and x-ray computed tomography. Nine patients with non-small cell lung cancer (NSCLC) gave written informed consent to undergo a free-breathing CT, an inspiration breath-hold CT and a 3D ventilation 3 He-MRI in CT position using an elliptical birdcage radiofrequency (RF) body coil. 3 He-MRI to CT image fusion was performed using a rigid registration algorithm which was assessed by two observers using anatomical landmarks and a percentage volume overlap coefficient. Registration of 3 He-MRI to breath-hold CT was more accurate than to free-breathing CT; overlap 82.9 ± 4.2% versus 59.8 ± 9.0% (p 3 He-MRI and CT to be acquired with similar breath holds and body position through the use of a birdcage 3 He-MRI body RF coil and an inspiration breath-hold CT. Fusion of 3 He-MRI to CT may be useful for the assessment of patients with lung diseases.

  13. Complete Fourier Direct Magnetic Resonance Imaging (CFD-MRI for Diffusion MRI

    Directory of Open Access Journals (Sweden)

    Alpay eÖzcan

    2013-04-01

    Full Text Available The foundation for an accurate and unifying Fourier based theory of diffusion weighted magnetic resonance imaging (DW-MRI is constructed by carefully re-examining the first principles of DW-MRI signal formation and deriving its mathematical model from scratch. The derivations are specifically obtained for DW-MRI signal by including all of its elements (e.g., imaging gradients using complex values. Particle methods are utilized in contrast to conventional partial differential equations approach. The signal is shown to be the Fourier transform of the joint distribution of number of the magnetic moments (at a given location at the initial time and magnetic moment displacement integrals. In effect, the k-space is augmented by three more dimensions, corresponding to the frequency variables dual to displacement integral vectors. The joint distribution function is recovered by applying the Fourier transform to the complete high-dimensional data set. In the process, to obtain a physically meaningful real valued distribution function, phase corrections are applied for the re-establishment of Hermitian symmetry in the signal. Consequently, the method is fully unconstrained and directly presents the distribution of displacement integrals without any assumptions such as symmetry or Markovian property. The joint distribution function is visualized with isosurfaces, which describe the displacement integrals, overlaid on the distribution map of the number of magnetic moments with low mobility. The model provides an accurate description of the molecular motion measurements via DW-MRI. The improvement of the characterization of tissue microstructure leads to a better localization, detection and assessment of biological properties such as white matter integrity. The results are demonstrated on the experimental data obtained from an ex-vivo baboon brain.

  14. Multimodal in vivo MRI and NIRF imaging of bladder tumor using peptide conjugated glycol chitosan nanoparticles

    Science.gov (United States)

    Key, Jaehong; Dhawan, Deepika; Knapp, Deborah W.; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Leary, James F.

    2012-03-01

    Exact detection and complete removal of cancer is a key point to minimize cancer recurrence. However, it is currently very difficult to detect small tumors inside human body and continuously monitor tumors using a non-invasive imaging modality. Presently, positron emission tomography (PET) can provide the most sensitive cancer images in the human body. However, PET imaging has very limited imaging time because they typically use isotopes with short halflives. PET imaging cannot also visualize anatomical information. Magnetic resonance imaging (MRI) can provide highresolution images inside the body but it has a low sensitivity, so MRI contrast agents are necessary to enhance the contrast of tumor. Near infrared fluorescent (NIRF) imaging has a good sensitivity to visualize tumor using optical probes, but it has a very limited tissue penetration depth. Therefore, we developed multi-modality nanoparticles for MRI based diagnosis and NIRF imaging based surgery of cancer. We utilized glycol chitosan of 350 nm as a vehicle for MRI contrast agents and NIRF probes. The glycol chitosan nanoparticles were conjugated with NIRF dye, Cy5.5 and bladder cancer targeting peptides to increase the internalization of cancer. For MR contrast effects, iron oxide based 22 nm nanocubes were physically loaded into the glycol chitosan nanoparticles. The nanoparticles were characterized and evaluated in bladder tumor bearing mice. Our study suggests the potential of our nanoparticles by both MRI and NIRF imaging for tumor diagnosis and real-time NIRF image-guided tumor surgery.

  15. 3D composite image, 3D MRI, 3D SPECT, hydrocephalus

    International Nuclear Information System (INIS)

    Mito, T.; Shibata, I.; Sugo, N.; Takano, M.; Takahashi, H.

    2002-01-01

    The three-dimensional (3D)SPECT imaging technique we have studied and published for the past several years is an analytical tool that permits visual expression of the cerebral circulation profile in various cerebral diseases. The greatest drawback of SPECT is that the limitation on precision of spacial resolution makes intracranial localization impossible. In 3D SPECT imaging, intracranial volume and morphology may vary with the threshold established. To solve this problem, we have produced complimentarily combined SPECT and helical-CT 3D images by means of general-purpose visualization software for intracranial localization. In hydrocephalus, however, the key subject to be studied is the profile of cerebral circulation around the ventricles of the brain. This suggests that, for displaying the cerebral ventricles in three dimensions, CT is a difficult technique whereas MRI is more useful. For this reason, we attempted to establish the profile of cerebral circulation around the cerebral ventricles by the production of combined 3D images of SPECT and MRI. In patients who had shunt surgery for hydrocephalus, a difference between pre- and postoperative cerebral circulation profiles was assessed by a voxel distribution curve, 3D SPECT images, and combined 3D SPECT and MRI images. As the shunt system in this study, an Orbis-Sigma valve of the automatic cerebrospinal fluid volume adjustment type was used in place of the variable pressure type Medos valve currently in use, because this device requires frequent changes in pressure and a change in pressure may be detected after MRI procedure. The SPECT apparatus used was PRISM3000 of the three-detector type, and 123I-IMP was used as the radionuclide in a dose of 222 MBq. MRI data were collected with an MAGNEXa+2 with a magnetic flux density of 0.5 tesla under the following conditions: field echo; TR 50 msec; TE, 10 msec; flip, 30ueK; 1 NEX; FOV, 23 cm; 1-mm slices; and gapless. 3D images are produced on the workstation TITAN

  16. Multiple imaging procedures including MRI for the bladder cancer

    International Nuclear Information System (INIS)

    Mikata, Noriharu; Suzuki, Makoto; Takeuchi, Takumi; Kunisawa, Yositaka; Fukutani, Keiko; Kawabe, Kazuki

    1986-01-01

    Endoscopic photography, double contrast cystography, transurethral echography, X-ray CT scan, and MRI (magnetic resonance imaging) were utilized for the staging diagnosis of the four patients with carcinoma of the bladder. In the first case, a 70-year-old man, since all of the five imaging procedures suggested a superficial and pedunculated tumor, his bladder cancer was considered T1. The classification of stage T3 carcinoma was made for the second 86-year-old male. Because all of his imaging examinations showed a tumor infiltrating deep muscle and penetrating the bladder wall. The third case was a 36-year-old male. His clinical stage was diagnosed as T2 or T3a by cystophotography, double contrast cystogram, ultrasonography, and X-ray CT scan. However, MRI showed only thickened bladder wall and the infiltrating tumor could not be distinguished from the hypertrophic wall. The last patient, a 85-year-old female, had a smaller Ta cancer. Her double contrast cystography revealed the small tumor at the lateral bladder wall. But, the tumor could not be detected by transaxial, sagittal and coronal scans. Multiple imaging procedures combining MRI and staging diagnosis of the bladder carcinoma were discussed. (author)

  17. Fetal lung volume measurement by MRI with high-speed imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Osada, Hisao; Kaku, Kenshi [Chiba Univ. (Japan). Hospital

    2002-08-01

    Although ultrasonography is widely used for fetal morphologic observation, magnetic resonance imaging (MRI) has gained popularity as a new prenatal diagnostic method with recent introduction of high-speed imaging systems. Infants with lung hypoplasia affecting respiratory function require intensive management starting immediately after birth. Therefore, accurate prenatal differential diagnosis and severity evaluation are extremely important for these fetuses. The aim of this study is to measure fetal lung volume using a computer-based, three-dimensional MRI imaging system and to evaluate the possibility of clinical applications of this procedure. A total of 96 fetuses were evaluated, all were morphologically abnormal, and MRI was done for advanced assessment from 24 to 39 weeks gestation. Three-directional views of fetal chest were imaged by Signa Horizon, 1.5 Tesla, version 5.6 (General Electronics) with the following conditions; coil: TORSO coil, sequence: SSFSE (single shot fast spin echo), slice thickness: 5 mm, and imaging speed: 2 seconds/slice. To calculate the lung volume and create three-dimensional image, the lung area in each slice was traced out, then multiplied using computer image processing. Simultaneously, the volumes of all slices were summed to give the volume of each lung. Linear regression analysis and analysis of covariance (ANCOVA) were used for statistical analyses. In all cases, clear images were obtained, and were adequate for three-dimensional evaluation of the fetal lung. Thirty-five fetuses had poor outcomes, such as intrauterine fetal death, neonatal death, and intensive respiratory care. Regression lines of lung volume versus gestational week were calculated for these fetuses with poor outcome and 61 other fetuses with good outcome. ANCOVA, with gestational week as a covariant, revealed a significant intergroup difference in the lung volume (p<0.001). Similarly, regression lines of lung volume versus fetal body weight estimated by

  18. Usefulness of breast-specific gamma imaging as an adjunct modality in breast cancer patients with dense breast. A comparative study with MRI

    International Nuclear Information System (INIS)

    Kim, Bom Sahn

    2012-01-01

    The aim of this study was to evaluate the adjunctive benefits of breast-specific gamma imaging (BSGI) versus magnetic resonance imaging (MRI) in breast cancer patients with dense breasts. This study included a total of 66 patients (44.1±8.2 years) with dense breasts (breast density >50%) and already biopsy-confirmed breast cancer. All of the patients underwent BSGI and MRI as part of an adjunct modality before the initial therapy. Of 66 patients, the 97 undetermined breast lesions were newly detected and correlated with the biopsy results. Twenty-six of the 97 breast lesions proved to be malignant tumors (invasive ductal cancer, n=16; ductal carcinoma in situ, n=6; mixed or other malignancies, n=4); the remaining 71 lesions were diagnosed as benign tumors. The sensitivity and specificity of BSGI were 88.8% (confidence interval (CI), 69.8-97.6%) and 90.1% (CI, 80.7-95.9%), respectively, while the sensitivity and specificity of MRI were 92.3% (CI, 74.9-99.1%) and 39.4% (CI, 28.0-51.7%), respectively (p<0.0001). MRI detected 43 false-positive breast lesions, 37 (86.0%) of which were correctly diagnosed as benign lesions using BSGI. In 12 malignant lesions <1 cm, the sensitivities of BSGI and MR imaging were 83.3% (CI, 51.6-97.9%) and 91.7% (CI, 61.5-99.8%), respectively. BSGI showed an equivocal sensitivity and a high specificity compared to MRI in the diagnosis of breast lesions. In addition, BSGI had a good sensitivity in discriminating breast cancers ≤1 cm. The results of this study suggest that BSGI could play a crucial role as an adjunctive imaging modality which can be used to evaluate breast cancer patients with dense breasts. (author)

  19. Assessment of apical periodontitis by MRI. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Geibel, M.A. [Ulm Univ. (Germany). Oral and Maxillofacial Surgery; Schreiber, E.S.; Bracher, A.K.; Rasche, V. [Ulm Univ. (Germany). Internal Medicine II; Hell, E.; Ulrici, J. [Sirona Dental Systems GmbH, Bensheim (Germany). Dental Imaging; Sailer, L.K. [DOC Praxisklinik im Wiley, Neu-Ulm (Germany). MKG; Ozpeynirci, Y. [Ulm Univ. (Germany). Diagnostic and Interventional Radiology

    2015-04-15

    The purpose of this clinical feasibility study was to evaluate the applicability of magnetic resonance imaging (MRI) for the assessment of apical periodontitis in direct comparison with cone beam CT (CBCT). 19 consecutive patients (average age 43 ± 13 years) with 34 lesions in total (13 molars, 14 premolars and 7 front teeth) were enrolled in this feasibility study. Periapical lesions were defined as periapical radiolucencies (CBCT) or structural changes in the spongy bone signal (MRI), which were connected with the apical part of a root and with at least twice the width of the periodontal ligament space. The location and dimension of the lesions were compared between MRI and CBCT. While mainly mineralized tissue components such as teeth and bone were visible with CBCT, complimentary information of the soft tissue components was assessable with MRI. The MRI images provided sufficient diagnostic detail for the assessment of the main structures of interest. Heterogeneous contrast was observed within the lesion, with often a clear enhancement close to the apical foramen and the periodontal gap. No difference for lesion visibility was observed between MRI and CBCT. The lesion dimensions corresponded well, but were slightly but significantly overestimated with MRI. A heterogeneous lesion appearance was observed in several patients. Four patients presented with a well circumscribed hyperintense signal in the vicinity of the apical foramen. The MRI capability of soft tissue characterization may facilitate detailed analysis of periapical lesions. This clinical study confirms the applicability of multi-contrast MRI for the identification of periapical lesions.

  20. Assessment of apical periodontitis by MRI. A feasibility study

    International Nuclear Information System (INIS)

    Geibel, M.A.; Schreiber, E.S.; Bracher, A.K.; Rasche, V.; Hell, E.; Ulrici, J.; Sailer, L.K.; Ozpeynirci, Y.

    2015-01-01

    The purpose of this clinical feasibility study was to evaluate the applicability of magnetic resonance imaging (MRI) for the assessment of apical periodontitis in direct comparison with cone beam CT (CBCT). 19 consecutive patients (average age 43 ± 13 years) with 34 lesions in total (13 molars, 14 premolars and 7 front teeth) were enrolled in this feasibility study. Periapical lesions were defined as periapical radiolucencies (CBCT) or structural changes in the spongy bone signal (MRI), which were connected with the apical part of a root and with at least twice the width of the periodontal ligament space. The location and dimension of the lesions were compared between MRI and CBCT. While mainly mineralized tissue components such as teeth and bone were visible with CBCT, complimentary information of the soft tissue components was assessable with MRI. The MRI images provided sufficient diagnostic detail for the assessment of the main structures of interest. Heterogeneous contrast was observed within the lesion, with often a clear enhancement close to the apical foramen and the periodontal gap. No difference for lesion visibility was observed between MRI and CBCT. The lesion dimensions corresponded well, but were slightly but significantly overestimated with MRI. A heterogeneous lesion appearance was observed in several patients. Four patients presented with a well circumscribed hyperintense signal in the vicinity of the apical foramen. The MRI capability of soft tissue characterization may facilitate detailed analysis of periapical lesions. This clinical study confirms the applicability of multi-contrast MRI for the identification of periapical lesions.

  1. Magnetic resonance imaging (MRI) of avascular necrosis of the femoral head

    International Nuclear Information System (INIS)

    Kokubo, Takashi; Yoshikawa, Kohki; Aoki, Shigeki

    1987-01-01

    Thirty-seven patients with the clinical diagnosis of or suspicious of avascular necrosis (AN) of the femoral head were examined by magnetic resonance imaging (MRI). In all patients with AN confirmed from clinical symptoms, past history and plain radiographs, MRI demonstrated abnormal low intensity area in the necrosed femoral head. The abnormal findings on MRI were divided into three patterns: low signal intensity occupying the greater part of the femoral head (type A), low signal intensity localized in the periphery (type B), ring-shaped or band-like low signal intensity (type C). No correlation was found among MRI patterns, radiographic findings and radionuclide bone scan images, except that the type C was not found in the stage IV determined radiographically. In the patients suspicious of AN, the positive rate of MRI was higher than that of radionuclide scan. Abnormal findings on only MRI may not necessarily indicate AN. However, such a patient must be kept under observation, because the possibility exists that only MRI detects early or asymptomatic AN of the femoral head. (author)

  2. Magnetic resonance imaging (MRI) of avascular necrosis of the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Kokubo, Takashi; Yoshikawa, Kohki; Aoki, Shigeki

    1987-05-01

    Thirty-seven patients with the clinical diagnosis of or suspicious of avascular necrosis (AN) of the femoral head were examined by magnetic resonance imaging (MRI). In all patients with AN confirmed from clinical symptoms, past history and plain radiographs, MRI demonstrated abnormal low intensity area in the necrosed femoral head. The abnormal findings on MRI were divided into three patterns: low signal intensity occupying the greater part of the femoral head (type A), low signal intensity localized in the periphery (type B), ring-shaped or band-like low signal intensity (type C). No correlation was found among MRI patterns, radiographic findings and radionuclide bone scan images, except that the type C was not found in the stage IV determined radiographically. In the patients suspicious of AN, the positive rate of MRI was higher than that of radionuclide scan. Abnormal findings on only MRI may not necessarily indicate AN. However, such a patient must be kept under observation, because the possibility exists that only MRI detects early or asymptomatic AN of the femoral head.

  3. Optimization image of magnetic resonance imaging (MRI) T2 fast spin echo (FSE) with variation echo train length (ETL) on the rupture tendon achilles case

    International Nuclear Information System (INIS)

    Muzamil, Akhmad; Firmansyah, Achmad Haries

    2017-01-01

    The research was done the optimization image of Magnetic Resonance Imaging (MRI) T2 Fast Spin Echo (FSE) with variation Echo Train Length (ETL) on the Rupture Tendon Achilles case. This study aims to find the variations Echo Train Length (ETL) from the results of ankle’s MRI image and find out how the value of Echo Train Length (ETL) works on the MRI ankle to produce optimal image. In this research, the used ETL variations were 12 and 20 with the interval 2 on weighting T2 FSE sagittal. The study obtained the influence of Echo Train Length (ETL) on the quality of ankle MRI image sagittal using T2 FSE weighting and analyzed in 25 images of five patients. The data analysis has done quantitatively with the Region of Interest (ROI) directly on computer MRI image planes which conducted statistical tests Signal to Noise Ratio (SNR) and Contras to Noise Ratio (CNR). The Signal to Noise Ratio (SNR) was the highest finding on fat tissue, while the Contras to Noise Ratio (CNR) on the Tendon-Fat tissue with ETL 12 found in two patients. The statistics test showed the significant SNR value of the 0.007 (p<0.05) of Tendon tissue, 0.364 (p>0.05) of the Fat, 0.912 (p>0.05) of the Fibula, and 0.436 (p>0.05) of the Heel Bone. For the contrast to noise ratio (CNR) of the Tendon-FAT tissue was about 0.041 (p>0.05). The results of the study showed that ETL variation with T2 FSE sagittal weighting had difference at Tendon tissue and Tendon-Fat tissue for MRI imaging quality. SNR and CNR were an important aspect on imaging optimization process to give the diagnose information. (paper)

  4. Brain MRI diffusion-weighted imaging in patients with classical phenylketonuria

    International Nuclear Information System (INIS)

    Manara, Renzo; Citton, Valentina; Carollo, Carla; Burlina, Alessandro P.; Ermani, Mario; Vespignani, Francesco; Burlina, Alberto B.

    2009-01-01

    The aim of this study was to grade magnetic resonance white matter abnormalities (WMAs) of classical phenylketonuria (cPKU) patients treated from birth and to compare sensitivity and specificity of T2-weighted and diffusion-weighted images (DWI). Twenty early-treated cPKU patients still on a low-phenylalanine diet (12 males; mean age 21.2 years) and 26 normal subjects (ten males; mean age 25.1 years) were enrolled. Typical T2- and diffusion-weighted WMAs were semiquantitatively graded according to Thompson score (TS). Besides, a regional magnetic resonance imaging (MRI) score (mTS) was developed according to extension and intensity of WMAs. Phenylalanine and tyrosine plasma concentrations before performing MRI and the amino acid mean levels collected the year before MRI (Tyr year and Phe year ) were measured. No patient with Phe year concentration below 460 μmol/L showed WMAs. In cPKU patients, TS and mTS were significantly higher on DWI than on T2 images (3.50 vs 2.65 and 23.65 vs 15.85, respectively, p year levels. Among the different MR sequences, DWI seems to be the most sensitive and reliable in detecting and grading the typical WMAs of cPKU patients. (orig.)

  5. High temporal resolution functional MRI using parallel echo volumar imaging

    International Nuclear Information System (INIS)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F.; Le Roux, P.; Dehaine-Lambertz, G.

    2008-01-01

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  6. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children

    International Nuclear Information System (INIS)

    Sreedharan, Ruma Madhu; Menon, Amitha C.; Thomas, Sanjeev V.; James, Jija S.; Kesavadas, Chandrasekharan

    2015-01-01

    Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms - visual verb generation and word pair task - were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p < 0.02) between fMRI-LI and DTI-LI. Group mean of AFV by DTI was higher on the left side (2659.89 ± 654.75 mm 3 ) as compared to the right (1824.11 ± 582.81 mm 3 ) (p < 0.01). Like fMRI, DTI also reveals language laterality in children with a high degree of correlation between the two imaging modalities. (orig.)

  7. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children

    Energy Technology Data Exchange (ETDEWEB)

    Sreedharan, Ruma Madhu [Government Medical College Hospital, Department of Radiology, Trivandrum, Kerala (India); Menon, Amitha C.; Thomas, Sanjeev V. [Sree Chitra, Thirunal Institute for Medical Sciences and Technology, Department of Neurology, Thiruvananthapuram, Kerala (India); James, Jija S.; Kesavadas, Chandrasekharan [SCTIMST, Department of Imaging Science and Interventional Radiology, Trivandrum, Kerala (India)

    2015-03-01

    Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms - visual verb generation and word pair task - were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p < 0.02) between fMRI-LI and DTI-LI. Group mean of AFV by DTI was higher on the left side (2659.89 ± 654.75 mm{sup 3}) as compared to the right (1824.11 ± 582.81 mm{sup 3}) (p < 0.01). Like fMRI, DTI also reveals language laterality in children with a high degree of correlation between the two imaging modalities. (orig.)

  8. Imaging of the myocardium using {sup 18}F-FDG-PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ferda, Jiří, E-mail: ferda@fnplzen.cz [Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň (Czech Republic); Hromádka, Milan, E-mail: hromadkam@fnplzen.cz [Department of Cardiology, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň (Czech Republic); Baxa, Jan, E-mail: baxaj@fnplzen.cz [Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň (Czech Republic)

    2016-10-15

    Highlights: • The natural combination of the metabolic and structural information is the most important strenghtof myocardial PET/MRI. • Metabolic conversion to glycolysis is needed in the assesment ov the viable myocardium. • Metabolic conversion to the fatty acid metabolism is the crucial in the assesment of the ischemic memory and myocardial inflammation. - Abstract: The introduction of the integrated hybrid PET/MRI equipment creates the possibility to perform PET and MRI simultaneously. Depending on the clinical question, the metabolic conversion to glycolytic activity or beta-oxidation is performed before the application of FDG. Since FDG aids to evaluate the energetic metabolism of the myocytes and myocardial MRI reaches the imaging capabilities of perfusion and tissue characterization in the daily routine, FDG-PET/MRI looks to be a promising method of PET/MRI exploitation in cardiac imaging. When myocardial FDG uptake should be evaluated in association with the perfusion distribution, the cross-evaluation of FDG accumulation distribution and perfusion distribution pattern is necessary. The different scenarios may be used in the assessment of myocardium, the conversion to glycolytic activity is used in the imaging of the viable myocardium, but the glycolytic activity suppression might be used in the indications of the identification of injured myocardium by ischemia or inflammation. FDG-PET/MRI might aid to answer the clinical tasks according to the structure, current function and possibilities to improve the function in ischemic heart disease or to display the extent or activity of myocardial inflammation in sarcoidosis. The tight coupling between metabolism, perfusion and contractile function offers an opportunity for the simultaneous assessment of cardiac performance using one imaging modality.

  9. Measurement and imaging of brain function using MRI, MEG, and TMS

    International Nuclear Information System (INIS)

    Iramina, Keiji

    2008-01-01

    This paper reviews functional imaging techniques in neuroscience such as magnetic resonance imaging (MRI) functional MRI (fMRI), magnetoencephalogray (MEG), and transcranial magnetic stimulation (TMS). fMRI and MEG allow the neuronal activity of the brain to be measured non-invasively. MEG detects an electrical activity as neuronal activity, while, fMRI detects a hemodynamic response as neuronal activity. TMS is the application of a brief magnetic pulse or a train of pulses to the skull, which results in the induction of a local electric current in the underlying surface of the brain, thereby producing a localized axonal depolarization. As a non-invasive and effective method to make reversible lesions in the human brain, TMS has a long and successful history. All of these techniques have major potential for applications in the neuroscience and medicine. (author)

  10. Signal to noise ratio (SNR) and image uniformity: an estimate of performance of magnetic resonance imaging (MRI) system

    International Nuclear Information System (INIS)

    Narayan, P.; Suri, S.; Choudhary, S.R.

    2001-01-01

    In most general definition, noise in an image, is any variation that represents a deviation from truth. Noise sources in MRI can be systematic or random and statistical in nature. Data processing algorithms that smooth and enhance the edges by non-linear intensity assignments among other factors can affect the distribution of statistical noise. The SNR and image uniformity depends on the various parameters of NMR imaging system (viz. General system calibration, Gain coil tuning, AF shielding, coil loading, image processing and scan parameters like TE, TR, interslice distance, slice thickness, pixel size and matrix size). A study on SNR and image uniformity have been performed using standard head AF coil with different TR and the estimates of their variation are presented. A comparison between different techniques has also been evaluated using standard protocol of the Siemens Magnetom Vision Plus MRI system

  11. MRI Compatibility of Robot Actuation Techniques – A Comparative Study

    Science.gov (United States)

    Fischer, Gregory S.; Krieger, Axel; Iordachita, Iulian; Csoma, Csaba; Whitcomb, Louis L.; Fichtinger, Gabor

    2010-01-01

    This paper reports an experimental evaluation of the following three different MRI-compatible actuators: a Shinsei ultrasonic motor, a Nanomotion ultrasonic motor and a pneumatic cylinder actuator. We report the results of a study comparing the effect of these actuators on the signal to noise ratio (SNR) of MRI images under a variety of experimental conditions. Evaluation was performed with the controller inside and outside the scanner room and with both 1.5T and 3T MRI scanners. Pneumatic cylinders function with no loss of SNR with controller both inside and outside of the scanner room. The Nanomotion motor performs with moderate loss of SNR when moving during imaging. The Shinsei is unsuitable for motion during imaging. All may be used when motion is appropriately interleaved with imaging cycles. PMID:18982643

  12. Automatic delineation of brain regions on MRI and PET images from the pig.

    Science.gov (United States)

    Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M; Keller, Sune H; Andersen, Flemming L; Petersen, Ida N; Knudsen, Gitte M; Svarer, Claus

    2018-01-15

    The increasing use of the pig as a research model in neuroimaging requires standardized processing tools. For example, extraction of regional dynamic time series from brain PET images requires parcellation procedures that benefit from being automated. Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer. MRI and [ 11 C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same space. We developed an automatic procedure for spatial normalization of the averaged PET template to new PET images and hereby facilitated transfer of the atlas regional parcellation. Evaluation of the automatic spatial normalization procedure found the median voxel displacement to be 0.22±0.08mm using the MRI template with individual MRI images and 0.92±0.26mm using the PET template with individual [ 11 C]Cimbi-36 PET images. We tested the automatic procedure by assessing eleven PET radiotracers with different kinetics and spatial distributions by using perfusion-weighted images of early PET time frames. We here present an automatic procedure for accurate and reproducible spatial normalization and parcellation of pig PET images of any radiotracer with reasonable blood-brain barrier penetration. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Volumetric BOLD fMRI simulation: from neurovascular coupling to multivoxel imaging

    International Nuclear Information System (INIS)

    Chen, Zikuan; Calhoun, Vince

    2012-01-01

    The blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) modality has been numerically simulated by calculating single voxel signals. However, the observation on single voxel signals cannot provide information regarding the spatial distribution of the signals. Specifically, a single BOLD voxel signal simulation cannot answer the fundamental question: is the magnetic resonance (MR) image a replica of its underling magnetic susceptibility source? In this paper, we address this problem by proposing a multivoxel volumetric BOLD fMRI simulation model and a susceptibility expression formula for linear neurovascular coupling process, that allow us to examine the BOLD fMRI procedure from neurovascular coupling to MR image formation. Since MRI technology only senses the magnetism property, we represent a linear neurovascular-coupled BOLD state by a magnetic susceptibility expression formula, which accounts for the parameters of cortical vasculature, intravascular blood oxygenation level, and local neuroactivity. Upon the susceptibility expression of a BOLD state, we carry out volumetric BOLD fMRI simulation by calculating the fieldmap (established by susceptibility magnetization) and the complex multivoxel MR image (by intravoxel dephasing). Given the predefined susceptibility source and the calculated complex MR image, we compare the MR magnitude (phase, respectively) image with the predefined susceptibility source (the calculated fieldmap) by spatial correlation. The spatial correlation between the MR magnitude image and the magnetic susceptibility source is about 0.90 for the settings of T E = 30 ms, B 0 = 3 T, voxel size = 100 micron, vessel radius = 3 micron, and blood volume fraction = 2%. Using these parameters value, the spatial correlation between the MR phase image and the susceptibility-induced fieldmap is close to 1.00. Our simulation results show that the MR magnitude image is not an exact replica of the magnetic susceptibility

  14. Stereotactic imaging for radiotherapy: accuracy of CT, MRI, PET and SPECT

    International Nuclear Information System (INIS)

    Karger, Christian P; Hipp, Peter; Henze, Marcus; Echner, Gernot; Hoess, Angelika; Schad, Lothar; Hartmann, Guenther H

    2003-01-01

    CT, MRI, PET and SPECT provide complementary information for treatment planning in stereotactic radiotherapy. Stereotactic correlation of these images requires commissioning tests to confirm the localization accuracy of each modality. A phantom was developed to measure the accuracy of stereotactic localization for CT, MRI, PET and SPECT in the head and neck region. To this end, the stereotactically measured coordinates of structures within the phantom were compared with their mechanically defined coordinates. For MRI, PET and SPECT, measurements were performed using two different devices. For MRI, T1- and T2-weighted imaging sequences were applied. For each measurement, the mean radial deviation in space between the stereotactically measured and mechanically defined position of target points was determined. For CT, the mean radial deviation was 0.4 ± 0.2 mm. For MRI, the mean deviations ranged between 0.7 ± 0.2 mm and 1.4 ± 0.5 mm, depending on the MRI device and the imaging sequence. For PET, mean deviations of 1.1 ± 0.5 mm and 2.4 ± 0.3 mm were obtained. The mean deviations for SPECT were 1.6 ± 0.5 mm and 2.0 ± 0.6 mm. The phantom is well suited to determine the accuracy of stereotactic localization with CT, MRI, PET and SPECT in the head and neck region. The obtained accuracy is well below the physical resolution for CT, PET and SPECT, and of comparable magnitude for MRI. Since the localization accuracy may be device dependent, results obtained at one device cannot be generalized to others

  15. Focal Pancreatitis Mimicking Pancreatic Mass: Magnetic Resonance Imaging (MRI)/Magnetic Resonance Cholangiopancreatography (MRCP) Findings Including Diffusion-Weighted MRI

    International Nuclear Information System (INIS)

    Momtahen, A.J.; Balci, N.C.; Alkaade, S.; Akduman, E.I.; Burton, F.R.

    2008-01-01

    Background: Focal pancreatitis (FP) is a confined inflammation that mimics a pancreatic mass. Its imaging diagnosis is important to avoid unnecessary procedures. Purpose: To describe the spectrum of magnetic resonance imaging (MRI)/magnetic resonance cholangiopancreatography (MRCP) and diffusion-weighted MRI (DWI) findings of focal pancreatitis mimicking pancreatic masses. Material and Methods: Findings of MRI/MRCP including DWI with a b value of 0 and 600 s/mm2 in 14 patients with pancreatic masses on MRI were retrospectively reviewed and compared to normal pancreas in 14 patients as a control group. Results: FP revealed hypointense signal intensity (SI) (3/14), hypo- to isointense SI (7/14), or isointense SI (4/14) on T1-weighted images, and hypointense SI (1/14), isointense SI (5/14), iso- to hyperintense SI (7/14), or hyperintense SI (1/14) on T2-weighted images compared to remaining pancreas (RP). MRCP images revealed dilatation of the common bile duct (CBD) and main pancreatic duct (MPD) (5/14), dilatation of the MPD only (3/14), dilatation of the CBD only (3/14), and normal MPD and CBD (3/14). Both FP and RP revealed three types of time-signal intensity curves: 1) rapid rise to a peak, with a rapid decline (FP=2, RP=4), 2) slow rise to a peak, followed by a slow decline (FP=5, RP=4), and 3) slower rise to a peak, with a slow decline or plateau (FP=7, RP=6). Mean apparent diffusion coefficient (ADC) values for FP and RP were 2.09±0.18 and 2.03±0.2x10 -3 mm 2 /s, respectively. ADC values of FP and RP revealed no significant difference. Conclusion: The spectrum of imaging findings of focal pancreatitis on MRI/MRCP including DWI was described. Findings of FP were not distinctive as compared to the remaining pancreas

  16. Studies of MRI relaxivities of gadolinium-labeled dendrons

    Science.gov (United States)

    Pan, Hongmu; Daniel, Marie-Christine

    2011-05-01

    In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).

  17. Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI

    Directory of Open Access Journals (Sweden)

    Chandrasekaran Suresh

    2007-02-01

    Full Text Available Abstract Background Diabetes is associated with a cardiomyopathy that is independent of coronary artery disease or hypertension. In the present study we used in vivo magnetic resonance imaging (MRI and echocardiographic techniques to examine and characterize early changes in myocardial function in a mouse model of type 1 diabetes. Methods Diabetes was induced in 8-week old C57BL/6 mice with two intraperitoneal injections of streptozotocin. The blood glucose levels were maintained at 19–25 mmol/l using intermittent low dosages of long acting insulin glargine. MRI and echocardiography were performed at 4 weeks of diabetes (age of 12 weeks in diabetic mice and age-matched controls. Results After 4 weeks of hyperglycemia one marker of mitochondrial function, NADH oxidase activity, was decreased to 50% of control animals. MRI studies of diabetic mice at 4 weeks demonstrated significant deficits in myocardial morphology and functionality including: a decreased left ventricular (LV wall thickness, an increased LV end-systolic diameter and volume, a diminished LV ejection fraction and cardiac output, a decreased LV circumferential shortening, and decreased LV peak ejection and filling rates. M-mode echocardiographic and Doppler flow studies of diabetic mice at 4 weeks showed a decreased wall thickening and increased E/A ratio, supporting both systolic and diastolic dysfunction. Conclusion Our study demonstrates that MRI interrogation can identify the onset of diabetic cardiomyopathy in mice with its impaired functional capacity and altered morphology. The MRI technique will lend itself to repetitive study of early changes in cardiac function in small animal models of diabetic cardiomyopathy.

  18. Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI)

    Science.gov (United States)

    Yu, Xichun; Tesiram, Yasvir A; Towner, Rheal A; Abbott, Andrew; Patterson, Eugene; Huang, Shijun; Garrett, Marion W; Chandrasekaran, Suresh; Matsuzaki, Satoshi; Szweda, Luke I; Gordon, Brian E; Kem, David C

    2007-01-01

    Background Diabetes is associated with a cardiomyopathy that is independent of coronary artery disease or hypertension. In the present study we used in vivo magnetic resonance imaging (MRI) and echocardiographic techniques to examine and characterize early changes in myocardial function in a mouse model of type 1 diabetes. Methods Diabetes was induced in 8-week old C57BL/6 mice with two intraperitoneal injections of streptozotocin. The blood glucose levels were maintained at 19–25 mmol/l using intermittent low dosages of long acting insulin glargine. MRI and echocardiography were performed at 4 weeks of diabetes (age of 12 weeks) in diabetic mice and age-matched controls. Results After 4 weeks of hyperglycemia one marker of mitochondrial function, NADH oxidase activity, was decreased to 50% of control animals. MRI studies of diabetic mice at 4 weeks demonstrated significant deficits in myocardial morphology and functionality including: a decreased left ventricular (LV) wall thickness, an increased LV end-systolic diameter and volume, a diminished LV ejection fraction and cardiac output, a decreased LV circumferential shortening, and decreased LV peak ejection and filling rates. M-mode echocardiographic and Doppler flow studies of diabetic mice at 4 weeks showed a decreased wall thickening and increased E/A ratio, supporting both systolic and diastolic dysfunction. Conclusion Our study demonstrates that MRI interrogation can identify the onset of diabetic cardiomyopathy in mice with its impaired functional capacity and altered morphology. The MRI technique will lend itself to repetitive study of early changes in cardiac function in small animal models of diabetic cardiomyopathy. PMID:17309798

  19. Imaging features suggestive of a conjoined nerve root on routine axial MRI

    Energy Technology Data Exchange (ETDEWEB)

    Song, Su Jin; Lee, Joon Woo; Kang, Heung Sik [Seoul National University Bundang Hospital, Department of Radiology, Gyeongi-do (Korea); Choi, Ja-Young; Hong, Sung Hwan; Kim, Na Ra [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea); Kim, Ki-Jeong; Chung, Sang-Ki; Kim, Hyun-Jib [Seoul National University Bundang Hospital, Department of Neurosurgery, Gyeongi-Do (Korea)

    2008-02-15

    The purpose of our study is to evaluate imaging features suggestive of a conjoined nerve root on routine axial MRI. Two radiologists and two surgeons retrospectively reviewed the MRI of three cases in which a conjoined nerve root was discovered during operation and found three suggestive signs on routine axial MR images: ''corner'' (asymmetric morphology of the anterolateral corner of the dural sac), ''fat crescent'' (intervening extradural fat between the asymmetric dura and the nerve root), and ''parallel'' signs (visualization of the entire parallel course of the nerve root at the disc level). Two radiologists prospectively found these signs during routine MRI interpretation sessions over a period of 6 months. If one or a combination of signs were noted on axial MR images, contiguous axial scans were additionally obtained. Three cases that were previously found during operations were also included. Prevalence and confidence scores for each sign were assessed on axial T1- and T2-weighted images. Twelve patients showed one or a combination of the three signs, 9 had contiguous axial MR scans. Five cases were confirmed by operation. The prevalence of the corner, fat crescent, and parallel signs were 12 out of 12 (100%), 6 out of 12 (50%), and 8 out of 12 (67.7%) on axial T1-weighted images. The overall diagnostic confidence was higher on T1- than on T2-weighted images (P < 0.05). On routine axial L-spine MRI, corner, fat crescent, and parallel signs are suggestive of and assist in the recognition of a conjoined nerve root. (orig.)

  20. Mixed-effects and fMRI studies

    DEFF Research Database (Denmark)

    Friston, K.J; Stephan, K.E; Ellegaard Lund, Torben

    2005-01-01

    This note concerns mixed-effect (MFX) analyses in multisession functional magnetic resonance imaging (fMRI) studies. It clarifies the relationship between mixed-effect analyses and the two-stage 'summary statistics' procedure (Holmes, A.P., Friston, K.J., 1998. Generalisability, random effects...

  1. Tissue Necrosis Monitoring for HIFU Ablation with T1 Contrast MRI Imaging

    Science.gov (United States)

    Hwang, San-Chao; Yao, Ching; Kuo, Ih-Yuan; Tsai, Wei-Cheng; Chang, Hsu

    2011-09-01

    In MR-guided HIFU ablation, MTC (Magnetization Transfer Contrast) or perfusion imaging is usually used after ablation to evaluate the ablated area based on the thermally induced necrosis contrast. In our MR-guided HIFU ablation study, a T1 contrast MRI scan sequence has been used to distinguish between necrotic and non-necrotic tissue. The ablation of porcine meat in-vitro and in-vivo pig leg muscle show that the necrotic area of T1 contrast MRI image coincides with the photographs of sliced specimen. The sequence is considerably easier to apply than MTC or perfusion imaging, while giving good necrosis contrast. In addition, no injection of contrast agent is needed, allowing multiple scans to be applied throughout the entire ablation procedure.

  2. Image to physical space registration of supine breast MRI for image guided breast surgery

    Science.gov (United States)

    Conley, Rebekah H.; Meszoely, Ingrid M.; Pheiffer, Thomas S.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of excised tissue are cancer free) due to uncertainty in outcome with regards to complete excision of cancerous cells, risk of local recurrence, and cosmesis. Determining surgical margins intraoperatively is difficult and achieving negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastectomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents, however diagnostic images are acquired in a fundamentally different patient presentation than that used in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breast are not optimal for use in surgical planning/guidance due to the drastic shape change between preoperative images and the common supine surgical position. This work proposes to investigate the value of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraoperative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a tracked laser range scan of the patient's breast surface, tracked center points of MR visible fiducials on the patient's breast, and tracked B-mode ultrasound and strain images. The preoperative data included a supine MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS) fiducial registration error using the tracked markers was 3.4mm. Following registration, the average closest point distance between the MR

  3. Simultaneous functional imaging using fPET and fMRI

    Energy Technology Data Exchange (ETDEWEB)

    Villien, Marjorie [CERMEP (France)

    2015-05-18

    Brain mapping of task-associated changes in metabolism with PET has been accomplished by subtracting scans acquired during two distinct static states. We have demonstrated that PET can provide truly dynamic information on cerebral energy metabolism using constant infusion of FDG and multiple stimuli in a single experiment. We demonstrate here that the functional PET (fPET-FDG) method accomplished simultaneously with fMRI, can enable the first direct comparisons in time, space and magnitude of hemodynamics and oxygen and glucose consumption. The imaging studies were performed on a 3T Tim-Trio MR scanner modified to support an MR-compatible BrainPET insert. Ten healthy subjects were included. The total PET acquisition and infusion time was 90 minutes. We did 3 blocks of right hand fingers tapping for 10 minutes at 30, 50 and 70 minutes after the beginning of the PET acquisition. ASL and BOLD imaging were acquired simultaneously during the motor paradigm. Changes in glucose utilization are easily observed as changes in the TAC slope of the PET data (FDG utilization rate) and in the derivative signal during motor stimuli in the activated voxels. PET and MRI (ASL, and BOLD) activations are largely colocalized but with very different statistical significance and temporal dynamic, especially in the ipsilateral side of the stimuli. This study demonstrated that motor activation can be measured dynamically during a single FDG PET scan. The complementary nature of fPET-FDG to fMRI capitalizes on the emerging technology of hybrid MR-PET scanners. fPET-FDG, combined with quantitative fMRI methods, allow us to simultaneously measure dynamic changes in glucose utilization and hemodynamic, addressing vital questions about neurovascular coupling.

  4. Simultaneous functional imaging using fPET and fMRI

    International Nuclear Information System (INIS)

    Villien, Marjorie

    2015-01-01

    Brain mapping of task-associated changes in metabolism with PET has been accomplished by subtracting scans acquired during two distinct static states. We have demonstrated that PET can provide truly dynamic information on cerebral energy metabolism using constant infusion of FDG and multiple stimuli in a single experiment. We demonstrate here that the functional PET (fPET-FDG) method accomplished simultaneously with fMRI, can enable the first direct comparisons in time, space and magnitude of hemodynamics and oxygen and glucose consumption. The imaging studies were performed on a 3T Tim-Trio MR scanner modified to support an MR-compatible BrainPET insert. Ten healthy subjects were included. The total PET acquisition and infusion time was 90 minutes. We did 3 blocks of right hand fingers tapping for 10 minutes at 30, 50 and 70 minutes after the beginning of the PET acquisition. ASL and BOLD imaging were acquired simultaneously during the motor paradigm. Changes in glucose utilization are easily observed as changes in the TAC slope of the PET data (FDG utilization rate) and in the derivative signal during motor stimuli in the activated voxels. PET and MRI (ASL, and BOLD) activations are largely colocalized but with very different statistical significance and temporal dynamic, especially in the ipsilateral side of the stimuli. This study demonstrated that motor activation can be measured dynamically during a single FDG PET scan. The complementary nature of fPET-FDG to fMRI capitalizes on the emerging technology of hybrid MR-PET scanners. fPET-FDG, combined with quantitative fMRI methods, allow us to simultaneously measure dynamic changes in glucose utilization and hemodynamic, addressing vital questions about neurovascular coupling.

  5. Reconstruction of MRI/CT compatible ring and tandem applicators in CT or MRI images used for treatment planning in brachytherapy

    International Nuclear Information System (INIS)

    Surendran, N.; Kim, Hayeon; Beriwal, Sushil; Saiful Huq, M.

