WorldWideScience

Sample records for imaging instrument mimi

  1. iPhone App for Cassini's Magnetospheric Imaging Instrument (MIMI) Browse Products

    Science.gov (United States)

    Myers, H. Y.; Kusterer, M. B.; Mitchell, D. G.; Steele, R. J.; Vandegriff, J. D.

    2016-12-01

    We have created a mobile app on the iOS platform to view the years of browse plots from data collected by the MIMI instruments on Cassini. The focus of the app is to bring the browsing capabilities of the MIMI database to the touchscreen technologies that exist on mobile devices such as smartphones and tablets. Among the data products within the MIMI suite that are viewable through the app include the Energetic Neutral Atom (ENA) images and movies of Saturn taken with the Ion and Neutral Camera (INCA), and spectrograms and line plots from the LEMMS and CHEMS particle detectors. The release of this app also coincides with access to a number of MIMI data products previously not available to the public. We will unveil the features of the app and provide a working demo. The CassiniMIMI app will be available for free from Apple's iTunes Store. A sneak preview of some selection screens and a representative plot are shown in the separate image file.

  2. Android and iPhone Apps for Viewing Browse Plots from the Magnetospheric Imaging Instrument (MIMI) on Cassin

    Science.gov (United States)

    Vandegriff, J. D.; Kusterer, M. B.; Byun, S.; Steele, R. J.; Mitchell, D. G.

    2017-12-01

    We present a new mobile app for Android and an existing app for iPhone, both capable of viewing the numerous browse plots available for data collected by the MIMI suite on NASA's Cassini spacecraft. Both apps allow convenient mobile access to pre-made plots of data from various instruments on the suite, including daily, and monthly plots of particle intensities (line plots and spectrograms) from LEMMS, CHEMS and INCA. Also, the apps can show short movies made from sequences of INCA neutral atom images. Browsing the plots or movies is as simple as swiping to the left or right, and the app hides all access details needed to finding the images. Note that the app requires a data connection, since it locates and downloads the plot files live from various instrument team servers. We will demonstrate the current versions of both apps, which are available in Apple's App Store and the Google Play Store.

  3. CASSINI E/J/S/SW MIMI INCA SENSOR UNCALIBRATED DATA V1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cassini Magnetospheric Imaging Instrument(MIMI) Imaging Neutral Camera (INCA) uncalibrated data set includes all data collected from the MIMI Data Processing...

  4. CASSINI E/J/S/SW MIMI INCA SENSOR UNCALIBRATED DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cassini Magnetospheric Imaging Instrument(MIMI) Imaging Neutral Camera (INCA) uncalibrated data set includes all data collected from the MIMI Data Processing...

  5. CASSINI E/J/S/SW MIMI CHEMS SENSOR UNCALIBRATED DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cassini Magnetospheric Imaging Instrument(MIMI) Charge Energy Mass Spectrometer (CHEMS) uncalibrated data set includes all data collected from the MIMI Data...

  6. CASSINI E/J/S/SW MIMI CHEMS SENSOR UNCALIBRATED DATA V1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cassini Magnetospheric Imaging Instrument(MIMI) Charge Energy Mass Spectrometer (CHEMS) uncalibrated data set includes all data collected from the MIMI Data...

  7. CASSINI E/J/S/SW MIMI LEMMS SENSOR UNCALIBRATED DATA V1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cassini Magnetospheric Imaging Instrument(MIMI) Low Energy Magnetospheric Measurement System (LEMMS) uncalibrated data set includes all data collected from the...

  8. CASSINI E/J/S/SW MIMI LEMMS SENSOR UNCALIBRATED DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cassini Magnetospheric Imaging Instrument(MIMI) Low Energy Magnetospheric Measurement System (LEMMS) uncalibrated data set includes all data collected from the...

  9. Mimi's Moms

    Science.gov (United States)

    Kilman, Carrie

    2013-01-01

    Before Michelle Hatchell and her partner, Liz, sent their child, Mimi, to school for the first time, the family sat down and created a script. "What can you say," Hatchell prompted, "if someone asks if you have two moms?" They sent Mimi's teacher picture books depicting families with two mothers. And they met with the principal, requesting Mimi be…

  10. CASSINI S MIMI CHEMS SENSOR CALIBRATED DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cassini Magnetospheric Imaging Instrument(MIMI) Charge Energy Mass Spectrometer (CHEMS) contains a deflection system and an overall field of view of 159 x 4 deg....

  11. Medical Image Data and Datasets in the Era of Machine Learning-Whitepaper from the 2016 C-MIMI Meeting Dataset Session.

    Science.gov (United States)

    Kohli, Marc D; Summers, Ronald M; Geis, J Raymond

    2017-08-01

    At the first annual Conference on Machine Intelligence in Medical Imaging (C-MIMI), held in September 2016, a conference session on medical image data and datasets for machine learning identified multiple issues. The common theme from attendees was that everyone participating in medical image evaluation with machine learning is data starved. There is an urgent need to find better ways to collect, annotate, and reuse medical imaging data. Unique domain issues with medical image datasets require further study, development, and dissemination of best practices and standards, and a coordinated effort among medical imaging domain experts, medical imaging informaticists, government and industry data scientists, and interested commercial, academic, and government entities. High-level attributes of reusable medical image datasets suitable to train, test, validate, verify, and regulate ML products should be better described. NIH and other government agencies should promote and, where applicable, enforce, access to medical image datasets. We should improve communication among medical imaging domain experts, medical imaging informaticists, academic clinical and basic science researchers, government and industry data scientists, and interested commercial entities.

  12. Cassini MIMI Close-Up of Saturn Energetic Particles: Low Altitude Trapped Radiation, Auroral Ion Acceleration, and Interchange Flow Channels

    Science.gov (United States)

    Mitchell, D. G.; Krimigis, S. M.; Krupp, N.; Paranicas, C.; Roussos, E.; Kollmann, P.

    2017-12-01

    We present observations from the final orbits of the Cassini Mission at Saturn by the Magnetospheric Imaging Instrument (MIMI). Crossing inside the D-Ring at the equator and just above Saturn's atmosphere, these orbits covered regions never visited previously in the mission. Highlights include the confirmation of an inner radiation belt analogous to the inner radiation belt at Earth by the Low Energy Magnetospheric Measurement System (LEMMS), with surprising twists—Saturn's D-ring material appears to be a source for these particles. Details will be presented in another session. The Grand Finale orbits also afforded a close-up view of the auroral ion acceleration regions by the Ion and Neutral Camera (INCA). Ionospheric ions at the base of auroral field lines are accelerated perpendicular to the magnetic field to 10's and 100's of keV, and charge exchange with exospheric neutrals to be emitted as energetic neutral atoms and images by INCA. We show that this acceleration region lies at about 0.1 Rs. Another feature seen previously in the mission but imaged with greater resolution is a flow channel associated with interchange motion in the middle magnetosphere. We show this feature to extend over several Saturn radii in the radial direction, and over about 2 Saturn radii azimuthally. Additional data have been received since the writing of this abstract and before Cassini's plunge into the atmosphere on September 15, so additional features may be presented.

  13. A Thermal Imaging Instrument with Uncooled Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed work, we will perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. We will define the science and...

  14. Physics instrumentation for medical imaging

    International Nuclear Information System (INIS)

    Townsend, D.W.

    1993-01-01

    The first Nobel Physics Prize, awarded in 1901, went to Wilhelm Röntgen for his discovery of X-rays in 1895. This, and the most recent physics Nobel, to Georges Charpak last year for his detector developments, span several generations of applied science. As well as helping to launch the science of atomic physics, Röntgen's discovery also marked the dawn of a medical science - radiography - using beams of various kinds to image what otherwise cannot be seen. Ever since, physicists and radiologists have worked hand in hand to improve imaging techniques and widen their medical applications

  15. Surface Imaging Skin Friction Instrument and Method

    Science.gov (United States)

    Brown, James L. (Inventor); Naughton, Jonathan W. (Inventor)

    1999-01-01

    A surface imaging skin friction instrument allowing 2D resolution of spatial image by a 2D Hilbert transform and 2D inverse thin-oil film solver, providing an innovation over prior art single point approaches. Incoherent, monochromatic light source can be used. The invention provides accurate, easy to use, economical measurement of larger regions of surface shear stress in a single test.

  16. Planetary imaging with amateur astronomical instruments

    Science.gov (United States)

    Papathanasopoulos, k.; Giannaris, G.

    2017-09-01

    Planetary imaging can be varied by the types and size of instruments and processing. With basic amateur telescopes and software, can be captured images of our planetary system, mainly Jupiter, Saturn and Mars, but also solar eclipses, solar flares, and many more. Planetary photos can be useful for professional astronomers, and how amateur astronomers can play a role on that field.

  17. Electronic Imaging in Astronomy Detectors and Instrumentation

    CERN Document Server

    McLean, Ian

    2008-01-01

    The second edition of Electronic Imaging in Astronomy: Detectors and Instrumentation describes the remarkable developments that have taken place in astronomical detectors and instrumentation in recent years – from the invention of the charge-coupled device (CCD) in 1970 to the current era of very large telescopes, such as the Keck 10-meter telescopes in Hawaii with their laser guide-star adaptive optics which rival the image quality of the Hubble Space Telescope. Authored by one of the world’s foremost experts on the design and development of electronic imaging systems for astronomy, this book has been written on several levels to appeal to a broad readership. Mathematical expositions are designed to encourage a wider audience, especially among the growing community of amateur astronomers with small telescopes with CCD cameras. The book can be used at the college level for an introductory course on modern astronomical detectors and instruments, and as a supplement for a practical or laboratory class.

  18. A Thermal Imaging Instrument with Uncooled Detectors

    Science.gov (United States)

    Joseph, A. T.; Barrentine, E. M.; Brown, A. D.

    2017-12-01

    In this work, we perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. The National Research Council's Committee on Implementation of a Sustained Land Imaging Program has identified the inclusion of a thermal imager as critical for both current and future land imaging missions. Such an imaging instrument operating in two bands located at approximately 11 and 12 microns (for example, in Landsat 8, and also Landsat 9 when launched) will provide essential information for furthering our hydrologic understanding at scales of human influence, and produce field-scale moisture information through accurate retrievals of evapotranspiration (ET). Landsat 9 is slated to recycle the TIRS-2 instrument launched with Landsat 8 that uses cooled quantum well infrared photodetectors (QWIPs), hence requiring expensive and massive cryocooler technology to achieve its required spectral and spatial accuracies. Our goal is to conceptualize and develop a thermal imaging instrument which leverages recent and imminent technology advances in uncooled detectors. Such detector technology will offer the benefit of greatly reduced instrument cost, mass, and power at the expense of some acceptable loss in detector sensitivity. It would also allow a thermal imaging instrument to be fielded on board a low-cost platform, e.g., a CubeSat. Sustained and enhanced land imaging is crucial for providing high-quality science data on change in land use, forest health, crop status, environment, and climate. Accurate satellite mapping of ET at the agricultural field scale (the finest spatial scale of the environmental processes of interest) requires high-quality thermal data to produce the corresponding accurate land surface temperature (LST) retrievals used to drive an ET model. Such an imaging instrument would provide important information on the following: 1) the relationship between land-use and land/water management practices and water use dynamics; 2) the

  19. Instrumentation challenges in multi-modality imaging

    International Nuclear Information System (INIS)

    Brasse, D.; Boisson, F.

    2016-01-01

    Based on different physical principles, imaging procedures currently used in both clinical and preclinical applications present different performance that allow researchers to achieve a large number of studies. However, the relevance of obtaining a maximum of information relating to the same subject is undeniable. The last two decades have thus seen the advent of a full-fledged research axis, the multimodal in vivo imaging. Whether from an instrumentation point of view, for medical research or the development of new probes, all these research works illustrate the growing interest of the scientific community for multimodal imaging, which can be approached with different backgrounds and perspectives from engineers to end-users point of views. In the present review, we discuss the multimodal imaging concept, which focuses not only on PET/CT and PET/MRI instrumentation but also on recent investigations of what could become a possible future in the field.

  20. Infrared Sky Imager (IRSI) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Victor R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    The Infrared Sky Imager (IRSI) deployed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility is a Solmirus Corp. All Sky Infrared Visible Analyzer. The IRSI is an automatic, continuously operating, digital imaging and software system designed to capture hemispheric sky images and provide time series retrievals of fractional sky cover during both the day and night. The instrument provides diurnal, radiometrically calibrated sky imagery in the mid-infrared atmospheric window and imagery in the visible wavelengths for cloud retrievals during daylight hours. The software automatically identifies cloudy and clear regions at user-defined intervals and calculates fractional sky cover, providing a real-time display of sky conditions.

  1. Instrumentation of the ESRF medical imaging facility

    CERN Document Server

    Elleaume, H; Berkvens, P; Berruyer, G; Brochard, T; Dabin, Y; Domínguez, M C; Draperi, A; Fiedler, S; Goujon, G; Le Duc, G; Mattenet, M; Nemoz, C; Pérez, M; Renier, M; Schulze, C; Spanne, P; Suortti, P; Thomlinson, W; Estève, F; Bertrand, B; Le Bas, J F

    1999-01-01

    At the European Synchrotron Radiation Facility (ESRF) a beamport has been instrumented for medical research programs. Two facilities have been constructed for alternative operation. The first one is devoted to medical imaging and is focused on intravenous coronary angiography and computed tomography (CT). The second facility is dedicated to pre-clinical microbeam radiotherapy (MRT). This paper describes the instrumentation for the imaging facility. Two monochromators have been designed, both are based on bent silicon crystals in the Laue geometry. A versatile scanning device has been built for pre-alignment and scanning of the patient through the X-ray beam in radiography or CT modes. An intrinsic germanium detector is used together with large dynamic range electronics (16 bits) to acquire the data. The beamline is now at the end of its commissioning phase; intravenous coronary angiography is intended to start in 1999 with patients and the CT pre-clinical program is underway on small animals. The first in viv...

  2. Imaging, cutting, and collecting instrument and method

    Science.gov (United States)

    Tench, R.J.; Siekhaus, W.J.; Balooch, M.; Balhorn, R.L.; Allen, M.J.

    1995-10-31

    Instrumentation and techniques are described to image small objects, such as but not limited to individual human chromosomes, with nanometer resolution. This instrument and method are also used to cut-off identified parts of objects, to move around and manipulate the cut-off parts on the substrate on which they are being imaged to predetermined locations on the substrate, and to remove the cut-off parts from the substrate. This is accomplished using an atomic force microscope (AFM) and by modification of the conventional cantilever stylus assembly of an AFM. The plural cantilevers are used with either sharp-tips or knife-edges. In addition, the invention can be utilized for measuring the hardness of materials. 10 figs.

  3. Advances in imaging instrumentation for nuclear cardiology.

    Science.gov (United States)

    Lee, Jae Sung; Kovalski, Gil; Sharir, Tali; Lee, Dong Soo

    2017-07-17

    Advances in imaging instrumentation and technology have greatly contributed to nuclear cardiology. Dedicated cardiac SPECT cameras incorporating novel, highly efficient detector, collimator, and system designs have emerged with the expansion of nuclear cardiology. Solid-state radiation detectors incorporating cadmium zinc telluride, which directly convert radiation to electrical signals and yield improved energy resolution and spatial resolution and enhanced count sensitivity geometries, are increasingly gaining favor as the detector of choice for application in dedicated cardiac SPECT systems. Additionally, hybrid imaging systems in which SPECT and PET are combined with X-ray CT are currently widely used, with PET/MRI hybrid systems having also been recently introduced. The improved quantitative SPECT/CT has the potential to measure the absolute quantification of myocardial blood flow and flow reserve. Rapid development of silicon photomultipliers leads to enhancement in PET image quality and count rates. In addition, the reduction of emission-transmission mismatch artifacts via application of accurate time-of-flight information, and cardiac motion de-blurring aided by anatomical images, are emerging techniques for further improvement of cardiac PET. This article reviews recent advances such as these in nuclear cardiology imaging instrumentation and technology, and the corresponding diagnostic benefits.

  4. The Wide Field Imager instrument for Athena

    Science.gov (United States)

    Meidinger, Norbert; Barbera, Marco; Emberger, Valentin; Fürmetz, Maria; Manhart, Markus; Müller-Seidlitz, Johannes; Nandra, Kirpal; Plattner, Markus; Rau, Arne; Treberspurg, Wolfgang

    2017-08-01

    ESA's next large X-ray mission ATHENA is designed to address the Cosmic Vision science theme 'The Hot and Energetic Universe'. It will provide answers to the two key astrophysical questions how does ordinary matter assemble into the large-scale structures we see today and how do black holes grow and shape the Universe. The ATHENA spacecraft will be equipped with two focal plane cameras, a Wide Field Imager (WFI) and an X-ray Integral Field Unit (X-IFU). The WFI instrument is optimized for state-of-the-art resolution spectroscopy over a large field of view of 40 amin x 40 amin and high count rates up to and beyond 1 Crab source intensity. The cryogenic X-IFU camera is designed for high-spectral resolution imaging. Both cameras share alternately a mirror system based on silicon pore optics with a focal length of 12 m and large effective area of about 2 m2 at an energy of 1 keV. Although the mission is still in phase A, i.e. studying the feasibility and developing the necessary technology, the definition and development of the instrumentation made already significant progress. The herein described WFI focal plane camera covers the energy band from 0.2 keV to 15 keV with 450 μm thick fully depleted back-illuminated silicon active pixel sensors of DEPFET type. The spatial resolution will be provided by one million pixels, each with a size of 130 μm x 130 μm. The time resolution requirement for the WFI large detector array is 5 ms and for the WFI fast detector 80 μs. The large effective area of the mirror system will be completed by a high quantum efficiency above 90% for medium and higher energies. The status of the various WFI subsystems to achieve this performance will be described and recent changes will be explained here.

  5. Neutron imaging and small angle neutron scattering instruments at KUR

    International Nuclear Information System (INIS)

    Saito, Yasushi; Oba, Yojiro; Hino, Masahiro

    2015-01-01

    We review the neutron imaging (NI) and small-angle neutron scattering (SANS) instruments at KUR, Kumatori, Osaka, Japan. There are two NI and one SANS instruments. The both instruments are compact and used flexibly. Some challenging experiments taking advantage of low neutron fluence are described. The feature of KUR is also described briefly. (author)

  6. Image reconstruction design of industrial CT instrument for teaching

    International Nuclear Information System (INIS)

    Zou Yongning; Cai Yufang

    2009-01-01

    Industrial CT instrument for teaching is applied to teaching and study in field of physics and radiology major, image reconstruction is an important part of software on CT instrument. The paper expatiate on CT physical theory and first generation CT reconstruction algorithm, describe scan process of industrial CT instrument for teaching; analyze image artifact as result of displacement of rotation center, implement method of center displacement correcting, design and complete image reconstruction software, application shows that reconstructed image is very clear and qualitatively high. (authors)

  7. Optical Methods and Instrumentation in Brain Imaging and Therapy

    CERN Document Server

    2013-01-01

    This book provides a comprehensive up-to-date review of optical approaches used in brain imaging and therapy. It covers a variety of imaging techniques including diffuse optical imaging, laser speckle imaging, photoacoustic imaging and optical coherence tomography. A number of laser-based therapeutic approaches are reviewed, including photodynamic therapy, fluorescence guided resection and photothermal therapy. Fundamental principles and instrumentation are discussed for each imaging and therapeutic technique. Represents the first publication dedicated solely to optical diagnostics and therapeutics in the brain Provides a comprehensive review of the principles of each imaging/therapeutic modality Reviews the latest advances in instrumentation for optical diagnostics in the brain Discusses new optical-based therapeutic approaches for brain diseases

  8. Single photon imaging. New instrumentation and techniques

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.

    1981-01-01

    The performance of Anger scintillation cameras continues to be enhanced through a series of small improvements which result in significantly better imaging characteristics. The most recent changes in camera design consist of: (1) the introduction of photomultipliers with better photocathode and electron collection efficiencies, (2) the use of thinner (3/8 or 1/4 in) crystals giving slightly better intrinsic resolution for low gamma-ray energies, (3) inclusion of a spatially varying energy window to compensate for variations of light collection efficiency, (4) event-by-event, real-time distortion removal for uniformity correction, and (5) introduction of new methods to improve the count-rate capability. Whereas some of these improvements are due to better understanding of the fundamentals of camera design, others are the result of technological advances in electronic components such as analogue-to-digital converters, microprocessors and high-density digital memories. The development of single photon tomography has developed along two parallel paths. Multipinhole and rotating slant-hole collimator attachments provide some degree of longitudinal tomography, and are currently being applied to cardiac imaging. At the same time rotating camera systems capable of transverse as well as longitudinal imaging are being refined technically and evaluated clinically. Longitudinal tomography is of limited use in quantitative studies and is likely to be an interim solution to three-dimensional imaging. Rotating camera systems, on the other hand, not only provide equal resolution in all three dimensions but are also capable of providing quantitative accuracy. This is the result of progress in attenuation correction and the design of special collimators. Single photon tomography provides a small but noticeable improvement in diagnostic accuracy which is likely to result in widespread use of rotating camera systems in the future

  9. Instrumentation development for electrical conductivity imaging in polycrystalline diamond cutters

    Science.gov (United States)

    Bogdanov, G.; Wiggins, J.; Rhodes, J.; Bertagnolli, K.; Ludwig, R.

    2013-01-01

    We previously reported on an electrical conductivity non-destructive inspection methodology for polycrystalline diamond cutters. These cylindrical cutters for oil and gas drilling feature a thick polycrystalline diamond layer on a tungsten carbide substrate. We use electrical impedance tomography to image the conductivity in the diamond table. In this paper we report on progress in preparing this instrument for factory deployment. Instrument enhancements include an adjustable part holder, a field-swappable sensor and GPU-enabled software capable of rapidly acquiring images.

  10. Imaging instrument for positron emitting heavy ion beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Llacer, J.; Chatterjee, A.; Jackson, H.C.; Lin, J.C.; Zunzunegui, M.V.

    1978-10-01

    The design and performance of an instrument for the imaging of coincidence annihilation gamma rays emitted from the end point of the trajectories of radioactive high-energy heavy ions is described. The positron-emitting heavy ions are the result of nuclear fragmentation of accelerated heavy ions used in cancer therapy or diagnostic medicine. The instrument constructed is capable of locating the ion beam trajectory end point within 1 mm for an injected activity of 200 nanoCi in a measurement time of 1 sec in some favorable conditions. Limited imaging in three dimensions is also demonstrated.

  11. Imaging instrument for positron emitting heavy ion beam injection

    International Nuclear Information System (INIS)

    Llacer, J.; Chatterjee, A.; Jackson, H.C.; Lin, J.C.; Zunzunegui, M.V.

    1978-10-01

    The design and performance of an instrument for the imaging of coincidence annihilation gamma rays emitted from the end point of the trajectories of radioactive high-energy heavy ions is described. The positron-emitting heavy ions are the result of nuclear fragmentation of accelerated heavy ions used in cancer therapy or diagnostic medicine. The instrument constructed is capable of locating the ion beam trajectory end point within 1 mm for an injected activity of 200 nanoCi in a measurement time of 1 sec in some favorable conditions. Limited imaging in three dimensions is also demonstrated

  12. Advances in fntd technology: Instrumentation, image processing and applications

    Science.gov (United States)

    Bartz, James Andrew

    Fluorescent Nuclear Track Detectors (FNTDs), based on Al2O 3:C,Mg single crystal material, enable diffraction limited imaging of ionization patterns. This fast, luminescent material is thermally and optically stable. This work expands and assesses the capability of FNTD technology to measure radiation dose quickly and accurately, especially neutron radition. Developments in FNTD instrumentation, software, image reconstruction, image processing and data processing improved ease of use, productivity and reliability and brought the technology into commercial viability. Descriptions of these developments are presented. Additionally, these developments were assessed and were found to comply with ANSI and ISO standards for personnel neutron dosimetry. (Abstract shortened by ProQuest.).

  13. A New Instrument Design for Imaging Low Energy Neutral Atoms

    Science.gov (United States)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  14. Neutrons and music: Imaging investigation of ancient wind musical instruments

    International Nuclear Information System (INIS)

    Festa, G.; Tardino, G.; Pontecorvo, L.; Mannes, D.C.; Senesi, R.; Gorini, G.; Andreani, C.

    2014-01-01

    A set of seven musical instruments and two instruments cares from the ‘Fondo Antico della Biblioteca del Sacro Convento’ in Assisi, Italy, were investigated through neutron and X-ray imaging techniques. Historical and scientific interests around ancient musical instruments motivate an intense research effort for their characterization using non-destructive and non-invasive techniques. X-ray and neutron tomography/radiography were applied to the study of composite material samples containing wood, hide and metals. The study was carried out at the NEUTRA beamline, PSI (Paul Scherrer Institute, Switzerland). Results of the measurements provided new information on the composite and multi-scale structure, such as: the internal structure of the samples, position of added materials like metals, wood fiber displays, deformations, presence of adhesives and their spatial distribution and novel insight about construction methods to guide the instruments’ restoration process

  15. Neutrons and music: Imaging investigation of ancient wind musical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Festa, G., E-mail: giulia.festa@roma2.infn.it [Università degli Studi di Roma Tor Vergata (Italy); Università degli Studi di Milano-Bicocca (Italy); Consiglio Nazionale delle Ricerche-IPCF, Messina (Italy); Tardino, G. [BauArt Basel, Basel (Switzerland); Pontecorvo, L. [Conservatorio di Cosenza – Cosenza Conservatory (Italy); Mannes, D.C. [Paul Scherrer Institut, Villigen (Switzerland); Senesi, R. [Università degli Studi di Roma Tor Vergata (Italy); Consiglio Nazionale delle Ricerche-IPCF, Messina (Italy); Gorini, G. [Università degli Studi di Milano-Bicocca (Italy); Andreani, C. [Università degli Studi di Roma Tor Vergata (Italy); Consiglio Nazionale delle Ricerche-IPCF, Messina (Italy)

    2014-10-01

    A set of seven musical instruments and two instruments cares from the ‘Fondo Antico della Biblioteca del Sacro Convento’ in Assisi, Italy, were investigated through neutron and X-ray imaging techniques. Historical and scientific interests around ancient musical instruments motivate an intense research effort for their characterization using non-destructive and non-invasive techniques. X-ray and neutron tomography/radiography were applied to the study of composite material samples containing wood, hide and metals. The study was carried out at the NEUTRA beamline, PSI (Paul Scherrer Institute, Switzerland). Results of the measurements provided new information on the composite and multi-scale structure, such as: the internal structure of the samples, position of added materials like metals, wood fiber displays, deformations, presence of adhesives and their spatial distribution and novel insight about construction methods to guide the instruments’ restoration process.

  16. Q & A with Ed Tech Leaders: Interview with Curtis J. Bonk, Mimi Miyoung Lee, Thomas C. Reeves, & Thomas H. Reynolds

    Science.gov (United States)

    Viner, Mark; Gardner, Ellen; Shaughnessy, Michael F.

    2016-01-01

    Curtis J. Bonk, is Professor of Instructional Systems Technology at Indiana University and President of CourseShare. Mimi Miyoung Lee is Associate Professor in the Department of Curriculum and instruction at the University of Houston. Thomas C. Reeves is Professor Emeritus of Learning, Design, and Technology at the University of Georgia. Thomas H.…

  17. Positron emission tomography: Physics, instrumentation, and image analysis

    International Nuclear Information System (INIS)

    Porenta, G.

    1994-01-01

    Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources. PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and userfriendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center. (author)

  18. Gamma-ray Detectors for Nuclear Medical Imaging Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gyu Seong [KAIST, Daejeon (Korea, Republic of)

    2008-04-15

    In this review paper, basic configurations of gamma detectors in SPECT and PET systems were reviewed together with key performance parameters of the imaging system, such as the detection efficiency, the spatial resolution, the contrast resolution, and the data acquisition time for quick understanding of the system-component relationship and future design of advanced systems. Also key elements of SPECT and PET detectors, such as collimators, gamma detectors were discussed in conjunction with their current and future trend. Especially development trend of new scintillation crystals, innovative silicon-based photo-sensors and futuristic room temperature semiconductor detectors were reviewed for researchers who are interested in the development of future nuclear medical imaging instruments.

  19. Model control of image processing for telerobotics and biomedical instrumentation

    Science.gov (United States)

    Nguyen, An Huu

    1993-06-01

    This thesis has model control of image processing (MCIP) as its major theme. By this it is meant that there is a top-down model approach which already knows the structure of the image to be processed. This top-down image processing under model control is used further as visual feedback to control robots and as feedforward information for biomedical instrumentation. The software engineering of the bioengineering instrumentation image processing is defined in terms of the task and the tools available. Early bottom-up image processing such as thresholding occurs only within the top-down control regions of interest (ROI's) or operating windows. Moment computation is an important bottom-up procedure as well as pyramiding to attain rapid computation, among other considerations in attaining programming efficiencies. A distinction is made between initialization procedures and stripped down run time operations. Even more detailed engineering design considerations are considered with respect to the ellipsoidal modeling of objects. Here the major axis orientation is an important additional piece of information, beyond the centroid moments. Careful analysis of various sources of errors and considerable benchmarking characterized the detailed considerations of the software engineering of the image processing procedures. Image processing for robotic control involves a great deal of 3D calibration of the robot working environment (RWE). Of special interest is the idea of adapting the machine scanpath to the current task. It was important to pay careful attention to the hardware aspects of the control of the toy robots that were used to demonstrate the general methodology. It was necessary to precalibrate the open loop gains for all motors so that after initialization the visual feedback, which depends on MCIP, would be able to supply enough information quickly enough to the control algorithms to govern the robots under a variety of control configurations and task operations

  20. Development and integration of Raman imaging capabilities to Sandia National Laboratories hyperspectral fluorescence imaging instrument.

    Energy Technology Data Exchange (ETDEWEB)

    Timlin, Jerilyn Ann; Nieman, Linda T.

    2005-11-01

    Raman spectroscopic imaging is a powerful technique for visualizing chemical differences within a variety of samples based on the interaction of a substance's molecular vibrations with laser light. While Raman imaging can provide a unique view of samples such as residual stress within silicon devices, chemical degradation, material aging, and sample heterogeneity, the Raman scattering process is often weak and thus requires very sensitive collection optics and detectors. Many commercial instruments (including ones owned here at Sandia National Laboratories) generate Raman images by raster scanning a point focused laser beam across a sample--a process which can expose a sample to extreme levels of laser light and requires lengthy acquisition times. Our previous research efforts have led to the development of a state-of-the-art two-dimensional hyperspectral imager for fluorescence imaging applications such as microarray scanning. This report details the design, integration, and characterization of a line-scan Raman imaging module added to this efficient hyperspectral fluorescence microscope. The original hyperspectral fluorescence instrument serves as the framework for excitation and sample manipulation for the Raman imaging system, while a more appropriate axial transmissive Raman imaging spectrometer and detector are utilized for collection of the Raman scatter. The result is a unique and flexible dual-modality fluorescence and Raman imaging system capable of high-speed imaging at high spatial and spectral resolutions. Care was taken throughout the design and integration process not to hinder any of the fluorescence imaging capabilities. For example, an operator can switch between the fluorescence and Raman modalities without need for extensive optical realignment. The instrument performance has been characterized and sample data is presented.

  1. Mass media image of selected instruments of economic develepment

    Directory of Open Access Journals (Sweden)

    Kruliš Ladislav

    2016-07-01

    Full Text Available The goal of this paper is twofold. Firstly, two instruments of economic development – investment incentives and cluster initiatives – were compared according to the frequency of their occurrence in selected mass media sources in the Czech Republic in the periods 2004-2005 and 2011-2012. Secondly, the mass media image of these two instruments of economic development was evaluated with respect to the frames deductively constructed from literature review. The findings pointed out a higher occurrence of the mass media articles/news dealing with investment incentives. These articles/news were, additionally, more controversial and covered a wider spectrum of frames. Politicians were a relatively more frequent type of actors who created the media message from the articles/news. On the contrary, the mass media articles/news concerning cluster initiatives typically created the frame of positive effects of clusters. The messages were told either by economic experts or by public authority representatives who were closely connected with cluster initiatives. Spatial origin of these messages was rather limited. The definitional vagueness, intangible and uncontroversial nature of cluster initiatives restrained their media appeal.

  2. Recent Developments in Instrumentation for Pre-Clinical Imaging Studies

    International Nuclear Information System (INIS)

    Meikle, S.R.

    2002-01-01

    Full text: Recent advances in imaging instrumentation have led to a variety of tomograph designs for dedicated pre clinical imaging of laboratory animals. These advances make it possible to image and quantify the kinetics of radiolabelled pharmaceuticals in a wide range of animal models from rodents to non-human primates. Applications include evaluation of promising new radiopharmaceuticals, study of the molecular origins of human disease and evaluation of new forms of therapy. These applications and advances in instrumentation are equally applicable to positron emitters and single photon emitters. This paper provides an overview of recent advances which have led to the current state-of-the-art in pre clinical imaging. The common inorganic scintillators that have been used for SPECT and PET, including some of the promising materials recently studied. The current crystal of choice for SPECT imaging is NaI(Tl) because of its high light output and density which make it well suited to imaging photons in the 100-200 keV range. However, NaI(Tl) has the disadvantage that it must be hermetically sealed to prevent absorption of moisture from the environment. Therefore, investigators have explored a number of alternative inorganic crystals, including CsI(Tl) and cerium-doped yttrium aluminium perovskite (YAP), as well as solid state detectors such as cadmium zinc telluride (CZT). Many of the crystals used in SPECT have also been tried for PET, including NaI(Tl) and YAP. However these crystals have lower stopping power than BGO and NaI(Tl) is also relatively slow. A very promising scintillator for PET is cerium-doped lutetium oxyorthosilicate (LSO) (1) which has similar stopping power to BGO and relatively high light output and fast decay. The first PET scanner to use LSO was the UCLA animal scanner, microPET, which also makes use of a number of other new technologies and unique design features. Recently, improvements in multi-anode and crossed wire position sensitive

  3. Meteosat third generation imager: simulation of the flexible combined imager instrument chain

    Science.gov (United States)

    Just, Dieter; Gutiérrez, Rebeca; Roveda, Fausto; Steenbergen, Theo

    2014-10-01

    The Meteosat Third Generation (MTG) Programme is the next generation of European geostationary meteorological systems. The first MTG satellite, MTG-I1, which is scheduled for launch at the end of 2018, will host two imaging instruments: the Flexible Combined Imager (FCI) and the Lightning Imager. The FCI will provide continuation of the SEVIRI imager operations on the current Meteosat Second Generation satellites (MSG), but with an improved spatial, temporal and spectral resolution, not dissimilar to GOES-R (of NASA/NOAA). Unlike SEVIRI on the spinning MSG spacecraft, the FCI will be mounted on a 3-axis stabilised platform and a 2-axis tapered scan will provide a full coverage of the Earth in 10 minute repeat cycles. Alternatively, a rapid scanning mode can cover smaller areas, but with a better temporal resolution of up to 2.5 minutes. In order to assess some of the data acquisition and processing aspects which will apply to the FCI, a simplified end-to-end imaging chain prototype was set up. The simulation prototype consists of four different functional blocks: - A function for the generation of FCI-like references images - An image acquisition simulation function for the FCI Line-of-Sight calculation and swath generation - A processing function that reverses the swath generation process by rectifying the swath data - An evaluation function for assessing the quality of the processed data with respect to the reference images This paper presents an overview of the FCI instrument chain prototype, covering instrument characteristics, reference image generation, image acquisition simulation, and processing aspects. In particular, it provides in detail the description of the generation of references images, highlighting innovative features, but also limitations. This is followed by a description of the image acquisition simulation process, and the rectification and evaluation function. The latter two are described in more detail in a separate paper. Finally, results

  4. EMBRYONIC DEVELOPMENTAL ANOMALY IDENTIFICATION OF GIANT MIMI-MINTUNO (Tachupleus gigas DURING ARTIFICIAL INCUBATION PERIOD IN THE VIAL BOTTLES

    Directory of Open Access Journals (Sweden)

    Ciptono Ciptono

    2016-04-01

    Full Text Available This study aims to reveal the phenomenon of presence / absence of anomalies in the early development of Mimi-giant mintuno (Tachypleus gigas during artificial incubation in the vial bottles. Samples 5 eggs are fertilized incorporated into transparent 50 bottles and vials each filled with clear sea water medium. Embryonic stages (instars hatch, bottles marked, then dumped seawater medium was replaced with 4% formalin solution and glycerin amount of 5% by volume, up to ¾ of the total volume of the vial bottles. Standard stages of giant Mimi-mintuno embryonic normal development Mimi-mintuno according to Itow (1988. The description type of anomalies contained in the post-hatching embryo development. The observations are documented in the form of stereo-microphotograph. The results showed that there are forms anomalies: (a. Delayed development, the structure of the body is not perfect; (b. In observation of the embryo hatches, open shell and egg perivitelline membrane has been opened but delayed development, the structure of the body is not perfect; (c. Embryos after hatched perfectly, abnormalities of morphologic structure such as abnormal protrusion on the dorsal carapace part found.   Keywords: Tachypleus gigas, artificially, incubation

  5. Dosimetric evaluation of a Monte Carlo IMRT treatment planning system incorporating the MIMiC

    International Nuclear Information System (INIS)

    Rassiah-Szegedi, P; Fuss, M; Sheikh-Bagheri, D; Szegedi, M; Stathakis, S; Lancaster, J; Papanikolaou, N; Salter, B

    2007-01-01

    The high dose per fraction delivered to lung lesions in stereotactic body radiation therapy (SBRT) demands high dose calculation and delivery accuracy. The inhomogeneous density in the thoracic region along with the small fields used typically in intensity-modulated radiation therapy (IMRT) treatments poses a challenge in the accuracy of dose calculation. In this study we dosimetrically evaluated a pre-release version of a Monte Carlo planning system (PEREGRINE 1.6b, NOMOS Corp., Cranberry Township, PA), which incorporates the modeling of serial tomotherapy IMRT treatments with the binary multileaf intensity modulating collimator (MIMiC). The aim of this study is to show the validation process of PEREGRINE 1.6b since it was used as a benchmark to investigate the accuracy of doses calculated by a finite size pencil beam (FSPB) algorithm for lung lesions treated on the SBRT dose regime via serial tomotherapy in our previous study. Doses calculated by PEREGRINE were compared against measurements in homogeneous and inhomogeneous materials carried out on a Varian 600C with a 6 MV photon beam. Phantom studies simulating various sized lesions were also carried out to explain some of the large dose discrepancies seen in the dose calculations with small lesions. Doses calculated by PEREGRINE agreed to within 2% in water and up to 3% for measurements in an inhomogeneous phantom containing lung, bone and unit density tissue

  6. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  7. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  8. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  9. MimiLook: A Phylogenetic Workflow for Detection of Gene Acquisition in Major Orthologous Groups of Megavirales.

    Science.gov (United States)

    Jain, Sourabh; Panda, Arup; Colson, Philippe; Raoult, Didier; Pontarotti, Pierre

    2017-04-07

    With the inclusion of new members, understanding about evolutionary mechanisms and processes by which members of the proposed order, Megavirales, have evolved has become a key area of interest. The central role of gene acquisition has been shown in previous studies. However, the major drawback in gene acquisition studies is the focus on few MV families or putative families with large variation in their genetic structure. Thus, here we have tried to develop a methodology by which we can detect horizontal gene transfers (HGTs), taking into consideration orthologous groups of distantly related Megavirale families. Here, we report an automated workflow MimiLook, prepared as a Perl command line program, that deduces orthologous groups (OGs) from ORFomes of Megavirales and constructs phylogenetic trees by performing alignment generation, alignment editing and protein-protein BLAST (BLASTP) searching across the National Center for Biotechnology Information (NCBI) non-redundant (nr) protein sequence database. Finally, this tool detects statistically validated events of gene acquisitions with the help of the T-REX algorithm by comparing individual gene tree with NCBI species tree. In between the steps, the workflow decides about handling paralogs, filtering outputs, identifying Megavirale specific OGs, detection of HGTs, along with retrieval of information about those OGs that are monophyletic with organisms from cellular domains of life. By implementing MimiLook, we noticed that nine percent of Megavirale gene families (i.e., OGs) have been acquired by HGT, 80% OGs were Megaviralespecific and eight percent were found to be sharing common ancestry with members of cellular domains (Eukaryote, Bacteria, Archaea, Phages or other viruses) and three percent were ambivalent. The results are briefly discussed to emphasize methodology. Also, MimiLook is relevant for detecting evolutionary scenarios in other targeted phyla with user defined modifications. It can be accessed at

  10. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  11. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  12. GEO-CAPE Coastal Ecosystem Dynamics Imager (COEDI) Instrument Design

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary goal of this study is to build a breadboard instrument and prove the functionality of the optical-mechanical assembly for the Coastal Ecosystem Dynamics...

  13. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  14. Novel instrumentation of multispectral imaging technology for detecting tissue abnormity

    Science.gov (United States)

    Yi, Dingrong; Kong, Linghua

    2012-10-01

    Multispectral imaging is becoming a powerful tool in a wide range of biological and clinical studies by adding spectral, spatial and temporal dimensions to visualize tissue abnormity and the underlying biological processes. A conventional spectral imaging system includes two physically separated major components: a band-passing selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochromatic camera, and is expensive and bulky. Recently micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the clinical requirement for medical diagnostic imaging applications. However the challenging issue of how to integrate and place the micro filter mosaic chip to the targeting focal plane, i.e., the imaging sensor, of an off-shelf CMOS/CCD camera is not reported anywhere. This paper presents the methods and results of integrating such a miniaturized filter with off-shelf CMOS imaging sensors to produce handheld real-time multispectral imaging devices for the application of early stage pressure ulcer (ESPU) detection. Unlike conventional multispectral imaging devices which are bulky and expensive, the resulting handheld real-time multispectral ESPU detector can produce multiple images at different center wavelengths with a single shot, therefore eliminates the image registration procedure required by traditional multispectral imaging technologies.

  15. Master/slave: A better tool for Gabor filtering optical coherence tomography imaging instruments

    DEFF Research Database (Denmark)

    Cernat, Ramona; Bradu, Adrian; Israelsen, Niels Møller

    2017-01-01

    In this report, the benefits that the Master/Slave (MS) implementation of optical coherence tomography (OCT) can bring to a Gabor filtering (GF) imaging instrument are illustrated. The MS allows simultaneous display of three categories of images in one frame: multiple depth en-face OCT images, two...

  16. Instrumental images: the visual rhetoric of self-presentation in Hevelius's Machina Coelestis.

    Science.gov (United States)

    Vertesi, Janet

    2010-06-01

    This article places the famous images of Johannes Hevelius's instruments in his Machina Coelestis (1673) in the context of Hevelius's contested cometary observations and his debate with Hooke over telescopic sights. Seen thus, the images promote a crafted vision of Hevelius's astronomical practice and skills, constituting a careful self-presentation to his distant professional network and a claim as to which instrumental techniques guarantee accurate observations. Reviewing the reception of the images, the article explores how visual rhetoric may be invoked and challenged in the context of controversy, and suggests renewed analytical attention to the role of laboratory imagery in instrumental cultures in the history of science.

  17. Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-31

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs.

  18. A Review of Instruments for Assessing Body Image in Preschoolers

    Science.gov (United States)

    Cuesta-Zamora, Cristina; Navas, Leandro

    2017-01-01

    Society has produced many idealized and unattainable standards of beauty. These may be internalized by young children, increasing the risk of body dissatisfaction, which is the strongest predictor of eating disorders. Prompted by this concern, the aim of the present research was to identify and analyze the instruments that have been used to…

  19. High-End CMOS Active Pixel Sensors For Space-Borne Imaging Instruments

    National Research Council Canada - National Science Library

    Bogaerts, Jan; Lepage, Gerald; Dantes, Didier

    2005-01-01

    ...) offer great promise for use in space-borne imaging instruments. This paper highlights present-day high-end CMOS APS sensors and sketches their advantages with respect to their CCD counterparts...

  20. The Global Precipitation Measurement (GPM) Microwave Imager (GMI) Instrument: Role, Performance, and Status

    National Research Council Canada - National Science Library

    Bidwell, S. W; Flaming, G. M; Durning, J. F; Smith, E. A

    2005-01-01

    The Global Precipitation Measurement (GPM) Microwave Imager (GMI) instrument is a multi-channel, conical-scanning, microwave radiometer serving an essential role in the near-global-coverage and frequent-revisit-time requirements of GPM...

  1. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    International Nuclear Information System (INIS)

    Boutet, Sebastien

    2011-01-01

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  2. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    Energy Technology Data Exchange (ETDEWEB)

    Boutet, Sebastien; Williams, Garth J.; /SLAC

    2011-08-16

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  3. Automatic classification of minimally invasive instruments based on endoscopic image sequences

    Science.gov (United States)

    Speidel, Stefanie; Benzko, Julia; Krappe, Sebastian; Sudra, Gunther; Azad, Pedram; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger

    2009-02-01

    Minimally invasive surgery is nowadays a frequently applied technique and can be regarded as a major breakthrough in surgery. The surgeon has to adopt special operation-techniques and deal with difficulties like the complex hand-eye coordination and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality techniques. To analyze the current situation for context-aware assistance, we need intraoperatively gained sensor data and a model of the intervention. A situation consists of information about the performed activity, the used instruments, the surgical objects, the anatomical structures and defines the state of an intervention for a given moment in time. The endoscopic images provide a rich source of information which can be used for an image-based analysis. Different visual cues are observed in order to perform an image-based analysis with the objective to gain as much information as possible about the current situation. An important visual cue is the automatic recognition of the instruments which appear in the scene. In this paper we present the classification of minimally invasive instruments using the endoscopic images. The instruments are not modified by markers. The system segments the instruments in the current image and recognizes the instrument type based on three-dimensional instrument models.