    2008-01-01

    Brachytherapy (BT) plays a crucial role in the management of invasive cervix cancer from stage I to IV. Intracavitary techniques are based on afterloading devices, with different types of applicators. CT and/or MRI compatible applicators allow a sectional image based approach with a better assessment of gross tumour volume (GTV) and definition and delineation of target volume (CTV) compared to traditional approaches. To evaluate reconstruction of MRI/CT compatible ring and tandem applicators in 3D CT or MRI images used for treatment planning in Brachytherapy

  6. MRI-negative refractory partial epilepsy: role for diffusion tensor imaging in high field MRI.

    Science.gov (United States)

    Chen, Qin; Lui, Su; Li, Chun-Xiao; Jiang, Li-Jun; Ou-Yang, Luo; Tang, He-Han; Shang, Hui-Fang; Huang, Xiao-Qi; Gong, Qi-Yong; Zhou, Dong

    2008-07-01

    Our aim is to use the high field MR scanner (3T) to verify whether diffusion tensor imaging (DTI) could help in locating the epileptogenic zone in patients with MRI-negative refractory partial epilepsy. Fifteen patients with refractory partial epilepsy who had normal conventional MRI, and 40 healthy volunteers were recruited for the study. DTI was performed on a 3T MR scanner, individual maps of mean diffusivity (MD) and fractional anisotropy (FA) were calculated, and Voxel-Based Analysis (VBA) was performed for individual comparison between patients and controls. Voxel-based analysis revealed significant MD increase in variant regions in 13 patients. The electroclinical seizure localization was concurred to seven patients. No patient exhibited regions of significant decreased MD. Regions of significant reduced FA were observed in five patients, with two of these concurring with electroclinical seizure localization. Two patients had regions of significant increase in FA, which were distinct from electroclinical seizure localization. Our study's results revealed that DTI is a responsive neuroradiologic technique that provides information about the epileptogenic areas in patients with MRI-negative refractory partial epilepsy. This technique may also helpful in pre-surgical evaluation.

  7. Imaging technique and current status of valvular heart disease using cardiac MRI

    International Nuclear Information System (INIS)

    Lotz, J.; Sohns, J.M.

    2013-01-01

    The main indications for cardiac magnetic resonance imaging (MRI) in the evaluation of valvular heart disease are pathologies of the aortic and pulmonary valve. For mitral and tricuspid valve pathologies MRI is not the first line modality as these are usually well visualized by echocardiography. The advantages of MRI in valvular heart disease are a high reliability in the evaluation of ventricular volumes and function as well as the assessment of the perivalvular arterial or atrial structures. This reliability and the limitless access to any imaging plane partially compensates for the lower temporal and spatial resolution in comparison to echocardiography. In patients with congenital heart disease, cardiac MRI is established as a valuable diagnostic tool in daily clinical management, especially for the evaluation of pulmonary valve defects. Nevertheless, echocardiography remains the first-line diagnostic imaging tool for the foreseeable future. (orig.) [de

  8. Magnetic resonance imaging (MRI) in obstetrics. II. Fetal anatomy.

    Science.gov (United States)

    Powell, M C; Worthington, B S; Buckley, J M; Symonds, E M

    1988-01-01

    Magnetic resonance imaging (MRI) was performed in 36 patients at between 10 and 38 weeks gestation to determine the fetal anatomy that could be identified at different gestations. Fetal motion significantly degraded the image quality in the first and second trimesters, but in the final trimester fetal anatomy was clearly demonstrated. T2 weighted sequences showed the fetal brain and lungs to have a high signal intensity. Shorter TR leading to a T1 weighting gave better resolution of the overall anatomy. MRI has revealed the potential for assessment of lung maturity and the growth-retarded fetus.

  9. An iterative reconstruction method of complex images using expectation maximization for radial parallel MRI

    International Nuclear Information System (INIS)

    Choi, Joonsung; Kim, Dongchan; Oh, Changhyun; Han, Yeji; Park, HyunWook

    2013-01-01

    In MRI (magnetic resonance imaging), signal sampling along a radial k-space trajectory is preferred in certain applications due to its distinct advantages such as robustness to motion, and the radial sampling can be beneficial for reconstruction algorithms such as parallel MRI (pMRI) due to the incoherency. For radial MRI, the image is usually reconstructed from projection data using analytic methods such as filtered back-projection or Fourier reconstruction after gridding. However, the quality of the reconstructed image from these analytic methods can be degraded when the number of acquired projection views is insufficient. In this paper, we propose a novel reconstruction method based on the expectation maximization (EM) method, where the EM algorithm is remodeled for MRI so that complex images can be reconstructed. Then, to optimize the proposed method for radial pMRI, a reconstruction method that uses coil sensitivity information of multichannel RF coils is formulated. Experiment results from synthetic and in vivo data show that the proposed method introduces better reconstructed images than the analytic methods, even from highly subsampled data, and provides monotonic convergence properties compared to the conjugate gradient based reconstruction method. (paper)

  10. Quantitative estimation of brain atrophy and function with PET and MRI two-dimensional projection images

    International Nuclear Information System (INIS)

    Saito, Reiko; Uemura, Koji; Uchiyama, Akihiko; Toyama, Hinako; Ishii, Kenji; Senda, Michio

    2001-01-01

    The purpose of this paper is to estimate the extent of atrophy and the decline in brain function objectively and quantitatively. Two-dimensional (2D) projection images of three-dimensional (3D) transaxial images of positron emission tomography (PET) and magnetic resonance imaging (MRI) were made by means of the Mollweide method which keeps the area of the brain surface. A correlation image was generated between 2D projection images of MRI and cerebral blood flow (CBF) or 18 F-fluorodeoxyglucose (FDG) PET images and the sulcus was extracted from the correlation image clustered by K-means method. Furthermore, the extent of atrophy was evaluated from the extracted sulcus on 2D-projection MRI and the cerebral cortical function such as blood flow or glucose metabolic rate was assessed in the cortex excluding sulcus on 2D-projection PET image, and then the relationship between the cerebral atrophy and function was evaluated. This method was applied to the two groups, the young and the aged normal subjects, and the relationship between the age and the rate of atrophy or the cerebral blood flow was investigated. This method was also applied to FDG-PET and MRI studies in the normal controls and in patients with corticobasal degeneration. The mean rate of atrophy in the aged group was found to be higher than that in the young. The mean value and the variance of the cerebral blood flow for the young are greater than those of the aged. The sulci were similarly extracted using either CBF or FDG PET images. The purposed method using 2-D projection images of MRI and PET is clinically useful for quantitative assessment of atrophic change and functional disorder of cerebral cortex. (author)

  11. Brain MRI diffusion-weighted imaging in patients with classical phenylketonuria

    Energy Technology Data Exchange (ETDEWEB)

    Manara, Renzo; Citton, Valentina; Carollo, Carla [University Hospital of Padua, Neuroradiologic Unit, Padua (Italy); Burlina, Alessandro P.; Ermani, Mario [University Hospital of Padua, Neurological Clinic, Department of Neuroscience, Padua (Italy); Vespignani, Francesco; Burlina, Alberto B. [University Hospital of Padua, Metabolic Diseases Unit, Department of Paediatrics, Padua (Italy)

    2009-12-15

    The aim of this study was to grade magnetic resonance white matter abnormalities (WMAs) of classical phenylketonuria (cPKU) patients treated from birth and to compare sensitivity and specificity of T2-weighted and diffusion-weighted images (DWI). Twenty early-treated cPKU patients still on a low-phenylalanine diet (12 males; mean age 21.2 years) and 26 normal subjects (ten males; mean age 25.1 years) were enrolled. Typical T2- and diffusion-weighted WMAs were semiquantitatively graded according to Thompson score (TS). Besides, a regional magnetic resonance imaging (MRI) score (mTS) was developed according to extension and intensity of WMAs. Phenylalanine and tyrosine plasma concentrations before performing MRI and the amino acid mean levels collected the year before MRI (Tyr{sub year} and Phe{sub year}) were measured. No patient with Phe{sub year} concentration below 460 {mu}mol/L showed WMAs. In cPKU patients, TS and mTS were significantly higher on DWI than on T2 images (3.50 vs 2.65 and 23.65 vs 15.85, respectively, p<0.002, Wilcoxon test). All controls were scored 0 on DWI, while in T2 images, TS and mTS were 0.19 and 1.70. DWI evaluated by mTS disclosed a frontotemporal, occipital, and parietal WM progressive involvement. TS and mTS, both on T2 images and on DWI, showed no correlation with tyrosine while they proved to have a strong correlation with phenylalaninemia and an excellent one with Phe{sub year} levels. Among the different MR sequences, DWI seems to be the most sensitive and reliable in detecting and grading the typical WMAs of cPKU patients. (orig.)

  12. Whole-body MRI in adult inflammatory myopathies: Do we need imaging of the trunk?

    International Nuclear Information System (INIS)

    Filli, Lukas; Manoliu, Andrei; Andreisek, Gustav; Guggenberger, Roman; Maurer, Britta

    2015-01-01

    To evaluate whether imaging of the trunk could be omitted in patients with inflammatory myopathies without losing diagnostic accuracy using a restricted whole-body magnetic resonance imaging (rWB-MRI) protocol. After approval by the institutional review board, this study was performed in 63 patients (male/female, 13/50; median age, 52 years; range, 20-81 years) with new-onset myopathic symptoms (group 1, n = 41) or previously diagnosed inflammatory myopathy (group 2, n = 22). After performing whole-body MRI (WB-MRI) at 3.0 Tesla, myositis and fatty atrophy were evaluated in different muscles by two independent radiologists. The intra-class correlation coefficient (ICC) was calculated to evaluate inter-observer reliability. Acquisition time was 56:01 minutes for WB-MRI and 37:37 minutes (32.8 % shorter) for rWB-MRI. In group 1, 14 patients were diagnosed with inflammatory myopathy based on muscle biopsy. rWB-MRI and WB-MRI showed equal sensitivity (42.9 %) and specificity (100 %) for myositis, and showed equal sensitivity (71.4 %) and similar specificity (63.0 % and 48.1 %, respectively) for fatty atrophy. No myositis was found in the body trunk in any patient. Inter-observer reliability was between substantial and perfect (ICC, 0.77-1.00). rWB-MRI showed diagnostic accuracy similar to WB-MRI for inflammatory myopathy at markedly reduced overall acquisition time. (orig.)

  13. Whole-body MRI in adult inflammatory myopathies: Do we need imaging of the trunk?

    Energy Technology Data Exchange (ETDEWEB)

    Filli, Lukas; Manoliu, Andrei; Andreisek, Gustav; Guggenberger, Roman [University Hospital Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Maurer, Britta [University Hospital Zurich, University of Zurich, Division of Rheumatology, Zurich (Switzerland)

    2015-12-15

    To evaluate whether imaging of the trunk could be omitted in patients with inflammatory myopathies without losing diagnostic accuracy using a restricted whole-body magnetic resonance imaging (rWB-MRI) protocol. After approval by the institutional review board, this study was performed in 63 patients (male/female, 13/50; median age, 52 years; range, 20-81 years) with new-onset myopathic symptoms (group 1, n = 41) or previously diagnosed inflammatory myopathy (group 2, n = 22). After performing whole-body MRI (WB-MRI) at 3.0 Tesla, myositis and fatty atrophy were evaluated in different muscles by two independent radiologists. The intra-class correlation coefficient (ICC) was calculated to evaluate inter-observer reliability. Acquisition time was 56:01 minutes for WB-MRI and 37:37 minutes (32.8 % shorter) for rWB-MRI. In group 1, 14 patients were diagnosed with inflammatory myopathy based on muscle biopsy. rWB-MRI and WB-MRI showed equal sensitivity (42.9 %) and specificity (100 %) for myositis, and showed equal sensitivity (71.4 %) and similar specificity (63.0 % and 48.1 %, respectively) for fatty atrophy. No myositis was found in the body trunk in any patient. Inter-observer reliability was between substantial and perfect (ICC, 0.77-1.00). rWB-MRI showed diagnostic accuracy similar to WB-MRI for inflammatory myopathy at markedly reduced overall acquisition time. (orig.)

  14. The Problem of Metal Needles in Acupuncture-fMRI Studies

    Directory of Open Access Journals (Sweden)

    Florian Beissner

    2011-01-01

    Full Text Available Acupuncture is a therapy based on sensory stimulation of the human body by means of metal needles. The exact underlying mechanisms of acupuncture have not been clarified so far. Functional magnetic resonance imaging (fMRI has become an important tool in acupuncture research. Standard acupuncture needles, which are made of ferromagnetic steel, however, are problematic in acupuncture-fMRI studies for several reasons, such as attraction by the scanner's magnetic field, significant image distortions and signal-dropouts, when positioned close to the head or even heating due to absorption of radio frequency (RF. The aim of this study was to compare two novel types of acupuncture needles with a standard needle for their effect on MRI image quality. The standard needle severely reduced image quality, when located inside the RF coil. The nonferromagnetic metal needle may pose a risk due to RF heating, while the plastic needle has a significantly larger diameter. In conclusion, our recommendations are: (1 standard needles should not be used in MRI; (2 Nonferromagnetic metal needles seem to be the best choice for acupoints outside of the transmitter coil; and (3 only plastic needles are suited for points inside the coil. Laser acupuncture may be a safe alternative, too.

  15. Photo-magnetic imaging: resolving optical contrast at MRI resolution

    International Nuclear Information System (INIS)

    Lin Yuting; Thayer, David; Luk, Alex L; Gulsen, Gultekin; Gao Hao

    2013-01-01

    In this paper, we establish the mathematical framework of a novel imaging technique, namely photo-magnetic imaging (PMI). PMI uses a laser to illuminate biological tissues and measure the induced temperature variations using magnetic resonance imaging (MRI). PMI overcomes the limitation of conventional optical imaging and allows imaging of the optical contrast at MRI spatial resolution. The image reconstruction for PMI, using a finite-element-based algorithm with an iterative approach, is presented in this paper. The quantitative accuracy of PMI is investigated for various inclusion sizes, depths and absorption values. Then, a comparison between conventional diffuse optical tomography (DOT) and PMI is carried out to illustrate the superior performance of PMI. An example is presented showing that two 2 mm diameter inclusions embedded 4.5 mm deep and located side by side in a 25 mm diameter circular geometry medium are recovered as a single 6 mm diameter object with DOT. However, these two objects are not only effectively resolved with PMI, but their true concentrations are also recovered successfully. (paper)

  16. Fat ViP MRI: Virtual Phantom Magnetic Resonance Imaging of water-fat systems.

    Science.gov (United States)

    Salvati, Roberto; Hitti, Eric; Bellanger, Jean-Jacques; Saint-Jalmes, Hervé; Gambarota, Giulio

    2016-06-01

    Virtual Phantom Magnetic Resonance Imaging (ViP MRI) is a method to generate reference signals on MR images, using external radiofrequency (RF) signals. The aim of this study was to assess the feasibility of ViP MRI to generate complex-data images of phantoms mimicking water-fat systems. Various numerical phantoms with a given fat fraction, T2* and field map were designed. The k-space of numerical phantoms was converted into RF signals to generate virtual phantoms. MRI experiments were performed at 4.7T using a multi-gradient-echo sequence on virtual and physical phantoms. The data acquisition of virtual and physical phantoms was simultaneous. Decomposition of the water and fat signals was performed using a complex-based water-fat separation algorithm. Overall, a good agreement was observed between the fat fraction, T2* and phase map values of the virtual and numerical phantoms. In particular, fat fractions of 10.5±0.1 (vs 10% of the numerical phantom), 20.3±0.1 (vs 20%) and 30.4±0.1 (vs 30%) were obtained in virtual phantoms. The ViP MRI method allows for generating imaging phantoms that i) mimic water-fat systems and ii) can be analyzed with water-fat separation algorithms based on complex data. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI group

    NARCIS (Netherlands)

    Rudwaleit, M.; Jurik, A. G.; Hermann, K.-G. A.; Landewé, R.; van der Heijde, D.; Baraliakos, X.; Marzo-Ortega, H.; Ostergaard, M.; Braun, J.; Sieper, J.

    2009-01-01

    Magnetic resonance imaging (MRI) of sacroiliac joints has evolved as the most relevant imaging modality for diagnosis and classification of early axial spondyloarthritis (SpA) including early ankylosing spondylitis. To identify and describe MRI findings in sacroiliitis and to reach consensus on

  18. Phase-encoded MRI for geometrically undistorted imaging and signal characterization

    NARCIS (Netherlands)

    van Gorp, JS

    2016-01-01

    Magnetic resonance imaging (MRI) is a versatile diagnostic modality that has earned its place in clinical practice all over the world. MRI delivers excellent soft-tissue contrast that can be utilized to detect disease and measure physiological properties in a non-invasive manner. As long as the main

  19. Imaging of tumor viability in lung cancer. Initial results using 23Na-MRI

    International Nuclear Information System (INIS)

    Henzler, T.; Apfaltrer, P.; Haneder, S.; Schoenberg, S.O.; Fink, C.; Konstandin, S.; Schad, L.; Schmid-Bindert, G.; Manegold, C.; Wenz, F.

    2012-01-01

    23 Na-MRI has been proposed as a potential imaging biomarker for the assessment of tumor viability and the evaluation of therapy response but has not yet been evaluated in patients with lung cancer. We aimed to assess the feasibility of 23 Na-MRI in patients with lung cancer. Three patients with stage IV adenocarcinoma of the lung were examined on a clinical 3 Tesla MRI system (Magnetom TimTrio, Siemens Healthcare, Erlangen, Germany). Feasibility of 23 Na-MRI images was proven by comparison and fusion of 23 Na-MRI with 1 H-MR, CT and FDG-PET-CT images. 23 Na signal intensities (SI) of tumor and cerebrospinal fluid (CSF) of the spinal canal were measured and the SI ratio in tumor and CSF was calculated. One chemonaive patient was examined before and after the initiation of combination therapy (Carboplatin, Gemcitabin, Cetuximab). All 23 Na-MRI examinations were successfully completed and were of diagnostic quality. Fusion of 23 Na-MRI images with 1 H-MRI, CT and FDG-PET-CT was feasible in all patients and showed differences in solid and necrotic tumor areas. The mean tumor SI and the tumor/CSF SI ratio were 13.3 ± 1.8 x 103 and 0.83 ± 0.14, respectively. In necrotic tumors, as suggested by central non-FDG-avid areas, the mean tumor SI and the tumor/CSF ratio were 19.4 x 103 and 1.10, respectively. 23 Na-MRI is feasible in patients with lung cancer and could provide valuable functional molecular information regarding tumor viability, and potentially treatment response. (orig.)

  20. Accelerated Fractional Ventilation Imaging with Hyperpolarized Gas MRI

    Science.gov (United States)

    Emami, Kiarash; Xu, Yinan; Hamedani, Hooman; Profka, Harrilla; Kadlecek, Stephen; Xin, Yi; Ishii, Masaru; Rizi, Rahim R.

    2013-01-01

    PURPOSE To investigate the utility of accelerated imaging to enhance multi-breath fractional ventilation (r) measurement accuracy using HP gas MRI. Undersampling shortens the breath-hold time, thereby reducing the O2-induced signal decay and allows subjects to maintain a more physiologically relevant breathing pattern. Additionally it may improve r estimation accuracy by reducing RF destruction of HP gas. METHODS Image acceleration was achieved by using an 8-channel phased array coil. Undersampled image acquisition was simulated in a series of ventilation images and images were reconstructed for various matrix sizes (48–128) using GRAPPA. Parallel accelerated r imaging was also performed on five mechanically ventilated pigs. RESULTS Optimal acceleration factor was fairly invariable (2.0–2.2×) over the range of simulated resolutions. Estimation accuracy progressively improved with higher resolutions (39–51% error reduction). In vivo r values were not significantly different between the two methods: 0.27±0.09, 0.35±0.06, 0.40±0.04 (standard) versus 0.23±0.05, 0.34±0.03, 0.37±0.02 (accelerated); for anterior, medial and posterior slices, respectively, whereas the corresponding vertical r gradients were significant (P fractional ventilation measurement with HP gas MRI. PMID:23400938

  1. The OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging (MRI) Scoring System: Updated Recommendations by the OMERACT MRI in Arthritis Working Group.

    Science.gov (United States)

    Østergaard, Mikkel; Peterfy, Charles G; Bird, Paul; Gandjbakhch, Frédérique; Glinatsi, Daniel; Eshed, Iris; Haavardsholm, Espen A; Lillegraven, Siri; Bøyesen, Pernille; Ejbjerg, Bo; Foltz, Violaine; Emery, Paul; Genant, Harry K; Conaghan, Philip G

    2017-11-01

    The Outcome Measures in Rheumatology (OMERACT) Rheumatoid Arthritis (RA) Magnetic Resonance Imaging (MRI) scoring system (RAMRIS), evaluating bone erosion, bone marrow edema/osteitis, and synovitis, was introduced in 2002, and is now the standard method of objectively quantifying inflammation and damage by MRI in RA trials. The objective of this paper was to identify subsequent advances and based on them, to provide updated recommendations for the RAMRIS. MRI studies relevant for RAMRIS and technical and scientific advances were analyzed by the OMERACT MRI in Arthritis Working Group, which used these data to provide updated considerations on image acquisition, RAMRIS definitions, and scoring systems for the original and new RA pathologies. Further, a research agenda was outlined. Since 2002, longitudinal studies and clinical trials have documented RAMRIS variables to have face, construct, and criterion validity; high reliability and sensitivity to change; and the ability to discriminate between therapies. This has enabled RAMRIS to demonstrate inhibition of structural damage progression with fewer patients and shorter followup times than has been possible with conventional radiography. Technical improvements, including higher field strengths and improved pulse sequences, allow higher image resolution and contrast-to-noise ratio. These have facilitated development and validation of scoring methods of new pathologies: joint space narrowing and tenosynovitis. These have high reproducibility and moderate sensitivity to change, and can be added to RAMRIS. Combined scores of inflammation or joint damage may increase sensitivity to change and discriminative power. However, this requires further research. Updated 2016 RAMRIS recommendations and a research agenda were developed.

  2. Assessment of swallowing and its disorders—A dynamic MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Vijay Kumar, K.V., E-mail: vijaykumarkv@yahoo.in [Department of Speech, Language and Hearing Sciences, SRU (India); Shankar, V., E-mail: drshankarv@yahoo.co.in [Department of Neurology, SRU (India); Santosham, Roy, E-mail: santoshamroy@yahoo.com [Department of Radiology and Imaging Sciences, SRU (India)

    2013-02-15

    Magnetic resonance imaging overcomes the limitations of videofluoroscopy in assessing without radiation exposure. The clinical utility of dynamic MRI for swallowing disorders is not well documented. This study demonstrates the feasibility of using dynamic MRI in assessment of swallowing disorders. Ten normal and three brainstem lesion patients participated in this study. GE Signa HDxt 1.5 Tesla MRI scanner with head-and-neck coil as a receiver and fast imaging employing steady state acquisition sequence was used. The swallow was analyzed in terms of symmetry and amplitude of movements of velum, faucial pillars, tongue, epiglottis and cricopharyngeous and images from the sagittal, coronal and axial planes. In sagittal plane posterior movement of tongue and its compression on velum, elevation of hyoid bone, elevation of larynx and lid action of epiglottis, in the coronal view the symmetrical movements of the faucial pillars and pharyngeal constrictor muscles and in axial plane three anatomical landmarks were targeted based on their role in swallowing, viz. velum, epiglottis and cricopharyngeous were studied. In brainstem lesion individuals, posterior movement of tongue, and elevation of larynx were not seen. Asymmetrical movements of faucial pillars and cricopharyngeous muscle were appreciated in the dynamic MRI. This demonstrates that, dynamic MRI is an efficient tool to understand the swallowing physiology and helps the speech language pathologist in modifying the swallowing maneuvers. Dynamic MRI is an effective tool in assessing swallowing and its disorders. This muscle specific information is not appreciated in videofluoroscopy and this information is necessary to modify the therapy maneuvers.

  3. Assessment of swallowing and its disorders—A dynamic MRI study

    International Nuclear Information System (INIS)

    Vijay Kumar, K.V.; Shankar, V.; Santosham, Roy

    2013-01-01

    Magnetic resonance imaging overcomes the limitations of videofluoroscopy in assessing without radiation exposure. The clinical utility of dynamic MRI for swallowing disorders is not well documented. This study demonstrates the feasibility of using dynamic MRI in assessment of swallowing disorders. Ten normal and three brainstem lesion patients participated in this study. GE Signa HDxt 1.5 Tesla MRI scanner with head-and-neck coil as a receiver and fast imaging employing steady state acquisition sequence was used. The swallow was analyzed in terms of symmetry and amplitude of movements of velum, faucial pillars, tongue, epiglottis and cricopharyngeous and images from the sagittal, coronal and axial planes. In sagittal plane posterior movement of tongue and its compression on velum, elevation of hyoid bone, elevation of larynx and lid action of epiglottis, in the coronal view the symmetrical movements of the faucial pillars and pharyngeal constrictor muscles and in axial plane three anatomical landmarks were targeted based on their role in swallowing, viz. velum, epiglottis and cricopharyngeous were studied. In brainstem lesion individuals, posterior movement of tongue, and elevation of larynx were not seen. Asymmetrical movements of faucial pillars and cricopharyngeous muscle were appreciated in the dynamic MRI. This demonstrates that, dynamic MRI is an efficient tool to understand the swallowing physiology and helps the speech language pathologist in modifying the swallowing maneuvers. Dynamic MRI is an effective tool in assessing swallowing and its disorders. This muscle specific information is not appreciated in videofluoroscopy and this information is necessary to modify the therapy maneuvers

  4. MRI of the scrotum. Recommendations of the ESUR Scrotal and Penile Imaging Working Group

    International Nuclear Information System (INIS)

    Tsili, Athina C.; Ntorkou, Alexandra; Bertolotto, Michele; Turgut, Ahmet Tuncay; Dogra, Vikram; Freeman, Simon; Rocher, Laurence; Belfield, Jane; Studniarek, Michal; Derchi, Lorenzo E.; Oyen, Raymond; Ramchandani, Parvati; Secil, Mustafa; Richenberg, Jonathan

    2018-01-01

    The Scrotal and Penile Imaging Working Group (SPI-WG) appointed by the board of the European Society of Urogenital Radiology (ESUR) has produced recommendations for magnetic resonance imaging (MRI) of the scrotum. The SPI-WG searched for original and review articles published before September 2016 using the Pubmed and Medline databases. Keywords used were 'magnetic resonance imaging', 'testis or testicle or testicular', 'scrotum', 'intratesticular', 'paratesticular', 'extratesticular' 'diffusion-weighted', 'dynamic MRI'. Consensus was obtained among the members of the subcommittee. The expert panel proposed recommendations using Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence. The recommended MRI protocol should include T1-, T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced MRI. Scrotal MRI can be clinically applied for lesion characterisation (primary), including both intratesticular and paratesticular masses, differentiation between germ-cell and non-germ-cell neoplasms (evolving), characterisation of the histological type of testicular germ cell neoplasms (TGCNs, in selected cases), local staging of TGCNs (primary), acute scrotum (in selected cases), trauma (in selected cases) and undescended testes (primary). The ESUR SPI-WG produced this consensus paper in which the existing literature on MRI of the scrotum is reviewed. The recommendations for the optimal imaging technique and clinical indications are presented. (orig.)

  5. MRI of the scrotum. Recommendations of the ESUR Scrotal and Penile Imaging Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Tsili, Athina C.; Ntorkou, Alexandra [University of Ioannina, Department of Clinical Radiology, Medical School, Ioannina (Greece); Bertolotto, Michele [Uco di Radiologia, Trieste Univ. (Italy); Turgut, Ahmet Tuncay [Ankara Training and Research Hospital, Department of Radiology, Ankara (Turkey); Dogra, Vikram [University of Rochester School of Medicine and Dentistry, Department of Imaging Sciences, Rochester, NY (United States); Freeman, Simon [Plymouth Hospitals NHS Trust, Plymouth (United Kingdom); Rocher, Laurence [Hopitaux Universitaires Paris Sud, APHP, Ecole Doctorale Biosigne, Le Kremlin Bicetre (France); Belfield, Jane [Royal Liverpool University Hospital, Liverpool (United Kingdom); Studniarek, Michal [Medical University of Gdansk, Gdansk (Poland); Derchi, Lorenzo E. [Universita di Genova, Genova (Italy); Oyen, Raymond [KU Leuven, Radiology, Leuven (Belgium); Ramchandani, Parvati [Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA (United States); Secil, Mustafa [Dokuz Eylul University Faculty of Medicine, Department of Radiology, Izmir (Turkey); Richenberg, Jonathan [Royal Sussex County Hospital Brighton and Brighton and Sussex Medical School, Brighton, Sussex (United Kingdom)

    2018-01-15

    The Scrotal and Penile Imaging Working Group (SPI-WG) appointed by the board of the European Society of Urogenital Radiology (ESUR) has produced recommendations for magnetic resonance imaging (MRI) of the scrotum. The SPI-WG searched for original and review articles published before September 2016 using the Pubmed and Medline databases. Keywords used were 'magnetic resonance imaging', 'testis or testicle or testicular', 'scrotum', 'intratesticular', 'paratesticular', 'extratesticular' 'diffusion-weighted', 'dynamic MRI'. Consensus was obtained among the members of the subcommittee. The expert panel proposed recommendations using Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence. The recommended MRI protocol should include T1-, T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced MRI. Scrotal MRI can be clinically applied for lesion characterisation (primary), including both intratesticular and paratesticular masses, differentiation between germ-cell and non-germ-cell neoplasms (evolving), characterisation of the histological type of testicular germ cell neoplasms (TGCNs, in selected cases), local staging of TGCNs (primary), acute scrotum (in selected cases), trauma (in selected cases) and undescended testes (primary). The ESUR SPI-WG produced this consensus paper in which the existing literature on MRI of the scrotum is reviewed. The recommendations for the optimal imaging technique and clinical indications are presented. (orig.)

  6. Comparative study of ultrasound imaging, computed tomography and magnetic resonance imaging in gynecology

    International Nuclear Information System (INIS)

    Ishii, Kenji; Kobayashi, Hisaaki; Hoshihara, Takayuki; Kobayashi, Mitsunao; Suda, Yoshio; Takenaka, Eiichi; Sasa, Hidenori.

    1989-01-01

    We studied 18 patients who were operated at the National Defense Medical College Hospital and confirmed by pathological diagnosis. We compared ultrasound imaging, computed tomography (CT) and magnetic resonance imaging (MRI) of the patients. MRI was useful to diagnose enlargement of the uterine cavity and a small amount of ascites and to understand orientation of the pelvic organs. Ultrasound imaging is the most useful examination to diagnose gynecological diseases. But when it is difficult to diagnose by ultrasound imaging alone, we should employ either CT or MRI, or preferably both. (author)

  7. MRI-related magnetic field exposures and risk of commuting accidents - A cross-sectional survey among Dutch imaging technicians.

    Science.gov (United States)

    Huss, Anke; Schaap, Kristel; Kromhout, Hans

    2017-07-01

    Imaging technicians working with magnetic resonance imaging (MRI) may experience acute effects such as vertigo or dizziness when being exposed. A previous study also reported an increased risk of accidents in MRI exposed staff. We aimed at evaluating commuting accident risk in Dutch imaging technicians. Of invited imaging technicians, 490 (29%) filled in a questionnaire pertaining to (near) accidents when driving or riding a bike, health, lifestyle and work practices. We used logistic regression to evaluate the association between exposure to MRI-related electromagnetic fields and risk of commuting (near) accidents in the year prior to the survey, adjusted for a range of potential confounders. Our cross-sectional study indicated an increased risk of (near) accidents if imaging technicians had worked with MRI in the year prior to the survey (odds ratio OR 2.13, 95%CI 1.23-3.69). Risks were higher in persons who worked with MRI more often (OR 2.32, 95%CI 1.25-4.31) compared to persons who worked sometimes with MRI (OR 1.91, 95%CI 0.98-3.72), and higher in those who had likely experienced higher peak exposures to static and time-varying magnetic fields (OR 2.18, 95%CI 1.06-4.48). The effect was seen on commuting accidents that had occurred on the commute from home to work as well as accidents from work to home or elsewhere. Imaging technicians working with MRI scanners may be at an increased risk of commuting (near) accidents. This result needs confirmation and potential risks for other groups (volunteers, patients) should be investigated. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Usefulness of Integrated PET/MRI in Head and Neck Cancer: A Preliminary Study

    International Nuclear Information System (INIS)

    Lee, Soo Jin; Seo, Hyo Jung; Cheon, Gi Jeong; Kim, Ji Hoon; Kim, E. Edmund; Kang, Keon Wook; Paeng, Jin Chul; Chung, Junekey; Lee, Dong Soo

    2014-01-01

    The new modality of an integrated positron emission tomography/magnetic resonance imaging (PET/MRI) has recently been introduced but not validated. Our objective was to evaluate clinical performance of 18 F-fluoro-2-deoxyglucose ( 18 F-FDG) PET/MRI in patients with head and neck cancer. This retrospective study was conducted between January 2013 and February 2013. Ten patients (eight men, two women; mean age, 61.4±13.4 years) with histologically proven head and neck tumors were enrolled.Whole-body PET/MRI and regional positron emission tomography (PET) with dedicated MRI were sequentially obtained. Maximum standardized uptake value (SUVmax), SUVmean, metabolic tumor volume, total lesion glycolysis and contrast enhancement were analyzed. A total of ten whole-body positron emission tomography (PET), ten regional positron emission tomography (PET), ten dedicated MRI and ten regional PET/gadolinium-enhanced T1-weighted (Gd)-MRI images were analyzed for initial staging. Two nuclear medicine physicians analyzed positron emission tomography (PET) and PET/MRI with a consensus. One radiologist analyzed dedicated MRI. The primary lesions and number of metastatic lymph nodes analyzed from each image were compared. Eight patients were diagnosed with head and neck cancer (one tongue cancer, four tonsillar cancers, one nasopharyngeal cancer and two hypopharyngeal cancers) by histological diagnosis. Two benign tumors (pleomorphic adenoma and Warthin tumor) were diagnosed with surgical operation. Whole-body positron emission tomography (PET) and regional positron emission tomography (PET) attenuated by MRI showed good image quality for the lesion detection. Whole-body positron emission tomography (PET) and regional positron emission tomography (PET) detected ten primary sites and compensated for a missed lesion on dedicated MRI. A discordant number of suspicious lymph node metastases was noted according to the different images; 22, 16, 39 and 40 in the whole-body positron

  9. The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Gok, Beril; Jallo, George; Hayeri, Reza; Wahl, Richard; Aygun, Nafi

    2013-01-01

    We studied the contribution of interictal FDG-PET ([18 F] fluorodeoxyglucose-positron emission tomography) in epileptic focus identification in temporal lobe epilepsy patients with positive, equivocal and negative magnetic resonance imaging (MRI). Ninety-eight patients who underwent surgical treatment for drug resistant temporal lobe epilepsy after neuropsychological evaluation, scalp video EEG monitoring, FDG-PET, MRI and/or long-term intracranial EEG and with >12 months clinical follow-up were included in this study. FDG-PET findings were compared to MRI, histopathology, scalp video EEG and long-term intracranial EEG monitoring. FDG-PET lateralized the seizure focus in 95 % of MRI positive, 69 % of MRI equivocal and 84 % of MRI negative patients. There was no statistically significant difference between the surgical outcomes among the groups with Engel class I and II outcomes achieved in 86 %, 86 %, 84 % of MRI positive, equivocal and negative temporal lobe epilepsy patients, respectively. The patients with positive unilateral FDG-PET demonstrated excellent postsurgical outcomes, with 96 % Engel class I and II. Histopathology revealed focal lesions in 75 % of MRI equivocal, 84 % of MRI positive, and 23 % of MRI negative temporal lobe epilepsy cases. FDG-PET is an accurate noninvasive method in lateralizing the epileptogenic focus in temporal lobe epilepsy, especially in patients with normal or equivocal MRIs, or non-lateralized EEG monitoring. Very subtle findings in MRI are often associated with histopathological lesions and should be described in MRI reports. The patients with negative or equivocal MRI temporal lobe epilepsy are good surgical candidates with comparable postsurgical outcomes to patients with MRI positive temporal lobe epilepsy. (orig.)

  10. The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Gok, Beril [Drexel University, Department of Radiology, Mercy Catholic Medical Center, Philadelphia, PA (United States); Johns Hopkins University, Division of Nuclear Medicine, Department of Radiology and Radiological Sciences, Baltimore, MD (United States); Jallo, George [Johns Hopkins University, Department of Neurosurgery, Baltimore, MD (United States); Hayeri, Reza [Drexel University, Department of Radiology, Mercy Catholic Medical Center, Philadelphia, PA (United States); Wahl, Richard [Johns Hopkins University, Division of Nuclear Medicine, Department of Radiology and Radiological Sciences, Baltimore, MD (United States); Aygun, Nafi [Johns Hopkins University, Division of Neuroradiology, Department of Radiology and Radiological Sciences, Baltimore, MD (United States)

    2013-05-15

    We studied the contribution of interictal FDG-PET ([18 F] fluorodeoxyglucose-positron emission tomography) in epileptic focus identification in temporal lobe epilepsy patients with positive, equivocal and negative magnetic resonance imaging (MRI). Ninety-eight patients who underwent surgical treatment for drug resistant temporal lobe epilepsy after neuropsychological evaluation, scalp video EEG monitoring, FDG-PET, MRI and/or long-term intracranial EEG and with >12 months clinical follow-up were included in this study. FDG-PET findings were compared to MRI, histopathology, scalp video EEG and long-term intracranial EEG monitoring. FDG-PET lateralized the seizure focus in 95 % of MRI positive, 69 % of MRI equivocal and 84 % of MRI negative patients. There was no statistically significant difference between the surgical outcomes among the groups with Engel class I and II outcomes achieved in 86 %, 86 %, 84 % of MRI positive, equivocal and negative temporal lobe epilepsy patients, respectively. The patients with positive unilateral FDG-PET demonstrated excellent postsurgical outcomes, with 96 % Engel class I and II. Histopathology revealed focal lesions in 75 % of MRI equivocal, 84 % of MRI positive, and 23 % of MRI negative temporal lobe epilepsy cases. FDG-PET is an accurate noninvasive method in lateralizing the epileptogenic focus in temporal lobe epilepsy, especially in patients with normal or equivocal MRIs, or non-lateralized EEG monitoring. Very subtle findings in MRI are often associated with histopathological lesions and should be described in MRI reports. The patients with negative or equivocal MRI temporal lobe epilepsy are good surgical candidates with comparable postsurgical outcomes to patients with MRI positive temporal lobe epilepsy. (orig.)

  11. Measurement of Strain in the Left Ventricle during Diastole withcine-MRI and Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Veress, Alexander I.; Gullberg, Grant T.; Weiss, Jeffrey A.

    2005-07-20

    The assessment of regional heart wall motion (local strain) can localize ischemic myocardial disease, evaluate myocardial viability and identify impaired cardiac function due to hypertrophic or dilated cardiomyopathies. The objectives of this research were to develop and validate a technique known as Hyperelastic Warping for the measurement of local strains in the left ventricle from clinical cine-MRI image datasets. The technique uses differences in image intensities between template (reference) and target (loaded) image datasets to generate a body force that deforms a finite element (FE) representation of the template so that it registers with the target image. To validate the technique, MRI image datasets representing two deformation states of a left ventricle were created such that the deformation map between the states represented in the images was known. A beginning diastoliccine-MRI image dataset from a normal human subject was defined as the template. A second image dataset (target) was created by mapping the template image using the deformation results obtained from a forward FE model of diastolic filling. Fiber stretch and strain predictions from Hyperelastic Warping showed good agreement with those of the forward solution. The technique had low sensitivity to changes in material parameters, with the exception of changes in bulk modulus of the material. The use of an isotropic hyperelastic constitutive model in the Warping analyses degraded the predictions of fiber stretch. Results were unaffected by simulated noise down to an SNR of 4.0. This study demonstrates that Warping in conjunction with cine-MRI imaging can be used to determine local ventricular strains during diastole.

  12. Software-based PET-MR image coregistration: combined PET-MRI for the rest of us

    International Nuclear Information System (INIS)

    Robertson, Matthew S.; Liu, Xinyang; Vyas, Pranav K.; Safdar, Nabile M.; Plishker, William; Zaki, George F.; Shekhar, Raj

    2016-01-01

    With the introduction of hybrid positron emission tomography/magnetic resonance imaging (PET/MRI), a new imaging option to acquire multimodality images with complementary anatomical and functional information has become available. Compared with hybrid PET/computed tomography (CT), hybrid PET/MRI is capable of providing superior anatomical detail while removing the radiation exposure associated with CT. The early adoption of hybrid PET/MRI, however, has been limited. To provide a viable alternative to the hybrid PET/MRI hardware by validating a software-based solution for PET-MR image coregistration. A fully automated, graphics processing unit-accelerated 3-D deformable image registration technique was used to align PET (acquired as PET/CT) and MR image pairs of 17 patients (age range: 10 months-21 years, mean: 10 years) who underwent PET/CT and body MRI (chest, abdomen or pelvis), which were performed within a 28-day (mean: 10.5 days) interval. MRI data for most of these cases included single-station post-contrast axial T1-weighted images. Following registration, maximum standardized uptake value (SUV max ) values observed in coregistered PET (cPET) and the original PET were compared for 82 volumes of interest. In addition, we calculated the target registration error as a measure of the quality of image coregistration, and evaluated the algorithm's performance in the context of interexpert variability. The coregistration execution time averaged 97±45 s. The overall relative SUV max difference was 7% between cPET-MRI and PET/CT. The average target registration error was 10.7±6.6 mm, which compared favorably with the typical voxel size (diagonal distance) of 8.0 mm (typical resolution: 0.66 mm x 0.66 mm x 8 mm) for MRI and 6.1 mm (typical resolution: 3.65 mm x 3.65 mm x 3.27 mm) for PET. The variability in landmark identification did not show statistically significant differences between the algorithm and a typical expert. We have presented a software

  13. Software-based PET-MR image coregistration: combined PET-MRI for the rest of us

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Matthew S.; Liu, Xinyang; Vyas, Pranav K.; Safdar, Nabile M. [Children' s National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC (United States); Plishker, William; Zaki, George F. [IGI Technologies, Inc., College Park, MD (United States); Shekhar, Raj [Children' s National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC (United States); IGI Technologies, Inc., College Park, MD (United States)

    2016-10-15

    With the introduction of hybrid positron emission tomography/magnetic resonance imaging (PET/MRI), a new imaging option to acquire multimodality images with complementary anatomical and functional information has become available. Compared with hybrid PET/computed tomography (CT), hybrid PET/MRI is capable of providing superior anatomical detail while removing the radiation exposure associated with CT. The early adoption of hybrid PET/MRI, however, has been limited. To provide a viable alternative to the hybrid PET/MRI hardware by validating a software-based solution for PET-MR image coregistration. A fully automated, graphics processing unit-accelerated 3-D deformable image registration technique was used to align PET (acquired as PET/CT) and MR image pairs of 17 patients (age range: 10 months-21 years, mean: 10 years) who underwent PET/CT and body MRI (chest, abdomen or pelvis), which were performed within a 28-day (mean: 10.5 days) interval. MRI data for most of these cases included single-station post-contrast axial T1-weighted images. Following registration, maximum standardized uptake value (SUV{sub max}) values observed in coregistered PET (cPET) and the original PET were compared for 82 volumes of interest. In addition, we calculated the target registration error as a measure of the quality of image coregistration, and evaluated the algorithm's performance in the context of interexpert variability. The coregistration execution time averaged 97±45 s. The overall relative SUV{sub max} difference was 7% between cPET-MRI and PET/CT. The average target registration error was 10.7±6.6 mm, which compared favorably with the typical voxel size (diagonal distance) of 8.0 mm (typical resolution: 0.66 mm x 0.66 mm x 8 mm) for MRI and 6.1 mm (typical resolution: 3.65 mm x 3.65 mm x 3.27 mm) for PET. The variability in landmark identification did not show statistically significant differences between the algorithm and a typical expert. We have presented a software

  14. Multiparametric and molecular imaging of breast tumors with MRI and PET/MRI; Multiparametrische und molekulare Bildgebung von Brusttumoren mit MRT und PET-MRT

    Energy Technology Data Exchange (ETDEWEB)

    Pinker, K. [Medizinische Universitaet Wien, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Division fuer Molekulare und Gender Bildgebung, Wien (Austria); Memorial Sloan-Kettering Cancer Center, Department of Radiology, Molecular Imaging and Therapy Service, New York (United States); State University of Florida, Department of Scientific Computing in Medicine, Florida (United States); Marino, M.A. [Medizinische Universitaet Wien, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Division fuer Molekulare und Gender Bildgebung, Wien (Austria); Policlinico Universitario G. Martino, University of Messina, Department of Biomedical Sciences and Morphologic and Functional Imaging, Messina (Italy); Meyer-Baese, A. [State University of Florida, Department of Scientific Computing in Medicine, Florida (United States); Helbich, T.H. [Medizinische Universitaet Wien, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Division fuer Molekulare und Gender Bildgebung, Wien (Austria)

    2016-07-15

    Magnetic resonance imaging (MRI) of the breast is an indispensable tool in breast imaging for many indications. Several functional parameters with MRI and positron emission tomography (PET) have been assessed for imaging of breast tumors and their combined application is defined as multiparametric imaging. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the hallmarks of cancer and may provide additional specificity. Multiparametric and molecular imaging of the breast comprises established MRI parameters, such as dynamic contrast-enhanced MRI, diffusion-weighted imaging (DWI), MR proton spectroscopy ({sup 1}H-MRSI) as well as combinations of radiological and MRI techniques (e.g. PET/CT and PET/MRI) using radiotracers, such as fluorodeoxyglucose (FDG). Multiparametric and molecular imaging of the breast can be performed at different field-strengths (range 1.5-7 T). Emerging parameters comprise novel promising techniques, such as sodium imaging ({sup 23}Na MRI), phosphorus spectroscopy ({sup 31}P-MRSI), chemical exchange saturation transfer (CEST) imaging, blood oxygen level-dependent (BOLD) and hyperpolarized MRI as well as various specific radiotracers. Multiparametric and molecular imaging has multiple applications in breast imaging. Multiparametric and molecular imaging of the breast is an evolving field that will enable improved detection, characterization, staging and monitoring for personalized medicine in breast cancer. (orig.) [German] Die Magnetresonanztomographie (MRT) der Brust ist ein etabliertes nichtinvasives bildgebendes Verfahren mit vielfaeltigen Indikationen. In den letzten Jahren wurden zahlreiche funktionelle MRT- und Positronenemissionstomographie(PET)-Parameter in der Brustbildgebung evaluiert, und ihre kombinierte Anwendung ist als multiparametrische Bildgebung definiert. Bisherige Daten legen nahe, dass die multiparametrische Bildgebung mit MRT und PET

  15. Heart MRI

    Science.gov (United States)

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  16. Neural evidence for the use of digit-image mnemonic in a superior memorist: An fMRI study

    Directory of Open Access Journals (Sweden)

    Li-Jun eYin

    2015-03-01

    Full Text Available Some superior memorists demonstrated exceptional memory for reciting a large body of information. The underlying neural correlates, however, are seldom addressed. C.L., the current holder of Guinness World Record for reciting 67,890 digits in π, participated in this functional magnetic resonance imaging (fMRI study. Thirteen participants without any mnemonics training were included as controls. Our previous studies suggested that C.L. used a digit-image mnemonic in studying and recalling lists of digits, namely associating 2-digit groups of ‘00’ to ‘99’ with images and generating vivid stories out of them (Hu, Ericsson, Yang & Lu, 2009. Thus, 2-digit condition was included, with 1-digit numbers and letters as control conditions. We hypothesized that 2-digit condition in C.L. should elicit the strongest activity in the brain regions which are associated with his mnemonic. Functional MRI results revealed that bilateral frontal poles (FPs, BA10, left superior parietal lobule (SPL, left premotor cortex (PMC, and left dorsolateral prefrontal cortex (DLPFC, were more engaged in both the study and recall phase of 2-digit condition for C.L. relative to controls. Moreover, the left middle/inferior frontal gyri (M/IFG and intraparietal sulci (IPS were less engaged in the study phase of 2-digit condition for C.L. (vs. controls. These results suggested that C.L. relied more on brain regions that are associated with episodic memory other than verbal rehearsal while he used his mnemonic strategies. This study supported theoretical accounts of restructured cognitive mechanisms for the acquisition of superior memory performance.