  4. Prototyping a Global Soft X-Ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Carter, J. A.; Chiao, M. P.; Chornay, D. J.; Cravens, T.; Galeazzi, M.; Keller, J. W.; Koutroumpa, D.; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobstereye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission.

  5. Air, telescope, and instrument temperature effects on the Gemini Planet Imager’s image quality

    Science.gov (United States)

    Tallis, Melisa; Bailey, Vanessa P.; Macintosh, Bruce; Hayward, Thomas L.; Chilcote, Jeffrey K.; Ruffio, Jean-Baptiste; Poyneer, Lisa A.; Savransky, Dmitry; Wang, Jason J.; GPIES Team

    2018-01-01

    We present results from an analysis of air, telescope, and instrument temperature effects on the Gemini Planet Imager’s (GPI) image quality. GPI is a near-infrared, adaptive optics-fed, high-contrast imaging instrument at the Gemini South telescope, designed to directly image and characterize exoplanets and circumstellar disks. One key metric for instrument performance is “contrast,” which quantifies the sensitivity of an image in terms of the flux ratio of the noise floor vs. the primary star. Very high contrast signifies that GPI could succeed at imaging a dim, close companion around the primary star. We examine relationships between multiple temperature sensors placed on the instrument and telescope vs. image contrast. These results show that there is a strong correlation between image contrast and the presence of temperature differentials between the instrument and the temperature outside the dome. We discuss potential causes such as strong induced dome seeing or optical misalignment due to thermal gradients. We then assess the impact of the current temperature control and ventilation strategy and discuss potential modifications.

  6. MicroASC instrument onboard Juno spacecraft utilizing inertially controlled imaging

    DEFF Research Database (Denmark)

    Pedersen, David Arge Klevang; Jørgensen, Andreas Härstedt; Benn, Mathias

    2016-01-01

    This contribution describes the post-processing of the raw image data acquired by the microASC instrument during the Earth-fly-by of the Juno spacecraft. The images show a unique view of the Earth and Moon system as seen from afar. The procedure utilizes attitude measurements and inter......-calibration of the Camera Head Units of the microASC system to trigger the image capturing. The triggering is synchronized with the inertial attitude and rotational phase of the sensor acquiring the images. This is essentially works as inertially controlled imaging facilitating image acquisition from unexplored...

  7. Laser Speckle Contrast Imaging: theory, instrumentation and applications.

    Science.gov (United States)

    Senarathna, Janaka; Rege, Abhishek; Li, Nan; Thakor, Nitish V

    2013-01-01

    Laser Speckle Contrast Imaging (LSCI) is a wide field of view, non scanning optical technique for observing blood flow. Speckles are produced when coherent light scattered back from biological tissue is diffracted through the limiting aperture of focusing optics. Mobile scatterers cause the speckle pattern to blur; a model can be constructed by inversely relating the degree of blur, termed speckle contrast to the scatterer speed. In tissue, red blood cells are the main source of moving scatterers. Therefore, blood flow acts as a virtual contrast agent, outlining blood vessels. The spatial resolution (~10 μm) and temporal resolution (10 ms to 10 s) of LSCI can be tailored to the application. Restricted by the penetration depth of light, LSCI can only visualize superficial blood flow. Additionally, due to its non scanning nature, LSCI is unable to provide depth resolved images. The simple setup and non-dependence on exogenous contrast agents have made LSCI a popular tool for studying vascular structure and blood flow dynamics. We discuss the theory and practice of LSCI and critically analyze its merit in major areas of application such as retinal imaging, imaging of skin perfusion as well as imaging of neurophysiology.

  8. Negligible contribution of reservoir dams to organic and inorganic transport in the lower Mimi River, Japan

    Science.gov (United States)

    Nukazawa, Kei; Kihara, Kousuke; Suzuki, Yoshihiro

    2017-12-01

    Rivers fulfill an essential ecological role by forming networks for material transport from upland forests to coastal areas. The way in which dams affect the organic and inorganic cycles in such systems is not well understood. Herein, we investigated the longitudinal profiles of the various components of the water chemistry across three cascade dams in Japan: the Yamasubaru Dam, Saigou Dam, and Ohuchibaru Dam, which are situated along the sediment-productive Mimi River in different flow conditions. We analyzed the following water quality components: suspended solids (SS), turbidity, total iron (TFe), dissolved iron (DFe), total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), humic substance (HS), and major ionic components (Na+, Mg2+, Ca2+, Cl-, NO3-, and SO42-) in the downstream channels of the three dams during the low-intermediate-flow and high-flow events from 2012 to 2014. We estimated hourly loads of each component using hourly turbidity data and discharge data (i.e., L-Q model) separately, and the results are integrated to estimate the annual fluxes. The annual fluxes between the methods were compared to verify predictability of the conventional L-Q models. Annual flux of TOC, TN, DFe, and HS estimated by the turbidity displayed similar values, whereas the flux of SS, TFe, and TP tended to increase downstream of the dams. Among the dams, estimated flux proportions for TP and TFe were higher during high-flow events (74%-94%). Considering geographic conditions (e.g., absence of major tributary between the dams), the result implies that accumulated TP and TFe in the reservoirs may be flushed and transported downstream with SS over the short height dams during flood events. Assuming this process, the reservoir dams probably make only a fractional contribution to the organic and inorganic transport in the catchment studied. The percent flux errors for SS, TFe, and TP fluxes ranged from -7.2% to -97% (except for the TP flux in 2013), which

  9. Comparison of Immediate With Delayed Stenting Using the Minimalist Immediate Mechanical Intervention Approach in Acute ST-Segment-Elevation Myocardial Infarction: The MIMI Study.

    Science.gov (United States)

    Belle, Loic; Motreff, Pascal; Mangin, Lionel; Rangé, Grégoire; Marcaggi, Xavier; Marie, Antoine; Ferrier, Nadine; Dubreuil, Olivier; Zemour, Gilles; Souteyrand, Géraud; Caussin, Christophe; Amabile, Nicolas; Isaaz, Karl; Dauphin, Raphael; Koning, René; Robin, Christophe; Faurie, Benjamin; Bonello, Laurent; Champin, Stanislas; Delhaye, Cédric; Cuilleret, François; Mewton, Nathan; Genty, Céline; Viallon, Magalie; Bosson, Jean Luc; Croisille, Pierre

    2016-03-01

    Delayed stent implantation after restoration of normal epicardial flow by a minimalist immediate mechanical intervention aims to decrease the rate of distal embolization and impaired myocardial reperfusion after percutaneous coronary intervention. We sought to confirm whether a delayed stenting (DS) approach (24-48 hours) improves myocardial reperfusion, versus immediate stenting, in patients with acute ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention. In the prospective, randomized, open-label minimalist immediate mechanical intervention (MIMI) trial, patients (n=140) with ST-segment-elevation myocardial infarction ≤12 hours were randomized to immediate stenting (n=73) or DS (n=67) after Thrombolysis In Myocardial Infarction 3 flow restoration by thrombus aspiration. Patients in the DS group underwent a second coronary arteriography for stent implantation a median of 36 hours (interquartile range 29-46) after randomization. The primary end point was microvascular obstruction (% left ventricular mass) on cardiac magnetic resonance imaging performed 5 days (interquartile range 4-6) after the first procedure. There was a nonsignificant trend toward lower microvascular obstruction in the immediate stenting group compared with DS group (1.88% versus 3.96%; P=0.051), which became significant after adjustment for the area at risk (P=0.049). Median infarct weight, left ventricular ejection fraction, and infarct size did not differ between groups. No difference in 6-month outcomes was apparent for the rate of major cardiovascular and cerebral events. The present findings do not support a strategy of DS versus immediate stenting in patients with ST-segment-elevation infarction undergoing primary percutaneous coronary intervention and even suggested a deleterious effect of DS on microvascular obstruction size. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01360242. © 2016 American Heart Association, Inc.

  10. Development of a handheld smart dental instrument for root canal imaging

    Science.gov (United States)

    Okoro, Chukwuemeka; Vartanian, Albert; Toussaint, , Kimani C., Jr.

    2016-11-01

    Ergonomics and ease of visualization play a major role in the effectiveness of endodontic therapy. Using only commercial off-the-shelf components, we present the pulpascope-a prototype of a compact, handheld, wireless dental instrument for pulp cavity imaging. This instrument addresses the current limitations of occupational injuries, size, and cost that exist with current endodontic microscopes used for root canal procedures. Utilizing a 15,000 coherent, imaging fiber bundle along with an integrated illumination source and wireless CMOS sensor, we demonstrate images of various teeth with resolution of ˜48 μm and angular field-of-view of 70 deg.

  11. Instrumentation for ice crystal characterization in laboratory using interferometric out-of-focus imaging

    Science.gov (United States)

    Brunel, M.; Demange, G.; Fromager, M.; Talbi, M.; Zapolsky, H.; Patte, R.; Aït Ameur, K.; Jacquot-Kielar, J.; Coetmellec, S.; Gréhan, G.; Quevreux, B.

    2017-08-01

    Airborne characterization of ice crystals has important applications. The extreme difficulty of realizing in situ tests requires the development of a complete instrumentation in the laboratory. Such an installation should enable design, development, test, and calibration of instruments in conditions as close as possible to real ones. We present a set of numerical and experimental tools that have been developed to realize ice crystal sensors based on interferometric particle imaging. The set of tools covers the development of complementary simulators for crystal growth and interferometric particle imaging predictions, experimental generation of "programmable" ice crystals, and instrumentation of a freezing column where different techniques as in-focus imaging, out-of-focus imaging, and digital in-line holography can be combined simultaneously for test and calibration.

  12. Master/slave: a better tool for Gabor filtering optical coherence tomography imaging instruments

    Science.gov (United States)

    Cernat, Ramona; Bradu, Adrian; Istraelsen, Niels M.; Bang, Ole; Rivet, Sylvain; Keane, Pearse A.; Garway-Heath, David; Rajendram, Ranjan; Podoleanu, Adrian

    2017-07-01

    In this report, the benefits that the Master/Slave (MS) implementation of optical coherence tomography (OCT) can bring to a Gabor filtering (GF) imaging instrument are illustrated. The MS allows simultaneous display of three categories of images in one frame: multiple depth en-face OCT images, two B-scan OCT and a confocal like image. The power of MS is illustrated here by showing 3D images of constant transversal resolution from different objects, obtained by merging sub-volumes collected for four different focus positions. By combining the two techniques, GF and MS, a powerful imaging instrument is demonstrated. We show that when more than four focus positions are required, MS can produce fused volumes faster than the conventional FT based procedure.

  13. Data collection instrumentation for ultrasonic imaging under sodium

    International Nuclear Information System (INIS)

    McKnight, J.A.; Parker, J.A.

    1981-05-01

    A team at the Risley Nuclear Power Development Establishment has been developing apparatus for the production of ultrasonic images under opaque liquids. The technique is intended for examining objects under liquid sodium at 300 0 C, and the range of possible methods is restricted as a consequence. The method chosen uses pulse-echo ultrasonics combined with mechanical scanning to assemble the final image. The data is collected using a CAMAC system under the control of an Intel 8080 microprocessor. The data is analysed separately and presented on a colour display using a DEC LSl 11 microprocessor controlled system. To achieve the required performance a number of special electronic assemblies were made. A single image requires 2.5 M byte of data. The cost of using the apparatus on a Fast Reactor is such that it is prudent to provide back-up data collection through a data link, and to maximise the data collection rate. This causes problems with the interrupt cycle time of the CAMAC controller, which can be resolved using synchronous programs specifically tailored to each application. (author)

  14. The international image of the state as an instrument of soft power

    Directory of Open Access Journals (Sweden)

    Anna A. Koptyaeva

    2016-06-01

    Full Text Available The international image of the state as an instrument of soft power is revealed on the example of Russia as one of the Arctic states. The analysis of the main aspects of the international image of Russia, a set of causes and factors that influence the perception of Russia abroad have been analyzed. The specific of the international image making of Russia is discussed.

  15. The image of psychology programs: the value of the instrumental-symbolic framework

    OpenAIRE

    Van Hoye, Greet; Lievens, Filip; De Soete, Britt; Libbrecht, Nele; Schollaert, Eveline; Baligant, Dimphna

    2014-01-01

    As competition for funding and students intensifies, it becomes increasingly important for psychology programs to have an image that is attractive and makes them stand out from other programs. We use the instrumental-symbolic framework from the marketing domain to determine the image of different master’s programs in psychology and examine how these image dimensions relate to student attraction and competitor differentiation. The samples consist of both potential students (N = 114) and curren...

  16. Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial

    Science.gov (United States)

    Leproux, Anaïs; O'Sullivan, Thomas D.; Cerussi, Albert; Durkin, Amanda; Hill, Brian; Hylton, Nola; Yodh, Arjun G.; Carp, Stefan A.; Boas, David; Jiang, Shudong; Paulsen, Keith D.; Pogue, Brian; Roblyer, Darren; Yang, Wei; Tromberg, Bruce J.

    2017-12-01

    We present a framework for characterizing the performance of an experimental imaging technology, diffuse optical spectroscopic imaging (DOSI), in a 2-year multicenter American College of Radiology Imaging Network (ACRIN) breast cancer study (ACRIN-6691). DOSI instruments combine broadband frequency-domain photon migration with time-independent near-infrared (650 to 1000 nm) spectroscopy to measure tissue absorption and reduced scattering spectra and tissue hemoglobin, water, and lipid composition. The goal of ACRIN-6691 was to test the effectiveness of optically derived imaging endpoints in predicting the final pathologic response of neoadjuvant chemotherapy (NAC). Sixty patients were enrolled over a 2-year period at participating sites and received multiple DOSI scans prior to and during 3- to 6-month NAC. The impact of three sources of error on accuracy and precision, including different operators, instruments, and calibration standards, was evaluated using a broadband reflectance standard and two different solid tissue-simulating optical phantoms. Instruments showed <0.0010 mm-1 (10.3%) and 0.06 mm-1 (4.7%) deviation in broadband absorption and reduced scattering, respectively, over the 2-year duration of ACRIN-6691. These variations establish a useful performance criterion for assessing instrument stability. The proposed procedures and tests are not limited to DOSI; rather, they are intended to provide methods to characterize performance of any instrument used in translational optical imaging.

  17. Instrument translation and initial psychometric evaluation of the Danish Body Image Quality of Life Inventory

    DEFF Research Database (Denmark)

    Rasmussen, Trine Bernholdt; Berg, Selina Kikkenborg; Dixon, Jane

    2016-01-01

    RATIONALE AND OBJECTIVES: Negative body perception has been reported in a number of patient populations. No instrument in Danish for measuring body image-related concerns has been available. Without such an instrument, understanding of the phenomenon in Danish-speaking populations is limited....... The purpose of the study was thus to translate and validate a Danish version of the Body Image Quality of Life Inventory (BIQLI), in order to obtain a valid instrument applicable for healthcare research. METHODS: The study consisted of two phases: (i) instrument adaptation, including forward and back...... translation, expert committee comparisons and cognitive interviewing, and (ii) empirical testing of the Danish version (BIQLI-DA) with subsequent psychometric evaluation. Hypothesised correlations to other measures, including body mass index (BMI), Medical Outcome Short Form-8 (SF-8), Patient Health...

  18. The image of psychology programs: the value of the instrumental-symbolic framework.

    Science.gov (United States)

    Van Hoye, Greet; Lievens, Filip; De Soete, Britt; Libbrecht, Nele; Schollaert, Eveline; Baligant, Dimphna

    2014-01-01

    As competition for funding and students intensifies, it becomes increasingly important for psychology programs to have an image that is attractive and makes them stand out from other programs. The current study uses the instrumental-symbolic framework from the marketing domain to determine the image of different master's programs in psychology and examines how these image dimensions relate to student attraction and competitor differentiation. The samples consist of both potential students (N = 114) and current students (N = 68) of three psychology programs at a Belgian university: industrial and organizational psychology, clinical psychology, and experimental psychology. The results demonstrate that both instrumental attributes (e.g., interpersonal activities) and symbolic trait inferences (e.g., sincerity) are key components of the image of psychology programs and predict attractiveness as well as differentiation. In addition, symbolic image dimensions seem more important for current students of psychology programs than for potential students.

  19. A practical exposure-equivalent metric for instrumentation noise in x-ray imaging systems

    OpenAIRE

    Yadava, G K; Kuhls-Gilcrist, A T; Rudin, S; Patel, V K; Hoffmann, K R; Bednarek, D R

    2008-01-01

    The performance of high-sensitivity x-ray imagers may be limited by additive instrumentation noise rather than by quantum noise when operated at the low exposure rates used in fluoroscopic procedures. The equipment-invasive instrumentation noise measures (in terms of electrons) are generally difficult to make and are potentially not as helpful in clinical practice as would be a direct radiological representation of such noise that may be determined in the field. In this work, we define a clin...

  20. Innovative operating modes and techniques for the spaceborne imaging radar-C instrument

    Science.gov (United States)

    Huneycutt, Bryan L.

    1990-01-01

    The operation of the spaceborne imaging radar-C (SIR-C) is discussed. The SIR-C instrument has been designed to obtain simultaneous multifrequency and simultaneous multipolarization radar images from a low earth orbit. It is a multiparameter imaging radar which will be flown during at least two different seasons. The instrument has been designed to operate in innovative modes such as the squint alignment mode, the extended aperture mode, the scansar mode, and the interferometry mode. The instrument has been designed to demonstrate innovative engineering techniques such as beam nulling for echo tracking, pulse-repetition frquency hopping for Doppler centroid tracking, generating the frequency step chirp for radar parameter flexibility, block floating point quantizing for data rate compression, and elevation beamwidth broadening for increasing the swath illumination.

  1. Instrumentation

    International Nuclear Information System (INIS)

    Didierjean, B.; Jobez, J-P.; Seguinot, J.; Ypsilantis, T.

    1997-01-01

    A Hybrid Photon Detector (HPD) is currently manufactured in the framework of the tests of LHC-B collaboration. These extremely fast and sensible detectors (95% efficiency and 1 ns time accuracy for a single electron) could be utilized in many other applications: long base neutrino oscillations and possibly, HELLAZ. The model consists of an array of 2,048 1 x 1 mm 2 on Si strips of 50 mm thickness placed in glass cylinders of 127 mm diameter provided with Si windows and containing focalization electrodes. The electron circuits on 16 VA3 readout ceramic chips where designed, realized and tested. The stainless steel base card provided with 40 vacuum holes was already realised. The first production tests of visible light bi-alkali photocathodes operating in high vacuum will be performed soon. The design of the RICH2 counter (covering polar angles from 12 to 120 mrad) has been modified by turning the 120 mrad mirror to increase the spectrometer luminosity, i.e. to increase the length of the radiation path in gas by a factor of two. A second mirror sends the image in a region behind the magnetic field return, a region well-shielded from the LHC interaction zone. This design will provided 28 points for a β = 1 tracks and an angular uncertainty of 0.34 mrad per point. To cover the entire image 115 HPD will be necessary. The reconstruction of the complex systems of rings has been recently accomplished for events typical for RICH2, downstream, to discriminate between pions and kaons between 16 and 180 GeV/c. A simulation of 3,068 tracks has produced only 19 erroneous identifications, i.e. 0.6%. Another, simulation of 1,989 tracks with the RICH upstream resulted in 39 erroneous π/K identification, i.e. 2%. The report presents also the long base RICH experiment for detecting neutrino oscillations. A new version of 100 m length and 18.6 m diameter (27 kt of water) provided with HPDs of 250 mm diameter with 85 6 x 6 mm 2 arrays has been designed. Fifty such detectors will be

  2. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology.

    Science.gov (United States)

    Scholkmann, Felix; Kleiser, Stefan; Metz, Andreas Jaakko; Zimmermann, Raphael; Mata Pavia, Juan; Wolf, Ursula; Wolf, Martin

    2014-01-15

    This year marks the 20th anniversary of functional near-infrared spectroscopy and imaging (fNIRS/fNIRI). As the vast majority of commercial instruments developed until now are based on continuous wave technology, the aim of this publication is to review the current state of instrumentation and methodology of continuous wave fNIRI. For this purpose we provide an overview of the commercially available instruments and address instrumental aspects such as light sources, detectors and sensor arrangements. Methodological aspects, algorithms to calculate the concentrations of oxy- and deoxyhemoglobin and approaches for data analysis are also reviewed. From the single-location measurements of the early years, instrumentation has progressed to imaging initially in two dimensions (topography) and then three (tomography). The methods of analysis have also changed tremendously, from the simple modified Beer-Lambert law to sophisticated image reconstruction and data analysis methods used today. Due to these advances, fNIRI has become a modality that is widely used in neuroscience research and several manufacturers provide commercial instrumentation. It seems likely that fNIRI will become a clinical tool in the foreseeable future, which will enable diagnosis in single subjects. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Skeletal remodeling dynamics: New approaches with imaging instrumentation

    International Nuclear Information System (INIS)

    Parks, N.J.; Pinkerton, K.E.; Seibert, J.A.; Pool, R.R.

    1991-01-01

    This report of progress and future objectives timetable is based on an included schematic of goals and objectives and the project abstract which is included as Appendix 1. Five matters are summarized in the order of (1) novel methods of calcified bone confocal microscopy and reconstruction image analysis of decalcified beagle and human cortical bone serial sections, (2) macroscopic cross-correlation of beagle and human cortical and cancellous bone fractions with CT analysis, (3) guidance to the most radiobiologically important skeletal regions of interest with the just completed 90 Sr bone tumor map from life time beagle studies, (4) deposition patterns of radioactive agents that participate in apatite crystal nucleation processes in bone and leave radiation-excited electrons trapped in bone mineral, and (5) the budget period timetable. The discovery that beta particles from 166 Ho (T 1/2 =26 hr, β max = 1.8 MeV) phosphonic acid bone agents leave detectable, long-lived, electron paramagnetic resonance signals in bone is included in Appendix 2 as a joint report

  4. Skeletal remodeling dynamics: New approaches with imaging instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Parks, N.J.; Pinkerton, K.E.; Seibert, J.A.; Pool, R.R.

    1991-12-01

    This report of progress and future objectives timetable is based on an included schematic of goals and objectives and the project abstract which is included as Appendix 1. Five matters are summarized in the order of (1) novel methods of calcified bone confocal microscopy and reconstruction image analysis of decalcified beagle and human cortical bone serial sections, (2) macroscopic cross-correlation of beagle and human cortical and cancellous bone fractions with CT analysis, (3) guidance to the most radiobiologically important skeletal regions of interest with the just completed {sup 90}Sr bone tumor map from life time beagle studies, (4) deposition patterns of radioactive agents that participate in apatite crystal nucleation processes in bone and leave radiation-excited electrons trapped in bone mineral, and (5) the budget period timetable. The discovery that beta particles from {sup 166}Ho (T{sub {1/2}} =26 hr, {beta}{sub max} = 1.8 MeV) phosphonic acid bone agents leave detectable, long-lived, electron paramagnetic resonance signals in bone is included in Appendix 2 as a joint report.

  5. Newton's Telescope in Print: the Role of Images in the Reception of Newton's Instrument

    NARCIS (Netherlands)

    Dupré, Sven

    2008-01-01

    While Newton tried to make his telescope into a proof of the supremacy of his theory of colours over older theories, his instrument was welcomed as a way to shorten telescopes, not as a way to solve the problem of chromatic aberration. This paper argues that the image published together with the

  6. NESSI and `Alopeke: Two new dual-channel speckle imaging instruments

    Science.gov (United States)

    Scott, Nicholas J.

    2018-01-01

    NESSI and `Alopeke are two new speckle imagers built at NASA's Ames Research Center for community use at the WIYN and Gemini telescopes, respectively. The two instruments are functionally similar and include the capability for wide-field imaging in additional to speckle interferometry. The diffraction-limited imaging available through speckle effectively eliminates distortions due to the presence of Earth's atmosphere by `freezing out' changes in the atmosphere by taking extremely short exposures and combining the resultant speckles in Fourier space. This technique enables angular resolutions equal to the theoretical best possible for a given telescope, effectively giving space-based resolution from the ground. Our instruments provide the highest spatial resolution available today on any single aperture telescope.A primary role of these instruments is exoplanet validation for the Kepler, K2, TESS, and many RV programs. Contrast ratios of 6 or more magnitudes are easily obtained. The instrument uses two emCCD cameras providing simultaneous dual-color observations help to characterize detected companions. High resolution imaging enables the identification of blended binaries that contaminate many exoplanet detections, leading to incorrectly measured radii. In this way small, rocky systems, such as Kepler-186b and the TRAPPIST-1 planet family, may be validated and thus the detected planets radii are correctly measured.

  7. The Mid-Infrared Imager/Spectrometer/Coronagraph Instrument (MISC) for the Origins Space Telescope

    Science.gov (United States)

    Roellig, Thomas; Sakon, Itsuki; Ennico, Kimberly; MISC Instrument Study Team, Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST) is one of four potential flagship missions that have been funded by NASA for study for consideration in the upcoming Astrophysics Decadal Review expected in 2020. The OST telescope will be up to 9.3 meters in diameter, cooled to ~4K, and the mission will be optimized for efficient mid and far-infrared astronomical observations. An initial suite of five focal plane instruments are being baselined for this observatory. The Mid-infrared Imager Spectrometer Coronagraph (MISC) instrument will observe at the shortest wavelengths of any of these instruments, ranging from 5 to 38 microns, and consists of three separate optical modules providing imaging, spectroscopy, and coronagraph capabilities. The imaging camera covers a 3 arcmin x 3 arcmin field with filters and grisms from 6-38 microns. The spectrometers have spectral resolving powers R~1,000 from 9-38 microns (with a goal of 5-38 microns) and R~25,000 for 12-18 and 25-36 microns. The coronagraph covers 6-38 microns. There is a special densified pupil spectrometer channel that provides R~100-300 exoplanet transit and emission spectroscopy from 6-26 microns with very high spectro-photometric stability. As the shortest wavelength focal plane imager the MISC instrument will also be used for focal plane guiding as needed for the other OST science instruments. The science that MISC enables on OST includes: studying episodic accretion in protostellar envelopes, tracing the rise in metallacity and dust over cosmic time (when combined with far-infrared measurements), measuring dust in galactic outflows, assessing feedback from supernovae and AGN on the multi-phase ISM in galaxies, characterizing the AGN and starburst power in normal and massive galaxies, detecting exoplanet atmospheric biosignatures, and direct imaging of Jovian planets orbiting older stars at separations of 5-20 AU.

  8. Imaging x-ray sources at a finite distance in coded-mask instruments

    International Nuclear Information System (INIS)

    Donnarumma, Immacolata; Pacciani, Luigi; Lapshov, Igor; Evangelista, Yuri

    2008-01-01

    We present a method for the correction of beam divergence in finite distance sources imaging through coded-mask instruments. We discuss the defocusing artifacts induced by the finite distance showing two different approaches to remove such spurious effects. We applied our method to one-dimensional (1D) coded-mask systems, although it is also applicable in two-dimensional systems. We provide a detailed mathematical description of the adopted method and of the systematics introduced in the reconstructed image (e.g., the fraction of source flux collected in the reconstructed peak counts). The accuracy of this method was tested by simulating pointlike and extended sources at a finite distance with the instrumental setup of the SuperAGILE experiment, the 1D coded-mask x-ray imager onboard the AGILE (Astro-rivelatore Gamma a Immagini Leggero) mission. We obtained reconstructed images of good quality and high source location accuracy. Finally we show the results obtained by applying this method to real data collected during the calibration campaign of SuperAGILE. Our method was demonstrated to be a powerful tool to investigate the imaging response of the experiment, particularly the absorption due to the materials intercepting the line of sight of the instrument and the conversion between detector pixel and sky direction

  9. Quantitative imaging of the human upper airway: instrument design and clinical studies

    Science.gov (United States)

    Leigh, M. S.; Armstrong, J. J.; Paduch, A.; Sampson, D. D.; Walsh, J. H.; Hillman, D. R.; Eastwood, P. R.

    2006-08-01

    Imaging of the human upper airway is widely used in medicine, in both clinical practice and research. Common imaging modalities include video endoscopy, X-ray CT, and MRI. However, no current modality is both quantitative and safe to use for extended periods of time. Such a capability would be particularly valuable for sleep research, which is inherently reliant on long observation sessions. We have developed an instrument capable of quantitative imaging of the human upper airway, based on endoscopic optical coherence tomography. There are no dose limits for optical techniques, and the minimally invasive imaging probe is safe for use in overnight studies. We report on the design of the instrument and its use in preliminary clinical studies, and we present results from a range of initial experiments. The experiments show that the instrument is capable of imaging during sleep, and that it can record dynamic changes in airway size and shape. This information is useful for research into sleep disorders, and potentially for clinical diagnosis and therapies.

  10. On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory

    Science.gov (United States)

    Hoeksema, J. T.; Baldner, C. S.; Bush, R. I.; Schou, J.; Scherrer, P. H.

    2018-03-01

    The Helioseismic and Magnetic Imager (HMI) instrument is a major component of NASA's Solar Dynamics Observatory (SDO) spacecraft. Since commencement of full regular science operations on 1 May 2010, HMI has operated with remarkable continuity, e.g. during the more than five years of the SDO prime mission that ended 30 September 2015, HMI collected 98.4% of all possible 45-second velocity maps; minimizing gaps in these full-disk Dopplergrams is crucial for helioseismology. HMI velocity, intensity, and magnetic-field measurements are used in numerous investigations, so understanding the quality of the data is important. This article describes the calibration measurements used to track the performance of the HMI instrument, and it details trends in important instrument parameters during the prime mission. Regular calibration sequences provide information used to improve and update the calibration of HMI data. The set-point temperature of the instrument front window and optical bench is adjusted regularly to maintain instrument focus, and changes in the temperature-control scheme have been made to improve stability in the observable quantities. The exposure time has been changed to compensate for a 20% decrease in instrument throughput. Measurements of the performance of the shutter and tuning mechanisms show that they are aging as expected and continue to perform according to specification. Parameters of the tunable optical-filter elements are regularly adjusted to account for drifts in the central wavelength. Frequent measurements of changing CCD-camera characteristics, such as gain and flat field, are used to calibrate the observations. Infrequent expected events such as eclipses, transits, and spacecraft off-points interrupt regular instrument operations and provide the opportunity to perform additional calibration. Onboard instrument anomalies are rare and seem to occur quite uniformly in time. The instrument continues to perform very well.

  11. Meteosat Third Generation Lightning Imager: a discussion on user requirements and instrument features.

    Science.gov (United States)

    Biron, D.; de Leonibus, L.; Zauli, F.; Melfi, D.; Laquale, P.; Labate, D.

    2009-04-01

    For the next generation of earth observation geostationary satellite, major operating agencies are planning to insert an optical imaging mission, that continuously observes lightning pulses in the atmosphere; EUMETSAT has decided at the end of 2008 that one of the mission to be flown on MTG is LI, a Lightning Imager. The Centro Nazionale di Meteorologia e Climatologia Aeronautica recently hosted a fellowship sponsored by Selex Galileo, with the intent to study and perform a simulation of Meteosat Third Generation - Lightning Imager (MTG-LI) sensor behavior through Tropical Rainfall Measuring Mission - Lightning Imaging Sensor data (TRMM-LIS). MTG-LI mission has no Meteosat Second Generation heritage, but users need to evaluate the possible real time data output of the instrument to agree in inserting it on MTG payload. Authors took the expected LI design from MTG Mission Requirement Document, and reprocess real lightning dataset, acquired from space by TRMM-LIS instrument, to produce a simulated MTG-LI lightning dataset. The simulation is performed in several run, varying Minimum Detectable Energy, taking into account processing steps from event detection to final lightning information. A discussion on user requirements and instrument features is presented.

  12. High-speed MALDI-TOF imaging mass spectrometry: rapid ion image acquisition and considerations for next generation instrumentation.

    Science.gov (United States)

    Spraggins, Jeffrey M; Caprioli, Richard M

    2011-06-01

    A prototype matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometer has been used for high-speed ion image acquisition. The instrument incorporates a Nd:YLF solid state laser capable of pulse repetition rates up to 5 kHz and continuous laser raster sampling for high-throughput data collection. Lipid ion images of a sagittal rat brain tissue section were collected in 10 min with an effective acquisition rate of roughly 30 pixels/s. These results represent more than a 10-fold increase in throughput compared with current commercially available instrumentation. Experiments aimed at improving conditions for continuous laser raster sampling for imaging are reported, highlighting proper laser repetition rates and stage velocities to avoid signal degradation from significant oversampling. As new high spatial resolution and large sample area applications present themselves, the development of high-speed microprobe MALDI imaging mass spectrometry is essential to meet the needs of those seeking new technologies for rapid molecular imaging.

  13. Higs-instrument: design and demonstration of a high performance gas concentration imager

    Science.gov (United States)

    Verlaan, A. L.; Klop, W. A.; Visser, H.; van Brug, H.; Human, J.

    2017-09-01

    Climate change and environmental conditions are high on the political agenda of international governments. Laws and regulations are being setup all around the world to improve the air quality and to reduce the impact. The growth of a number of trace gasses, including CO2, Methane and NOx are especially interesting due to their environmental impact. The regulations made are being based on both models and measurements of the trend of those trace gases over the years. Now the regulations are in place also enforcement and therewith measurements become more and more important. Instruments enabling high spectral and spatial resolution as well as high accurate measurements of trace gases are required to deliver the necessary inputs. Nowadays those measurements are usually performed by space based spectrometers. The requirement for high spectral resolution and measurement accuracy significantly increases the size of the instruments. As a result the instrument and satellite becomes very expensive to develop and to launch. Specialized instruments with a small volume and the required performance will offer significant advantages in both cost and performance. Huib's Innovative Gas Sensor (HIGS, named after its inventor Huib Visser), currently being developed at TNO is an instrument that achieves exactly that. Designed to measure only a single gas concentration, opposed to deriving it from a spectrum, it achieves high performance within a small design volume. The instrument enables instantaneous imaging of the gas distribution of the selected gas. An instrument demonstrator has been developed for NO2 detection. Laboratory measurements proved the measurement technique to be successful. An on-sky measurement campaign is in preparation. This paper addresses both the instrument design as well as the demonstrated performances.

  14. Calibration results using highly aberrated images for aligning the JWST instruments to the telescope

    Science.gov (United States)

    Smith, Koby Z.; Acton, D. Scott; Gallagher, Ben B.; Knight, J. Scott; Dean, Bruce H.; Jurling, Alden S.; Zielinski, Thomas P.

    2016-07-01

    The James Webb Space Telescope (JWST) project is an international collaboration led by NASA's Goddard Space Flight Center (GSFC) in Greenbelt, MD. JWST is NASA's flagship observatory that will operate nearly a million miles away from Earth at the L2 Lagrange point. JWST's optical design is a three-mirror anastigmat with four main optical components; 1) the eighteen Primary Mirror Segment Assemblies (PMSA), 2) a single Secondary Mirror Assembly (SMA), 3) an Aft-Optics Subsystem (AOS) consisting of a Tertiary Mirror and Fine Steering Mirror, and 4) an Integrated Science Instrument Module consisting of the various instruments for JWST. JWST's optical system has been designed to accommodate a significant amount of alignment capability and risk with the PMSAs and SMA having rigid body motion available on-orbit just for alignment purposes. However, the Aft-Optics Subsystem (AOS) and Integrated Science Instrument Module (ISIM) are essentially fixed optical subsystems within JWST, and therefore the cryogenic alignment of the AOS to the ISIM is critical to the optical performance and mission success of JWST. In support of this cryogenic alignment of the AOS to ISIM, an array of fiber optic sources, known as the AOS Source Plate Assembly (ASPA), are placed near the intermediate image location of JWST (between the secondary and tertiary mirrors) during thermal vacuum ground-test operations. The AOS produces images of the ASPA fiber optic sources at the JWST focal surface location, where they are captured by the various science instruments. In this manner, the AOS provides an optical yardstick by which the instruments within ISIM can evaluate their relative positions to and the alignment of the AOS to ISIM can be quantified. However, since the ASPA is located at the intermediate image location of the JWST three-mirror anastigmat design, the images of these fiber optic sources produced by the AOS are highly aberrated with approximately 2-3μm RMS wavefront error consisting

  15. The integration of real and virtual magnetic resonance imaging experiments in a single instrument.

    Science.gov (United States)

    Sharp, Jonathan C; Yin, Donghui; Bernhardt, Richard H; Deng, Qunli; Procca, Andrew E; Tyson, Randy L; Lo, Kan; Tomanek, Boguslaw

    2009-09-01

    We present the design of an integrated system for performing both real and virtual (simulated) magnetic resonance imaging (MRI) experiments. We emphasize the approaches used to maximize the level of integration and also the benefits that tight real-virtual integration brings for a scientific instrument. The system has been implemented for both low field (0.2 T) and high field (9.4 T) imaging systems. The simulations can run for any MRI experiment and we demonstrate the operation of the system for T(1), T(2), T(2) ( *), and diffusion contrasts.

  16. Complex of imaging diagnostic instruments in the vacuum ultraviolet range for the GOL-3 multimirror trap

    International Nuclear Information System (INIS)

    Burdakov, A.V.; Polosatkin, S.V.; Postupaev, V.V.; Weinzettl, V.; Piffl, V.

    2004-01-01

    Paper describes the GOL-3 multimirror trap base system of imaging diagnostic instruments for vacuum ultraviolet radiation, presents characteristics of the system devices and examples of their operation. Diagnostic procedures serve to acquire information on the plasma basic parameters and to ensure monitoring of facility operation. In combination with the spectroscopic systems the mentioned diagnostic procedures enable to determine dynamics of diffusion of impurities in plasma [ru

  17. Near- infrared imager and slitless spectrograph (NIRISS): a new instrument on James Webb Space Telescope (JWST)

    Science.gov (United States)

    Maszkiewicz, Michael

    2017-11-01

    The James Webb Space Telescope (JWST) is a 6.5 m diameter deployable telescope that will orbit the L2 Earth-Sun point beginning in 2018. NASA is leading the development of the JWST mission with their partners, the European Space Agency and the Canadian Space Agency. The Canadian contribution to the mission is the Fine Guidance Sensor (FGS). Originally, the FGS incorporated a flexible narrow spectral band science imaging capability in the form of the Tunable Filter Imaging Module -TFI, based on a scanning Fabry-Perot etalon. In the course of building and testing of the TFI flight model, numerous technical issues arose with unforeseeable length of required mitigation effort. In addition to that, emerging new science priorities caused that in summer of 2011 a decision was taken to replace TFI with a new instrument called Near Infrared Imager and Slitless Spectrograph (NIRISS). NIRISS preserves most of the TFI opto-mechanical design: focusing mirror, collimator and camera TMA telescopes, dual filter and pupil wheel and detectors but, instead of a tunable etalon, uses set of filters and grisms for wavelength selection and dispersion. The FGS-Guider and NIRISS have completed their instrument-level cryogenic testing and were delivered to NASA Goddard in late July 2012 for incorporation into the Integrated Science Instrument Module (ISIM).

  18. A practical exposure-equivalent metric for instrumentation noise in x-ray imaging systems

    International Nuclear Information System (INIS)

    Yadava, G K; Kuhls-Gilcrist, A T; Rudin, S; Patel, V K; Hoffmann, K R; Bednarek, D R

    2008-01-01

    The performance of high-sensitivity x-ray imagers may be limited by additive instrumentation noise rather than by quantum noise when operated at the low exposure rates used in fluoroscopic procedures. The equipment-invasive instrumentation noise measures (in terms of electrons) are generally difficult to make and are potentially not as helpful in clinical practice as would be a direct radiological representation of such noise that may be determined in the field. In this work, we define a clinically relevant representation for instrumentation noise in terms of noise-equivalent detector entrance exposure, termed the instrumentation noise-equivalent exposure (INEE), which can be determined through experimental measurements of noise-variance or signal-to-noise ratio (SNR). The INEE was measured for various detectors, thus demonstrating its usefulness in terms of providing information about the effective operating range of the various detectors. A simulation study is presented to demonstrate the robustness of this metric against post-processing, and its dependence on inherent detector blur. These studies suggest that the INEE may be a practical gauge to determine and compare the range of quantum-limited performance for clinical x-ray detectors of different design, with the implication that detector performance at exposures below the INEE will be instrumentation-noise limited rather than quantum-noise limited

  19. A practical exposure-equivalent metric for instrumentation noise in x-ray imaging systems

    Science.gov (United States)

    Yadava, G. K.; Kuhls-Gilcrist, A. T.; Rudin, S.; Patel, V. K.; Hoffmann, K. R.; Bednarek, D. R.

    2008-09-01

    The performance of high-sensitivity x-ray imagers may be limited by additive instrumentation noise rather than by quantum noise when operated at the low exposure rates used in fluoroscopic procedures. The equipment-invasive instrumentation noise measures (in terms of electrons) are generally difficult to make and are potentially not as helpful in clinical practice as would be a direct radiological representation of such noise that may be determined in the field. In this work, we define a clinically relevant representation for instrumentation noise in terms of noise-equivalent detector entrance exposure, termed the instrumentation noise-equivalent exposure (INEE), which can be determined through experimental measurements of noise-variance or signal-to-noise ratio (SNR). The INEE was measured for various detectors, thus demonstrating its usefulness in terms of providing information about the effective operating range of the various detectors. A simulation study is presented to demonstrate the robustness of this metric against post-processing, and its dependence on inherent detector blur. These studies suggest that the INEE may be a practical gauge to determine and compare the range of quantum-limited performance for clinical x-ray detectors of different design, with the implication that detector performance at exposures below the INEE will be instrumentation-noise limited rather than quantum-noise limited.

  20. A practical exposure-equivalent metric for instrumentation noise in x-ray imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, G K; Kuhls-Gilcrist, A T; Rudin, S; Patel, V K; Hoffmann, K R; Bednarek, D R [Toshiba Stroke Research Center, State University of New York at Buffalo, Buffalo, NY 14214 (United States)

    2008-09-21

    The performance of high-sensitivity x-ray imagers may be limited by additive instrumentation noise rather than by quantum noise when operated at the low exposure rates used in fluoroscopic procedures. The equipment-invasive instrumentation noise measures (in terms of electrons) are generally difficult to make and are potentially not as helpful in clinical practice as would be a direct radiological representation of such noise that may be determined in the field. In this work, we define a clinically relevant representation for instrumentation noise in terms of noise-equivalent detector entrance exposure, termed the instrumentation noise-equivalent exposure (INEE), which can be determined through experimental measurements of noise-variance or signal-to-noise ratio (SNR). The INEE was measured for various detectors, thus demonstrating its usefulness in terms of providing information about the effective operating range of the various detectors. A simulation study is presented to demonstrate the robustness of this metric against post-processing, and its dependence on inherent detector blur. These studies suggest that the INEE may be a practical gauge to determine and compare the range of quantum-limited performance for clinical x-ray detectors of different design, with the implication that detector performance at exposures below the INEE will be instrumentation-noise limited rather than quantum-noise limited.

  1. Magnetic particle imaging an introduction to imaging principles and scanner instrumentation

    CERN Document Server

    Knopp, Tobias

    2012-01-01

    This is an overview of recent progress in magnetic particle imaging, which uses various static and oscillating magnetic fields and tracer materials made from iron oxide nanoparticles to perform background-free measurements of the particles' local concentration.

  2. Body-mounted robotic instrument guide for image-guided cryotherapy of renal cancer.

    Science.gov (United States)

    Hata, Nobuhiko; Song, Sang-Eun; Olubiyi, Olutayo; Arimitsu, Yasumichi; Fujimoto, Kosuke; Kato, Takahisa; Tuncali, Kemal; Tani, Soichiro; Tokuda, Junichi

    2016-02-01

    Image-guided cryotherapy of renal cancer is an emerging alternative to surgical nephrectomy, particularly for those who cannot sustain the physical burden of surgery. It is well known that the outcome of this therapy depends on the accurate placement of the cryotherapy probe. Therefore, a robotic instrument guide may help physicians aim the cryotherapy probe precisely to maximize the efficacy of the treatment and avoid damage to critical surrounding structures. The objective of this paper was to propose a robotic instrument guide for orienting cryotherapy probes in image-guided cryotherapy of renal cancers. The authors propose a body-mounted robotic guide that is expected to be less susceptible to guidance errors caused by the patient's whole body motion. Keeping the device's minimal footprint in mind, the authors developed and validated a body-mounted, robotic instrument guide that can maintain the geometrical relationship between the device and the patient's body, even in the presence of the patient's frequent body motions. The guide can orient the cryotherapy probe with the skin incision point as the remote-center-of-motion. The authors' validation studies included an evaluation of the mechanical accuracy and position repeatability of the robotic instrument guide. The authors also performed a mock MRI-guided cryotherapy procedure with a phantom to compare the advantage of robotically assisted probe replacements over a free-hand approach, by introducing organ motions to investigate their effects on the accurate placement of the cryotherapy probe. Measurements collected for performance analysis included accuracy and time taken for probe placements. Multivariate analysis was performed to assess if either or both organ motion and the robotic guide impacted these measurements. The mechanical accuracy and position repeatability of the probe placement using the robotic instrument guide were 0.3 and 0.1 mm, respectively, at a depth of 80 mm. The phantom test indicated

  3. Integration of instrumentation and processing software of a laser speckle contrast imaging system

    Science.gov (United States)

    Carrick, Jacob J.

    Laser speckle contrast imaging (LSCI) has the potential to be a powerful tool in medicine, but more research in the field is required so it can be used properly. To help in the progression of Michigan Tech's research in the field, a graphical user interface (GUI) was designed in Matlab to control the instrumentation of the experiments as well as process the raw speckle images into contrast images while they are being acquired. The design of the system was successful and is currently being used by Michigan Tech's Biomedical Engineering department. This thesis describes the development of the LSCI GUI as well as offering a full introduction into the history, theory and applications of LSCI.

  4. Body-mounted robotic instrument guide for image-guided cryotherapy of renal cancer

    Science.gov (United States)

    Hata, Nobuhiko; Song, Sang-Eun; Olubiyi, Olutayo; Arimitsu, Yasumichi; Fujimoto, Kosuke; Kato, Takahisa; Tuncali, Kemal; Tani, Soichiro; Tokuda, Junichi

    2016-01-01

    Purpose: Image-guided cryotherapy of renal cancer is an emerging alternative to surgical nephrectomy, particularly for those who cannot sustain the physical burden of surgery. It is well known that the outcome of this therapy depends on the accurate placement of the cryotherapy probe. Therefore, a robotic instrument guide may help physicians aim the cryotherapy probe precisely to maximize the efficacy of the treatment and avoid damage to critical surrounding structures. The objective of this paper was to propose a robotic instrument guide for orienting cryotherapy probes in image-guided cryotherapy of renal cancers. The authors propose a body-mounted robotic guide that is expected to be less susceptible to guidance errors caused by the patient’s whole body motion. Methods: Keeping the device’s minimal footprint in mind, the authors developed and validated a body-mounted, robotic instrument guide that can maintain the geometrical relationship between the device and the patient’s body, even in the presence of the patient’s frequent body motions. The guide can orient the cryotherapy probe with the skin incision point as the remote-center-of-motion. The authors’ validation studies included an evaluation of the mechanical accuracy and position repeatability of the robotic instrument guide. The authors also performed a mock MRI-guided cryotherapy procedure with a phantom to compare the advantage of robotically assisted probe replacements over a free-hand approach, by introducing organ motions to investigate their effects on the accurate placement of the cryotherapy probe. Measurements collected for performance analysis included accuracy and time taken for probe placements. Multivariate analysis was performed to assess if either or both organ motion and the robotic guide impacted these measurements. Results: The mechanical accuracy and position repeatability of the probe placement using the robotic instrument guide were 0.3 and 0.1 mm, respectively, at a depth

  5. Seabed Detection Using Application Of Image Side Scan Sonar Instrument (Acoustic Signal

    Directory of Open Access Journals (Sweden)

    Muhammad Zainuddin Lubis

    2017-09-01

    Full Text Available The importance of knowing the method for seabed detection using side-scan sonar images with sonar instrument is a much-needed requirement right now. This kind of threat also requires frequent sonar surveys in such areas. These survey operations need specific procedures and special equipment to ensure survey correctness. In this paper describes the method of observation and retrieval of marine imagery data using an acoustic signal method, to determine a target based on the sea. Side scan sonar is an instrument consisting of single beam transducer on both sides. Side scan sonar (SSS is a sonar development that is able to show in two-dimensional images of the seabed surface with seawater conditions and target targets simultaneously. The side scan sonar data processing is performed through geometric correction to establish the actual position of the image pixel, which consists of bottom tracking, slant-range correction, layback correction and radiometric correction performed for the backscatter intensity of the digital number assigned to each pixel including the Beam Angle Correction (BAC, Automatic Gain Control (AGC, Time Varied Gain (TVG, and Empirical Gain Normalization (EGN.

  6. CASSINI S MIMI INCA SENSOR CALIBRATED DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Ion and Neutral Camera (INCA) obtains remote images of the global distribution of energetic ions for energies from 7 keV/nucleon to 8 MeV/nucleon, discriminated...

  7. Cerenkov Luminescence for Imaging and Therapy: Quantitative Investigation of Clinical Applications and New Instrumentation

    Science.gov (United States)

    Klein, Justin Shaun

    Cerenkov luminescence (CL) is optical radiation induced by fast, charged, particles. In the biomedical setting, it is produced by all PET radionuclides and by radiotherapy beams. The work presented in this dissertation, spanning some five years, has sought to both investigate the utility of Cerenkov luminescence imaging (CLI) in the biomedical setting and to push the boundaries by inventing ultrasound-modulated Cerenkov luminescence imaging (USCLI), a modality that potentially mitigates the scattering limit of resolution for CLI. Clinical applications of CLI have focused on evaluating the potential of Cerenkov luminescence as a tool for guidance during brain tumor resection. Monte Carlo simulations of a brain phantom, along with an experimental analysis scheme, were developed to recapitulate a tumor margin assessment task. The brain phantom has optical properties derived from real brain tissues, and the simulation accounts for all physics of nuclear decay, charged particles, and optical photon propagation. The relative merits of the Cerenkov luminescence signal have been compared with other decay signals in the context of an intraoperative detection task. Considering two surgically-feasible implementations, imaging with a sensitive camera or intraoperative probe, CL objectively provides the most sensitive signal when the tumor remnant resides at superficial (published results and expected required dosimetry. Published in vivo results, which purport to positively demonstrate CL-activated PDT, are at least six orders of magnitude below the therapeutic threshold for PDT dosimetry. The results herein suggest that CL is unlikely to be the driver of the observed therapeutic results, and the mechanism behind these surprising results merits further investigation. Finally, both the theory and instrumentation for USCLI, a new, high resolution imaging modality, were developed. USCLI uses ultrasound to modulate the CL signal and thereby shift the resolution-dependence from

  8. Custom-made shutter block for imaging instrument 'RADEN' at J-PARC

    International Nuclear Information System (INIS)

    Oikawa, Kenichi; Harada, Masahide; Shinohara, Takenao; Kai, Tetsuya; Ooi, Motoki; Kiyanagi, Yoshiaki

    2015-01-01

    A novel energy-resolved neutron imaging system 'RADEN' has been constructed at BL22 at the Materials and Life Science Experimental Facility (MLF) at J-PARC. RADEN was designed for conventional radiography and tomography as well as for Bragg-edge transmission, resonance absorption analysis, and visualization of the magnetic field. Good energy and wavelength resolution of pulsed neutron source at the MLF is fully utilized in this instrument. To maximize flexibility of neutron brightness, beam divergence, and field of view at the sample position, a custom-made shutter block with triple inserts was designed and replaced with the original block, which had a single insert. (author)

  9. SEMAC-VAT MR Imaging Unravels Peri-instrumentation Lesions in Patients With Attendant Symptoms After Spinal Surgery.

    Science.gov (United States)

    Qi, Shun; Wu, Zhi-Gang; Mu, Yun-Feng; Gao, Lang-Lang; Yang, Jian; Zuo, Pan-Li; Nittka, Mathias; Liu, Ying; Wang, Hai-Qiang; Yin, Hong

    2016-04-01

    The study aimed for evaluating the diagnostic value of a 2D Turbo Spin Echo (TSE) magnetic resonance (MR) imaging sequence implanted slice-encoding metal artifact correction (SEMAC) and view-angle tilting (VAT) in patients with spinal instrumentation.Sixty-seven consecutive patients with an average age of 59.7 ± 17.8 years old (range: 32-75 years) were enrolled in this study. Both sagittal, axial T1-weighted and T2-weighted MRI images were acquired with a standard TSE sequence and a high-bandwidth TSE sequence implemented the SEMAC and VAT techniques. Three continuous sections around the instrumentation in axial and sagittal images were selected for quantitative evaluation. The measurement included cumulative areas of signal void on axial images and the length of spinal canal obscuration on sagittal images. Three radiologists independently evaluated all images blindly. The inter-observer reliability was evaluated with inter-class coefficient. We defined patients with discomfortable symptoms caused by spinal instrumentation as spinal instrumentation adverse reaction.Visualizations of all periprosthetic anatomic structures were significantly better for SEMAC-VAT compared with standard imaging. For axial images, the area of signal void at the level of the instrumentation were statistically reduced with SEMAC-VAT TSE sequences than with standard TSE sequences for T2-weighted images (9.9 ± 2.6 cm vs 29.8 ± 14.7 cm, P VAT sequences (P VAT (k = 0.77 and 0.68, respectively) and standard (k = 0.74 and 0.80, respectively) imaging. The number of abnormal findings noted on SEMAC images (59 findings) was significantly higher than detected on standard images (40 findings). The incidence rate of spinal instrumentation adverse reaction was 38.81%.MR images with SEMAC-VAT can significantly reduce metal artifacts for spinal instrumentation and improve delineation of the instrumentation and periprosthetic region. Furthermore, SEMAC-VAT technique can

  10. An instrument control and data analysis program for NMR imaging and spectroscopy

    International Nuclear Information System (INIS)

    Roos, M.S.; Mushlin, R.A.; Veklerov, E.; Port, J.D.; Ladd, C.; Harrison, C.G.

    1988-01-01

    We describe a software environment created to support real-time instrument control and signal acquisition as well as array-processor based signal and image processing in up to five dimensions. The environment is configured for NMR imaging and in vivo spectroscopy. It is designed to provide flexible tools for implementing novel NMR experiments in the research laboratory. Data acquisition and processing operations are programmed in macros which are loaded in assembled from to minimize instruction overhead. Data arrays are dynamically allocated for efficient use of memory and can be mapped directly into disk files. The command set includes primitives for real-time control of data acquisition, scalar arithmetic, string manipulation, branching, a file system and vector operations carried out by an array processor. 6 figs

  11. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Instrument Design and Calibration

    Science.gov (United States)

    Englert, Christoph R.; Harlander, John M.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Stump, J. Eloise; Hancock, Jed; Peterson, James Q.; Kumler, Jay; Morrow, William H.; Mooney, Thomas A.; Ellis, Scott; Mende, Stephen B.; Harris, Stewart E.; Stevens, Michael H.; Makela, Jonathan J.; Harding, Brian J.; Immel, Thomas J.

    2017-10-01

    The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth's limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.

  12. Digital imaging system and virtual instrument platform for measuring hydraulic conductivity of vascular endothelial monolayers.

    Science.gov (United States)

    Hubert, Christopher G; McJames, Scott W; Mecham, Ian; Dull, Randal O

    2006-03-01

    We have developed an automated, digital imaging system, controlled by two virtual instruments, to measure hydraulic conductivity (Lp) of cultured endothelial monolayers. Live digital images of multiple independent experiments were captured by custom-designed video processing software running in National Instruments LabVIEW 6.1. Fluid displacement data are automatically displayed in real time as both volumetric flux (Jv) and hydraulic conductivity (Lp). A separate data analysis program is used to display permeability values from stored displacement measurements and displays Jv or Lp of each monolayer. Optional statistical filters have been included to aid in data analysis. This new digital permeability system is able to measure flux rates over a dynamic range from 10(-9) cm/s/cm H2O to 10(-4) cm/s/cm H2O. Values obtained for cultured lung microvascular Lp are nearly identical to other cultured endothelial monolayers and also to values obtained in-vivo using the Landis-Michel technique and the split-drop method. The use of a commercially available platform allows the system configuration to be easily modified to suit the experimental needs. The technical development of this system is described in detail.

  13. 3D quantitative imaging of the microvasculature with the Texas Instruments Digital Micromirror Device

    Science.gov (United States)

    Fainman, Yeshaiahu; Botvinick, Elliott L.; Price, Jeffrey H.; Gough, David A.

    2001-11-01

    There is a growing need for developing 3D quantitative imaging tools that can operate at high speed enabling real-time visualization for the field of biology, material science, and the semiconductor industry. We will present our 3D quantitative imaging system based on a confocal microscope built with a Texas Instruments Digital Micromirror Device (DMD). By using the DMD as a spatial light modulator, confocal transverse surface (x, y) scanning can be performed in parallel at speeds faster than video rate without physical movement of the sample. The DMD allows us to programmably configure the source and the detection pinhole array in the lateral direction to achieve the best signal and to reduce the crosstalk noise. Investigations of the microcirculation were performed on 40 g to 45 g golden Syrian hamsters fit with dorsal skin fold window chambers. FITC-Dextran or Red blood cells from donor hamsters, stained with Celltracker CM-DiI, were injected into the circulation and imaged with the confocal microscope. We will present the measured results for the axial resolution, in vivo, as well as experimental results from imaging the window chamber.

  14. An adaptive and fully automatic method for estimating the 3D position of bendable instruments using endoscopic images.

    Science.gov (United States)

    Cabras, Paolo; Nageotte, Florent; Zanne, Philippe; Doignon, Christophe

    2017-12-01

    Flexible bendable instruments are key tools for performing surgical endoscopy. Being able to measure the 3D position of such instruments can be useful for various tasks, such as controlling automatically robotized instruments and analyzing motions. An automatic method is proposed to infer the 3D pose of a single bending section instrument, using only the images provided by a monocular camera embedded at the tip of the endoscope. The proposed method relies on colored markers attached onto the bending section. The image of the instrument is segmented using a graph-based method and the corners of the markers are extracted by detecting the color transitions along Bézier curves fitted on edge points. These features are accurately located and then used to estimate the 3D pose of the instrument using an adaptive model that takes into account the mechanical play between the instrument and its housing channel. The feature extraction method provides good localization of marker corners with images of the in vivo environment despite sensor saturation due to strong lighting. The RMS error on estimation of the tip position of the instrument for laboratory experiments was 2.1, 1.96, and 3.18 mm in the x, y and z directions, respectively. Qualitative analysis in the case of in vivo images shows the ability to correctly estimate the 3D position of the instrument tip during real motions. The proposed method provides an automatic and accurate estimation of the 3D position of the tip of a bendable instrument in realistic conditions, where standard approaches fail. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Experimental investigation on the influence of instrument settings on pixel size and nonlinearity in SEM image formation

    DEFF Research Database (Denmark)

    Carli, Lorenzo; Genta, Gianfranco; Cantatore, Angela

    2010-01-01

    The work deals with an experimental investigation on the influence of three Scanning Electron Microscope (SEM) instrument settings, accelerating voltage, spot size and magnification, on the image formation process. Pixel size and nonlinearity were chosen as output parameters related to image...

  16. Instrument technology for magnetosphere plasma imaging from high Earth orbit. Design of a radio plasma sounder

    Science.gov (United States)

    Haines, D. Mark; Reinisch, Bodo W.

    1995-01-01

    The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N(sub e)) as a function of height (the N(sub e) profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year (1958). The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N(sub e) profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al., 1992), has never been put into space. NASA's 1990 Space Physics Strategy Implementation Study "The NASA Space Physics Program from 1995 to 2010" suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung, 1993). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R(sub e) (Reiff et al., 1994; Calvert et al., 1995). Magnetospheric radio sounding from space will provide remote density measurements of

  17. Nuclear medicine and imaging research. Instrumentation and quantitative methods of evaluation. Progress report, January 15, 1984-January 14, 1985

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1984-09-01

    This program addresses problems involving the basic science and technology of radioactive tracer methods as they relate to nuclear medicine and imaging. The broad goal is to develop new instruments and methods for image formation, processing, quantitation and display, so as to maximize the diagnostic information per unit of absorbed radiation dose to the patient. Project I addresses problems associated with the quantitative imaging of single-photon emitters; Project II addresses similar problems associated with the quantitative imaging of positron emitters; Project III addresses methodological problems associated with the quantitative evaluation of the efficacy of diagnostic imaging procedures

  18. Can masses of non-experts train highly accurate image classifiers? A crowdsourcing approach to instrument segmentation in laparoscopic images.

    Science.gov (United States)

    Maier-Hein, Lena; Mersmann, Sven; Kondermann, Daniel; Bodenstedt, Sebastian; Sanchez, Alexandro; Stock, Christian; Kenngott, Hannes Gotz; Eisenmann, Mathias; Speidel, Stefanie

    2014-01-01

    Machine learning algorithms are gaining increasing interest in the context of computer-assisted interventions. One of the bottlenecks so far, however, has been the availability of training data, typically generated by medical experts with very limited resources. Crowdsourcing is a new trend that is based on outsourcing cognitive tasks to many anonymous untrained individuals from an online community. In this work, we investigate the potential of crowdsourcing for segmenting medical instruments in endoscopic image data. Our study suggests that (1) segmentations computed from annotations of multiple anonymous non-experts are comparable to those made by medical experts and (2) training data generated by the crowd is of the same quality as that annotated by medical experts. Given the speed of annotation, scalability and low costs, this implies that the scientific community might no longer need to rely on experts to generate reference or training data for certain applications. To trigger further research in endoscopic image processing, the data used in this study will be made publicly available.

  19. Direct observation of two dimensional trace gas distributions with an airborne Imaging DOAS instrument

    Directory of Open Access Journals (Sweden)

    K.-P. Heue

    2008-11-01

    Full Text Available In many investigations of tropospheric chemistry information about the two dimensional distribution of trace gases on a small scale (e.g. tens to hundreds of metres is highly desirable. An airborne instrument based on imaging Differential Optical Absorption Spectroscopy has been built to map the two dimensional distribution of a series of relevant trace gases including NO2, HCHO, C2H2O2, H2O, O4, SO2, and BrO on a scale of 100 m.

    Here we report on the first tests of the novel aircraft instrument over the industrialised South African Highveld, where large variations in NO2 column densities in the immediate vicinity of several sources e.g. power plants or steel works, were measured. The observed patterns in the trace gas distribution are interpreted with respect to flux estimates, and it is seen that the fine resolution of the measurements allows separate sources in close proximity to one another to be distinguished.

  20. The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument Overview and Early On-Orbit Performance

    Science.gov (United States)

    Draper, David W.; Newell, David A.; Wentz, Frank J.; Krimchansky, Sergey; Jackson, Gail

    2015-01-01

    The Global Precipitation Measurement (GPM) mission is an international satellite mission that uses measurements from an advanced radar/radiometer system on a core observatory as reference standards to unify and advance precipitation estimates made by a constellation of research and operational microwave sensors. The GPM core observatory was launched on February 27, 2014 at 18:37 UT in a 65? inclination nonsun-synchronous orbit. GPM focuses on precipitation as a key component of the Earth's water and energy cycle, and has the capability to provide near-real-time observations for tracking severe weather events, monitoring freshwater resources, and other societal applications. The GPM microwave imager (GMI) on the core observatory provides the direct link to the constellation radiometer sensors, which fly mainly in polar orbits. The GMI sensitivity, accuracy, and stability play a crucial role in unifying the measurements from the GPM constellation of satellites. The instrument has exhibited highly stable operations through the duration of the calibration/validation period. This paper provides an overview of the GMI instrument and a report of early on-orbit commissioning activities. It discusses the on-orbit radiometric sensitivity, absolute calibration accuracy, and stability for each radiometric channel. Index Terms-Calibration accuracy, passive microwave remote sensing, radiometric sensitivity.

  1. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing

    Directory of Open Access Journals (Sweden)

    Thomas Udelhoven

    2017-07-01

    Full Text Available This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping. The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1–5 days at off-nadir. At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month. To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1 a hyperspectral TIR system with ~75 bands at 7.2–12.5 µm (instrument NEDT 0.05 K–0.1 K and a ground sampling distance (GSD of 60 m, and (2 a panchromatic high-resolution TIR-imager with two channels (8.0–10.25 µm and 10.25–12.5 µm and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1–3 days to combine data from the visible and near infrared (VNIR, the shortwave infrared (SWIR and TIR spectral regions and to refine parameter retrieval.

  2. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing.

    Science.gov (United States)

    Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Retzlaff, Rebecca; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo

    2017-07-01

    This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.

  3. Concept Doped-Silicon Thermopile Detectors for Future Planetary Thermal Imaging Instruments

    Science.gov (United States)

    Lakew, Brook; Barrentine, Emily M.; Aslam, Shahid; Brown, Ari D.

    2016-10-01

    Presently, uncooled thermopiles are the detectors of choice for thermal mapping in the 4.6-100 μm spectral range. Although cooled detectors like Ge or Si thermistor bolometers, and MgB2 or YBCO superconducting bolometers, have much higher sensitivity, the required active or passive cooling mechanisms add prohibitive cost and mass for long duration missions. Other uncooled detectors, likepyroelectrics, require a motor mechanism to chop against a known reference temperature, which adds unnecessary mission risk. Uncooled vanadium oxide or amorphous Si microbolometer arrays with integrated CMOS readout circuits, not only have lower sensitivity, but also have not been proven to be radiation hard >100 krad (Si) total ionizing dose, and barring additional materials and readout development, their performance has reached a plateau.Uncooled and radiation hard thermopiles with D* ~1x109 cm√Hz/W and time constant τ ~100 ms have been integrated into thermal imaging instruments on several past missions and have extensive flight heritage (Mariner, Voyager, Cassini, LRO, MRO). Thermopile arrays are also on the MERTIS instrument payload on-board the soon to be launched BepiColombo Mission.To date, thermopiles used for spaceflight instrumentation have consisted of either hand assembled "one-off" single thermopile pixels or COTS thermopile pixel arrays both using Bi-Sb or Bi-Te thermoelectric materials. For future high performance imagers, thermal detector arrays with higher D*, lower τ, and high efficiency delineated absorbers are desirable. Existing COTS and other flight thermopile designs require highly specialized and nonstandard processing techniques to fabricate both the Bi-Sb or Bi-Te thermocouples and the gold or silver black absorbers, which put limitations on further development.Our detector arrays will have a D* ≥ 3x109 cm√Hz/W and a thermal time constant ≤ 30 ms at 170 K. They will be produced using proven, standard semiconductor and MEMS fabrication techniques

  4. Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device.

    Science.gov (United States)

    Hahn, Paul; Carrasco-Zevallos, Oscar; Cunefare, David; Migacz, Justin; Farsiu, Sina; Izatt, Joseph A; Toth, Cynthia A

    2015-07-01

    To characterize the first in-human intraoperative imaging using a custom prototype spectral-domain microscope-integrated optical coherence tomography (MIOCT) device during vitreoretinal surgery with instruments in the eye. Under institutional review board approval for a prospective intraoperative study, MIOCT images were obtained at surgical pauses with instruments held static in the vitreous cavity and then concurrently with surgical maneuvers. Postoperatively, MIOCT images obtained at surgical pauses were compared with images obtained with a high-resolution handheld spectral-domain OCT (HHOCT) system with objective endpoints, including acquisition of images acceptable for analysis and identification of predefined macular morphologic or pathologic features. Human MIOCT images were successfully obtained before incision and during pauses in surgical maneuvers. MIOCT imaging confirmed preoperative diagnoses, such as epiretinal membrane, full-thickness macular hole, and vitreomacular traction and demonstrated successful achievement of surgical goals. MIOCT and HHOCT images obtained at surgical pauses in two cohorts of five patients were comparable with greater than or equal to 80% correlation in 80% of patients. Real-time video-imaging concurrent with surgical manipulations enabled, for the first time using this device, visualization of dynamic instrument-retina interaction with targeted OCT tracking. MIOCT is successful for imaging at surgical pauses and for real-time image guidance with implementation of targeted OCT tracking. Even faster acquisition speeds are currently being developed with incorporation of a swept-source MIOCT engine. Further refinements and investigations will be directed toward continued integration for real-time volumetric imaging of surgical maneuvers. Ongoing development of seamless MIOCT systems will likely transform surgical visualization, approaches, and decision-making.

  5. Semi-automatic system for UV images analysis of historical musical instruments

    Science.gov (United States)

    Dondi, Piercarlo; Invernizzi, Claudia; Licchelli, Maurizio; Lombardi, Luca; Malagodi, Marco; Rovetta, Tommaso

    2015-06-01

    The selection of representative areas to be analyzed is a common problem in the study of Cultural Heritage items. UV fluorescence photography is an extensively used technique to highlight specific surface features which cannot be observed in visible light (e.g. restored parts or treated with different materials), and it proves to be very effective in the study of historical musical instruments. In this work we propose a new semi-automatic solution for selecting areas with the same perceived color (a simple clue of similar materials) on UV photos, using a specifically designed interactive tool. The proposed method works in two steps: (i) users select a small rectangular area of the image; (ii) program automatically highlights all the areas that have the same color of the selected input. The identification is made by the analysis of the image in HSV color model, the most similar to the human perception. The achievable result is more accurate than a manual selection, because it can detect also points that users do not recognize as similar due to perception illusion. The application has been developed following the rules of usability, and Human Computer Interface has been improved after a series of tests performed by expert and non-expert users. All the experiments were performed on UV imagery of the Stradivari violins collection stored by "Museo del Violino" in Cremona.

  6. Advances in nuclear medicine instrumentation: considerations in the design and selection of an imaging system

    International Nuclear Information System (INIS)

    Links, J.M.

    1998-01-01

    Nuclear medicine remains a vibrant and dynamic medical specialty because it so adeptly marries advances in basic science research, technology, and medical practice in attempting to solve patients' problems. As a physicist, it is my responsibility to identify or design new instrumentation and techniques, and to implement, validate, and help apply these new approaches in the practice of nuclear medicine. At Johns Hopkins, we are currently in the process of purchasing both a single-photon/coincidence tomographic imaging system and a dedicated positron emission tomography (PET) scanner. Given the exciting advances that have been made, but the conflicting opinions of manufacturers and colleagues alike regarding ''best'' choices, it seemed useful to review what is new now, and what is on the horizon, to help identify all of the important considerations in the design and selection of an imaging system. It is important to note that many of the ''advances'' described here are in an early stage of development, and may never make it to routine clinical practice. Further, not all of the advances are of equal importance, or have the same degree of general clinical applicability. Please also note that the references contained herein are for illustrative purposes and are not all-inclusive; no implication that those chosen are ''better'' than others not mentioned is intended. (orig.)

  7. AXIS: an instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF.

    Science.gov (United States)

    Hall, G N; Izumi, N; Tommasini, R; Carpenter, A C; Palmer, N E; Zacharias, R; Felker, B; Holder, J P; Allen, F V; Bell, P M; Bradley, D; Montesanti, R; Landen, O L

    2014-11-01

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV-200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  8. Thermal annealing response following irradiation of a CMOS imager for the JUICE JANUS instrument

    Science.gov (United States)

    Lofthouse-Smith, D.-D.; Soman, M. R.; Allanwood, E. A. H.; Stefanov, K. D.; Holland, A. D.; Leese, M.; Turne, P.

    2018-03-01

    ESA's JUICE (JUpiter ICy moon Explorer) spacecraft is an L-class mission destined for the Jovian system in 2030. Its primary goals are to investigate the conditions for planetary formation and the emergence of life, and how does the solar system work. The JANUS camera, an instrument on JUICE, uses a 4T back illuminated CMOS image sensor, the CIS115 designed by Teledyne e2v. JANUS imager test campaigns are studying the CIS115 following exposure to gammas, protons, electrons and heavy ions, simulating the harsh radiation environment present in the Jovian system. The degradation of 4T CMOS device performance following proton fluences is being studied, as well as the effectiveness of thermal annealing to reverse radiation damage. One key parameter for the JANUS mission is the Dark current of the CIS115, which has been shown to degrade in previous radiation campaigns. A thermal anneal of the CIS115 has been used to accelerate any annealing following the irradiation as well as to study the evolution of any performance characteristics. CIS115s have been irradiated to double the expected End of Life (EOL) levels for displacement damage radiation (2×1010 protons, 10 MeV equivalent). Following this, devices have undergone a thermal anneal cycle at 100oC for 168 hours to reveal the extent to which CIS115 recovers pre-irradiation performance. Dark current activation energy analysis following proton fluence gives information on trap species present in the device and how effective anneal is at removing these trap species. Thermal anneal shows no quantifiable change in the activation energy of the dark current following irradiation.

  9. Beamline Design and Instrumentation for the Imaging and Coherence Beamline I13L at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Pešić, Z. D.; De Fanis, A.; Rau, C.

    2013-03-01

    I13L is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. In this paper we will discuss the fundamental design concepts of the beamline and explain their implications for the civil engineering of the endstation building and the beamline instrumentation. For the latter this paper will focus on the beamline mirror systems and monochromators.

  10. Beamline Design and Instrumentation for the Imaging and Coherence Beamline I13L at the Diamond Light Source

    International Nuclear Information System (INIS)

    Wagner, U H; Pešić, Z D; Fanis, A De; Rau, C

    2013-01-01

    I13L is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. In this paper we will discuss the fundamental design concepts of the beamline and explain their implications for the civil engineering of the endstation building and the beamline instrumentation. For the latter this paper will focus on the beamline mirror systems and monochromators.

  11. First-light instrument for the 3.6-m Devasthal Optical Telescope: 4Kx4K CCD Imager

    Science.gov (United States)

    Pandey, Shashi Bhushan; Yadav, Rama Kant Singh; Nanjappa, Nandish; Yadav, Shobhit; Reddy, Bheemireddy Krishna; Sahu, Sanjit; Srinivasan, Ramaiyengar

    2018-04-01

    As a part of in-house instrument developmental activity at ARIES, the 4Kx4K CCD Imager is designed and developed as a first-light instrument for the axial port of the 3.6-m Devasthal Optical Telescope (DOT). The f/9 beam of the telescope having a plate-scale of 6.4"/mm is utilized to conduct deeper photom-etry within the central 10' field of view. The pixel size of the blue-enhanced liquid nitrogen cooled STA4150 4Kx4K CCD chip is 15 μm, with options to select gain and speed values to utilize the dynamic range. Using the Imager, it is planned to image the central 6.5'x6.5' field of view of the telescope for various science goals by getting deeper images in several broad-band filters for point sources and objects with low surface brightness. The fully assembled Imager along with automated filter wheels having Bessel UBV RI and SDSS ugriz filters was tested in late 2015 at the axial port of the 3.6-m DOT. This instrument was finally mounted at the axial port of the 3.6-m DOT on 30 March 2016 when the telescope was technically activated jointly by the Prime Ministers of India and Belgium. It is expected to serve as a general purpose multi-band deep imaging instrument for a variety of science goals including studies of cosmic transients, active galaxies, star clusters and optical monitoring of X-ray sources discovered by the newly launched Indian space-mission called ASTROSAT, and follow-up of radio bright objects discovered by the Giant Meterwave Radio Telescope.

  12. Državljanska vojna, izdajstvo in turjaška bitka v romanih Ljudje pod bičem Karla Mauserja in Temna stran meseca Mimi Malenšek

    OpenAIRE

    Pavlinič, Klara

    2017-01-01

    Naloga se posveča romanoma Ljudje pod bičem Karla Mauserja in Temna stran meseca Mimi Malenšek. Osredotoča se predvsem na elemente izdajstva ter na definicijo tega pojma, še posebej v kontekstu bojev med partizani oziroma revolucionarno vejo upora ter protikomunisti oziroma vejo meščanske politike. Prvi del naloge obravnava predvsem zgodovinsko dogajanje na Slovenskem v času druge svetovne vojne in tik po njej

  13. New Instruments for Survey: on Line Softwares for 3d Recontruction from Images

    Science.gov (United States)

    Fratus de Balestrini, E.; Guerra, F.

    2011-09-01

    3d scanning technologies had a significant development and have been widely used in documentation of cultural, architectural and archeological heritages. Modern methods of three-dimensional acquiring and modeling allow to represent an object through a digital model that combines visual potentialities of images (normally used for documentation) to the accuracy of the survey, becoming at the same time support for the visualization that for metric evaluation of any artefact that have an historical or artistic interest, opening up new possibilities for cultural heritage's fruition, cataloging and study. Despite this development, because of the small catchment area and the 3D laser scanner's sophisticated technologies, the cost of these instruments is very high and beyond the reach of most operators in the field of cultural heritages. This is the reason why they have appeared low-cost technologies or even free, allowing anyone to approach the issues of acquisition and 3D modeling, providing tools that allow to create three-dimensional models in a simple and economical way. The research, conducted by the Laboratory of Photogrammetry of the University IUAV of Venice, of which we present here some results, is intended to figure out whether, with Arc3D, it is possible to obtain results that can be somehow comparable, in therms of overall quality, to those of the laser scanner, and/or whether it is possible to integrate them. They were carried out a series of tests on certain types of objects, models made with Arc3D, from raster images, were compared with those obtained using the point clouds from laser scanner. We have also analyzed the conditions for an optimal use of Arc3D: environmental conditions (lighting), acquisition tools (digital cameras) and type and size of objects. After performing the tests described above, we analyzed the patterns generated by Arc3D to check what other graphic representations can be obtained from them: orthophotos and drawings. The research

  14. NEW INSTRUMENTS FOR SURVEY: ON LINE SOFTWARES FOR 3D RECONTRUCTION FROM IMAGES

    Directory of Open Access Journals (Sweden)

    E. Fratus de Balestrini

    2012-09-01

    Full Text Available 3d scanning technologies had a significant development and have been widely used in documentation of cultural, architectural and archeological heritages. Modern methods of three-dimensional acquiring and modeling allow to represent an object through a digital model that combines visual potentialities of images (normally used for documentation to the accuracy of the survey, becoming at the same time support for the visualization that for metric evaluation of any artefact that have an historical or artistic interest, opening up new possibilities for cultural heritage's fruition, cataloging and study. Despite this development, because of the small catchment area and the 3D laser scanner's sophisticated technologies, the cost of these instruments is very high and beyond the reach of most operators in the field of cultural heritages. This is the reason why they have appeared low-cost technologies or even free, allowing anyone to approach the issues of acquisition and 3D modeling, providing tools that allow to create three-dimensional models in a simple and economical way. The research, conducted by the Laboratory of Photogrammetry of the University IUAV of Venice, of which we present here some results, is intended to figure out whether, with Arc3D, it is possible to obtain results that can be somehow comparable, in therms of overall quality, to those of the laser scanner, and/or whether it is possible to integrate them. They were carried out a series of tests on certain types of objects, models made with Arc3D, from raster images, were compared with those obtained using the point clouds from laser scanner. We have also analyzed the conditions for an optimal use of Arc3D: environmental conditions (lighting, acquisition tools (digital cameras and type and size of objects. After performing the tests described above, we analyzed the patterns generated by Arc3D to check what other graphic representations can be obtained from them: orthophotos and drawings

  15. Nm-scale spatial resolution x-ray imaging with MLL nanofocusing optics: instrumentational requirements and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Nazaretski, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yan, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lauer, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kalbfleisch, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yan, Hui [Brookhaven National Lab. (BNL), Upton, NY (United States); Li, Li [Brookhaven National Lab. (BNL), Upton, NY (United States); Bouet, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhou, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shu, D. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source; Conley, R. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source; Chu, Y. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-08-30

    The Hard X-ray Nanoprobe (HXN) beamline at NSLS-II has been designed and constructed to enable imaging experiments with unprecedented spatial resolution and detection sensitivity. The HXN X-ray Microscope is a key instrument for the beamline, providing a suite of experimental capabilities which includes scanning fluorescence, diffraction, differential phase contrast and ptychography utilizing Multilayer Laue Lenses (MLL) and zoneplate (ZP) as nanofocusing optics. In this paper, we present technical requirements for the MLL-based scanning microscope, outline the development concept and present first ~15 x 15 nm2 spatial resolution x-ray fluorescence images.

  16. Nuclear medicine and imaging research. Instrumentation and quantitative methods of evaluation. Progress report, January 15, 1985-January 14, 1986

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1985-09-01

    This program of research addresses problems involving the basic science and technology of radioactive tracer methods as they relate to nuclear medicine and imaging. The broad goal is to develop new instruments and methods for image formation, processing, quantitation, and display, so as to maximize the diagnostic information per unit of absorbed radiation dose to the patient. These developments are designed to meet the needs imposed by new radiopharmaceuticals developed to solve specific biomedical problems, as well as to meet the instrumentation needs associated with radiopharmaceutical production and quantitative clinical feasibility studies of the brain with PET VI. Project I addresses problems associated with the quantitative imaging of single-photon emitters; Project II addresses similar problems associated with the quantitative imaging of positron emitters; Project III addresses methodological problems associated with the quantitative evaluation of the efficacy of diagnostic imaging procedures. The original proposal covered work to be carried out over the three-year contract period. This report covers progress made during Year Three. 36 refs., 1 tab

  17. Development of the science instrument CLUPI: the close-up imager on board the ExoMars rover

    Science.gov (United States)

    Josset, J.-L.; Beauvivre, S.; Cessa, V.; Martin, P.

    2017-11-01

    First mission of the Aurora Exploration Programme of ESA, ExoMars will demonstrate key flight and in situ enabling technologies, and will pursue fundamental scientific investigations. Planned for launch in 2013, ExoMars will send a robotic rover to the surface of Mars. The Close-UP Imager (CLUPI) instrument is part of the Pasteur Payload of the rover fixed on the robotic arm. It is a robotic replacement of one of the most useful instruments of the field geologist: the hand lens. Imaging of surfaces of rocks, soils and wind drift deposits at high resolution is crucial for the understanding of the geological context of any site where the Pasteur rover may be active on Mars. At the resolution provided by CLUPI (approx. 15 micrometer/pixel), rocks show a plethora of surface and internal structures, to name just a few: crystals in igneous rocks, sedimentary structures such as bedding, fracture mineralization, secondary minerals, details of the surface morphology, sedimentary bedding, sediment components, surface marks in sediments, soil particles. It is conceivable that even textures resulting from ancient biological activity can be visualized, such as fine lamination due to microbial mats (stromatolites) and textures resulting from colonies of filamentous microbes, potentially present in sediments and in palaeocavitites in any rock type. CLUPI is a complete imaging system, consisting of an APS (Active Pixel Sensor) camera with 27° FOV optics. The sensor is sensitive to light between 400 and 900 nm with 12 bits digitization. The fixed focus optics provides well focused images of 4 cm x 2.4 cm rock area at a distance of about 10 cm. This challenging camera system, less than 200g, is an independent scientific instrument linked to the rover on board computer via a SpaceWire interface. After the science goals and specifications presentation, the development of this complex high performance miniaturized imaging system will be described.

  18. Preclinical molecular imaging: development of instrumentation for translational research with small laboratory animals.

    Science.gov (United States)

    Mejia, Jorge; Miranda, Ana Claudia Camargo; Durante, Ana Claudia Ranucci; Oliveira, Larissa Rolim de; Barboza, Marycel Rosa Felisa Figols de; Rosell, Katerin Taboada; Jardim, Daniele Pereira; Campos, Alexandre Holthausen; Reis, Marilia Alves Dos; Catanoso, Marcela Forli; Galvis-Alonso, Orfa Yineth; Cabral, Francisco Romero

    2016-01-01

    To present the result of upgrading a clinical gamma-camera to be used to obtain in vivo tomographic images of small animal organs, and its application to register cardiac, renal and neurological images. An updated version of the miniSPECT upgrading device was built, which is composed of mechanical, electronic and software subsystems. The device was attached to a Discovery VH (General Electric Healthcare) gamma-camera, which was retired from the clinical service and installed at the Centro de Imagem Pré-Clínica of the Hospital Israelita Albert Einstein. The combined system was characterized, determining operational parameters, such as spatial resolution, magnification, maximum acceptable target size, number of projections, and acquisition and reconstruction times. Images were obtained with 0.5mm spatial resolution, with acquisition and reconstruction times between 30 and 45 minutes, using iterative reconstruction with 10 to 20 iterations and 4 projection subsets. The system was validated acquiring in vivo tomographic images of the heart, kidneys and brain of normal animals (mice and adult rats), using the radiopharmaceuticals technetium-labeled hexakis-2-methoxy-isobutyl isonitrile (99mTc-Sestamibi), technetium-labeled dimercaptosuccinic acid (99mTc-DMSA) and technetium-labeled hexamethyl propyleneamine oxime (99mTc-HMPAO). This kind of application, which consists in the adaptation for an alternative objective of already existing instrumentation, resulted in a low-cost infrastructure option, allowing to carry out large scale in vivo studies with enhanced quality in several areas, such as neurology, nephrology, cardiology, among others. Apresentar o resultado da adaptação de uma gama câmara clínica para uso dedicado na obtenção de imagens tomográficas in vivo de órgãos de pequenos animais de experimentação, e de sua aplicação na obtenção de imagens cardíacas, renais e neurológicas. Foi construída uma versão atualizada do dispositivo de adapta

  19. Research on testing instrument and method for correction of the uniformity of image intensifier fluorescence screen brightness

    Science.gov (United States)

    Qiu, YaFeng; Chang, BenKang; Qian, YunSheng; Fu, RongGuo

    2011-09-01

    To test the parameters of image intensifier screen is the precondition for researching and developing the third generation image intensifier. The picture of brightness uniformity of tested fluorescence screen shows bright in middle and dark at edge. It is not so direct to evaluate the performance of fluorescence screen. We analyze the energy and density distribution of the electrons, After correction, the image in computer is very uniform. So the uniformity of fluorescence screen brightness can be judged directly. It also shows the correction method is reasonable and close to ideal image. When the uniformity of image intensifier fluorescence screen brightness is corrected, the testing instrument is developed. In a vacuum environment of better than 1×10-4Pa, area source electron gun emits electrons. Going through the electric field to be accelerated, the high speed electrons bombard the screen and the screen luminize. By using testing equipment such as imaging luminance meter, fast storage photometer, optical power meter, current meter and photosensitive detectors, the screen brightness, the uniformity, light-emitting efficiency and afterglow can be tested respectively. System performance are explained. Testing method is established; Test results are given.

  20. Gender Associations for Musical Instruments in Nursery Children: The Effect of Sound and Image

    Science.gov (United States)

    Marshall, Nigel; Shibazaki, Kagari

    2013-01-01

    This paper reports on the results of a study carried out with 105 children, aged between three and four years in three nursery units in London and Surrey, UK. The aim of this study was to explore the level of association which young children have between various musical instruments, musical styles and a particular gender. However, we also aimed to…

  1. Instrumentation challenges of a pushbroom hyperspectral imaging system for currency counterfeit applications

    Science.gov (United States)

    Lim, Hoong-Ta; Vadakke Matham, Murukeshan

    2015-07-01

    Hyperspectral imaging allows the intensity of narrow and adjacent spectral bands over a large spectral range to be recorded, giving rich spectral information for each pixel in the imaged region. The spectral characteristics of each point in the imaged region can thus be detected, which is useful for quantification and classification. Hyperspectral imaging has been used in many applications such as remote sensing, quality assessment of agro-food products, biomedical imaging and document counterfeit application. This paper presents a pushbroom spatial-scanning imager, which gives a higher spectral resolution over a broad spectral range. Although a spatial-scanning imager may be slower due to the need to perform mechanical scanning, such a high spectral resolution is especially important in applications where the capability to perform classification is much more important than speed. The application of this system is demonstrated for currency counterfeit detection applications. The high spectral resolution of a pushbroom imager is able to capture fine spectral details of the samples used in this research, providing important information required for classification. Using this technique, the reflectance is acquired from specific regions of a genuine and counterfeit note. The spectra of the same region from both notes are then compared to distinguish and delineate the differences between them. The spectrum acquired from a genuine note can then be used as a reference from which future comparison can be based upon for identifying currency counterfeit and related relevant applications.

  2. Performance characteristics of UV imaging instrumentation for diffusion, dissolution and release testing studies

    DEFF Research Database (Denmark)

    Jensen, Sabrine S; Jensen, Henrik; Goodall, David M

    2016-01-01

    UV imaging is capable of providing spatially and temporally resolved absorbance measurements, which is highly beneficial in drug diffusion, dissolution and release testing studies. For optimal planning and design of experiments, knowledge about the capabilities and limitations of the imaging syst...

  3. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    DEFF Research Database (Denmark)

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus

    2010-01-01

    , especially when transferring data across the (network-) borders of different hospitals. Overall, the most important precondition for successful integration of functional imaging in RT treatment planning is the goal orientated as well as close and thorough communication between nuclear medicine......The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non......-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy...