  17. Usefulness and limitation of functional MRI with echo planar imaging using clinical MR apparatus

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Zenke, Kiichiro; Saito, Masahiro; Sadamoto, Kazuhiko; Ohue, Shiro; Sakaki, Saburo; Kumon, Yoshiaki; Kabasawa, Hiroyuki; Nagasawa, Kiyoshi

    1998-01-01

    We studied blood oxygen level-dependent (BOLD) functional MRI (fMRI) with EPI sequence in 21 normal volunteers and 8 presurgical clinical patients using a 1.5 T clinical MRI apparatus. To optimize the imaging parameters, we compared the fMRI images obtained by GFE-EPI and by SE-EPI in normal volunteers while each squeezed a sponge ball. We identified the motor cortex in 85.7% of normal volunteers by GFE-EPI in contrast to only 28.6% by SE-EPI. In addition, our clinical MR apparatus, using optimized parameters, maximally provides 15 slices per 5 seconds. In patients with brain tumor close to the sensorimotor cortex, we attempted to identify the motor cortex preoperatively by this procedure and found a significant increase of signal intensity in the motor cortex in 5 of 8 patients. In conclusion, fMRI using EPI may be useful for identifying the motor cortex preoperatively. However, further development of the apparatus is needed to obtain better temporal and spatial resolution for clinical applications. (author)

  18. 1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study.

    Science.gov (United States)

    Laader, Anja; Beiderwellen, Karsten; Kraff, Oliver; Maderwald, Stefan; Wrede, Karsten; Ladd, Mark E; Lauenstein, Thomas C; Forsting, Michael; Quick, Harald H; Nassenstein, Kai; Umutlu, Lale

    2017-01-01

    The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1.5 Tesla MRI, yielding a promising diagnostic potential for

  19. gr-MRI: A software package for magnetic resonance imaging using software defined radios

    Science.gov (United States)

    Hasselwander, Christopher J.; Cao, Zhipeng; Grissom, William A.

    2016-09-01

    The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately 2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.

  20. Towards molecular imaging by means of MRI

    NARCIS (Netherlands)

    Norek, M.

    2008-01-01

    The work presented in the thesis is focused on the design of highly efficient contrast agents for molecular imaging by means of MRI based on the detailed physical characterization of the given material. Specifically, attention is paid on the development of contrast agents for magnetic fields higher

  1. MRI reconstruction of multi-image acquisitions using a rank regularizer with data reordering

    Energy Technology Data Exchange (ETDEWEB)

    Adluru, Ganesh, E-mail: gadluru@gmail.com; Anderson, Jeffrey [UCAIR, Department of Radiology, University of Utah, Salt Lake City, Utah 84108 (United States); Gur, Yaniv [IBM Almaden Research Center, San Jose, California 95120 (United States); Chen, Liyong; Feinberg, David [Advanced MRI Technologies, Sebastpool, California, 95472 (United States); DiBella, Edward V. R. [UCAIR, Department of Radiology, University of Utah, Salt Lake City, Utah 84108 and Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-08-15

    Purpose: To improve rank constrained reconstructions for undersampled multi-image MRI acquisitions. Methods: Motivated by the recent developments in low-rank matrix completion theory and its applicability to rapid dynamic MRI, a new reordering-based rank constrained reconstruction of undersampled multi-image data that uses prior image information is proposed. Instead of directly minimizing the nuclear norm of a matrix of estimated images, the nuclear norm of reordered matrix values is minimized. The reordering is based on the prior image estimates. The method is tested on brain diffusion imaging data and dynamic contrast enhanced myocardial perfusion data. Results: Good quality images from data undersampled by a factor of three for diffusion imaging and by a factor of 3.5 for dynamic cardiac perfusion imaging with respiratory motion were obtained. Reordering gave visually improved image quality over standard nuclear norm minimization reconstructions. Root mean squared errors with respect to ground truth images were improved by ∼18% and ∼16% with reordering for diffusion and perfusion applications, respectively. Conclusions: The reordered low-rank constraint is a way to inject prior image information that offers improvements over a standard low-rank constraint for undersampled multi-image MRI reconstructions.

  2. MRI reconstruction of multi-image acquisitions using a rank regularizer with data reordering

    International Nuclear Information System (INIS)

    Adluru, Ganesh; Anderson, Jeffrey; Gur, Yaniv; Chen, Liyong; Feinberg, David; DiBella, Edward V. R.

    2015-01-01

    Purpose: To improve rank constrained reconstructions for undersampled multi-image MRI acquisitions. Methods: Motivated by the recent developments in low-rank matrix completion theory and its applicability to rapid dynamic MRI, a new reordering-based rank constrained reconstruction of undersampled multi-image data that uses prior image information is proposed. Instead of directly minimizing the nuclear norm of a matrix of estimated images, the nuclear norm of reordered matrix values is minimized. The reordering is based on the prior image estimates. The method is tested on brain diffusion imaging data and dynamic contrast enhanced myocardial perfusion data. Results: Good quality images from data undersampled by a factor of three for diffusion imaging and by a factor of 3.5 for dynamic cardiac perfusion imaging with respiratory motion were obtained. Reordering gave visually improved image quality over standard nuclear norm minimization reconstructions. Root mean squared errors with respect to ground truth images were improved by ∼18% and ∼16% with reordering for diffusion and perfusion applications, respectively. Conclusions: The reordered low-rank constraint is a way to inject prior image information that offers improvements over a standard low-rank constraint for undersampled multi-image MRI reconstructions

  3. MRI Primer

    International Nuclear Information System (INIS)

    Oldendorf, W.; Oldendorf, W. Jr.

    1991-01-01

    Designed for studies, radiologists, and clinicians at all levels of training, this book provides a basic introduction to the principles, physics, and instrumentation of magnetic resonance imaging. The fundamental concepts that are essential for the optimal clinical use of MRI are thoroughly explained in easily accessible terms. To facilitate the reader's comprehension, the material is presented nonmathematically, using no equations and a minimum of symbols and abbreviations. MRI Primer presents a clear account of the phenomenon of nuclear magnetic resonance and the use of gradient magnetic fields to create clinically useful images of cross-sectional slices. Close attention is given to the magnetization vector as a means of expressing nuclear behavior, the role of T 1 and T 2 weighing in imaging, the use of contrast agents, and the pulse sequences most often used in clinical practice, as well as to the relative capabilities and limitations of MRI and CT. The basic hardware components of an MRI scanner are described in detail. Sample MRI scans illustrate how MRI characterizes tissue. An appendix provides a brief introduction to quantum processes in MRI

  4. Contribution of brain imaging techniques: CT-scan and magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Pasco-Papon, A.; Gourdier, A.L.; Papon, X.; Caron-Poitreau, C.

    1996-01-01

    In light of the current lack of consensus on the benefit of carotid artery surgery to treat asymptomatic carotid artery stenosis, the decision to operate on a patient depends on individual evaluation and characterization of risk factors on carotid artery stenosis greater than 70 %. The assessment of such risk factors is based especially on non-invasive brain imaging techniques.Computed tomography scanning (CT-scan) and magnetic resonance imaging (MRI) enable two types of stenosis to be differentiated, i.e. stenoses which are symptomatic and those that are radiologically proven versus those which are clinically and radiologically silent. CT-scan investigation (with and without injection of iodinated contrast media) still continues to be a common routine test in 1996 whenever a surgical revascularization procedure is planned. The presence of deep lacunar infarcts ipsilateral to the carotid artery stenosis generally evidence the reality of stenosis and thus are useful to the surgeon in establishing whether surgery is indicated. In the absence a consensus on indications for surgical management, the surgeon could use the CT-scan and MRI as medicolegal records which could be compared to a subsequent postoperative CT-scan in case of ischemic complications associated with the surgical procedure. Furthermore, recent cerebral ischemia as evidenced by filling with contrast material, will call for postponing treatment by a few weeks. Although conventional MRI is more contributive than brain CT-scan in terms of sensibility and specificity, its indications are narrower because of its limited availability and cost constraints. But, development of angio-MRI and functional imaging promise that its future is assured and even perhaps as the sole diagnostic method if its indications are expanded to include preoperative angiographic evaluation of atheromatous lesions of supra-aortic trunks. (authors). 37 refs

  5. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness

    DEFF Research Database (Denmark)

    Stender, Johan; Gosseries, Olivia; Bruno, Marie-Aurélie

    2014-01-01

    a validation study of two neuroimaging-based diagnostic methods: PET imaging and functional MRI (fMRI). METHODS: For this clinical validation study, we included patients referred to the University Hospital of Liège, Belgium, between January, 2008, and June, 2012, who were diagnosed by our unit...... with unresponsive wakefulness syndrome, locked-in syndrome, or minimally conscious state with traumatic or non-traumatic causes. We did repeated standardised clinical assessments with the Coma Recovery Scale-Revised (CRS-R), cerebral (18)F-fluorodeoxyglucose (FDG) PET, and fMRI during mental activation tasks. We...... state (48=traumatic, 78=non-traumatic; 110=chronic, 16=subacute). (18)F-FDG PET had high sensitivity for identification of patients in a minimally conscious state (93%, 95% CI 85-98) and high congruence (85%, 77-90) with behavioural CRS-R scores. The active fMRI method was less sensitive at diagnosis...

  6. Clinical use of digital retrospective image fusion of CT, MRI, FDG-PET and SPECT - fields of indications and results

    International Nuclear Information System (INIS)

    Lemke, A.J.; Niehues, S.M.; Amthauer, H.; Felix, R.; Rohlfing, T.; Hosten, N.

    2004-01-01

    Purpose: To evaluate the feasibility and the clinical benefits of retrospective digital image fusion (PET, SPECT, CT and MRI). Materials and methods: In a prospective study, a total of 273 image fusions were performed and evaluated. The underlying image acquisitions (CT, MRI, SPECT and PET) were performed in a way appropriate for the respective clinical question and anatomical region. Image fusion was executed with a software program developed during this study. The results of the image fusion procedure were evaluated in terms of technical feasibility, clinical objective, and therapeutic impact. Results: The most frequent combinations of modalities were CT/PET (n = 156) and MRI/PET (n = 59), followed by MRI/SPECT (n = 28), CT/SPECT (n = 22) and CT/MRI (n = 8). The clinical questions included following regions (more than one region per case possible): neurocranium (n = 42), neck (n = 13), lung and mediastinum (n = 24), abdomen (n = 181), and pelvis (n = 65). In 92.6% of all cases (n = 253), image fusion was technically successful. Image fusion was able to improve sensitivity and specificity of the single modality, or to add important diagnostic information. Image fusion was problematic in cases of different body positions between the two imaging modalities or different positions of mobile organs. In 37.9% of the cases, image fusion added clinically relevant information compared to the single modality. Conclusion: For clinical questions concerning liver, pancreas, rectum, neck, or neurocranium, image fusion is a reliable method suitable for routine clinical application. Organ motion still limits its feasibility and routine use in other areas (e.g., thorax). (orig.)

  7. Primary (recurrent) and metastatic lesions detection in cervical cancer: A comparison of positron emission tomography, CT and/or MRI image and pathological study

    International Nuclear Information System (INIS)

    Yen, T.C.; Tzen, K.Y.; Ma, S.Y.; Ng, K.K.; Hsueh, S.; Lai, C.H.

    2002-01-01

    Aim: This prospective study is to compare the results of primary (recurrence) and metastatic lesions detection, based on pathologic results, with computed tomography (CT) and/or magnetic resonance imaging (MRI) and positron emission tomography (PET) with [18F]-fluoro-2-deoxy-D-glucose (FDG) in invasive cervical cancer (ICC). Materials and Methods: An FDG PET scan was performed in 136 patients with ICC (107 squamous cell carcinoma [SCC], 18 adenocarcinoma [AdenoCa], 5 adeosquamous cell carcinoma, 4 small cell carcinoma, and 2 poorly differentiated carcinoma; from FIGO staging IB to IVB prior to operation). CT and/or MRI image were performed within one week before or after FDG PET scan was done. The accuracy of lymph node status was based on histological result or a second FDG PET combined with a CT and/or MRI image images. Results: Totally, 68 main tumor and 147 metastatic lesions were recognized by either histopathology or a follow up study. On a lesion basis, CT and/or MRI image images demonstrated 63 (92.6 %) main tumor and 103 (70.1 %) metastatic lesions. For lymph node metastatic lesions detection, there were 6(75 %) enlarged inguinal lymph nodes, 38(76 %) enlarged pelvic lymph nodes (PLN), 28(73.7 %) enlarged para-aortic lymph nodes (PAN), 8(50 %) enlarged supraclavicular lymph nodes (SLNs), and 5(62.5 %) enlarged mediastinal lymph nodes (MLNs). Liver metastases were found in 4(100 %), in lung in 7(70 %) and in bone in 5(83.3 %). Peritoneal metastases were found in 2(28.6 %). FDG PET demonstrated 63 (92.6 %) and 135 (91.8 %) metastatic lesions. For lymph node metastases, FDG PET found 8(100 %) enlarged inguinal lymph nodes, 44(88 %) enlarged PLNs, 36(94.7 %) enlarged PANs, 15(93.8 %) enlarged SLNs, and 8(100 %) enlarged MLNs. Liver metastases were found in 4(100 %), in lung in 9(90 %) and in bone in 6(100 %). Peritoneal metastases were found in 5(71.4 %). On a patient basis, with FDG PET scan, 31(22.8%) were upstaging while 4(2.9%) were down staging. 35

  8. First image from a combined positron emission tomography and field-cycled MRI system.

    Science.gov (United States)

    Bindseil, Geron A; Gilbert, Kyle M; Scholl, Timothy J; Handler, William B; Chronik, Blaine A

    2011-07-01

    Combining positron emission tomography and MRI modalities typically requires using either conventional MRI with a MR-compatible positron emission tomography system or a modified MR system with conventional positron emission tomography. A feature of field-cycled MRI is that all magnetic fields can be turned off rapidly, enabling the use of conventional positron emission tomography detectors based on photomultiplier tubes. In this demonstration, two photomultiplier tube-based positron emission tomography detectors were integrated with a field-cycled MRI system (0.3 T/4 MHz) by placing them into a 9-cm axial gap. A positron emission tomography-MRI phantom consisting of a triangular arrangement of positron-emitting point sources embedded in an onion was imaged in a repeating interleaved sequence of ∼1 sec MRI then 1 sec positron emission tomography. The first multimodality images from the combined positron emission tomography and field-cycled MRI system show no additional artifacts due to interaction between the systems and demonstrate the potential of this approach to combining positron emission tomography and MRI. Copyright © 2010 Wiley-Liss, Inc.

  9. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-12-01

    Full Text Available Yue Zhang,1 Bin Zhang,1 Fei Liu,1,2 Jianwen Luo,1,3 Jing Bai1 1Department of Biomedical Engineering, School of Medicine, 2Tsinghua-Peking Center for Life Sciences, 3Center for Biomedical Imaging Research, Tsinghua University, Beijing, People's Republic of China Abstract: Dual-modality imaging combines the complementary advantages of different modalities, and offers the prospect of improved preclinical research. The combination of fluorescence imaging and magnetic resonance imaging (MRI provides cross-validated information and direct comparison between these modalities. Here, we report on the application of a novel tumor-targeted, dual-labeled nanoparticle (NP, utilizing iron oxide as the MRI contrast agent and near infrared (NIR dye Cy5.5 as the fluorescent agent. Results of in vitro experiments verified the specificity of the NP to tumor cells. In vivo tumor targeting and uptake of the NPs in a mouse model were visualized by fluorescence and MR imaging collected at different time points. Quantitative analysis was carried out to evaluate the efficacy of MRI contrast enhancement. Furthermore, tomographic images were also acquired using both imaging modalities and cross-validated information of tumor location and size between these two modalities was revealed. The results demonstrate that the use of dual-labeled NPs can facilitate the dual-modal detection of tumors, information cross-validation, and direct comparison by combing fluorescence molecular tomography (FMT and MRI. Keywords: dual-modality, fluorescence molecular tomography (FMT, magnetic resonance imaging (MRI, nanoparticle

  10. Differentiation of periapical granulomas and cysts by using dental MRI: a pilot study.

    Science.gov (United States)

    Juerchott, Alexander; Pfefferle, Thorsten; Flechtenmacher, Christa; Mente, Johannes; Bendszus, Martin; Heiland, Sabine; Hilgenfeld, Tim

    2018-05-17

    The purpose of this pilot study was to evaluate whether periapical granulomas can be differentiated from periapical cysts in vivo by using dental magnetic resonance imaging (MRI). Prior to apicoectomy, 11 patients with radiographically confirmed periapical lesions underwent dental MRI, including fat-saturated T2-weighted (T2wFS) images, non-contrast-enhanced T1-weighted images with and without fat saturation (T1w/T1wFS), and contrast-enhanced fat-saturated T1-weighted (T1wFS+C) images. Two independent observers performed structured image analysis of MRI datasets twice. A total of 15 diagnostic MRI criteria were evaluated, and histopathological results (6 granulomas and 5 cysts) were compared with MRI characteristics. Statistical analysis was performed using intraclass correlation coefficient (ICC), Cohen's kappa (κ), Mann-Whitney U-test and Fisher's exact test. Lesion identification and consecutive structured image analysis was possible on T2wFS and T1wFS+C MRI images. A high reproducibility was shown for MRI measurements of the maximum lesion diameter (intraobserver ICC = 0.996/0.998; interobserver ICC = 0.997), for the "peripheral rim" thickness (intraobserver ICC = 0.988/0.984; interobserver ICC = 0.970), and for all non-quantitative MRI criteria (intraobserver-κ = 0.990/0.995; interobserver-κ = 0.988). In accordance with histopathological results, six MRI criteria allowed for a clear differentiation between cysts and granulomas: (1) outer margin of lesion, (2) texture of "peripheral rim" in T1wFS+C, (3) texture of "lesion center" in T2wFS, (4) surrounding tissue involvement in T2wFS, (5) surrounding tissue involvement in T1wFS+C and (6) maximum "peripheral rim" thickness (all: P periapical cysts and granulomas in vivo. Thus, MRI may substantially improve treatment strategies and help to avoid unnecessary surgery in apical periodontitis.

  11. Diagnostic imaging strategy for MDCT- or MRI-detected breast lesions: use of targeted sonography

    International Nuclear Information System (INIS)

    Nakano, Satoko; Ohtsuka, Masahiko; Mibu, Akemi; Karikomi, Masato; Sakata, Hitomi; Yamamoto, Masahiro

    2012-01-01

    Leading-edge technology such as magnetic resonance imaging (MRI) or computed tomography (CT) often reveals mammographically and ultrasonographically occult lesions. MRI is a well-documented, effective tool to evaluate these lesions; however, the detection rate of targeted sonography varies for MRI detected lesions, and its significance is not well established in diagnostic strategy of MRI detected lesions. We assessed the utility of targeted sonography for multidetector-row CT (MDCT)- or MRI-detected lesions in practice. We retrospectively reviewed 695 patients with newly diagnosed breast cancer who were candidates for breast conserving surgery and underwent MDCT or MRI in our hospital between January 2004 and March 2011. Targeted sonography was performed in all MDCT- or MRI-detected lesions followed by imaging-guided biopsy. Patient background, histopathology features and the sizes of the lesions were compared among benign, malignant and follow-up groups. Of the 695 patients, 61 lesions in 56 patients were detected by MDCT or MRI. The MDCT- or MRI-detected lesions were identified by targeted sonography in 58 out of 61 lesions (95.1%). Patients with pathological diagnoses were significantly older and more likely to be postmenopausal than the follow-up patients. Pathological diagnosis proved to be benign in 20 cases and malignant in 25. The remaining 16 lesions have been followed up. Lesion size and shape were not significantly different among the benign, malignant and follow-up groups. Approximately 95% of MDCT- or MRI-detected lesions were identified by targeted sonography, and nearly half of these lesions were pathologically proven malignancies in this study. Targeted sonography is a useful modality for MDCT- or MRI-detected breast lesions

  12. MRI compatibility of robot actuation techniques--a comparative study.

    Science.gov (United States)

    Fischer, Gregory S; Krieger, Axel; Iordachita, Iulian; Csoma, Csaba; Whitcomb, Louis L; Gabor, Fichtinger

    2008-01-01

    This paper reports an experimental evaluation of the following three different MRI-compatible actuators: a Shinsei ultrasonic motor a Nanomotion ultrasonic motor and a pneumatic cylinder actuator. We report the results of a study comparing the effect of these actuators on the signal to noise ratio (SNR) of MRJ images under a variety of experimental conditions. Evaluation was performed with the controller inside and outside the scanner room and with both 1.5T and 3T MRI scanners. Pneumatic cylinders function with no loss of SNR with controller both inside and outside of the scanner room. The Nanomotion motor performs with moderate loss of SNR when moving during imaging. The Shinsei is unsuitable for motion during imaging. All may be used when motion is appropriately interleaved with imaging cycles.

  13. Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiaozhen [The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Psychiatry, Hangzhou (China); Zhejiang University Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Zhang, Hong; Tian, Mei [Zhejiang University Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Chung, June-key [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of)

    2017-06-15

    Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with {sup 11}C-N-methylspiperone ({sup 11}C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between {sup 11}C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased {sup 11}C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing. (orig.)

  14. Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging.

    Science.gov (United States)

    Chen, Qiaozhen; Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Chung, June-Key; Zhang, Hong; Tian, Mei

    2017-06-01

    Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with 11 C-N-methylspiperone ( 11 C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between 11 C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased 11 C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing.

  15. Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging

    International Nuclear Information System (INIS)

    Chen, Qiaozhen; Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Zhang, Hong; Tian, Mei; Chung, June-key

    2017-01-01

    Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with "1"1C-N-methylspiperone ("1"1C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between "1"1C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased "1"1C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing. (orig.)

  16. Incidence and mechanism of central pontine myelinolysis based on analysis of MRI images and risk factors

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Masato [Akita Univ. (Japan). School of Medicine

    2000-02-01

    In this study, the incidence of central pontine myelinolysis (CPM)-like lesions on MRI images was studied in 1917 subjects, 1,500 of which were psychiatric patients and 417 were patients attending a brain health examination. The CPM-like lesions were first classified into four groups based on the characteristics of their MRI images: group 1 showed symmetrical lesions on both T1 low and T2 high images and were considered to be typical CPM; group 2 showed symmetrical high intensity lesions only on T2 images; group 3 had asymmetrical lesions only on T2 images; and group 4 had asymmetrical lesions on both T1 low and T2 high images. Furthermore, the relationships of each group with particular risk factors, such as alcoholism, hypertension, hyperlipidemia were statistically analysed. The cause of CPM-like features in the MRI images were discussed. Among our subjects, the incidence of CPM-like lesions was 3.8%, and that of group 1 was 1.2%. Significant correlations between group 1 and alcoholism, and group 3 and 4 with brain ischemic lesions were observed. A previous hypothesis that group 2 may be a premature state of CPM is not supported by our results. (author)

  17. Incidence and mechanism of central pontine myelinolysis based on analysis of MRI images and risk factors

    International Nuclear Information System (INIS)

    Kondo, Masato

    2000-01-01

    In this study, the incidence of central pontine myelinolysis (CPM)-like lesions on MRI images was studied in 1917 subjects, 1,500 of which were psychiatric patients and 417 were patients attending a brain health examination. The CPM-like lesions were first classified into four groups based on the characteristics of their MRI images: group 1 showed symmetrical lesions on both T1 low and T2 high images and were considered to be typical CPM; group 2 showed symmetrical high intensity lesions only on T2 images; group 3 had asymmetrical lesions only on T2 images; and group 4 had asymmetrical lesions on both T1 low and T2 high images. Furthermore, the relationships of each group with particular risk factors, such as alcoholism, hypertension, hyperlipidemia were statistically analysed. The cause of CPM-like features in the MRI images were discussed. Among our subjects, the incidence of CPM-like lesions was 3.8%, and that of group 1 was 1.2%. Significant correlations between group 1 and alcoholism, and group 3 and 4 with brain ischemic lesions were observed. A previous hypothesis that group 2 may be a premature state of CPM is not supported by our results. (author)

  18. Imaging large vessel vasculitis with fully integrated PET/MRI: a pilot study

    International Nuclear Information System (INIS)

    Einspieler, Ingo; Pyka, Thomas; Eiber, Matthias; Thuermel, Klaus; Wolfram, Sabine; Moog, Philipp; Reeps, Christian; Essler, Markus

    2015-01-01

    The aim of this study was to evaluate the feasibility of hybrid [ 18 F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/MRI in patients with large vessel vasculitis (LVV) by comparing visual and quantitative parameters to that of PET/CT. Furthermore, the value of PET/MRI in disease activity and extent of LVV was assessed. A total of 16 [ 18 F]FDG PET/MRI and 12 [ 18 F]-FDG PET/CT examinations were performed in 12 patients with LVV. MRI of the vessel wall by T1-weighted and T2-weighted sequences was used for anatomical localization of FDG uptake and identification of morphological changes associated with LVV. In addition, contrast-enhanced (CE) magnetic resonance angiography (MRA) was performed. The vascular FDG uptake in the vasculitis group was compared to a reference group of 16 patients using a four-point visual score. Visual scores and quantitative parameters [maximum standardized uptake value (SUV max ) and target to background ratio (TBR)] were compared between PET/MRI and PET/CT. Furthermore, correlations between C-reactive protein (CRP) and quantitative PET results, as well the extent of vasculitis in PET, MRI/CE-MRA and combined PET/MRI, were analysed. TBRs, SUV max values and visual scores correlated well between PET/MRI and PET/CT (r = 0.92, r = 0.91; r = 0.84, p < 0.05). There was no significant difference between both modalities concerning SUV max measurements and visual scores. In PET/MRI, PET alone revealed abnormal FDG uptake in 86 vascular regions. MRI/CE-MRA indicated 49 vessel segments with morphological changes related to vasculitis, leading to a total number of 95 vasculitis regions in combination with PET. Strong and significant correlations between CRP and disease extent in PET alone (r = 0.75, p = 0.0067) and PET/MRI (r = 0.92, p < 0.0001) in contrast to MRI/CE-MRA only were observed. Regarding disease activity, no significant correlations were seen between quantitative PET results and CRP, although there was a trend towards

  19. Imaging large vessel vasculitis with fully integrated PET/MRI: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Einspieler, Ingo; Pyka, Thomas; Eiber, Matthias [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich (Germany); Thuermel, Klaus; Wolfram, Sabine; Moog, Philipp [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Nephrology, Munich (Germany); Reeps, Christian [Technische Universitaet Muenchen, Department of Vascular Surgery, Klinikum rechts der Isar, Munich (Germany); Essler, Markus [Rheinische Friedrich-Wilhelms-Universitaet, Department of Nuclear Medicine, Universitaetsklinikum Bonn, Bonn (Germany)

    2015-04-16

    The aim of this study was to evaluate the feasibility of hybrid [{sup 18}F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/MRI in patients with large vessel vasculitis (LVV) by comparing visual and quantitative parameters to that of PET/CT. Furthermore, the value of PET/MRI in disease activity and extent of LVV was assessed. A total of 16 [{sup 18}F]FDG PET/MRI and 12 [{sup 18}F]-FDG PET/CT examinations were performed in 12 patients with LVV. MRI of the vessel wall by T1-weighted and T2-weighted sequences was used for anatomical localization of FDG uptake and identification of morphological changes associated with LVV. In addition, contrast-enhanced (CE) magnetic resonance angiography (MRA) was performed. The vascular FDG uptake in the vasculitis group was compared to a reference group of 16 patients using a four-point visual score. Visual scores and quantitative parameters [maximum standardized uptake value (SUV{sub max}) and target to background ratio (TBR)] were compared between PET/MRI and PET/CT. Furthermore, correlations between C-reactive protein (CRP) and quantitative PET results, as well the extent of vasculitis in PET, MRI/CE-MRA and combined PET/MRI, were analysed. TBRs, SUV{sub max} values and visual scores correlated well between PET/MRI and PET/CT (r = 0.92, r = 0.91; r = 0.84, p < 0.05). There was no significant difference between both modalities concerning SUV{sub max} measurements and visual scores. In PET/MRI, PET alone revealed abnormal FDG uptake in 86 vascular regions. MRI/CE-MRA indicated 49 vessel segments with morphological changes related to vasculitis, leading to a total number of 95 vasculitis regions in combination with PET. Strong and significant correlations between CRP and disease extent in PET alone (r = 0.75, p = 0.0067) and PET/MRI (r = 0.92, p < 0.0001) in contrast to MRI/CE-MRA only were observed. Regarding disease activity, no significant correlations were seen between quantitative PET results and CRP, although there

  20. Small animal MRI: clinical MRI as an interface to basic biomedical research

    International Nuclear Information System (INIS)

    Pinkernelle, J.G.; Stelter, L.; Hamm, B.; Teichgraeber, U.

    2008-01-01

    The demand for highly resolved small animal MRI for the purpose of biomedical research has increased constantly. Dedicated small animal MRI scanners working at ultra high field strengths from 4.7 to 7.0 T and even above are MRI at its best. However, using high resolution RF coils in clinical scanners up to 3.0 T, small animal MRI can achieve highly resolved images showing excellent tissue contrast. In fact, in abundant experimental studies, clinical MRI is used for small animal imaging. Mostly clinical RF coils in the single-loop design are applied. In addition, custom-built RF coils and even gradient inserts are used in a clinical scanner. For the reduction of moving artifacts, special MRI-compatible animal ECG und respiration devices are available. In conclusion, clinical devices offer broad availability, are less expense in combination with good imaging performance and provide a translational nature of imaging results. (orig.)

  1. Numerical study on simultaneous emission and transmission tomography in the MRI framework

    Science.gov (United States)

    Gjesteby, Lars; Cong, Wenxiang; Wang, Ge

    2017-09-01

    Multi-modality imaging methods are instrumental for advanced diagnosis and therapy. Specifically, a hybrid system that combines computed tomography (CT), nuclear imaging, and magnetic resonance imaging (MRI) will be a Holy Grail of medical imaging, delivering complementary structural/morphological, functional, and molecular information for precision medicine. A novel imaging method was recently demonstrated that takes advantage of radiotracer polarization to combine MRI principles with nuclear imaging. This approach allows the concentration of a polarized Υ-ray emitting radioisotope to be imaged with MRI resolution potentially outperforming the standard nuclear imaging mode at a sensitivity significantly higher than that of MRI. In our work, we propose to acquire MRI-modulated nuclear data for simultaneous image reconstruction of both emission and transmission parameters, suggesting the potential for simultaneous CT-SPECT-MRI. The synchronized diverse datasets allow excellent spatiotemporal registration and unique insight into physiological and pathological features. Here we describe the methodology involving the system design with emphasis on the formulation for tomographic images, even when significant radiotracer signals are limited to a region of interest (ROI). Initial numerical results demonstrate the feasibility of our approach for reconstructing concentration and attenuation images through a head phantom with various radio-labeled ROIs. Additional considerations regarding the radioisotope characteristics are also discussed.

  2. A Technique for Generating Volumetric Cine MRI (VC-MRI)

    Science.gov (United States)

    Harris, Wendy; Ren, Lei; Cai, Jing; Zhang, You; Chang, Zheng; Yin, Fang-Fang

    2016-01-01

    Purpose To develop a technique to generate on-board volumetric-cine MRI (VC-MRI) using patient prior images, motion modeling and on-board 2D-cine MRI. Methods One phase of a 4D-MRI acquired during patient simulation is used as patient prior images. 3 major respiratory deformation patterns of the patient are extracted from 4D-MRI based on principal-component-analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2D-cine MRI. The method was evaluated using both XCAT simulation of lung cancer patients and MRI data from four real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using Volume-Percent-Difference(VPD), Center-of-Mass-Shift(COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest(ROI) selection, patient breathing pattern change and noise on the estimation accuracy were also evaluated. Results Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was on average 8.43±1.52% and the COMS was on average 0.93±0.58mm across all time-steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against noise levels up to SNR=20. For patient data, average tracking errors were less than 2 mm in all directions for all patients. Conclusions Preliminary studies demonstrated the

  3. A study utility of gadolinium enhanced magnetic resonance imaging (Gd-MRI) in the preoperative diagnosis of lymph node metastasis of esophageal carcinoma

    International Nuclear Information System (INIS)

    Makino, Harufumi

    1997-01-01

    We evaluated the utility of gadolinium enhanced magnetic resonance imaging (Gd-MRI) in the diagnosis of lymph node metastasis of esophageal carcinoma. Gd-MRI was performed in 42 patients with esophageal carcinoma. The intensities of 50 lymph nodes in MR imaging were measured. No differences were observed in intensity between metastatic and non-metastatic nodes. However, intensity values did overlap. Thus, the author devised a new method allowing comparison of metastatic and non-metastatic nodes on Gd-MRI utilizing an enhancement ratio (ER). ER higher than 45% reflected metastatic nodes. (author)

  4. Semi-automatic delineation using weighted CT-MRI registered images for radiotherapy of nasopharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fitton, I. [European Georges Pompidou Hospital, Department of Radiology, 20 rue Leblanc, 75015, Paris (France); Cornelissen, S. A. P. [Image Sciences Institute, UMC, Department of Radiology, P.O. Box 85500, 3508 GA Utrecht (Netherlands); Duppen, J. C.; Rasch, C. R. N.; Herk, M. van [The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Radiotherapy, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Steenbakkers, R. J. H. M. [University Medical Center Groningen, Department of Radiation Oncology, Hanzeplein 1, 9713 GZ Groningen (Netherlands); Peeters, S. T. H. [UZ Gasthuisberg, Herestraat 49, 3000 Leuven, Belgique (Belgium); Hoebers, F. J. P. [Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO clinic), GROW School for Oncology and Development Biology Maastricht, 6229 ET Maastricht (Netherlands); Kaanders, J. H. A. M. [UMC St-Radboud, Department of Radiotherapy, Geert Grooteplein 32, 6525 GA Nijmegen (Netherlands); Nowak, P. J. C. M. [ERASMUS University Medical Center, Department of Radiation Oncology,Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

    2011-08-15

    Purpose: To develop a delineation tool that refines physician-drawn contours of the gross tumor volume (GTV) in nasopharynx cancer, using combined pixel value information from x-ray computed tomography (CT) and magnetic resonance imaging (MRI) during delineation. Methods: Operator-guided delineation assisted by a so-called ''snake'' algorithm was applied on weighted CT-MRI registered images. The physician delineates a rough tumor contour that is continuously adjusted by the snake algorithm using the underlying image characteristics. The algorithm was evaluated on five nasopharyngeal cancer patients. Different linear weightings CT and MRI were tested as input for the snake algorithm and compared according to contrast and tumor to noise ratio (TNR). The semi-automatic delineation was compared with manual contouring by seven experienced radiation oncologists. Results: A good compromise for TNR and contrast was obtained by weighing CT twice as strong as MRI. The new algorithm did not notably reduce interobserver variability, it did however, reduce the average delineation time by 6 min per case. Conclusions: The authors developed a user-driven tool for delineation and correction based a snake algorithm and registered weighted CT image and MRI. The algorithm adds morphological information from CT during the delineation on MRI and accelerates the delineation task.

  5. Usefulness of MRI and SPECT studies in evaluating the lesion of aphasia

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, Haruo; Kobayashi, Yasutaka; Arai, Hisayuki; Hatano, Nobuyoshi; Yamaguchi, Katsuhiko; Katsunuma, Hideyo (Tokyo Medical Coll. (Japan))

    1990-06-01

    Since the introduction of CT scanning, correlations between neuropsychological findings and anatomical lesions have been studied. Anatomical studies by CT scans may, however, be misleading in delineating the extent of lesions in aphasia. We have carried out MRI (magnetic resonance imaging) and SPECT (single photon emission CT) examinations in 15 aphasic patients with cerebrovascular disease and discussed the usefulness of these studies. Compared to CT scan, MRI or SPECT studies were considered to be very useful in 8 of 15 patients. The useful points of these studies were: (1) easy detection of lesions with undetectable damages on CT, (2) demonstration of functional abnormalities in areas adjacent or distant from cerebrovascular lesions, and (3) precise definition of topographical abnormalities because of the three-dimensional imaging capability of MRI. As MRI or SPECT may define the actual extent of lesions and show areas of functional abnormality, these studies are useful and necessary in the assessment of lesions causing aphasia. (author).

  6. Usefulness of MRI and SPECT studies in evaluating the lesion of aphasia

    International Nuclear Information System (INIS)

    Hanyu, Haruo; Kobayashi, Yasutaka; Arai, Hisayuki; Hatano, Nobuyoshi; Yamaguchi, Katsuhiko; Katsunuma, Hideyo

    1990-01-01

    Since the introduction of CT scanning, correlations between neuropsychological findings and anatomical lesions have been studied. Anatomical studies by CT scans may, however, be misleading in delineating the extent of lesions in aphasia. We have carried out MRI (magnetic resonance imaging) and SPECT (single photon emission CT) examinations in 15 aphasic patients with cerebrovascular disease and discussed the usefulness of these studies. Compared to CT scan, MRI or SPECT studies were considered to be very useful in 8 of 15 patients. The useful points of these studies were: 1) easy detection of lesions with undetectable damages on CT, 2) demonstration of functional abnormalities in areas adjacent or distant from cerebrovascular lesions, and 3) precise definition of topographical abnormalities because of the three-dimensional imaging capability of MRI. As MRI or SPECT may define the actual extent of lesions and show areas of functional abnormality, these studies are useful and necessary in the assessment of lesions causing aphasia. (author)

  7. MRI contrast agent for molecular imaging of the HER2/neu receptor using targeted magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rasaneh, Samira; Rajabi, Hossein, E-mail: hrajabi@modares.ac.ir [Tarbiat Modares University, Department of Medical Physics (Iran, Islamic Republic of); Babaei, Mohammad Hossein [Nuclear Science and Technology Research Institute, Department of Radioisotope (Iran, Islamic Republic of); Akhlaghpoor, Shahram [Sina Hospital, Tehran Medical University, Noor Medical Imaging Center (Iran, Islamic Republic of)

    2011-06-15

    In this study, Trastuzumab modified Magnetic Nanoparticles (TMNs) were prepared as a new contrast agent for detecting HER2 (Human epidermal growth factor receptor-2) expression tumors by magnetic resonance imaging (MRI). TMNs were prepared based on iron oxide nanoparticles core and Trastuzumab modified dextran coating. The TMNs core and hydrodynamic size were determined by transmission electron microscopy and dynamic light scattering. TMNs stability and cytotoxicity were investigated. The ability of TMNs for HER2 detection were evaluated in breast carcinoma cell lines (SKBr3 and MCF7 cells) and tumor-bearing mice by MRI and iron uptake determination. The particles core and hydrodynamic size were 9 {+-} 2.5 and 41 {+-} 15 nm (size range: 15-87 nm), respectively. The molar antibody/nanoparticle ratio was 3.1-3.5. TMNs were non-toxic to the cells below the 30 {mu}g (Fe)/mL concentration and good stable up to 8 weeks in PBS buffer. TMNs could detect HER2 oncogenes in the cells surface with imagable contrast by MRI. The invivo study in mice bearing tumors indicated that TMNs possessed a good diagnostic ability as HER2 specific contrast agent by MRI. TMNs were demonstrated to be able to selectively accumulate in the tumor cells, with a proper signal enhancement in MRI T2 images. So, the complex may be considered for further investigations as an MRI contrast agent for detection of HER2 expression tumors in human.

  8. Staging of endometrial cancer with MRI: Guidelines of the European Society of Urogenital Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kinkel, K. [Geneva University Hospital and Institut de Radiologie, Clinique des Grangettes, Chene-Bougeries/Geneva (Switzerland); Clinique des Grangettes, Institut de radiologie, Chene-Bougerie/Geneva (Switzerland); Forstner, R. [LandesklinikenSalzburg, Zentralroentgeninstitut, Salzburg (Austria); Danza, F.M. [Universita Cattolica del S. Cuore, Dipartimento di Bioimmagini e scienze radiologiche, Rome (Italy); Oleaga, L. [Hospital Clinic, Radiology Department, Barcelona (Spain); Cunha, T.M. [Instituto Portugues de Oncologia de Lisboa Francisco Gentil, Department of Radiology, Lisboa Codex (Portugal); Bergman, A. [Uppsala University Hospital, Department of Radiology, Uppsala (Sweden); Barentsz, J.O. [Radboud University Nijmegen Medical Center, Department of Radiology, Nijmegen (Netherlands); Balleyguier, C. [Institut de Cancerologie Gustave Roussy, Department of Radiology, Villejuif Cedex (France); Brkljacic, B. [University Hospital ' ' Dubrava' ' , Department of Diagnostic and Interventional Radiology, Zagreb (Croatia); University of Zagreb, Medical School, Zagreb (Croatia); Spencer, J.A. [St James' s Institute of Oncology, Department of Clinical Radiology, Leeds (United Kingdom)

    2009-07-15

    The purpose of this study was to define guidelines for endometrial cancer staging with MRI. The technique included critical review and expert consensus of MRI protocols by the female imaging subcommittee of the European Society of Urogenital Radiology, from ten European institutions, and published literature between 1999 and 2008. The results indicated that high field MRI should include at least two T2-weighted sequences in sagittal, axial oblique or coronal oblique orientation (short and long axis of the uterine body) of the pelvic content. High-resolution post-contrast images acquired at 2 min {+-} 30 s after intravenous contrast injection are suggested to be optimal for the diagnosis of myometrial invasion. If cervical invasion is suspected, additional slice orientation perpendicular to the axis of the endocervical channel is recommended. Due to the limited sensitivity of MRI to detect lymph node metastasis without lymph node-specific contrast agents, retroperitoneal lymph node screening with pre-contrast sequences up to the level of the kidneys is optional. The likelihood of lymph node invasion and the need for staging lymphadenectomy are also indicated by high-grade histology at endometrial tissue sampling and by deep myometrial or cervical invasion detected by MRI. In conclusion, expert consensus and literature review lead to an optimized MRI protocol to stage endometrial cancer. (orig.)

  9. Clinical significance of MRI/18F-FDG PET fusion imaging of the spinal cord in patients with cervical compressive myelopathy

    International Nuclear Information System (INIS)

    Uchida, Kenzo; Nakajima, Hideaki; Watanabe, Shuji; Yoshida, Ai; Baba, Hisatoshi; Okazawa, Hidehiko; Kimura, Hirohiko; Kudo, Takashi

    2012-01-01

    18 F-FDG PET is used to investigate the metabolic activity of neural tissue. MRI is used to visualize morphological changes, but the relationship between intramedullary signal changes and clinical outcome remains controversial. The present study was designed to evaluate the use of 3-D MRI/ 18 F-FDG PET fusion imaging for defining intramedullary signal changes on MRI scans and local glucose metabolic rate measured on 18 F-FDG PET scans in relation to clinical outcome and prognosis. We studied 24 patients undergoing decompressive surgery for cervical compressive myelopathy. All patients underwent 3-D MRI and 18 F-FDG PET before surgery. Quantitative analysis of intramedullary signal changes on MRI scans included calculation of the signal intensity ratio (SIR) as the ratio between the increased lesional signal intensity and the signal intensity at the level of the C7/T1 disc. Using an Advantage workstation, the same slices of cervical 3-D MRI and 18 F-FDG PET images were fused. On the fused images, the maximal count of the lesion was adopted as the standardized uptake value (SUV max ). In a similar manner to SIR, the SUV ratio (SUVR) was also calculated. Neurological assessment was conducted using the Japanese Orthopedic Association (JOA) scoring system for cervical myelopathy. The SIR on T1-weighted (T1-W) images, but not SIR on T2-W images, was significantly correlated with preoperative JOA score and postoperative neurological improvement. Lesion SUV max was significantly correlated with SIR on T1-W images, but not with SIR on T2-W images, and also with postoperative neurological outcome. The SUVR correlated better than SIR on T1-W images and lesion SUV max with neurological improvement. Longer symptom duration was correlated negatively with SIR on T1-W images, positively with SIR on T2-W images, and negatively with SUV max . Our results suggest that low-intensity signal on T1-W images, but not on T2-W images, is correlated with a poor postoperative neurological

  10. Imaging the fetus: when does MRI really help?

    International Nuclear Information System (INIS)

    Garel, Catherine

    It is widely accepted that fetal MRI should be used to complement rather than to replace US, which remains the primary screening modality. Under certain circumstances where US is limited, such as maternal obesity, fetal MRI may be useful as a primary screening tool. It is well known that maternal obesity is increasing worldwide and is more common in certain countries. It certainly contributes to a shift from US to MRI as a prenatal diagnostic imaging modality. Inadequacies of US may also be directly related to the sonographer's level of experience. Use and development of fetal US are not comparable in different countries. Some countries prioritise the development of fetal US and increase the experience of sonographers by political initiatives such as reimbursement of US by social insurance, thus raising people's expectations. In other countries, fetal US is considered of secondary importance and is not exploited as much as it could be. Consequently, in those countries, the place occupied by fetal MRI and the expectations regarding its diagnostic accuracy are much more prominent. This is undoubtedly the reason why there are so many discrepancies regarding the relative contributions of fetal MRI and fetal US in the prenatal literature. (orig.)

  11. Cortical control of gait in healthy humans: an fMRI study

    International Nuclear Information System (INIS)

    ChiHong, Wang; YauYau, Wai; BoCheng, Kuo; Yei-Yu, Yeh; JiunJie Wang

    2008-01-01

    This study examined the cortical control of gait in healthy humans using functional magnetic resonance imaging (fMRI). Two block-designed fMRI sessions were conducted during motor imagery of a locomotor-related task. Subjects watched a video clip that showed an actor standing and walking in an egocentric perspective. In a control session, additional fMRI images were collected when participants observed a video clip of the clutch movement of a right hand. In keeping with previous studies using SPECT and NIRS, we detected activation in many motor-related areas including supplementary motor area, bilateral precentral gyrus, left dorsal premotor cortex, and cingulate motor area. Smaller additional activations were observed in the bilateral precuneus, left thalamus, and part of right putamen. Based on these findings, we propose a novel paradigm to study the cortical control of gait in healthy humans using fMRI. Specifically, the task used in this study - involving both mirror neurons and mental imagery - provides a new feasible model to be used in functional neuroimaging studies in this area of research. (author)

  12. Initial experiments with gel-water: towards MRI-linac dosimetry and imaging.

    Science.gov (United States)

    Alnaghy, Sarah J; Gargett, Maegan; Liney, Gary; Petasecca, Marco; Begg, Jarrad; Espinoza, Anthony; Newall, Matthew K; Duncan, Mitchell; Holloway, Lois; Lerch, Michael L F; Lazea, Mircea; Rosenfeld, Anatoly B; Metcalfe, Peter

    2016-12-01

    Tracking the position of a moving radiation detector in time and space during data acquisition can replicate 4D image-guided radiotherapy (4DIGRT). Magnetic resonance imaging (MRI)-linacs need MRI-visible detectors to achieve this, however, imaging solid phantoms is an issue. Hence, gel-water, a material that provides signal for MRI-visibility, and which will in future work, replace solid water for an MRI-linac 4DIGRT quality assurance tool, is discussed. MR and CT images of gel-water were acquired for visualisation and electron density verification. Characterisation of gel-water at 0 T was compared to Gammex-RMI solid water, using MagicPlate-512 (M512) and RMI Attix chamber; this included percentage depth dose, tissue-phantom ratio (TPR 20/10 ), tissue-maximum ratio (TMR), profiles, output factors, and a gamma analysis to investigate field penumbral differences. MR images of a non-powered detector in gel-water demonstrated detector visualisation. The CT-determined gel-water electron density agreed with the calculated value of 1.01. Gel-water depth dose data demonstrated a maximum deviation of 0.7% from solid water for M512 and 2.4% for the Attix chamber, and by 2.1% for TPR 20/10 and 1.0% for TMR. FWHM and output factor differences between materials were ≤0.3 and ≤1.4%. M512 data passed gamma analysis with 100% within 2%, 2 mm tolerance for multileaf collimator defined fields. Gel-water was shown to be tissue-equivalent for dosimetry and a feasible option to replace solid water.

  13. Early studies of instant-fMRI for routine examination

    International Nuclear Information System (INIS)

    Sakurai, Yuuki; Harada, Kuniaki; Nagahama, Hiroshi; Akatsuka, Yoshihiro; Shinozaki, Jun

    2010-01-01

    Authors are developing a low-burden, short-time acquisition method of functional magnetic resonance imaging (fMRI) with 3T machine, named ''Instant-fMRI'', aiming for its application to routine examinations, of which results of early studies on identification of the language hemisphere are reported. Subjects were 10 healthy volunteers (8 males, 2 females, mean age 34.2 y, 8 right-handers) and 5 right-hander patients with brain tumor (4 males, 1 female, mean age 50 y). The machine was GE Signa HDx 3.0T ver. 14, using 8 channel head coil. For Instant-fMRI, T1-weighted imaging sequence for mapping was in fast spoiled gradient recalled acquisition in the steady state (fSPGR) mode (scan time: 1 min 44 sec) and fMRI sequence, in GRE-EPI (scan time: 1 min), which thus required only about 3 min in total. Reference was defined to be the anterior-posterior commissure line, to which parallel sections involving centriciput and cerebellum were acquired. Rest (30 sec)-task (shiritori language game, 30 sec) cycle was to be one in instant-fMRI in contrast to three in the conventional fMRI. Volunteers received both instant-fMRI and conventional fMRI and patients, the former alone. Data were analyzed by GE Brain Wave PA. Right and left hemisphere of the left and right hander, respectively, was identified to be activated by instant-fMRI in 9 of 10 volunteers and in all patients, and by the conventional fMRI, in all volunteers. The instant-fMRI can be a useful examination of other brain functions as well as identifying the language field when acquisition parameters for desired diagnostic purpose are optimized. (T.T.)

  14. Multi-modal image registration: matching MRI with histology

    NARCIS (Netherlands)

    Alić, L.; Haeck, J.C.; Klein, S.; Bol, K.; Tiel, S.T. van; Wielopolski, P.A.; Bijster, M.; Niessen, W.J.; Bernsen, M.; Veenland, J.F.; Jong, M. de

    2010-01-01

    Spatial correspondence between histology and multi sequence MRI can provide information about the capabilities of non-invasive imaging to characterize cancerous tissue. However, shrinkage and deformation occurring during the excision of the tumor and the histological processing complicate the co

  15. CT and MRI findings of Creutzfeldt-Jakob disease in the early stage. The usefulness of diffusion-weighted images

    International Nuclear Information System (INIS)

    Ukisu, Ryutaro; Kushihashi, Tamio; Gokan, Takehiko

    2001-01-01

    To detect subtle CT and MRI features of Creutzfeldt-Jacob disease (CJD) in the early stage is important to prevent a human-to-human transmission. This study included 10 patients of CJD who underwent CT and/or MRI in its early stage. CT, T1- and T2-weighted MRI, DWI, and FLAIR images were obtained in 10, 6, 4, and 2 patients respectively. On DWI, abnormal hyperintensities were observed in both cerebral cortex, and in basal ganglia in all patients. On FLAIR images, abnormal hyperintensies were observed in one patient. Detection of abnormal intensities may be possible in the early stage of CJD using MRI, particularly with DWI. (author)

  16. CT and MRI findings of Creutzfeldt-Jakob disease in the early stage. The usefulness of diffusion-weighted images

    Energy Technology Data Exchange (ETDEWEB)

    Ukisu, Ryutaro; Kushihashi, Tamio; Gokan, Takehiko [Showa Univ., Tokyo (Japan). School of Medicine] [and others

    2001-02-01

    To detect subtle CT and MRI features of Creutzfeldt-Jacob disease (CJD) in the early stage is important to prevent a human-to-human transmission. This study included 10 patients of CJD who underwent CT and/or MRI in its early stage. CT, T1- and T2-weighted MRI, DWI, and FLAIR images were obtained in 10, 6, 4, and 2 patients respectively. On DWI, abnormal hyperintensities were observed in both cerebral cortex, and in basal ganglia in all patients. On FLAIR images, abnormal hyperintensies were observed in one patient. Detection of abnormal intensities may be possible in the early stage of CJD using MRI, particularly with DWI. (author)

  17. Imaging transplanted stem cells in real time using an MRI dual-contrast method

    Science.gov (United States)

    Ngen, Ethel J.; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri

    2015-01-01

    Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies. PMID:26330231

  18. MRI quality assurance using the ACR phantom in a multi-unit imaging center

    International Nuclear Information System (INIS)

    Ihalainen, Toni M.; Kuusela, Linda J.; Savolainen, Sauli E.; Loennroth, Nadja T.; Peltonen, Juha I.; Uusi-Simola, Jouni K.; Timonen, Marjut H.; Sipilae, Outi E.

    2011-01-01

    Background. Magnetic resonance imaging (MRI) instrumentation is vulnerable to technical and image quality problems, and quality assurance is essential. In the studied regional imaging center the long-term quality assurance has been based on MagNET phantom measurements. American College of Radiology (ACR) has an accreditation program including a standardized image quality measurement protocol and phantom. The ACR protocol includes recommended acceptance criteria for clinical sequences and thus provides possibility to assess the clinical relevance of quality assurance. The purpose of this study was to test the ACR MRI phantom in quality assurance of a multi-unit imaging center. Material and methods. The imaging center operates 11 MRI systems of three major manufacturers with field strengths of 3.0 T, 1.5 T and 1.0 T. Images of the ACR phantom were acquired using a head coil following the ACR scanning instructions. Both ACR T1- and T2-weighted sequences as well as T1- and T2-weighted brain sequences in clinical use at each site were acquired. Measurements were performed twice. The images were analyzed and the results were compared with the ACR acceptance levels. Results. The acquisition procedure with the ACR phantom was faster than with the MagNET phantoms. On the first and second measurement rounds 91% and 73% of the systems passed the ACR test. Measured slice thickness accuracies were not within the acceptance limits in site T2 sequences. Differences in the high contrast spatial resolution between the ACR and the site sequences were observed. In 3.0 T systems the image intensity uniformity was slightly lower than the ACR acceptance limit. Conclusion. The ACR method was feasible in quality assurance of a multi-unit imaging center and the ACR protocol could replace the MagNET phantom tests. An automatic analysis of the images will further improve cost-effectiveness and objectiveness of the ACR protocol

  19. Liver Imaging Reporting and Data System on CT and gadoxetic acid-enhanced MRI with diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Dong Ik; Jang, Kyung Mi; Kim, Seong Hyun; Kang, Tae Wook; Song, Kyoung Doo [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of)

    2017-10-15

    To assess major imaging features of Liver Imaging Reporting and Data System (LI-RADS) on contrast-enhanced CT and gadoxetic acid-enhanced MRI and to estimate whether the combination of signal intensity favouring HCC on hepatobiliary phase (HBP) and diffusion-weighted images (DWI) can act as a major feature in LI-RADS. Four hundred twenty one patients with 445 observations were included. Major features of LI-RADS on CT and MRI as well as HBP and DWI features were assessed. Diagnostic performances of LR-5 according to LI-RADS v2014 and modified LI-RADS which incorporate combination of HBP and DWI were assessed. Pairwise comparisons of the receiver operating characteristic (ROC) curves were performed. For HCCs, capsule appearance had the highest rate of discordance between CT and MRI (32.7%), followed by washout appearance (22.2%). Specificity (75%) of LR-5 of LI-RADS v2014 was lower than that (77.1-79.2%) of modified LI-RADS. Area under the ROC curve of modified LI-RADS (0.755-0.775) was not significantly different from that of LI-RADS v 2014 (0.709) (p > 0.05). There were substantial discordances between CT and MRI for capsule and washout appearances in hepatic observations, and combination of gadoxetic acid-enhanced MRI and DWI might be able to be incorporated as a major feature of LI-RADS. (orig.)

  20. Cortical phase changes in Alzheimer's disease at 7T MRI: a novel imaging marker.

    Science.gov (United States)

    van Rooden, Sanneke; Versluis, Maarten J; Liem, Michael K; Milles, Julien; Maier, Andrea B; Oleksik, Ania M; Webb, Andrew G; van Buchem, Mark A; van der Grond, Jeroen

    2014-01-01

    Postmortem studies have indicated the potential of high-field magnetic resonance imaging (MRI) to visualize amyloid depositions in the cerebral cortex. The aim of this study is to test this hypothesis in patients with Alzheimer's disease (AD). T2*-weighted MRI was performed in 16 AD patients and 15 control subjects. All magnetic resonance images were scored qualitatively by visual assessment, and quantitatively by measuring phase shifts in the cortical gray matter and hippocampus. Statistical analysis was performed to assess differences between groups. Patients with AD demonstrated an increased phase shift in the cortex in the temporoparietal, frontal, and parietal regions (P < .005), and this was associated with individual Mini-Mental State Examination scores (r = -0.54, P < .05). Increased cortical phase shift in AD patients demonstrated on 7-tesla T2*-weighted MRI is a potential new biomarker for AD, which may reflect amyloid pathology in the early stages. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  1. Candidate Biomarkers in Children with Autism Spectrum Disorder: A Review of MRI Studies

    Institute of Scientific and Technical Information of China (English)

    Dongyun Li; Hans-Otto Karnath; Xiu Xu

    2017-01-01

    Searching for effective biomarkers is one of the most challenging tasks in the research field of Autism Spectrum Disorder (ASD).Magnetic resonance imaging (MRI) provides a non-invasive and powerful tool for investigating changes in the structure,function,maturation,connectivity,and metabolism of the brain of children with ASD.Here,we review the more recent MRI studies in young children with ASD,aiming to provide candidate biomarkers for the diagnosis of childhood ASD.The review covers structural imaging methods,diffusion tensor imaging,resting-state functional MRI,and magnetic reso nance spectroscopy.Future advances in neuroimaging techniques,as well as cross-disciplinary studies and largescale collaborations will be needed for an integrated approach linking neuroimaging,genetics,and phenotypic data to allow the discovery of new,effective biomarkers.

  2. Magnetic resonance imaging (MRI) in the diagnosis of neuromuscular diseases

    International Nuclear Information System (INIS)

    Schalke, B.C.G.; Rohkamm, R.; Kaiser, W.

    1990-01-01

    In the last few years imaging procedures became also important in the diagnosis of neuromuscular diseases. We examined more than 150 patients with different neuromuscular diseases with MRI. Conventional diagnostic procedures like EMG, muscle biopsy can not be replaced by imaging procedures. MRI gives the chance to get additional diagnostic informations. It is possible to determine exact distribution and intensity of pathological changes in the muscle. Inflammatory muscle diseases can be differrentiated by T1/T2 values from atrophic/dystrophic diseases. The resolving power is very high and allows the exact detection of affected areas even in a single muscle. This can help to reduce false negative muscle biopsies. This is very useful in children and young adults. MRI can be used for the early detection of genetic myopathies and neuropathies. MRI allows to examine all muscles, including the heart, bone artefacts are absent. Heart muscle involvement in neuromuscular diseases can directly be shown by this method without any risk for the patient. In addition P-spectroscopy can be done for better understanding of pathogenesis, especially if the exact distribution of pathological changes is known. (author)

  3. Use of diffusion-weighted imaging (DWI) in PET/MRI for head and neck cancer evaluation

    International Nuclear Information System (INIS)

    Queiroz, Marcelo A.; Schulthess, Gustav von; Huellner, Martin; Kuhn, Felix; Veit-Haibach, Patrick; Huber, Gerhardt; Meerwein, Christian; Kollias, Spyros

    2014-01-01

    The purpose of this study was to analyze whether diffusion-weighted imaging (DWI) adds significant information to positron emission tomography/magnetic resonance imaging (PET/MRI) on lesion detection and characterization in head and neck cancers. Seventy patients with different head and neck cancers were enrolled in this prospective study. All patients underwent sequential contrast-enhanced (ce) PET/computed tomography (CT) and cePET/MRI using a tri-modality PET/CT-MR setup either for staging or re-staging. First, the DWI alone was evaluated, followed by the PET/MRI with conventional sequences, and in a third step, the PET/MRI with DWI was evaluated. McNemar's test was used to evaluate differences in the accuracy of PET/MRI with and without DWI compared to the standard of reference. One hundred eighty-eight (188) lesions were found, and of those, 118 (62.8 %) were malignant and 70 (37.2 %) were benign. PET/MRI without DWI had a higher accuracy in detecting malignant lesions than DWI alone (86.8 % vs. 60.6 %, p < 0.001). PET/MRI combined with DWI detected 120 concurrent lesions (89 malignant and 31 benign), PET/MRI alone identified 48 additional lesions (20 malignant and 28 benign), and DWI alone detected 20 different lesions (nine malignant and 11 benign). However, lesions detected on DWI did not change overall staging. SUV maximum and mean were significantly higher in malignant lesions than in benign lesions. DWI parameters between malignant and benign lesions were not statistically different. The use of DWI as part of PET/MRI to evaluate head and neck cancers does not provide remarkable information. Thus, the use of DWI might not be needed in clinical PET/MRI protocols for the staging or restaging of head and neck cancers. (orig.)

  4. High-resolution T{sub 2}-weighted cervical cancer imaging: a feasibility study on ultra-high-field 7.0-T MRI with an endorectal monopole antenna

    Energy Technology Data Exchange (ETDEWEB)

    Hoogendam, Jacob P.; Verheijen, Rene H.M.; Zweemer, Ronald P. [University Medical Centre Utrecht, Department of Gynaecological Oncology, UMC Utrecht Cancer Centre, PO Box 85500, Utrecht (Netherlands); Kalleveen, Irene M.L.; Castro, Catalina S.A. de; Raaijmakers, Alexander J.E.; Bosch, Maurice A.A.J. van den; Klomp, Dennis W.J.; Veldhuis, Wouter B. [University Medical Centre Utrecht, Department of Radiology, Utrecht (Netherlands)

    2017-03-15

    We studied the feasibility of high-resolution T{sub 2}-weighted cervical cancer imaging on an ultra-high-field 7.0-T magnetic resonance imaging (MRI) system using an endorectal antenna of 4.7-mm thickness. A feasibility study on 20 stage IB1-IIB cervical cancer patients was conducted. All underwent pre-treatment 1.5-T MRI. At 7.0-T MRI, an external transmit/receive array with seven dipole antennae and a single endorectal monopole receive antenna were used. Discomfort levels were assessed. Following individualised phase-based B{sub 1} {sup +} shimming, T{sub 2}-weighted turbo spin echo sequences were completed. Patients had stage IB1 (n = 9), IB2 (n = 4), IIA1 (n = 1) or IIB (n = 6) cervical cancer. Discomfort (ten-point scale) was minimal at placement and removal of the endorectal antenna with a median score of 1 (range, 0-5) and 0 (range, 0-2) respectively. Its use did not result in adverse events or pre-term session discontinuation. To demonstrate feasibility, T{sub 2}-weighted acquisitions from 7.0-T MRI are presented in comparison to 1.5-T MRI. Artefacts on 7.0-T MRI were due to motion, locally destructive B{sub 1} interference, excessive B{sub 1} under the external antennae and SENSE reconstruction. High-resolution T{sub 2}-weighted 7.0-T MRI of stage IB1-IIB cervical cancer is feasible. The addition of an endorectal antenna is well tolerated by patients. (orig.)

  5. Comparative studies of MRI and operative findings in rotator cuff tear

    International Nuclear Information System (INIS)

    Yamakawa, Seigo; Ichikawa, Norikazu; Itadera, Eichi; Hashizume, Hiroyuki; Inoue, Hajime

    2001-01-01

    A prospective study was performed to determine the accuracy of magnetic resonance imaging (MRI) compared with operative findings in the evaluation of patients associated with rotator cuff tears. Fifty-four of 60 shoulders (58 patients) examined by MRI were confirmed as full-thickness tears and 6 as partial-thickness tears at the time of surgery. The oblique coronal, oblique sagittal, and axial planes of T2-weighted images with the 0.5 tesla MRI system were obtained preoperatively and compared with operative findings. MRI correctly identified 46 of 54 full-thickness rotator cuff tears and 5 of 6 partial-thickness tears. A comparison of MRI and operative findings in full-thickness cuff tears showed a sensitivity of 85%, a specificity of 83%, and a positive prospective value (PPV) of 99%. A comparison of partial-thickness tears showed a sensitivity of 83%, a specificity of 85%, and PPV of 39%. Linear regression analysis showed an excellent correlation between the MRI assessment and measurement at the time of surgery (r=0.90, P<0.01). MRI was useful in evaluating large and medium-sized rotator cuff tears, but less useful in distinguishing small full-thickness tears from partial-thickness tears. (author)

  6. WE-G-18C-08: Real Time Tumor Imaging Using a Novel Dynamic Keyhole MRI Reconstruction Technique

    International Nuclear Information System (INIS)

    Lee, D; Pollock, S; Whelan, B; Keall, P; Greer, P; Kim, T

    2014-01-01

    Purpose: To test the hypothesis that the novel Dynamic Keyhole MRI reconstruction technique can accelerate image acquisition whilst maintaining high image quality for lung cancer patients. Methods: 18 MRI datasets from 5 lung cancer patients were acquired using a 3T MRI scanner. These datasets were retrospectively reconstructed using (A) The novel Dynamic Keyhole technique, (B) The conventional keyhole technique and (C) the conventional zero filling technique. The dynamic keyhole technique in MRI refers to techniques in which previously acquired k-space data is used to supplement under sampled data obtained in real time. The novel Dynamic Keyhole technique utilizes a previously acquired a library of kspace datasets in conjunction with central k-space datasets acquired in realtime. A simultaneously acquired respiratory signal is utilized to sort, match and combine the two k-space streams with respect to respiratory displacement. Reconstruction performance was quantified by (1) comparing the keyhole size (which corresponds to imaging speed) required to achieve the same image quality, and (2) maintaining a constant keyhole size across the three reconstruction methods to compare the resulting image quality to the ground truth image. Results: (1) The dynamic keyhole method required a mean keyhole size which was 48% smaller than the conventional keyhole technique and 60% smaller than the zero filling technique to achieve the same image quality. This directly corresponds to faster imaging. (2) When a constant keyhole size was utilized, the Dynamic Keyhole technique resulted in the smallest difference of the tumor region compared to the ground truth. Conclusion: The dynamic keyhole is a simple and adaptable technique for clinical applications requiring real-time imaging and tumor monitoring such as MRI guided radiotherapy. Based on the results from this study, the dynamic keyhole method could increase the imaging frequency by a factor of five compared with full k

  7. Advances in PET-MRI technology

    International Nuclear Information System (INIS)

    Chen Xiang; Zhao Jinhua

    2011-01-01

    Multimodality imaging is the general trend of clinical imaging. PET-CT is one of the most classic and mature multimodality imaging methods and is widely used today. MRI is another kind of conventional imaging method, in contrast to CT, MRI can not only yield images with higher soft-tissue contrast and better spatial resolution resolution but also provide some functional information by special imaging techniques such as MRS. The combination of PET and MRI for simultaneous data acquisition should have far-reaching consequences for clinical and scientific study. This review describes the progress to date and talks about the problems met in the development of PET-MRI and look forward to its potential application. (authors)

  8. MRI Compatibility of Robot Actuation Techniques – A Comparative Study

    OpenAIRE

    Fischer, Gregory S.; Krieger, Axel; Iordachita, Iulian; Csoma, Csaba; Whitcomb, Louis L.; Fichtinger, Gabor

    2008-01-01

    This paper reports an experimental evaluation of the following three different MRI-compatible actuators: a Shinsei ultrasonic motor, a Nanomotion ultrasonic motor and a pneumatic cylinder actuator. We report the results of a study comparing the effect of these actuators on the signal to noise ratio (SNR) of MRI images under a variety of experimental conditions. Evaluation was performed with the controller inside and outside the scanner room and with both 1.5T and 3T MRI scanners. Pneumatic cy...

  9. Health-economic evaluation of three imaging strategies in patients with suspected colorectal liver metastases: Gd-EOB-DTPA-enhanced MRI vs. extracellular contrast media-enhanced MRI and 3-phase MDCT in Germany, Italy and Sweden

    International Nuclear Information System (INIS)

    Zech, C.J.; Grazioli, L.; Jonas, E.; Ekman, M.; Joensson, L.; Niebecker, R.; Kienbaum, S.; Gschwend, S.; Breuer, J.

    2009-01-01

    The purpose of this study was to perform an economic evaluation of hepatocyte-specific Gd-EOB-DTPA enhanced MRI (PV-MRI) compared to extracellular contrast-media-enhanced MRI (ECCM-MRI) and three-phase-MDCT as initial modalities in the work-up of patients with metachronous colorectal liver metastases. The economic evaluation was performed with a decision-tree model designed to estimate all aggregated costs depending on the initial investigation. Probabilities on the need for further imaging to come to a treatment decision were collected through interviews with 13 pairs of each a radiologist and a liver surgeon in Germany, Italy and Sweden. The rate of further imaging needed was 8.6% after initial PV-MRI, 18.5% after ECCM-MRI and 23.5% after MDCT. Considering the cost of all diagnostic work-up, intra-operative treatment changes and unnecessary surgery, a strategy starting with PV-MRI with 959 EUR was cost-saving compared to ECCM-MRI (1,123 EUR) and MDCT (1,044 EUR) in Sweden. In Italy and Germany, PV-MRI was cost-saving compared to ECCM-MRI and had total costs similar to MDCT. In conclusion, our results indicate that PV-MRI can lead to cost savings by improving pre-operative planning and decreasing intra-operative changes. The higher cost of imaging with PV-MRI is offset in such a scenario by lower costs for additional imaging and less intra-operative changes. (orig.)

  10. Eye imaging with a 3.0-T MRI using a surface coil - a study on volunteers and initial patients with uveal melanoma

    International Nuclear Information System (INIS)

    Lemke, Arne-Joern; Hengst, Susanne Anja; Kazi, Iris; Felix, Roland; Alai-Omid, Minouche

    2006-01-01

    MRI of uveal melanoma using 1.5-T technology and surface coils has developed into a standard procedure. The purpose of the study was to evaluate the feasibility of 3.0-T technology in eye imaging. To optimize the MRI sequences for clinical eye imaging with 3.0-T, six healthy volunteers were conducted using a 4.0-cm surface coil. Evaluation criteria were the signal-to-noise-ratio (SNR), contrast-to-noise-ratio (CNR) and image quality. A further six patients with uveal melanoma were examined with 1.5- and 3.0-T under retrobulbar anesthesia. During 3.0-T examinations of volunteers, eye movements caused significant artifacts. On the contrary, excellent imaging quality was reached in examinations of patients under retrobulbar anesthesia at 3.0 T. Subjective assessment showed no significant difference between 1.5 and 3.0 T in patients. Due to the increased SNR, the 3.0-T technique has the potential to improve eye imaging, but the higher susceptibility to motion artifacts limits the clinical use of this technique to patients receiving retrobulbar anesthesia. (orig.)

  11. SU-F-T-42: MRI and TRUS Image Fusion as a Mode of Generating More Accurate Prostate Contours

    Energy Technology Data Exchange (ETDEWEB)

    Petronek, M; Purysko, A; Balik, S; Ciezki, J; Klein, E; Wilkinson, D [Cleveland Clinic Foundation, Cleveland, OH (United States)

    2016-06-15

    Purpose: Transrectal Ultrasound (TRUS) imaging is utilized intra-operatively for LDR permanent prostate seed implant treatment planning. Prostate contouring with TRUS can be challenging at the apex and base. This study attempts to improve accuracy of prostate contouring with MRI-TRUS fusion to prevent over- or under-estimation of the prostate volume. Methods: 14 patients with previous MRI guided prostate biopsy and undergone an LDR permanent prostate seed implant have been selected. The prostate was contoured on the MRI images (1 mm slice thickness) by a radiologist. The prostate was also contoured on TRUS images (5 mm slice thickness) during LDR procedure by a urologist. MRI and TRUS images were rigidly fused manually and the prostate contours from MRI and TRUS were compared using Dice similarity coefficient, percentage volume difference and length, height and width differences. Results: The prostate volume was overestimated by 8 ± 18% (range: 34% to −25%) in TRUS images compared to MRI. The mean Dice was 0.77 ± 0.09 (range: 0.53 to 0.88). The mean difference (TRUS-MRI) in the prostate width was 0 ± 4 mm (range: −11 to 5 mm), height was −3 ± 6 mm (range: −13 to 6 mm) and length was 6 ± 6 (range: −10 to 16 mm). Prostate was overestimated with TRUS imaging at the base for 6 cases (mean: 8 ± 4 mm and range: 5 to 14 mm), at the apex for 6 cases (mean: 11 ± 3 mm and range: 5 to 15 mm) and 1 case was underestimated at both base and apex by 4 mm. Conclusion: Use of intra-operative TRUS and MRI image fusion can help to improve the accuracy of prostate contouring by accurately accounting for prostate over- or under-estimations, especially at the base and apex. The mean amount of discrepancy is within a range that is significant for LDR sources.

  12. SU-F-T-42: MRI and TRUS Image Fusion as a Mode of Generating More Accurate Prostate Contours

    International Nuclear Information System (INIS)

    Petronek, M; Purysko, A; Balik, S; Ciezki, J; Klein, E; Wilkinson, D

    2016-01-01

    Purpose: Transrectal Ultrasound (TRUS) imaging is utilized intra-operatively for LDR permanent prostate seed implant treatment planning. Prostate contouring with TRUS can be challenging at the apex and base. This study attempts to improve accuracy of prostate contouring with MRI-TRUS fusion to prevent over- or under-estimation of the prostate volume. Methods: 14 patients with previous MRI guided prostate biopsy and undergone an LDR permanent prostate seed implant have been selected. The prostate was contoured on the MRI images (1 mm slice thickness) by a radiologist. The prostate was also contoured on TRUS images (5 mm slice thickness) during LDR procedure by a urologist. MRI and TRUS images were rigidly fused manually and the prostate contours from MRI and TRUS were compared using Dice similarity coefficient, percentage volume difference and length, height and width differences. Results: The prostate volume was overestimated by 8 ± 18% (range: 34% to −25%) in TRUS images compared to MRI. The mean Dice was 0.77 ± 0.09 (range: 0.53 to 0.88). The mean difference (TRUS-MRI) in the prostate width was 0 ± 4 mm (range: −11 to 5 mm), height was −3 ± 6 mm (range: −13 to 6 mm) and length was 6 ± 6 (range: −10 to 16 mm). Prostate was overestimated with TRUS imaging at the base for 6 cases (mean: 8 ± 4 mm and range: 5 to 14 mm), at the apex for 6 cases (mean: 11 ± 3 mm and range: 5 to 15 mm) and 1 case was underestimated at both base and apex by 4 mm. Conclusion: Use of intra-operative TRUS and MRI image fusion can help to improve the accuracy of prostate contouring by accurately accounting for prostate over- or under-estimations, especially at the base and apex. The mean amount of discrepancy is within a range that is significant for LDR sources.

  13. MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI

    Science.gov (United States)

    Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges

    2014-01-01

    Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection

  14. Application of magnetic resonance imaging (MRI) technique on monitoring flower bud differentiation of tulip

    International Nuclear Information System (INIS)

    Han Haojun; Yang Hongguang; Han Hongbin; Sun Xiaomei

    2009-01-01

    Magnetic resonance imaging (MRI) was used for observing morphogenesis process in the living specimen situation of tulip flower buds. Through a comparison of different MRI imaging formation technique (longitudinal relaxation-T1WI, transverse relaxation time weighted imaging-T2WI, proton density weighted imaging-PDWI), seeking for an accurate and practical MRI technique to observe tulip bulb and differentiation period of flower bud. The results showed that in the demonstration of the morphological characters as well as morphogenesis process of flower bud differentiation, the T1WI was completely consistent with the results of rough slice, PDWI and T1WI also had obviously higher map quality than the T2WI (P<0.05). It is indicated that the magnetic resonance imaging technique could monitor the development of flower bud differentiation in vivo. (authors)

  15. Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Mehranian, Abolfazl; Arabi, Hossein [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211 (Switzerland); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211 (Switzerland); Geneva Neuroscience Centre, University of Geneva, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen 9700 RB (Netherlands)

    2016-03-15

    Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial

  16. Adherence to MRI protocol consensus guidelines in multiple sclerosis: an Australian multi-centre study

    International Nuclear Information System (INIS)

    Curley, Michael; Josey, Lawrence; Lucas, Robyn; Dear, Keith; Taylor, Bruce V.; Coulthard, Alan; Ausimmune Investigator Group

    2012-01-01

    Multiple sclerosis (MS) is a debilitating disease that causes significant morbidity within a young demographic. Diagnostic guidelines for MS have evolved, and imaging has played an increasingly important role in diagnosis over the last two decades. For imaging to contribute to diagnosis in a meaningful way, it must be reproducible. Consensus guidelines for MRI in MS exist to define correct sequence type and imaging technique, but it is not clear to what extent they are followed. This study reviewed MRI studies performed on Australian individuals presenting with a first clinical diagnosis of central nervous system demyelination (FCD) for adherence to published guidelines and discussed practical implementation of MS guidelines in light of recent updates. The Ausimmune study was a prospective case control study of Australian participants presenting with FCD from 2003 to 2006. Baseline cranial and spinal cord MRI studies of 226 case participants from four separate Australian regions were reviewed. MRI sequences were classified according to anatomical location, slice plane, tissue weighting and use of gadolinium-containing contrast media. Results were compared with the 2003 Consortium of Multiple Sclerosis Centres MRI protocol for the diagnosis of MS. The composition of core cranial MRI sequences performed varied across the 226 scans. Of the studies, 91% included sagittal fluid attenuated inversion recovery (FLAIR) sequences. Cranial axial T2-weighted, axial FLAIR and axial proton density-weighted sequences were performed in 88%, 60% and 16% (respectively) of scans. Only 25% of the studies included a T1-weighted contrast-enhanced sequence. Concordance with the guidelines in all sequences was very low (2). Only a small number of MRI investigations performed included all of the sequences stipulated by consensus guidelines. This is likely due to poor awareness in the imaging community of the guidelines and the rationale behind certain sequences. Radiologists with a sub

  17. EPOXI EARTH OBS - MRI CALIBRATED IMAGES V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains calibrated, 750-nm filter images of Earth acquired by the Deep Impact Medium Resolution Visible CCD (MRI) during the EPOCh and Cruise 2 phases...

  18. Competitive advantage of PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Jadvar, Hossein, E-mail: jadvar@usc.edu; Colletti, Patrick M.

    2014-01-15

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved.

  19. Competitive advantage of PET/MRI.

    Science.gov (United States)

    Jadvar, Hossein; Colletti, Patrick M

    2014-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Competitive advantage of PET/MRI

    International Nuclear Information System (INIS)

    Jadvar, Hossein; Colletti, Patrick M.

    2014-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved

  1. Image quality transfer and applications in diffusion MRI

    DEFF Research Database (Denmark)

    Alexander, Daniel C.; Zikic, Darko; Ghosh, Aurobrata

    2017-01-01

    and the uniquely rich diffusion MRI data set from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard data sets, thin connection pathways that tractography normally...

  2. Performance evaluation of cardiac MRI image denoising techniques

    NARCIS (Netherlands)

    AlAttar, M.A.; Mohamed, A.G.A.; Osman, N.F.; Fahmy, A.S.

    2008-01-01

    Black-blood cardiac magnetic resonance imaging (MRI) plays an important role in diagnosing a number of heart diseases. The technique suffers inherently from low contrast-to-noise ratio between the myocardium and the blood. In this work, we examined the performance of different classification

  3. Improving Brain Magnetic Resonance Image (MRI Segmentation via a Novel Algorithm based on Genetic and Regional Growth

    Directory of Open Access Journals (Sweden)

    Javadpour A.

    2016-06-01

    Full Text Available Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective: This study describes a new method for brain Magnetic Resonance Image (MRI segmentation via a novel algorithm based on genetic and regional growth. Methods: Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results: By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion: The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases.

  4. Imaging the fetus: when does MRI really help?

    Energy Technology Data Exchange (ETDEWEB)

    Garel, Catherine [Hopital d' Enfants Armand-Trousseau, Service de Radiologie Pediatrique, Paris Cedex 12 (France)

    2008-06-15

    It is widely accepted that fetal MRI should be used to complement rather than to replace US, which remains the primary screening modality. Under certain circumstances where US is limited, such as maternal obesity, fetal MRI may be useful as a primary screening tool. It is well known that maternal obesity is increasing worldwide and is more common in certain countries. It certainly contributes to a shift from US to MRI as a prenatal diagnostic imaging modality. Inadequacies of US may also be directly related to the sonographer's level of experience. Use and development of fetal US are not comparable in different countries. Some countries prioritise the development of fetal US and increase the experience of sonographers by political initiatives such as reimbursement of US by social insurance, thus raising people's expectations. In other countries, fetal US is considered of secondary importance and is not exploited as much as it could be. Consequently, in those countries, the place occupied by fetal MRI and the expectations regarding its diagnostic accuracy are much more prominent. This is undoubtedly the reason why there are so many discrepancies regarding the relative contributions of fetal MRI and fetal US in the prenatal literature. (orig.)

  5. Use of personal computer image for processing a magnetic resonance image (MRI)

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuo; Tanaka, Hitoshi

    1988-01-01

    Image processing of MR imaging was attempted by using a popular personal computer as 16-bit model. The computer processed the images on a 256 x 256 matrix and 512 x 512 matrix. The softwer languages for image-processing were those of Macro-Assembler performed by (MS-DOS). The original images, acuired with an 0.5 T superconducting machine (VISTA MR 0.5 T, Picker International) were transfered to the computer by the flexible disket. Image process are the display of image to monitor, other the contrast enhancement, the unsharped mask contrast enhancement, the various filter process, the edge detections or the color histogram was obtained in 1.6 sec to 67 sec, indicating that commercialzed personal computer had ability for routine clinical purpose in MRI-processing. (author)

  6. Staging of endometrial cancer with MRI: Guidelines of the European Society of Urogenital Imaging

    International Nuclear Information System (INIS)

    Kinkel, K.; Forstner, R.; Danza, F.M.; Oleaga, L.; Cunha, T.M.; Bergman, A.; Barentsz, J.O.; Balleyguier, C.; Brkljacic, B.; Spencer, J.A.

    2009-01-01

    The purpose of this study was to define guidelines for endometrial cancer staging with MRI. The technique included critical review and expert consensus of MRI protocols by the female imaging subcommittee of the European Society of Urogenital Radiology, from ten European institutions, and published literature between 1999 and 2008. The results indicated that high field MRI should include at least two T2-weighted sequences in sagittal, axial oblique or coronal oblique orientation (short and long axis of the uterine body) of the pelvic content. High-resolution post-contrast images acquired at 2 min ± 30 s after intravenous contrast injection are suggested to be optimal for the diagnosis of myometrial invasion. If cervical invasion is suspected, additional slice orientation perpendicular to the axis of the endocervical channel is recommended. Due to the limited sensitivity of MRI to detect lymph node metastasis without lymph node-specific contrast agents, retroperitoneal lymph node screening with pre-contrast sequences up to the level of the kidneys is optional. The likelihood of lymph node invasion and the need for staging lymphadenectomy are also indicated by high-grade histology at endometrial tissue sampling and by deep myometrial or cervical invasion detected by MRI. In conclusion, expert consensus and literature review lead to an optimized MRI protocol to stage endometrial cancer. (orig.)

  7. Comparative studies of brain activation with MEG and functional MRI

    International Nuclear Information System (INIS)

    George, J.S.; Aine, C.J.; Sanders, J.A.; Lewine, J.D.; Caprihan, A.

    1993-01-01

    The past two years have witnessed the emergence of MRI as a functional imaging methodology. Initial demonstrations involved the injection of a paramagnetic contrast agent and required ultrafast echo planar imaging capability to adequately resolve the passage of the injected bolus. By measuring the local reduction in image intensity due to magnetic susceptibility, it was possible to calculate blood volume, which changes as a function of neural activation. Later developments have exploited endogenous contrast mechanisms to monitor changes in blood volume or in venous blood oxygen content. Recently, we and others have demonstrated that it is possible to make such measurements in a clinical imager, suggesting that the large installed base of such machines might be utilized for functional imaging. Although it is likely that functional MRI (fMRI) will subsume some of the clinical and basic neuroscience applications now touted for MEG, it is also clear that these techniques offer different largely complementary, capabilities. At the very least, it is useful to compare and cross-validate the activation maps produced by these techniques. Such studies will be valuable as a check on results of neuromagnetic distributed current reconstructions and will allow better characterization of the relationship between neurophysiological activation and associated hemodynamic changes. A more exciting prospect is the development of analyses that combine information from the two modalities to produce a better description of underlying neural activity than is possible with either technique in isolation. In this paper we describe some results from initial comparative studies and outline several techniques that can be used to treat MEG and fMRI data within a unified computational framework

  8. Imaging with 124I in differentiated thyroid carcinoma: is PET/MRI superior to PET/CT?

    International Nuclear Information System (INIS)

    Binse, I.; Poeppel, T.D.; Ruhlmann, M.; Gomez, B.; Bockisch, A.; Rosenbaum-Krumme, S.J.; Umutlu, L.

    2016-01-01

    The aim of this study was to compare integrated PET/CT and PET/MRI for their usefulness in detecting and categorizing cervical iodine-positive lesions in patients with differentiated thyroid cancer using 124 I as tracer. The study group comprised 65 patients at high risk of iodine-positive metastasis who underwent PET/CT (low-dose CT scan, PET acquisition time 2 min; PET/CT 2 ) followed by PET/MRI of the neck 24 h after 124 I administration. PET images from both modalities were analysed for the numbers of tracer-positive lesions. Two different acquisition times were used for the comparisons, one matching the PET/CT 2 acquisition time (2 min, PET/MRI 2 ) and the other covering the whole MRI scan time (30 min, PET/MRI 30 ). Iodine-positive lesions were categorized as metastasis, thyroid remnant or inconclusive according to their location on the PET/CT images. Morphological information provided by MRI was considered for evaluation of lesions on PET/MRI and for volume information. PET/MRI 2 detected significantly more iodine-positive metastases and thyroid remnants than PET/CT 2 (72 vs. 60, p = 0.002, and 100 vs. 80, p = 0.001, respectively), but the numbers of patients with at least one tumour lesion identified were not significantly different (21/65 vs. 17/65 patients). PET/MRI 30 tended to detect more PET-positive metastases than PET/MRI 2 (88 vs. 72), but the difference was not significant (p = 0.07). Of 21 lesions classified as inconclusive on PET/CT, 5 were assigned to metastasis or thyroid remnant when evaluated by PET/MRI. Volume information was available in 34 % of iodine-positive metastases and 2 % of thyroid remnants on PET/MRI. PET/MRI of the neck was found to be superior to PET/CT in detecting iodine-positive lesions. This was attributed to the higher sensitivity of the PET component, Although helpful in some cases, we found no substantial advantage of PET/MRI over PET/CT in categorizing iodine-positive lesions as either metastasis or thyroid remnant

  9. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.