  4. Comparison of two skin imaging analysis instruments: The VISIA® from Canfield vs the ANTERA 3D® CS from Miravex.

    Science.gov (United States)

    Linming, F; Wei, H; Anqi, L; Yuanyu, C; Heng, X; Sushmita, P; Yiming, L; Li, L

    2018-02-01

    The skin imaging analysis instruments are widely used to record and measure the surface and subsurface skin conditions. The main aim of this study is to reveal the differences and correlations in measuring wrinkle, skin texture, coloration/evenness, vascular features, and pore between two commercially available instruments. Twenty-eight subjects were enrolled in the study. A 2*2 cm cardboard was used to make sure the two instruments analyze the same area. Pictures were taken and analyzed by the VISIA ® from Canfield and the ANTERA 3D ® CS from Miravex, in sequence. The spot, ultraviolet spot, brown spot, red area, texture values measured with VISIA ® were positively correlated with age, while the pore and wrinkle values showed no significance. The wrinkle, texture, melanin, hemoglobin, pore index, pore volume values measured with ANTERA 3D ® had a significantly positive correlation with age. The spot, brown spot values from VISIA ® were positively correlated with the melanin value from ANTERA 3D ® . Texture value measured with the two instruments revealed positive linear correlation. Strong correlation was found between the red area value from VISIA ® and the hemoglobin value from ANTERA 3D ® . Ultraviolet spot from VISIA ® showed no linear correlation with the melanin value from ANTERA 3D ® . Neither of the wrinkle and pore measured with the two instruments showed linear correlation. ANTERA 3D ® relies on multidirectional illumination obtained by LEDs of different wavelengths from different directions which make it advanced at the qualitative evaluation of various dermatologic conditions. Compared with VISIA ® , ANTERA 3D ® is more sensitive in the assessment of wrinkle and it may also be available to evaluate the aging-related enlarged pore. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Instruments for radiation measurement in life sciences (5). Development of imaging technology in life science. 4. Real-time bioradiography

    International Nuclear Information System (INIS)

    Sasaki, Toru; Iwamoto, Akinori; Tsuboi, Hisashi; Katoh, Toru; Kudo, Hiroyuki; Kazawa, Erito; Watanabe, Yasuyoshi

    2006-01-01

    Real-time bioradiography, new bioradiography method, can collect and produce image of metabolism and function of cell in real-time. The principles of instrumentation, development process and the application examples of neuroscience and biomedical gerontology are stated. The bioradiography method, the gas-tissue live-cell autoradiography method and the real-time bioradiography method are explained. As the application examples, the molecular mechanism of oxidative stress at brain ischemia and the analysis of SOD gene knockout animals are reported. Comparison between FDG-PET of epileptic brain and FDG- bioradiography image of live-cell of brain tissue, the real-time bioradiography system, improvement of image by surface treatment, the detection limit of β + ray from F 18 , image of living-slices of brain tissue by FDG-real-time bioradiography and radioluminography, continuous FDG image of living-slices of rat brain tissue, and analysis of carbohydrate metabolism of living-slices of brain tissue of mouse lacking SOD gene during aerophobia and reoxygenation process are reported. (S.Y.)

  6. Instrument Design for the CubeSat Ultraviolet Transient/Imaging Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing a mission concept for a CubeSat-based synoptic imaging survey to explore the ultraviolet sky for several key discoveries in time-domain...

  7. Word images as policy instruments: Lessons from the Yucca Mountain Controversey

    International Nuclear Information System (INIS)

    Conary, J.S.; Soden, D.L.; Carns, D.E.

    1993-01-01

    A study is described which explores word images which have developed about nuclear issues by Nevadans. The study is based on results of a survey conducted regarding issues related to the Yucca Mountain repository

  8. Word images as policy instruments: Lessons from the Yucca Mountain Controversey

    Energy Technology Data Exchange (ETDEWEB)

    Conary, J.S.; Soden, D.L.; Carns, D.E.

    1993-08-01

    A study is described which explores word images which have developed about nuclear issues by Nevadans. The study is based on results of a survey conducted regarding issues related to the Yucca Mountain repository.

  9. Iterative metal artefact reduction in CT: can dedicated algorithms improve image quality after spinal instrumentation?

    Science.gov (United States)

    Aissa, J; Thomas, C; Sawicki, L M; Caspers, J; Kröpil, P; Antoch, G; Boos, J

    2017-05-01

    To investigate the value of dedicated computed tomography (CT) iterative metal artefact reduction (iMAR) algorithms in patients after spinal instrumentation. Post-surgical spinal CT images of 24 patients performed between March 2015 and July 2016 were retrospectively included. Images were reconstructed with standard weighted filtered back projection (WFBP) and with two dedicated iMAR algorithms (iMAR-Algo1, adjusted to spinal instrumentations and iMAR-Algo2, adjusted to large metallic hip implants) using a medium smooth kernel (B30f) and a sharp kernel (B70f). Frequencies of density changes were quantified to assess objective image quality. Image quality was rated subjectively by evaluating the visibility of critical anatomical structures including the central canal, the spinal cord, neural foramina, and vertebral bone. Both iMAR algorithms significantly reduced artefacts from metal compared with WFBP (palgorithms led to an improvement in visualisation of soft-tissue structures (median iMAR-Algo1=3; interquartile range [IQR]:1.5-3; iMAR-Algo2=4; IQR: 3.5-4) and bone structures (iMAR-Algo1=3; IQR:3-4; iMAR-Algo2=4; IQR:4-5) compared to WFBP (soft tissue: median 2; IQR: 0.5-2 and bone structures: median 2; IQR: 1-3; palgorithms reduced artefacts compared with WFBP, however, the iMAR algorithm with dedicated settings for large metallic implants was superior to the algorithm specifically adjusted to spinal implants. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  10. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    International Nuclear Information System (INIS)

    Sattler, Bernhard; Lee, John A.; Lonsdale, Markus; Coche, Emmanuel

    2010-01-01

    The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy. By the choice of the PET-Tracer, a variety of different metabolic processes can be visualized. First and foremost, this is the glucose metabolism of a tissue as well as for instance hypoxia or cell proliferation. This paper comprises the system characteristics of hybrid PET/CT systems. Acquisition and processing protocols are described in general and modifications to cope with the special needs in radiooncology. This starts with the different position of the patient on a special table top, continues with the use of the same fixation material as used for positioning of the patient in radiooncology while simulation and irradiation and leads to special processing protocols that include the delineation of the volumes that are subject to treatment planning and irradiation (PTV, GTV, CTV, etc.). General CT acquisition and processing parameters as well as the use of contrast enhancement of the CT are described. The possible risks and pitfalls the investigator could face during the hybrid-imaging procedure are explained and listed. The interdisciplinary use of different imaging modalities implies a increase of the volume of data created. These data need to be stored and communicated fast, safe and correct. Therefore, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and

  11. Limits of Active Laser Triangulation as an Instrument for High Precision Plant Imaging

    Directory of Open Access Journals (Sweden)

    Stefan Paulus

    2014-02-01

    Full Text Available Laser scanning is a non-invasive method for collecting and parameterizing 3D data of well reflecting objects. These systems have been used for 3D imaging of plant growth and structure analysis. A prerequisite is that the recorded signals originate from the true plant surface. In this paper we studied the effects of species, leaf chlorophyll content and sensor settings on the suitability and accuracy of a commercial 660 nm active laser triangulation scanning device. We found that surface images of Ficus benjamina leaves were inaccurate at low chlorophyll concentrations and a long sensor exposure time. Imaging of the rough waxy leaf surface of leek (Allium porrum was possible using very low exposure times, whereas at higher exposure times penetration and multiple refraction prevented the correct imaging of the surface. A comparison of scans with varying exposure time enabled the target-oriented analysis to identify chlorotic, necrotic and healthy leaf areas or mildew infestations. We found plant properties and sensor settings to have a strong influence on the accuracy of measurements. These interactions have to be further elucidated before laser imaging of plants is possible with the high accuracy required for e.g., the observation of plant growth or reactions to water stress.

  12. Limits of active laser triangulation as an instrument for high precision plant imaging.

    Science.gov (United States)

    Paulus, Stefan; Eichert, Thomas; Goldbach, Heiner E; Kuhlmann, Heiner

    2014-02-05

    Laser scanning is a non-invasive method for collecting and parameterizing 3D data of well reflecting objects. These systems have been used for 3D imaging of plant growth and structure analysis. A prerequisite is that the recorded signals originate from the true plant surface. In this paper we studied the effects of species, leaf chlorophyll content and sensor settings on the suitability and accuracy of a commercial 660 nm active laser triangulation scanning device. We found that surface images of Ficus benjamina leaves were inaccurate at low chlorophyll concentrations and a long sensor exposure time. Imaging of the rough waxy leaf surface of leek (Allium porrum) was possible using very low exposure times, whereas at higher exposure times penetration and multiple refraction prevented the correct imaging of the surface. A comparison of scans with varying exposure time enabled the target-oriented analysis to identify chlorotic, necrotic and healthy leaf areas or mildew infestations. We found plant properties and sensor settings to have a strong influence on the accuracy of measurements. These interactions have to be further elucidated before laser imaging of plants is possible with the high accuracy required for e.g., the observation of plant growth or reactions to water stress.

  13. Flow mapping of multiphase flows using a novel single stem endoscopic particle image velocimetry instrument

    International Nuclear Information System (INIS)

    Lad, N; Adebayo, D; Aroussi, A

    2011-01-01

    Particle image velocimetry (PIV) is a successful flow mapping technique which can optically quantify large portions of a flow regime. This enables the method to be completely non-intrusive. The ability to be non-intrusive to any flow has allowed PIV to be used in a large range of industrial sectors for many applications. However, a fundamental disadvantage of the conventional PIV technique is that it cannot easily be used with flows which have no or limited optical access. Flows which have limited optical access for PIV measurement have been addressed using endoscopic PIV techniques. This system uses two separate probes which relay a light sheet and imaging optics to a planar position within the desired flow regime. This system is effective in medical and engineering applications. The present study has been involved in the development of a new endoscopic PIV system which integrates the illumination and imaging optics into one rigid probe. This paper focuses on the validation of the images taken from the novel single stem endoscopic PIV system. The probe is used within atomized spray flow and is compared with conventional PIV measurement and also pitot-static data. The endoscopic PIV system provides images which create localized velocity maps that are comparable with the global measurement of the conventional PIV system. The velocity information for both systems clearly show similar results for the spray characterization and are also validated using the pitot-static data

  14. Instrumentation and data handling. I. Positron coincidence imaging with the TOKIM system

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    In addition to the conventional singles mode of operation, the TOKIM system's two Anger-type gamma cameras may be used in the (stationary, 180 0 opposition) coincidence mode, making it possible to achieve tomographic imaging with three-dimensional spatial resolution and high detection sensitivity, utilizing β + emitting radioisotopes. This method, however, suffers from certain inherent limitations. Our efforts during this past year to improve upon the TOKIM imaging capability in the β + mode have been directed towards the reduction of the limitations by the following means: the removal of out of focal plane image contributions through a computerized iterative correction procedure, coupled with coincidence aperture limitation to achieve uniform sensitivity across a reasonable portion of the detector pair diameter, and the application of Muehllehner's graded filter approach to the TOKIM to increase the ratio of usable coincidence events versus singles count rate

  15. E-PR as an instrument of forming the foreign policy image of Ukraine

    Directory of Open Access Journals (Sweden)

    Tereshchuk Vitaliy Ivanovych

    2015-12-01

    Full Text Available The article discusses the role of the Internet as a global communication tool in the PR-support of the implementation of Ukraine's foreign policy. The article pays particular attention to the features of the websites of the Ministry of Foreign Affairs and diplomatic missions of Ukraine as an image-forming tool.

  16. Thermal ion imagers and Langmuir probes in the Swarm electric field instruments

    Science.gov (United States)

    Knudsen, D. J.; Burchill, J. K.; Buchert, S. C.; Eriksson, A. I.; Gill, R.; Wahlund, J.-E.; Öhlen, L.; Smith, M.; Moffat, B.

    2017-02-01

    The European Space Agency's three Swarm satellites were launched on 22 November 2013 into nearly polar, circular orbits, eventually reaching altitudes of 460 km (Swarm A and C) and 510 km (Swarm B). Swarm's multiyear mission is to make precision, multipoint measurements of low-frequency magnetic and electric fields in Earth's ionosphere for the purpose of characterizing magnetic fields generated both inside and external to the Earth, along with the electric fields and other plasma parameters associated with electric current systems in the ionosphere and magnetosphere. Electric fields perpendicular to the magnetic field B→ are determined through ion drift velocity v→i and magnetic field measurements via the relation E→⊥=-v→i×B→. Ion drift is derived from two-dimensional images of low-energy ion distribution functions provided by two Thermal Ion Imager (TII) sensors viewing in the horizontal and vertical planes; v→i is corrected for spacecraft potential as determined by two Langmuir probes (LPs) which also measure plasma density ne and electron temperature Te. The TII sensors use a microchannel-plate-intensified phosphor screen imaged by a charge-coupled device to generate high-resolution distribution images (66 × 40 pixels) at a rate of 16 s-1. Images are partially processed on board and further on the ground to generate calibrated data products at a rate of 2 s-1; these include v→i, E→⊥, and ion temperature Ti in addition to electron temperature Te and plasma density ne from the LPs.

  17. Sharper Fermi LAT Images: Instrument Response Functions for an Improved Event Selection

    Science.gov (United States)

    Portillo, Stephen K. N.; Finkbeiner, Douglas P.

    2014-11-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope has a point-spread function (PSF) with large tails, consisting of events affected by tracker inefficiencies, inactive volumes, and hard scattering; these tails can make source confusion a limiting factor. The parameter CTBCORE, available in the publicly available Extended Fermi LAT data (available at http://fermi.gsfc.nasa.gov/ssc/data/access/), estimates the quality of each event's direction reconstruction; by implementing a cut in this parameter, the tails of the PSF can be suppressed at the cost of losing effective area. We implement cuts on CTBCORE and present updated instrument response functions derived from the Fermi LAT data itself, along with all-sky maps generated with these cuts. Having shown the effectiveness of these cuts, especially at low energies, we encourage their use in analyses where angular resolution is more important than Poisson noise.

  18. Sharper Fermi LAT images: instrument response functions for an improved event selection

    Energy Technology Data Exchange (ETDEWEB)

    Portillo, Stephen K. N.; Finkbeiner, Douglas P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States)

    2014-11-20

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope has a point-spread function (PSF) with large tails, consisting of events affected by tracker inefficiencies, inactive volumes, and hard scattering; these tails can make source confusion a limiting factor. The parameter CTBCORE, available in the publicly available Extended Fermi LAT data (available at http://fermi.gsfc.nasa.gov/ssc/data/access/), estimates the quality of each event's direction reconstruction; by implementing a cut in this parameter, the tails of the PSF can be suppressed at the cost of losing effective area. We implement cuts on CTBCORE and present updated instrument response functions derived from the Fermi LAT data itself, along with all-sky maps generated with these cuts. Having shown the effectiveness of these cuts, especially at low energies, we encourage their use in analyses where angular resolution is more important than Poisson noise.

  19. The Concept of Alliance as an Image and Positioning Instrument for Institutions of Higher Learning

    Directory of Open Access Journals (Sweden)

    Víctor Manuel Alcántar Enríquez

    2004-05-01

    Full Text Available The present work provides a foundation for the concept of alliance which includes the ability of this to foster the university’s societal position as based on public perception of the institution. Accordingly, the work briefly addresses the development of the university’s collaboration with the productive sector, and emphasizes the need for institutions of higher learning to consider as well, those social sectors (including the government outside the realm of industry or technological expansion. The study concludes by affirming that alliance can become an effective instrument for promoting the university. It is therefore necessary to research the social perception of the university as a means of bolstering its relevance.

  20. Ground-based airglow imaging interferometer. Part 1: instrument and observation.

    Science.gov (United States)

    Gao, Haiyang; Tang, Yuanhe; Hua, Dengxin; Liu, Hanchen; Cao, Xiangang; Duan, Xiaodong; Jia, Qijie; Qu, Ouyang; Wu, Yong

    2013-12-20

    A ground-based airglow imaging interferometer (GBAII) is proposed to measure simultaneously the temperature and wind in the mesopause region by using airglow emissions of the O2(0-1) band. Since it employs a wide angle Michelson interferometer with a large air gap, combined with the rotational temperature measurement, both the phase and spectral information can be obtained from the imaging results. Based on the optimization and calibrations for the optical system in the laboratory, we developed and assembled a prototype of a GBAII, and carried out one observation at the observatory of Xi'an University of Technology on 12 June 2012. The observed temperatures fall mainly on the range of 167-196 K, while both the zonal and meridional winds faintly show the feature of half-day oscillation. The consistent trends between the observation results and the standard atmospheric models suggest that the GBAII has achieved our basic design goals.

  1. The moderate resolution imaging spectrometer: An EOS facility instrument candidate for application of data compression methods

    Science.gov (United States)

    Salomonson, Vincent V.

    1991-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) observing facility will operate on the Earth Observing System (EOS) in the late 1990's. It is estimated that this observing facility will produce over 200 gigabytes of data per day requiring a storage capability of just over 300 gigabytes per day. Archiving, browsing, and distributing the data associated with MODIS represents a rich opportunity for testing and applying both lossless and lossy data compression methods.

  2. The Thermal Emission Imaging System (THEMIS) Instrument for the Mars 2001 Orbiter

    Science.gov (United States)

    Christensen, P. R.; Jakosky, B. M.; Kieffer, H. H.; Malin, M. C.; McSween, H. Y., Jr.; Nealson, K.; Mehall, G.; Silverman, S.; Ferry, S.

    1999-01-01

    The primary objective of the Thermal Emission Imaging System (THEMIS) on the Mars Surveyor '01 Orbiter is to study the composition of the Martian surface at high spatial resolution. THEMIS will map the surface mineralogy using multi-spectral thermal infrared images in 8 spectral bands from 6.5 to 14.5 microns. In addition, a band centered at 15 microns will be used to map atmospheric temperatures and provide an important aid in separating the surface and atmospheric components. The entire planet will be mapped at 100 m resolution within the available data volume using a multi-spectral, rather than hyperspectral, imaging approach. THEMIS will also acquire 20 m resolution visible images in up to 5 spectral bands using a replica of the Mars 98 Orbiter (MARCI) and Lander (MARDI) cameras. Over 15,000 panchromatic (3,000 5-color), 20 x 20 km images will be acquired for morphology studies and landing site selection. The thermal-infrared spectral region contains the fundamental vibrational absorption bands of most minerals which provide diagnostic information on mineral composition. All geologic materials, including carbonates, hydrothermal silica, sulfates, phosphates, hydroxides, silicates, and oxides have strong absorptions in the 6.5-14.5 micron region. Silica and carbonates, which are key diagnostic minerals in thermal spring deposits, are readily identified using thermal-IR spectra. In addition, the ability to identify all minerals allows the presence of aqueous minerals to be interpreted in the proper geologic context. An extensive suite of studies over the past 35 years has demonstrated the utility of vibrational spectroscopy for the quantitative determination of mineralogy and petrology. The fundamental vibrations within different anion groups, such as C03, S04, P04, and SiO4, produce unique, well separated spectral bands that allow carbonates, sulfates, phosphates, silicates, oxides, and hydroxides to be readily identified. Additional stretching and bending modes

  3. Nuclear medicine and image research: instrumentation and quantitative methods of evaluation. Comprehensive 3-year progress report, January 15, 1983-January 14, 1986

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1985-09-01

    This program of research addresses problems involving the basic science and technology of radioactive tracer methods as they relate to nuclear medicine and imaging. The broad goal is to develop new instruments and methods for image formation, processing, quantitation, and display, so as to maximize the diagnostic information per unit of absorbed radiation dose to the patient. Project I addresses problems with the quantitative imaging a single-photon emitters; Project II addresses similar problems associated with the quantitative imaging of positron emitters; Project III addresses methodological problems associated with the quantitative evaluation of the efficacy of diagnostic imaging procedures

  4. Evaluation of three imaging instruments in dogs with liver hematomas: concise communication

    International Nuclear Information System (INIS)

    Frick, M.P.; Knight, L.C.; Ponto, R.A.; Loken, M.K.

    1979-01-01

    Single-gamma emission computerized tomography (ECT) was compared with transmission computerized tomography (TCT) and scintillation-camera imaging (SC) in eight dogs with acute, solitary hematomas in the left liver lobe. The superior performance of TCT was attributed to its inherently better spatial resolution than those of ECT or SC, and to the fact that studies with TCT could be performed during apnea. ECT was more sensitive than SC to small changes in the spatial distribution of radionuclides. In addition, the ECT, by virtue of its sectioning capability, was more sensitive than is SC to differences in radionuclide concentrations at the same depth in an organ

  5. Safari: instrument design of the far-infrared imaging spectrometer for spica

    Science.gov (United States)

    Jellema, W.; Pastor, C.; Naylor, D.; Jackson, B.; Sibthorpe, B.; Roelfsema, P.

    2017-11-01

    The next great leap forward in space-based far-infrared astronomy will be made by the Japanese-led SPICA mission, which is anticipated to be launched late 2020's as the next large astrophysics mission of JAXA, in partnership with ESA and with key European contributions. Filling in the gap between JWST and ALMA, the SPICA mission will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 3m-class telescope, provided by European industry, to realize zodiacal background limited performance, high spatial resolution and large collecting area. Making full advantage of the deeply cooled telescope (definition and out-of-band filtering by quasioptical elements, the control of straylight, diffraction and thermal emission in the long-wavelength limit, and how we interface to the large-format FPA arrays at one end and the SPICA telescope assembly at the other end. We will briefly discuss the key performance drivers with special emphasis on the optical techniques adopted to overcome issues related to very low background operation of SAFARI. A summary and discussion of the expected instrument performance and an overview of the astronomical capabilities finally conclude the paper.

  6. Pedicle Screw Fluid Sign: An Indication on Magnetic Resonance Imaging of a Deep Infection After Posterior Spinal Instrumentation.

    Science.gov (United States)

    Kimura, Hiroaki; Shikata, Jitsuhiko; Odate, Seiichi; Soeda, Tsunemitsu

    2017-05-01

    A single-center case-referent study. To assess whether the "pedicle screw (PS) fluid sign" on magnetic resonance imaging (MRI) can be used to diagnose deep surgical site infection (SSI) after posterior spinal instrumentation (PSI). MRI is a useful tool for the early diagnosis of a deep SSI. However, the diagnosis is frequently difficult with feverish patients with clear wounds after PSI because of artifacts from the metallic implants. There are no reports on MRI findings that are specific to a deep SSI after PSI. We found that fluid collection outside the head of the PS on an axial MRI scan (PS fluid sign) strongly suggested the possibility of an abscess. The SSI group comprised 17 patients with a deep SSI after posterior lumbar spinal instrumentation who had undergone an MRI examination at the onset of the SSI. The non-SSI group comprised 64 patients who had undergone posterior lumbar spinal instrumentation who did not develop an SSI and had an MRI examination within 4 weeks after surgery. The frequency of a positive PS fluid sign was compared between both groups. The PS fluid sign had a sensitivity of 88.2%, specificity of 89.1%, positive predictive value of 68.1%, and negative predictive value of 96.6%. The 2 patients with a false-negative PS fluid sign in the SSI group had an infection at the disk into which the interbody cage had been inserted. Three of the 7 patients with a false-positive PS fluid sign in the non-SSI group had a dural tear during surgery. The PS fluid sign is a valuable tool for the early diagnosis of a deep SSI. The PS fluid sign is especially useful for diagnosing a deep SSI in difficult cases, such as feverish patients without wound discharge.

  7. Development and Acceptance Testing of the Dual Wheel Mechanism for the Tunable Filter Imager Cryogenic Instrument on the JWST

    Science.gov (United States)

    Leckie, Martin; Ahmad, Zakir

    2010-01-01

    The James Webb Space Telescope (JWST) will carry four scientific instruments, one of which is the Tunable Filter Imager (TFI), which is an instrument within the Fine Guidance Sensor. The Dual Wheel (DW) mechanism is being designed, built and tested by COM DEV Ltd. under contract from the Canadian Space Agency. The DW mechanism includes a pupil wheel (PW) holding seven coronagraphic masks and two calibration elements and a filter wheel (FW) holding nine blocking filters. The DW mechanism must operate at both room temperature and at 35K. Successful operation at 35K comprises positioning each optical element with the required repeatability, for several thousand occasions over the five year mission. The paper discusses the results of testing geared motors and bearings at the cryogenic temperature. In particular bearing retainer design and PGM-HT material, the effects of temperature gradients across bearings and the problems associated with cooling mechanisms down to cryogenic temperatures. The results of additional bearing tests are described that were employed to investigate an abnormally high initial torque experienced at cryogenic temperatures. The findings of these tests, was that the bearing retainer and the ball/race system could be adversely affected by the large temperature change from room temperature to cryogenic temperature and also the temperature gradient across the bearing. The DW mechanism is now performing successfully at both room temperature and at cryogenic temperature. The life testing of the mechanism is expected to be completed in the first quarter of 2010.

  8. Development of instrumentation for imaging scattered cold neutrons. Phase 1 report

    International Nuclear Information System (INIS)

    Walter, J.

    1988-01-01

    The project involves the development of a cold neutron imaging array consisting of a neutron to charged particle convertor and an array of Si detector pixels. Each detector pixel has its own preamplifier/signal conditioning chain and its own data storage registers. The parallel processing capability will be contained on WSI-ASIC sub-array wafers with 196 channels per wafer. Such sub-arrays can be assembled into large focal plane arrays. The high speed of the silicon detectors and signal conditioning chains makes 100,000 cps per pixel a realistic goal. Calculations and experimental measurements of neutron detection efficiency as a function of neutron wavelength are very encouraging. Preliminary design studies of the preamplifier/signal conditioning chain appear to present no insurmountable technical problems

  9. High-Contrast Imaging of Epsilon Eridani with Ground-Based Instruments

    Science.gov (United States)

    Mizuki, T.; Yamada, T.; Carson, J. C.; Kuzuhara, M.; Nakagawa, T.; Nishikawa, J.; Sitko, M. L.; Kudo, T.; Kusakabe, N.; Hashimoto, J.; hide

    2016-01-01

    Epsilon Eridani is one of the nearest solar-type stars. Its proximity and relatively young age allow high-contrast imaging observations to achieve sensitivities to planets at narrow separations down to an inner radius of approximately 5 AU. Previous observational studies of the system report a dust disk with asymmetric morphology as well as a giant planet with large orbital eccentricity, which may require another massive companion to induce the peculiar morphology and to enhance the large orbital eccentricity. In this paper, we report results from deep high-contrast imaging observations to detect the previously reported planet and search for other unseen less massive companions with Subaru/HiCIAO, Gemini-South/NICI, and VLT/NACO. No positive detection was made, but high-contrast measurements with the CH4S narrow-band filter of HiCIAO achieved sensitivities at 14.7 mag differential magnitude level, at an angular separation of 1.0''. In terms of planetary mass, as determined by cooling evolutionary models, the highest sensitivities were achieved by the Lp broad-band filter of NACO, resulting in sensitivities corresponding to 1.8, 2.8, and 4.5 M(sub jup) at the projected separation of 3 AU, if 200, 400, and 800 Myr is assumed for the age of the system, respectively. We also discuss origins of the dust disk from the detection sensitivity in the planetary mass and find that a less massive eccentric planet is preferred for disk stirring, which is consistent with the orbital parameters of epsilon Eri b claimed from the previous long-term radial velocity monitoring.

  10. fEITER - a new EIT instrument for functional brain imaging

    Science.gov (United States)

    Davidson, J. L.; Wright, P.; Ahsan, S. T.; Robinson, R. L.; Pomfrett, C. J. D.; McCann, H.

    2010-04-01

    We report on human tests of the new EIT-based system fEITER (functional Electrical Impedance Tomography of Evoked Responses), targeted principally at functional brain imaging. It is designed and built to medical standard BS EN 60601-1:2006 and clinical trials have been approved by the MHRA in the UK. fEITER integrates an EIT sub-system with an evoked response sub-system capable of providing visual, auditory or other stimuli, and the timing of each stimulus is recorded within the EIT data to a resolution of 500 microseconds. The EIT sub-system operates at 100 frames per second using 20 polar/near-polar current patterns distributed among 32 scalp electrodes that are arranged in a 3-dimensional array on the subject. Presently, current injection is fixed in firmware at 1 mA pk-pk and 10 kHz. Performance testing on inanimate subjects has shown voltage measurement SNR better than 75 dB, at 100 frames per second. We describe the fEITER system and give example topographic results for a human subject under no-stimulus (i.e. reference) conditions and on application of auditory stimuli. The system's excellent noise properties and temporal resolution show clearly the influence of basic physiological phenomena on the EIT voltages. In response to stimulus presentation, the voltage data contain fast components (~100 ms) and components that persist for many seconds.

  11. Skeletal remodeling dynamics: New approaches with imaging instrumentation. [Laser confocal microscopy:a2

    Energy Technology Data Exchange (ETDEWEB)

    Parks, N.J.; Pinkerton, K.E.; Seibert, J.A.; Pool, R.R.

    1991-01-01

    This report of progress and future objectives timetable is based on an included schematic of goals and objectives and the project abstract which is included as Appendix 1. Five matters are summarized in the order of (1) novel methods of calcified bone confocal microscopy and reconstruction image analysis of decalcified beagle and human cortical bone serial sections, (2) macroscopic cross-correlation of beagle and human cortical and cancellous bone fractions with CT analysis, (3) guidance to the most radiobiologically important skeletal regions of interest with the just completed {sup 90}Sr bone tumor map from life time beagle studies, (4) deposition patterns of radioactive agents that participate in apatite crystal nucleation processes in bone and leave radiation-excited electrons trapped in bone mineral, and (5) the budget period timetable. The discovery that beta particles from {sup 166}Ho (T{sub {1/2}} =26 hr, {beta}{sub max} = 1.8 MeV) phosphonic acid bone agents leave detectable, long-lived, electron paramagnetic resonance signals in bone is included in Appendix 2 as a joint report.

  12. Mammography: an effective instrument in the medical image; Mastografia: un instrumento eficaz en la imagenologia medica

    Energy Technology Data Exchange (ETDEWEB)

    Palacios P, L.L.; Rivera M, T. [CICATA-IPN, Av. Legaria 694, 11500 Mexico D.F. (Mexico)

    2007-07-01

    Full text: The history of the mastographers goes back from 1895 in that the german physique Roentgen of Guillermo discovered the radiographs. In 1913 Albert Solomon used one it schemes of conventional x-ray machine to visualize breast cancer but it is not until that in 1966 the first one is developed a machine dedicated to the mastography. The evolution of the radiology technology has had a lot of turnaround in such a way that in the present time is required to emit digital mammographies via satellite to the doctors in remote position around the world. The mastography is a diagnostic method that is good to detect possible lesions in mamma, in the one that X-rays are used to obtain images of the mamma. This should be carried out by an X-ray equipment specially designed to make the study of mamma. According to those data of the Secretary of Health, in Mexico, to the beginning of the previous six year period, in existence had single 132 mastographers in the whole country, and to the finish of this six years they had 441 mastographers. Likewise, the one numbers of mastographs arrive at 172,000 at the end of the 2006 of 43,000 that its were carried out in 2000. This index reflects the concern of our group of concerning investigation to the radiological protection, for what the present work is an analysis about the situation of mastography in Mexico and it dosimetry. (Author)

  13. The handheld multifunctional thermal imager and surveillance instrument of Jena-Optronik within the German project: IDZ-Infanterist der Zukunft

    Science.gov (United States)

    Krause, U.; Zinner, M.; Fiksel, T.; Krellner, I.; Glasser, W.; Heinrich, J.

    2007-04-01

    Today armed forces of a number of countries develop land warrior integrated, modular combat systems the so called Ground Soldier System. The German version is called "IDZ-Infanterist der Zukunft". This high-technically equipped soldier will have some outstanding capabilities which are based on technical components. One of them will be a handheld multifunctional thermal observation instrument. This light weighted instrument includes a thermal imager which detects an object in 4000m, recognizes it in 3000m and identifies it in 1500m. The IR Image channel can be superposed with the visual daylight image what is taken by an integrated CCD-camera. The image is seen trough a biocular viewer on two Organic Light Emmitting Displays. With the laser range finder which works up to 4000m and the Digital Magnetic Compass it is possible to measure distances and angles and so the own and the target object's positions. This information as well as live time video sequences can be transferred wireless to the soldiers C4I-system. The instrument is based on the surveillance platform NYXUS which was developed in close collaboration with the German Bundeswehr. The NYXUS includes additionally GPS, goniometer and northfinding gyroscope which makes it a precise and irreplaceable tool for nowadays armed forces. The instrument is developed and produced by Jena-Optronik GmbH.

  14. Clinical safety of an MRI conditional implantable cardioverter defibrillator system: A prospective Monocenter ICD-Magnetic resonance Imaging feasibility study (MIMI).

    Science.gov (United States)

    Kypta, Alexander; Blessberger, Hermann; Hoenig, Simon; Saleh, Karim; Lambert, Thomas; Kammler, Juergen; Fellner, Franz; Lichtenauer, Michael; Steinwender, Clemens

    2016-03-01

    The aim of this study was to evaluate the safety and efficacy of the Lumax 740(®) Implantable Cardioverter Defibrillator (ICD) system in patients undergoing a defined 1.5 Tesla (T) MRI. Between November 2013 and April 2014, eighteen patients (age range, 41-78 years; mean age, 64 years) implanted with a Lumax 740(®) ICD system for at least 6 weeks before an MRI were enrolled into this single-center feasibility study. The local ethics committee approved the study before patients gave written informed consent. Patients underwent defined MRI 1.5T of the brain and lower lumbar spine with three safety follow-up evaluations obtained during the 3-month study period. Data were analyzed descriptively. Study endpoints were the absence of either MRI and pacing system related serious adverse device effects (SADE), or of a ventricular pacing threshold increase >0.5V, or of an R-wave amplitude attenuation battery status. Sixteen patients completed the MRI and the follow-up period. As no SADE occurred, the SADE free rate was 100%. Freedom from ventricular pacing threshold increase was 100% (16/16; 95%CI: 82.9%; 100.0%). There were no significant differences between baseline and follow-up measurements of sensing amplitudes (-0.58 ± 2.07 mV, P = 0.239, -0.41 ± 1.04 mV, P = 0.133, and -0.25 ± 1.36 mV, P = 0.724, for immediately after, 1 month and 3 months after MRI scan, respectively) and pacing thresholds (-0.047 ± 0.18 V, P = 0.317, -0.019 ± 0.11 V, P = 0.490, and 0.075 ± 0.19 V, P = 0.070, for immediately after, 1 month and 3 months after MRI scan, respectively). Lead impedances after the MRI scan were significantly lower as compared with baseline values (-22.8 ± 21.69 Ω, P = 0.001, -21.62 ± 39.71 Ω, P = 0.040, and -33.68 ± 57.73 Ω, P = 0.018, for immediately after, 1 month and 3 months after MRI scan, respectively). MRI scans in patients with MRI conditional ICD system (Lumax 740(®) ) are feasible and can be performed safely under defined conditions in a hospital setting. © 2015 Wiley Periodicals, Inc.

  15. Overview of NASA Earth Observing Systems Terra and Aqua Moderate Resolution Imaging Spectroradiometer Instrument Calibration Algorithms and On-Orbit Performance

    Science.gov (United States)

    Xiong, Xiaoxiong; Wenny, Brian N.; Barnes, William L.

    2009-01-01

    Since launch, the Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) instruments have successfully operated on-orbit for more than 9 and 6.5 years, respectively. Iv1ODIS, a key instrument for the NASA's Earth Observing System (EOS) missions, was designed to make continuous observations for studies of Earth's land, ocean, and atmospheric properties and to extend existing data records from heritage earth-observing sensors. In addition to frequent global coverage, MODIS observations are made in 36 spectral bands, covering both solar reflective and thermal emissive spectral regions. Nearly 40 data products are routinely generated from MODIS' observations and publicly distributed for a broad range of applications. Both instruments have produced an unprecedented amount of data in support of the science community. As a general reference for understanding sensor operation and calibration, and thus science data quality, we ;provide an overview of the MODIS instruments and their pre-launch calibration and characterization, and describe their on-orbit calibration algorithms and performance. On-orbit results from both Terra and Aqua MODIS radiometric, spectral, and "spatial calibration are discussed. Currently, both instruments, including their on-board calibration devices, are healthy and are expected to continue operation for several }rears to come.

  16. Nuclear medicine and imaging research: instrumentation and quantitative methods of evaluation. Comprehensive progress report, January 1, 1980-January 14, 1983

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.C.

    1982-07-01

    Progress is reported for the period January 1980 through January 1983 in the following project areas: (1) imaging systems in nuclear medicine and image evaluation; and (2) methodology for quantitative evaluation of diagnostic performance

  17. Iterative inversion of global magnetospheric ion distributions using energetic neutral atom (ENA images recorded by the NUADU/TC2 instrument

    Directory of Open Access Journals (Sweden)

    L. Lu

    2008-06-01

    Full Text Available A method has been developed for extracting magnetospheric ion distributions from Energetic Neutral Atom (ENA measurements made by the NUADU instrument on the TC-2 spacecraft. Based on a constrained linear inversion, this iterative technique is suitable for use in the case of an ENA image measurement, featuring a sharply peaked spatial distribution. The method allows for magnetospheric ion distributions to be extracted from a low-count ENA image recorded over a short integration time (5 min. The technique is demonstrated through its application to a set of representative ENA images recorded in energy Channel~2 (hydrogen: 50–81 keV, oxygen: 138–185 keV of the NUADU instrument during a geomagnetic storm. It is demonstrated that this inversion method provides a useful tool for extracting ion distribution information from ENA data that are characterized by high temporal and spatial resolution. The recovered ENA images obtained from inverted ion fluxes match most effectively the measurements made at maximum ENA intensity.

  18. Instrumentation of Molecular Imaging on Site-Specific Targeting Fluorescent Peptide for Early Detection of Breast Cancer

    Science.gov (United States)

    Yu, Ping; Ma, Lixin

    2012-02-01

    In this work we developed two biomedical imaging techniques for early detection of breast cancer. Both image modalities provide molecular imaging capability to probe site-specific targeting dyes. The first technique, heterodyne CCD fluorescence mediated tomography, is a non-invasive biomedical imaging that uses fluorescent photons from the targeted dye on the tumor cells inside human breast tissue. The technique detects a large volume of tissue (20 cm) with a moderate resolution (1 mm) and provides the high sensitivity. The second technique, dual-band spectral-domain optical coherence tomography, is a high-resolution tissue imaging modality. It uses a low coherence interferometer to detect coherent photons hidden in the incoherent background. Due to the coherence detection, a high resolution (20 microns) is possible. We have finished prototype imaging systems for the development of both image modalities and performed imaging experiments on tumor tissues. The spectroscopic/tomographic images show contrasts of dense tumor tissues and tumor necrotic regions. In order to correlate the findings from our results, a diffusion-weighted magnetic resonance imaging (MRI) of the tumors was performed using a small animal 7-Telsa MRI and demonstrated excellent agreement.

  19. The Multi-Angle Imager for Aerosols (MAIA) Instrument, the Satellite-Based Element of an Investigation to Benefit Public Health

    Science.gov (United States)

    Diner, D. J.

    2016-12-01

    Maps of airborne particulate matter (PM) derived from satellite instruments, including MISR and MODIS, have provided key contributions to many health-related investigations. Although it is well established that PM exposure increases the risks of cardiovascular and respiratory disease, adverse birth outcomes, and premature deaths, our understanding of the relative toxicity of specific PM types—mixtures having different size distributions and compositions—is relatively poor. To address this, the Multi-Angle Imager for Aerosols (MAIA) investigation was proposed to NASA's third Earth Venture Instrument (EVI-3) solicitation. MAIA was selected for funding in March 2016. The satellite-based MAIA instrument is one element of the scientific investigation, which will combine WRF-Chem transport model estimates of the abundances of different aerosol types with the data acquired from Earth orbit. Geostatistical models derived from collocated surface and MAIA retrievals will be used to relate retrieved fractional column aerosol optical depths to near-surface concentrations of major PM constituents. Epidemiological analyses of geocoded birth, death, and hospital records will be used to associate exposure to PM types with adverse health outcomes. The MAIA instrument obtains its sensitivity to particle type by building upon the legacies of many satellite sensors; observing in the UV, visible, near-IR, and shortwave-IR regions of the electromagnetic spectrum; acquiring images at multiple angles of view; determining the degree to which the scattered light is polarized; and integrating these capabilities at moderately high spatial resolution. The instrument concept is based on the first and second generation Airborne Multiangle SpectroPolarimetric Imagers, AirMSPI and AirMSPI-2. MAIA incorporates a pair of pushbroom cameras on a two-axis gimbal to provide regional multiangle observations of selected, globally distributed target areas. A set of Primary Target Areas (PTAs) on five

  20. Development of a portable X-ray and gamma-ray detector instrument and imaging camera for use in radioactive and hazardous materials management

    International Nuclear Information System (INIS)

    Scyoc, J.M. van; James, R.B.; Anderson, R.J.

    1997-08-01

    The overall goal of this LDRD project was to develop instruments for use in the management of radioactive and hazardous wastes. Devices for identifying and imaging such wastes are critical to developing environmental remediation strategies. Field portable units are required to enable the on-site analysis of solids, liquids, and gas effluents. Red mercuric iodide (α-HgI 2 ) is a semiconductor material that can be operated as a high-energy-resolution radiation detector at ambient temperatures. This property provides the needed performance of conventional germanium- and silicon-based devices, while eliminating the need for the cryogenic cooling of such instruments. The first year of this project focused on improving the materials properties of the mercuric iodide to enable the new sensor technology; in particular the charge carrier traps limiting device performance were determined and eliminated. The second year involved the development of a field portable x-ray fluorescence analyzer for compositional analyses. The third and final year of the project focused on the development of imaging sensors to provide the capability for mapping the composition of waste masses. This project resulted in instruments useful not only for managing hazardous and radioactive wastes, but also in a variety of industrial and national security applications

  1. Open versus percutaneous instrumentation in thoracolumbar fractures: magnetic resonance imaging comparison of paravertebral muscles after implant removal.

    Science.gov (United States)

    Ntilikina, Yves; Bahlau, David; Garnon, Julien; Schuller, Sébastien; Walter, Axel; Schaeffer, Mickaël; Steib, Jean-Paul; Charles, Yann Philippe

    2017-08-01

    OBJECTIVE Percutaneous instrumentation in thoracolumbar fractures is intended to decrease paravertebral muscle damage by avoiding dissection. The aim of this study was to compare muscles at instrumented levels in patients who were treated by open or percutaneous surgery. METHODS Twenty-seven patients underwent open instrumentation, and 65 were treated percutaneously. A standardized MRI protocol using axial T1-weighted sequences was performed at a minimum 1-year follow-up after implant removal. Two independent observers measured cross-sectional areas (CSAs, in cm 2 ) and region of interest (ROI) signal intensity (in pixels) of paravertebral muscles by using OsiriX at the fracture level, and at cranial and caudal instrumented pedicle levels. An interobserver comparison was made using the Bland-Altman method. Reference ROI muscle was assessed in the psoas and ROI fat subcutaneously. The ratio ROI-CSA/ROI-fat was compared for patients treated with open versus percutaneous procedures by using a linear mixed model. A linear regression analyzed additional factors: age, sex, body mass index (BMI), Pfirrmann grade of adjacent discs, and duration of instrumentation in situ. RESULTS The interobserver agreement was good for all CSAs. The average CSA for the entire spine was 15.7 cm 2 in the open surgery group and 18.5 cm 2 in the percutaneous group (p = 0.0234). The average ROI-fat and ROI-muscle signal intensities were comparable: 497.1 versus 483.9 pixels for ROI-fat and 120.4 versus 111.7 pixels for ROI-muscle in open versus percutaneous groups. The ROI-CSA varied between 154 and 226 for open, and between 154 and 195 for percutaneous procedures, depending on instrumented levels. A significant difference of the ROI-CSA/ROI-fat ratio (0.4 vs 0.3) was present at fracture levels T12-L1 (p = 0.0329) and at adjacent cranial (p = 0.0139) and caudal (p = 0.0100) instrumented levels. Differences were not significant at thoracic levels. When adjusting based on age, BMI, and Pfirrmann

  2. Texas Instruments' virtual phase charge-coupled device (CCD) imager operated in the frontside electron-bombarded mode

    Science.gov (United States)

    Everett, P.; Hynecek, J.; Zucchino, P.; Lowrance, J.

    1982-01-01

    The present investigation is concerned with the suitability of the virtual phase CCD imager for frontside detection of electrons up to 25 keV. The investigation has the objective to determine if the imager can be used in the frontside mode with a photocathode to detect very low light levels in astronomical applications, the ultimate goal being individual photon detection. It is found that the standard virtual phase imager will function properly over an extended period at low levels of 20 kV electron irradiation consistent with photon counting applications. The imager can detect individual primary electrons with nearly 100 percent efficiency. However, further studies are needed to determine the mechanisms for the flat band shifts so that the imager design may be modified to eliminate or at least reduce them.

  3. Component analysis of a new solid state x-ray image intensifier (SSXII) using photon transfer and instrumentation noise equivalent exposure (INEE) measurements

    Science.gov (United States)

    Kuhls-Gilcrist, Andrew; Bednarek, Daniel R.; Rudin, Stephen

    2009-02-01

    The SSXII is a novel x-ray imager designed to improve upon the performance limitations of conventional dynamic radiographic/fluoroscopic imagers related to resolution, charge-trapping, frame-rate, and instrumentation-noise. The SSXII consists of a CsI:Tl phosphor coupled via a fiber-optic taper (FOT) to an electron-multiplying CCD (EMCCD). To facilitate investigational studies, initial designs enable interchangeability of such imaging components. Measurements of various component and configuration characteristics enable an optimization analysis with respect to overall detector performance. Photon transfer was used to characterize the EMCCD performance including ADC sensitivity, read-noise, full-well capacity and quantum efficiency. X-ray sensitivity was measured using RQA x-ray spectra. Imaging components were analyzed in terms of their MTF and transmission efficiency. The EMCCD was measured to have a very low effective read-noise of less than 1 electron rms at modest EMCCD gains, which is more than two orders-ofmagnitude less than flat panel (FPD) and CMOS-based detectors. The variable signal amplification from 1 to 2000 times enables selectable sensitivities ranging from 8.5 (168) to over 15k (300k) electrons per incident x-ray photon with (without) a 4:1 FOT; these sensitivities could be readily increased with further component optimization. MTF and DQE measurements indicate the SSXII performance is comparable to current state-of-the-art detectors at low spatial frequencies and far exceeds them at higher spatial frequencies. The instrumentation noise equivalent exposure (INEE) was measured to be less than 0.3 μR out to 10 cycles/mm, which is substantially better than FPDs. Component analysis suggests that these improvements can be substantially increased with further detector optimization.