    Science.gov (United States)

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI

  10. MRI-based 3D pelvic autonomous innervation: a first step towards image-guided pelvic surgery

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, M.M. [University Montpellier I, Laboratory of Experimental Anatomy Faculty of Medicine Montpellier-Nimes, Montpellier (France); Macri, F.; Beregi, J.P. [Nimes University Hospital, University Montpellier 1, Radiology Department, Nimes (France); Mazars, R.; Prudhomme, M. [University Montpellier I, Laboratory of Experimental Anatomy Faculty of Medicine Montpellier-Nimes, Montpellier (France); Nimes University Hospital, University Montpellier 1, Digestive Surgery Department, Nimes (France); Droupy, S. [Nimes University Hospital, University Montpellier 1, Urology-Andrology Department, Nimes (France)

    2014-08-15

    To analyse pelvic autonomous innervation with magnetic resonance imaging (MRI) in comparison with anatomical macroscopic dissection on cadavers. Pelvic MRI was performed in eight adult human cadavers (five men and three women) using a total of four sequences each: T1, T1 fat saturation, T2, diffusion weighed. Images were analysed with segmentation software in order to extract nervous tissue. Key height points of the pelvis autonomous innervation were located in every specimen. Standardised pelvis dissections were then performed. Distances between the same key points and the three anatomical references forming a coordinate system were measured on MRIs and dissections. Concordance (Lin's concordance correlation coefficient) between MRI and dissection was calculated. MRI acquisition allowed an adequate visualization of the autonomous innervation. Comparison between 3D MRI images and dissection showed concordant pictures. The statistical analysis showed a mean difference of less than 1 cm between MRI and dissection measures and a correct concordance correlation coefficient on at least two coordinates for each point. Our acquisition and post-processing method demonstrated that MRI is suitable for detection of autonomous pelvic innervations and can offer a preoperative nerve cartography. (orig.)

  11. Molecular imaging of atherosclerosis in mice with MRI and near-infrared fluorescence imaging

    International Nuclear Information System (INIS)

    Lu Tong; Wen Song; Zhou Guanhui; Ju Shenghong; Teng Gaojun

    2012-01-01

    <0.05, n=8). The positive areas in imaging were (41.69 ± 5.29)% and (39.45 ± 5.35 )%, respectively. Immunofluorescence staining demonstrated that the expression of oxLDL was closely associated to macrophage infiltrates. Conclusion: This study demonstrates that atherosclerotic plaque MRI and NIRF imaging are feasible by using novel molecular imaging probes and may help to identify high-risk plaques, providing a foundation for multimodality imaging of atherosclerosis. (authors)

  12. Investigating the feasibility of rapid MRI for image-guided motion management in lung cancer radiotherapy.

    Science.gov (United States)

    Sawant, Amit; Keall, Paul; Pauly, Kim Butts; Alley, Marcus; Vasanawala, Shreyas; Loo, Billy W; Hinkle, Jacob; Joshi, Sarang

    2014-01-01

    Cycle-to-cycle variations in respiratory motion can cause significant geometric and dosimetric errors in the administration of lung cancer radiation therapy. A common limitation of the current strategies for motion management is that they assume a constant, reproducible respiratory cycle. In this work, we investigate the feasibility of using rapid MRI for providing long-term imaging of the thorax in order to better capture cycle-to-cycle variations. Two nonsmall-cell lung cancer patients were imaged (free-breathing, no extrinsic contrast, and 1.5 T scanner). A balanced steady-state-free-precession (b-SSFP) sequence was used to acquire cine-2D and cine-3D (4D) images. In the case of Patient 1 (right midlobe lesion, ~40 mm diameter), tumor motion was well correlated with diaphragmatic motion. In the case of Patient 2, (left upper-lobe lesion, ~60 mm diameter), tumor motion was poorly correlated with diaphragmatic motion. Furthermore, the motion of the tumor centroid was poorly correlated with the motion of individual points on the tumor boundary, indicating significant rotation and/or deformation. These studies indicate that image quality and acquisition speed of cine-2D MRI were adequate for motion monitoring. However, significant improvements are required to achieve comparable speeds for truly 4D MRI. Despite several challenges, rapid MRI offers a feasible and attractive tool for noninvasive, long-term motion monitoring.

  13. A protocol for patients with cardiovascular implantable devices undergoing magnetic resonance imaging (MRI): should defibrillation threshold testing be performed post-(MRI).

    Science.gov (United States)

    Burke, Peter Thomas; Ghanbari, Hamid; Alexander, Patrick B; Shaw, Michael K; Daccarett, Marcos; Machado, Christian

    2010-06-01

    Magnetic resonance imaging (MRI) in patients with Cardiovascular Implantable Electronic Devices (CIED) has not been approved by the Food and Drug Administration. Recent data suggests MRI as a relative rather than absolute contraindication in CIED patients. Recently, the American Heart Association has recommended defibrillation threshold testing (DFTT) in implantable cardioverter defibrillator (ICD) patients undergoing MRI. We evaluated the feasibility and safety of a protocol for MRI in CIED patients, incorporating the new recommendations on DFTT. Consecutive patients with CIED undergoing MRI were included. The protocol consisted of continuous monitoring during imaging, device interrogation pre- and post-MRI, reprogramming of the pacemaker to an asynchronous mode in pacemaker-dependent (PMD) patients and a non-tracking/sensing mode for non-PMD patients. All tachyarrhythmia therapies were disabled. Devices were interrogated for lead impedance, battery life, pacing, and sensing thresholds. All patients with ICD underwent DFTT/defibrillator safety margin testing (DSMT) post-MRI. A total of 92 MRI's at 1.5 Tesla were performed in 38 patients. A total of 13 PMD patients, ten ICD patients, four cardiac resynchronization therapy with defibrillator (CRT-D) patients, and 11 non-PMD patients were scanned from four major manufacturers. No device circuitry damage, programming alterations, inappropriate shocks, failure to pace, or changes in sensing, pacing, or defibrillator thresholds were found on single or multiple MRI sessions. Our protocol for MRI in CIED patients appears safe, feasible, and reproducible. This is irrespective of the type of CIED, pacemaker dependancy or multiple 24-h scanning sessions. Our protocol addresses early detection of potential complications and establishes a response system for potential device-related complications. Our observation suggests that routine DFTT/DSMT post-MRI may not be necessary.

  14. Comparison between target magnetic resonance imaging (MRI) in-gantry and cognitively directed transperineal or transrectal-guided prostate biopsies for Prostate Imaging-Reporting and Data System (PI-RADS) 3-5 MRI lesions.

    Science.gov (United States)

    Yaxley, Anna J; Yaxley, John W; Thangasamy, Isaac A; Ballard, Emma; Pokorny, Morgan R

    2017-11-01

    To compare the detection rates of prostate cancer (PCa) in men with Prostate Imaging-Reporting and Data System (PI-RADS) 3-5 abnormalities on 3-Tesla multiparametric (mp) magnetic resonance imaging (MRI) using in-bore MRI-guided biopsy compared with cognitively directed transperineal (cTP) biopsy and transrectal ultrasonography (cTRUS) biopsy. This was a retrospective single-centre study of consecutive men attending the private practice clinic of an experienced urologist performing MRI-guided biopsy and an experienced urologist performing cTP and cTRUS biopsy techniques for PI-RADS 3-5 lesions identified on 3-Tesla mpMRI. There were 595 target mpMRI lesions from 482 men with PI-RADS 3-5 regions of interest during 483 episodes of biopsy. The abnormal mpMRI target lesion was biopsied using the MRI-guided method for 298 biopsies, the cTP method for 248 biopsies and the cTRUS method for 49 biopsies. There were no significant differences in PCa detection among the three biopsy methods in PI-RADS 3 (48.9%, 40.0% and 44.4%, respectively), PI-RADS 4 (73.2%, 81.0% and 85.0%, respectively) or PI-RADS 5 (95.2, 92.0% and 95.0%, respectively) lesions, and there was no significant difference in detection of significant PCa among the biopsy methods in PI-RADS 3 (42.2%, 30.0% and 33.3%, respectively), PI-RADS 4 (66.8%, 66.0% and 80.0%, respectively) or PI-RADS 5 (90.5%, 89.8% and 90.0%, respectively) lesions. There were also no differences in PCa or significant PCa detection based on lesion location or size among the methods. We found no significant difference in the ability to detect PCa or significant PCa using targeted MRI-guided, cTP or cTRUS biopsy methods. Identification of an abnormal area on mpMRI appears to be more important in increasing the detection of PCa than the technique used to biopsy an MRI abnormality. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  15. Magnetic resonance imaging of the triangular fibrocartilage complex. Usefulness of the fat suppression MRI

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Toshiyasu [Fujita Health Univ., Nagoya (Japan). Second Hospital; Yabe, Yutaka; Horiuchi, Yukio; Kikuchi, Yoshito; Makita, Satoo

    1996-08-01

    Advances in magnetic resonance imaging (MRI) now allow for the visualization of small structures, such as the triangular fibrocartilage complex (TFCC) of the wrist. Recent investigators suggested that MRI is useful in delineation of the TFCC itself and its abnormality, and supported that diagnostic value of MRI for the TFCC tears is almost equal to those of arthrography and arthroscopy. In contrast, there were several reports that representation of the TFCC in MRI was less worth than in arthrography. Further, it was reported that MRI was not useful because abnormal findings existed at normal volunteers` wrists. Recent development of the pulse sequence is remarkable, such as gradient echo, fast spin echo and fat suppression method. However, as the previous MR studies of the TFCC mainly using conventional spin echo pulse sequence, there were a few comparison of each pulse sequence and we do not know how each pulse sequence delineates the TFCC. Therefore, we studied MRI of the TFCC using several pulse sequence in normal volunteers, and compared MR slices of the TFCC with corresponding histological sections to evaluate shape detectability of MRI. (J.P.N.)

  16. Imaging of posterior tibial tendon dysfunction—Comparison of high-resolution ultrasound and 3 T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Arnoldner, Michael A., E-mail: michael.arnoldner@meduniwien.ac.at [Medical University of Vienna, Vienna General Hospital, Department of Biomedical Imaging and Image-guided Therapy, Währinger Gürtel 18-20, 1090 Vienna (Austria); Gruber, Michael [Medical University of Vienna, Vienna General Hospital, Department of Biomedical Imaging and Image-guided Therapy, Währinger Gürtel 18-20, 1090 Vienna (Austria); Syré, Stefanie [Medical University of Vienna, Vienna General Hospital, Department of Trauma-Surgery, Währinger Gürtel 18-20, 1090 Vienna (Austria); Kristen, Karl-Heinz [Foot & Ankle Centre Vienna, Alser Straße 43/8, 1080 Vienna (Austria); Trnka, Hans-Jörg [Foot & Ankle Centre Vienna, Alser Straße 43/8, 1080 Vienna (Austria); Orthopaedic Hospital Vienna, Speisinger Straße 109, 1130 Vienna (Austria); Kainberger, Franz; Bodner, Gerd [Medical University of Vienna, Vienna General Hospital, Department of Biomedical Imaging and Image-guided Therapy, Währinger Gürtel 18-20, 1090 Vienna (Austria)

    2015-09-15

    Highlights: • 18 MHz high-resolution ultrasound appears to be slightly more accurate than 3 T MRI in the diagnosis of PTTD. • High-resolution ultrasound is recommended as an initial diagnostic tool. • Long-lasting PTT discomfort may require MRI. • Other pathologies can mimic PTTD. - Abstract: Purpose: Posterior tibial tendon dysfunction is the most common cause of acquired asymmetric flatfoot deformity. The purpose of this study was to determine and compare the diagnostic value of MRI and high-resolution ultrasound (HR-US) in posterior tibial tendon dysfunction (PTTD), and assess their correlation with intraoperative findings. Materials and methods: We reviewed 23 posterior tibial tendons in 23 patients with clinical findings of PTTD (13 females, 10 males; mean age, 50 years) with 18 MHz HR-US and 3 T MRI. Surgical intervention was performed in nine patients. Results: HR-US findings included 2 complete tears, 6 partial tears, 10 tendons with tendinosis, and 5 unremarkable tendons. MRI demonstrated 2 complete tears, 7 partial tears, 10 tendons with tendinosis, and 4 unremarkable tendons. HR-US and MRI were concordant in 20/23 cases (87%). Image findings for HR-US were confirmed in six of nine patients (66.7%) by intraoperative inspection, whereas imaging findings for MRI were concordant with five of nine cases (55.6%). Conclusion: Our results indicate that HR-US can be considered slightly more accurate than MRI in the detection of PTTD.

  17. Medial tibial pain: a dynamic contrast-enhanced MRI study.

    Science.gov (United States)

    Mattila, K T; Komu, M E; Dahlström, S; Koskinen, S K; Heikkilä, J

    1999-09-01

    The purpose of this study was to compare the sensitivity of different magnetic resonance imaging (MRI) sequences to depict periosteal edema in patients with medial tibial pain. Additionally, we evaluated the ability of dynamic contrast-enhanced imaging (DCES) to depict possible temporal alterations in muscular perfusion within compartments of the leg. Fifteen patients with medial tibial pain were examined with MRI. T1-, T2-weighted, proton density axial images and dynamic and static phase post-contrast images were compared in ability to depict periosteal edema. STIR was used in seven cases to depict bone marrow edema. Images were analyzed to detect signs of compartment edema. Region-of-interest measurements in compartments were performed during DCES and compared with controls. In detecting periosteal edema, post-contrast T1-weighted images were better than spin echo T2-weighted and proton density images or STIR images, but STIR depicted the bone marrow edema best. DCES best demonstrated the gradually enhancing periostitis. Four subjects with severe periosteal edema had visually detectable pathologic enhancement during DCES in the deep posterior compartment of the leg. Percentage enhancement in the deep posterior compartment of the leg was greater in patients than in controls. The fast enhancement phase in the deep posterior compartment began slightly slower in patients than in controls, but it continued longer. We believe that periosteal edema in bone stress reaction can cause impairment of venous flow in the deep posterior compartment. MRI can depict both these conditions. In patients with medial tibial pain, MR imaging protocol should include axial STIR images (to depict bone pathology) with T1-weighted axial pre and post-contrast images, and dynamic contrast enhanced imaging to show periosteal edema and abnormal contrast enhancement within a compartment.

  18. Current and future diagnostic tools for traumatic brain injury: CT, conventional MRI, and diffusion tensor imaging.

    Science.gov (United States)

    Brody, David L; Mac Donald, Christine L; Shimony, Joshua S

    2015-01-01

    Brain imaging plays a key role in the assessment of traumatic brain injury. In this review, we present our perspectives on the use of computed tomography (CT), conventional magnetic resonance imaging (MRI), and newer advanced modalities such as diffusion tensor imaging. Specifically, we address assessment for immediately life-threatening intracranial lesions (noncontrast head CT), assessment of progression of intracranial lesions (noncontrast head CT), documenting intracranial abnormalities for medicolegal reasons (conventional MRI with blood-sensitive sequences), presurgical planning for post-traumatic epilepsy (high spatial resolution conventional MRI), early prognostic decision making (conventional MRI with diffusion-weighted imaging), prognostic assessment for rehabilitative planning (conventional MRI and possibly diffusion tensor imaging in the future), stratification of subjects and pharmacodynamic tracking of targeted therapies in clinical trials (specific MRI sequences or positron emission tomography (PET) ligands, e.g., diffusion tensor imaging for traumatic axonal injury). We would like to emphasize that all of these methods, especially the newer research approaches, require careful radiologic-pathologic validation for optimal interpretation. We have taken this approach in a mouse model of pericontusional traumatic axonal injury. We found that the extent of reduction in the diffusion tensor imaging parameter relative anisotropy directly correlated with the number of amyloid precursor protein (APP)-stained axonal varicosities (r(2)=0.81, p<0.0001, n=20 injured mice). Interestingly, however, the least severe contusional injuries did not result in APP-stained axonal varicosities, but did cause reduction in relative anisotropy. Clearly, both the imaging assessments and the pathologic assessments will require iterative refinement. © 2015 Elsevier B.V. All rights reserved.

  19. Facilitating tumor functional assessment by spatially relating 3D tumor histology and in vivo MRI: image registration approach.

    Directory of Open Access Journals (Sweden)

    Lejla Alic

    Full Text Available BACKGROUND: Magnetic resonance imaging (MRI, together with histology, is widely used to diagnose and to monitor treatment in oncology. Spatial correspondence between these modalities provides information about the ability of MRI to characterize cancerous tissue. However, registration is complicated by deformations during pathological processing, and differences in scale and information content. METHODOLOGY/PRINCIPAL FINDINGS: This study proposes a methodology for establishing an accurate 3D relation between histological sections and high resolution in vivo MRI tumor data. The key features of the methodology are: 1 standardized acquisition and processing, 2 use of an intermediate ex vivo MRI, 3 use of a reference cutting plane, 4 dense histological sampling, 5 elastic registration, and 6 use of complete 3D data sets. Five rat pancreatic tumors imaged by T2*-w MRI were used to evaluate the proposed methodology. The registration accuracy was assessed by root mean squared (RMS distances between manually annotated landmark points in both modalities. After elastic registration the average RMS distance decreased from 1.4 to 0.7 mm. The intermediate ex vivo MRI and the reference cutting plane shared by all three 3D images (in vivo MRI, ex vivo MRI, and 3D histology data were found to be crucial for the accurate co-registration between the 3D histological data set and in vivo MRI. The MR intensity in necrotic regions, as manually annotated in 3D histology, was significantly different from other histologically confirmed regions (i.e., viable and hemorrhagic. However, the viable and the hemorrhagic regions showed a large overlap in T2(*-w MRI signal intensity. CONCLUSIONS: The established 3D correspondence between tumor histology and in vivo MRI enables extraction of MRI characteristics for histologically confirmed regions. The proposed methodology allows the creation of a tumor database of spatially registered multi-spectral MR images and multi-stained 3D

  20. Imaging Bone–Cartilage Interactions in Osteoarthritis Using [18F]-NaF PET-MRI

    Directory of Open Access Journals (Sweden)

    Dragana Savic MSc

    2016-12-01

    Full Text Available Purpose: Simultaneous positron emission tomography–magnetic resonance imaging (PET-MRI is an emerging technology providing both anatomical and functional images without increasing the scan time. Compared to the traditional PET/computed tomography imaging, it also exposes the patient to significantly less radiation and provides better anatomical images as MRI provides superior soft tissue characterization. Using PET-MRI, we aim to study interactions between cartilage composition and bone function simultaneously, in knee osteoarthritis (OA. Procedures: In this article, bone turnover and remodeling was studied using [18F]-sodium fluoride (NaF PET data. Quantitative MR-derived T1ρ relaxation times characterized the biochemical cartilage degeneration. Sixteen participants with early signs of OA of the knee received intravenous injections of [18F]-NaF at the onset of PET-MR image acquisition. Regions of interest were identified, and kinetic analysis of dynamic PET data provided the rate of uptake (Ki and the normalized uptake (standardized uptake value of [18F]-NaF in the bone. Morphological MR images and quantitative voxel-based T1ρ maps of cartilage were obtained using an atlas-based registration technique to segment cartilage automatically. Voxel-by-voxel statistical parameter mapping was used to investigate the relationship between bone and cartilage. Results: Increases in cartilage T1ρ, indicating degenerative changes, were associated with increased turnover in the adjoining bone but reduced turnover in the nonadjoining compartments. Associations between pain and increased bone uptake were seen in the absence of morphological lesions in cartilage, but the relationship was reversed in the presence of incident cartilage lesions. Conclusion: This study shows significant cartilage and bone interactions in OA of the knee joint using simultaneous [18F]-NaF PET-MR, the first in human study. These observations highlight the complex biomechanical and

  1. In vivo imaging of stepwise vessel occlusion in cerebral photothrombosis of mice by 19F MRI.

    Directory of Open Access Journals (Sweden)

    Gesa Weise

    Full Text Available (19F magnetic resonance imaging (MRI was recently introduced as a promising technique for in vivo cell tracking. In the present study we compared (19F MRI with iron-enhanced MRI in mice with photothrombosis (PT at 7 Tesla. PT represents a model of focal cerebral ischemia exhibiting acute vessel occlusion and delayed neuroinflammation.Perfluorocarbons (PFC or superparamagnetic iron oxide particles (SPIO were injected intravenously at different time points after photothrombotic infarction. While administration of PFC directly after PT induction led to a strong (19F signal throughout the entire lesion, two hours delayed application resulted in a rim-like (19F signal at the outer edge of the lesion. These findings closely resembled the distribution of signal loss on T2-weighted MRI seen after SPIO injection reflecting intravascular accumulation of iron particles trapped in vessel thrombi as confirmed histologically. By sequential administration of two chemically shifted PFC compounds 0 and 2 hours after illumination the different spatial distribution of the (19F markers (infarct core/rim could be visualized in the same animal. When PFC were applied at day 6 the fluorine marker was only detected after long acquisition times ex vivo. SPIO-enhanced MRI showed slight signal loss in vivo which was much more prominent ex vivo indicative for neuroinflammation at this late lesion stage.Our study shows that vessel occlusion can be followed in vivo by (19F and SPIO-enhanced high-field MRI while in vivo imaging of neuroinflammation remains challenging. The timing of contrast agent application was the major determinant of the underlying processes depicted by both imaging techniques. Importantly, sequential application of different PFC compounds allowed depiction of ongoing vessel occlusion from the core to the margin of the ischemic lesions in a single MRI measurement.

  2. Feasibility of an intracranial EEG-fMRI protocol at 3T: risk assessment and image quality.

    Science.gov (United States)

    Boucousis, Shannon M; Beers, Craig A; Cunningham, Cameron J B; Gaxiola-Valdez, Ismael; Pittman, Daniel J; Goodyear, Bradley G; Federico, Paolo

    2012-11-15

    Integrating intracranial EEG (iEEG) with functional MRI (iEEG-fMRI) may help elucidate mechanisms underlying the generation of seizures. However, the introduction of iEEG electrodes in the MR environment has inherent risk and data quality implications that require consideration prior to clinical use. Previous studies of subdural and depth electrodes have confirmed low risk under specific circumstances at 1.5T and 3T. However, no studies have assessed risk and image quality related to the feasibility of a full iEEG-fMRI protocol. To this end, commercially available platinum subdural grid/strip electrodes (4×5 grid or 1×8 strip) and 4 or 6-contact depth electrodes were secured to the surface of a custom-made phantom mimicking the conductivity of the human brain. Electrode displacement, temperature increase of electrodes and surrounding phantom material, and voltage fluctuations in electrode contacts were measured in a GE Discovery MR750 3T MR scanner during a variety of imaging sequences, typical of an iEEG-fMRI protocol. An electrode grid was also used to quantify the spatial extent of susceptibility artifact. The spatial extent of susceptibility artifact in the presence of an electrode was also assessed for typical imaging parameters that maximize BOLD sensitivity at 3T (TR=1500 ms; TE=30 ms; slice thickness=4mm; matrix=64×64; field-of-view=24 cm). Under standard conditions, all electrodes exhibited no measurable displacement and no clinically significant temperature increase (2.0°C) that in some cases exceeded 10°C. Induced voltages in the frequency range that could elicit neuronal stimulation (<10 kHz) were well below the threshold of 100 mV. fMRI signal intensity was significantly reduced within 20mm of the electrodes for the imaging parameters used in this study. Thus, for the conditions tested, a full iEEG-fMRI protocol poses a low risk at 3T; however, fMRI sensitivity may be reduced immediately adjacent to the electrodes. In addition, high SAR sequences

  3. Avoiding preoperative breast MRI when conventional imaging is sufficient to stage patients eligible for breast conserving therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pengel, Kenneth E., E-mail: k.pengel@nki.nl [Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Loo, Claudette E. [Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Wesseling, Jelle [Department of Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Pijnappel, Ruud M. [Department of Radiology/Image Sciences Institute, University Medical Center Utrecht Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Rutgers, Emiel J.Th. [Department of Surgical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Gilhuijs, Kenneth G.A. [Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Department of Radiology/Image Sciences Institute, University Medical Center Utrecht Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2014-02-15

    Aim: To determine when preoperative breast MRI will not be more informative than available breast imaging and can be omitted in patients eligible for breast conserving therapy (BCT). Methods: We performed an MRI in 685 consecutive patients with 692 invasive breast tumors and eligible for BCT based on conventional imaging and clinical examination. We explored associations between patient, tumor, and conventional imaging characteristics and similarity with MRI findings. Receiver operating characteristic (ROC) analysis was employed to compute the area under the curve (AUC). Results: MRI and conventional breast imaging were similar in 585 of the 692 tumors (85%). At univariate analysis, age (p < 0.001), negative preoperative lymph node status (p = 0.011), comparable tumor diameter at mammography and at ultrasound (p = 0.001), negative HER2 status (p = 0.044), and absence of invasive lobular cancer (p = 0.005) were significantly associated with this similarity. At multivariate analysis, these factors, except HER2 status, retained significant associations. The AUC was 0.68. Conclusions: It is feasible to identify a subgroup of patients prior to preoperative breast MRI, who will most likely show similar results on conventional imaging as on MRI. These findings enable formulation of a practical consensus guideline to determine in which patients a preoperative breast MRI can be omitted.

  4. Avoiding preoperative breast MRI when conventional imaging is sufficient to stage patients eligible for breast conserving therapy

    International Nuclear Information System (INIS)

    Pengel, Kenneth E.; Loo, Claudette E.; Wesseling, Jelle; Pijnappel, Ruud M.; Rutgers, Emiel J.Th.; Gilhuijs, Kenneth G.A.

    2014-01-01

    Aim: To determine when preoperative breast MRI will not be more informative than available breast imaging and can be omitted in patients eligible for breast conserving therapy (BCT). Methods: We performed an MRI in 685 consecutive patients with 692 invasive breast tumors and eligible for BCT based on conventional imaging and clinical examination. We explored associations between patient, tumor, and conventional imaging characteristics and similarity with MRI findings. Receiver operating characteristic (ROC) analysis was employed to compute the area under the curve (AUC). Results: MRI and conventional breast imaging were similar in 585 of the 692 tumors (85%). At univariate analysis, age (p < 0.001), negative preoperative lymph node status (p = 0.011), comparable tumor diameter at mammography and at ultrasound (p = 0.001), negative HER2 status (p = 0.044), and absence of invasive lobular cancer (p = 0.005) were significantly associated with this similarity. At multivariate analysis, these factors, except HER2 status, retained significant associations. The AUC was 0.68. Conclusions: It is feasible to identify a subgroup of patients prior to preoperative breast MRI, who will most likely show similar results on conventional imaging as on MRI. These findings enable formulation of a practical consensus guideline to determine in which patients a preoperative breast MRI can be omitted

  5. Biopsy guided by real-time sonography fused with MRI: a phantom study

    DEFF Research Database (Denmark)

    Ewertsen, C.; Grossjohann, Hanne Sønder; Nielsen, Kristina Rue

    2008-01-01

    OBJECTIVE: The purpose of our study was to test the accuracy of sonographically guided biopsies in a phantom of structures not visible on sonography but shown on MRI by using commercially available sonography systems with image fusion software. MATERIALS AND METHODS: A previously recorded MRI...

  6. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    International Nuclear Information System (INIS)

    Jung, Jin Ho; Choi, Yong; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk

    2015-01-01

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  7. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jin Ho; Choi, Yong, E-mail: ychoi.image@gmail.com; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun [Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742 (Korea, Republic of); Oh, Chang Hyun; Park, Hyun-wook [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Kyung Min; Kim, Jong Guk [Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul 139-709 (Korea, Republic of)

    2015-05-15

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  8. MRI imaging of displaced meniscal tears: Report of a case highlighting new potential pitfalls of the MRI signs

    International Nuclear Information System (INIS)

    Prasad, Abhishek; Brar, Rahat; Rana, Shaleen

    2014-01-01

    Magnetic resonance imaging (MRI) has been found to be an excellent imaging tool for meniscal injuries. Various MRI signs have been described to detect displaced meniscal injuries, specifically the bucket-handle tears. Although these signs are quite helpful in diagnosing meniscal tears, various pitfalls have also been reported for these signs. Double anterior cruciate ligament (ACL) sign refers to presence of a linear hypointense soft tissue anterior to the ACL, which represented the flipped bucket-handle tear of the meniscus. Disproportional posterior horn and flipped meniscus signs represent asymmetrically thickened horns of the menisci due to overlying displaced meniscal fragments. We report a case wherein MRI of the knee showed tear and displacement of the medial patellofemoral ligament (MPFL) and vastus medialis complex, medial collateral ligament (MCL), and posterior cruciate ligament (PCL) mimicking these signs. To our knowledge, internally displaced MPFL and MCLs have not been described as mimics for displaced meniscal fragments

  9. The registration accuracy analysis of different CT-MRI imaging fusion method in brain tumor

    International Nuclear Information System (INIS)

    Lu Jie; Yin Yong; Shao Qian; Zhang Zicheng; Chen Jinhu; Chen Zhaoqiu

    2010-01-01

    Objective: To find an effective CT-MRI image fusion protocol in brain tumor by analyzing the registration accuracy of different methods. Methods: The simulation CT scan and MRI T 1 WI imaging of 10 brain tumor patients obtained with same position were registered by Tris-Axes landmark ,Tris-Axes landmark + manual adjustment, mutual information and mutual information + manual adjustment method. The clinical tumor volume (CTV) were contoured on both CT and MRI images respectively. The accuracy of image fusion was assessed by the mean distance of five bone markers (d 1-5 ), central position of CTV (d CTV ) the percentage of CTV overlap (P CT-MRI ) between CT and MRI images. The difference between different methods was analyzed by Freedman M non-parameter test. Results: The difference of the means d1-5 between the Tris-Axes landmark,Tris-Axes landmark plus manual adjustment,mutual information and mutual information plus manual adjustment methods were 0.28 cm ±0.12 cm, 0.15 cm ±0.02 cm, 0.25 cm± 0.19 cm, 0.10 cm ± 0.06 cm, (M = 14.41, P = 0.002). the means d CTV were 0.59 cm ± 0.28 cm, 0.60 cm± 0.32 cm, 0.58 cm ± 0.39 cm, 0.42 cm± 0.30 cm (M = 9.72, P = 0.021), the means P CT-MRI were 0.69% ±0.18%, 0.68% ±0.16%, 0.66% ±0.17%, 0.74% ±0.14% (M =14.82, P=0.002), respectively. Conclusions: Mutual information plus manual adjustment registration method was the preferable fusion method for brain tumor patients. (authors)

  10. Unicompartmental knee arthroplasty MRI: impact of slice-encoding for metal artefact correction MRI on image quality, findings and therapy decision

    International Nuclear Information System (INIS)

    Agten, Christoph A.; Pfirrmann, Christian W.A.; Sutter, Reto; Grande, Filippo del; Fucentese, Sandro F.; Blatter, Samuel

    2015-01-01

    To evaluate the impact of slice-encoding for metal artefact correction (SEMAC) on image quality, findings, and therapy decision in patients with unicompartmental knee arthroplasty (UKA). Forty-five painful UKAs were examined at 1.5T-MRI (STIR, proton-density(PD)-weighted sequence, each with SEMAC and high-bandwidth). Artefact size, image quality, anatomic depiction, and clinically relevant findings were compared between SEMAC and high-bandwidth (2 readers). In 30 patients, therapy decision was retrospectively assessed by two orthopaedic surgeons without MRI, with high-bandwidth-MRI, and with SEMAC-MRI. SEMAC reduced mean artefact size for STIR (11.8 cm 2 vs. 37.7 cm 2 ) and PD (16.8 cm 2 vs. 18.9 cm 2 ), p < 0.0005 for both comparisons. SEMAC showed more blurring than high-bandwidth, p < 0.0005. STIR-SEMAC revealed more bone marrow oedema (29 vs. 18 patients, p = 0.001, 30 vs. 13 patients, p < 0.0005, for reader 1 and 2 respectively). PD-SEMAC was worse in detecting meniscal lesions (6 missed, p = 0.031, 9 missed, p = 0.004, by reader 1 and 2 respectively) than PD-high-bandwidth. Revision-surgery was chosen in 12 and 11 patients without MRI (surgeon 1 and 2), with high-bandwidth-MRI in 15 and 14 patients, and with SEMAC-MRI in 19 and 14 patients. STIR-SEMAC was useful in detecting bone marrow oedema and influenced the orthopaedic surgeons' decisions towards surgery, while PD-SEMAC showed no clinical benefit. (orig.)

  11. The use of parallel imaging for MRI assessment of knees in children and adolescents.

    Science.gov (United States)

    Doria, Andrea S; Chaudry, Gulraiz A; Nasui, Cristina; Rayner, Tammy; Wang, Chenghua; Moineddin, Rahim; Babyn, Paul S; White, Larry M; Sussman, Marshall S

    2010-03-01

    Parallel imaging provides faster scanning at the cost of reduced signal-to-noise ratio (SNR) and increased artifacts. To compare the diagnostic performance of two parallel MRI protocols (PPs) for assessment of pathologic knees using an 8-channel knee coil (reference standard, conventional protocol [CP]) and to characterize the SNR losses associated with parallel imaging. Two radiologists blindly interpreted 1.5 Tesla knee MRI images in 21 children (mean 13 years, range 9-18 years) with clinical indications for an MRI scan. Sagittal proton density, T2-W fat-saturated FSE, axial T2-W fat-saturated FSE, and coronal T1-W (NEX of 1,1,1) images were obtained with both CP and PP. Images were read for soft tissue and osteochondral findings. There was a 75% decrease in acquisition time using PP in comparison to CP. The CP and PP protocols fell within excellent or upper limits of substantial agreement: CP, kappa coefficient, 0.81 (95% CIs, 0.73-0.89); PP, 0.80-0.81 (0.73-0.89). The sensitivity of the two PPs was similar for assessment of soft (0.98-1.00) and osteochondral (0.89-0.94) tissues. Phantom data indicated an SNR of 1.67, 1.6, and 1.51 (axial, sagittal and coronal planes) between CP and PP scans. Parallel MRI provides a reliable assessment for pediatric knees in a significantly reduced scan time without affecting the diagnostic performance of MRI.

  12. CT and MRI imaging of the brain in MELAS syndrome.

    Science.gov (United States)

    Pauli, Wojciech; Zarzycki, Artur; Krzyształowski, Adam; Walecka, Anna

    2013-07-01

    MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes) is a rare, multisystem disorder which belongs to a group of mitochondrial metabolic diseases. As other diseases in this group, it is inherited in the maternal line. In this report, we discussed a case of a 10-year-old girl with clinical and radiological picture of MELAS syndrome. We would like to describe characteristic radiological features of MELAS syndrome in CT, MRI and MR spectroscopy of the brain and differential diagnosis. The rarity of this disorder and the complexity of its clinical presentation make MELAS patients among the most difficult to diagnose. Brain imaging studies require a wide differential diagnosis, primarily to distinguish between MELAS and ischemic stroke. Particularly helpful are the MRI and MR spectroscopy techniques.

  13. CT and MRI imaging of the brain in MELAS syndrome

    International Nuclear Information System (INIS)

    Pauli, Wojciech; Zarzycki, Artur; Krzyształowski, Adam; Walecka, Anna

    2013-01-01

    MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes) is a rare, multisystem disorder which belongs to a group of mitochondrial metabolic diseases. As other diseases in this group, it is inherited in the maternal line. In this report, we discussed a case of a 10-year-old girl with clinical and radiological picture of MELAS syndrome. We would like to describe characteristic radiological features of MELAS syndrome in CT, MRI and MR spectroscopy of the brain and differential diagnosis. The rarity of this disorder and the complexity of its clinical presentation make MELAS patients among the most difficult to diagnose. Brain imaging studies require a wide differential diagnosis, primarily to distinguish between MELAS and ischemic stroke. Particularly helpful are the MRI and MR spectroscopy techniques

  14. [Use of MRI before biopsy in diagnosis of prostate cancer: Single-operator study].

    Science.gov (United States)

    Bassard, S; Mege, J-L

    2015-12-01

    The diagnostic for prostate cancer is changing. To improve the detection of this cancer, urologists expect a lot from the contribution of magnetic resonance imaging (MRI). What is the role of this imaging in prostate cancer detection? This is a retrospective study, from 2011 to 2013, mono-centric and single-operator. Of the 464 needle biopsy of the prostate (BP), we excluded those with PSA>20 ng/mL or digital rectal examination (DRE)>T3. The remaining 430 BP were submitted or not to a 1.5 tesla MRI with pelvic antenna. The primary aim is the overall detection of prostate cancer. Secondary aim was the detection rate during the first series of BP and repeat BP, between the two groups in the MRI group. MRI and MRI without populations are comparable for age (63.3 vs 64.6), PSA (6.10 vs 6.13), DRE>T1c, prostate volume (55.4 cm(3) vs 51.7 cm(3)). There is no significant difference in overall detection between the two groups (P=0.12). There is no significant difference in cancer detection between the first BP (P=0.13) and the repeat BP (P=0.07). There is a significant difference in the early detection of BP MRI group (P=0.03) but not for the BP repeat MRI group (P=0.07). For 108 BP iterative MRI group, there were 67 BP targeted "mentally" with MRI: 18 cancers were detected, making a 25% detection rate. This study helps to highlight the value of MRI in the early rounds of BP but we can ask the value of this imaging during repeat biopsies. Targeted biopsies "mentally" do not have the expected detection sensitivity and seems to require a three-dimensional reconstruction to be more effective. 5. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Self-resolving focal non-ossifying myositis: a poorly known clinical and imaging entity diagnosed with MRI

    International Nuclear Information System (INIS)

    Perlepe, Vasiliki; Dallaudière, Benjamin; Omoumi, Patrick; Hristova, Lora; Rezzazadeh, Afshin; Vande Berg, Bruno; Malghem, Jacques; Lecouvet, Frederic

    2015-01-01

    Focal myositis is a rare benign inflammatory pseudotumor, presenting as a painful nodular mass within a muscle, and characterized by spontaneous resolution within weeks. To assess the clinical and imaging findings of focal nodular myositis simulating a neoplasm at clinical examination, with no history of trauma. This study describes the locations and appearance at ultrasonography (US), computed tomography (CT), and magnetic resonance imaging (MRI) of this condition in a series of five patients. MRI and US displayed a solid intramuscular “tumor” and suggested a continuum between the proximal and distal muscle fibers that appeared thickened within the nodular lesion, a sign that has been reported in myositis ossificans. MRI showed edema in adjacent muscles and soft tissues, as well as intense enhancement of the mass. Intense vascular flows were seen at Doppler analysis. CT did not reveal the appearance of peripheral ossifications, ruling out the diagnosis of myositis ossificans. In some patients, the diagnosis of sarcoma had been suggested as possible by the radiologist. Imaging follow-up with MRI showed complete resolution of the masses over several weeks, thus avoiding a biopsy; no recurrence was observed at long-term follow-up (more than 24 months). This paper highlights MRI and US findings in focal non-ossifying myositis, and emphasizes the role of MRI in suggesting this diagnosis, leading to the careful follow-up of the lesion until its resolution, and ruling out more aggressive lesions

  16. Functional MRI brain imaging studies using the Contact Heat Evoked Potential Stimulator (CHEPS in a human volunteer topical capsaicin pain model

    Directory of Open Access Journals (Sweden)

    Shenoy R

    2011-10-01

    Full Text Available Ravikiran Shenoy1, Katherine Roberts1, Anastasia Papadaki2, Donald McRobbie2, Maarten Timmers3, Theo Meert3, Praveen Anand11Peripheral Neuropathy Unit, Hammersmith Hospital, Imperial College London; 2Imaging Sciences Department, Charing Cross Hospital, London, United Kingdom; 3Johnson and Johnson Pharmaceutical Research and Development, Beerse, BelgiumAbstract: Acute application of topical capsaicin produces spontaneous burning and stinging pain similar to that seen in some neuropathic states, with local hyperalgesia. Use of capsaicin applied topically or injected intradermally has been described as a model for neuropathic pain, with patterns of activation in brain regions assessed using functional magnetic resonance imaging (fMRI and positron emission tomography. The Contact Heat Evoked Potential Stimulator (CHEPS is a noninvasive clinically practical method of stimulating cutaneous A-delta nociceptors. In this study, topical capsaicin (1% was applied to the left volar forearm for 15 minutes of twelve adult healthy human volunteers. fMRI scans and a visual analog pain score were recorded during CHEPS stimulation precapsaicin and postcapsaicin application. Following capsaicin application there was a significant increase in visual analog scale (mean ± standard error of the mean; precapsaicin 26.4 ± 5.3; postcapsaicin 48.9 ± 6.0; P < 0.0001. fMRI demonstrated an overall increase in areas of activation, with a significant increase in the contralateral insular signal (mean ± standard error of the mean; precapsaicin 0.434 ± 0.03; postcapsaicin 0.561 ± 0.07; P = 0.047. The authors of this paper recently published a study in which CHEPS-evoked A-delta cerebral potential amplitudes were found to be decreased postcapsaicin application. In patients with neuropathic pain, evoked pain and fMRI brain responses are typically increased, while A-delta evoked potential amplitudes are decreased. The protocol of recording fMRI following CHEPS stimulation

  17. An fMRI study of Agency

    DEFF Research Database (Denmark)

    Charalampaki, Angeliki

    2017-01-01

    Motor area has a distinct directionality, depending on the stage of the volitional movement. In this study, we were interested in assessing the neuronal mechanism underlying this phenomenon. We therefore performed an fMRI study of Agency, to exploit the high spatial resolution this imaging technique...... displays. For the purposes of our study twenty participants were recruited. The experimental procedure we considered appropriate to study the Sense of Agency, involved participants laying inside the fMRI scanner and while they had no visual feedback of their hand, they were instructed to draw straight...... lines on a tablet with a digital pen. They could only see the consequences of their movement as a cursor’s movement on a screen. After finishing their movement, participants were requested to make a judgment over whether they felt they were the Agent of the observed movement or not. The analysis of our...

  18. Impact of real-time virtual sonography, a coordinated sonography and MRI system that uses an image fusion technique, on the sonographic evaluation of MRI-detected lesions of the breast in second-look sonography.

    Science.gov (United States)

    Nakano, Shogo; Kousaka, Junko; Fujii, Kimihito; Yorozuya, Kyoko; Yoshida, Miwa; Mouri, Yukako; Akizuki, Miwa; Tetsuka, Rie; Ando, Takahito; Fukutomi, Takashi; Oshima, Yukihiko; Kimura, Junko; Ishiguchi, Tsuneo; Arai, Osamu

    2012-08-01

    The aim of this study was to verify the utility of second-look sonography using real-time virtual sonography (RVS)-a coordinated sonography with an MRI system that uses an image fusion technique with magnetic navigation-on the sonographic evaluation of MRI-detected lesions of the breast. Of the 196 consecutive patients who were examined with breast MRI in our hospital from 2006 to 2009, those patients who underwent second-look sonography to identify MRI-detected lesions were enrolled in this study. MRI was performed using a 1.5-T imager with the patient in a supine position. To assess the efficacy benefits of RVS, the correlations between lesion detection rates, MRI features, distribution, and histopathological classification on second-look sonography using conventional B-mode or RVS were analyzed. Of the 196 patients, 55 (28 %) demonstrated 67 lesions initially detected by MRI, followed by second-look sonography. Of the 67 MRI-detected lesions, 18 (30 %) were identified with second-look sonography using conventional B-mode alone, whereas 60 (90 %) lesions were detected with second-look sonography using RVS (p use of RVS on second-look sonography significantly increases the sonographic detection rate of MRI-detected lesions without operator dependence.

  19. Human developmental anatomy: microscopic magnetic resonance imagingMRI) of four human embryos (from Carnegie Stage 10 to 20).

    Science.gov (United States)

    Lhuaire, Martin; Martinez, Agathe; Kaplan, Hervé; Nuzillard, Jean-Marc; Renard, Yohann; Tonnelet, Romain; Braun, Marc; Avisse, Claude; Labrousse, Marc

    2014-12-01

    Technological advances in the field of biological imaging now allow multi-modal studies of human embryo anatomy. The aim of this study was to assess the high magnetic field μMRI feasibility in the study of small human embryos (less than 21mm crown-rump) as a new tool for the study of human descriptive embryology and to determine better sequence characteristics to obtain higher spatial resolution and higher signal/noise ratio. Morphological study of four human embryos belonging to the historical collection of the Department of Anatomy in the Faculty of Medicine of Reims was undertaken by μMRI. These embryos had, successively, crown-rump lengths of 3mm (Carnegie Stage, CS 10), 12mm (CS 16), 17mm (CS 18) and 21mm (CS 20). Acquisition of images was performed using a vertical nuclear magnetic resonance spectrometer, a Bruker Avance III, 500MHz, 11.7T equipped for imaging. All images were acquired using 2D (transverse, sagittal and coronal) and 3D sequences, either T1-weighted or T2-weighted. Spatial resolution between 24 and 70μm/pixel allowed clear visualization of all anatomical structures of the embryos. The study of human embryos μMRI has already been reported in the literature and a few atlases exist for educational purposes. However, to our knowledge, descriptive or morphological studies of human developmental anatomy based on data collected these few μMRI studies of human embryos are rare. This morphological noninvasive imaging method coupled with other techniques already reported seems to offer new perspectives to descriptive studies of human embryology.

  20. MRI STUDY OF TYPES AND INCIDENCE OF INTERNAL DERANGEMENTS OF TRAUMATIC KNEE JOINT

    Directory of Open Access Journals (Sweden)

    Bomidi Sudha Rani

    2016-12-01

    Full Text Available BACKGROUND MRI has been accepted as the best imaging modality for noninvasive evaluation of knee injuries and it has proved reliable, safe and offers advantages over diagnostic arthroscopy, which is currently regarded as the reference standard for the diagnosis of internal derangements of the knee. 1 METHODS AND MATERIALS A prospective study of fifty patients who underwent MRI for the diagnosis of internal derangement of knee was conducted between the period of January 2015 to January 2016 in Government General Hospital, Kakinada. All the patients with history of knee joint pain following trauma and clinically suspected to have meniscal and ligament tears are included in the study. Patients were evaluated using GE 1.5 T MRI machine with pulsar gradient system using a sensor extremity coil. RESULTS Commonest lesion detected in our study was ACL tear followed by medial meniscal tear and medial collateral ligament injury. The most common sign of cruciate ligament injury was hyperintensity in the ligament. Grade 3 was the most common grade of meniscal tear. CONCLUSION MRI is an excellent, noninvasive, radiation free imaging modality and is unique in its ability to evaluate the internal structure as well as soft tissue delineation. Many anatomical variants can mimic a tear on MRI. MRI is an excellent noninvasive modality for imaging the knee and helps in arriving at a correct anatomical diagnosis there by guiding further management of the patient.

  1. Magnetic resonance imaging (MRI) evaluation of developmental delay in pediatric patients.

    Science.gov (United States)

    Ali, Althaf S; Syed, Naziya P; Murthy, G S N; Nori, Madhavi; Abkari, Anand; Pooja, B K; Venkateswarlu, J

    2015-01-01

    Developmental delay is defined as significant delay in one or more developmental domains. Magnetic Resonance Imaging (MRI) is the best modality to investigate such patients. Evaluation of a child with developmental delay is important not only because it allows early diagnosis and treatment but also helpful for parental counseling regarding the outcome of their child and to identify any possible risk of recurrence in the siblings. Thus this study was undertaken to evaluate the developmental delay in Indian children which will help the clinicians in providing an estimation of the child's ultimate developmental potential and organize specific treatment requirement and also relieve parental apprehension. To study the prevalence of normal and abnormal MRI in pediatric patients presenting with developmental delay and further categorize the abnormal MRI based on its morphological features. It is a prospective, observational & descriptive study of MRI Brain in 81 paediatric patients (46 Males and 35 Females), aged between three months to 12 years; presenting with developmental delay in Deccan College of Medical Sciences, Hyderabad; over a period of three years (Sept 2011 to Sept 2014). MRI brain was done on 1.5T Siemens Magnetom Essenza & 0.35T Magnetom C with appropriate sequences and planes after making the child sleep/sedated/ anesthetized. Various anatomical structures like Ventricles, Corpus callosum, etc were systematically assessed. The MRI findings were divided into various aetiological subgroups. Normal MRI findings were seen in 32% cases and 68% had abnormal findings of which the proportion of Traumatic/ Neurovascular Diseases, Congenital & Developmental, Metabolic and Degenerative, neoplastic and non specific were 31%, 17%, 10%, 2.5% and 7.5% respectively. The ventricles and white matter mainly the corpus callosum were the most commonly affected anatomical structures. The diagnostic yield was found to be 68% and higher yield was seen in patients presenting with

  2. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rakesh, E-mail: rs05h@fsu.ed [Departments of Chemical Engineering and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310 (United States)

    2010-07-21

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  3. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    International Nuclear Information System (INIS)

    Sharma, Rakesh

    2010-01-01

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  4. Utility of reconstructed image from 3-D MRI in the region of oral cavity

    International Nuclear Information System (INIS)

    Murakami, Shumei; Kakimoto, Naoya; Nakatani, Atsutoshi; Furuya, Shigeo; Furukawa, Shouhei; Fuchihata, Hajime

    1998-01-01

    The 3-D MRI with short TR was performed in the region of oral cavity, jaw and face, and utility of the reconstructed image was examined. Subjects were 8 healthy volunteers and 12 patients. The 3-D MRI was performed using SPGR with the following parameters; TR: 8 or 9 msec, TE: 2 or 3 msec, and FA: 20-30 degrees. Imaging direction was vertical to body axis. The matrix number was 256 x 192, slice thickness was 1 mm, slice interval was 0 and slice number was 128. The obtained image was reconstructed using software Reformat''. Detectability of temporomandibular joint disc was not enough in 8 of 20 cases. Detectability of mandibular canal was clear in 18 of 20 cases. In panorama MRI, soft tissue such as submandibular gland was detected. But, in hard tissue such as teeth or maxilla, there was a more little information in panorama MRI than in panorama X-ray photography. (K.H.)

  5. A functional magnetic resonance imaging study

    Indian Academy of Sciences (India)

    MADU

    systems and ultra fast imaging techniques, such as echo planar imaging (EPI ) ... is used to understand brain organization, assessing of neurological status, and ..... J C 1998 Functional MRI studies of motor recovery after stroke;. NeuroImage 7 ...

  6. [Fusion of MRI, fMRI and intraoperative MRI data. Methods and clinical significance exemplified by neurosurgical interventions].

    Science.gov (United States)

    Moche, M; Busse, H; Dannenberg, C; Schulz, T; Schmitgen, A; Trantakis, C; Winkler, D; Schmidt, F; Kahn, T

    2001-11-01

    The aim of this work was to realize and clinically evaluate an image fusion platform for the integration of preoperative MRI and fMRI data into the intraoperative images of an interventional MRI system with a focus on neurosurgical procedures. A vertically open 0.5 T MRI scanner was equipped with a dedicated navigation system enabling the registration of additional imaging modalities (MRI, fMRI, CT) with the intraoperatively acquired data sets. These merged image data served as the basis for interventional planning and multimodal navigation. So far, the system has been used in 70 neurosurgical interventions (13 of which involved image data fusion--requiring 15 minutes extra time). The augmented navigation system is characterized by a higher frame rate and a higher image quality as compared to the system-integrated navigation based on continuously acquired (near) real time images. Patient movement and tissue shifts can be immediately detected by monitoring the morphological differences between both navigation scenes. The multimodal image fusion allowed a refined navigation planning especially for the resection of deeply seated brain lesions or pathologies close to eloquent areas. Augmented intraoperative orientation and instrument guidance improve the safety and accuracy of neurosurgical interventions.

  7. In vivo longitudinal MRI and behavioral studies in experimental spinal cord injury.

    Science.gov (United States)

    Sundberg, Laura M; Herrera, Juan J; Narayana, Ponnada A

    2010-10-01

    Comprehensive in vivo longitudinal studies that include multi-modal magnetic resonance imaging (MRI) and a battery of behavioral assays to assess functional outcome were performed at multiple time points up to 56 days post-traumatic spinal cord injury (SCI) in rodents. The MRI studies included high-resolution structural imaging for lesion volumetry, and diffusion tensor imaging (DTI) for probing the white matter integrity. The behavioral assays included open-field locomotion, grid walking, inclined plane, computerized activity box performance, and von Frey filament tests. Additionally, end-point histology was assessed for correlation with both the MRI and behavioral data. The temporal patterns of the lesions were documented on structural MRI. DTI studies showed significant changes in white matter that is proximal to the injury epicenter and persisted to day 56. White matter in regions up to 1 cm away from the injury epicenter that appeared normal on conventional MRI also exhibited changes that were indicative of tissue damage, suggesting that DTI is a more sensitive measure of the evolving injury. Correlations between DTI and histology after SCI could not be firmly established, suggesting that injury causes complex pathological changes in multiple tissue components that affect the DTI measures. Histological evidence confirmed a significant decrease in myelin and oligodendrocyte presence 56 days post-SCI. Multiple assays to evaluate aspects of functional recovery correlated with histology and DTI measures, suggesting that damage to specific white matter tracts can be assessed and tracked longitudinally after SCI.

  8. PET/MRI of metabolic activity in osteoarthritis: A feasibility study.

    Science.gov (United States)

    Kogan, Feliks; Fan, Audrey P; McWalter, Emily J; Oei, Edwin H G; Quon, Andrew; Gold, Garry E

    2017-06-01

    To evaluate positron emission tomography / magnetic resonance imaging (PET/MRI) knee imaging to detect and characterize osseous metabolic abnormalities and correlate PET radiotracer uptake with osseous abnormalities and cartilage degeneration observed on MRI. Both knees of 22 subjects with knee pain or injury were scanned at one timepoint, without gadolinium, on a hybrid 3.0T PET-MRI system following injection of 18 F-fluoride or 18 F-fluorodeoxyglucose (FDG). A musculoskeletal radiologist identified volumes of interest (VOIs) around bone abnormalities on MR images and scored bone marrow lesions (BMLs) and osteophytes using a MOAKS scoring system. Cartilage appearance adjacent to bone abnormalities was graded with MRI-modified Outerbridge classifications. On PET standardized uptake values (SUV) maps, VOIs with SUV greater than 5 times the SUV in normal-appearing bone were identified as high-uptake VOI (VOI High ). Differences in 18 F-fluoride uptake between bone abnormalities, BML, and osteophyte grades and adjacent cartilage grades on MRI were identified using Mann-Whitney U-tests. SUV max in all subchondral bone lesions (BML, osteophytes, sclerosis) was significantly higher than that of normal-appearing bone on MRI (P subchondral bone on MRI. Furthermore, many small grade 1 osteophytes (40 of 82 [49%]), often described as the earliest signs of osteoarthritis (OA), did not show high uptake. Lastly, PET SUV max in subchondral bone adjacent to grade 0 cartilage was significantly lower compared to that of grades 1-2 (P subchondral bone, which appear normal on MRI. 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;45:1736-1745. © 2016 International Society for Magnetic Resonance in Medicine.

  9. An Australian population study of factors associated with MRI patterns in cerebral palsy.

    Science.gov (United States)

    Reid, Susan M; Dagia, Charuta D; Ditchfield, Michael R; Carlin, John B; Meehan, Elaine M; Reddihough, Dinah S

    2014-02-01

    The aim of this study was to describe the distribution of magnetic resonance imaging (MRI) patterns in a large population sample of children with cerebral palsy (CP) and to examine associations between MRI patterns, and antenatal and perinatal variables. Data were retrieved from the Victorian CP Register for 884 children (527 males, 357 females) born between 1999 and 2006. Postneonatal MRI was classified for 594 children. For 563 children (329 males, 234 females) for whom classification was to a single MRI pattern, the frequency of each variable was compared between patterns and with the population frequency. White matter injury was the most common MRI pattern (45%), followed by grey matter injury (14%), normal imaging (13%), malformations (10%), focal vascular insults (9%), and miscellaneous patterns (7%). Parity, birth gestation, level of neonatal care, Apgar score, and time to established respiration varied between MRI patterns (ppatterns, future exploration of causal pathways might be facilitated when performed in pathogenically defined groups. © 2013 Mac Keith Press.

  10. Studies on the reliability of high-field intra-operative MRI in brain glioma resection

    Directory of Open Access Journals (Sweden)

    Zhi-jun SONG

    2011-07-01

    Full Text Available Objective To evaluate the reliability of high-field intra-operative magnetic resonance imaging(iMRI in detecting the residual tumors during glioma resection.Method One hundred and thirty-one cases of brain glioma(69 males and 62 females,aged from 7 to 79 years with mean of 39.6 years hospitalized from Nov.2009 to Aug.2010 were involved in present study.All the patients were evaluated using magnetic resonance imaging(MRI before the operation.The tumors were resected under conventional navigation microscope,and the high-field iMRI was used for all the patients when the operators considered the tumor was satisfactorily resected,while the residual tumor was difficult to detect under the microscope,but resected after being revealed by high-field iMRI.Histopathological examination was performed.The patients without residual tumors recieved high-field MRI scan at day 4 or 5 after operation to evaluate the accuracy of high-field iMRI during operation.Results High quality intra-operative images were obtained by using high-field iMRI.Twenty-eight cases were excluded because their residual tumors were not resected due to their location too close to functional area.Combined with the results of intra-operative histopathological examination and post-operative MRI at the early recovery stage,the sensitivity of high-field iMRI in residual tumor diagnosis was 98.0%(49/50,the specificity was 94.3%(50/53,and the accuracy was 96.1%(99/103.Conclusion High-quality intra-operative imaging could be acquired by high-field iMRI,which maybe used as a safe and reliable method in detecting the residual tumors during glioma resection.

  11. Clinical significance of MRI/{sup 18}F-FDG PET fusion imaging of the spinal cord in patients with cervical compressive myelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Kenzo; Nakajima, Hideaki; Watanabe, Shuji; Yoshida, Ai; Baba, Hisatoshi [University of Fukui, Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, Eiheiji, Fukui (Japan); Okazawa, Hidehiko [University of Fukui, Department of Biomedical Imaging Research Center, Eiheiji, Fukui (Japan); Kimura, Hirohiko [University of Fukui, Departments of Radiology, Faculty of Medical Sciences, Eiheiji, Fukui (Japan); Kudo, Takashi [Nagasaki University, Department of Radioisotope Medicine, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki (Japan)

    2012-10-15

    {sup 18}F-FDG PET is used to investigate the metabolic activity of neural tissue. MRI is used to visualize morphological changes, but the relationship between intramedullary signal changes and clinical outcome remains controversial. The present study was designed to evaluate the use of 3-D MRI/{sup 18}F-FDG PET fusion imaging for defining intramedullary signal changes on MRI scans and local glucose metabolic rate measured on {sup 18}F-FDG PET scans in relation to clinical outcome and prognosis. We studied 24 patients undergoing decompressive surgery for cervical compressive myelopathy. All patients underwent 3-D MRI and {sup 18}F-FDG PET before surgery. Quantitative analysis of intramedullary signal changes on MRI scans included calculation of the signal intensity ratio (SIR) as the ratio between the increased lesional signal intensity and the signal intensity at the level of the C7/T1 disc. Using an Advantage workstation, the same slices of cervical 3-D MRI and {sup 18}F-FDG PET images were fused. On the fused images, the maximal count of the lesion was adopted as the standardized uptake value (SUV{sub max}). In a similar manner to SIR, the SUV ratio (SUVR) was also calculated. Neurological assessment was conducted using the Japanese Orthopedic Association (JOA) scoring system for cervical myelopathy. The SIR on T1-weighted (T1-W) images, but not SIR on T2-W images, was significantly correlated with preoperative JOA score and postoperative neurological improvement. Lesion SUV{sub max} was significantly correlated with SIR on T1-W images, but not with SIR on T2-W images, and also with postoperative neurological outcome. The SUVR correlated better than SIR on T1-W images and lesion SUV{sub max} with neurological improvement. Longer symptom duration was correlated negatively with SIR on T1-W images, positively with SIR on T2-W images, and negatively with SUV{sub max}. Our results suggest that low-intensity signal on T1-W images, but not on T2-W images, is correlated

  12. Clinical Evaluation of PET Image Quality as a Function of Acquisition Time in a New TOF-PET/MRI Compared to TOF-PET/CT--Initial Results.

    Science.gov (United States)

    Zeimpekis, Konstantinos G; Barbosa, Felipe; Hüllner, Martin; ter Voert, Edwin; Davison, Helen; Veit-Haibach, Patrick; Delso, Gaspar

    2015-10-01

    The purpose of this study was to compare only the performance of the PET component between a TOF-PET/CT (henceforth noted as PET/CT) scanner and an integrated TOF-PET/MRI (henceforth noted as PET/MRI) scanner concerning image quality parameters and quantification in terms of standardized uptake value (SUV) as a function of acquisition time (a surrogate of dose). The CT and MR image quality were not assessed, and that is beyond the scope of this study. Five brain and five whole-body patients were included in the study. The PET/CT scan was used as a reference and the PET/MRI acquisition time was consecutively adjusted, taking into account the decay between the scans in order to expose both systems to the same amount of the emitted signal. The acquisition times were then retrospectively reduced to assess the performance of the PET/MRI for lower count rates. Image quality, image sharpness, artifacts, and noise were evaluated. SUV measurements were taken in the liver and in the white matter to compare quantification. Quantitative evaluation showed strong correlation between PET/CT and PET/MRI brain SUVs. Liver correlation was good, however, with lower uptake estimation in PET/MRI, partially justified by bio-redistribution. The clinical evaluation showed that PET/MRI offers higher image quality and sharpness with lower levels of noise and artifacts compared to PET/CT with reduced acquisition times for whole-body scans while for brain scans there is no significant difference. The TOF-PET/MRI showed higher image quality compared to TOF-PET/CT as tested with reduced imaging times. However, this result accounts mainly for body imaging, while no significant differences were found in brain imaging.

  13. MRI of the hand and wrist joint of climbers. Imaging of lesions and overstrain injury

    International Nuclear Information System (INIS)

    Heuck, A.; Hochholzer, T.; Keinath, C.

    1992-01-01

    The hands and wrists of 20 top-level rock climbers with sports injuries and overstress abnormalities were compared with the hands and wrists of 10 normal volunteers. They were all studied with MR imaging at 1.5 T. The imaging protocol included spin-echo and gradient-echo sequences with 1- to 5-mm-thick contiguous slices in the axial, coronal and/or sagittal planes, depending on the location and nature of the suspected injury. Typical hand and wrist lesions depicted with MRI in climbers consisted of annular ligament tears, lesions of the flexor tendons, tenosynovitis, ganglion cysts, joint effusion and functional carpal tunnel syndrome. The MRI findings on these abnormalities were compared to normal findings and those with ultrasound and plain films. In addition, hypertrophic changes in the muscles, tendons, ligaments, and bones of top-level rock climbers were assessed morphometrically. MRI proved to be the superior imaging modality in the diagnosis of sports injuries and overstress abnormalities of the hand the wrist in rock-climbing athletes. (orig.) [de

  14. MRI in acute cerebral ischaemia: perfusion imaging with superparamagnetic iron oxide in a rat model

    International Nuclear Information System (INIS)

    Forsting, M.; Reith, W.; Doerfler, A.; Kummer, R. von; Hacke, W.; Sartor, K.

    1994-01-01

    An imaging technique capable of detecting ischaemic cerebral injury at an early stage could improve diagnosis in acute or transient cerebral ischaemia. We compared the ability of superparamagnetically contrast-enhanced MRI and conventional T2-weighted MRI to detect ischaemic injury early after unilateral occlusion of the middle cerebral artery in 12 male Wistar rats. Permanent vessel occlusion was achieved by a transvascular approach, which has the advantage of not requiring a craniectom. At 45-60 min after the procedure, the animals had conventional T2-weighted MRI before and after administration of a superparamagnetic contrast agent (iron oxide particles). Unenhanced images were normal in all animals. After administration of iron oxide particles, the presumed ischaemic area was clearly visible, as relatively increased signal, in all animals; this high signal area corresponded to the area of ischaemic brain infarction seen on histological studies. Our results suggest that superparamagnetic iron particles may significantly reduce the interval between an ischaemic insult and the appearance of parenchymal changes on MRI. (orig./UWA)

  15. Investigating the Feasibility of Rapid MRI for Image-Guided Motion Management in Lung Cancer Radiotherapy

    Directory of Open Access Journals (Sweden)

    Amit Sawant

    2014-01-01

    Full Text Available Cycle-to-cycle variations in respiratory motion can cause significant geometric and dosimetric errors in the administration of lung cancer radiation therapy. A common limitation of the current strategies for motion management is that they assume a constant, reproducible respiratory cycle. In this work, we investigate the feasibility of using rapid MRI for providing long-term imaging of the thorax in order to better capture cycle-to-cycle variations. Two nonsmall-cell lung cancer patients were imaged (free-breathing, no extrinsic contrast, and 1.5 T scanner. A balanced steady-state-free-precession (b-SSFP sequence was used to acquire cine-2D and cine-3D (4D images. In the case of Patient 1 (right midlobe lesion, ~40 mm diameter, tumor motion was well correlated with diaphragmatic motion. In the case of Patient 2, (left upper-lobe lesion, ~60 mm diameter, tumor motion was poorly correlated with diaphragmatic motion. Furthermore, the motion of the tumor centroid was poorly correlated with the motion of individual points on the tumor boundary, indicating significant rotation and/or deformation. These studies indicate that image quality and acquisition speed of cine-2D MRI were adequate for motion monitoring. However, significant improvements are required to achieve comparable speeds for truly 4D MRI. Despite several challenges, rapid MRI offers a feasible and attractive tool for noninvasive, long-term motion monitoring.

  16. IgG4-related kidney disease: MRI findings with emphasis on the usefulness of diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bohyun; Kim, Jin Hee, E-mail: kimjhrad@amc.seoul.kr; Byun, Jae Ho; Kim, Hyoung Jung; Lee, Seung Soo; Kim, So Yeon; Lee, Moon-Gyu

    2014-07-15

    Objectives: To investigate the imaging findings of immunoglobulin G4 (IgG4)-related kidney disease (IgG4-KD) on magnetic resonance imaging (MRI) including diffusion-weighted imaging (DWI) and to evaluate the usefulness of DWI in lesion detection. Methods: This retrospective cohort study included 31 patients with IgG4-KD who underwent MRI covering both kidneys. Two radiologists reviewed in consensus the MR images to determine the distribution pattern (location, laterality, and multiplicity) and the visually assessed signal intensity (hypointense, isointense or hyperintense) of the renal lesions compared to the normal renal parenchyma on each sequence. Per-patient sensitivity for detecting IgG4-KD and the number of detectable lesions were compared in T2-weighted images, DWI, and dynamic contrast-enhanced images. Results: IgG4-KD typically manifested as bilateral (83.9%), multiple (93.5%), and renal parenchymal (87.1%) nodules appearing isointense (93.5%) on T1-weighted images, hypointense (77.4%) on T2-weighted images, hyperintense (100%) on DWI (b = 1000), and hypointense (83.3%) in the arterial phase and with a progressive enhancement pattern on dynamic contrast-enhanced images. The sensitivity of DWI for detecting IgG4-KD was significantly higher than that of T2-weighted images (100% vs. 77.4%, P = 0.034). The median number of detectable lesions was significantly greater in DWI (n = 9) than in T2-weighted images (n = 2) and dynamic contrast-enhanced images (n = 5) (P ≤ 0.008). Conclusions: The characteristic MRI findings of IgG4-KD were bilateral, multiple, renal parenchymal nodules with T2 hypointensity, diffusion restriction, and a progressive enhancement pattern. As DWI was useful in the detection of IgG4-KD, adding DWI to conventional MRI for patients suspected of having IgG4-KD may enhance the diagnosis.

  17. IgG4-related kidney disease: MRI findings with emphasis on the usefulness of diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Kim, Bohyun; Kim, Jin Hee; Byun, Jae Ho; Kim, Hyoung Jung; Lee, Seung Soo; Kim, So Yeon; Lee, Moon-Gyu

    2014-01-01

    Objectives: To investigate the imaging findings of immunoglobulin G4 (IgG4)-related kidney disease (IgG4-KD) on magnetic resonance imaging (MRI) including diffusion-weighted imaging (DWI) and to evaluate the usefulness of DWI in lesion detection. Methods: This retrospective cohort study included 31 patients with IgG4-KD who underwent MRI covering both kidneys. Two radiologists reviewed in consensus the MR images to determine the distribution pattern (location, laterality, and multiplicity) and the visually assessed signal intensity (hypointense, isointense or hyperintense) of the renal lesions compared to the normal renal parenchyma on each sequence. Per-patient sensitivity for detecting IgG4-KD and the number of detectable lesions were compared in T2-weighted images, DWI, and dynamic contrast-enhanced images. Results: IgG4-KD typically manifested as bilateral (83.9%), multiple (93.5%), and renal parenchymal (87.1%) nodules appearing isointense (93.5%) on T1-weighted images, hypointense (77.4%) on T2-weighted images, hyperintense (100%) on DWI (b = 1000), and hypointense (83.3%) in the arterial phase and with a progressive enhancement pattern on dynamic contrast-enhanced images. The sensitivity of DWI for detecting IgG4-KD was significantly higher than that of T2-weighted images (100% vs. 77.4%, P = 0.034). The median number of detectable lesions was significantly greater in DWI (n = 9) than in T2-weighted images (n = 2) and dynamic contrast-enhanced images (n = 5) (P ≤ 0.008). Conclusions: The characteristic MRI findings of IgG4-KD were bilateral, multiple, renal parenchymal nodules with T2 hypointensity, diffusion restriction, and a progressive enhancement pattern. As DWI was useful in the detection of IgG4-KD, adding DWI to conventional MRI for patients suspected of having IgG4-KD may enhance the diagnosis

  18. Evaluation of motion measurement using cine MRI for image guided stereotactic body radiotherapy on a new phantom platform

    Science.gov (United States)

    Cai, Jing; Wang, Ziheng; Yin, Fang-Fang

    2011-01-01

    The objective of this study is to investigate accuracy of motion tracking of cine magnetic resonance imaging (MRI) for image-guided stereotactic body radiotherapy. A phantom platform was developed in this work to fulfill the goal. The motion phantom consisted of a platform, a solid thread, a motor and a control system that can simulate motion in various modes. To validate its reproducibility, the phantom platform was setup three times and imaged with fluoroscopy using an electronic portal imaging device (EPID) for the same motion profile. After the validation test, the phantom platform was evaluated using cine MRI at 2.5 frames/second on a 1.5T GE scanner using five different artificial profiles and five patient profiles. The above profiles were again measured with EPID fluoroscopy and used as references. Discrepancies between measured profiles from cine MRI and EPID were quantified using root-mean-square (RMS) and standard deviation (SD). Pearson’s product moment correlational analysis was used to test correlation. The standard deviation for the reproducibility test was 0.28 mm. The discrepancies (RMS) between all profiles measured by cine MRI and EPID fluoroscopy ranged from 0.30 to 0.49 mm for artificial profiles and ranged from 0.75 to 0.91 mm for five patient profiles. The cine MRI sequence could precisely track phantom motion and the proposed motion phantom was feasible to evaluate cine MRI accuracy. PMID:29296304

  19. Imaging with {sup 124}I in differentiated thyroid carcinoma: is PET/MRI superior to PET/CT?

    Energy Technology Data Exchange (ETDEWEB)

    Binse, I.; Poeppel, T.D.; Ruhlmann, M.; Gomez, B.; Bockisch, A.; Rosenbaum-Krumme, S.J. [University of Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, Essen (Germany); Umutlu, L. [University of Duisburg-Essen, Medical Faculty, Department of Radiology, Essen (Germany)

    2016-06-15

    The aim of this study was to compare integrated PET/CT and PET/MRI for their usefulness in detecting and categorizing cervical iodine-positive lesions in patients with differentiated thyroid cancer using {sup 124}I as tracer. The study group comprised 65 patients at high risk of iodine-positive metastasis who underwent PET/CT (low-dose CT scan, PET acquisition time 2 min; PET/CT{sub 2}) followed by PET/MRI of the neck 24 h after {sup 124}I administration. PET images from both modalities were analysed for the numbers of tracer-positive lesions. Two different acquisition times were used for the comparisons, one matching the PET/CT{sub 2} acquisition time (2 min, PET/MRI{sub 2}) and the other covering the whole MRI scan time (30 min, PET/MRI{sub 30}). Iodine-positive lesions were categorized as metastasis, thyroid remnant or inconclusive according to their location on the PET/CT images. Morphological information provided by MRI was considered for evaluation of lesions on PET/MRI and for volume information. PET/MRI{sub 2} detected significantly more iodine-positive metastases and thyroid remnants than PET/CT{sub 2} (72 vs. 60, p = 0.002, and 100 vs. 80, p = 0.001, respectively), but the numbers of patients with at least one tumour lesion identified were not significantly different (21/65 vs. 17/65 patients). PET/MRI{sub 30} tended to detect more PET-positive metastases than PET/MRI{sub 2} (88 vs. 72), but the difference was not significant (p = 0.07). Of 21 lesions classified as inconclusive on PET/CT, 5 were assigned to metastasis or thyroid remnant when evaluated by PET/MRI. Volume information was available in 34 % of iodine-positive metastases and 2 % of thyroid remnants on PET/MRI. PET/MRI of the neck was found to be superior to PET/CT in detecting iodine-positive lesions. This was attributed to the higher sensitivity of the PET component, Although helpful in some cases, we found no substantial advantage of PET/MRI over PET/CT in categorizing iodine

  20. Magnetic resonance imaging (MRI) and relaxation time mapping of concrete

    Science.gov (United States)

    Beyea, Steven Donald

    2001-07-01

    The use of Magnetic Resonance Imaging (MRI) of water in concrete is presented. This thesis will approach the problem of MR imaging of concrete by attempting to design new methods, suited to concrete materials, rather than attempting to force the material to suit the method. A number of techniques were developed, which allow the spatial observation of water in concrete in up to three dimensions, and permits the determination of space resolved moisture content, as well as local NMR relaxation times. These methods are all based on the Single-Point Imaging (SPI) method. The development of these new methods will be described, and the techniques validated using phantom studies. The study of one-dimensional moisture transport in drying concrete was performed using SPI. This work examined the effect of initial mixture proportions and hydration time on the drying behaviour of concrete, over a period of three months. Studies of drying concrete were also performed using spatial mapping of the spin-lattice (T1) and effective spin-spin (T2*) relaxation times, thereby permitting the observation of changes in the water occupied pore surface-to-volume ratio (S/V) as a function of drying. Results of this work demonstrated changes in the S/V due to drying, hydration and drying induced microcracking. Three-dimensional MRI of concrete was performed using SPRITE (Single-Point Ramped Imaging with T1 Enhancement) and turboSPI (turbo Single Point Imaging). While SPRITE allows for weighting of MR images using T 1 and T2*, turboSPI allows T2 weighting of the resulting images. Using relaxation weighting it was shown to be possible to discriminate between water contained within a hydrated cement matrix, and water in highly porous aggregates, used to produce low-density concrete. Three dimensional experiments performed using SPRITE and turboSPI examined the role of self-dessication, drying, initial aggregate saturation and initial mixture conditions on the transport of moisture between porous

  1. Comparison of particle image velocimetry and phase contrast MRI in a patient-specific extracardiac total cavopulmonary connection.

    Science.gov (United States)

    Kitajima, Hiroumi D; Sundareswaran, Kartik S; Teisseyre, Thomas Z; Astary, Garrett W; Parks, W James; Skrinjar, Oskar; Oshinski, John N; Yoganathan, Ajit P

    2008-08-01

    Particle image velocimetry (PIV) and phase contrast magnetic resonance imaging (PC-MRI) have not been compared in complex biofluid environments. Such analysis is particularly useful to investigate flow structures in the correction of single ventricle congenital heart defects, where fluid dynamic efficiency is essential. A stereolithographic replica of an extracardiac total cavopulmonary connection (TCPC) is studied using PIV and PC-MRI in a steady flow loop. Volumetric two-component PIV is compared to volumetric three-component PC-MRI at various flow conditions. Similar flow structures are observed in both PIV and PC-MRI, where smooth flow dominates the extracardiac TCPC, and superior vena cava flow is preferential to the right pulmonary artery, while inferior vena cava flow is preferential to the left pulmonary artery. Where three-component velocity is available in PC-MRI studies, some helical flow in the extracardiac TCPC is observed. Vessel cross sections provide an effective means of validation for both experiments, and velocity magnitudes are of the same order. The results highlight similarities to validate flow in a complex patient-specific extracardiac TCPC. Additional information obtained by velocity in three components further describes the complexity of the flow in anatomic structures.

  2. A 3 T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants

    International Nuclear Information System (INIS)

    Smits, Marion; Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan

    2007-01-01

    It is known that taste is centrally represented in the insula, frontal and parietal operculum, as well as in the orbitofrontal cortex (secondary gustatory cortex). In functional MRI (fMRI) experiments activation in the insula has been confirmed, but activation in the orbitofrontal cortex is only infrequently found, especially at higher field strengths (3 T). Due to large susceptibility artefacts, the orbitofrontal cortex is a difficult region to examine with fMRI. Our aim was to localize taste in the human cortex at 3 T, specifically in the orbitofrontal cortex as well as in the primary gustatory cortex. Event-related fMRI was performed at 3 T in seven healthy volunteers. Taste stimuli consisted of lemon juice and chocolate. To visualize activation in the orbitofrontal cortex a dedicated 3D SENSE EPI fMRI sequence was used, in addition to a 2D SENSE EPI fMRI sequence for imaging the entire brain. Data were analyzed using a perception-based model. The dedicated 3D SENSE EPI sequence successfully reduced susceptibility artefacts in the orbitofrontal area. Significant taste-related activation was found in the orbitofrontal and insular cortices. fMRI of the orbitofrontal cortex is feasible at 3 T, using a dedicated sequence. Our results corroborate findings from previous studies. (orig.)

  3. A 3 T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants

    Energy Technology Data Exchange (ETDEWEB)

    Smits, Marion [Erasmus MC, University Medical Center Rotterdam, Department of Radiology, P.O. Box 2040, CA Rotterdam (Netherlands); K.U.Leuven, Department of Radiology, University Hospitals, Leuven (Belgium); Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan [K.U.Leuven, Department of Radiology, University Hospitals, Leuven (Belgium)

    2007-01-15

    It is known that taste is centrally represented in the insula, frontal and parietal operculum, as well as in the orbitofrontal cortex (secondary gustatory cortex). In functional MRI (fMRI) experiments activation in the insula has been confirmed, but activation in the orbitofrontal cortex is only infrequently found, especially at higher field strengths (3 T). Due to large susceptibility artefacts, the orbitofrontal cortex is a difficult region to examine with fMRI. Our aim was to localize taste in the human cortex at 3 T, specifically in the orbitofrontal cortex as well as in the primary gustatory cortex. Event-related fMRI was performed at 3 T in seven healthy volunteers. Taste stimuli consisted of lemon juice and chocolate. To visualize activation in the orbitofrontal cortex a dedicated 3D SENSE EPI fMRI sequence was used, in addition to a 2D SENSE EPI fMRI sequence for imaging the entire brain. Data were analyzed using a perception-based model. The dedicated 3D SENSE EPI sequence successfully reduced susceptibility artefacts in the orbitofrontal area. Significant taste-related activation was found in the orbitofrontal and insular cortices. fMRI of the orbitofrontal cortex is feasible at 3 T, using a dedicated sequence. Our results corroborate findings from previous studies. (orig.)

  4. Comparison of static MRI and pseudo-dynamic MRI in temporomandibular joint disorder patients

    International Nuclear Information System (INIS)

    Lee, Jin Ho; Yun, Kyoung In; Park, In Woo; Choi, Hang Moon; Park, Moon Soo

    2006-01-01

    The purpose of this study was to elevate comparison of static MRI and pseudo-dynamic (cine) MRI in temporomandibular joint (TMJ) disorder patients. In this investigation, 33 patients with TMJ disorders were examined using both conventional static MRI and pseudo-dynamic MRI. Multiple spoiled gradient recalled acquisition in the steady state (SPGR) images were obtained when mouth opened and closed. Proton density weighted images were obtained at the closed and open mouth position in static MRI. Two oral and maxillofacial radiologists evaluated location of the articular disk, movement of condyle and bony change respectively and the posterior boundary of articular disk was obtained. No statistically significant difference was found in the observation of articular disk position, mandibular condylar movement and posterior boundary of articular disk using static MRI and pseudo-dynamic MRI (P>0.05). Statistically significant difference was noted in bony changes of condyle using static MRI and pseudo-dynamic MRI (P<0.05). This study showed that pseudo-dynamic MRI didn't make a difference in diagnosing internal derangement of TMJ in comparison with static MRI. But it was considered as an additional method to be supplemented in observing bony change

  5. Comparison of static MRI and pseudo-dynamic MRI in temporomandibular joint disorder patients

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Ho; Yun, Kyoung In [Eulji Univ. School of Medicine, Seoul (Korea, Republic of); Park, In Woo; Choi, Hang Moon; Park, Moon Soo [Kangnung National Univ. College of Dentistry, Kangnung (Korea, Republic of)

    2006-12-15

    The purpose of this study was to elevate comparison of static MRI and pseudo-dynamic (cine) MRI in temporomandibular joint (TMJ) disorder patients. In this investigation, 33 patients with TMJ disorders were examined using both conventional static MRI and pseudo-dynamic MRI. Multiple spoiled gradient recalled acquisition in the steady state (SPGR) images were obtained when mouth opened and closed. Proton density weighted images were obtained at the closed and open mouth position in static MRI. Two oral and maxillofacial radiologists evaluated location of the articular disk, movement of condyle and bony change respectively and the posterior boundary of articular disk was obtained. No statistically significant difference was found in the observation of articular disk position, mandibular condylar movement and posterior boundary of articular disk using static MRI and pseudo-dynamic MRI (P>0.05). Statistically significant difference was noted in bony changes of condyle using static MRI and pseudo-dynamic MRI (P<0.05). This study showed that pseudo-dynamic MRI didn't make a difference in diagnosing internal derangement of TMJ in comparison with static MRI. But it was considered as an additional method to be supplemented in observing bony change.

  6. Usefulness of magnetic resonance imaging (MRI) for patients with unilateral tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Katsura, Motoyasu [Sasebo Central Hospital, Nagasaki (Japan); Yoshida, Haruo; Kumagami, Hidetaka; Takahashi, Haruo [Nagasaki Univ. (Japan). Graduate School of Biomedical Sciences; Oosato, Yasuo [Sasebo City Hospital, Nagasaki (Japan); Dotsu, Mitsuru [National Nagasaki Medical Center, Omura (Japan)

    2004-06-01

    Audiography, X-ray (Stenvers view) and Magnetic Resonance Imaging (MRI) were performed on 88 patients exhibiting unilateral tinnitus. We diagnosed 4 cases (4.5%) of vestibular schwannoma and 41 cases (46.6%) of other abnormalities, including 2 cases of meningioma, 24 cases of old cerebral infarction, and 5 cases of mastoiditis. MRI was considered to be a first-line clinical examination for patients with unilateral tinnitus. (author)

  7. Usefulness of magnetic resonance imaging (MRI) for patients with unilateral tinnitus

    International Nuclear Information System (INIS)

    Katsura, Motoyasu; Yoshida, Haruo; Kumagami, Hidetaka; Takahashi, Haruo; Dotsu, Mitsuru

    2004-01-01

    Audiography, X-ray (Stenvers view) and Magnetic Resonance Imaging (MRI) were performed on 88 patients exhibiting unilateral tinnitus. We diagnosed 4 cases (4.5%) of vestibular schwannoma and 41 cases (46.6%) of other abnormalities, including 2 cases of meningioma, 24 cases of old cerebral infarction, and 5 cases of mastoiditis. MRI was considered to be a first-line clinical examination for patients with unilateral tinnitus. (author)

  8. Unicompartmental knee arthroplasty MRI: impact of slice-encoding for metal artefact correction MRI on image quality, findings and therapy decision

    Energy Technology Data Exchange (ETDEWEB)

    Agten, Christoph A.; Pfirrmann, Christian W.A.; Sutter, Reto [Balgrist University Hospital, Radiology Department, Zurich (Switzerland); University of Zurich, Faculty of Medicine, Zurich (Switzerland); Grande, Filippo del [Regional Hospital, Radiology, Lugano (Switzerland); Fucentese, Sandro F.; Blatter, Samuel [University of Zurich, Faculty of Medicine, Zurich (Switzerland); Balgrist University Hospital, Orthopedics, Zurich (Switzerland)

    2015-07-15

    To evaluate the impact of slice-encoding for metal artefact correction (SEMAC) on image quality, findings, and therapy decision in patients with unicompartmental knee arthroplasty (UKA). Forty-five painful UKAs were examined at 1.5T-MRI (STIR, proton-density(PD)-weighted sequence, each with SEMAC and high-bandwidth). Artefact size, image quality, anatomic depiction, and clinically relevant findings were compared between SEMAC and high-bandwidth (2 readers). In 30 patients, therapy decision was retrospectively assessed by two orthopaedic surgeons without MRI, with high-bandwidth-MRI, and with SEMAC-MRI. SEMAC reduced mean artefact size for STIR (11.8 cm{sup 2} vs. 37.7 cm{sup 2}) and PD (16.8 cm{sup 2} vs. 18.9 cm{sup 2}), p < 0.0005 for both comparisons. SEMAC showed more blurring than high-bandwidth, p < 0.0005. STIR-SEMAC revealed more bone marrow oedema (29 vs. 18 patients, p = 0.001, 30 vs. 13 patients, p < 0.0005, for reader 1 and 2 respectively). PD-SEMAC was worse in detecting meniscal lesions (6 missed, p = 0.031, 9 missed, p = 0.004, by reader 1 and 2 respectively) than PD-high-bandwidth. Revision-surgery was chosen in 12 and 11 patients without MRI (surgeon 1 and 2), with high-bandwidth-MRI in 15 and 14 patients, and with SEMAC-MRI in 19 and 14 patients. STIR-SEMAC was useful in detecting bone marrow oedema and influenced the orthopaedic surgeons' decisions towards surgery, while PD-SEMAC showed no clinical benefit. (orig.)

  9. MRI in patients with portal hypertension (preoperative and postoperative studies). The first 15 cases

    Energy Technology Data Exchange (ETDEWEB)

    Pozzato, A; Cattoni, F; Baldini, U and others

    1987-01-01

    Fifteen patients with portal hypertension were examined by magnetic resonance imaging (MRI) using spin-echo sequences. Sagittal and transaxial images were obtained in all cases. Ten subjects have been evaluated after portosystemic shunt operations (6 portocaval and 4 splenorenal shunts); 5 patients were studied by MRI before shunt placements. Angiographic correlation was obtained in 15 cases. In each of the preoperative examinations, MRI accurately depicted inferior vena cava, portal vein and splenic vein. Shunt patency was documented in 10/10 postoperative studies: portacaval shunts patency was better determined in the transaxial plane while splenorenal shunts were better demonstrted in the sagittal plane. Thus, MRI seems to be an accurate and noninvasive method for detecting portosystemic shunt patency without the use of intravenous contrast media and without patient exposure to radiation.