  4. Instruments for radiation measurement in biosciences. Series 3. radioluminography. 11. Application of imaging plate in transmission electron microscopy

    International Nuclear Information System (INIS)

    Oikawa, Tetsuo

    1999-01-01

    Properties and application of the imaging plate (IP) in transmission electron microscopy (TEM) are reviewed. TEM has the resolution level of around 0.2 nm, which enables direct observation of molecules and atoms. In TEM, there are such recording systems as photographic film, TV camera, slow-scan CCD camera and IP. IP, to the electron beam, has the higher sensitivity than the film and has the broad dynamic range. Linearity between the input beam intensity and output signal is good, which makes it possible to record the image even with the small electron dose. Signal/noise ratio and detective quantum efficiency are important factors for precise image analysis. Fading phenomenon is a defect of IP, which weakens the signal output as time passing. For instance of application, IP is used for imaging of AgBr crystal fragile to strong electron beam required for the film. IP is necessary for quantitative analysis of TEM images and for the recently developed energy-filter TEM. (K.H.)

  5. S4EI (Spectral Sampling with Slicer for Stellar and Extragalactical Instrumentation), a new-generation of 3D spectro-imager dedicated to night astronomy

    Science.gov (United States)

    Sayède, Frédéric; Puech, Mathieu; Mein, Pierre; Bonifacio, Piercarlo; Malherbe, Jean-Marie; Galicher, Raphaël.; Amans, Jean-Philippe; Fasola, Gilles

    2014-07-01

    Multichannel Subtractive Double Pass (MSDP) spectrographs have been widely used in solar spectroscopy because of their ability to provide an excellent compromise between field of view and spatial and spectral resolutions. Compared with other types of spectrographs, MSDP can deliver simultaneous monochromatic images at higher spatial and spectral resolutions without any time-scanning requirement (as with Fabry-Perot spectrographs), and with limited loss of flux. These performances are obtained thanks to a double pass through the dispersive element. Recent advances with VPH (Volume phase holographic) Grisms as well as with image slicers now make MSDP potentially sensitive to much smaller fluxes. We present S4EI (Spectral Sampling with Slicer for Stellar and Extragalactical Instrumentation), which is a new concept for extending MSDP to night-time astronomy. It is based on new generation reflecting plane image slicers working with large apertures specific to night-time telescopes. The resulting design could be potentially very attractive and innovative for different domains of astronomy, e.g., the simultaneous spatial mapping of accurately flux-calibrated emission lines between OH sky lines in extragalactic astronomy or the simultaneous imaging of stars, exoplanets and interstellar medium. We present different possible MSDP/S4EI configurations for these science cases and expected performances on telescopes such as the VLT.

  6. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  7. Comparison of a Cost-Effective Integrated Plankton Sampling and Imaging Instrument with Traditional Systems for Mesozooplankton Sampling in the Celtic Sea

    Directory of Open Access Journals (Sweden)

    Sophie G. Pitois

    2018-01-01

    Full Text Available Three plankton collection methods were used to gather plankton samples in the Celtic Sea in October 2016. The Plankton Image Analysis (PIA system is a high-speed color line scan-based imaging instrument, which continuously pumps water, takes images of the passing particles, and identifies the zooplankton organisms present. We compared and evaluated the performance of the PIA against the Continuous Automatic Litter and Plankton Sampler (CALPS and the traditional ring net vertical haul. The PIA underestimated species abundance compared to the CALPS and ring net and gave an image of the zooplankton community structure that was different from the other two devices. There was, however, good agreement in the spatial distribution of abundances across the three systems. Our study suggests that the image capture and analysis step rather than the sampling method was responsible for the discrepancies noted between the PIA and the other two datasets. The two most important issues appeared to be differences in sub-sampling between the PIA system and the other two devices, and blurring of specimen features due to limited PIA optical depth of field. A particular advantage of the CALPS over more traditional vertical sampling methods is that it can be integrated within existing multidisciplinary surveys at little extra cost without requiring additional survey time. Additionally, PIA performs automatic image acquisition and it does remove the need to collect physical preserved samples for subsequent analysis in the laboratory. With the help of an expert taxonomist the system in its current form can also integrate the sampling and analysis steps, thus increasing the speed, and reducing the costs for zooplankton sampling in near real-time. Although the system shows some limitation we believe that a revised PIA system will have the potential to become an important element of an integrated zooplankton monitoring program.

  8. A CIRCLELESS "2D/3D TOTAL STATION": A LOW COST INSTRUMENT FOR SURVEYING, RECORDING POINT CLOUDS, DOCUMENTATION, IMAGE ACQUISITION AND VISUALISATION

    Directory of Open Access Journals (Sweden)

    M. Scherer

    2013-07-01

    Full Text Available Hardware and software of the universally applicable instrument - referred to as a 2D/3D total station – are described here, as well as its practical use. At its core it consists of a 3D camera – often also called a ToF camera, a pmd camera or a RIM-camera – combined with a common industrial 2D camera. The cameras are rigidly coupled with their optical axes in parallel. A new type of instrument was created mounting this 2D/3D system on a tripod in a specific way. Because of it sharing certain characteristics with a total station and a tacheometer, respectively, the new device was called a 2D/3D total station. It may effectively replace a common total station or a laser scanner in some respects. After a brief overview of the prototype's features this paper then focuses on the methodological characteristics for practical application. Its usability as a universally applicable stand-alone instrument is demonstrated for surveying, recording RGB-coloured point clouds as well as delivering images for documentation and visualisation. Because of its limited range (10m without reflector and 150 m to reflector prisms and low range accuracy (ca. 2 cm to 3 cm compared to present-day total stations and laser scanners, the practical usage of the 2D/3D total station is currently limited to acquisition of accidents, forensic purpuses, speleology or facility management, as well as architectural recordings with low requirements regarding accuracy. However, the author is convinced that in the near future advancements in 3D camera technology will allow this type of comparatively low cost instrument to replace the total station as well as the laser scanner in an increasing number of areas.

  9. The NUADU experiment on TC-2 and the first Energetic Neutral Atom (ENA images recorded by this instrument

    Directory of Open Access Journals (Sweden)

    S. McKenna-Lawlor

    2005-11-01

    Full Text Available The Earth’s ring current and how it responds to varying interplanetary conditions is described and an account provided of the production of Energetic Neutral Atoms (ENAs in the geo-corona. Also, the potential to remotely monitor, on a global scale, the temporal and spatial evolution of magnetospheric plasma populations through analysing ENA images recorded during magnetic storms/substorms is indicated. A technical account of the Energetic NeUtral Atom Detector Unit NUADU aboard China’s TC-2 mission (measurement range 45–>158 keV follows, together with an account of the scientific objectives of NUADU, both in stand-alone mode and in the context of multi-point imaging. Low altitude ENA emissions recorded by NUADU during south polar passages of TC-2 at the time of a moderate magnetic storm in September 2004, as well as bright ring current emissions recorded in November 2004 during a major geomagnetic storm, are presented and discussed in the context of various, accompanying, terrestrial disturbances. Also, ENA observations of the November 2004 ring current imaged simultaneously by TC-2/NUADU and by IMAGE/ HENA (viewing, respectively, from the Northern and Southern Hemispheres, are compared.

  10. The UVISI instrument.

    Science.gov (United States)

    Heffernan, K. J.; Heiss, J. E.; Boldt, J. D.; Darlington, E. H.; Peacock, K.; Harris, T. J.; Mayr, M. J.

    1996-06-01

    The Ultraviolet and Visible Imagers and Spectrographic Imagers (UVISI) instrument is a complex of nine sensor units (five spectrographic imagers and four imagers) and multiple processors that will provide detailed images and spectra of targets for the Midcourse Space Experiment mission. Imaging and spectroscopy each cover the range from 110 nm (far ultraviolet) to 900 nm (near infrared). UVISI is intended to investigate a multitude of celestial, atmospheric, and point sources over its planned 4-year lifetime. At 104 W and 211 kg, it is not only the largest free-flying instrument ever built at APL, but is also larger than 47 of the 55 APL-built spacecraft and more complex than many of them. This article discusses the specifications of UVISI and its hardware and software features. It also attempts to give the reader a sense of the design trade-offs made during UVISI development that resulted in its present configuration.

  11. Diffusion-weighted magnetic resonance imaging - a new instrument in the diagnosis of Creutzfeldt-Jacob's disease

    International Nuclear Information System (INIS)

    Romi, Fredrik; Smivoll, Alf Inge; Moerk, Sverre; Tysnes, Ole-Bjoern

    2000-01-01

    Creutzfeldt-Jacob's disease (CID) is characterised by rapidly progressive dementia, ataxia, myoclonus and several other neurological deficits. It generally affects older adults and occurs in sporadic, genetic and iatrogenic forms. Death occurs usually within one year after onset of the disease. The diagnosis is based on clinical criteria, neuro physiological and radiological findings and confirmed by post mortal histopathology. During the last two years several cases of CID have been reported with diffusion-weighted magnetic resonance imaging (MR) abnormalities represented by increased signal intensity indicating reduced diffusion in basal ganglia and/or cortex cerebric. These abnormalities seem to be characteristic of CID. We report a case of CID in a 54 year old woman who developed vertigo, nystagmus, ataxia, myoclonus and dementia over a period of eight months. Diffusion-weighted magnetic resonance imaging showed increased signal intensity in corpus striatum and gyrus conguli. The diagnosis was post mortally confirmed with histopathology. (Author) 7 figs., 15 refs

  12. FluidCam 1&2 - UAV-based Fluid Lensing Instruments for High-Resolution 3D Subaqueous Imaging and Automated Remote Biosphere Assessment of Reef Ecosystems

    Science.gov (United States)

    Chirayath, V.; Instrella, R.

    2016-02-01

    We present NASA ESTO FluidCam 1 & 2, Visible and NIR Fluid-Lensing-enabled imaging payloads for Unmanned Aerial Vehicles (UAVs). Developed as part of a focused 2014 earth science technology grant, FluidCam 1&2 are Fluid-Lensing-based computational optical imagers designed for automated 3D mapping and remote sensing of underwater coastal targets from airborne platforms. Fluid Lensing has been used to map underwater reefs in 3D in American Samoa and Hamelin Pool, Australia from UAV platforms at sub-cm scale, which has proven a valuable tool in modern marine research for marine biosphere assessment and conservation. We share FluidCam 1&2 instrument validation and testing results as well as preliminary processed data from field campaigns. Petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk reefs demonstrate broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to improving bathymetry data for physical oceanographic models and understanding climate change's impact on coastal zones, global oxygen production, carbon sequestration.

  13. The latest radiation instrument

    International Nuclear Information System (INIS)

    Kang, Se Sik; Gwon, Dal Gwan; Kim, Gyeong Geum

    2008-08-01

    This book deals with the latest radiation instrument, which is comprised of eight chapters. It explains X rays instrument for medial treatment, X-ray tube instrument and permissible burden with its history, structure and characteristic high voltage apparatus with high voltage rectifier circuit, X-ray control apparatus for medical treatment, X-ray image equipment X-ray television apparatus and CCD 205, X-ray apparatus of install and types, Digital X-ray apparatus with CR 261 and DR 269, performance management on X-ray for medical treatment with its history, necessity and management in the radiation field.

  14. Instruments for radiation measurement in biosciences. Series 3. radioluminography. 11. Neutron imaging plate contributes to structural biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1999-01-01

    The neutron imaging plate (NIP) is an integrating detector of neutron for measuring the neutron flux by its photo-stimulated luminescence. This review with the list of references hitherto focused its application done mainly by the author to structural biology. As compared with the traditional position sensitive detector (PSD, the two-dimensionally arranged proportional counter), NIP, since it can be arranged cylindrically to surround the sample, has the data collection rate ten times as rapid as the PSD, which enabled to analyze the structure of biopolymers. There are four neutron diffractometers equipped with NIP: LADI in France which was used for the hydrogen and hydrated structures of lysozyme, BIX-II which is inappropriate for structural biology due to weak neutron intensity, BIX-LAUE with which the obtained diffraction of the above enzyme is presented in this paper and BIX-III which has the highest sensitivity and diffraction of rubredoxin is presented; all of the latter three are in the Japan Atomic Energy Research Institute. The shield against X-ray was pointed out necessary and lead plate of 1-40 mm thickness was found satisfactory. NIP, however, is not complete yet at present for structural biology but is thought promising in future. (K.H.)

  15. Instruments for radiation measurement in biosciences. Series 3. radioluminography. 13. Application of imaging plate for radiation control works

    International Nuclear Information System (INIS)

    Yamadera, Akira

    2000-01-01

    The imaging plate (IP) is useful for measurement of both distribution and intensity of radiation. This paper described application of IP in radiation control works. Since IP has the 500 times higher sensitivity than the film badge for X-ray-range radiation of 12-120 keV, it can be useful as a personnel dosemeter in medical field. IP is suitable for measurement of radioactivity in a lot of samples and it can be useful for measurement of smear test papers although a problem concerning 3 H monitoring remains. Since IP gives the two-dimensional information of radiation distribution, IP can be useful for monitoring of contamination status such as its site and area. A contamination accident occurred by 68 Ge in PET apparatus is described for instance. IP can be also useful for measurement of the low level radioactivity in solutions, such as waste water. The author made an apparatus for drain monitoring which composed from acryl-box and IP. The surface of the former box, containing the water, is stuck by various shields of acryl- and lead-plates and is in contact with IP. Both measurement of radioactivity concentration and identification of radionuclide are possible. The important defect is pointed out to be fading phenomenon in those works above. (K.H.)

  16. A Robust 96.6-dB-SNDR 50-kHz-Bandwidth Switched-Capacitor Delta-Sigma Modulator for IR Imagers in Space Instrumentation

    Science.gov (United States)

    Dei, Michele; Sutula, Stepan; Cisneros, Jose; Pun, Ernesto; Jansen, Richard Jan Engel; Terés, Lluís; Serra-Graells, Francisco

    2017-01-01

    Infrared imaging technology, used both to study deep-space bodies’ radiation and environmental changes on Earth, experienced constant improvements in the last few years, pushing data converter designers to face new challenges in terms of speed, power consumption and robustness against extremely harsh operating conditions. This paper presents a 96.6-dB-SNDR (Signal-to-Noise-plus-Distortion Ratio) 50-kHz-bandwidth fourth-order single-bit switched-capacitor delta-sigma modulator for ADC operating at 1.8 V and consuming 7.9 mW fit for space instrumentation. The circuit features novel Class-AB single-stage switched variable-mirror amplifiers (SVMAs) enabling low-power operation, as well as low sensitivity to both process and temperature deviations for the whole modulator. The physical implementation resulted in a 1.8-mm2 chip integrated in a standard 0.18-μm 1-poly-6-metal (1P6M) CMOS technology, and it reaches a 164.6-dB Schreier figure of merit from experimental SNDR measurements without making use of any clock bootstrapping, analog calibration, nor digital compensation technique. When coupled to a 2048×2048 IR imager, the current design allows more than 50 frames per minute with a resolution of 16 effective number of bits (ENOB) while consuming less than 300 mW. PMID:28574466

  17. A Robust 96.6-dB-SNDR 50-kHz-Bandwidth Switched-Capacitor Delta-Sigma Modulator for IR Imagers in Space Instrumentation.

    Science.gov (United States)

    Dei, Michele; Sutula, Stepan; Cisneros, Jose; Pun, Ernesto; Jansen, Richard Jan Engel; Terés, Lluís; Serra-Graells, Francisco

    2017-06-02

    Infrared imaging technology, used both to study deep-space bodies' radiation and environmental changes on Earth, experienced constant improvements in the last few years, pushing data converter designers to face new challenges in terms of speed, power consumption and robustness against extremely harsh operating conditions. This paper presents a 96.6-dB-SNDR (Signal-to-Noise-plus-Distortion Ratio) 50-kHz-bandwidth fourth-order single-bit switched-capacitor delta-sigma modulator for ADC operating at 1.8 V and consuming 7.9 mW fit for space instrumentation. The circuit features novel Class-AB single-stage switched variable-mirror amplifiers (SVMAs) enabling low-power operation, as well as low sensitivity to both process and temperature deviations for the whole modulator. The physical implementation resulted in a 1.8-mm 2 chip integrated in a standard 0.18-µm 1-poly-6-metal (1P6M) CMOS technology, and it reaches a 164.6-dB Schreier figure of merit from experimental SNDR measurements without making use of any clock bootstrapping,analogcalibration,nordigitalcompensationtechnique. Whencoupledtoa2048×2048 IR imager, the current design allows more than 50 frames per minute with a resolution of 16 effective number of bits (ENOB) while consuming less than 300 mW.

  18. Invited Article: First Flight in Space of a Wide-field-of-view Soft X-Ray Imager Using Lobster-Eye Optics: Instrument Description and Initial Flight Results

    Science.gov (United States)

    Collier, Michael; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chomay, Dennis J.; Cravens, Thomas E.; Galeazzi, Massiniliano; Keller, John; Koutroumpa, Dimitra

    2015-01-01

    We describe the development, launch into space, and initial results from a prototype wide eld-of-view (FOV) soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The Sheath Transport Observer for the Redistribution of Mass (STORM) is the rst instrument using this type of optics launched into space and provides proof-of-concept for future ight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the moon, and the solar wind interaction with planetary bodies like Venus and Mars.

  19. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation

    Science.gov (United States)

    Green, R.O.; Pieters, C.; Mouroulis, P.; Eastwood, M.; Boardman, J.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Barr, D.; Buratti, B.; Cate, D.; Chatterjee, A.; Clark, R.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, Kenneth; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriquez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric

  20. The Moon Mineralogy Mapper (M3) imaging spectrometerfor lunar science: Instrument description, calibration, on‐orbit measurements, science data calibration and on‐orbit validation

    Science.gov (United States)

    C. Pieters,; P. Mouroulis,; M. Eastwood,; J. Boardman,; Green, R.O.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Cate, D.; Chatterjee, A.; Clark, R.; Barr, D.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, K.; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriguez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric

  1. Instrumentation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides instrumentation support for flight tests of prototype weapons systems using a vast array of airborne sensors, transducers, signal conditioning and encoding...

  2. Tempo de enfermagem em centro de diagnóstico por imagem: desenvolvimento de instrumento Nursing time in a diagnostic imaging center: development of an instrument

    Directory of Open Access Journals (Sweden)

    Carla Weidle Marques da Cruz

    2013-01-01

    Full Text Available OBJETIVO: Desenvolver um instrumento para medir o tempo despendido pela equipe de enfermagem, nas intervenções realizadas em centros de diagnóstico por imagem. MÉTODOS: Estudo transversal desenvolvido em hospital geral particular, conforme estas etapas: A Identificação das atividades de enfermagem por meio de revisão bibliográfica e observação em campo. B Mapeamento cruzado das atividades identificadas em intervenções de enfermagem, conforme a Classificação de Intervenções de Enfermagem (NIC. C Validação das intervenções. D Teste-piloto do instrumento com utilização da técnica de amostragem do trabalho. RESULTADOS: Foram validadas pelos juízes 92 atividades de enfermagem correspondentes a 32 intervenções da Classificação de Intervenções de Enfermagem NIC. As intervenções mais frequentes foram: Assistência em Exames, Documentação, Gerenciamento de Caso, Acompanhamento por telefone, Cuidados na admissão e Troca de Informações sobre cuidados de Saúde. CONCLUSÃO: O instrumento proposto para medição do tempo de trabalho da enfermagem, fundamentado nas intervenções de enfermagem em Centro de Diagnóstico por Imagem, foi validado e encontra-se disponível para utilização.OBJECTIVE: To develop an instrument to measure the time spent by nursing staff in interventions performed in diagnostic imaging centers. METHODS: Cross-sectional study conducted in private general hospital, according to these steps: A Identification of nursing activities through literature review and field observation. B Crossed-mapping of the activities identified in nursing interventions, according to the Nursing Interventions Classification (NIC. C Validation of interventions. D Pilot-test with instrument's utilization, with work-sampling technique. RESULTS: Were validated by the judges 92 nursing activities corresponding to 32 interventions NIC.. These interventions were most frequent: Assistance in exams, Documentation, Case Management

  3. Images

    Data.gov (United States)

    National Aeronautics and Space Administration — Images for the website main pages and all configurations. The upload and access points for the other images are: Website Template RSW images BSCW Images HIRENASD...

  4. Clinical and instrumental (magnetic resonance imaging [MRI] and multimodal evoked potentials) follow-up of brain lesions in three young patients with neurofibromatosis 1.

    Science.gov (United States)

    Margari, Lucia; Presicci, Anna; Ventura, Patrizia; Maria Bacca, Simona; Iliceto, Gianni; Medicamento, Nicola; Buttiglione, Maura; Perniola, Tommaso

    2006-12-01

    Diagnosis of neurofibromatosis 1 is based on clinical criteria. In a large number of children with neurofibromatosis 1, magnetic resonance imaging (MRI) reveals high-signal T(2)-weighted intensities in different brain regions, defined as unidentified bright objects. These lesions are asymptomatic; most of them regress spontaneously with age, but the presence of contrast enhancement or mass effect in them usually strongly suggests an increased risk of proliferative changes. To date, few studies have focused on evoked potentials in patients with neurofibromatosis 1, and the reported abnormalities did not have significant clinical correlations. We describe the clinical and instrumental (MRI and evoked potentials) follow-up of three patients with neurofibromatosis 1. MRI and evoked potentials showed subclinical involvement of the central nervous system. Some MRI T(2)-weighted hyperintensities showed enhancement and mass effect of uncertain significance. During follow-up, the MRI lesions spontaneously decreased in size or enhancement, allowing us to exclude the hypothesis of proliferative lesions; in the same way, some asymptomatic evoked potential abnormalities disappeared. These findings suggest that both MRI and evoked potentials could be useful in the detection and monitoring of cerebral complications of neurofibromatosis 1.

  5. Luminescence Instrumentation

    DEFF Research Database (Denmark)

    Jain, Mayank; Bøtter-Jensen, Lars

    2014-01-01

    This chapter gives an introduction to instrumentation for stimulated luminescence studies, with special focus on luminescence dating using the natural dosimeters, quartz and feldspars. The chapter covers basic concepts in luminescence detection, and thermal and optical stimulation, and reference...

  6. Instrumental analysis

    International Nuclear Information System (INIS)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-01

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  7. [The instrument for thermography].

    Science.gov (United States)

    Hamaguchi, Shinsuke

    2014-07-01

    Thermography is an imaging method using the instrument to detect infrared rays emitted from the body surface, and to plot them as a distribution diagram of the temperature information. Therefore, a thermographic instrument can be assumed to measure the skin temperature of the diseased region. Such an instrument is a useful device for noninvasive and objective assessment of various diseases. Examination using a thermographic instrument can assess the autonomic dysfunction by measuring the skin blood flow involved with the sympathetic innervation. Thermography is useful in assisting the determination of the therapeutic effect. However, autonomic dysfunction should be confirmed correctly with the assessment of thermatome that shows abnormal thermal distribution in the region of the disease. Thermography should make noticeable the difference between the body temperature of abnormal and normal sites, and show the alteration of temperature. Monitoring using thermography is useful to determine the effect of sympathetic nerve block. If a thermographic instrument is used, it is important that examiners should understand the function of the instrument, as well as its advantages and disadvantages.

  8. Instrumental Capital

    Directory of Open Access Journals (Sweden)

    Gabriel Valerio

    2007-07-01

    Full Text Available During the history of human kind, since our first ancestors, tools have represented a mean to reach objectives which might otherwise seemed impossibles. In the called New Economy, where tangibles assets appear to be losing the role as the core element to produce value versus knowledge, tools have kept aside man in his dairy work. In this article, the author's objective is to describe, in a simple manner, the importance of managing the organization's group of tools or instruments (Instrumental Capital. The characteristic conditions of this New Economy, the way Knowledge Management deals with these new conditions and the sub-processes that provide support to the management of Instrumental Capital are described.

  9. Innovative instrumentation

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all

  10. Instrumented SSH

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Scott; Campbell, Scott

    2009-05-27

    NERSC recently undertook a project to access and analyze Secure Shell (SSH) related data. This includes authentication data such as user names and key fingerprints, interactive session data such as keystrokes and responses, and information about noninteractive sessions such as commands executed and files transferred. Historically, this data has been inaccessible with traditional network monitoring techniques, but with a modification to the SSH daemon, this data can be passed directly to intrusion detection systems for analysis. The instrumented version of SSH is now running on all NERSC production systems. This paper describes the project, details about how SSH was instrumented, and the initial results of putting this in production.

  11. Commissioning Instrument for the GTC

    Science.gov (United States)

    Cuevas, S.; Sánchez, B.; Bringas, V.; Espejo, C.; Flores, R.; Chapa, O.; Lara, G.; Chavolla, A.; Anguiano, G.; Arciniega, S.; Dorantes, A.; González, J. L.; Montoya, J. M.; Toral, R.; Hernández, H.; Nava, R.; Devaney, N.; Castro, J.; Cavaller-Marqués, L.

    2005-12-01

    During the GTC integration phase, the Commissioning Instrument (CI) will be a diagnostic tool for performance verification. The CI features four operation modes: imaging, pupil imaging, Curvature WFS, and high resolution Shack-Hartmann WFS. This instrument was built by the Instituto de Astronomía UNAM and the Centro de Ingeniería y Desarrollo Industrial (CIDESI) under GRANTECAN contract after a public bid. In this paper we made a general instrument overview and we show some of the performance final results obtained when the Factory Acceptance tests previous to its transport to La Palma.

  12. Active instruments

    DEFF Research Database (Denmark)

    Lim, Miguel Antonio; Ørberg, Jakob Williams

    2017-01-01

    ) show the dynamic nature of policy processes, and (3) consider the search for policy reference points among the different actors. We present rankers in motion, policies in motion, and finally the complex nature of the ranking device that needs to be both a relevant and malleable policy instrument...

  13. Seismic instrumentation

    International Nuclear Information System (INIS)

    Maubach, K.

    1982-01-01

    For better understanding of the specification for seismic instrumentation of a nuclear power plant, the lecture gives some fundamental remarks to the seismic risk in the Federal Republic of Germany and to the data characterizing an earthquake event. Coming from the geophysical properties of an earthquake, the quantities are explained which are used in the design process of nuclear power plants. This process is shortly described in order to find the requirements for the specification of the seismic instrumentation. In addition the demands of licensing authorities are given. As an example the seismic instrumentation of KKP-1, BWR, is shown. The paper deals with kind and number of instruments, their location in the plant and their sensitivity and calibration. Final considerations deal with the evaluation of measured data and with plant operation after an earthquake. Some experience concerning the earthquake behaviour of equipment not designed to withstand earthquake loads is mentioned. This experience has initiated studies directed to quantification of the degree of conservatism of the assumptions in the seismic design of nuclear power plants. A final garget of these studies are more realistic design rules. (RW)

  14. The 2007 ESO Instrument Calibration Workshop

    CERN Document Server

    Kaufer, Andreas; ESO Workshop

    2008-01-01

    The 2007 ESO Instrument Calibration workshop brought together more than 120 participants with the objective to a) foster the sharing of information, experience and techniques between observers, instrument developers and instrument operation teams, b) review the actual precision and limitations of the applied instrument calibration plans, and c) collect the current and future requirements by the ESO users. These present proceedings include the majority of the workshop’s contributions and document the status quo of instrument calibration at ESO in large detail. Topics covered are: Optical Spectro-Imagers, Optical Multi-Object Spectrographs, NIR and MIR Spectro-Imagers, High-Resolution Spectrographs, Integral Field Spectrographs, Adaptive Optics Instruments, Polarimetric Instruments, Wide Field Imagers, Interferometric Instruments as well as other crucial aspects such as data flow, quality control, data reduction software and atmospheric effects. It was stated in the workshop that "calibration is a life-long l...

  15. The Emancipation of Mimi ?

    OpenAIRE

    Guibert, Gérôme

    2013-01-01

    Signée chez Sony, puis chez Universal, Mariah Carey est une chanteuse américaine née en 1970 qui a vendu plus de 150 millions d’albums depuis les débuts de sa carrière professionnelle en 1990. Une analyse superficielle pourrait laisser penser qu’il s’agit d’une interprète façonnée par les majors pour interpréter des titres calibrés en fonction de la demande (Guibert, 1998). Pourtant, le fait qu’elle écrive ou coécrive la quasi intégralité de ses chansons et qu’elle soit elle-même productrice ...

  16. Instrumentation development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Areas being investigated for instrumentation improvement during low-level pollution monitoring include laser opto-acoustic spectroscopy, x-ray fluorescence spectroscopy, optical fluorescence spectroscopy, liquid crystal gas detectors, advanced forms of atomic absorption spectroscopy, electro-analytical chemistry, and mass spectroscopy. Emphasis is also directed toward development of physical methods, as opposed to conventional chemical analysis techniques for monitoring these trace amounts of pollution related to energy development and utilization

  17. Nuclear instrumentation

    International Nuclear Information System (INIS)

    Weill, Jacky; Fabre, Rene.

    1981-01-01

    This article sums up the Research and Development effort at present being carried out in the five following fields of applications: Health physics and Radioprospection, Control of nuclear reactors, Plant control (preparation and reprocessing of the fuel, testing of nuclear substances, etc.), Research laboratory instrumentation, Detectors. It also sets the place of French industrial activities by means of an estimate of the French market, production and flow of trading with other countries [fr

  18. Commissioning instrument for the Gran Telescopio Canarias

    Science.gov (United States)

    Cuevas, Salvador; Espejo, Carlos; Sanchez, Beatriz; Flores-Meza, Ruben; Lara, Gerardo; Farah Simon, Alejandro; Godoy, Javier; Chapa, Oscar; Tejada, Carlos; Cobos, Francisco J.; Garfias, Fernando; Bringas, Vicente; Chavoya, Armando; Anguiano, Gustavo; Arciniega, Sadot; Dorantes, Ariel; Gonzalez, Jose Luis; Montoya, Juan Manuel; Toral, Rafael; Hernandez, Hugo; Nava, Roberto; Devaney, Nicholas; Castro, Javier; Cavaller, Luis

    2003-01-01

    During the GTC integration phase, the Commissioning Instrument (CI) will be a diagnostic tool for performance verification. The CI features four operation modes-imaging, pupil imaging, Curvature WFS, and high resolution Shack-Hartmann WFS. After the GTC Commissioning we also plan to install a Pyramid WFS. This instrument can therefore serve as a test bench for comparing co-phasing methods for ELTs on a real segmented telescope. In this paper we made a general instrument overview.

  19. The instrumental design of Elmer

    Science.gov (United States)

    Garcia Vargas, M.; Sánchez-Blanco, M.; Cavaller, L.; Martín-Fleitas, J.; Kohley, R.; Medina, M.; Rosich, J.; Hammersley, P. L.; Ronquillo, B.; Vega, M.

    ELMER is a visible imager spectrograph currently scheduled to be in operation at the GTC on Day One. This paper covers engineering aspects of the instrument and summarizes five poster contributions presented at this conference. ELMER is an instrument managed directly by the GTC Project Office, which has developed the preliminary design and large part of the detailed design. The detailed design, manufacturing, and testing of the structure and mechanisms is being undertaken by the join venture MEDIA-SPASA.

  20. Enhancements to and characterization of the very early time electromagnetic (VETEM) prototype instrument and applications to shallow subsurface imaging at sites in the DOE complex. 1998 annual progress report

    International Nuclear Information System (INIS)

    Chew, W.C.; Wright, D.L.

    1998-01-01

    'The objective of this project is to enhance the state-of-the-art of electromagnetic imaging of the shallow (0 to 5 m) subsurface in electrically conductive media where ground penetrating radar (GPR) provides insufficient penetration and time domain electromagnetic (TEM) systems provide insufficient resolution. This objective is being pursued by instrumentation enhancements to the existing very early time electromagnetic (VETEM) system coupled with physical and numerical modeling. Success in this endeavor will improve the speed and accuracy of waste pit and trench location and characterization, and could have additional applications to shallow DNAPL and LNAPL spill and cleanup monitoring, clay cap integrity assessment, and landfill stabilization monitoring. This could result in significant savings in time and money during characterization, remediation, and decommissioning of facilities. This report summarizes accomplishments after 8 months of a three-year project. The authors have focused mainly on instrumentation and numerical modeling during this time.'

  1. Seismic instrumentation

    International Nuclear Information System (INIS)

    1984-06-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The aim of this RFS is to define the type, location and operating conditions for seismic instrumentation needed to determine promptly the seismic response of nuclear power plants features important to safety to permit comparison of such response with that used as the design basis

  2. Acute vertebral fracture after spinal fusion: a case report illustrating the added value of single-source dual-energy computed tomography to magnetic resonance imaging in a patient with spinal Instrumentation

    International Nuclear Information System (INIS)

    Fuchs, M.; Putzier, M.; Pumberger, M.; Hermann, K.G.; Diekhoff, T.

    2016-01-01

    Magnetic resonance imaging (MRI) is degraded by metal-implant-induced artifacts when used for the diagnostic assessment of vertebral compression fractures in patients with instrumented spinal fusion. Dual-energy computed tomography (DECT) offers a promising supplementary imaging tool in these patients. This case report describes an 85-year-old woman who presented with a suspected acute vertebral fracture after long posterior lumbar interbody fusion. This is the first report of a vertebral fracture that showed bone marrow edema on DECT; however, edema was missed by an MRI STIR sequence owing to metal artifacts. Bone marrow assessment using DECT is less susceptible to metal artifacts than MRI, resulting in improved visualization of vertebral edema in the vicinity of fused vertebral bodies. (orig.)

  3. Analysis on detection accuracy of binocular photoelectric instrument optical axis parallelism digital calibration instrument

    Science.gov (United States)

    Ying, Jia-ju; Yin, Jian-ling; Wu, Dong-sheng; Liu, Jie; Chen, Yu-dan

    2017-11-01

    Low-light level night vision device and thermal infrared imaging binocular photoelectric instrument are used widely. The maladjustment of binocular instrument ocular axises parallelism will cause the observer the symptom such as dizziness, nausea, when use for a long time. Binocular photoelectric equipment digital calibration instrument is developed for detecting ocular axises parallelism. And the quantitative value of optical axis deviation can be quantitatively measured. As a testing instrument, the precision must be much higher than the standard of test instrument. Analyzes the factors that influence the accuracy of detection. Factors exist in each testing process link which affect the precision of the detecting instrument. They can be divided into two categories, one category is factors which directly affect the position of reticle image, the other category is factors which affect the calculation the center of reticle image. And the Synthesize error is calculated out. And further distribute the errors reasonably to ensure the accuracy of calibration instruments.

  4. Optimization of Sample Preparation and Instrumental Parameters for the Rapid Analysis of Drugs of Abuse in Hair samples by MALDI-MS/MS Imaging

    Science.gov (United States)

    Flinders, Bryn; Beasley, Emma; Verlaan, Ricky M.; Cuypers, Eva; Francese, Simona; Bassindale, Tom; Clench, Malcolm R.; Heeren, Ron M. A.

    2017-08-01

    Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) has been employed to rapidly screen longitudinally sectioned drug user hair samples for cocaine and its metabolites using continuous raster imaging. Optimization of the spatial resolution and raster speed were performed on intact cocaine contaminated hair samples. The optimized settings (100 × 150 μm at 0.24 mm/s) were subsequently used to examine longitudinally sectioned drug user hair samples. The MALDI-MS/MS images showed the distribution of the most abundant cocaine product ion at m/z 182. Using the optimized settings, multiple hair samples obtained from two users were analyzed in approximately 3 h: six times faster than the standard spot-to-spot acquisition method. Quantitation was achieved using longitudinally sectioned control hair samples sprayed with a cocaine dilution series. A multiple reaction monitoring (MRM) experiment was also performed using the `dynamic pixel' imaging method to screen for cocaine and a range of its metabolites, in order to differentiate between contaminated hairs and drug users. Cocaine, benzoylecgonine, and cocaethylene were detectable, in agreement with analyses carried out using the standard LC-MS/MS method. [Figure not available: see fulltext.

  5. Images.

    Science.gov (United States)

    Barr, Catherine, Ed.

    1997-01-01

    The theme of this month's issue is "Images"--from early paintings and statuary to computer-generated design. Resources on the theme include Web sites, CD-ROMs and software, videos, books, and others. A page of reproducible activities is also provided. Features include photojournalism, inspirational Web sites, art history, pop art, and myths. (AEF)

  6. IASI instrument: technical description and measured performances

    Science.gov (United States)

    Hébert, Ph.; Blumstein, D.; Buil, C.; Carlier, T.; Chalon, G.; Astruc, P.; Clauss, A.; Siméoni, D.; Tournier, B.

    2017-11-01

    IASI is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The IASI system includes 3 instruments that will be mounted on the Metop satellite series, a data processing software integrated in the EPS (EUMETSAT Polar System) ground segment and a technical expertise centre implemented in CNES Toulouse. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The optical configuration is based on a Michelson interferometer and the interferograms are processed by an on-board digital processing subsystem, which performs the inverse Fourier transforms and the radiometric calibration. The infrared imager co-registers the IASI soundings with AVHRR imager (AVHRR is another instrument on the Metop satellite). The presentation will focus on the architectures of the instrument, the description of the implemented technologies and the measured performance of the first flight model. CNES is leading the IASI program in association with EUMETSAT. The instrument Prime is ALCATEL SPACE.

  7. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers.

    Science.gov (United States)

    Cui, Yang; Hanley, Luke

    2015-06-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.

  8. Imaging

    International Nuclear Information System (INIS)

    Kellum, C.D.; Fisher, L.M.; Tegtmeyer, C.J.

    1987-01-01

    This paper examines the advantages of the use of excretory urography for diagnosis. According to the authors, excretory urography remains the basic radiologic examination of the urinary tract and is the foundation for the evaluation of suspected urologic disease. Despite development of the newer diagnostic modalities such as isotope scanning, ultrasonography, CT, and magnetic resonsance imaging (MRI), excretory urography has maintained a prominent role in ruorradiology. Some indications have been altered and will continue to change with the newer imaging modalities, but the initial evaluation of suspected urinary tract structural abnormalities; hematuria, pyuria, and calculus disease is best performed with excretory urography. The examination is relatively inexpensive and simple to perform, with few contraindictions. Excretory urography, when properly performed, can provide valuable information about the renal parenchyma, pelvicalyceal system, ureters, and urinary bladder

  9. Next Generation UV Coronagraph Instrumentation for Solar Cycle-24

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... New concepts for next generation instrumentation include imaging ultraviolet spectrocoronagraphs and large aperture ultraviolet coronagraph spectrometers. An imaging instrument would be the first to obtain absolute spectral line intensities of the extended corona over a wide field of view. Such images ...

  10. Low activated incore instrument

    Science.gov (United States)

    Ekeroth, D.E.

    1994-04-19

    Instrumentation is described for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials. 9 figures.

  11. Instruments for radiation measurement in life sciences (5). 'Development of imaging Technology in life sciences'. 5. X-ray CT for laboratory animals

    International Nuclear Information System (INIS)

    Tamegai, Toshiaki

    2007-01-01

    X-ray computed tomography, commercialized by EMI Co., UK, in 1973 and now used world-widely, is used not only for medical use but also for laboratory animals such as rats and mice to measure bone density and to obtain fine structures of bones. This paper introduces X-ray CT apparatus specifically designed for laboratory animals. Besides general explanations about the method, followed by emphasis on important performance of the measuring system, the paper explains technical aspects for obtaining the CT imaging scan procedure thus showing several photographs as example and introducing some clinical applications. (S. Ohno)

  12. Formation Flying and Deformable Instruments

    International Nuclear Information System (INIS)

    Rio, Yvon

    2009-01-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  13. Evaluating musical instruments

    International Nuclear Information System (INIS)

    Campbell, D. Murray

    2014-01-01

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians

  14. Evaluating musical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, D. Murray

    2014-04-01

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians.

  15. The QUIET Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, C.; et al.

    2012-07-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ({approx}1{sup o}). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0:1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0:01. The two arrays together cover multipoles in the range {ell} {approx} 25 -- 975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument.

  16. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  17. Health physics instrument manual

    International Nuclear Information System (INIS)

    Gupton, E.D.

    1978-08-01

    The purpose of this manual is to provide apprentice health physics surveyors and other operating groups not directly concerned with radiation detection instruments a working knowledge of the radiation detection and measuring instruments in use at the Laboratory. The characteristics and applications of the instruments are given. Portable instruments, stationary instruments, personnel monitoring instruments, sample counters, and miscellaneous instruments are described. Also, information sheets on calibration sources, procedures, and devices are included. Gamma sources, beta sources, alpha sources, neutron sources, special sources, a gamma calibration device for badge dosimeters, and a calibration device for ionization chambers are described

  18. Astronomical Instruments in India

    Science.gov (United States)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  19. Tropical Rainfall Measuring Mission (TRMM) project. VI - Spacecraft, scientific instruments, and launching rocket. Part 3 - The electrically Scanning Microwave Radiometer and the Special Sensor Microwave/Imager

    Science.gov (United States)

    Wilheit, Thomas T.; Yamasaki, Hiromichi

    1990-01-01

    The two microwave radiometers for TRMM are designed to measure thermal microwave radiation upwelling from the earth. The Electrically Scanning Microwave Radiometer (ESMR) scans from 50 deg to the left through nadir to 50 deg to the right in 78 steps with no moving mechanical parts in a band centered at 19.35 GHz. The TRMM concept uses the radar to develop a climatology of rain-layer thickness which can be used for the interpretation of the radiometer data over a swath wider than the radar. The ESMR data are useful for estimating rain intensity only over an ocean background. The Special Sensor Microwave/Imager (SSM/I), which scans conically with three dual polarized channels at 19, 37, and 85 GHz and a single polarized channel at 22 GHz, provides a wider range of rainfall intensities. The SSM/I spins about an axis parallel to the local spacecraft vector and 128 uniformly spaced samples of the 85 GHz data are taken on each scan over a 112-deg scan region simultaneously with 64 samples of the other frequencies.

  20. Megavoltage CT imaging as a by-product of multileaf collimator leakage

    International Nuclear Information System (INIS)

    Ruchala, K.J.; Kapatoes, J.M.; Olivera, G.H.; Schloesser, E.A.; Reckwerdt, P.J.; Mackie, T.R.

    2000-01-01

    In addition to their potential for the delivery of highly conformal radiation therapy treatments, tomotherapeutic treatments also feature increased potential for verification. For example, megavoltage CT allows one to use the megavoltage linac to generate tomographic images of the patient in the treatment position. This is typically done before or after radiation therapy treatments. However, it is also possible to collect MVCT images entirely during the treatment itself. This process utilizes the leakage radiation through the closed leaves of the Nomos MIMiC MLC, along with slight inefficiencies in treatment delivery, to generate MVCT images during treatment that require neither additional time nor dose. The image quality is limited, yet sufficient to see a patient's external boundary, density differences over 8% for 25.0 mm objects and resolutions of 3.0 mm for high-contrast objects. Such images can potentially be viewed during treatment, used to flag additional CT immediately after the treatment and provide a representation of the patient's exact position during treatment for use with dose reconstruction. (author)

  1. Instrumentation for astronomy

    Science.gov (United States)

    Sun, Yin Sheng

    1999-12-01

    The aim of this thesis was to develop two new infrared astronomical instruments, the University of New South Wales Infrared Fabry-Perot spectrometer (UNSWIRF) and the Infrared Camera of the University of New South Wales (IRC-UNSW), and modify an optics for one existing astronomical instrument, the Automated Patrol Telescope (APT). The optical modification of the APT overcame the problem of a curved focal plane and increased the flat field of view from 0.9° to 5°, twice as big as our original goal. In addition, glass filters of 5-mm thickness can now be inserted into its f/1 beam without image blurring. The simulation, analysis and redesign of the optical system are presented in detail. Several results from testing on the sky are presented as well. UNSWIRF is a near-infrared tunable imaging spectrometer used in conjunction with IRIS on the Anglo-Australian Telescope (AAT). It is the first successful infrared Fabry-Perot spectrometer developed in Australia. Its many challenging features, such as the wide field of view, high spectral and spatial resolution and wide tunable range have been rewarded by exciting observing results obtained during commissioning in February 1996. A major contribution of this thesis has been in the calibration of the Fabry-Perot etalon. IRC-UNSW is a new near-infrared camera with a tunable Fabry-Perot for infrared astronomy. IRC-UNSW is designed for use on the 4-m Anglo-Australian Telescope (AAT) and the 2.3-m telescope of the Australian National University. The camera optics use a novel design of three off-axis mirrors, allowing correction of the off-axis aberrations in the telescopes themselves, and producing images with FWHM blur circles of 10 mm or less over a wide field of view without chromatic affects. An external Fabry- Perot etalon is used as a high-resolution spectrometer. In its opto-mechanical design, the performance of the camera with respect to thermal effects, stray light, misalignment and manufacturing errors have been

  2. Troubleshooting in nuclear instruments

    International Nuclear Information System (INIS)

    1987-06-01

    This report on troubleshooting of nuclear instruments is the product of several scientists and engineers, who are closely associated with nuclear instrumentation and with the IAEA activities in the field. The text covers the following topics: Preamplifiers, amplifiers, scalers, timers, ratemeters, multichannel analyzers, dedicated instruments, tools, instruments, accessories, components, skills, interfaces, power supplies, preventive maintenance, troubleshooting in systems, radiation detectors. The troubleshooting and repair of instruments is illustrated by some real examples

  3. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  4. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  5. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  6. Validation of the sensitivity of the National Emergency X-Radiography Utilization Study (NEXUS Head computed tomographic (CT decision instrument for selective imaging of blunt head injury patients: An observational study.