  10. TH-EF-BRA-08: A Novel Technique for Estimating Volumetric Cine MRI (VC-MRI) From Multi-Slice Sparsely Sampled Cine Images Using Motion Modeling and Free Form Deformation

    International Nuclear Information System (INIS)

    Harris, W; Yin, F; Wang, C; Chang, Z; Cai, J; Zhang, Y; Ren, L

    2016-01-01

    Purpose: To develop a technique to estimate on-board VC-MRI using multi-slice sparsely-sampled cine images, patient prior 4D-MRI, motion-modeling and free-form deformation for real-time 3D target verification of lung radiotherapy. Methods: A previous method has been developed to generate on-board VC-MRI by deforming prior MRI images based on a motion model(MM) extracted from prior 4D-MRI and a single-slice on-board 2D-cine image. In this study, free-form deformation(FD) was introduced to correct for errors in the MM when large anatomical changes exist. Multiple-slice sparsely-sampled on-board 2D-cine images located within the target are used to improve both the estimation accuracy and temporal resolution of VC-MRI. The on-board 2D-cine MRIs are acquired at 20–30frames/s by sampling only 10% of the k-space on Cartesian grid, with 85% of that taken at the central k-space. The method was evaluated using XCAT(computerized patient model) simulation of lung cancer patients with various anatomical and respirational changes from prior 4D-MRI to onboard volume. The accuracy was evaluated using Volume-Percent-Difference(VPD) and Center-of-Mass-Shift(COMS) of the estimated tumor volume. Effects of region-of-interest(ROI) selection, 2D-cine slice orientation, slice number and slice location on the estimation accuracy were evaluated. Results: VCMRI estimated using 10 sparsely-sampled sagittal 2D-cine MRIs achieved VPD/COMS of 9.07±3.54%/0.45±0.53mm among all scenarios based on estimation with ROI_MM-ROI_FD. The FD optimization improved estimation significantly for scenarios with anatomical changes. Using ROI-FD achieved better estimation than global-FD. Changing the multi-slice orientation to axial, coronal, and axial/sagittal orthogonal reduced the accuracy of VCMRI to VPD/COMS of 19.47±15.74%/1.57±2.54mm, 20.70±9.97%/2.34±0.92mm, and 16.02±13.79%/0.60±0.82mm, respectively. Reducing the number of cines to 8 enhanced temporal resolution of VC-MRI by 25% while

  11. TH-EF-BRA-08: A Novel Technique for Estimating Volumetric Cine MRI (VC-MRI) From Multi-Slice Sparsely Sampled Cine Images Using Motion Modeling and Free Form Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Harris, W; Yin, F; Wang, C; Chang, Z; Cai, J; Zhang, Y; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: To develop a technique to estimate on-board VC-MRI using multi-slice sparsely-sampled cine images, patient prior 4D-MRI, motion-modeling and free-form deformation for real-time 3D target verification of lung radiotherapy. Methods: A previous method has been developed to generate on-board VC-MRI by deforming prior MRI images based on a motion model(MM) extracted from prior 4D-MRI and a single-slice on-board 2D-cine image. In this study, free-form deformation(FD) was introduced to correct for errors in the MM when large anatomical changes exist. Multiple-slice sparsely-sampled on-board 2D-cine images located within the target are used to improve both the estimation accuracy and temporal resolution of VC-MRI. The on-board 2D-cine MRIs are acquired at 20–30frames/s by sampling only 10% of the k-space on Cartesian grid, with 85% of that taken at the central k-space. The method was evaluated using XCAT(computerized patient model) simulation of lung cancer patients with various anatomical and respirational changes from prior 4D-MRI to onboard volume. The accuracy was evaluated using Volume-Percent-Difference(VPD) and Center-of-Mass-Shift(COMS) of the estimated tumor volume. Effects of region-of-interest(ROI) selection, 2D-cine slice orientation, slice number and slice location on the estimation accuracy were evaluated. Results: VCMRI estimated using 10 sparsely-sampled sagittal 2D-cine MRIs achieved VPD/COMS of 9.07±3.54%/0.45±0.53mm among all scenarios based on estimation with ROI-MM-ROI-FD. The FD optimization improved estimation significantly for scenarios with anatomical changes. Using ROI-FD achieved better estimation than global-FD. Changing the multi-slice orientation to axial, coronal, and axial/sagittal orthogonal reduced the accuracy of VCMRI to VPD/COMS of 19.47±15.74%/1.57±2.54mm, 20.70±9.97%/2.34±0.92mm, and 16.02±13.79%/0.60±0.82mm, respectively. Reducing the number of cines to 8 enhanced temporal resolution of VC-MRI by 25% while

  12. Assessing the Accuracy and Reliability of Root Crack and Fracture Detection in Teeth Using Sweep Imaging with Fourier Transform (SWIFT) Magnetic Resonance Imaging (MRI)

    Science.gov (United States)

    Schuurmans, Tyler J.

    Introduction: Magnetic Resonance Imaging (MRI) has the potential to aid in determining the presence and extent of cracks/fractures in teeth due to more advantageous contrast, without ionizing radiation. An MRI technique called Sweep Imaging with Fourier Transform (SWIFT) has overcome many of the inherent difficulties of conventional MRI with detecting fast-relaxing signals from densely mineralized dental tissues. The objectives of this in vitro investigation were to develop MRI criteria for root crack/fracture identification in teeth and to establish intra- and inter-rater reliabilities and corresponding sensitivity and specificity values for the detection of tooth-root cracks/fractures in SWIFT MRI and limited field of view (FOV) CBCT. Materials and Methods: MRI-based criteria for crack/fracture appearance was developed by an MRI physicist and 6 dentists, including 3 endodontists and 1 Oral and Maxillofacial (OMF) radiologist. Twenty-nine human adult teeth previously extracted following clinical diagnosis by a board-certified endodontist of a root crack/fracture were frequency-matched to 29 non-cracked controls. Crack/fracture status confirmation was performed with magnified visual inspection, transillumination and vital staining. Samples were scanned with two 3D imaging modalities: 1) SWIFT MRI (10 teeth/scan) via a custom oral radiofrequency (RF) coil and a 90cm, 4-T magnet; 2) Limited FOV CBCT (1 tooth/scan) via a Carestream (CS) 9000 (Rochester, NY). Following a training period, a blinded 4-member panel (3 endodontists, 1 OMF radiologist) evaluated the images with a proportion randomly re-tested to establish intra-rater reliability. Overall observer agreement was measured using Cohen's kappa and levels of agreement judged using the criteria of Landis and Koch. Sensitivity and specificity were computed with 95% confidence interval (CI); statistical significance was set at alpha ≤ 0.05. Results: MRI-based crack/fracture criteria were defined as 1-2 sharply

  13. Correcting for respiratory motion in liver PET/MRI: preliminary evaluation of the utility of bellows and navigated hepatobiliary phase imaging

    International Nuclear Information System (INIS)

    Hope, Thomas A.; Verdin, Emily F.; Bergsland, Emily K.; Ohliger, Michael A.; Corvera, Carlos University; Nakakura, Eric K.

    2015-01-01

    The purpose of this study was to evaluate the utility of bellows-based respiratory compensation and navigated hepatobiliary phase imaging to correct for respiratory motion in the setting of dedicated liver PET/MRI. Institutional review board approval and informed consent were obtained. Six patients with metastatic neuroendocrine tumor were imaged using Ga-68 DOTA-TOC PET/MRI. Whole body imaging and a dedicated 15-min liver PET acquisition was performed, in addition to navigated and breath-held hepatobiliary phase (HBP) MRI. Liver PET data was reconstructed three ways: the entire data set (liver PET), gated using respiratory bellows (RC-liver PET), and a non-gated data set reconstructed using the same amount of data used in the RC-liver PET (shortened liver PET). Liver lesions were evaluated using SUV max , SUV peak , SUV mean , and Vol isocontour . Additionally, the displacement of each lesion between the RC-liver PET images and the navigated and breath-held HBP images was calculated. Respiratory compensation resulted in a 43 % increase in SUVs compared to ungated data (liver vs RC-liver PET SUV max 26.0 vs 37.3, p < 0.001) and a 25 % increase compared to a non-gated reconstruction using the same amount of data (RC-liver vs shortened liver PET SUV max 26.0 vs 32.6, p < 0.001). Lesion displacement was minimized using navigated HBP MRI (1.3 ± 1.0 mm) compared to breath-held HBP MRI (23.3 ± 1.0 mm). Respiratory bellows can provide accurate respiratory compensation when imaging liver lesions using PET/MRI, and results in increased SUVs due to a combination of increased image noise and reduced respiratory blurring. Additionally, navigated HBP MRI accurately aligns with respiratory compensated PET data.

  14. Correcting for respiratory motion in liver PET/MRI: preliminary evaluation of the utility of bellows and navigated hepatobiliary phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hope, Thomas A. [Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (United States); Department of Radiology, San Francisco VA Medical Center, San Francisco, CA (United States); Verdin, Emily F. [Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (United States); Bergsland, Emily K. [Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA (United States); Ohliger, Michael A. [Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (United States); Department of Radiology, San Francisco General Hospital, San Francisco, CA (United States); Corvera, Carlos University; Nakakura, Eric K. [Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, San Francisco, CA (United States)

    2015-09-18

    The purpose of this study was to evaluate the utility of bellows-based respiratory compensation and navigated hepatobiliary phase imaging to correct for respiratory motion in the setting of dedicated liver PET/MRI. Institutional review board approval and informed consent were obtained. Six patients with metastatic neuroendocrine tumor were imaged using Ga-68 DOTA-TOC PET/MRI. Whole body imaging and a dedicated 15-min liver PET acquisition was performed, in addition to navigated and breath-held hepatobiliary phase (HBP) MRI. Liver PET data was reconstructed three ways: the entire data set (liver PET), gated using respiratory bellows (RC-liver PET), and a non-gated data set reconstructed using the same amount of data used in the RC-liver PET (shortened liver PET). Liver lesions were evaluated using SUV{sub max}, SUV{sub peak}, SUV{sub mean}, and Vol{sub isocontour}. Additionally, the displacement of each lesion between the RC-liver PET images and the navigated and breath-held HBP images was calculated. Respiratory compensation resulted in a 43 % increase in SUVs compared to ungated data (liver vs RC-liver PET SUV{sub max} 26.0 vs 37.3, p < 0.001) and a 25 % increase compared to a non-gated reconstruction using the same amount of data (RC-liver vs shortened liver PET SUV{sub max} 26.0 vs 32.6, p < 0.001). Lesion displacement was minimized using navigated HBP MRI (1.3 ± 1.0 mm) compared to breath-held HBP MRI (23.3 ± 1.0 mm). Respiratory bellows can provide accurate respiratory compensation when imaging liver lesions using PET/MRI, and results in increased SUVs due to a combination of increased image noise and reduced respiratory blurring. Additionally, navigated HBP MRI accurately aligns with respiratory compensated PET data.

  15. Ultrafast bold fMRI using single-shot spin-echo echo planar imaging

    Directory of Open Access Journals (Sweden)

    Boujraf Said

    2009-01-01

    Full Text Available The choice of imaging parameters for functional MRI can have an impact on the accuracy of functional localization by affecting the image quality and the degree of blood oxygenation-dependent (BOLD contrast achieved. By improving sampling efficiency, parallel acquisition techniques such as sensitivity encoding (SENSE have been used to shorten readout trains in single-shot (SS echo planar imaging (EPI. This has been applied to susceptibility artifact reduction and improving spatial resolution. SENSE together with single-shot spin-echo (SS-SE imaging may also reduce off-resonance artifacts. The goal of this work was to investigate the BOLD response of a SENSE-adapted SE-EPI on a three Tesla scanner. Whole-brain fMRI studies of seven healthy right hand-dominant volunteers were carried out in a three Tesla scanner. fMRI was performed using an SS-SE EPI sequence with SENSE. The data was processed using statistical parametric mapping. Both, group and individual subject data analyses were performed. Individual average percentage and maximal percentage signal changes attributed to the BOLD effect in M1 were calculated for all the subjects as a function of echo time. Corresponding activation maps and the sizes of the activated clusters were also calculated. Our results show that susceptibility artifacts were reduced with the use of SENSE; and the acquired BOLD images were free of the typical quadrature artifacts of SS-EPI. Such measures are crucial at high field strengths. SS SE-EPI with SENSE offers further benefits in this regard and is more specific for oxygenation changes in the microvasculature bed. Functional brain activity can be investigated with the help of single-shot spin echo EPI using SENSE at high magnetic fields.

  16. Comparative study of image quality between axial T2-weighted BLADE and turbo spin-echo MRI of the upper abdomen on 3.0 T.

    Science.gov (United States)

    Zhang, Lin; Tian, ChunMei; Wang, PeiYuan; Chen, Liang; Mao, XiJin; Wang, ShanShan; Wang, Xu; Dong, JingMin; Wang, Bin

    2015-09-01

    To compare image quality of turbo spin-echo (TSE) with BLADE [which is also named periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER)] on magnetic resonance imaging (MRI) for upper abdomen. This study involved the retrospective evaluation of 103 patients (63 males, 40 females; age range 19-76 years; median age 53.8 years) who underwent 3.0 T MRI with both conventional TSE T2-weighted imaging (T2WI) and BLADE TSE T2WI. Two radiologists assessed respiratory motion, gastrointestinal peristalsis, and vascular pulsation artifacts, as well as the sharpness of the liver and pancreas edges. Scores for all magnetic resonance (MR) images were recorded. Wilcoxon's rank test was used to compare hierarchical data. Cohen's kappa coefficient was adopted to analyze interobserver consistency. Compared to TSE T2WI, BLADE TSE T2WI reduced all of the examined motion artifacts and increased the sharpness of the liver and pancreas edges (all P image quality.

  17. Diagnostic imaging of the lumbar disc herniation for radiculopathy by 3D-MRI (MR-myelography)

    Energy Technology Data Exchange (ETDEWEB)

    Taira, Gaku; Imakiire, Atsuhiro; Endo, Kenji [Tokyo Medical Coll. (Japan); Ichimaru, Katuji

    2002-02-01

    We have developed a new method of three-dimensional MRI (3D-MRI) which enables a stereoscopic view of the spinal cord and both sides of spinal nerve roots in one image. Anatomical study for normal subjects, the S1 angulations and length were significantly smaller than those of others. The S1 DRG was oval and was the largest. In a pathological study the use of 3D-MRI defects the signal changes following damage to the spinal nerve roots or ganglion in lumbar disc herniation. With regard to signal changes in damaged root ganglion, a good correlation between root compression and root inflammation was detected by experiments. We are currently examining the relationship between the damaged root ganglion, pain sensory disturbance. This study showed that the dorsal root ganglion plays an important role in sensory control of radiculopathy on 3D-MRI. (author)

  18. Diagnostic imaging of the lumbar disc herniation for radiculopathy by 3D-MRI (MR-myelography)

    International Nuclear Information System (INIS)

    Taira, Gaku; Imakiire, Atsuhiro; Endo, Kenji; Ichimaru, Katuji

    2002-01-01

    We have developed a new method of three-dimensional MRI (3D-MRI) which enables a stereoscopic view of the spinal cord and both sides of spinal nerve roots in one image. Anatomical study for normal subjects, the S1 angulations and length were significantly smaller than those of others. The S1 DRG was oval and was the largest. In a pathological study the use of 3D-MRI defects the signal changes following damage to the spinal nerve roots or ganglion in lumbar disc herniation. With regard to signal changes in damaged root ganglion, a good correlation between root compression and root inflammation was detected by experiments. We are currently examining the relationship between the damaged root ganglion, pain sensory disturbance. This study showed that the dorsal root ganglion plays an important role in sensory control of radiculopathy on 3D-MRI. (author)

  19. Diagnostic role of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for early and atypical bone metastases.

    Science.gov (United States)

    Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi

    2014-01-01

    The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.

  20. Positron emission tomography/magnetic resonance imaging (PET/MRI: An update and initial experience at HC-FMUSP

    Directory of Open Access Journals (Sweden)

    Marcelo A. Queiroz

    Full Text Available Summary The new technology of PET/MRI is a prototype of hybrid imaging, allowing for the combination of molecular data from PET scanning and morphofunctional information derived from MRI scanning. Recent advances regarding the technical aspects of this device, especially after the development of MRI-compatible silicon photomultipliers of PET, permitted an increase in the diagnostic performance of PET/MRI translated into dose reduction and higher imaging quality. Among several clinical applications, PET/MRI gains ground initially in oncology, where MRI per se plays an essential role in the assessment of primary tumors (which is limited in the case of PET/CT, including prostate, rectal and gynecological tumors. On the other hand, the evaluation of the lungs remains an enigma although new MRI sequences are being designed to overcome this. More clinical indications of PET/MRI are seen in the fields of neurology, cardiology and inflammatory processes, and the use of PET/MRI also opens perspectives for pediatric populations as it involves very low radiation exposure. Our review aimed to highlight the current indications of PET/MRI and discuss the challenges and perspectives of PET/MRI at HC-FMUSP.

  1. Cost-Effectiveness Comparison of Imaging-Guided Prostate Biopsy Techniques: Systematic Transrectal Ultrasound, Direct In-Bore MRI, and Image Fusion

    NARCIS (Netherlands)

    Venderink, W.; Govers, T.M.; Rooij, M. de; Futterer, J.J.; Sedelaar, J.P.M.

    2017-01-01

    OBJECTIVE: Three commonly used prostate biopsy approaches are systematic transrectal ultrasound guided, direct in-bore MRI guided, and image fusion guided. The aim of this study was to calculate which strategy is most cost-effective. MATERIALS AND METHODS: A decision tree and Markov model were

  2. Role of chelates in magnetic resonance imaging studies

    Directory of Open Access Journals (Sweden)

    Tripathi Laxmi

    2009-01-01

    Full Text Available Imaging studies are tests performed with a variety of techniques that produce pictures of the inside of a patient′s body. Magnetic resonance imaging (MRI is an imaging technique based on the principles of nuclear magnetic resonance. MRI uses a powerful magnetic field, radio waves, and a computer to produce detailed pictures of organs, soft tissues, bone, and virtually all other internal body structures. Chelates have a wide application in such imaging techniques. Chelates in imaging studies are used alone as radioactive agents or conjugated to monoclonal antibodies or to DNA as radioactive agents. Technetium chelates and gadolinium chelates are being widely used as magnetic resonance contrast media.

  3. Magnetic resonance imaging (MRI) in diffuse liver diseases. Comparison with CT

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Masaharu; Ebara, Masaaki; Ohto, Masao

    1987-06-01

    MRI (Magnetic Resonance Imaging) was performed in 74 patients with chronic hepatitis, liver cirrhosis, idiopathic portal hypertension, Budd-Chiari syndrome, extrahepatic protal vein occlusion, Wilson disease and hemochromatosis. We measured relaxation time of the liver and the spleen in these patients and compared MRI with CT in the diagnostic capability. MRI was superior to plain CT in the detection of collateral vessels in liver cirrhosis and extrahepatic protal vein occlusion. MRI could also demonstrate the occluded part of the inferior vena cava in Budd-Chiari syndrome. However, MRI was almost the same as CT in the visualization of the hepatic configuration in liver cirrhosis. In liver cirrhosis, T1 values of the liver and the spleen were longer than those in normal controls, and T1 values of the liver were correlated with ICG R-15. Hepatic T1 values in Budd-Chiari syndrome were longer than those in normal controls.

  4. Indications and value of bone scintigraphy in comparison to magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Haug, A.; Hacker, M.; Weiss, M.; Hahn, K.; Pfluger, T.

    2006-01-01

    With increasing use of cross-sectional imaging (CT/MRI) in radiology as well as PET and PET/CT in nuclear medicine, remaining indications for bone scintigraphy are in question. Recently introduced whole-body MRI represents an attractive alternative to bone scintigraphy, as MRI is additionally able to assess lesions that are limited to bone marrow and are located extraosseously. In this overview, indication-related strengths and limitations of MRI and bone scintigraphy are presented and discussed. Furthermore, complementary use of both modalities for special clinical questions is demonstrated. (orig.)

  5. Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.

    Science.gov (United States)

    Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G

    1999-01-01

    The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.

  6. Hybrid cardiac imaging using PET/MRI: a joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM).

    Science.gov (United States)

    Nensa, Felix; Bamberg, Fabian; Rischpler, Christoph; Menezes, Leon; Poeppel, Thorsten D; la Fougère, Christian; Beitzke, Dietrich; Rasul, Sazan; Loewe, Christian; Nikolaou, Konstantin; Bucerius, Jan; Kjaer, Andreas; Gutberlet, Matthias; Prakken, Niek H; Vliegenthart, Rozemarijn; Slart, Riemer H J A; Nekolla, Stephan G; Lassen, Martin L; Pichler, Bernd J; Schlosser, Thomas; Jacquier, Alexis; Quick, Harald H; Schäfers, Michael; Hacker, Marcus

    2018-05-02

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) have both been used for decades in cardiovascular imaging. Since 2010, hybrid PET/MRI using sequential and integrated scanner platforms has been available, with hybrid cardiac PET/MR imaging protocols increasingly incorporated into clinical workflows. Given the range of complementary information provided by each method, the use of hybrid PET/MRI may be justified and beneficial in particular clinical settings for the evaluation of different disease entities. In the present joint position statement, we critically review the role and value of integrated PET/MRI in cardiovascular imaging, provide a technical overview of cardiac PET/MRI and practical advice related to the cardiac PET/MRI workflow, identify cardiovascular applications that can potentially benefit from hybrid PET/MRI, and describe the needs for future development and research. In order to encourage its wide dissemination, this article is freely accessible on the European Radiology and European Journal of Hybrid Imaging web sites. • Studies and case-reports indicate that PET/MRI is a feasible and robust technology. • Promising fields of application include a variety of cardiac conditions. • Larger studies are required to demonstrate its incremental and cost-effective value. • The translation of novel radiopharmaceuticals and MR-sequences will provide exciting new opportunities.

  7. Imaging features of primary Sarcomas of the great vessels in CT, MRI and PET/CT: a single-center experience

    International Nuclear Information System (INIS)

    Falck, Christian von; Meyer, Bernhard; Fegbeutel, Christine; Länger, Florian; Bengel, Frank; Wacker, Frank; Rodt, Thomas

    2013-01-01

    To investigate the imaging features of primary sarcomas of the great vessels in CT, MRI and 18 F-FDG PET/CT. Thirteen patients with a primary sarcoma of the great vessels were retrospectively evaluated. All available images studies including F-18 FDG PET(/CT) (n = 4), MDCT (n = 12) and MRI (n = 6) were evaluated and indicative image features of this rare tumor entity were identified. The median interval between the first imaging study and the final diagnosis was 11 weeks (0–12 weeks). The most frequently observed imaging findings suggestive of malignant disease in patients with sarcomas of the pulmonary arteries were a large filling defect with vascular distension, unilaterality and a lack of improvement despite effective anticoagulation. In patients with aortic sarcomas we most frequently observed a pedunculated appearance and an atypical location of the filling defect. The F-18 FDG PET(/CT) examinations demonstrated an unequivocal hypermetabolism of the lesion in all cases (4/4). MRI proved lesion vascularization in 5/6 cases. Intravascular unilateral or atypically located filling defects of the great vessels with vascular distension, a pedunculated shape and lack of improvement despite effective anticoagulation are suspicious for primary sarcoma on MDCT or MRI. MR perfusion techniques can add information on the nature of the lesion but the findings may be subtle and equivocal. F-18 FDG PET/CT may have a potential role in these patients and may be considered as part of the imaging workup

  8. Preoperative axillary lymph node evaluation in breast cancer patients by breast magnetic resonance imaging (MRI): Can breast MRI exclude advanced nodal disease?

    International Nuclear Information System (INIS)

    Hyun, Su Jeong; Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Kim, Min Jung

    2016-01-01

    To evaluate the diagnostic performance of breast magnetic resonance imaging (MRI) in preoperative evaluation of axillary lymph node metastasis (ALNM) in breast cancer patients and to assess whether breast MRI can be used to exclude advanced nodal disease. A total of 425 patients were included in this study and breast MRI findings were retrospectively reviewed. The diagnostic performance of breast MRI for diagnosis of ALNM was evaluated in all patients, patients with neoadjuvant chemotherapy (NAC), and those without NAC (no-NAC). We evaluated whether negative MRI findings (cN0) can exclude advanced nodal disease (pN2-pN3) using the negative predictive value (NPV) in each group. The sensitivity and NPV of breast MRI in evaluation of ALNM was 51.3 % (60/117) and 83.3 % (284/341), respectively. For cN0 cases on MRI, pN2-pN3 manifested in 1.8 % (6/341) of the overall patients, 0.4 % (1/257) of the no-NAC group, and 6 % (5/84) of the NAC group. The NPV of negative MRI findings for exclusion of pN2-pN3 was higher for the no-NAC group than for the NAC group (99.6 % vs. 94.0 %, p = 0.039). Negative MRI findings (cN0) can exclude the presence of advanced nodal disease with an NPV of 99.6 % in the no-NAC group. (orig.)

  9. Preoperative axillary lymph node evaluation in breast cancer patients by breast magnetic resonance imaging (MRI): Can breast MRI exclude advanced nodal disease?

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Su Jeong [Yonsei University College of Medicine, Department of Radiology, Breast Cancer Clinic, Severance Hospital, Research Institute of Radiological Science, Seoul (Korea, Republic of); Hallym University Medical Center, Department of Radiology, Kangnam Sacred Heart Hospital, Seoul (Korea, Republic of); Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Kim, Min Jung [Yonsei University College of Medicine, Department of Radiology, Breast Cancer Clinic, Severance Hospital, Research Institute of Radiological Science, Seoul (Korea, Republic of)

    2016-11-15

    To evaluate the diagnostic performance of breast magnetic resonance imaging (MRI) in preoperative evaluation of axillary lymph node metastasis (ALNM) in breast cancer patients and to assess whether breast MRI can be used to exclude advanced nodal disease. A total of 425 patients were included in this study and breast MRI findings were retrospectively reviewed. The diagnostic performance of breast MRI for diagnosis of ALNM was evaluated in all patients, patients with neoadjuvant chemotherapy (NAC), and those without NAC (no-NAC). We evaluated whether negative MRI findings (cN0) can exclude advanced nodal disease (pN2-pN3) using the negative predictive value (NPV) in each group. The sensitivity and NPV of breast MRI in evaluation of ALNM was 51.3 % (60/117) and 83.3 % (284/341), respectively. For cN0 cases on MRI, pN2-pN3 manifested in 1.8 % (6/341) of the overall patients, 0.4 % (1/257) of the no-NAC group, and 6 % (5/84) of the NAC group. The NPV of negative MRI findings for exclusion of pN2-pN3 was higher for the no-NAC group than for the NAC group (99.6 % vs. 94.0 %, p = 0.039). Negative MRI findings (cN0) can exclude the presence of advanced nodal disease with an NPV of 99.6 % in the no-NAC group. (orig.)

  10. Magnetic resonance imaging goes postmortem: noninvasive detection and assessment of myocardial infarction by postmortem MRI

    International Nuclear Information System (INIS)

    Jackowski, Christian; Warntjes, Marcel J.B.; Persson, Anders; Berge, Johan; Baer, Walter

    2011-01-01

    To investigate the performance of postmortem magnetic resonance imaging (pmMRI) in identification and characterization of lethal myocardial infarction in a non-invasive manner on human corpses. Before forensic autopsy, 20 human forensic corpses were examined on a 1.5-T system for the presence of myocardial infarction. Short axis, transversal and longitudinal long axis images (T1-weighted; T2-weighted; PD-weighted) were acquired in situ. In subsequent autopsy, the section technique was adapted to short axis images. Histological investigations were conducted to confirm autopsy and/or radiological diagnoses. Nineteen myocardial lesions were detected and age staged with pmMRI, of which 13 were histologically confirmed (chronic, subacute and acute). Six lesions interpreted as peracute by pmMRI showed no macroscopic or histological finding. Five of the six peracute lesions correlated well to coronary pathology, and one case displayed a severe hypertrophic alteration. pmMRI reliably demonstrates chronic, subacute and acute myocardial infarction in situ. In peracute cases pmMRI may display ischemic lesions undetectable at autopsy and routine histology. pmMRI has the potential to substantiate autopsy and to counteract the loss of reliable information on causes of death due to the recent disappearance of the clinical autopsy. (orig.)

  11. Comparison of MRI-based and CT/MRI fusion-based postimplant dosimetric analysis of prostate brachytherapy

    International Nuclear Information System (INIS)

    Tanaka, Osamu; Hayashi, Shinya; Matsuo, Masayuki; Sakurai, Kota; Nakano, Masahiro; Maeda, Sunaho; Kajita, Kimihiro R.T.; Deguchi, Takashi; Hoshi, Hiroaki

    2006-01-01

    Purpose: The aim of this study was to compare the outcomes between magnetic resonance imaging (MRI)-based and computed tomography (CT)/MRI fusion-based postimplant dosimetry methods in permanent prostate brachytherapy. Methods and Materials: Between October 2004 and March 2006, a total of 52 consecutive patients with prostate cancer were treated by brachytherapy, and postimplant dosimetry was performed using CT/MRI fusion. The accuracy and reproducibility were prospectively compared between MRI-based dosimetry and CT/MRI fusion-based dosimetry based on the dose-volume histogram (DVH) related parameters as recommended by the American Brachytherapy Society. Results: The prostate volume was 15.97 ± 6.17 cc (mean ± SD) in MRI-based dosimetry, and 15.97 ± 6.02 cc in CT/MRI fusion-based dosimetry without statistical difference. The prostate V100 was 94.5% and 93.0% in MRI-based and CT/MRI fusion-based dosimetry, respectively, and the difference was statistically significant (p = 0.002). The prostate D90 was 119.4% and 114.4% in MRI-based and CT/MRI fusion-based dosimetry, respectively, and the difference was statistically significant (p = 0.004). Conclusion: Our current results suggested that, as with fusion images, MR images allowed accurate contouring of the organs, but they tended to overestimate the analysis of postimplant dosimetry in comparison to CT/MRI fusion images. Although this MRI-based dosimetric discrepancy was negligible, MRI-based dosimetry was acceptable and reproducible in comparison to CT-based dosimetry, because the difference between MRI-based and CT/MRI fusion-based results was smaller than that between CT-based and CT/MRI fusion-based results as previously reported

  12. Role of magnetic resonance imaging (MRI), MR spectroscopy (MRS) and other imaging modalities in breast cancer

    International Nuclear Information System (INIS)

    Sharma, Uma; Virendra Kumar; Jagannathan, N.R.

    2004-01-01

    Breast cancer is the commonest cancer among women world over and the diagnosis continues to generate fear and turmoil in the life of patients and their families. This article describes the currently available techniques used for screening primary and recurrent breast cancers and the evaluation of therapeutic response of breast cancer with special emphasis on MRI and MRS techniques. MRI, a noninvasive technique, provides anatomic images in multiple planes enabling tissue characterization. Contrast enhanced MR studies have been found to be useful in the diagnosis of small tumors in dense breast benign diseases from malignant ones. In vivo magnetic resonance spectroscopy (MRS) is another useful technique for diagnosis and for assessing the biochemical status of normal and diseased tissues. Being noninvasive, MR techniques can be used repetitively for assessment of response of the tumor to various therapeutic regimens and for evaluating the efficacy of drugs at both the structural and molecular level. An overview of the various aspects of different imaging modalities used in breast cancer research including various in vivo MR methodologies with clinical examples is presented in this review. (author)

  13. PCA based clustering for brain tumor segmentation of T1w MRI images.

    Science.gov (United States)

    Kaya, Irem Ersöz; Pehlivanlı, Ayça Çakmak; Sekizkardeş, Emine Gezmez; Ibrikci, Turgay

    2017-03-01

    Medical images are huge collections of information that are difficult to store and process consuming extensive computing time. Therefore, the reduction techniques are commonly used as a data pre-processing step to make the image data less complex so that a high-dimensional data can be identified by an appropriate low-dimensional representation. PCA is one of the most popular multivariate methods for data reduction. This paper is focused on T1-weighted MRI images clustering for brain tumor segmentation with dimension reduction by different common Principle Component Analysis (PCA) algorithms. Our primary aim is to present a comparison between different variations of PCA algorithms on MRIs for two cluster methods. Five most common PCA algorithms; namely the conventional PCA, Probabilistic Principal Component Analysis (PPCA), Expectation Maximization Based Principal Component Analysis (EM-PCA), Generalize Hebbian Algorithm (GHA), and Adaptive Principal Component Extraction (APEX) were applied to reduce dimensionality in advance of two clustering algorithms, K-Means and Fuzzy C-Means. In the study, the T1-weighted MRI images of the human brain with brain tumor were used for clustering. In addition to the original size of 512 lines and 512 pixels per line, three more different sizes, 256 × 256, 128 × 128 and 64 × 64, were included in the study to examine their effect on the methods. The obtained results were compared in terms of both the reconstruction errors and the Euclidean distance errors among the clustered images containing the same number of principle components. According to the findings, the PPCA obtained the best results among all others. Furthermore, the EM-PCA and the PPCA assisted K-Means algorithm to accomplish the best clustering performance in the majority as well as achieving significant results with both clustering algorithms for all size of T1w MRI images. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. MRI image characteristics of materials implanted at sellar region after transsphenoidal resection of pituitary tumours

    International Nuclear Information System (INIS)

    Bladowska, J.; Sasiadek, M.; Bednarek-Tupikowska, G.; Sokolska, V.; Badowski, R.; Moron, K.; Bonicki, W.

    2010-01-01

    Background: Post-surgical evaluation of the pituitary gland in MRI is difficult because of a change in anatomical conditions. It depends also on numerous other factors, including: size and expansion of the tumour before surgery, type of surgical access, quality and volume of implanted materials and time of its resorption. The purpose was to demonstrate the characteristics of the implanted materials on MRI performed after transsphenoidal resection of pituitary tumours and to identify imaging criteria helpful in differential diagnosis of masses within the sellar region. Material/Methods: One hundred and fifty-four patients after transsphenoidal resection of pituitary tumours were included in the study. In general, 469 MRI examinations were performed with a 1.5 T scanner. We obtained T1-weighted sagittal and coronal, enhanced and unenhanced images. In 102 cases, additional T2-weighted coronal, unenhanced images with 1.5 T unit were obtained as well. Results: The implanted materials appeared in 95 patient: fat in 86 and muscle with fascia in 3 patients. We could recognise implanted muscle and fascia in T2-weighted images, because of high signal intensity of the degenerating muscle and the line of low signal representing fascia. The implanted titanium mesh was found in 4 patients. Haemostatic materials were visible only in 2 patients in examinations performed at an early postoperative stage (1 month after the procedure). Conclusions: The knowledge of MRI characteristics of the materials implanted at the sellar region is very important in postoperative diagnosis of pituitary tumours and may help discriminate between tumorous and non-tumorous involvement of the sellar region. Some implanted materials, like fat, could be seen on MRI for as long as 10 years after the operation, others, like haemostatic materials, for only 1 month after surgery. T2-weighted imaging is a useful assessment method of the implanted muscle and fascia for a long time after surgery. (authors)

  15. Clinical utility of simultaneous whole-body 18F-FDG PET/MRI as a single-step imaging modality in the staging of primary nasopharyngeal carcinoma.

    Science.gov (United States)

    Chan, Sheng-Chieh; Yeh, Chih-Hua; Yen, Tzu-Chen; Ng, Shu-Hang; Chang, Joseph Tung-Chieh; Lin, Chien-Yu; Yen-Ming, Tsang; Fan, Kang-Hsing; Huang, Bing-Shen; Hsu, Cheng-Lung; Chang, Kai-Ping; Wang, Hung-Ming; Liao, Chun-Ta

    2018-03-03

    Both head and neck magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) play a crucial role in the staging of primary nasopharyngeal carcinoma (NPC). In this study, we sought to prospectively investigate the clinical utility of simultaneous whole-body 18F-FDG PET/MRI for primary staging of NPC patients. We examined 113 patients with histologically confirmed NPC who underwent pretreatment, simultaneous whole-body PET/MRI and PET/CT for primary tumor staging. The images obtained with the different imaging modalities were interpreted independently and compared with each other. PET/MRI increased the accuracy of head and neck MRI for assessment of primary tumor extent in four patients via addition of FDG uptake information to increase the conspicuity of morphologically subtle lesions. PET/MR images were more discernible than PET/CT images for mapping tumor extension, especially intracranial invasion. Regarding the N staging assessment, the sensitivity of PET/MRI (99.5%) was higher than that of head and neck MRI (94.2%) and PET/CT (90.9%). PET/MRI was particularly useful for distinguishing retropharyngeal nodal metastasis from adjacent nasopharyngeal tumors. For distant metastasis evaluation, PET/MRI exhibited a similar sensitivity (90% vs. 86.7% vs. 83.3%), but higher positive predictive value (93.1% vs. 78.8% vs. 83.3%) than whole-body MRI and PET/CT, respectively. For tumor staging of NPC, simultaneous whole-body PET/MRI was more accurate than head and neck MRI and PET/CT, and may serve as a single-step staging modality.

  16. Modeling of the bony pelvis from MRI using a multi-atlas AE-SDM for registration and tracking in image-guided robotic prostatectomy.

    Science.gov (United States)

    Gao, Qinquan; Chang, Ping-Lin; Rueckert, Daniel; Ali, S Mohammed; Cohen, Daniel; Pratt, Philip; Mayer, Erik; Yang, Guang-Zhong; Darzi, Ara; Edwards, Philip Eddie

    2013-03-01

    A fundamental challenge in the development of image-guided surgical systems is alignment of the preoperative model to the operative view of the patient. This is achieved by finding corresponding structures in the preoperative scans and on the live surgical scene. In robot-assisted laparoscopic prostatectomy (RALP), the most readily visible structure is the bone of the pelvic rim. Magnetic resonance imaging (MRI) is the modality of choice for prostate cancer detection and staging, but extraction of bone from MRI is difficult and very time consuming to achieve manually. We present a robust and fully automated multi-atlas pipeline for bony pelvis segmentation from MRI, using a MRI appearance embedding statistical deformation model (AE-SDM). The statistical deformation model is built using the node positions of deformations obtained from hierarchical registrations of full pelvis CT images. For datasets with corresponding CT and MRI images, we can transform the MRI into CT SDM space. MRI appearance can then be used to improve the combined MRI/CT atlas to MRI registration using SDM constraints. We can use this model to segment the bony pelvis in a new MRI image where there is no CT available. A multi-atlas segmentation algorithm is introduced which incorporates MRI AE-SDMs guidance. We evaluated the method on 19 subjects with corresponding MRI and manually segmented CT datasets by performing a leave-one-out study. Several metrics are used to quantify the overlap between the automatic and manual segmentations. Compared to the manual gold standard segmentations, our robust segmentation method produced an average surface distance 1.24±0.27mm, which outperforms state-of-the-art algorithms for MRI bony pelvis segmentation. We also show that the resulting surface can be tracked in the endoscopic view in near real time using dense visual tracking methods. Results are presented on a simulation and a real clinical RALP case. Tracking is accurate to 0.13mm over 700 frames

  17. Proton MRI appearance of cystic fibrosis: Comparison to CT

    International Nuclear Information System (INIS)

    Puderbach, Michael; Eichinger, Monika; Kauczor, Hans-Ulrich; Gahr, Julie; Mueller, Frank-Michael; Ley, Sebastian; Tuengerthal, Siegfried; Schmaehl, Astrid; Fink, Christian; Plathow, Christian; Wiebel, Matthias

    2007-01-01

    Cystic fibrosis (CF) is the most frequent inherited disorder leading to premature death in the Caucasian population. As life expectancy is limited by pulmonary complications, repeated imaging [chest X-ray, multislice high-resolution computed tomography (MS-HRCT)] is required in the follow-up. Magnetic resonance imaging (MRI) of the lung parenchyma is a promising new diagnostic tool. Its value for imaging lung changes caused by CF compared with CT is demonstrated. MRI performs well when compared with CT, which serves as the gold standard. Its lack in spatial resolution is obvious, but advantages in contrast and functional assessment compensate for this limitation. Thus, MRI is a reasonable alternative for imaging the CF lung and should be introduced as a radiation-free modality for follow-up studies in CF patients. For further evaluation of the impact of MRI, systematic studies comparing MRI and conventional imaging modalities are necessary. Furthermore, the value of the additional functional MRI (fMRI) information has to be studied, and a scoring system for the morphological and functional aspect of MRI has to be established. (orig.)

  18. Comparison of abdominal MRI with diffusion-weighted imaging to {sup 68}Ga-DOTATATE PET/CT in detection of neuroendocrine tumors of the pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Schmid-Tannwald, Christine; Schmid-Tannwald, Christoph M.; Neumann, Ralph; Nikolaou, Konstantin; Schramm, Nicolai; Reiser, Maximilian F.; Rist, Carsten [Ludwig Maximilians University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Morelli, John N. [Scott and White Hospital Temple, Department of Radiology, Temple, TX (United States); Haug, Alexander R.; Jansen, Nathalie [Ludwig Maximilians University Hospital Munich, Department of Nuclear Medicine, Munich (Germany)

    2013-06-15

    The aim of the study was to evaluate contrast-enhanced MRI, diffusion-weighted MRI (DW MRI), and {sup 68}Ga-DOTATATE positron emission tomography (PET)/CT in the detection of intermediate to well-differentiated neuroendocrine tumors (NET) of the pancreas. Eighteen patients with pathologically proven pancreatic NET who underwent MRI including DW MRI and PET/CT within 6 weeks of each other were included in this retrospective study. Two radiologists evaluated T2-weighted (T2w), T2w + DW MRI, T2w + contrast-enhanced T1-weighted (CE T1w) MR images, and PET/CT for NET detection. The sensitivity and level of diagnostic confidence were compared among modalities using McNemar's test and a Wilcoxon signed rank test. Apparent diffusion coefficients (ADC) of pancreatic NETs and normal pancreatic tissue were compared with Student's t test. Of the NETs, 8/23 (34.8 %) and 9/23 (39.1 %) were detected on T2w images by observers 1 and 2, respectively. Detection rates improved significantly by combining T2w images with DW MRI (observer 1: 14/23 = 61 %; observer 2: 15/23 = 65.2 %; p < 0.05) or CE T1w images (observer 1: 14/23 = 61 %; observer 2: 15/23 = 65.2 %; p < 0.05). Detection rates of pancreatic NET with PET/CT (both observers: 23/23 = 100 %) were statistically significantly higher than with MRI (p < 0.05). The mean ADC value of NET (1.02 {+-} 0.26 x 10{sup -3} mm{sup 2}/s) was statistically significantly lower than that of normal pancreatic tissue (1.48 {+-} 0.39 x 10{sup -3} mm{sup 2}/s). DW MRI is a valuable adjunct to T2w imaging and comparable to CE T1w imaging in pancreatic NET detection, quantitatively differentiating between NET and normal pancreatic tissue with ADC measurements. {sup 68}Ga-DOTATATE PET/CT is more sensitive than MRI in the detection of pancreatic NET. (orig.)

  19. Radiation induced currents in MRI RF coils: application to linac/MRI integration

    Science.gov (United States)

    Burke, B.; Fallone, B. G.; Rathee, S.

    2010-02-01

    The integration of medical linear accelerators (linac) with magnetic resonance imaging (MRI) systems is advancing the current state of image-guided radiotherapy. The MRI in these integrated units will provide real-time, accurate tumor locations for radiotherapy treatment, thus decreasing geometric margins around tumors and reducing normal tissue damage. In the real-time operation of these integrated systems, the radiofrequency (RF) coils of MRI will be irradiated with radiation pulses from the linac. The effect of pulsed radiation on MRI radio frequency (RF) coils is not known and must be studied. The instantaneous radiation induced current (RIC) in two different MRI RF coils were measured and presented. The frequency spectra of the induced currents were calculated. Some basic characterization of the RIC was also done: isolation of the RF coil component responsible for RIC, dependence of RIC on dose rate, and effect of wax buildup placed on coil on RIC. Both the time and frequency characteristics of the RIC were seen to vary with the MRI RF coil used. The copper windings of the RF coils were isolated as the main source of RIC. A linear dependence on dose rate was seen. The RIC was decreased with wax buildup, suggesting an electronic disequilibrium as the cause of RIC. This study shows a measurable RIC present in MRI RF coils. This unwanted current could be possibly detrimental to the signal to noise ratio in MRI and produce image artifacts.

  20. MRI of the Chest

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Chest Magnetic resonance imaging (MRI) ... clearer and more detailed than with other imaging methods. This detail makes MRI an invaluable tool in ...

  1. Animal MRI Core

    Data.gov (United States)

    Federal Laboratory Consortium — The Animal Magnetic Resonance Imaging (MRI) Core develops and optimizes MRI methods for cardiovascular imaging of mice and rats. The Core provides imaging expertise,...

  2. [Imaging of the elbow joint with focus MRI. Part 2: muscles, nerves and synovial membranes].

    Science.gov (United States)

    Rehm, J; Zeifang, F; Weber, M-A

    2014-03-01

    This review article discusses the magnetic resonance imaging (MRI) features and pathological changes of muscles, nerves and the synovial lining of the elbow joint. Typical imaging findings are illustrated and discussed. In addition, the cross-sectional anatomy and anatomical variants, such as accessory muscles and plicae are discussed. Injuries of the muscles surrounding the elbow joint, as well as chronic irritation are particularly common in athletes. Morphological changes in MRI, for example tennis or golfer's elbow are typical and often groundbreaking. By adapting the examination sequences, imaging planes and slices, complete and incomplete tendon ruptures can be reliably diagnosed. Although the clinical and electrophysiological examinations form the basis for the diagnosis of peripheral neuropathies, MRI provides useful additional information about the precise localization due to its high resolution and good soft tissue contrast and helps to rule out differential diagnoses. Synovial diseases, such as inflammatory arthritis, proliferative diseases and also impinging plicae must be considered in the MRI diagnostics of the elbow joint.

  3. The power of using functional fMRI on small rodents to study brain pharmacology and disease

    OpenAIRE

    Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie

    2015-01-01

    Abstract: Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sen...

  4. Functional resonance magnetic imaging (fMRI) in adolescents with idiopathic musculoskeletal pain: a paradigm of experimental pain

    OpenAIRE

    Molina, Juliana; Amaro, Edson; da Rocha, Liana Guerra Sanches; Jorge, Liliana; Santos, Flavia Heloisa; Len, Claudio A.