    Directory of Open Access Journals (Sweden)

    William R Mower

    2017-07-01

    Full Text Available Clinicians, afraid of missing intracranial injuries, liberally obtain computed tomographic (CT head imaging in blunt trauma patients. Prior work suggests that clinical criteria (National Emergency X-Radiography Utilization Study [NEXUS] Head CT decision instrument [DI] can reliably identify patients with important injuries, while excluding injury, and the need for imaging in many patients. Validating this DI requires confirmation of the hypothesis that the lower 95% confidence limit for its sensitivity in detecting serious injury exceeds 99.0%. A secondary goal of the study was to complete an independent validation and comparison of the Canadian and NEXUS Head CT rules among the subgroup of patients meeting the inclusion and exclusion criteria.We conducted a prospective observational study of the NEXUS Head CT DI in 4 hospital emergency departments between April 2006 and December 2015. Implementation of the rule requires that patients satisfy 8 criteria to achieve "low-risk" classification. Patients are excluded from "low-risk" classification and assigned "high-risk" status if they fail to meet 1 or more criteria. We examined the instrument's performance in assigning "high-risk" status to patients requiring neurosurgical intervention among a cohort of 11,770 blunt head injury patients. The NEXUS Head CT DI assigned high-risk status to 420 of 420 patients requiring neurosurgical intervention (sensitivity, 100.0% [95% confidence interval [CI]: 99.1%-100.0%]. The instrument assigned low-risk status to 2,823 of 11,350 patients who did not require neurosurgical intervention (specificity, 24.9% [95% CI: 24.1%-25.7%]. None of the 2,823 low-risk patients required neurosurgical intervention (negative predictive value [NPV], 100.0% [95% CI: 99.9%-100.0%]. The DI assigned high-risk status to 759 of 767 patients with significant intracranial injuries (sensitivity, 99.0% [95% CI: 98.0%-99.6%]. The instrument assigned low-risk status to 2,815 of 11

  7. Determination of the single scattering albedo and direct radiative forcing of biomass burning aerosol with data from the MODIS (Moderate Resolution Imaging Spectroradiometer) satellite instrument

    Science.gov (United States)

    Zhu, Li

    Biomass burning aerosols absorb and scatter solar radiation and therefore affect the energy balance of the Earth-atmosphere system. The single scattering albedo (SSA), the ratio of the scattering coefficient to the extinction coefficient, is an important parameter to describe the optical properties of aerosols and to determine the effect of aerosols on the energy balance of the planet and climate. Aerosol effects on radiation also depend strongly on surface albedo. Large uncertainties remain in current estimates of radiative impacts of biomass burning aerosols, due largely to the lack of reliable measurements of aerosol and surface properties. In this work we investigate how satellite measurements can be used to estimate the direct radiative forcing of biomass burning aerosols. We developed a method using the critical reflectance technique to retrieve SSA from the Moderate Resolution Imaging Spectroradiometer (MODIS) observed reflectance at the top of the atmosphere (TOA). We evaluated MODIS retrieved SSAs with AErosol RObotic NETwork (AERONET) retrievals and found good agreements within the published uncertainty of the AERONET retrievals. We then developed an algorithm, the MODIS Enhanced Vegetation Albedo (MEVA), to improve the representations of spectral variations of vegetation surface albedo based on MODIS observations at the discrete 0.67, 0.86, 0.47, 0.55, 1.24, 1.64, and 2.12 mu-m channels. This algorithm is validated using laboratory measurements of the different vegetation types from the Amazon region, data from the Johns Hopkins University (JHU) spectral library, and data from the U.S. Geological Survey (USGS) digital spectral library. We show that the MEVA method can improve the accuracy of flux and aerosol forcing calculations at the TOA compared to more traditional interpolated approaches. Lastly, we combine the MODIS retrieved biomass burning aerosol SSA and the surface albedo spectrum determined from the MEVA technique to calculate TOA flux and

  8. BOMBAY: Instrumentation school

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Promising students had a foretaste of the latest laboratory techniques at the ICFA 1993 India School on Instrumentation in High Energy Physics held from February 15-26 and hosted by the Tata Institute of Fundamental Research (TIFR), Bombay. The scientific programme was put together by the ICFA Panel for Future Instrumentation, Innovation and Development, chaired by Tord Ekelof (Uppsala). The programme included lectures and topical seminars covering a wide range of detector subjects. In small groups, students got acquainted with modern detector technologies in the laboratory sessions, using experimental setups assembled in various institutes world-wide and shipped to Bombay for the School. The techniques covered included multiwire proportional chambers for detection of particles and photons, gaseous detectors for UV photons and X-ray imaging, the study of charge drift in silicon detectors, measurement of the muon lifetime using liquid scintillators, tracking using scintillating fibres, and electronics for sensitive detectors. The India School was attended by around 80 students from 20 countries; 34 came from Indian universities. It was the fifth in this series, previous Schools having been at Trieste (1987, 1989 and 1991) organized by the ICFA Panel and hosted and sponsored by the International Centre for Theoretical Physics, and in 1990, organized at Rio de Janeiro in collaboration with the Centro Brasileiro de Pesquisas Fisicas. The School was jointly directed by Suresh Tonwar (TIFR), Fabio Sauli (CERN) and Marleigh Sheaff (University of Wisconsin), and sponsored by TIFR and DAE (India), CERN (Switzerland), ICTP and INFN (Italy), British Council and RAL (UK), NSF and DOE (USA), KEK (Japan), IPP (Canada) and DESY (Germany)

  9. Standardization of SPECT imaging

    International Nuclear Information System (INIS)

    Mishio, Kouji

    1989-01-01

    Though the use of instruments for SPECT imaging is prevailing, the SPECT images from the several instruments appears many differences in quality respectively. For the purpose of studying the cause of different image quality between several instruments, SPECT images of the same phantom were acquired and processed using 6 instruments in 5 institutes to compare. Up to now the quality of SPECT images was foundamentally dependent on the hardware, but factors of software, such as reconstruction algorithms and determinations of severl parameters seemed to have more important effect upon the image quality. The adoption of appropriate processing method after minimizing the imaging deterioration due to the hardware would make the difference of image quality minimum, and could make the standardization of SPECT imaging possible. (author)

  10. Research reactor instrumentation

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2001-02-01

    This is a textbook on research reactor instrumentation for training purposes, it gives a survey on research reactor instrumentation requirements and eight exercises covering the major aspects of this topic are presented. (author)

  11. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...... provides the performer extensive virtuoso capabilities in terms of instrumental range, harmony, timbre, or spatial, textural, acoustic, technical, or technological qualities. The discussion will be illustrated by a composition case study involving augmented musical instrument electromagnetic resonator...

  12. Instrument Modeling and Synthesis

    Science.gov (United States)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  13. Spinal imaging and image analysis

    CERN Document Server

    Yao, Jianhua

    2015-01-01

    This book is instrumental to building a bridge between scientists and clinicians in the field of spine imaging by introducing state-of-the-art computational methods in the context of clinical applications.  Spine imaging via computed tomography, magnetic resonance imaging, and other radiologic imaging modalities, is essential for noninvasively visualizing and assessing spinal pathology. Computational methods support and enhance the physician’s ability to utilize these imaging techniques for diagnosis, non-invasive treatment, and intervention in clinical practice. Chapters cover a broad range of topics encompassing radiological imaging modalities, clinical imaging applications for common spine diseases, image processing, computer-aided diagnosis, quantitative analysis, data reconstruction and visualization, statistical modeling, image-guided spine intervention, and robotic surgery. This volume serves a broad audience as  contributions were written by both clinicians and researchers, which reflects the inte...

  14. Aeroacoustics of Musical Instruments

    NARCIS (Netherlands)

    Fabre, B.; Gilbert, J.; Hirschberg, Abraham; Pelorson, X.

    2012-01-01

    We are interested in the quality of sound produced by musical instruments and their playability. In wind instruments, a hydrodynamic source of sound is coupled to an acoustic resonator. Linear acoustics can predict the pitch of an instrument. This can significantly reduce the trial-and-error process

  15. Construction and exploitation of new remote sensing instruments

    Science.gov (United States)

    Maekisara, Kai

    Finnish investigations into the construction of near future instruments, descriptive and programmable, are outlined. The following instruments are discussed: the Medium Resolution Imaging Spectrometer (MERIS) and the High Resolution Imaging Spectrometer (HRIS) of the Polar Platform; lidar (light and detection ranging); the Earth Resources Satellite-1 (ERS-1) and Radarsat synthetic aperture radar; and the Advanced Microwave Sounding Unit-A (AMSU-A) and the Advanced Microwave Sounding Unit-B (AMSU-B) Polar Platform microwave instruments.

  16. Galileo's Instruments of Credit Telescopes, Images, Secrecy

    CERN Document Server

    Biagioli, Mario

    2006-01-01

    In six short years, Galileo Galilei went from being a somewhat obscure mathematics professor running a student boarding house in Padua to a star in the court of Florence to the recipient of dangerous attention from the Inquisition for his support of Copernicanism. In that brief period, Galileo made a series of astronomical discoveries that reshaped the debate over the physical nature of the heavens: he deeply modified the practices and status of astronomy with the introduction of the telescope and pictorial evidence, proposed a radical reconfiguration of the relationship between theology and a

  17. Health physics instrumentation - a progress report

    International Nuclear Information System (INIS)

    Maushart, R.

    1992-01-01

    Health Physics Instruments have changed rather dramatically in the past decade. On the one hand, technological innovations like Microprocessors, data storage facilities and imaging displays have altered shape, size and appearance of the classical devices, particularly the hand-held ones. On the other hand, instruments are increasingly being considered as an integral part of Radiation Protection procedures and organizations, supporting a smooth and reliable implementation of all necessary measures. This implies ease of operation, and extensive self-checking and performance control features. Since there are different categories of users with quite different degrees of motivation and training, the measuring instruments of the future will have to be adapted to specific types of users. Instruments for 'professional' radiation protection - for example in nuclear power plants and nuclear technology - will differ from instruments used in the radionuclide laboratory, where radiation protection will necessarily have to be done as a 'side-job'. (author)

  18. WFIRST: Coronagraph Instrument Description and Capabilities

    Science.gov (United States)

    Frerking, Margaret A.; Zhao, Feng; Demers, Richard; Poberezhskiy, Ilya; Rhodes, Jason; Trauger, John; Moustakas, Leonidas; Mennesson, Bertrand

    2018-01-01

    The WFIRST coronagraph instrument (CGI) will be the first in-space coronagraph using active wavefront control with an expected instrumental raw contrast of 3*10^-9 at 150 milliarcseconds in the V band. The CGI will be capable of directly imaging and spectrally characterizing mature exoplanets in reflected light for the first time. We present the CGI design architecture, its requirements and expected performance based on laboratory results demonstrated in the High Contrast Imaging Testbed (HCIT) that simulates in-space conditions as well as detailed integrated modeling including the WFIRST telescope predicted performance.

  19. Instrumentation for accelerators

    International Nuclear Information System (INIS)

    Sen, T.J.; De, T.K.; Ranganathan, M.K.; Basak, G.C.

    1989-01-01

    Along with the various system development for the accelerator, it was necessary to develop the instrumentation facility for the cyclotron. It started with the development of various vacuum instruments like ionization gauge control unit for measurement of pressure from 10 -4 torr to 10 -9 torr, discharge gauge control unit from 10 -4 torr to 10 -7 torr, thermocouple gauge control unit from 1 torr to 10 -3 torr. Process control instrumentation includes temperature measurement for freon cooled baffle and als o for low conductivity water. Control console required various digital panel meters for measurement of various parameters of the cyclotron. Various radiation monitoring instruments are also taken care of by the instrumentation facility. This paper describes in brief these various instruments. (author). 3 f igs

  20. Instrumentation a reader

    CERN Document Server

    Pope, P

    1990-01-01

    This book contains a selection of papers and articles in instrumentation previously pub­ lished in technical periodicals and journals of learned societies. Our selection has been made to illustrate aspects of current practice and applications of instrumentation. The book does not attempt to be encyclopaedic in its coverage of the subject, but to provide some examples of general transduction techniques, of the sensing of particular measurands, of components of instrumentation systems and of instrumentation practice in two very different environments, the food industry and the nuclear power industry. We have made the selection particularly to provide papers appropriate to the study of the Open University course T292 Instrumentation. The papers have been chosen so that the book covers a wide spectrum of instrumentation techniques. Because of this, the book should be of value not only to students of instrumen­ tation, but also to practising engineers and scientists wishing to glean ideas from areas of instrumen...

  1. Radiation measurement instruments

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The requirements and characteristics of radiation measurement instruments vary according to the circumstances under which they are used (field, area, laboratory conditions) and according to their purpose (radiation survey, personal monitoring, use in emergencies, or alpha, beta or gamma counting). In fact, radiation measurement instruments are so varied that only an overview has been presented here. Groups of instruments for these and other conditions or uses are presented in tabular form together with their operational characteristics and requirements. While examples of calibrations, efficiencies and variability of all the listed instruments are not given in this chapter, these parameters are illustrated for the most important types of gamma and beta survey instruments, in some cases with a specific instrument used as an example. Some of the important parameters that need to be considered for laboratory counting of alpha and beta particles are presented. Charts for determination of optimum sample and background counting times, errors and statistics are given

  2. Radiation protection instrument 1993

    International Nuclear Information System (INIS)

    1993-04-01

    The Radiation Protection Instrument, 1993 (Legislative Instrument 1559) prescribes the powers and functions of the Radiation Protection Board established under the Ghana Atomic Energy Commission by the Atomic Energy Commission (Amendment) Law, 1993 (P.N.D.C. Law 308). Also included in the Legislative Instrument are schedules on control and use of ionising radiation and radiation sources as well as procedures for notification, licensing and inspection of ionising radiation facilities. (EAA)

  3. Ocean Optics Instrumentation Systems

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation suites for a wide variety of measurements to characterize the ocean’s optical environment. These packages have been developed to...

  4. Networked Instrumentation Element

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers have developed a networked instrumentation system that connects modern experimental payloads to existing analog and digital communications...

  5. Creating a Super Instrument

    DEFF Research Database (Denmark)

    Kallionpää, Maria; Gasselseder, Hans-Peter

    2015-01-01

    interested in different ways of "supersizing" acoustic instruments in order to open up previously-unheard instrumental sounds. This leads us to the question of what constitutes a super instrument and what challenges does it pose aesthetically and technically? Although the classical music performers have......Thanks to the development of new technology, musical instruments are no more tied to their existing acoustic or technical limitations as almost all parameters can be augmented or modified in real time. An increasing number of composers, performers, and computer programmers have thus become...

  6. Instrument validation project

    International Nuclear Information System (INIS)

    Reynolds, B.A.; Daymo, E.A.; Geeting, J.G.H.; Zhang, J.

    1996-06-01

    Westinghouse Hanford Company Project W-211 is responsible for providing the system capabilities to remove radioactive waste from ten double-shell tanks used to store radioactive wastes on the Hanford Site in Richland, Washington. The project is also responsible for measuring tank waste slurry properties prior to injection into pipeline systems, including the Replacement of Cross-Site Transfer System. This report summarizes studies of the appropriateness of the instrumentation specified for use in Project W-211. The instruments were evaluated in a test loop with simulated slurries that covered the range of properties specified in the functional design criteria. The results of the study indicate that the compact nature of the baseline Project W-211 loop does not result in reduced instrumental accuracy resulting from poor flow profile development. Of the baseline instrumentation, the Micromotion densimeter, the Moore Industries thermocouple, the Fischer and Porter magnetic flow meter, and the Red Valve Pressure transducer meet the desired instrumental accuracy. An alternate magnetic flow meter (Yokagawa) gave nearly identical results as the baseline fischer and Porter. The Micromotion flow meter did not meet the desired instrument accuracy but could potentially be calibrated so that it would meet the criteria. The Nametre on-line viscometer did not meet the desired instrumental accuracy and is not recommended as a quantitative instrument although it does provide qualitative information. The recommended minimum set of instrumentation necessary to ensure the slurry meets the Project W-058 acceptance criteria is the Micromotion mass flow meter and delta pressure cells

  7. Instrument performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Swinth, K.L.

    1993-03-01

    Deficiencies exist in both the performance and the quality of health physics instruments. Recognizing the implications of such deficiencies for the protection of workers and the public, in the early 1980s the DOE and the NRC encouraged the development of a performance standard and established a program to test a series of instruments against criteria in the standard. The purpose of the testing was to establish the practicality of the criteria in the standard, to determine the performance of a cross section of available instruments, and to establish a testing capability. Over 100 instruments were tested, resulting in a practical standard and an understanding of the deficiencies in available instruments. In parallel with the instrument testing, a value-impact study clearly established the benefits of implementing a formal testing program. An ad hoc committee also met several times to establish recommendations for the voluntary implementation of a testing program based on the studies and the performance standard. For several reasons, a formal program did not materialize. Ongoing tests and studies have supported the development of specific instruments and have helped specific clients understand the performance of their instruments. The purpose of this presentation is to trace the history of instrument testing to date and suggest the benefits of a centralized formal program.

  8. Radiographic Adjacent Segment Degeneration at 5 Years After L4/5 Posterior Lumbar Interbody Fusion With Pedicle Screw Instrumentation: Evaluation by Computed Tomography and Annual Screening With Magnetic Resonance Imaging.

    Science.gov (United States)

    Imagama, Shiro; Kawakami, Noriaki; Matsubara, Yuji; Tsuji, Taichi; Ohara, Tetsuya; Katayama, Yoshito; Ishiguro, Naoki; Kanemura, Tokumi

    2016-11-01

    Retrospective clinical study. To investigate adjacent segment degeneration (ASD) at 5 years after L4/5 posterior lumbar interbody fusion with pedicle screw instrumentation and L4/5 decompression surgery using plain radiographs, computed tomography (CT), and magnetic resonance imaging (MRI), with the evaluation of annual changes on MRI. Methods of evaluation have been inconsistent among studies of ASD. There is no report that ASD in the lumbar spine after posterior lumbar interbody fusion at the same level is thoroughly evaluated on radiographs, CT, annual MRI changes, and the impact of decompression procedures. ASD was evaluated in 52 patients. Disk height, vertebral slip, intervertebral angle, and intervertebral range of motion were examined on plain radiographs. Facet joint degeneration on CT and disk degradation and spinal stenosis on MRI were classified into categories, and facet sagittalization and tropism were measured on CT. The incidence of ASD was compared between the decompression procedures. The radiographic changes observed in the study were defined as radiographic ASD (R-ASD) without reoperation, as no patient required reoperation. R-ASD was rarely detected by radiography. The incidences of facet joint degeneration, MRI-detected disk degeneration, and spinal stenosis at the L3/4 and L5/S1 levels were 21% and 23%, 27% and 17%, and 35% and 4%, respectively. Progressive disk degeneration at L3/4 was found significantly more frequently in patients with aggravation of facet degeneration (Pspine fusion, rather than aging degeneration. Decompression with preservation of posterior connective components is recommended to prevent R-ASD.

  9. SOFIA Science Instruments: Commissioning, Upgrades and Future Opportunities

    Science.gov (United States)

    Smith, Erin C.

    2014-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter telescope housed in the aft section of a Boeing 747sp aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 µm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1 micron imager built by Lowell Observatory; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 micron wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-210 micron IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross- Echelle Spectrograph), a 5-28 micron high-resolution spectrometer being completed by UC Davis and NASA Ames. A second generation instrument, HAWC+ (Highresolution Airborne Wideband Camera), is a 50-240 micron imager being upgraded at JPL to add polarimetry and new detectors developed at GSFC. SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details instrument capabilities and status as well as plans for future instrumentation, including the call for proposals for 3rd generation SOFIA science instruments.

  10. Instrumentation Design and Development Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has facilities for design, development and fabrication of: custominstrumentation, mobile instrumentation, miniaturized instrumentation, wirelessinstrumentation,...

  11. The LUVOIR architecture "A" coronagraph instrument

    Science.gov (United States)

    Pueyo, L.; Zimmerman, N.; Bolcar, M.; Groff, T.; Stark, C.; Ruane, G.; Jewell, J.; Soummer, R.; St. Laurent, K.; Wang, J.; Redding, D.; Mazoyer, J.; Fogarty, K.; Juanola-Parramon, Roser; Domagal-Goldman, S.; Roberge, A.; Guyon, O.; Mandell, A.

    2017-09-01

    In preparation for the Astro 2020 Decadal Survey NASA has commissioned the study four flagship missions spanning to a wide range of observable wavelengths: the Origins Space Telescope (OST, formerly the Far-Infrared Surveyor), Lynx (formerly the X-ray Surveyor), the Large UV/Optical/Infrared Surveyor (LUVOIR) and the Habitable Exoplanet Imager (HabEx). One of the key scientific objectives of the latter two is the detection and characterization of the earth-like planets around nearby stars using the direct imaging technique (along with a broad range of investigations regarding the architecture of and atmospheric composition exoplanetary systems using this technique). As a consequence dedicated exoplanet instruments are being studied for these mission concepts. This paper discusses the design of the coronagraph instrument for the architecture "A" (15 meters aperture) of LUVOIR. The material presented in this paper is aimed at providing an overview of the LUVOIR coronagraph instrument. It is the result of four months of discussions with various community stakeholders (scientists and technologists) regarding the instrument's basic parameters followed by meticulous design work by the the GSFC Instrument Design Laboratory team. In the first section we review the main science drivers, presents the overall parameters of the instrument (general architecture and backend instrument) and delve into the details of the currently envisioned coronagraph masks along with a description of the wavefront control architecture. Throughout the manuscript we describe the trades we made during the design process. Because the vocation of this study is to provide a baseline design for the most ambitious earth-like finding instrument that could be possibly launched into the 2030's, we have designed an complex system privileged that meets the ambitious science goals out team was chartered by the LUVOIR STDT exoplanet Working Group. However in an effort to minimize technological risk we tried

  12. Overview of LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed

  13. Invited Article: Deep Impact instrument calibration.

    Science.gov (United States)

    Klaasen, Kenneth P; A'Hearn, Michael F; Baca, Michael; Delamere, Alan; Desnoyer, Mark; Farnham, Tony; Groussin, Olivier; Hampton, Donald; Ipatov, Sergei; Li, Jianyang; Lisse, Carey; Mastrodemos, Nickolaos; McLaughlin, Stephanie; Sunshine, Jessica; Thomas, Peter; Wellnitz, Dennis

    2008-09-01

    Calibration of NASA's Deep Impact spacecraft instruments allows reliable scientific interpretation of the images and spectra returned from comet Tempel 1. Calibrations of the four onboard remote sensing imaging instruments have been performed in the areas of geometric calibration, spatial resolution, spectral resolution, and radiometric response. Error sources such as noise (random, coherent, encoding, data compression), detector readout artifacts, scattered light, and radiation interactions have been quantified. The point spread functions (PSFs) of the medium resolution instrument and its twin impactor targeting sensor are near the theoretical minimum [ approximately 1.7 pixels full width at half maximum (FWHM)]. However, the high resolution instrument camera was found to be out of focus with a PSF FWHM of approximately 9 pixels. The charge coupled device (CCD) read noise is approximately 1 DN. Electrical cross-talk between the CCD detector quadrants is correctable to <2 DN. The IR spectrometer response nonlinearity is correctable to approximately 1%. Spectrometer read noise is approximately 2 DN. The variation in zero-exposure signal level with time and spectrometer temperature is not fully characterized; currently corrections are good to approximately 10 DN at best. Wavelength mapping onto the detector is known within 1 pixel; spectral lines have a FWHM of approximately 2 pixels. About 1% of the IR detector pixels behave badly and remain uncalibrated. The spectrometer exhibits a faint ghost image from reflection off a beamsplitter. Instrument absolute radiometric calibration accuracies were determined generally to <10% using star imaging. Flat-field calibration reduces pixel-to-pixel response differences to approximately 0.5% for the cameras and <2% for the spectrometer. A standard calibration image processing pipeline is used to produce archival image files for analysis by researchers.

  14. Contrast echocardiography: history, micro bubble characteristics and instrumental techniques

    International Nuclear Information System (INIS)

    Cubides, Carlos; Restrepo, Gustavo; Aristizabal, Dagnovar; Munera, Ana

    2006-01-01

    This article describes the history of contrast echocardiography, the physical characteristics of the contrast agent's micro bubbles, the main instrumental tools (mechanical index, focus and focusing, frame rate), and the echocardiography techniques (second harmonic imaging, fusion harmonic, power pulse inversion imaging, triggered imaging, intermittent harmonic power Doppler, color power angio and acoustic densitometry), actually available for clinical use

  15. A new approach for instrument software at Gemini

    Science.gov (United States)

    Gillies, Kim; Nunez, Arturo; Dunn, Jennifer

    2008-07-01

    Gemini Observatory is now developing its next generation of astronomical instruments, the Aspen instruments. These new instruments are sophisticated and costly requiring large distributed, collaborative teams. Instrument software groups often include experienced team members with existing mature code. Gemini has taken its experience from the previous generation of instruments and current hardware and software technology to create an approach for developing instrument software that takes advantage of the strengths of our instrument builders and our own operations needs. This paper describes this new software approach that couples a lightweight infrastructure and software library with aspects of modern agile software development. The Gemini Planet Imager instrument project, which is currently approaching its critical design review, is used to demonstrate aspects of this approach. New facilities under development will face similar issues in the future, and the approach presented here can be applied to other projects.

  16. Remote instrument telemaintenance.

    Science.gov (United States)

    Laugier, A; Allahwerdi, N; Baudin, J; Gaffney, P; Grimson, W; Groth, T; Schilders, L

    1996-07-01

    In the past decade, great technological progress has been made in telemaintenance of mainframe and mini computers. As hardware technology is now available at an acceptable cost, computer aided trouble-shooting can be adapted to laboratory instrumentation in order to significantly improve repair time, avoid instrument downtime by taking advantage of predictive methods, and provide general diagnostic assistance. Depending on the size of the instrument, the telemaintenance facility can be dedicated to a single instrument or alternatively a telemaintenance server can manage multiple distributed small instruments through a Local Area Network. As complex failures can occur, the local diagnosis capabilities may be exceeded and automatic dialing for connection to computerized Remote Maintenance Centers is needed. The main advantages of such a centre, as compared to local diagnosis systems, are the increased access to more information and experience of failures from instrument installations, and consequently the provision of training data updates for Artificial Neural Networks and Knowledge Based Systems in general. When an abnormal situation is detected or anticipated by a diagnosis module, an automatic alert is given to the user, local diagnosis is activated, and for simple solutions, instructions are given to the operator. In the last resort, a human expert can be alerted who, with remote control tools, can attend to the failures. For both local and remote trouble-shooting, the data provided by the instrument and connected workstation is of paramount importance for the efficiency and accuracy of the diagnosis. Equally, the importance of standardization of telemaintenance communication protocols is addressed.

  17. Advances in Miniaturized Instruments for Genomics

    Directory of Open Access Journals (Sweden)

    Cihun-Siyong Alex Gong

    2014-01-01

    Full Text Available In recent years, a lot of demonstrations of the miniaturized instruments were reported for genomic applications. They provided the advantages of miniaturization, automation, sensitivity, and specificity for the development of point-of-care diagnostics. The aim of this paper is to report on recent developments on miniaturized instruments for genomic applications. Based on the mature development of microfabrication, microfluidic systems have been demonstrated for various genomic detections. Since one of the objectives of miniaturized instruments is for the development of point-of-care device, impedimetric detection is found to be a promising technique for this purpose. An in-depth discussion of the impedimetric circuits and systems will be included to provide total consideration of the miniaturized instruments and their potential application towards real-time portable imaging in the “-omics” era. The current excellent demonstrations suggest a solid foundation for the development of practical and widespread point-of-care genomic diagnostic devices.

  18. Advances in Miniaturized Instruments for Genomics

    Science.gov (United States)

    2014-01-01

    In recent years, a lot of demonstrations of the miniaturized instruments were reported for genomic applications. They provided the advantages of miniaturization, automation, sensitivity, and specificity for the development of point-of-care diagnostics. The aim of this paper is to report on recent developments on miniaturized instruments for genomic applications. Based on the mature development of microfabrication, microfluidic systems have been demonstrated for various genomic detections. Since one of the objectives of miniaturized instruments is for the development of point-of-care device, impedimetric detection is found to be a promising technique for this purpose. An in-depth discussion of the impedimetric circuits and systems will be included to provide total consideration of the miniaturized instruments and their potential application towards real-time portable imaging in the “-omics” era. The current excellent demonstrations suggest a solid foundation for the development of practical and widespread point-of-care genomic diagnostic devices. PMID:25114919

  19. Medical instruments in museums

    DEFF Research Database (Denmark)

    Söderqvist, Thomas; Arnold, Ken

    2011-01-01

    This essay proposes that our understanding of medical instruments might benefit from adding a more forthright concern with their immediate presence to the current historical focus on simply decoding their meanings and context. This approach is applied to the intriguingly tricky question of what...... actually is meant by a "medical instrument." It is suggested that a pragmatic part of the answer might lie simply in reconsidering the holdings of medical museums, where the significance of the physical actuality of instruments comes readily to hand....

  20. Instrumentation reference book

    CERN Document Server

    Boyes, Walt

    2002-01-01

    Instrumentation is not a clearly defined subject, having a 'fuzzy' boundary with a number of other disciplines. Often categorized as either 'techniques' or 'applications' this book addresses the various applications that may be needed with reference to the practical techniques that are available for the instrumentation or measurement of a specific physical quantity or quality. This makes it of direct interest to anyone working in the process, control and instrumentation fields where these measurements are essential.* Comprehensive and authoritative collection of technical information* Writte

  1. Microcomputers for nuclear instrumentation

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1979-01-01

    Small, desk-top Commodore PET computers are being used to solve nuclear instrumentation problems at the Savannah River Laboratory (SRL). The ease of operating, programing, interfacing, and maintaining the PET computer makes it a cost-effective solution to many real-time instrumentation problems that involve both data acquisition and date processing. The IEEE-488 GPIB (General Purpose Instrument Bus) is an integral part of the PET hardware. This paper reviews GPIB design concepts and discusses SRL applications that use the PET computer as a GPIB controller. 11 figures, 2 tables

  2. Soil monitoring instrumentation

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1980-01-01

    The Los Alamos Scientific Laboratory (LASL) has an extensive program for the development of nondestructive assay instrumentation for the quantitative analysis of transuranic (TRU) materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. Included are wastes generated in decontamination and decommissioning of outdated nuclear facilities as well as wastes from old waste burial ground exhumation programs. The assay instrumentation is designed to have detection limits below 10 nCi/g wherever practicable. Because of the topic of this workshop, only the assay instrumentation applied specifically to soil monitoring will be discussed here. Four types of soil monitors are described

  3. Soil monitoring instrumentation

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1981-01-01

    The Los Alamos Scientific Laboratory (LASL) has an extensive program for the development of nondestructive assay instrumentation for the quantitative analysis of transuranic (TRU) materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. Included are wastes generated in decontamination and decommissioning of outdated nuclear facilities, as well as from old waste-burial-ground exhumation programs. The assay instrumentation is designed to have detection limits below 10 nCi/g wherever practicable. The assay instrumentation that is applied specifically to soil monitoring is discussed

  4. Carbon Footprint Reduction Instruments

    Science.gov (United States)

    This page outlines the major differences between Renewable Energy Certificates (REC) and Project Offsets and what types of claims each instrument allows the organization to make in regards to environmental emissions claims.

  5. CCAT Heterodyne Instrument Development

    Data.gov (United States)

    National Aeronautics and Space Administration — This work will extend and proof-out the design concept for a high pixel count (128 pixels in 2 bands) submillimeter-wave heterodyne receiver array instrument for the...

  6. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  7. Medical instruments in museums

    DEFF Research Database (Denmark)

    Söderqvist, Thomas; Arnold, Ken

    2011-01-01

    This essay proposes that our understanding of medical instruments might benefit from adding a more forthright concern with their immediate presence to the current historical focus on simply decoding their meanings and context. This approach is applied to the intriguingly tricky question of what a...... actually is meant by a "medical instrument." It is suggested that a pragmatic part of the answer might lie simply in reconsidering the holdings of medical museums, where the significance of the physical actuality of instruments comes readily to hand.......This essay proposes that our understanding of medical instruments might benefit from adding a more forthright concern with their immediate presence to the current historical focus on simply decoding their meanings and context. This approach is applied to the intriguingly tricky question of what...

  8. Challenges in marine instrumentation

    Digital Repository Service at National Institute of Oceanography (India)

    Afzulpurkar, S.; Desa, E.; Joseph, A.; Chakraborty, B.; Nayak, M.R.; Ranade, G.

    challenge for technology. Biosensors which can detect bioluminescence and other biological activities would play a major role. Autonomous instrumentation outfitted with different types of in-situ sensors would collect data without disturbing the system...

  9. Nuclear instrument technician training

    International Nuclear Information System (INIS)

    Wollesen, E.S.

    1991-01-01

    This paper reports on Nuclear Instrument Technician (NIT) training that has developed at an accelerated rate over the past three decades. During the 1960's commercial nuclear power plants were in their infancy. For that reason, there is little wonder that NIT training had little structure and little creditability. NIT training, in many early plants, was little more than On-The Job Training (OJT). The seventies brought changes in Instrumentation and Controls as well as emphasis on the requirements for more in depth training and documentation. As in the seventies, the eighties saw not only changes in technologies but tighter requirements, standardized training and the development of accredited Nuclear Instrument Training; thus the conclusion: Nuclear Instrument Training Isn't What It Used To Be

  10. VIRUS instrument collimator assembly

    Science.gov (United States)

    Marshall, Jennifer L.; DePoy, Darren L.; Prochaska, Travis; Allen, Richard D.; Williams, Patrick; Rheault, Jean-Philippe; Li, Ting; Nagasawa, Daniel Q.; Akers, Christopher; Baker, David; Boster, Emily; Campbell, Caitlin; Cook, Erika; Elder, Alison; Gary, Alex; Glover, Joseph; James, Michael; Martin, Emily; Meador, Will; Mondrik, Nicholas; Rodriguez-Patino, Marisela; Villanueva, Steven; Hill, Gary J.; Tuttle, Sarah; Vattiat, Brian; Lee, Hanshin; Chonis, Taylor S.; Dalton, Gavin B.; Tacon, Mike

    2014-07-01

    The Visual Integral-Field Replicable Unit Spectrograph (VIRUS) instrument is a baseline array 150 identical fiber fed optical spectrographs designed to support observations for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). The collimator subassemblies of the instrument have been assembled in a production line and are now complete. Here we review the design choices and assembly practices used to produce a suite of identical low-cost spectrographs in a timely fashion using primarily unskilled labor.

  11. Maintenance of scientific instruments

    International Nuclear Information System (INIS)

    Lucero, E.

    1986-01-01

    During the last years Colombia has increased the use of nuclear techniques, instruments and equipment in ambitious health programs, as well as in research centers, industry and education; this has resulted in numerous maintenance problems. As an alternative solution IAN has established a Central Maintenance Laboratory for nuclear instruments within an International Atomic Energy Agency program for eight Latin American and nine Asian Countries. Established strategies and some results are detailed in this writing

  12. Future of radiological instrumentation

    International Nuclear Information System (INIS)

    Lucas, A.C.

    1988-01-01

    Future trends in the development of radiation protection instrumentation can be expected to be closely related to current trends in political and social activity that drive legislation, rule-making, and standard practice, with assistance provided by trends in material and electronic technology. Wide-range performance will be emphasized to arm the daily worker with instruments that routinely log background rates and, at the same time, are prepared to measure accident rates. Separate and simultaneous accumulation of data from several sensors to ensure complete coverage of the radiation types will be common. Mathematical manipulation of data will provide for summary data logging and, in some cases, solutions to integral equations to provide corrections to experimental data. Instruments will become more reliable by way of self-checking and correction. Miniaturization and large-scale integration of measuring instruments will provide some instrumentation for the people at large. To be effective, the instruments will necessarily cover a wide range and be very reliable. The net result of these several trends will provide for a widespread understanding of radiation protection and an implementation of as low as reasonably achievable among large segments of the population

  13. Problems with radiological surveillance instrumentation

    International Nuclear Information System (INIS)

    Swinth, K.L.; Tanner, J.E.; Fleming, D.M.

    1984-09-01

    Many radiological surveillance instruments are in use at DOE facilities throughout the country. These instruments are an essential part of all health physics programs, and poor instrument performance can increase program costs or compromise program effectiveness. Generic data from simple tests on newly purchased instruments shows that many instruments will not meet requirements due to manufacturing defects. In other cases, lack of consideration of instrument use has resulted in poor acceptance of instruments and poor reliability. The performance of instruments is highly variable for electronic and mechanical performance, radiation response, susceptibility to interferences and response to environmental factors. Poor instrument performance in these areas can lead to errors or poor accuracy in measurements

  14. Bubble measuring instrument and method

    Science.gov (United States)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2003-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  15. 75 FR 13486 - Application(s) for Duty-Free Entry of Scientific Instruments

    Science.gov (United States)

    2010-03-22

    ... semiconductor materials. This instrument is capable of imaging crystal structure and defects from the micron to atomic scale using TEM and HREM. A unique feature of this instrument is an analytical pole piece for high...

  16. TROPOMI and TROPI: UV/VIS/NIR/SWIR instruments

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.; Eskes, H.; Weele, M. van; Veefkind, P.; Oss, R. van; Aben, I.; Jongma, R.T.; Landgraf, J.; Vries, J. de; Visser, H.

    2006-01-01

    TROPOMI (Tropospheric Ozone-Monitoring Instrument) is a five-channel UV-VIS-NIR-SWIR non-scanning nadir viewing imaging spectrometer that combines a wide swath (114°) with high spatial resolution (10 × 10 km 2). The instrument heritage consists of GOME on ERS-2, SCIAMACHY on Envisat and, especially,

  17. Reactor instrumentation and control

    International Nuclear Information System (INIS)

    Wach, D.; Beraha, D.

    1980-01-01

    The methods for measuring radiation are shortly reviewed. The instrumentation for neutron flux measurement is classified into out-of-core and in-core instrumentation. The out-of-core instrumentation monitors the operational range from the subcritical reactor to full power. This large range is covered by several measurement channels which derive their signals from counter tubes and ionization chambers. The in-core instrumentation provides more detailed information on the power distribution in the core. The self-powered neutron detectors and the aeroball system in PWR reactors are discussed. Temperature and pressure measurement devices are briefly discussed. The different methods for leak detection are described. In concluding the plant instrumentation part some new monitoring systems and analysis methods are presented: early failure detection methods by noise analysis, acoustic monitoring and vibration monitoring. The presentation of the control starts from an qualitative assessment of the reactor dynamics. The chosen control strategy leads to the definition of the part-load diagram, which provides the set-points for the different control systems. The tasks and the functions of these control systems are described. In additiion to the control, a number of limiting systems is employed to keep the reactor in a safe operating region. Finally, an outlook is given on future developments in control, concerning mainly the increased application of process computers. (orig./RW)

  18. Instrumental analysis, second edition

    International Nuclear Information System (INIS)

    Christian, G.D.; O'Reilly, J.E.

    1988-01-01

    The second edition of Instrumental Analysis is a survey of the major instrument-based methods of chemical analysis. It appears to be aimed at undergraduates but would be equally useful in a graduate course. The volume explores all of the classical quantitative methods and contains sections on techniques that usually are not included in a semester course in instrumentation (such as electron spectroscopy and the kinetic methods). Adequate coverage of all of the methods contained in this book would require several semesters of focused study. The 25 chapters were written by different authors, yet the style throughout the book is more uniform than in the earlier edition. With the exception of a two-chapter course in analog and digital circuits, the book purports to de-emphasize instrumentation, focusing more on the theory behind the methods and the application of the methods to analytical problems. However, a detailed analysis of the instruments used in each method is by no means absent. The book has the favor of a user's guide to analysis

  19. Instrumentation for environmental monitoring

    International Nuclear Information System (INIS)

    McLaughlin, R.D.; Hunt, M.S.; Murphy, D.L.; Chen, C.R.

    1979-06-01

    In the last few years a much greater emphasis has been placed upon understanding, controlling and monitoring the environmental effects of the advancing technologies. This has resulted in rapid advances in techniques for environmental monitoring. To aid the concerned scientist in keeping abreast of these developments, the Lawrence Berkeley Laboratory publishes a collection of volumes entitled Instrumentation for Environmental Monitoring. Separated into four volumes covering four media, AIR, WATER, RADIATION, and BIOMEDICAL, they provide a source book for three types of material: (1) Monitoring Rationale. They describe the characteristics, forms, and effects of a wide variety of pollutants and the means of controlling them. Federal regulations are explained and summarized. (2) Analytical Techniques. Methods of determining specific pollutants are described with special emphasis on the principles that form the basis of instrumental methods. (3) Commercial Instrumentation. The features of most commercially available instrumentation used for the determination and monitoring of each pollutant are presented in a manner that facilitates instrumental comparisons. Examples of the types of material in the volumes and the use of the volumes are presented

  20. Quality control of nuclear medicine instruments, 1991

    International Nuclear Information System (INIS)

    1996-12-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of 'Quality Control of Nuclear Medicine Instruments', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems

  1. Quality control of nuclear medicine instruments 1991

    International Nuclear Information System (INIS)

    1991-05-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of ''Quality Control of Nuclear Medicine Instruments'', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems. Figs and tabs

  2. Latest Progress on the QUBIC Instrument

    Science.gov (United States)

    Ghribi, A.; Aumont, J.; Battistelli, E. S.; Bau, A.; Bélier, B.; Bergé, L.; Bernard, J.-Ph.; Bersanelli, M.; Bigot-Sazy, M.-A.; Bordier, G.; Bunn, E. T.; Cavaliere, F.; Chanial, P.; Coppolecchia, A.; Decourcelle, T.; De Bernardis, P.; De Petris, M.; Drilien, A.-A.; Dumoulin, L.; Falvella, M. C.; Gault, A.; Gervasi, M.; Giard, M.; Gradziel, M.; Grandsire, L.; Gayer, D.; Hamilton, J.-Ch.; Haynes, V.; Giraud-Héraud, Y.; Holtzer, N.; Kaplan, J.; Korotkov, A.; Lande, J.; Lowitz, A.; Maffei, B.; Marnieros, S.; Martino, J.; Masi, S.; Mennella, A.; Montier, L.; Murphy, A.; Ng, M. W.; Olivieri, E.; Pajot, F.; Passerini, A.; Piacentini, F.; Piat, M.; Piccirillo, L.; Pisano, G.; Prêle, D.; Rambaud, D.; Rigaut, O.; Rosset, C.; Salatino, M.; Schillaci, A.; Scully, S.; O'Sullivan, C.; Tartari, A.; Timbie, P.; Tucker, G.; Vibert, L.; Voisin, F.; Watson, B.; Zannoni, M.

    2014-09-01

    QUBIC is a unique instrument that crosses the barriers between classical imaging architectures and interferometry taking advantage from both high sensitivity and systematics mitigation. The scientific target is to detect primordial gravitational waves created by inflation by the polarization they imprint on the cosmic microwave background—the holy grail of modern cosmology. In this paper, we show the latest advances in the development of the architecture and the sub-systems of the first module of this instrument to be deployed at Dome Charlie Concordia base—Antarctica in 2015.

  3. Industrial Products for Beam Instrumentation

    CERN Document Server

    Schmickler, Hermann

    2001-01-01

    In various branches of high technology industry there has been considerable progress in the past years which could be used for beam instrumentation. The subject will be introduced by two short demonstrations: a demonstration of modern audio electronics with 24bit-96kHz ADC, digital signal electronics and application programs under windows on a PC, which allow to change the parameters of the signal treatment. Potential applications are data monitoring at constant sampling frequency, orbit feedbacks (including high power audio amplifiers), noise reduction on beam current transformers... digital treatment of video signals webcams, frame grabbers, CCD-data via USB, all one needs for image acquisitions, in particular interesting for profile measurements. These introductory demonstrations will not last longer than 30 minutes. The remaining time will be used to pass through the audience collecting information into a two dimensional table, which shall contain as row index the accelerator and as column index the t...

  4. Biochemistry Instrumentation Core Technology Center

    Data.gov (United States)

    Federal Laboratory Consortium — The UCLA-DOE Biochemistry Instrumentation Core Facility provides the UCLA biochemistry community with easy access to sophisticated instrumentation for a wide variety...

  5. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  6. Instrumentation Video Systems

    Science.gov (United States)

    Lida, Hitoshi

    1981-10-01

    The use of video equipment as instrumentation has been increasing steadily over the past decade. An indication of this trend can be found close to home: notice how rapidly the number of television (TV) displays has grown at our technical exhibits. It is this exhibited equipment and other equipment like it which form the subject of this summary. We will limit our discussions to readily available hardware (and a little software) and leave reports of the leading edge development work to other issues of this journal. We hope, in this manner, to present useful information to those who need to apply video to their instrumen-tation problems now. Along the way we will occasionally indicate what equipment might soon result from current research, but our clear emphasis will be on the state of the art of accessible instrumentation video.

  7. The IKARUS instrument

    International Nuclear Information System (INIS)

    Gerster, H.J.; Stein, G.

    1994-01-01

    When the Federal Government decided on a 25% reduction of CO 2 emissions till 2005 in 1990 the necessity resulted that an instrument has to be developed for the analysis and assessment of the ecological, economic and energetic impact of different reduction strategies. The development task was awarded by the BMFT to the Research Centre Juelich in cooperation with well-known institutions of energy system research. The total instrument is scheduled to be finished by the end of 1994. For the decentral use of the instrument by a wide specialist public the developed models and data banks which are equipped with a user-friendly surface are suited for larger PCs (486, 16 MB RAM/500-1000 MB ROM). (orig.) [de

  8. Calibration of Geodetic Instruments

    Directory of Open Access Journals (Sweden)

    Marek Bajtala

    2005-06-01

    Full Text Available The problem of metrology and security systems of unification, correctness and standard reproducibilities belong to the preferred requirements of theory and technical practice in geodesy. Requirements on the control and verification of measured instruments and equipments increase and the importance and up-to-date of calibration get into the foreground. Calibration possibilities of length-scales (of electronic rangefinders and angle-scales (of horizontal circles of geodetic instruments. Calibration of electronic rangefinders on the linear comparative baseline in terrain. Primary standard of planar angle – optical traverse and its exploitation for calibration of the horizontal circles of theodolites. The calibration equipment of the Institute of Slovak Metrology in Bratislava. The Calibration process and results from the calibration of horizontal circles of selected geodetic instruments.

  9. Aethalometer™ Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    The Aethalometer is an instrument that provides a real-time readout of the concentration of “Black” or “Elemental” carbon aerosol particles (BC or E) in an air stream (see Figure 1 and Figure 2). It is a self-contained instrument that measures the rate of change of optical transmission through a spot on a filter where aerosol is being continuously collected and uses the information to calculate the concentration of optically absorbing material in the sampled air stream. The instrument measures the transmitted light intensities through the “sensing” portion of the filter, on which the aerosol spot is being collected, and a “reference” portion of the filter as a check on the stability of the optical source. A mass flowmeter monitors the sample air flow rate. The data from these three measurements is used to determine the mean BC content of the air stream.

  10. ISSUERS OF FINANCIAL INSTRUMENTS

    Directory of Open Access Journals (Sweden)

    Cristian GHEORGHE

    2016-05-01

    Full Text Available The rules laid down by Romanian Capital Market Law and the regulations put in force for its implementation apply to issuers of financial instruments admitted to trading on the regulated market established in Romania. But the issuers remain companies incorporated under Company Law of 1990. Such dual regulations need increased attention in order to observe the legal status of the issuers/companies and financial instruments/shares. Romanian legislator has chosen to implement in Capital Market Law special rules regarding the administration of the issuers of financial instruments, not only rules regarding admitting and maintaining to a regulated market. Thus issuers are, in Romanian Law perspective, special company that should comply special rule regarding board of administration and general shareholders meeting.

  11. Virtual Sensor Test Instrumentation

    Science.gov (United States)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  12. Interfacing to accelerator instrumentation

    International Nuclear Information System (INIS)

    Shea, T.J.

    1995-01-01

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed

  13. Spectroelectrochemical Instrument Measures TOC

    Science.gov (United States)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  14. Standard NIM instrumentation system

    CERN Document Server

    1990-01-01

    NIM is a standard modular instrumentation system that is in wide use throughout the world. As the NIM system developed and accommodations were made to a dynamic instrumentation field and a rapidly advancing technology, additions, revisions and clarifications were made. These were incorporated into the standard in the form of addenda and errata. This standard is a revision of the NIM document, AEC Report TID- 20893 (Rev 4) dated July 1974. It includes all the addenda and errata items that were previously issued as well as numerous additional items to make the standard current with modern technology and manufacturing practice.

  15. Instrumentation Cables Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Chris Bensdotter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteria 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift

  16. Nuclear imaging: Advances and trends

    International Nuclear Information System (INIS)

    Herk, G. van

    1986-01-01

    In this article, nuclear imaging instruments that are likely to be of interest to the nuclear medicine community of developing countries are emphasized. The advances, trends, developments, and future directions in the field of nuclear imaging are mentioned

  17. Inspector-instrument interface in portable NDA instrumentation

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. This report describes an inspector-instrument interface design which allows communication of procedures, responses, and results between the instrument and user. The interface has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer

  18. Space optical instrumentation for earth observation - The polar platform era

    Science.gov (United States)

    Peraldi, Armand

    1988-01-01

    Consideration is given to two instruments for earth observation from large polar platforms: a Thermal IR Imager (TIRI) and a High Resolution Imaging Spectrometer (HRIS). TIRI is an optical push-broom imager designed for operation in the 8-12 micron band, split into two spectral bands. Because each line of an image is electronically scanned by linear arrays of detectors, TIRI does not require a mechanical scanning device. HRIS is designed to provide very high resolution images from 260 spectral channels. Any set of 30 individual channels may be transmitted to the ground. These two instruments are described and illustrated and the possible applications of the instruments on a polar platform are discussed.

  19. 25 IMAGE OF THE NIGERIA POLICE AS PORTRAYED IN GEORGIE ...

    African Journals Online (AJOL)

    Prof Alex C Asigbo

    the room and confiscating property in the same room—take place right in her presence without she being aware. Even if Mimi did not wake at the point her husband opened the door, the raucous confiscation of the family property as well as the boisterous ... including his bed, which he had staked as collateral. The only clue.

  20. An instrument for X-ray set quality assurance measurements

    International Nuclear Information System (INIS)

    Willetts, R.J.; West, M.B.; Brydon, J.

    1989-01-01

    This paper describes a prototype electronic instrument for performing quality assurance (QA) measurements on diagnostic radiological equipment with a view to long-term performance assessment on a Regional basis. The instrument is based on a Tandy 200 laptop computer and has been developed primarily to include the assessment of image intensifier/TV systems in a general QA package. It is capable of accepting signals from the following sources: (1) a radiation detector (diode array); (2) a Keithley kV divider (Keithley Instruments, Inc.); (3) the video output of an image intensifier system. (author)

  1. Integrating Nephelometer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Uin, J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Integrating Nephelometer (Figure 1) is an instrument that measures aerosol light scattering. It measures aerosol optical scattering properties by detecting (with a wide angular integration – from 7 to 170°) the light scattered by the aerosol and subtracting the light scattered by the carrier gas, the instrument walls and the background noise in the detector (zeroing). Zeroing is typically performed for 5 minutes every day at midnight UTC. The scattered light is split into red (700 nm), green (550 nm), and blue (450 nm) wavelengths and captured by three photomultiplier tubes. The instrument can measure total scatter as well as backscatter only (from 90 to 170°) (Heintzenberg and Charlson 1996; Anderson et al. 1996; Anderson and Ogren 1998; TSI 3563 2015) At ARM (Atmospheric Radiation Measurement), two identical Nephelometers are usually run in series with a sample relative humidity (RH) conditioner between them. This is possible because Nephelometer sampling is non-destructive and the sample can be passed on to another instrument. The sample RH conditioner scans through multiple RH values in cycles, treating the sample. This kind of setup allows to study how aerosol particles’ light scattering properties are affected by humidification (Anderson et al. 1996). For historical reasons, the two Nephelometers in this setup are labeled “wet” and “dry”, with the “dry” Nephelometer usually being the one before the conditioner and sampling ambient air (the names are switched for the MAOS measurement site due to the high RH of the ambient air).

  2. AC resistance measuring instrument

    Science.gov (United States)

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  3. Measurement and Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Harold

    2018-01-02

    This is a chapter for a book called the Standard Handbook for Electrical Engineering. Though it is not obvious from the title, the book deals mainly with power engineering. The first chapter (not mine) is about the fundamental quantities used in measurement. This chapter is about the process and the instrumentation.

  4. Instruments for Everyone.

    Science.gov (United States)

    Perkins-Bosarge, Sarah

    1998-01-01

    Thanks to an entrepreneurial principal, nearly 75% of a rural New York State school's upper-division students participate in band. To ensure access, the principal bargains with second-hand dealers for instruments (using fees from photo profits) and charges kids a fee of $1 to $15 yearly. Consulting with the music teacher avoids duplication and…

  5. Economic Policy Instruments

    DEFF Research Database (Denmark)

    Klemmensen, Børge

    2007-01-01

    Økonomiske instrumenter begrundes med behovet for politiske indgreb, der muliggør internaliseringen af omkostningerne ved de miljøpåvirkninger, produktion and levevis afstedkommer, således at hensyntagen til miljøet bliver en del af virksomheders og husholdningers omkostninger og dermed en tilsky...

  6. Designing Intelligent Instruments

    Science.gov (United States)

    Knuth, Kevin H.; Erner, Philip M.; Frasso, Scott

    2007-11-01

    Remote science operations require automated systems that can both act and react with minimal human intervention. One such vision is that of an intelligent instrument that collects data in an automated fashion, and based on what it learns, decides which new measurements to take. This innovation implements experimental design and unites it with data analysis in such a way that it completes the cycle of learning. This cycle is the basis of the Scientific Method. The three basic steps of this cycle are hypothesis generation, inquiry, and inference. Hypothesis generation is implemented by artificially supplying the instrument with a parameterized set of possible hypotheses that might be used to describe the physical system. The act of inquiry is handled by an inquiry engine that relies on Bayesian adaptive exploration where the optimal experiment is chosen as the one which maximizes the expected information gain. The inference engine is implemented using the nested sampling algorithm, which provides the inquiry engine with a set of posterior samples from which the expected information gain can be estimated. With these computational structures in place, the instrument will refine its hypotheses, and repeat the learning cycle by taking measurements until the system under study is described within a pre-specified tolerance. We will demonstrate our first attempts toward achieving this goal with an intelligent instrument constructed using the LEGO MINDSTORMS NXT robotics platform.

  7. The tropospheric monitoring instrument

    NARCIS (Netherlands)

    Voert, M.J. te; Brakel, R. van; Witvoet, G.

    2014-01-01

    Thermal and opto-mechanical design and analysis work has been done on the Tropospheric Monitoring Instrument (TROPOMI), a spectrometer on the Copernicus Sentinel 5 Precursor satellite. To verify compliance with the stringent opto-mechanical stability requirements, detailed thermal and

  8. University Reactor Instrumentation Program

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1992-11-01

    Recognizing that the University Reactor Instrumentation Program was developed in response to widespread needs in the academic community for modernization and improvement of research and training reactors at institutions such as the University of Florida, the items proposed to be supported by this grant over its two year period have been selected as those most likely to reduce foreed outages, to meet regulatory concerns that had been expressed in recent years by Nuclear Regulatory Commission inspectors or to correct other facility problems and limitations. Department of Energy Grant Number DE-FG07-90ER129969 was provided to the University of Florida Training Reactor(UFTR) facility through the US Department of Energy's University Reactor Instrumentation Program. The original proposal submitted in February, 1990 requested support for UFTR facility instrumentation and equipment upgrades for seven items in the amount of $107,530 with $13,800 of this amount to be the subject of cost sharing by the University of Florida and $93,730 requested as support from the Department of Energy. A breakdown of the items requested and total cost for the proposed UFTR facility instrumentation and equipment improvements is presented

  9. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    Separate abstracts were prepared for 48 papers in these conference proceedings. The topics covered include: analytical chemistry and the environment; environmental radiochemistry; automated instrumentation; advances in analytical mass spectrometry; Fourier transform spectroscopy; analytical chemistry of plutonium; nuclear analytical chemistry; chemometrics; and nuclear fuel technology

  10. Advanced instrumentation and teleoperation

    International Nuclear Information System (INIS)

    Decreton, M.

    1998-01-01

    SCK-CEN's advanced instrumentation and teleoperation project aims at evaluating the potential of a telerobotic approach in a nuclear environment and, in particular, the use of remote-perception systems. Main achievements in 1997 in the areas of R and D on radiation tolerance for remote sensing, optical fibres and optical-fibre sensors, and computer-aided teleoperation are reported

  11. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  12. Image, Image, Image

    Science.gov (United States)

    Howell, Robert T.

    2004-01-01

    With all the talk today about accountability, budget cuts, and the closing of programs in public education, teachers cannot overlook the importance of image in the field of industrial technology. It is very easy for administrators to cut ITE (industrial technology education) programs to save school money--money they might shift to teaching the…

  13. The Science of String Instruments

    CERN Document Server

    Rossing, Thomas D

    2010-01-01

    Many performing musicians, as well as instrument builders, are coming to realize the importance of understanding the science of musical instruments. This book explains how string instruments produce sound. It presents basic ideas in simple language, and it also translates some more sophisticated ideas in non-technical language. It should be of interest to performers, researchers, and instrument makers alike.

  14. Instrument pre-development activities for FLEX

    Science.gov (United States)

    Pettinato, L.; Fossati, E.; Coppo, P. M.; Taiti, A.; Labate, D.; Capanni, A.; Taccola, M.; Bézy, J. L.; Francois, M.; Meynart, R.; Erdmann, L.; Triebel, P.

    2017-09-01

    The FLuorescence Imaging Spectrometer (FLORIS) is the payload of the FLuorescence Explorer Mission (FLEX) of the European Space Agency. The mission objective is to perform quantitative measurements of the solar induced vegetation fluorescence to monitor photosynthetic activity. FLORIS works in a push-broom configuration and it is designed to acquire data in the 500-780 nm spectral range, with a sampling of 0.1 nm in the oxygen bands (759-769 nm and 686- 697 nm) and 0.5-2.0 nm in the red edge, chlorophyll absorption and Photochemical Reflectance Index bands. FLEX will fly in formation with Sentinel-3 to benefit of the measurements made by the Sentinel-3 instruments OLCI and SLSTR, particularly for cloud screening, proper characterization of the atmospheric state and determination of the surface temperature. The instrument concept is based on a common telescope and two modified Offner spectrometers with reflective concave gratings both for the High Resolution (HR) and Low Resolution (LR) spectrometers. In the frame of the instrument pre-development Leonardo Company (I) has built and tested an elegant breadboard of the instrument consisting of the telescope and the HR spectrometer. The development of the LR spectrometer is in charge of OHB System AG (D) and is currently in the manufacturing phase. The main objectives of the activity are: anticipate the development of the instrument and provide early risk retirement of critical components, evaluate the system performances such as imaging quality parameters, straylight, ghost, polarization sensitivity and environmental influences, verify the adequacy of critical tests such as spectral characterization and straylight, define and optimize instrument alignment procedures. Following a brief overview of the FLEX mission, the paper will cover the design and the development of the optics breadboard with emphasis on the results obtained during the tests and the lessons learned for the flight unit.

  15. Instrumentation and quantitative methods of evaluation

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1991-01-01

    This report summarizes goals and accomplishments of the research program entitled Instrumentation and Quantitative Methods of Evaluation, during the period January 15, 1989 through July 15, 1991. This program is very closely integrated with the radiopharmaceutical program entitled Quantitative Studies in Radiopharmaceutical Science. Together, they constitute the PROGRAM OF NUCLEAR MEDICINE AND QUANTITATIVE IMAGING RESEARCH within The Franklin McLean Memorial Research Institute (FMI). The program addresses problems involving the basic science and technology that underlie the physical and conceptual tools of radiotracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 234 refs., 11 figs., 2 tabs

  16. Efficacy of protaper instruments during endodontic retreatment.

    Science.gov (United States)

    Fariniuk, Luiz Fernando; Azevedo, Marco Antonio Diniz; Carneiro, Everdan; Westphalen, Vânia Portela Ditzel; Piasecki, Lucila; da Silva Neto, Ulisses Xavier

    2017-01-01

    The effectiveness of ProTaper Universal and ProTaper Retreatment rotary instruments was compared to the Hedström files in the removal of filling material from root canals. Thirty-six extracted human mandibular premolars with a single straight root canal were shaped and filled with gutta-percha and AH Plus. The specimens were stored for 6 months at 37°C and at 100% relative humidity, and then randomly divided into three groups: PTU - removal of filling material performed with ProTaper Universal instruments; PTR - removal of filling material performed with ProTaper Retreatment instruments; HF - removal of filling material performed with Gates-Glidden burs, Hedström files and solvent. After the filling material removal and diaphanization, the specimens were longitudinally sectioned and images of the canal surfaces were scanned. The remaining areas of filling material were measured (Image Tool 3.0), and data was analyzed statistically (Kruskal-Wallis and Dunn tests). The time required for filling removal in each group was also recorded (one-way ANOVA and Tukey's HSD test). All groups presented remnants of filling material; PTU had the smallest amount and HF group presented the highest mean value (PRetreatment were not superior to ProTaper Universal, but both rotary instruments were more effective and less time-consuming than Hedström manual files.

  17. Quality control of nuclear medicine instrumentation

    International Nuclear Information System (INIS)

    Mould, R.F.

    1983-09-01

    The proceedings of a conference held by the Hospital Physicists' Association in London 1983 on the quality control of nuclear medicine instrumentation are presented. Section I deals with the performance of the Anger gamma camera including assessment during manufacture, acceptance testing, routine testing and long-term assessment of results. Section II covers interfaces, computers, the quality control problems of emission tomography and the quality of software. Section III deals with radionuclide measurement and impurity assessment and Section IV the presentation of images and the control of image quality. (U.K.)

  18. Latest Progress on the QUBIC Instrument

    OpenAIRE

    Ghibri, A.; Aumont, J.; Battistelli, E.S.; Bau, A.; Bergé, L.; Bernard, J.-Ph.; Bersanelli, M.; Bigot-Sazy, M.-A.; Bordier, G.; Bunn, E.F.; Cavaliere, F.; Chanial, P.; Coppolecchia, A.; Decourcelle, T.; De Bernardis, P.

    2013-01-01

    QUBIC is a unique instrument that crosses the barriers between classical imaging architectures and interferometry taking advantage from both for high sensitivity and systematics mitigation. The scientific target is the detection of the primordial gravitational waves imprint on the Cosmic Microwave Background which are the proof of inflation, holy grail of modern cosmology. In this paper, we show the latest advances in the development of the architecture and the sub-systems of the first module...

  19. The Dream: A Psychodynamically Informative Instrument

    OpenAIRE

    Glucksman, Myron L.

    2001-01-01

    The dream is a unique psychodynamically informative instrument for evaluating the subjective correlates of brain activity during REM sleep. These include feelings, percepts, memories, wishes, fantasies, impulses, conflicts, and defenses, as well as images of self and others. Dream analysis can be used in a variety of clinical settings to assist in diagnostic assessment, psychodynamic formulation, evaluation of clinical change, and the management of medically ill patients. Dreams may serve as ...

  20. netherland hydrological modeling instrument

    Science.gov (United States)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many

  1. IMAGES, IMAGES, IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, A.

    1980-07-01

    The role of images of information (charts, diagrams, maps, and symbols) for effective presentation of facts and concepts is expanding dramatically because of advances in computer graphics technology, increasingly hetero-lingual, hetero-cultural world target populations of information providers, the urgent need to convey more efficiently vast amounts of information, the broadening population of (non-expert) computer users, the decrease of available time for reading texts and for decision making, and the general level of literacy. A coalition of visual performance experts, human engineering specialists, computer scientists, and graphic designers/artists is required to resolve human factors aspects of images of information. The need for, nature of, and benefits of interdisciplinary effort are discussed. The results of an interdisciplinary collaboration are demonstrated in a product for visualizing complex information about global energy interdependence. An invited panel will respond to the presentation.

  2. Data acquisition instruments: Psychopharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.S. III

    1998-01-01

    This report contains the results of a Direct Assistance Project performed by Lockheed Martin Energy Systems, Inc., for Dr. K. O. Jobson. The purpose of the project was to perform preliminary analysis of the data acquisition instruments used in the field of psychiatry, with the goal of identifying commonalities of data and strategies for handling and using the data in the most advantageous fashion. Data acquisition instruments from 12 sources were provided by Dr. Jobson. Several commonalities were identified and a potentially useful data strategy is reported here. Analysis of the information collected for utility in performing diagnoses is recommended. In addition, further work is recommended to refine the commonalities into a directly useful computer systems structure.

  3. Superfluid helium tanker instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Woodhouse, C.E. (Johns Hopkins Univ., Baltimore, MD (USA). School of Medicine); Kashani, A. (Sterling Federal Systems, Inc., NASA/Ames Research Center, Moffett Field, CA (US)); Lukemire, A.T. (National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center)

    1990-02-01

    An instrumentation system for a 1992 space shuttle flight demonstration of a superfluid helium (SFHe) tanker and transfer technology is presented. This system provides measurement of helium temperatures, pressures, flow rates, mass, and the presence of liquid or vapor. The instrumentation system described consists of analog and digital portions which provide a space qualified electronics system that is fault tolerant, compact, and relatively lightweight. The data processing hardware and software are ground commandable, perform measurements asynchronously, and format telemetry for transmission to the ground. The novel heat pulse mass gaging technique is described. A new liquid/vapor sensor is presented. Flowmeters for SFHe are discussed. A SFHe fountain effect pump is described. Results of tests to date are presented.

  4. Virtual Reality Musical Instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low-cost technologies have created a wide interest in virtual reality. In the field of computer music, the term “virtual musical instruments” has been used for a long time to describe software simulations, extensions of existing musical instruments......, and ways to control them with new interfaces for musical expression. Virtual reality musical instruments (VRMIs) that include a simulated visual component delivered via a head-mounted display or other forms of immersive visualization have not yet received much attention. In this article, we present a field...... overview of VRMIs from the viewpoint of the performer. We propose nine design guidelines, describe evaluation methods, analyze case studies, and consider future challenges....

  5. Radiation measuring instrument

    International Nuclear Information System (INIS)

    Genrich, V.

    1985-01-01

    A highly sensitive and compactly structured radiation measuring instrument for detecting ionizing radiation, in particular for measuring dose rates and contamination. The laminar structure of the associated counter tube, using only a few, simple plastic parts and a highly elastic counter wire, makes it possible to use the simplest manufacturing techniques. The service life of the counter tube construction, which is completely and permanently sealed and filled with gas, is expected to be more than 12 years. The described counter tube can be adapted in optimal fashion to the available space in a pocket instrument if it is used in combination with a specialized high-voltage generator which is low in interference voltage and with a pulse evaluation circuit having a means of compensating for interference voltage

  6. Instrumentation Engineers Handbook

    Science.gov (United States)

    2013-01-01

    White Sands Missile Range New Mexico 88002-5110 This page intentionally left blank. Instrumentation Engineers Handbook, RCC Document 121-13...Range Commanders Council ATTN: TEDT-WS-RCC 1510 Headquarters Avenue White Sands Missile Range, New Mexico 88002-5110 Telephone: (575) 678-1107...multiplying that by the C/D ratio, where C is a dimensional constant and D is density: ( ) D PPC V Tpp − = Eqn. 5-8 When the flow rate is obtained by

  7. Radon-Instrumentation

    International Nuclear Information System (INIS)

    Moreno y Moreno, A.

    2003-01-01

    The presentation of the active and passive methods for radon, their identification and measure, instrumentation and characteristics are the objectives of this work. Active detectors: Active Alpha Cam Continuous Air Monitor, Model 758 of Victoreen, Model CMR-510 Continuous Radon Monitor of the Signature Femto-Tech. Passive detectors: SSNTD track detectors in solids Measurement Using Charcoal Canisters, disk of activated coal deposited in a metallic box Electrets Methodology. (Author)

  8. Virtual reality musical instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low cost technologies has created a wide interest in virtual reality (VR), but how to design and evaluate multisensory interactions in VR remains as a challenge. In this paper, we focus on virtual reality musical instruments, present an overview of our...... design and evaluation guidelines, and examine historical case studies. Our main contribution is to inform the design and evaluation of the future VRMIs and consider the challenges....

  9. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1976-01-01

    Reference is made to the instrumentation of liquid metal cooled fast reactors. In order to ensure the safe operation of such reactors it is necessary to constantly monitor the coolant flowing through the fuel assemblies for temperature and rate of flow, requiring a large number of sensors. An improved and simplified arrangement is claimed in which the fuel assemblies feed a fraction of coolant to three instrument units arranged to sense the temperature and rate of flow of samples of coolant. Each instrument unit comprises a sleeve housing a sensing unit and has a number of inlet ducts arranged for receiving coolant from a fuel assembly together with a single outlet. The sensing unit has three thermocouple hot junctions connected in series, the hot junctions and inlet ducts being arranged in pairs. Electromagnetic windings around an inductive core are arranged to sense variation in flow of liquid metal by flux distortion. Fission product sensing means may also be provided. Full constructional details are given. (U.K.)

  10. Instrumentation and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Nakaishi, C.V.; Bedick, R.C.

    1990-12-01

    This Technology Status Report describes research and accomplishments for the Instrumentation and Diagnostics (I D) Projects within the Advanced Research and Technology Development (AR TD) Program of the United States Department of Energy (DOE) Office of Fossil Energy (FE). Process understanding and control can be improved through the development of advanced instrumentation and diagnostics. The thrust of the I D Projects is to further develop existing measurement and control techniques for application to advanced coal-based technologies. Project highlights are: an inductively coupled plasma (ICP) instrument has been developed to analyze trace elements in gasification and combustion process streams. An in situ two-color Mie scattering technique with LSS can simultaneously measure the size, velocity, and elemental composition of coal particles during combustion. A high-temperature, fluorescence thermometry technique has accurately measured gas temperatures during field testing in combustion and gasification environments. Expert systems have been developed to improve the control of advanced coal-based processes. Capacitance flowmeters were developed to determine the mass flowrate, solid volume fraction, and particle velocities of coal slurries. 32 refs., 9 figs.

  11. Mandolin Family Instruments

    Science.gov (United States)

    Cohen, David J.; Rossing, Thomas D.

    The mandolin family of instruments consists of plucked chordophones, each having eight strings in four double courses. With the exception of the mandobass, the courses are tuned in intervals of fifths, as are the strings in violin family instruments. The soprano member of the family is the mandolin, tuned G3-D4-A4-E5. The alto member of the family is the mandola, tuned C3-G3-D4-A4. The mandola is usually referred to simply as the mandola in the USA, but is called the tenor mandola in Europe. The tenor member of the family is the octave mandolin, tuned G2-D3-A3-E4. It is referred to as the octave mandolin in the USA, and as the octave mandola in Europe. The baritone member of the family is the mandocello, or mandoloncello, tuned C2-G2-D3-A3. A variant of the mandocello not common in the USA is the five-course liuto moderno, or simply liuto, designed for solo repertoire. Its courses are tuned C2-G2-D3-A3-E4. A mandobass was also made by more than one manufacturer during the early twentieth century, though none are manufactured today. They were fretted instruments with single string courses tuned E1-A1-D2-G2. There are currently a few luthiers making piccolo mandolins, tuned C4-G4-D5-A5.

  12. FHR Process Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL

    2015-01-01

    Fluoride salt-cooled High temperature Reactors (FHRs) are entering into early phase engineering development. Initial candidate technologies have been identified to measure all of the required process variables. The purpose of this paper is to describe the proposed measurement techniques in sufficient detail to enable assessment of the proposed instrumentation suite and to support development of the component technologies. This paper builds upon the instrumentation chapter of the recently published FHR technology development roadmap. Locating instruments outside of the intense core radiation and high-temperature fluoride salt environment significantly decreases their environmental tolerance requirements. Under operating conditions, FHR primary coolant salt is a transparent, low-vapor-pressure liquid. Consequently, FHRs can employ standoff optical measurements from above the salt pool to assess in-vessel conditions. For example, the core outlet temperature can be measured by observing the fuel s blackbody emission. Similarly, the intensity of the core s Cerenkov glow indicates the fission power level. Short-lived activation of the primary coolant provides another means for standoff measurements of process variables. The primary coolant flow and neutron flux can be measured using gamma spectroscopy along the primary coolant piping. FHR operation entails a number of process measurements. Reactor thermal power and core reactivity are the most significant variables for process control. Thermal power can be determined by measuring the primary coolant mass flow rate and temperature rise across the core. The leading candidate technologies for primary coolant temperature measurement are Au-Pt thermocouples and Johnson noise thermometry. Clamp-on ultrasonic flow measurement, that includes high-temperature tolerant standoffs, is a potential coolant flow measurement technique. Also, the salt redox condition will be monitored as an indicator of its corrosiveness. Both

  13. Hyperspectral Image Projector with Polarization Capability, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal outlines the development of a novel instrument for calibrating satellite based imaging sensors -- the Polarization Hyperspectral Image Projector...

  14. Instrumentation for environmental monitoring: biomedical

    International Nuclear Information System (INIS)

    1979-05-01

    An update is presented to Volume four of the six-volume series devoted to a survey of instruments useful for measurements in biomedicine related to environmental research and monitoring. Results of the survey are given as descriptions of the physical and operating characteristics of available instruments, critical comparisons among instrumentation methods, and recommendations of promising methodology and development of new instrumentation. Methods of detection and analysis of gaseous organic pollutants and metals, including Ni and As are presented. Instrument techniques and notes are included on atomic spectrometry and uv and visible absorption instrumentation

  15. COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    Dominique Lafon

    2011-05-01

    Full Text Available The goal of this article is to present specific capabilities and limitations of the use of color digital images in a characterization process. The whole process is investigated, from the acquisition of digital color images to the analysis of the information relevant to various applications in the field of material characterization. A digital color image can be considered as a matrix of pixels with values expressed in a vector-space (commonly 3 dimensional space whose specificity, compared to grey-scale images, is to ensure a coding and a representation of the output image (visualisation printing that fits the human visual reality. In a characterization process, it is interesting to regard color image attnbutes as a set of visual aspect measurements on a material surface. Color measurement systems (spectrocolorimeters, colorimeters and radiometers and cameras use the same type of light detectors: most of them use Charge Coupled Devices sensors. The difference between the two types of color data acquisition systems is that color measurement systems provide a global information of the observed surface (average aspect of the surface: the color texture is not taken into account. Thus, it seems interesting to use imaging systems as measuring instruments for the quantitative characterization of the color texture.

  16. ZBLAN Viscosity Instrumentation

    Science.gov (United States)

    Kaukler, William

    2001-01-01

    The past year's contribution from Dr. Kaukler's experimental effort consists of these 5 parts: a) Construction and proof-of-concept testing of a novel shearing plate viscometer designed to produce small shear rates and operate at elevated temperatures; b) Preparing nonlinear polymeric materials to serve as standards of nonlinear Theological behavior; c) Measurements and evaluation of above materials for nonlinear rheometric behavior at room temperature using commercial spinning cone and plate viscometers available in the lab; d) Preparing specimens from various forms of pitch for quantitative comparative testing in a Dynamic Mechanical Analyzer, Thermal Mechanical Analyzer; and Archeological Analyzer; e) Arranging to have sets of pitch specimens tested using the various instruments listed above, from different manufacturers, to form a baseline of the viscosity variation with temperature using the different test modes offered by these instruments by compiling the data collected from the various test results. Our focus in this project is the shear thinning behavior of ZBLAN glass over a wide range of temperature. Experimentally, there are no standard techniques to perform such measurements on glasses, particularly at elevated temperatures. Literature reviews to date have shown that shear thinning in certain glasses appears to occur, but no data is available for ZBLAN glass. The best techniques to find shear thinning behavior require the application of very low rates of shear. In addition, because the onset of the thinning behavior occurs at an unknown elevated temperature, the instruments used in this study must provide controlled low rates of shear and do so for temperatures approaching 600 C. In this regard, a novel shearing parallel plate viscometer was designed and a prototype built and tested.

  17. Diamonds for beam instrumentation

    International Nuclear Information System (INIS)

    Griesmayer, Erich

    2013-01-01

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  18. Biomagnetic instrumentation and measurement

    Science.gov (United States)

    Iufer, E. J.

    1978-01-01

    The instruments and techniques of biomagnetic measurement have progressed greatly in the past 15 years and are now of a quality appropriate to clinical applications. The paper reports on recent developments in the design and application of SQUID (Superconducting Quantum Interference Device) magnetometers to biomagnetic measurement. The discussion covers biomagnetic field levels, magnetocardiography, magnetic susceptibility plethysmography, ambient noise and sensor types, principles of operation of a SQUID magnetometer, and laboratory techniques. Of the many promising applications of noninvasive biomagnetic measurement, magnetocardiography is the most advanced and the most likely to find clinical application in the near future.

  19. Maintenance of nuclear instruments

    International Nuclear Information System (INIS)

    Oliveira Rebelo, A.M. de; Santos, C.J.F. dos; Jesus, E.F.O. de; Silva, L.E.M.C.; Borges, J.C.

    1988-01-01

    A program to design and repairing of nuclear instruments for teaching and research was founded in the UFRJ to find solutions for technical support problem - The GEMD-RADIACOES. This group has assisted to several groups of the University in recuperation and conservation of devices like: Linear scanner, Cromatograph and system of radiation detection in general. Recuperation of these devices had required a study of theirs operations modes, to make it possible the setting up of a similar system. Recuperation also involves operation tests, calibration and technical for users, orienting them to get the best performance. (Author) [pt

  20. Payment Instrument Characteristics

    DEFF Research Database (Denmark)

    Holst, Jacques; Kjeldsen, Martin; Hedman, Jonas

    2015-01-01

    Over the last decade, we have witnessed payment innovations that fundamentally have changed the ways we pay. Payment innovations, such as mobile payments and on-line banking, include characteristics or features that are essential to understand if we want to know how and why payers choose among...... payment innovations. Using the Repertory Grid technique to explore 15 payers’ perception of six payment instruments, including coins, banknotes, debit cards, credit cards, mobile payments, and on-line banking, we identify 16 payment characteristics. The characteristics aggregate seventy-six unique...

  1. Instrumentation for tomograph positioning

    International Nuclear Information System (INIS)

    Frenkel, A.D.B.; Castello Branco, L.M.; Reznik, D.S.; Santos, C.A.C.; Borges, J.C.

    1986-01-01

    The COPPE's Nuclear Instrumentation Lab. has been developing researches directed towards the implementation of a Computer-Based Tomography System. Basically, the system reported in this paper can be divided into three major parts: the mechanical part, responsible for the physical movement (Stepper-Motors, table, etc.); the electronic part, which controls the mechanical part and handles the data-acquisition process (microcomputer, interfaces, etc.); and finally, the support of a software-oriented system, including control programs and information processing routines. (Author) [pt

  2. Pesticide reducing instruments

    DEFF Research Database (Denmark)

    Jacobsen, Lars-Bo; Jensen, Jørgen Dejgård; Andersen, Martin

    2005-01-01

    of a key species of farmland bird, caused to changes in production and landscape. The results from the agricultural sector model are also used in evaluation of pesticide usage and the leaching of pesticides to ground water. First we analyze the implication of three different scenarios in all of the above...... for improving bio-diversity and securing drinking water. That is, combining economic modeling with physical biological modeling and geological evaluation allows us to select unsprayed field margins as the most effective instrument. Sensitivity analysis conducted on bio-diversity suggest that this result...

  3. Leir beam instrumentation

    CERN Document Server

    Bal, C; Burger, S; Dutriat, C; Gasior, M; Lefèvre, T; Lenardon, F; Odier, P; Raich, U; Soby, L; Tan, J; Tranquille, G; Vuitton, C

    2005-01-01

    The Low Energy Ion Ring (LEIR) is central to the “Ions for LHC” project. Its role is to transform a serie of long low intensity ion pulses from Linac 3, into short high density pulses, which will be further accelerated in the PS and SPS rings, before injection into LHC. To do so the injected pulses are stacked and phase space cooled using electron cooling, before acceleration to the ejection energy of 72 MEV/u. This note describes different types of instruments which will be installed in the LEIR ring and transfer lines.

  4. Calibration of "Babyline" RP instruments

    CERN Multimedia

    2015-01-01

      If you have old RP instrumentation of the “Babyline” type, as shown in the photo, please contact the Radiation Protection Group (Joffrey Germa, 73171) to have the instrument checked and calibrated. Thank you. Radiation Protection Group

  5. RICE: A Reliable and Efficient Remote Instrumentation Collaboration Environment

    Directory of Open Access Journals (Sweden)

    Prasad Calyam

    2008-01-01

    Full Text Available Remote access of scientific instruments over the Internet (i.e., remote instrumentation demand high-resolution (2D and 3D video image transfers with simultaneous real-time mouse and keyboard controls. Consequently, user quality of experience (QoE is highly sensitive to network bottlenecks. Further, improper user control while reacting to impaired video caused due to network bottlenecks could result in physical damages to the expensive instrument equipment. Hence, it is vital to understand the interplay between (a user keyboard/mouse actions toward the instrument, and (b corresponding network reactions for transfer of instrument video images toward the user. In this paper, we first present an analytical model for characterizing user and network interplay during remote instrumentation sessions in terms of demand and supply interplay principles of traditional economics. Next, we describe the trends of the model parameters using subjective and objective measurements obtained from QoE experiments. Thereafter, we describe our Remote Instrumentation Collaboration Environment (RICE software that leverages our experiences from the user and network interplay studies, and has functionalities that facilitate reliable and efficient remote instrumentation such as (a network health awareness to detect network bottleneck periods, and (b collaboration tools for multiple participants to interact during research and training sessions.

  6. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  7. Calibration philosophy for reactor instrumentation

    International Nuclear Information System (INIS)

    Saroja, A.R.; Ilango Sambasivan, S.; Swaminathan, P.

    2004-01-01

    All electronic test and measuring systems and process control instruments constitute a critical and important area of instrumentation in the nuclear and conventional power plant, process plant and research laboratories. All these instruments need periodic calibration. Therefore standards laboratories is one of the essential tools in enforcing quality. Calibration of these instruments plays a vital role in the performance, reliability, and quality of the target to be achieved. Thus calibration is a must if need speed and quality. (author)

  8. PC Calibration of Measuring Instrument

    OpenAIRE

    Gold, Ayoola

    2015-01-01

    Calibration involves the adjustment of measuring instruments basically by comparing the values obtained from a measuring instrument with a standard instrument whose output value is known. This project is focused at developing an application used to calibrate measuring instruments (oscilloscope) in the laboratory. This application eases the traditional inputting of output value manually from the calibrator (Fluke 5500A in this case) to the oscilloscope (Agilent DSO5012A oscilloscope in this ca...

  9. UC Merced NMR Instrumentation Acquisition

    Science.gov (United States)

    2015-06-18

    UC Merced NMR Instrumentation Acquisition For the UC Merced NMR Instrumentation Acquisition proposal, a new 400 MHz and an upgraded 500 MHz NMR...valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. University of California - Merced 5200 North Lake Road Merced , CA 95343...UC Merced NMR Instrumentation Acquisition Report Title For the UC Merced NMR Instrumentation Acquisition proposal, a new 400 MHz and an upgraded 500

  10. Incore instrument device

    International Nuclear Information System (INIS)

    Sakima, Naoki

    1996-01-01

    An incore instrument device has an integrally disposed touch panel having a function of displaying an operation indication method such as for setting of conditions for incore measurement and information processing and results of the incore measurement and a function capable of conducting operation indication such as for setting conditions and information processing for incore measurement relative to a control section upon touching an information position on a displayed information. In addition, an information processing section comprising a man-machine function program formed so as to recognize the content of the operation indication for the incore measurement by touching and let the control section to conduct it is disposed to the outside by way of a communication interface. In addition, a programming device is disposed for forming and rewriting the program of the man-machine function relative to the information processing section. Then, when various indication operations are conducted upon performing incore measurement, a view point can be concentrated to one predetermined point thereby enabling to improve the operationability without danger. In addition, the programming of the man-machine function does not apply unnecessary load to the control section in the incore instrumentation device. (N.H.)

  11. Balances instruments, manufacturers, history

    CERN Document Server

    Robens, Erich; Kiefer, Susanne

    2014-01-01

    The book deals mainly with direct mass determination by means of a conventional balances. It covers the history of the balance from the beginnings in Egypt earlier than 3000 BC to recent developments. All balance types are described with emphasis on scientific balances. Methods of indirect mass determination, which are applied to very light objects like molecules and the basic particles of matter and celestial bodies, are included.  As additional guidance, today’s manufacturers are listed and the profile of important companies is reviewed. Several hundred photographs, reproductions and drawings show instruments and their uses. This book includes commercial weighing instruments for merchandise and raw materials in workshops as well as symbolic weighing in the ancient Egyptian’s ceremony of ‘Weighing of the Heart’, the Greek fate balance, the Roman  Justitia, Juno Moneta and Middle Ages scenes of the Last Judgement with Jesus or St. Michael and of modern balances. The photographs are selected from the...

  12. Rio de Janeiro: Instrumentation school

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Students from Latin America were able to get hands-on experience in state-of-the-art physics instrumentation in this year's School on Instrumentation for High Energy Physics organized by the active Instrumentation Panel of ICFA (the International Committee for Future Accelerators) at the Centro Brasileiro de Pesquicas Fisicas (CBPF), Rio de Janeiro, in July

  13. Instrument Remote Control via the Astronomical Instrument Markup Language

    Science.gov (United States)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  14. 3D position estimation of flexible instruments: marker-less and marker-based methods

    NARCIS (Netherlands)

    Reilink, Rob; Stramigioli, Stefano; Misra, Sarthak

    2013-01-01

    Purpose Endoscopic images can be used to allow accurate flexible endoscopic instrument control. This can be implemented using a pose estimation algorithm, which estimates the actual instrument pose from the endoscopic images. Methods In this paper, two pose estimation algorithms are compared: a

  15. Instrumentation and quantitative methods of evaluation. Progress report, January 15-September 14, 1986

    International Nuclear Information System (INIS)

    Beck, R.N.

    1986-09-01

    This document reports progress under grant entitled ''Instrumentation and Quantitative Methods of Evaluation.'' Individual reports are presented on projects entitled the physical aspects of radionuclide imaging, image reconstruction and quantitative evaluation, PET-related instrumentation for improved quantitation, improvements in the FMI cyclotron for increased utilization, and methodology for quantitative evaluation of diagnostic performance

  16. Human pavlovian-instrumental transfer.

    Science.gov (United States)

    Talmi, Deborah; Seymour, Ben; Dayan, Peter; Dolan, Raymond J

    2008-01-09

    The vigor with which a participant performs actions that produce valuable outcomes is subject to a complex set of motivational influences. Many of these are believed to involve the amygdala and the nucleus accumbens, which act as an interface between limbic and motor systems. One prominent class of influences is called pavlovian-instrumental transfer (PIT), in which the motivational characteristics of a predictor influence the vigor of an action with respect to which it is formally completely independent. We provide a demonstration of behavioral PIT in humans, with an audiovisual predictor of the noncontingent delivery of money inducing participants to perform more avidly an action involving squeezing a handgrip to earn money. Furthermore, using functional magnetic resonance imaging, we show that this enhanced motivation was associated with a trial-by-trial correlation with the blood oxygenation level-dependent (BOLD) signal in the nucleus accumbens and a subject-by-subject correlation with the BOLD signal in the amygdala. Our data dovetails well with the animal literature and sheds light on the neural control of vigor.

  17. Human Pavlovian–Instrumental Transfer

    Science.gov (United States)

    Talmi, Deborah; Seymour, Ben; Dayan, Peter; Dolan, Raymond J.

    2009-01-01

    The vigor with which a participant performs actions that produce valuable outcomes is subject to a complex set of motivational influences. Many of these are believed to involve the amygdala and the nucleus accumbens, which act as an interface between limbic and motor systems. One prominent class of influences is called pavlovian–instrumental transfer (PIT), in which the motivational characteristics of a predictor influence the vigor of an action with respect to which it is formally completely independent. We provide a demonstration of behavioral PIT in humans, with an audiovisual predictor of the noncontingent delivery of money inducing participants to perform more avidly an action involving squeezing a handgrip to earn money. Furthermore, using functional magnetic resonance imaging, we show that this enhanced motivation was associated with a trial-by-trial correlation with the blood oxygenation level-dependent (BOLD) signal in the nucleus accumbens and a subject-by-subject correlation with the BOLD signal in the amygdala. Our data dovetails well with the animal literature and sheds light on the neural control of vigor. PMID:18184778

  18. A SWIR radiance model for cockpit instrumentation

    Science.gov (United States)

    Green, John; Robinson, Tim

    2013-06-01

    Night Vision Imaging Systems technology is advancing at a rapid pace. These advances can be broadly divided in two distinct categories; performance and data management. There is an encouraging trend towards higher sensitivity, better resolution, and lower power consuming devices. These improvements, coupled with the shift from analog to digital data output, promise to provide a powerful night vision device. Given a digital system, the data can be managed to enhance the pilot's view (image processing), overlay data from multiple sensors (image fusion), and send data to remote locations for analysis (image sharing). The US Air Force Research Laboratory (AFRL) has an active program to introduce a helmet mounted digital imaging system that extends the detection range from the near infrared (NIR) band to the short-wave infrared (SWIR) band. Aside from the digital output, part of the motivation to develop a SWIR imaging system includes the desire to exploit the SWIR ambient night glow spectrum, see through some levels of fog and haze, and use a robust sensor technology suitable for 24 hours per day imaging. Integrating this advanced SWIR imaging system into a cockpit presents some human factor issues. Light emitted from illuminated instruments may hinder the performance of the imaging system, reducing the pilot's ability to detect lowvisible objects at night. The transmission of light through cockpit transparencies and through the atmosphere may also impact performance. In this paper we propose a model that establishes cockpit lighting SWIR radiance limits, much like MIL-STD-3009 specifies NVIS radiance limits for NVGs. This model is the culmination of a two year program sponsored by AFRL.