    2017-01-01

    Background Studies on functional magnetic resonance imaging (fMRI) have shown that adults with musculoskeletal pain syndromes tolerate smaller amount of pressure (pain) as well as differences in brain activation patterns in areas related to pain.The objective of this study was to evaluate, through fMRI, the brain activation in adolescents with idiopathic musculoskeletal pain (IMP) while performing an experimental paradigm of pain. Methods The study included 10 consecutive adolescents with idi...

  5. TU-G-BRA-08: BEST IN PHYSICS (JOINT IMAGING-THERAPY): Hybrid PET-MRI Imaging of Acute Radiation Induced Cardiac Toxicity

    International Nuclear Information System (INIS)

    El-Sherif, O; Xhaferllari, I; Gaede, S; Sykes, J; Butler, J; Wisenberg, G; Prato, F

    2015-01-01

    Purpose: To identify the presence of low-dose radiation induced cardiac toxicity in a canine model using hybrid positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: Research ethics board approval was obtained for a longitudinal imaging study of 5 canines after cardiac irradiation. Animals were imaged at baseline, 1 week post cardiac irradiation, and 1 month post cardiac irradiation using a hybrid PET- MRI system (Biograph mMR, Siemens Healthcare). The imaging protocol was designed to assess acute changes in myocardial perfusion and inflammation. Myocardial perfusion imaging was performed using N13-ammonia tracer followed by a dynamic PET acquisition scan. A compartmental tracer kinetic model was used for absolute perfusion quantification. Myocardial inflammation imaging was performed using F18-fluorodeoxyglucose (FDG) tracer. The standard uptake value (SUV) over a region encompassing the whole heart was used to compare FDG scans. All animals received a simulation CT scan (GE Medical Systems) for radiation treatment planning. Radiation treatment plans were created using the Pinncale3 treatment planning system (Philips Radiation Oncology Systems) and designed to resemble the typical cardiac exposure during left-sided breast cancer radiotherapy. Cardiac irradiations were performed in a single fraction using a TrueBeam linear accelerator (Varian Medical Systems). Results: The delivered dose (mean ± standard deviation) to heart was 1.8±0.2 Gy. Reductions in myocardial stress perfusion relative to baseline were observed in 2 of the 5 animals 1 month post radiation. A global inflammatory response 1 month post radiation was observed in 4 of the 5 animals. The calculated SUV at 1 month post radiation was significantly higher (p=0.05) than the baseline SUV. Conclusion: Low doses of cardiac irradiation (< 2 Gy) may lead to myocardial perfusion defects and a global inflammatory response that can be detectable as early as 1 month post irradiation

  6. TU-G-BRA-08: BEST IN PHYSICS (JOINT IMAGING-THERAPY): Hybrid PET-MRI Imaging of Acute Radiation Induced Cardiac Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    El-Sherif, O; Xhaferllari, I; Gaede, S [Western Univeristy, London, ON (United Kingdom); London Regional Cancer Program, London, ON (United Kingdom); Sykes, J; Butler, J [Lawson Health Research Institute, London, ON (United Kingdom); Wisenberg, G; Prato, F [Western Univeristy, London, ON (United Kingdom); Lawson Health Research Institute, London, ON (United Kingdom)

    2015-06-15

    Purpose: To identify the presence of low-dose radiation induced cardiac toxicity in a canine model using hybrid positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: Research ethics board approval was obtained for a longitudinal imaging study of 5 canines after cardiac irradiation. Animals were imaged at baseline, 1 week post cardiac irradiation, and 1 month post cardiac irradiation using a hybrid PET- MRI system (Biograph mMR, Siemens Healthcare). The imaging protocol was designed to assess acute changes in myocardial perfusion and inflammation. Myocardial perfusion imaging was performed using N13-ammonia tracer followed by a dynamic PET acquisition scan. A compartmental tracer kinetic model was used for absolute perfusion quantification. Myocardial inflammation imaging was performed using F18-fluorodeoxyglucose (FDG) tracer. The standard uptake value (SUV) over a region encompassing the whole heart was used to compare FDG scans. All animals received a simulation CT scan (GE Medical Systems) for radiation treatment planning. Radiation treatment plans were created using the Pinncale3 treatment planning system (Philips Radiation Oncology Systems) and designed to resemble the typical cardiac exposure during left-sided breast cancer radiotherapy. Cardiac irradiations were performed in a single fraction using a TrueBeam linear accelerator (Varian Medical Systems). Results: The delivered dose (mean ± standard deviation) to heart was 1.8±0.2 Gy. Reductions in myocardial stress perfusion relative to baseline were observed in 2 of the 5 animals 1 month post radiation. A global inflammatory response 1 month post radiation was observed in 4 of the 5 animals. The calculated SUV at 1 month post radiation was significantly higher (p=0.05) than the baseline SUV. Conclusion: Low doses of cardiac irradiation (< 2 Gy) may lead to myocardial perfusion defects and a global inflammatory response that can be detectable as early as 1 month post irradiation

  7. Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jaernum, Hanna; Steffensen, Elena G.; Simonsen, Carsten Wiberg; Jensen, Finn Taagehoej [Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark); Knutsson, Linda [Lund University, Department of Medical Radiation Physics, Lund (Sweden); Fruend, Ernst-Torben [Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark); GE Healthcare - Applied Science Lab Europe, Aalborg (Denmark); Lundbye-Christensen, Soeren [Aalborg Hospital/Aarhus University Hospital, Department of Cardiology, Center for Cardiovascular Research, Aalborg (Denmark); Shankaranarayanan, Ajit [Global Applied Science Lab, GE Healthcare, Menlo Park, CA (United States); Alsop, David C. [Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (United States); Larsson, Elna-Marie [Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark); Uppsala University Hospital, Department of Radiology, Uppsala (Sweden)

    2010-04-15

    The purpose of this study was to compare the non-invasive 3D pseudo-continuous arterial spin labelling (PC ASL) technique with the clinically established dynamic susceptibility contrast perfusion magnetic resonance imaging (DSC-MRI) for evaluation of brain tumours. A prospective study of 28 patients with contrast-enhancing brain tumours was performed at 3 T using DSC-MRI and PC ASL with whole-brain coverage. The visual qualitative evaluation of signal enhancement in tumour was scored from 0 to 3 (0 = no signal enhancement compared with white matter, 3 = pronounced signal enhancement with equal or higher signal intensity than in grey matter/basal ganglia). The extent of susceptibility artefacts in the tumour was scored from 0 to 2 (0 = no susceptibility artefacts and 2 = extensive susceptibility artefacts (maximum diameter > 2 cm)). A quantitative analysis was performed with normalised tumour blood flow values (ASL nTBF, DSC nTBF): mean value for region of interest (ROI) in an area with maximum signal enhancement/the mean value for ROIs in cerebellum. There was no difference in total visual score for signal enhancement between PC ASL and DSC relative cerebral blood flow (p = 0.12). ASL had a lower susceptibility-artefact score than DSC-MRI (p = 0.03). There was good correlation between DSC nTBF and ASL nTBF values with a correlation coefficient of 0.82. PC ASL is an alternative to DSC-MRI for the evaluation of perfusion in brain tumours. The method has fewer susceptibility artefacts than DSC-MRI and can be used in patients with renal failure because no contrast injection is needed. (orig.)

  8. Ex-PRESS glaucoma filter: an MRI compatible metallic orbital foreign body imaged at 1.5 and 3 T

    International Nuclear Information System (INIS)

    Mabray, M.C.; Uzelac, A.; Talbott, J.F.; Lin, S.C.; Gean, A.D.

    2015-01-01

    Aim: To report on the MRI compatibility of the Ex-PRESS glaucoma filtration device, a tiny metallic implant placed into the anterior chamber of the eye that is much smaller than traditional glaucoma shunts, and to educate the radiology community regarding its appearance. Materials and methods: Seven patients with Ex-PRESS glaucoma filtration devices were identified that had undergone MRI at San Francisco General Hospital/University of California San Francisco Medical Center by searching and cross-referencing the radiology reporting system and the electronic medical record. MRI images were reviewed for artefact interfering with interpretation. Ophthalmology examinations were reviewed for evidence of complications. Results: Eighteen individual MRI examinations were performed during 12 unique MRI events on these 7 patients. 13/18 individual MRI examinations and 7/12 MRI events were performed at 3 T with the others performed at 1.5 T. Mean time from Ex-PRESS implantation to MRI was 17.5 months. Mean time from MRI to first ophthalmology examination was 1.1 months and from MRI to latest ophthalmology examination was 6.6 months. Susceptibility artefact did not interfere with image interpretation and no complications related to MRI were encountered. Conclusion: The Ex-PRESS glaucoma filtration device appears to be safe for MRI at 1.5 and 3 T and does not produce significant susceptibility artefact to affect diagnostic interpretation adversely. - Highlights: • The Ex-PRESS glaucoma filtration device is a tiny metallic orbital implant. • It can simulate a metallic orbital foreign body on imaging. • There is little information in the literature about it's MRI safety. • We report 18 MRIs performed on 7 patients including the first at 3 T. • Imaging appears to be safe at 1.5 and 3 T in patients with this device

  9. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging of bone marrow in healthy individuals

    Energy Technology Data Exchange (ETDEWEB)

    Hillengass, Jens (Dept. of Radiology, German Cancer Research Center, Heidelberg (Germany); Dept. of Hematology, Oncology and Rheumatology, Univ. of Heidelberg (Germany)), e-mail: j.hillengass@dkfz.de; Stieltjes, Bram (Dept. of Radiology, German Cancer Research Center, Heidelberg (Germany)); Baeuerle, Tobias (Dept. of Medical Physics in Radiology, German Cancer Research Center, Heidelberg (Germany)) (and others)

    2011-04-15

    Background: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) displays microcirculation and permeability by application of contrast-media and diffusion-weighted imaging (DWI) is a tool for quantification of cellularity in the investigated area. Recently published examples cover breast cancer, CNS tumors, head and neck cancer, gastrointestinal cancer, prostate cancer as well as hematologic malignancies. Purpose: To investigated the influence of age, sex, and localization of the investigated region on findings of DCE-MRI and DWI. Material and Methods: DCE-MRI-parameters amplitude A and exchange rate constant kep as well as the DWI-parameter ADC of the bone marrow of the lumbar vertebral column of 30 healthy individuals covering the typical range of age of tumor patients were evaluated. ADC was calculated using b=0 and a maximal b value of either 400 or 750 s/mm2. Results: Amplitude A of DCE-MRI decreased with age (P = 0.01) and amplitude A, exchange rate constant kep as well as ADC based on b = 400 s/mm2 and b = 750 s/mm2, respectively, decreased significantly from the first to the fifth lumbar vertebra with P = 0.02, P = 0.05, P = 0.003, and P = 0.002, respectively. Conclusion: Quantitative parameters of functional imaging techniques in bone marrow are influenced by the age of the examined individual and the anatomical location of the investigated region

  10. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging of bone marrow in healthy individuals

    International Nuclear Information System (INIS)

    Hillengass, Jens; Stieltjes, Bram; Baeuerle, Tobias

    2011-01-01

    Background: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) displays microcirculation and permeability by application of contrast-media and diffusion-weighted imaging (DWI) is a tool for quantification of cellularity in the investigated area. Recently published examples cover breast cancer, CNS tumors, head and neck cancer, gastrointestinal cancer, prostate cancer as well as hematologic malignancies. Purpose: To investigated the influence of age, sex, and localization of the investigated region on findings of DCE-MRI and DWI. Material and Methods: DCE-MRI-parameters amplitude A and exchange rate constant kep as well as the DWI-parameter ADC of the bone marrow of the lumbar vertebral column of 30 healthy individuals covering the typical range of age of tumor patients were evaluated. ADC was calculated using b=0 and a maximal b value of either 400 or 750 s/mm2. Results: Amplitude A of DCE-MRI decreased with age (P = 0.01) and amplitude A, exchange rate constant kep as well as ADC based on b = 400 s/mm 2 and b = 750 s/mm 2 , respectively, decreased significantly from the first to the fifth lumbar vertebra with P = 0.02, P = 0.05, P = 0.003, and P = 0.002, respectively. Conclusion: Quantitative parameters of functional imaging techniques in bone marrow are influenced by the age of the examined individual and the anatomical location of the investigated region

  11. The usefulness of magnetic resonance imaging (MRI) in cervical carcinoma assessment - a preliminary report

    International Nuclear Information System (INIS)

    Tacikowska, M.; Grzesiakowska, U.; Tacikowski, T.; Sobiczewski, P.

    2002-01-01

    The aim of diagnostic imaging is not so much the detection of cervical carcinoma, but the evaluation of its stage. In view of this the aim of this study included: 1) comparison of MR results with the results of histological examinations after operations with reference to the dimensions of cervical carcinoma; 2) assessment of the sensitivity and specificity of MRl in the evaluation of parametrium infiltration; 3) analysis of the sensitivity and specificity of MRI in the evaluation of infiltration of the vagina and uterus; 4) assessment of the usefulness of this method in the detection of metastases to lymph nodes.The material consisted of pelvic MRI, obtained with 2T Elscint unit in 15 patients with cervical carcinoma, aged 37 to 73 years. All patients underwent surgical treatment within 30 days after MR. During the MR examination the following sequences were performed: SE (spin echo) T1 (longitudinal relaxation time) in axial projection before administration of gadolinium (Gd-DTPA); SE T1 in axial, frontal and sagittal projections after contrast injection and FSE (fast spin echo) T2 (transversal relaxation time) in axial, frontal and sagittal projections.1) in the assessment of cervical carcinoma dimensions MRI results are highly concordant with the results of postoperative histological examination (p = 0. 9389); 2) in the assessment of parametrium infiltration sensitivity and specificity of MRI are 75% and 100%, respectively; 3) in the assessment of the infiltration of the vagina and uterine corpus the sensitivity and specificity of MRI imaging were respectively 100% and 85%; 100% and 100%; 4) in the detection of lymph node metastases MRI sensitivity was 67% and its specificity 100%. In patients with cervical carcinoma MRI is a valuable method for the assessment of tumour dimensions, parametrium infiltration, infiltration of the vagina and uterine corpus.(author)

  12. Standard high-resolution pelvic MRI vs. low-resolution pelvic MRI in the evaluation of deep infiltrating endometriosis

    International Nuclear Information System (INIS)

    Scardapane, Arnaldo; Lorusso, Filomenamila; Ferrante, Annunziata; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe; Scioscia, Marco

    2014-01-01

    To compare the capabilities of standard pelvic MRI with low-resolution pelvic MRI using fast breath-hold sequences to evaluate deep infiltrating endometriosis (DIE). Sixty-eight consecutive women with suspected DIE were studied with pelvic MRI. A double-acquisition protocol was carried out in each case. High-resolution (HR)-MRI consisted of axial, sagittal, and coronal TSE T2W images, axial TSE T1W, and axial THRIVE. Low-resolution (LR)-MRI was acquired using fast single shot (SSH) T2 and T1 images. Two radiologists with 10 and 2 years of experience reviewed HR and LR images in two separate sessions. The presence of endometriotic lesions of the uterosacral ligament (USL), rectovaginal septum (RVS), pouch of Douglas (POD), and rectal wall was noted. The accuracies of LR-MRI and HR-MRI were compared with the laparoscopic and histopathological findings. Average acquisition times were 24 minutes for HR-MRI and 7 minutes for LR-MRI. The more experienced radiologist achieved higher accuracy with both HR-MRI and LR-MRI. The values of sensitivity, specificity, PPV, NPV, and accuracy did not significantly change between HR and LR images or interobserver agreement for all of the considered anatomic sites. LR-MRI performs as well as HR-MRI and is a valuable tool for the detection of deep endometriosis extension. (orig.)

  13. Standard high-resolution pelvic MRI vs. low-resolution pelvic MRI in the evaluation of deep infiltrating endometriosis

    Energy Technology Data Exchange (ETDEWEB)

    Scardapane, Arnaldo; Lorusso, Filomenamila; Ferrante, Annunziata; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe [University Hospital ' ' Policlinico' ' of Bari, Interdisciplinary Department of Medicine, Bari (Italy); Scioscia, Marco [Sacro Cuore Don Calabria General Hospital, Department of Obstetrics and Gynecology, Negrar, Verona (Italy)

    2014-10-15

    To compare the capabilities of standard pelvic MRI with low-resolution pelvic MRI using fast breath-hold sequences to evaluate deep infiltrating endometriosis (DIE). Sixty-eight consecutive women with suspected DIE were studied with pelvic MRI. A double-acquisition protocol was carried out in each case. High-resolution (HR)-MRI consisted of axial, sagittal, and coronal TSE T2W images, axial TSE T1W, and axial THRIVE. Low-resolution (LR)-MRI was acquired using fast single shot (SSH) T2 and T1 images. Two radiologists with 10 and 2 years of experience reviewed HR and LR images in two separate sessions. The presence of endometriotic lesions of the uterosacral ligament (USL), rectovaginal septum (RVS), pouch of Douglas (POD), and rectal wall was noted. The accuracies of LR-MRI and HR-MRI were compared with the laparoscopic and histopathological findings. Average acquisition times were 24 minutes for HR-MRI and 7 minutes for LR-MRI. The more experienced radiologist achieved higher accuracy with both HR-MRI and LR-MRI. The values of sensitivity, specificity, PPV, NPV, and accuracy did not significantly change between HR and LR images or interobserver agreement for all of the considered anatomic sites. LR-MRI performs as well as HR-MRI and is a valuable tool for the detection of deep endometriosis extension. (orig.)

  14. Functional Topography of Human Corpus Callosum: An fMRI Mapping Study

    OpenAIRE

    Fabri, Mara; Polonara, Gabriele

    2013-01-01

    The concept of a topographical map of the corpus callosum (CC) has emerged from human lesion studies and from electrophysiological and anatomical tracing investigations in other mammals. Over the last few years a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI) activation in white matter, particularly the CC. In this study the scope for describing CC topography with fMRI was explored by evoking activation through simple sensory stimulation and moto...

  15. Can the Diagnostics of Triangular Fibrocartilage Complex Lesions Be Improved by MRI-Based Soft-Tissue Reconstruction? An Imaging-Based Workup and Case Presentation.

    Science.gov (United States)

    Hammer, Niels; Hirschfeld, Ulrich; Strunz, Hendrik; Werner, Michael; Wolfskämpf, Thomas; Löffler, Sabine

    2017-01-01

    Introduction . The triangular fibrocartilage complex (TFCC) provides both mobility and stability of the radiocarpal joint. TFCC lesions are difficult to diagnose due to the complex anatomy. The standard treatment for TFCC lesions is arthroscopy, posing surgery-related risks onto the patients. This feasibility study aimed at developing a workup for soft-tissue reconstruction using clinical imaging, to verify these results in retrospective patient data. Methods . Microcomputed tomography ( μ -CT), 3 T magnetic resonance imaging (MRI), and plastination were used to visualize the TFCC in cadaveric specimens applying segmentation-based 3D reconstruction. This approach further trialed the MRI dataset of a patient with minor radiological TFCC alterations but persistent pain. Results . TFCC reconstruction was impossible using μ -CT only but feasible using MRI, resulting in an appreciation of its substructures, as seen in the plastinates. Applying this approach allowed for visualizing a Palmer 2C lesion in a patient, confirming ex postum the arthroscopy findings, being markedly different from MRI (Palmer 1B). Discussion . This preliminary study showed that image-based TFCC reconstruction may help to identify pathologies invisible in standard MRI. The combined approach of μ -CT, MRI, and plastination allowed for a three-dimensional appreciation of the TFCC. Image quality and time expenditure limit the approach's usefulness as a diagnostic tool.

  16. Bold-Independent Computational Entropy Assesses Functional Donut-Like Structures in Brain fMRI Images.

    Science.gov (United States)

    Peters, James F; Ramanna, Sheela; Tozzi, Arturo; İnan, Ebubekir

    2017-01-01

    We introduce a novel method for the measurement of information level in fMRI (functional Magnetic Resonance Imaging) neural data sets, based on image subdivision in small polygons equipped with different entropic content. We show how this method, called maximal nucleus clustering (MNC), is a novel, fast and inexpensive image-analysis technique, independent from the standard blood-oxygen-level dependent signals. MNC facilitates the objective detection of hidden temporal patterns of entropy/information in zones of fMRI images generally not taken into account by the subjective standpoint of the observer. This approach befits the geometric character of fMRIs. The main purpose of this study is to provide a computable framework for fMRI that not only facilitates analyses, but also provides an easily decipherable visualization of structures. This framework commands attention because it is easily implemented using conventional software systems. In order to evaluate the potential applications of MNC, we looked for the presence of a fourth dimension's distinctive hallmarks in a temporal sequence of 2D images taken during spontaneous brain activity. Indeed, recent findings suggest that several brain activities, such as mind-wandering and memory retrieval, might take place in the functional space of a four dimensional hypersphere, which is a double donut-like structure undetectable in the usual three dimensions. We found that the Rényi entropy is higher in MNC areas than in the surrounding ones, and that these temporal patterns closely resemble the trajectories predicted by the possible presence of a hypersphere in the brain.

  17. Image artifacts from MR-based attenuation correction in clinical, whole-body PET/MRI

    DEFF Research Database (Denmark)

    Keller, Sune H; Holm, Søren; Hansen, Adam E

    2013-01-01

    Integrated whole-body PET/MRI tomographs have become available. PET/MR imaging has the potential to supplement, or even replace combined PET/CT imaging in selected clinical indications. However, this is true only if methodological pitfalls and image artifacts arising from novel MR-based attenuation...

  18. Imaging performance of a dedicated radiation transparent RF coil on a 1.0 Tesla inline MRI-linac.

    Science.gov (United States)

    Liney, Gary P; Dong, Bin; Weber, Ewald; Rai, Robba; Destruel, Aurelien; Garcia-Alvarez, Roberto; Manton, David; Jelen, Urszula; Zhang, Kevin; Barton, Michael; Keall, Paul J; Crozier, Stuart

    2018-05-25

    This work describes the first imaging studies on a 1.0 Tesla inline MRI-Linac using a dedicated transmit/receive RF body coil that has been designed to be completely radio transparent and provide optimum imaging performance over a large patient opening. Methods: A series of experiments was performed on the MRI-Linac to investigate the performance and imaging characteristics of a new dedicated volumetric RF coil: (1) numerical electromagnetic simulations were used to measure transmit efficiency in two patient positions; (2) image quality metrics of signal-to-noise ratio (SNR), ghosting and uniformity were assessed in a large diameter phantom with no radiation beam; (3) radiation induced effects were investigated in both the raw data (k-space) and image sequences acquired with simultaneous irradiation; (4) radiation dose was measured with and without image acquisition; (5) RF heating was studied using an MR-compatible fluoroptic thermometer and; (6) the in vivo image quality and versatility of the coil was demonstrated in normal healthy subjects for both supine and standing positions. Results: Daily phantom measurements demonstrated excellent imaging performance with stable SNR over a period of 3 months (42.6 ± 0.9). Simultaneous irradiation produced no statistical change in image quality (p>0.74) and no interference in raw data for a 20  20 cm radiation field. The coil was found to be efficient over large volumes and negligible RF heating was observed. Volunteer scans acquired in both supine and standing positions provided artefact free images with good anatomical visualisation. Conclusions: The first completely radio transparent RF coil for use on a 1.0 Tesla MRI-Linac has been described. There is no impact on either the imaging or dosimetry performance with a simultaneous radiation beam. The open design enables imaging and radiotherapy guidance in a variety of positons. . © 2018 Institute of Physics and Engineering in Medicine.

  19. Motor function deficits in schizophrenia: an fMRI and VBM study

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sadhana; Modi, Shilpi; Kumar, Pawan; Singh, Namita; Khushu, Subash [Institute of Nuclear Medicine and Allied Sciences (INMAS), NMR Research Center, Delhi (India); Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N. [RML Hospital, PGIMER, New Delhi (India)

    2014-05-15

    To investigate whether the motor functional alterations in schizophrenia (SZ) are also associated with structural changes in the related brain areas using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 right-handed SZ patients and 14 right-handed healthy control subjects matched for age, sex, and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during right index finger-tapping task in the same session. fMRI results showed reduced functional activation in the motor areas (contralateral precentral and postcentral gyrus) and ipsilateral cerebellum in SZ subjects as compared to healthy controls (n = 14). VBM analysis also revealed reduced grey matter in motor areas and white matter reduction in cerebellum of SZ subjects as compared to controls. The present study provides an evidence for a possible association between structural alterations in the motor cortex and disturbed functional activation in the motor areas in persons affected with SZ during a simple finger-tapping task. (orig.)

  20. Motor function deficits in schizophrenia: an fMRI and VBM study

    International Nuclear Information System (INIS)

    Singh, Sadhana; Modi, Shilpi; Kumar, Pawan; Singh, Namita; Khushu, Subash; Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N.

    2014-01-01

    To investigate whether the motor functional alterations in schizophrenia (SZ) are also associated with structural changes in the related brain areas using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 right-handed SZ patients and 14 right-handed healthy control subjects matched for age, sex, and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during right index finger-tapping task in the same session. fMRI results showed reduced functional activation in the motor areas (contralateral precentral and postcentral gyrus) and ipsilateral cerebellum in SZ subjects as compared to healthy controls (n = 14). VBM analysis also revealed reduced grey matter in motor areas and white matter reduction in cerebellum of SZ subjects as compared to controls. The present study provides an evidence for a possible association between structural alterations in the motor cortex and disturbed functional activation in the motor areas in persons affected with SZ during a simple finger-tapping task. (orig.)

  1. Functional MRI in pre-surgical planning: Case study and cautionary notes

    Directory of Open Access Journals (Sweden)

    Bruce S Spottiswoode

    2012-09-01

    Full Text Available Background. Since its inception almost 20 years ago, functional magnetic resonance imaging (fMRI has greatly advanced our knowledge of human brain function. Although the clinical applications of fMRI are still limited, there have recently been encouraging advances for its use in pre-operative functional cortical mapping to identify potentially eloquent areas prior to neurosurgery. Objectives. We explore the potential use of this emerging technique by presenting a neurosurgical case study, as performed at the Cape Universities Brain Imaging Centre (CUBIC, Tygerberg, Cape Town. We conclude with a brief summary of the potential pitfalls of this technique, as well as cautionary guidelines based on our experience. Methods and results. A 22-year-old male patient from Tygerberg Hospital underwent the successful resection of an anaplastic astrocytoma after fMRI presurgical planning at our facility. The subject was able to leave the ward unassisted. Conclusion. If consideration is given to the many limitations of this emerging technique, fMRI can be useful in aiding the neurosurgeon in pre-operative planning of his surgical approach.

  2. Abnormal findings of magnetic resonance imaging (MRI) in patients with systemic lupus erythematosus involving the brain

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Akira; Okada, Jun; Kondo, Hirobumi (Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Medicine); Kashiwazaki, Sadao

    1992-06-01

    To elucidate the clinical significance of MRI on central nervous system systemic lupus erythematosus (CNS-SLE), MRI and CT scans were performed in 35 patients with SLE, of 18 patients who had CNS manifestations at the time of MRI examinations. The investigations were also carried out in 17 patients without CNS-SLE. The rate of detection of abnormal findings on MRI in patients with CNS-SLE was 77.2% (14/18), which was high, as compared with the rate of those on CT scans (50%: 9/18). Especially, all of 4 patients with seizure and 3 patients with encephalopathy showed abnormal MRI findings, although respectively 50% and 33.3% of them had abnormal CT scan findings. MRI findings were classified into 4 groups below: (1) Large focal are as increased signal intensity at T2 weighted image. These were observed in 2 of 4 patients with seizure and 1 of 3 patients with encephalopathy, which were completely resolved after treatment. (2) Patchy subcortical foci of increased signal intensity at T2 weighted image. These were observed in 11 of 18 CNS-SLE and 7 of 17 without CNS-SLE, which were not detected by CT scan. (3) All of six patients with cerebral infarctions showed high signal intensity areas at T2 weighted image and low signal intensity areas at T1 weighted image. (4) Normal findings were observed in 4 of 18 CNS-SLE (22.2%). We concluded that MRI is useful for the evaluation of CNS-SLE and provides more information than CT scan. (author).

  3. Abnormal findings of magnetic resonance imaging (MRI) in patients with systemic lupus erythematosus involving the brain

    International Nuclear Information System (INIS)

    Ishikawa, Akira; Okada, Jun; Kondo, Hirobumi; Kashiwazaki, Sadao.

    1992-01-01

    To elucidate the clinical significance of MRI on central nervous system systemic lupus erythematosus (CNS-SLE), MRI and CT scans were performed in 35 patients with SLE, of 18 patients who had CNS manifestations at the time of MRI examinations. The investigations were also carried out in 17 patients without CNS-SLE. The rate of detection of abnormal findings on MRI in patients with CNS-SLE was 77.2% (14/18), which was high, as compared with the rate of those on CT scans (50%: 9/18). Especially, all of 4 patients with seizure and 3 patients with encephalopathy showed abnormal MRI findings, although respectively 50% and 33.3% of them had abnormal CT scan findings. MRI findings were classified into 4 groups below: 1) Large focal are as increased signal intensity at T2 weighted image. These were observed in 2 of 4 patients with seizure and 1 of 3 patients with encephalopathy, which were completely resolved after treatment. 2) Patchy subcortical foci of increased signal intensity at T2 weighted image. These were observed in 11 of 18 CNS-SLE and 7 of 17 without CNS-SLE, which were not detected by CT scan. 3) All of six patients with cerebral infarctions showed high signal intensity areas at T2 weighted image and low signal intensity areas at T1 weighted image. 4) Normal findings were observed in 4 of 18 CNS-SLE (22.2%). We concluded that MRI is useful for the evaluation of CNS-SLE and provides more information than CT scan. (author)

  4. The role of advanced imaging techniques in cystic fibrosis follow-up: is there a place for MRI?

    Energy Technology Data Exchange (ETDEWEB)

    Puderbach, Michael; Eichinger, Monika [German Cancer Research Center (DKFZ), Department of Radiology, Heidelberg (Germany)

    2010-06-15

    Cystic fibrosis (CF) lung disease is caused by mutations in the CFTR-gene and remains one of the most frequent lethal inherited diseases in the Caucasian population. Given the progress in CF therapy and the consecutive improvement in prognosis, monitoring of disease progression and effectiveness of therapeutic interventions with repeated imaging of the CF lung plays an increasingly important role. So far, the chest radiograph has been the most widely used imaging modality to monitor morphological changes in the CF lung. CT is the gold standard for assessment of morphological changes of airways and lung parenchyma. Considering the necessity of life-long repeated imaging studies, the cumulative radiation doses reached with CT is problematic for CF patients. A sensitive, non-invasive and quantitative technique without radiation exposure is warranted for monitoring of disease activity. In previous studies, MRI proved to be comparable to CT regarding the detection of morphological changes in the CF lung without using ionising radiation. Furthermore, MRI was shown to be superior to CT regarding assessment of functional changes of the lung. This review presents the typical morphological and functional MR imaging findings with respect to MR-based follow-up of CF lung disease. MRI offers a variety of techniques for morphological and functional imaging of the CF lung. Using this radiation free technique short- and long-term follow-up studies are possible enabling an individualised guidance of the therapy. (orig.)

  5. The role of advanced imaging techniques in cystic fibrosis follow-up: is there a place for MRI?

    International Nuclear Information System (INIS)

    Puderbach, Michael; Eichinger, Monika

    2010-01-01

    Cystic fibrosis (CF) lung disease is caused by mutations in the CFTR-gene and remains one of the most frequent lethal inherited diseases in the Caucasian population. Given the progress in CF therapy and the consecutive improvement in prognosis, monitoring of disease progression and effectiveness of therapeutic interventions with repeated imaging of the CF lung plays an increasingly important role. So far, the chest radiograph has been the most widely used imaging modality to monitor morphological changes in the CF lung. CT is the gold standard for assessment of morphological changes of airways and lung parenchyma. Considering the necessity of life-long repeated imaging studies, the cumulative radiation doses reached with CT is problematic for CF patients. A sensitive, non-invasive and quantitative technique without radiation exposure is warranted for monitoring of disease activity. In previous studies, MRI proved to be comparable to CT regarding the detection of morphological changes in the CF lung without using ionising radiation. Furthermore, MRI was shown to be superior to CT regarding assessment of functional changes of the lung. This review presents the typical morphological and functional MR imaging findings with respect to MR-based follow-up of CF lung disease. MRI offers a variety of techniques for morphological and functional imaging of the CF lung. Using this radiation free technique short- and long-term follow-up studies are possible enabling an individualised guidance of the therapy. (orig.)

  6. Brain correlates of aesthetic expertise: A parametric fMRI study

    DEFF Research Database (Denmark)

    Kirk, Ulrich; Skov, Martin; Christensen, Mark Schram

    2009-01-01

    Several studies have demonstrated that acquired expertise influences aesthetic judgments. In this paradigm we used functional magnetic resonance imaging (fMRI) to study aesthetic judgments of visually presented architectural stimuli and control-stimuli (faces) for a group of architects and a grou...

  7. Real-time functional MR imaging (fMRI) for presurgical evaluation of paediatric epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kesavadas, Chandrasekharan; Thomas, Bejoy; Kumar Gupta, Arun [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Imaging Sciences and Interventional Radiology, Trivandrum (India); Sujesh, Sreedharan [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Trivandrum (India); Ashalata, Radhakrishnan; Radhakrishnan, Kurupath [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Neurology, Trivandrum (India); Abraham, Mathew [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Neurosurgery, Trivandrum (India)

    2007-10-15

    The role of fMRI in the presurgical evaluation of children with intractable epilepsy is being increasingly recognized. Real-time fMRI allows the clinician to visualize functional brain activation in real time. Since there is no off-line data analysis as in conventional fMRI, the overall time for the procedure is reduced, making it clinically feasible in a busy clinical sitting. (1) To study the accuracy of real-time fMRI in comparison to conventional fMRI with off-line processing; (2) to determine its effectiveness in mapping the eloquent cortex and language lateralization in comparison to invasive procedures such as intraoperative cortical stimulation and Wada testing; and (3) to evaluate the role of fMRI in presurgical decision making in children with epilepsy. A total of 23 patients (age range 6-18 years) underwent fMRI with sensorimotor, visual and language paradigms. Data processing was done in real time using in-line BOLD. The results of real-time fMRI matched those of off-line processing done using the well-accepted standard technique of statistical parametric mapping (SPM) in all the initial ten patients in whom the two techniques were compared. Coregistration of the fMRI data on a 3-D FLAIR sequence rather than a T1-weighted image gave better information regarding the relationship of the lesion to the area of activation. The results of intraoperative cortical stimulation and fMRI matched in six out of six patients, while the Wada test and fMRI had similar results in four out of five patients in whom these techniques were performed. In the majority of patients in this series the technique influenced patient management. Real-time fMRI is an easily performed and reliable technique in the presurgical workup of children with epilepsy. (orig.)

  8. Real-time functional MR imaging (fMRI) for presurgical evaluation of paediatric epilepsy

    International Nuclear Information System (INIS)

    Kesavadas, Chandrasekharan; Thomas, Bejoy; Kumar Gupta, Arun; Sujesh, Sreedharan; Ashalata, Radhakrishnan; Radhakrishnan, Kurupath; Abraham, Mathew

    2007-01-01

    The role of fMRI in the presurgical evaluation of children with intractable epilepsy is being increasingly recognized. Real-time fMRI allows the clinician to visualize functional brain activation in real time. Since there is no off-line data analysis as in conventional fMRI, the overall time for the procedure is reduced, making it clinically feasible in a busy clinical sitting. (1) To study the accuracy of real-time fMRI in comparison to conventional fMRI with off-line processing; (2) to determine its effectiveness in mapping the eloquent cortex and language lateralization in comparison to invasive procedures such as intraoperative cortical stimulation and Wada testing; and (3) to evaluate the role of fMRI in presurgical decision making in children with epilepsy. A total of 23 patients (age range 6-18 years) underwent fMRI with sensorimotor, visual and language paradigms. Data processing was done in real time using in-line BOLD. The results of real-time fMRI matched those of off-line processing done using the well-accepted standard technique of statistical parametric mapping (SPM) in all the initial ten patients in whom the two techniques were compared. Coregistration of the fMRI data on a 3-D FLAIR sequence rather than a T1-weighted image gave better information regarding the relationship of the lesion to the area of activation. The results of intraoperative cortical stimulation and fMRI matched in six out of six patients, while the Wada test and fMRI had similar results in four out of five patients in whom these techniques were performed. In the majority of patients in this series the technique influenced patient management. Real-time fMRI is an easily performed and reliable technique in the presurgical workup of children with epilepsy. (orig.)

  9. Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT. Pt. 2

    International Nuclear Information System (INIS)

    Alt, Celine D.; Kauczor, Hans-Ulrich; Hallscheidt, Peter; Brocker, Kerstin A.; Eichbaum, Michael; Sohn, Christof; Arnegger, Florian U.

    2011-01-01

    To compose diagnostic standard operating procedures for both clinical and imaging assessment for vulvar and vaginal cancer, for vaginal sarcoma, and for ovarian cancer. The literature was reviewed for diagnosing the above mentioned malignancies in the female pelvis. Special focus herein lies in tumor representation in MRI, followed by the evaluation of CT and PET/CT for this topic. MRI is a useful additional diagnostic complement but by no means replaces established methods of gynecologic diagnostics and ultrasound. In fact, MRI is only implemented in the guidelines for vulvar cancer. According to the current literature, CT is still the cross-sectional imaging modality of choice for evaluating ovarian cancer. PET/CT appears to have advantages for staging and follow-up in sarcomas and cancers of the ovaries. (orig.)

  10. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    International Nuclear Information System (INIS)

    Ma, J; Son, J; Arun, B; Hazle, J; Hwang, K; Madewell, J; Yang, W; Dogan, B; Wang, K; Bayram, E

    2016-01-01

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a single acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol has the

  11. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J; Son, J; Arun, B; Hazle, J; Hwang, K; Madewell, J; Yang, W; Dogan, B [UT MD Anderson Cancer Center, Houston, TX (United States); Wang, K; Bayram, E [GE Healthcare Technologies, Waukesha, Wisconsin (United States)

    2016-06-15

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a single acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol has the

  12. Heroin-induced leukoencephalopathy: characterization using MRI, diffusion-weighted imaging, and MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Offiah, C. [Department of Neuroradiology, St Bartholomew' s and the London Hospitals NHS Trust, London (United Kingdom); Hall, E. [Department of Neuroradiology, St Bartholomew' s and the London Hospitals NHS Trust, London (United Kingdom)], E-mail: curtis.offiah@bartsandthelondon.nhs.uk

    2008-02-15

    Aim: To describe the magnetic resonance imaging (MRI) characteristics of heroin-induced leukoencephalopathy or 'chasing the dragon syndrome' and, in particular, the diffusion-weighted imaging (DWI) and MR spectroscopy (MRS) features. Material and methods: Six patients with a clinical or histopathological diagnosis of heroin-induced leukoencephalopathy were identified and MRI examinations, including DWI and single-voxel MRS, reviewed. Results: Cerebellar white matter was involved in all six cases demonstrating similar symmetrical distribution with sparing of the dentate nuclei. Brain stem signal change was evident in five of the six patients imaged. Supratentorial brain parenchymal involvement, as well as brain stem involvement, correlated anatomically with corticospinal tract distribution. None of the areas of signal abnormality were restricted on DWI. Of those patients subjected to MRS, the areas of parenchymal damage demonstrated reduced N-acetylaspartate, reduced choline, and elevated lactate. Conclusion: Heroin-induced leukoencephalopathy results in characteristic and highly specific signal abnormalities on MRI, which can greatly aid diagnosis. DWI and MRS findings can be explained by known reported neuropathological descriptions in this condition and can be used to support a proposed mechanism for the benefit of current recommended drug treatment regimes.

  13. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study

    OpenAIRE

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2015-01-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural high-resolution T1-weighted MRI; fMRI image...

  14. MRI of hip prostheses using single-point methods : in vitro studies towards the artifact-free imaging of individuals with metal implants

    NARCIS (Netherlands)

    Ramos Cabrer, P.; Duynhoven, van J.P.M.; Toorn, van der A.; Nicolaij, K.

    2004-01-01

    Use of magnetic resonance imaging (MRI) in individuals with orthopedic implants is limited because of the large distortions caused by metallic components. As a possible solution for this problem, we suggest the use of single-point imaging (SPI) methods, which are immune to the susceptibility

  15. Magnetic Resonance Fingerprinting - a promising new approach to obtain standardized imaging biomarkers from MRI.

    Science.gov (United States)

    2015-04-01

    Current routine MRI examinations rely on the acquisition of qualitative images that have a contrast "weighted" for a mixture of (magnetic) tissue properties. Recently, a novel approach was introduced, namely MR Fingerprinting (MRF) with a completely different approach to data acquisition, post-processing and visualization. Instead of using a repeated, serial acquisition of data for the characterization of individual parameters of interest, MRF uses a pseudo randomized acquisition that causes the signals from different tissues to have a unique signal evolution or 'fingerprint' that is simultaneously a function of the multiple material properties under investigation. The processing after acquisition involves a pattern recognition algorithm to match the fingerprints to a predefined dictionary of predicted signal evolutions. These can then be translated into quantitative maps of the magnetic parameters of interest. MR Fingerprinting (MRF) is a technique that could theoretically be applied to most traditional qualitative MRI methods and replaces them with acquisition of truly quantitative tissue measures. MRF is, thereby, expected to be much more accurate and reproducible than traditional MRI and should improve multi-center studies and significantly reduce reader bias when diagnostic imaging is performed. Key Points • MR fingerprinting (MRF) is a new approach to data acquisition, post-processing and visualization.• MRF provides highly accurate quantitative maps of T1, T2, proton density, diffusion.• MRF may offer multiparametric imaging with high reproducibility, and high potential for multicenter/ multivendor studies.

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... does not completely surround you. Some newer MRI machines have a larger diameter bore which can be ... size patients or patients with claustrophobia. Other MRI machines are open on the sides (open MRI). Open ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... information on the chemicals present in the body's cells, may also be performed during the MRI exam ... medically necessary. MRI may not always distinguish between cancer tissue and fluid, known as edema . MRI typically ...

  18. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... in the first three to four months of pregnancy unless the potential benefit from the MRI exam ... the MRI Safety page for more information about pregnancy and MRI. If you have claustrophobia (fear of ...

  19. Tactile and non-tactile sensory paradigms for fMRI and neurophysiologic studies in rodents

    OpenAIRE

    Sanganahalli, Basavaraju G.; Bailey, Christopher J.; Herman, Peter; Hyder, Fahmeed

    2009-01-01

    Functional magnetic resonance imaging (fMRI) has become a popular functional imaging tool for human studies. Future diagnostic use of fMRI depends, however, on a suitable neurophysiologic interpretation of the blood oxygenation level dependent (BOLD) signal change. This particular goal is best achieved in animal models primarily due to the invasive nature of other methods used and/or pharmacological agents applied to probe different nuances of neuronal (and glial) activity coupled to the BOLD...

  20. An experimental study on image findings of MRI and their pathomorphological basis in limb gunshot wound

    International Nuclear Information System (INIS)

    Leng Luqing; Gu Ming; Ke Zhenwu; Guo Qiaonan; Ma Zongli; Pan Chuanjing

    2004-01-01

    Objective: To observe the MRI findings of limb gunshot wound and investigate their pathomorphological basis through animal models. Methods: Sixteen mongrel dogs were divided into four groups randomly. The hind legs of dogs shot with handgun were undergone 0.5 T MRI scans at 5 h, 24 h, 48 h, and 72 h after wounded, respectively. The gross changes, HE staining light microscopic findings and MRI findings of wounds were observed. Results: Permanent tract was a zone of tissue defect. In the tract, blood of 5 h group's and pus of 24 h, 48 h, and 72 h groups showed T 1 WI hypointense signal and T 2 WI hyperintense signal. In contusion zone, the main pathological change was homogeneous coagulating necrosis of muscle fibers. MRI images showed irregular line, dot, or block T 1 WI isointense signal, T 2 WI hypointense signal, and no enhanced after Gd-DTPA injected in all groups. In concussion zone, the main pathological changes of 5 h group were edema, degeneration, and lysis of cells and lots of erythrocytes in the tissue interspace. Besides these, a large quantity of leucocytes and pus cells appeared, the lysis of degenerated cells near the contusion zone and the edema of such area, with passage of time, were more obviously in groups 24 h, 48 h, and 72 h. In MRI, concussion zone showed slightly hypointense T 1 WI signal, hyperintense T 2 WI, signal and T 2 WI signal got higher and the adjacent contusion zone got clearer with time pass. Concussion zone could be enhanced obviously. Conclusion: MRI can reflect the lesion of tissue in limb gunshot wound accurately during seventy-two hours after wound. The T 2 WI and contrast-enhanced T 1 WI are valuable. The special tissue-defect area, coagulating necrosis of cells, and large range injury of blood vessels and cells are the important pathomorphological basis which cause the MRI findings of gunshot wound different from normal trauma. (author)