  19. MESSI: the METIS instrument software simulator

    Science.gov (United States)

    Nicolini, G.; Andretta, V.; Abbo, L.; Antonucci, E.; Bemporad, A.; Capobianco, G.; Crescenzio, G.; Fineschi, S.; Focardi, M.; Magli, E.; Naletto, G.; Nicolosi, G.; Pancrazzi, M.; Ricci, M.; Romoli, M.; Uslenghi, M.; Volpicelli, A.

    2012-09-01

    Instrument software simulators are becoming essential both for supporting the instrument design and for planning the future operations. In this paper we present the Software Simulator developed for the METIS coronagraph, an instrument of the Solar Orbiter ESA mission. We describe its architecture and the modules it is composed of, and how they interchange data to simulate the whole acquisition chain from the photons entering the front window to the stream of telemetry? data received and analysed on ground. Each software module simulates an instrument subsystem by combining theoretical models and measured subsystem properties. A web-based application handles the remote user interfaces of the Institutions of the METIS Consortium, allowing users from various sites to overview and interact with the data flow, making possible for instance input and output at intermediate nodes. Description of the modes of use of the simulator, both present and future, are given with examples of results. These include not only design-aid tasks, as the evaluation and the tuning of the image compression algorithms, but also those tasks aimed to plan the in-flight observing sequences, based on the capability of the simulator of performing end to end simulations of science cases.

  20. Astronomical Instrumentation System Markup Language

    Science.gov (United States)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  1. Instrumented Pipeline Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  2. FMIT diagnostic instrumentation

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.; Chamberlin, D.D.

    1985-01-01

    The Fusion Materials Irradiation Test facility (FMIT) cw prototype accelerator has noninterceptive beamline instrumentation to measure beam parameters. The transverse emittances and beam profiles are measured with an array of photodiode sensors viewing light emitted from the beam region. Tomographic reconstructions of both spatial-density distributions and of transverse-emittance distributions are performed throughout a quadrupole focusing section. Beam bunches passing through capacitive probes produce bipolar waveforms whose zero crossing corresponds to the bunch's longitudinal centroid. By measuring the time required for a bunch to travel the known distance between two probes, velocity and energy are determined. A toroidal transformer measures the average ac beam current. Beam spill is measured by a set of movable jaws that intercept the beam edges. Each jaw contains a water flow channel whose flow rate and differential temperature are measured to derive a transverse power distribution. Beam centroid position is measured by a four-lobe, magnetic-loop pickup. 5 refs., 6 figs

  3. Transgressive or Instrumental?

    DEFF Research Database (Denmark)

    Chemi, Tatiana

    2018-01-01

    Contemporary practices that connect the arts with learning are widespread at all level of educational systems and in organisations, but they include very diverse approaches, multiple methods and background values. Regardless of explicit learning benefits, the arts/learning partnerships bring about...... a specific approach to learning, which is embodied, sensory and aesthetic and makes use of metaphors, mediation, meaning-making and sense-making. I will make the point that the arts establish an alternative learning environment, which is different from the formal educational systems by offering multiple...... creativity and the other on practices of arts-integration. My final point rests on the belief that the opposition of transgression and instrumentality is a deceiving perspective on the arts, against the background of the aesthetic plurality and hybridity....

  4. The Commissioning Instrument for the GTC: made in Mexico

    Science.gov (United States)

    Cuevas, S.; Sánchez, B.; Bringas, V.; Espejo, C.; Flores, R.; Chapa, O.; Lara, G.; Chavoya, A.; Anguiano, G.; Arciniega, S.; Dorantes, A.; González, J. L.; Montoya, J. M.; Toral, R.; Hernández, H.; Nava, R.; Devaney, N.; Castro, J.; Cavaller, L.

    2007-06-01

    The Gran Telescopio Canarias (GTC) is a 10.4-meter segmented telescope currently being built at the Observatorio del Roque de los Muchachos in La Palma, Spain (Alvarez & Rodríguez-Espinosa 2004). The GTC is a partnership between Spain, Mexico and the University of Florida. The Commissioning Instrument (CI) is the first instrument for the GTC. The CI is an optical instrument for imaging, pupil imaging, curvature wavefront sensing, and high-resolution Shack-Hartmann wavefront sensing. Neutral density and BVRI filters can be used in each mode. The CI is designed to verify the optical quality of the telescope, both at the level of individual segments and as a whole, and thereby aid the GTC in achieving its goal of excellent image quality. In particular, it is able to measure relative piston and tilt between primary mirror segments. The CI can also be used to measure stray light.

  5. Fuzzy image processing in sun sensor

    Science.gov (United States)

    Mobasser, S.; Liebe, C. C.; Howard, A.

    2003-01-01

    This paper will describe how the fuzzy image processing is implemented in the instrument. Comparison of the Fuzzy image processing and a more conventional image processing algorithm is provided and shows that the Fuzzy image processing yields better accuracy then conventional image processing.

  6. Swift Burst Alert Telescope (BAT) Instrument Response

    International Nuclear Information System (INIS)

    Parsons, A.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Hullinger, D.; Krimm, H.; Markwardt, C.; Tueller, J.; Fenimore, E.; Palmer, D.; Sato, G.; Takahashi, T.; Nakazawa, K.; Okada, Y.; Takahashi, H.; Suzuki, M.; Tashiro, M.

    2004-01-01

    The Burst Alert Telescope (BAT), a large coded aperture instrument with a wide field-of-view (FOV), provides the gamma-ray burst triggers and locations for the Swift Gamma-Ray Burst Explorer. In addition to providing this imaging information, BAT will perform a 15 keV - 150 keV all-sky hard x-ray survey based on the serendipitous pointings resulting from the study of gamma-ray bursts, and will also monitor the sky for transient hard x-ray sources. For BAT to provide spectral and photometric information for the gamma-ray bursts, the transient sources and the all-sky survey, the BAT instrument response must be determined to an increasingly greater accuracy. This paper describes the spectral models and the ground calibration experiments used to determine the BAT response to an accuracy suitable for gamma-ray burst studies

  7. Ultrahigh Resolution 3-Dimensional Imaging, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop innovative instrumentation for the rapid, 3-dimensional imaging of biological tissues with cellular resolution. Our approach...

  8. Moderate Resolution Imaging Spectroradiometer (MODIS) - Terra

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset represents multiple products archived at the multiple archive centers for the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard...

  9. Moderate Resolution Imaging Spectroradiometer (MODIS) - Aqua

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset represents multiple products archived at the multiple archive centers for the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard...

  10. Pancreatitis Quality of Life Instrument: Development of a new instrument

    OpenAIRE

    Wassef, Wahid; Bova, Carol; Barton, Bruce; Hartigan, Celia

    2014-01-01

    Objectives: The goal of this project was to develop the first disease-specific instrument for the evaluation of quality of life in chronic pancreatitis. Methods: Focus groups and interview sessions were conducted, with chronic pancreatitis patients, to identify items felt to impact quality of life which were subsequently formatted into a paper-and-pencil instrument. This instrument was used to conduct an online survey by an expert panel of pancreatologists to evaluate its content validity. Fi...

  11. Efficacy of protaper instruments during endodontic retreatment

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Fariniuk

    2017-01-01

    Full Text Available Introduction: The effectiveness of ProTaper Universal and ProTaper Retreatment rotary instruments was compared to the Hedström files in the removal of filling material from root canals. Materials and Methods: Thirty-six extracted human mandibular premolars with a single straight root canal were shaped and filled with gutta-percha and AH Plus. The specimens were stored for 6 months at 37°C and at 100% relative humidity, and then randomly divided into three groups: PTU - removal of filling material performed with ProTaper Universal instruments; PTR - removal of filling material performed with ProTaper Retreatment instruments; HF – removal of filling material performed with Gates-Glidden burs, Hedström files and solvent. After the filling material removal and diaphanization, the specimens were longitudinally sectioned and images of the canal surfaces were scanned. The remaining areas of filling material were measured (Image Tool 3.0, and data was analyzed statistically (Kruskal-Wallis and Dunn tests. The time required for filling removal in each group was also recorded (one-way ANOVA and Tukey's HSD test. Results: All groups presented remnants of filling material; PTU had the smallest amount and HF group presented the highest mean value (P< 0.05 in all the thirds. The cervical third had the smallest amount of material when compared with the other thirds (P< 0.05. HF group required a longer mean time, presenting significant difference (P< 0.05. Conclusion: Considering the time required and the amount of the filling removal, ProTaper Retreatment were not superior to ProTaper Universal, but both rotary instruments were more effective and less time-consuming than Hedström manual files.

  12. A portable detection instrument based on DSP for beef marbling

    Science.gov (United States)

    Zhou, Tong; Peng, Yankun

    2014-05-01

    Beef marbling is one of the most important indices to assess beef quality. Beef marbling is graded by the measurement of the fat distribution density in the rib-eye region. However quality grades of beef in most of the beef slaughtering houses and businesses depend on trainees using their visual senses or comparing the beef slice to the Chinese standard sample cards. Manual grading demands not only great labor but it also lacks objectivity and accuracy. Aiming at the necessity of beef slaughtering houses and businesses, a beef marbling detection instrument was designed. The instrument employs Charge-coupled Device (CCD) imaging techniques, digital image processing, Digital Signal Processor (DSP) control and processing techniques and Liquid Crystal Display (LCD) screen display techniques. The TMS320DM642 digital signal processor of Texas Instruments (TI) is the core that combines high-speed data processing capabilities and real-time processing features. All processes such as image acquisition, data transmission, image processing algorithms and display were implemented on this instrument for a quick, efficient, and non-invasive detection of beef marbling. Structure of the system, working principle, hardware and software are introduced in detail. The device is compact and easy to transport. The instrument can determine the grade of beef marbling reliably and correctly.

  13. Virtual Instrument Simulator for CERES

    Science.gov (United States)

    Chapman, John J.

    1997-01-01

    A benchtop virtual instrument simulator for CERES (Clouds and the Earth's Radiant Energy System) has been built at NASA, Langley Research Center in Hampton, VA. The CERES instruments will fly on several earth orbiting platforms notably NASDA's Tropical Rainfall Measurement Mission (TRMM) and NASA's Earth Observing System (EOS) satellites. CERES measures top of the atmosphere radiative fluxes using microprocessor controlled scanning radiometers. The CERES Virtual Instrument Simulator consists of electronic circuitry identical to the flight unit's twin microprocessors and telemetry interface to the supporting spacecraft electronics and two personal computers (PC) connected to the I/O ports that control azimuth and elevation gimbals. Software consists of the unmodified TRW developed Flight Code and Ground Support Software which serves as the instrument monitor and NASA/TRW developed engineering models of the scanners. The CERES Instrument Simulator will serve as a testbed for testing of custom instrument commands intended to solve in-flight anomalies of the instruments which could arise during the CERES mission. One of the supporting computers supports the telemetry display which monitors the simulator microprocessors during the development and testing of custom instrument commands. The CERES engineering development software models have been modified to provide a virtual instrument running on a second supporting computer linked in real time to the instrument flight microprocessor control ports. The CERES Instrument Simulator will be used to verify memory uploads by the CERES Flight Operations TEAM at NASA. Plots of the virtual scanner models match the actual instrument scan plots. A high speed logic analyzer has been used to track the performance of the flight microprocessor. The concept of using an identical but non-flight qualified microprocessor and electronics ensemble linked to a virtual instrument with identical system software affords a relatively inexpensive

  14. Airborne Hyperspectral Imaging System

    Science.gov (United States)

    Behar, Alberto E.; Cooper, Moogega; Adler, John; Jacobson, Tobias

    2012-01-01

    A document discusses a hyperspectral imaging instrument package designed to be carried aboard a helicopter. It was developed to map the depths of Greenland's supraglacial lakes. The instrument is capable of telescoping to twice its original length, allowing it to be retracted with the door closed during takeoff and landing, and manually extended in mid-flight. While extended, the instrument platform provides the attached hyperspectral imager a nadir-centered and unobstructed view of the ground. Before flight, the instrument mount is retracted and securely strapped down to existing anchor points on the floor of the helicopter. When the helicopter reaches the destination lake, the door is opened and the instrument mount is manually extended. Power to the instrument package is turned on, and the data acquisition computer is commanded via a serial cable from an onboard user-operated laptop to begin data collection. After data collection is complete, the instrument package is powered down and the mount retracted, allowing the door to be closed in preparation for landing. The present design for the instrument mount consists of a three-segment telescoping cantilever to allow for a sufficient extended length to see around the landing struts and provide a nadir-centered and unobstructed field of view for the hyperspectral imager. This instrument works on the premise that water preferentially absorbs light with longer wavelengths on the red side of the visible spectrum. This property can be exploited in order to remotely determine the depths of bodies of pure freshwater. An imager flying over such a lake receives light scattered from the surface, the bulk of the water column, and from the lake bottom. The strength of absorption of longer-wavelength light depends on the depth of the water column. Through calibration with in situ measurements of the water depths, a depth-determining algorithm may be developed to determine lake depth from these spectral properties of the

  15. Instruments and method of air navigation

    Science.gov (United States)

    1977-01-01

    Topics discussed include magnetic and astronavigation instruments; flight beyond ground visibility; aircraft radio navigation instruments and communication radio sets; instrument landing systems; and ground controlled landing systems.

  16. Industrial instrumentation principles and design

    CERN Document Server

    Padmanabhan, Tattamangalam R

    2000-01-01

    Pneumatic, hydraulic and allied instrumentation schemes have given way to electronic schemes in recent years thanks to the rapid strides in electronics and allied areas. Principles, design and applications of such state-of-the-art instrumentation schemes form the subject matter of this book. Through representative examples, the basic building blocks of instrumentation schemes are identified and each of these building blocks discussed in terms of its design and interface characteristics. The common generic schemes synthesized with such building blocks are dealt with subsequently. This forms the scope of Part I. The focus in Part II is on application. Displacement and allied instrumentation, force and allied instrumentation and process instrumentation in terms of temperature, flow, pressure level and other common process variables are dealt with separately and exhaustively. Despite the diversity in the sensor principles and characteristics and the variety in the applications and their environments, it is possib...

  17. Impact Disdrometers Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, Mary Jane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    To improve the quantitative description of precipitation processes in climate models, the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility has been collecting observations of the drop size spectra of rain events since early in 2006. Impact disdrometers were the initial choice due to their reliability, ease of maintenance, and relatively low cost. Each of the two units deployed was accompanied by a nearby tipping bucket. In 2010, the tipping buckets were replaced by weighing buckets rain gauges. Five video disdrometers were subsequently purchased and are described in ARM’s VDIS Handbook.1 As of April 2011, three of the weighing bucket instruments were deployed, one was to travel with the second ARM Mobile Facility, and the fifth was a spare. Two of the video disdrometers were deployed, a third was to be deployed later in the spring of 2011, one was to travel with the second ARM Mobile Facility, and the last was a spare. Detailed descriptions of impact disdrometers and their datastreams are provided in this document.

  18. Measurement, instrumentation, and sensors handbook

    CERN Document Server

    Eren, Halit

    2014-01-01

    The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized acco

  19. The Mobius AIRO mobile CT for image-guided proton therapy: Characterization & commissioning.

    Science.gov (United States)

    Oliver, Jasmine A; Zeidan, Omar A; Meeks, Sanford L; Shah, Amish P; Pukala, Jason; Kelly, Patrick; Ramakrishna, Naren R; Willoughby, Twyla R

    2017-05-01

    The purpose of this study was to characterize the Mobius AIRO Mobile CT System for localization and image-guided proton therapy. This is the first known application of the AIRO for proton therapy. Five CT images of a Catphan ® 504 phantom were acquired on the AIRO Mobile CT System, Varian EDGE radiosurgery system cone beam CT (CBCT), Philips Brilliance Big Bore 16 slice CT simulator, and Siemens SOMATOM Definition AS 20 slice CT simulator. DoseLAB software v.6.6 was utilized for image quality analysis. Modulation transfer function, scaling discrepancy, geometric distortion, spatial resolution, overall uniformity, minimum uniformity, contrast, high CNR, and maximum HU deviation were acquired. Low CNR was acquired manually using the CTP515 module. Localization accuracy and CT Dose Index were measured and compared to reported values on each imaging device. For treatment delivery systems (Edge and Mevion), the localization accuracy of the 3D imaging systems were compared to 2D imaging systems on each system. The AIRO spatial resolution was 0.21 lp mm -1 compared with 0.40 lp mm -1 for the Philips CT Simulator, 0.37 lp mm -1 for the Edge CBCT, and 0.35 lp mm -1 for the Siemens CT Simulator. AIRO/Siemens and AIRO/Philips differences exceeded 100% for scaling discrepancy (191.2% and 145.8%). The AIRO exhibited higher dose (>27 mGy) than the Philips CT Simulator. Localization accuracy (based on the MIMI phantom) was 0.6° and 0.5 mm. Localization accuracy (based on Stereophan) demonstrated maximum AIRO-kV/kV shift differences of 0.1 mm in the x-direction, 0.1 mm in the y-direction, and 0.2 mm in the z-direction. The localization accuracy of AIRO was determined to be within 0.6° and 0.5 mm despite its slightly lower image quality overall compared to other CT imaging systems at our institution. Based on our study, the Mobile AIRO CT system can be utilized accurately and reliably for image-guided proton therapy. © 2017 The Authors. Journal of Applied Clinical Medical

  20. TH-A-17A-01: Innovation in PET Instrumentation and Applications

    International Nuclear Information System (INIS)

    Casey, M; Miyaoka, R; Shao, Y

    2014-01-01

    Innovation in PET instrumentation has led to the new millennium revolutionary imaging applications for diagnosis, therapeutic guidance, and development of new molecular imaging probes, etc. However, after several decades innovations, will the advances of PET technology and applications continue with the same trend and pace? What will be the next big thing beyond the PET/CT, PET/MRI, and Time-of-flight PET? How will the PET instrumentation and imaging performance be further improved by novel detector research and advanced imaging system development? Or will the development of new algorithms and methodologies extend the limit of current instrumentation and leapfrog the imaging quality and quantification for practical applications? The objective of this session is to present an overview of current status and advances in the PET instrumentation and applications with speakers from leading academic institutes and a major medical imaging company. Presenting with both academic research projects and commercial technology developments, this session will provide a glimpse of some latest advances and challenges in the field, such as using semiconductor photon-sensor based PET detectors to improve performance and enable new applications, as well as the technology trend that may lead to the next breakthrough in PET imaging for clinical and preclinical applications. Both imaging and image-guided therapy subjects will be discussed. Learning Objectives: Describe the latest innovations in PET instrumentation and applications Understand the driven force behind the PET instrumentation innovation and development Learn the trend of PET technology development for applications

  1. 14 CFR 27.1337 - Powerplant instruments.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Powerplant instruments. 27.1337 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Instruments: Installation § 27.1337 Powerplant instruments. (a) Instruments and instrument lines. (1) Each powerplant instrument line must meet the...

  2. 14 CFR 29.1337 - Powerplant instruments.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Powerplant instruments. 29.1337 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Instruments: Installation § 29.1337 Powerplant instruments. (a) Instruments and instrument lines. (1) Each powerplant and auxiliary power unit instrument...

  3. 14 CFR 25.1337 - Powerplant instruments.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Powerplant instruments. 25.1337 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25.1337 Powerplant instruments. (a) Instruments and instrument lines. (1) Each powerplant and auxiliary power unit instrument...

  4. Experimenting with String Musical Instruments

    Science.gov (United States)

    LoPresto, Michael C.

    2012-01-01

    What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…

  5. Atomic absorption instrument functional description

    International Nuclear Information System (INIS)

    Bystroff, R.I.; Boyle, W.G. Jr.; Barton, G.W. Jr.

    1976-01-01

    This report describes a proposed system for automating atomic absorption analysis. The system consists of two atomic absorption instruments and an automatic sampler that can be attached to either instrument. A computer program controls the sampling and gathers data. The program then uses the data to perform bookkeeping, data processing, and report writing

  6. Developing a workplace resilience instrument.

    Science.gov (United States)

    Mallak, Larry A; Yildiz, Mustafa

    2016-05-27

    Resilience benefits from the use of protective factors, as opposed to risk factors, which are associated with vulnerability. Considerable research and instrument development has been conducted in clinical settings for patients. The need existed for an instrument to be developed in a workplace setting to measure resilience of employees. This study developed and tested a resilience instrument for employees in the workplace. The research instrument was distributed to executives and nurses working in the United States in hospital settings. Five-hundred-forty completed and usable responses were obtained. The instrument contained an inventory of workplace resilience, a job stress questionnaire, and relevant demographics. The resilience items were written based on previous work by the lead author and inspired by Weick's [1] sense-making theory. A four-factor model yielded an instrument having psychometric properties showing good model fit. Twenty items were retained for the resulting Workplace Resilience Instrument (WRI). Parallel analysis was conducted with successive iterations of exploratory and confirmatory factor analyses. Respondents were classified based on their employment with either a rural or an urban hospital. Executives had significantly higher WRI scores than nurses, controlling for gender. WRI scores were positively and significantly correlated with years of experience and the Brief Job Stress Questionnaire. An instrument to measure individual resilience in the workplace (WRI) was developed. The WRI's four factors identify dimensions of workplace resilience for use in subsequent investigations: Active Problem-Solving, Team Efficacy, Confident Sense-Making, and Bricolage.

  7. Instruments to assess integrated care

    DEFF Research Database (Denmark)

    Lyngsø, Anne Marie; Godtfredsen, Nina Skavlan; Høst, Dorte

    2014-01-01

    INTRODUCTION: Although several measurement instruments have been developed to measure the level of integrated health care delivery, no standardised, validated instrument exists covering all aspects of integrated care. The purpose of this review is to identify the instruments concerning how to mea...... was prevalent. It is uncertain whether development of a single 'all-inclusive' model for assessing integrated care is desirable. We emphasise the continuing need for validated instruments embedded in theoretical contexts.......INTRODUCTION: Although several measurement instruments have been developed to measure the level of integrated health care delivery, no standardised, validated instrument exists covering all aspects of integrated care. The purpose of this review is to identify the instruments concerning how...... to measure the level of integration across health-care sectors and to assess and evaluate the organisational elements within the instruments identified. METHODS: An extensive, systematic literature review in PubMed, CINAHL, PsycINFO, Cochrane Library, Web of Science for the years 1980-2011. Selected...

  8. Surface Meteorological Instrumentation for BOBMEX

    Indian Academy of Sciences (India)

    Although India has a long experience in ship-borne experiments and oceanographic instrumentation, the atmospheric component has not received much attention in the past. In this paper, the basis of the atmospheric instrumentation system assembled for use on board ORV Sagar Kanya for the BOBMEX- Pilot experiment ...

  9. A Database Management Assessment Instrument

    Science.gov (United States)

    Landry, Jeffrey P.; Pardue, J. Harold; Daigle, Roy; Longenecker, Herbert E., Jr.

    2013-01-01

    This paper describes an instrument designed for assessing learning outcomes in data management. In addition to assessment of student learning and ABET outcomes, we have also found the instrument to be effective for determining database placement of incoming information systems (IS) graduate students. Each of these three uses is discussed in this…

  10. Space instrumentation: physics and astronomy in harmony?

    International Nuclear Information System (INIS)

    Aderin, M

    2008-01-01

    Surrey Satellite Technology Limited was formed as a company in 1985 and has been involved in 23 small satellite missions, making it the most successful and experienced small satellite supplier in the world. The challenge of getting a satellite into space takes a dedicated multidisciplinary team of physicists and engineers working together to achieve a common goal. In this paper the author will look at the breakdown of the teams for a number of space projects including NigeriaSAT1; one of the satellites that make up the Disaster Monitoring Constellation (DMC), which produces high quality commercial images for monitoring agriculture and the environment as well as dedicating a proportion of it's time to disaster monitoring. Commercial projects like this will be contrasted to instruments such as the Integral Field Unit (IFU) for the NIRSpec instrument on the James Webb Space Telescope (JWST is the replacement for the Hubble Space telescope). Although both projects have been running through commercial contracts at SSTL, how does the final goal of the instrument influence the synergy between the physics and the engineering needed to make it, and what, if any, economic differences are seen?

  11. Gran Telescopio Canarias Commissioning Instrument Optomechanics

    Science.gov (United States)

    Espejo, Carlos; Cuevas, Salvador; Sanchez, Beatriz; Flores, Ruben; Lara, Gerardo; Farah, Alejandro; Godoy, Javier; Bringas, Vicente; Chavoya, Armando; Dorantes, Ariel; Manuel Montoya, Juan; Rangel, Juan Carlos; Devaney, Nicholas; Castro, Javier; Cavaller, Luis

    2003-02-01

    Under a contract with the GRANTECAN, the Commissioning Instrument is a project developed by a team of Mexican scientists and engineers from the Instrumentation Department of the Astronomy Institute at the UNAM and the CIDESI Engineering Center. This paper will discuss in some detail the final Commissioning Instrument (CI) mechanical design and fabrication. We will also explain the error budget and the barrels design as well as their thermal compensation. The optical design and the control system are discussed in other papers. The CI will just act as a diagnostic tool for image quality verification during the GTC Commissioning Phase. This phase is a quality control process for achieving, verifying, and documenting the performance of each GTC sub-systems. This is a very important step for the telescope life. It will begin on starting day and will last for a year. The CI project started in December 2000. The critical design phase was reviewed in July 2001. The CI manufacturing is currently in progress and most parts are finished. We are now approaching the factory acceptance stage.

  12. Proceedings of DAE-BRNS national symposium on nuclear instrumentation - 2010

    International Nuclear Information System (INIS)

    Balagi, V.; Padmini, S.; Diwakar, M.P.; Mukhopadhyay, P.K.; Joshi, V.M.

    2010-02-01

    Development of nuclear radiation detectors and associated instrumentation has been a mandate for BARC right from inception. Such systems are vital for generation of nuclear power, basic research, nondestructive testing and health and safety. The topics covered in this symposium are nuclear instruments for reactors, RF and accelerators, physics experiments and other applications, ASICs, FPGAs, CPLDs, DSPs, microcontrollers/processors and system on chip (SOCs), hardware and software qualification standards, imaging and image processing systems, nuclear medicine and biomedical instruments, instrumentation for allied applications. Papers relevant to INIS are indexed separately

  13. Instrumentation and control system design

    International Nuclear Information System (INIS)

    Saito, Kenji; Sawahata, Hiroaki; Homma, Fumitaka; Kondo, Makoto; Mizushima, Toshihiko

    2004-01-01

    The instrumentation and control system of the high temperature engineering test reactor consists of the instrumentation, control equipments and safety protection systems. There are not many differences in the instrumentation and control equipments design between the HTTR and light water reactors except for some features. Various kinds of R and D of reactor instrumentation were performed taking into account the HTTR operational conditions, and a plant dynamic analysis was carried out considering the operational conditions of the HTTR in order to design the control system. These systems are required to have a high reliability in respect to safety. In the rise-to-power test it was confirmed that the instrumentation has a high reliability and the control system has a high stability and reasonable damped characteristics for various disturbances

  14. Smart antennas for nuclear instruments

    International Nuclear Information System (INIS)

    Jain, Ranjan Bala; Singhi, B.M.

    2005-01-01

    The advances in the field of computer and communications are leading to the development of smart embedded nuclear instruments. These instruments have highly sophisticated signal-processing algorithms based on FPGA and ASICS, provisions of present day connectivity and user interfaces. The developments in the connectivity, standards and bus technologies have made possible to access these instruments on LAN and WAN with suitable reliability and security. To get rid of wires i.e. in order to access these instruments, without wires at any place, wireless technology has evolved and become integral part of day-to-day activities. The environment monitoring can be done remotely, if smart antennas are incorporated on these instruments

  15. Undergraduate students introduction to manual and rotary root canal instrumentation.

    Science.gov (United States)

    Leonardi, Denise Piotto; Haragushiku, Gisele Aihara; Tomazinho, Flavia Sens Fagundes; Furuse, Adilson Yoshio; Volpato, Lusiane; Baratto-Filho, Flares

    2012-01-01

    The aim of this study was to evaluate the performance of undergraduates in their first contact with manual and rotary root canal instrumentation. Forty-two students who had never worked on a root canal before instrumented 42 extracted lower-incisors. Participants were assigned to one of two groups: Rotary instrumentation or manual instrumentation. Pre- and post-operative computed tomography scans were obtained with a 3-dimensional dental imaging system. Starting and finishing times of preparation were recorded. The cross-sectional area of the root canal was analyzed with 2-mm-below-the-apex initial and final transverse images recorded through a digital imaging system and analyzed with software to measure the initial and final area of the root canal in mm(2). Data from the cross-sectional area of the root canal and time spent were subjected to the Mann-Whitney's U-test (pcanal were observed (p=0.25). No accidents occurred. Undergraduate students showed good performance in their first contact with the manual and rotary instrumentation with regard to time spent and cross-sectional area of the root canal, with no operative accidents.

  16. Analysis instrument by gammagraphy

    International Nuclear Information System (INIS)

    Lyons, F.T.

    1978-01-01

    The invention concerns an apparatus for forming the image of a cross section for nuclear medicine providing rapid collection of the radiations emitted by a cross section of a body organ, such as the brain of a patient injected with a labelled substance, the apparatus permitting rapid high sensitivity digital determination and spatial determination of the radioactivity of the organ in a cross section. A very important characteristic of the invention is that the collimator employed is highly focused on a single focus, in other words all the holes of the collimator converge on the focus and the collimator covers a large solid angle between around 0.05 and one steradian, preferably around 0.4 steradian, for collecting radiations. Under the invention, the most advantageous number of collimators is equal to 12 for the sensitivity and resolution achieved to be high in a short period, for example about 2 minutes per slice. The most advantageous range for the number of collimators is that of even numbers between 6 and 24. An even number of collimators is an advantage, since the collimators can then be arranged in pairs, each collimator scanning half the section of the organ so that the attenuation and dispersion effects are minimal [fr

  17. Instrumental variables and Mendelian randomization with invalid instruments

    Science.gov (United States)

    Kang, Hyunseung

    Instrumental variables (IV) methods have been widely used to determine the causal effect of a treatment, exposure, policy, or an intervention on an outcome of interest. The IV method relies on having a valid instrument, a variable that is (A1) associated with the exposure, (A2) has no direct effect on the outcome, and (A3) is unrelated to the unmeasured confounders associated with the exposure and the outcome. However, in practice, finding a valid instrument, especially those that satisfy (A2) and (A3), can be challenging. For example, in Mendelian randomization studies where genetic markers are used as instruments, complete knowledge about instruments' validity is equivalent to complete knowledge about the involved genes' functions. The dissertation explores the theory, methods, and application of IV methods when invalid instruments are present. First, when we have multiple candidate instruments, we establish a theoretical bound whereby causal effects are only identified as long as less than 50% of instruments are invalid, without knowing which of the instruments are invalid. We also propose a fast penalized method, called sisVIVE, to estimate the causal effect. We find that sisVIVE outperforms traditional IV methods when invalid instruments are present both in simulation studies as well as in real data analysis. Second, we propose a robust confidence interval under the multiple invalid IV setting. This work is an extension of our work on sisVIVE. However, unlike sisVIVE which is robust to violations of (A2) and (A3), our confidence interval procedure provides honest coverage even if all three assumptions, (A1)-(A3), are violated. Third, we study the single IV setting where the one IV we have may actually be invalid. We propose a nonparametric IV estimation method based on full matching, a technique popular in causal inference for observational data, that leverages observed covariates to make the instrument more valid. We propose an estimator along with

  18. Evaluation of four instruments with different working motion using artificial plastic model with C-shaped single canal.

    Science.gov (United States)

    Sekiya, Miki; Maeda, Munehiro; Katsuumi, Ichiroh; Igarashi, Masaru

    2018-02-10

    The purpose of this study was to evaluate four instruments with different working motion for preparation of a C-shaped single canal wall using the same artificial plastic models reproduced from a human tooth. One tooth with root canal morphology C1 (the shape is an uninterrupted "C" with no separation or division) was selected among three-dimensional micro-computed tomography (micro-CT) imaging data of extracted human teeth. Imaging data were then converted into STL form data, and twenty-four C-shaped root canal model blocks were manufactured using this STL form data. These blocks were randomly divided into four groups of six blocks each and instrumented as follows: stainless steel K-files (SSK), Self-Adjusting File (SAF), ProTaper NEXT (PTN) and RECIPROC (REC). Micro-CT images taken before and after canal preparation were superimposed, and instrumented canal area, percentage of instrumented canal area, part of instrumented canal area, volume of instrumented canal and time taken for instrumentation were evaluated for each group. The greatest instrumented canal area, percentage of instrumented canal area and volume of instrumented canal were as follows (in decreasing order): SSK > SAF > PTN > REC (P instrumentation was as follows (in decreasing order): SAF > SSK > PTN > REC (P instrumented all root canal walls equally. PTN and REC required less time taken for instrumentation, but showed unequal instrumentation.

  19. Modern spinal instrumentation. Part 1: Normal spinal implants

    International Nuclear Information System (INIS)

    Davis, W.; Allouni, A.K.; Mankad, K.; Prezzi, D.; Elias, T.; Rankine, J.; Davagnanam, I.

    2013-01-01

    The general radiologist frequently encounters studies demonstrating spinal instrumentation, either as part of the patient's postoperative evaluation or as incidental to a study performed for another purpose. There are various surgical approaches and devices used in spinal surgery with an increased understanding of spinal and spinal implant biomechanics drives development of modern fixation devices. It is, therefore, important that the radiologist can recognize commonly used devices and identify their potential complications demonstrated on imaging. The aim of part 1 of this review is to familiarize the reader with terms used to describe surgical approaches to the spine, review the function and normal appearances of commonly used instrumentations, and understand the importance of the different fixation techniques. The second part of this review will concentrate on the roles that the different imaging techniques play in assessing the instrumented spine and the recognition of complications that can potentially occur.

  20. In-flight performance of the Ozone Monitoring Instrument

    NARCIS (Netherlands)

    Schenkeveld, V. M.Erik; Jaross, Glen; Marchenko, Sergey; Haffner, David; Kleipool, Quintus L.; Rozemeijer, Nico C.; Veefkind, J.P.; Levelt, Pieternel Felicitas

    2017-01-01

    The Dutch-Finnish Ozone Monitoring Instrument (OMI) is an imaging spectrograph flying on NASA's EOS Aura satellite since 15 July 2004. OMI is primarily used to map trace-gas concentrations in the Earth's atmosphere, obtaining mid-resolution (0.4-0.6 nm) ultraviolet-visible (UV-VIS; 264-504 nm)

  1. Next Generation UV Coronagraph Instrumentation for Solar Cycle-24

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Measurements to date from sounding rockets, the shuttle deployed Spartan 201 satellite and the Solar and Heliospheric Observatory (SOHO) have utilized high resolution spectroscopy over a very limited instantaneous field of view. New concepts for next generation instrumentation include imaging ...

  2. TROPOMI: Solar backscatter satellite instrument for air quality and climate

    NARCIS (Netherlands)

    Vries, J.de; Laan, E.C.; Hoogeveen, R.W.M.; Jongma, R.T.; Aben, U.; Visser, H.; Boslooper, E.C.; Saari, H.; Dobber, M.; Veefkind, P.; Kleipool, Q.; Levelt, P.F.

    2007-01-01

    TROPOMI is a nadir-viewing grating-based imaging spectrograph in the line of OMI and SCIAMACHY. TROPOMI is part of the ESA Candidate Core Explorer Mission proposal TRAQ and also of the CAMEO satellite proposed for the US NRC decadal study. A TROPOMI-like instrument is part of the ESA/EU Sentinel 4&5

  3. Torsional resistance of retreatment instruments.

    Science.gov (United States)

    Lopes, Hélio P; Elias, Carlos N; Vedovello, Gislaine A F; Bueno, Carlos E S; Mangelli, Marcelo; Siqueira, José F

    2011-10-01

    This study compared the torsional resistance of two brands of rotary nickel-titanium (NiTi) instruments indicated for endodontic retreatment. Mtwo retreatment instruments #15 and #25 (VDW, Munich, Germany) and ProTaper Universal retreatment instruments D2 and D3 (Maillefer/Dentsply, Ballaigues, Switzerland) were subjected to a torsional assay in clockwise rotation. The two parameters evaluated were maximum torque and angular deflection at failure. Fractured instruments had their fractured surfaces and helical shafts examined by scanning electron microscopy. The results indicated that the angular deflection at fracture decreased in the following order: Mtwo retreatment file #15 > Mtwo retreatment file #25 > ProTaper Universal retreatment file D2 > ProTaper Universal retreatment file D3. As for the maximum torque values, the results revealed the following descending order: ProTaper Universal file D2 > Mtwo retreatment file #25 > ProTaper Universal file D3 > Mtwo retreatment file #15. Scanning electron microscopic analysis revealed that plastic deformation occurred along the helical shaft of the fractured instruments. Fractured surfaces were of the ductile type. The instruments tested showed different torsional behavior depending on the parameter evaluated. If one considers that high angular deflection values may serve as a safety factor, then the Mtwo retreatment instruments showed significantly better results. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Instrumentation in elementary particle physics

    International Nuclear Information System (INIS)

    Fabjan, C.W.; Pilcher, J.E.

    1988-01-01

    The first International Committee for Future Accelerators Instrumentation School was held at the International Centre for Theoretical Physics, Trieste, Italy from 8 to 19 June 1987. The School was attended by 74 students of whom 45 were from developing countries, 10 lecturers and 9 laboratory instructors. The next generation of elementary particle physics experiments would depend vitally on new ideas in instrumentation. This is a field where creativity and imagination play a major role and large budgets are not a prerequisite. One of the unique features was the presentation of four laboratory experiments using modern techniques and instrumentation. Refs, figs and tabs

  5. Adjustable extender for instrument module

    International Nuclear Information System (INIS)

    Sevec, J.B.; Stein, A.D.

    1975-01-01

    A blank extender module used to mount an instrument module in front of its console for repair or test purposes has been equipped with a rotatable mount and means for locking the mount at various angles of rotation for easy accessibility. The rotatable mount includes a horizontal conduit supported by bearings within the blank module. The conduit is spring-biased in a retracted position within the blank module and in this position a small gear mounted on the conduit periphery is locked by a fixed pawl. The conduit and instrument mount can be pulled into an extended position with the gear clearing the pawl to permit rotation and adjustment of the instrument

  6. Digitalisation of optical lever instruments

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, G. [Istituto Nazionale di Geofisica, Rome (Italy)

    2000-06-01

    Some classical old fashioned instruments (such as the Wood-Anderson seismometers), as well as some modern instruments (like the all-quartz made Verbaandert-Melchior tiltmeters), conventionally require an impractical recording system obtained by a photographic drum recorder in a darkroom. Simple electronic equipment (made by readily available, low cost electronics) may help in using such kind of instruments allowing a useful digital recording. This will reduce the time-hour in data acquisition and storage (and the manual error) and will increase the accuracy. The theory of operations and some results obtained using the described equipment are shown.

  7. Digitization of optical lever instruments

    Directory of Open Access Journals (Sweden)

    G. Romeo

    2000-06-01

    Full Text Available Some classical old-fashioned instruments (such as the Wood-Anderson seismometers, as well as some modern instruments (like the all-quartz made Verbaandert-Melchior tiltmeters, conventionally require an impractical recording system obtained by a photographic drum recorder in a darkroom. Simple electronic equipment (made by readily available, low cost electronics may help in using such kind of instruments allowing a useful digital recording. This will reduce the time-hour in data acquisition and storage (and the manual error, and will increase the accuracy. The theory of operations and some results obtained using the described equipment are shown.

  8. Evaluating the Relational Coordination instrument

    DEFF Research Database (Denmark)

    Edwards, Kasper; Lundstrøm, Sanne Lykke

    2014-01-01

    and surgical performance. This has prompted the attention of both practitioners and politicians some of who perceive relational coordination as a means to attain better performance. The relational coordination instrument has been validated as a measure of teamwork from the following perspectives: internal...... consistency, interrater agreement and reliability, structural validity, content validity. However as relational coordination is being used as a diagnostics tool it is important to examine further if the instrument can measure changes. Indeed we need to know how precise and sensitive the instrument is when...

  9. Steam 80 steam generator instrumentation

    International Nuclear Information System (INIS)

    Carson, W.H.; Harris, H.H.

    1980-01-01

    This paper describes two special instrumentation packages in an integral economizer (preheater) steam generator of one of the first System 80 plants scheduled to go into commercial operation. The purpose of the instrumentation is to obtain accurate operating information from regions of the secondary side of the steam generator inaccessible to normal plant instrumentation. In addition to verification of the System 80 steam generator design predictions, the data obtained will assist in verification of steam generator thermal/hydraulic computer codes developed for generic use in the industry

  10. Intelligent instrumentation principles and applications

    CERN Document Server

    Bhuyan, Manabendra

    2011-01-01

    With the advent of microprocessors and digital-processing technologies as catalyst, classical sensors capable of simple signal conditioning operations have evolved rapidly to take on higher and more specialized functions including validation, compensation, and classification. This new category of sensor expands the scope of incorporating intelligence into instrumentation systems, yet with such rapid changes, there has developed no universal standard for design, definition, or requirement with which to unify intelligent instrumentation. Explaining the underlying design methodologies of intelligent instrumentation, Intelligent Instrumentation: Principles and Applications provides a comprehensive and authoritative resource on the scientific foundations from which to coordinate and advance the field. Employing a textbook-like language, this book translates methodologies to more than 80 numerical examples, and provides applications in 14 case studies for a complete and working understanding of the material. Beginn...

  11. Technical Training seminar: Texas Instruments

    CERN Multimedia

    2006-01-01

    Monday 6 November TECHNICAL TRAINING SEMINAR 14:00 to 17:30 - Training Centre Auditorium (bldg. 593) Texas Instruments Technical Seminar Michael Scholtholt, Field Application Engineer / TEXAS INSTRUMENTS (US, D, CH) POWER - A short approach to Texas Instruments power products Voltage mode vs. current mode control Differentiating DC/DC converters by analyzing control and compensation schemes: line / load regulation, transient response, BOM, board space, ease-of-use Introduction to the SWIFT software FPGA + CPLD power solutions WIRELESS / CHIPCON Decision criteria when choosing a RF platform Introduction to Texas Instruments wireless products: standardized platforms proprietary platforms ( 2.4 GHz / sub 1 GHz) development tools Antenna design: example for 2.4 GHz questions, discussion Industrial partners: Robert Medioni, François Caloz / Spoerle Electronic, CH-1440 Montagny (VD), Switzerland Phone: +41 24 447 0137, email: RMedioni@spoerle.com, http://www.spoerle.com Language: English. Free s...

  12. PEP instrumentation and control system

    Energy Technology Data Exchange (ETDEWEB)

    Melen, R.

    1980-06-01

    This paper describes the operating characteristics of the primary components that form the PEP Instrumentation and Control System. Descriptions are provided for the computer control system, beam monitors, and other support systems.

  13. PEP instrumentation and control system

    International Nuclear Information System (INIS)

    Melen, R.

    1980-06-01

    This paper describes the operating characteristics of the primary components that form the PEP Instrumentation and Control System. Descriptions are provided for the computer control system, beam monitors, and other support systems

  14. Survey of instruments for micrometeorology

    National Research Council Canada - National Science Library

    Monteith, John Lennox

    1972-01-01

    ... have been developed for micrometeorological measurements. Many of these instruments can be used by ecologists to measure and define the environment of plants and animals and to explore the ways in which organisms modify the environment they are exposed...

  15. Compact Formaldehyde Fluorescence Instrument Element

    Data.gov (United States)

    National Aeronautics and Space Administration — The successful completion of this IRAD will deliver a fully functional instrument at TRL 6.  The key characteristics that we will demonstrate are simplicity,...

  16. Survey of instruments for micrometeorology

    National Research Council Canada - National Science Library

    Monteith, John Lennox

    1972-01-01

    .... Meteorologists are concerned with the behaviour of the boundary layer because it determines the input of heat, water vapour and momentum to the lower atmosphere and a large number of instruments...

  17. Luminescence techniques: Instrumentation and methods

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.

    1997-01-01

    This paper describes techniques, instruments and methods used in luminescence dating and environmental dosimetry in many laboratories around the world. These techniques are based on two phenomena - thermally stimulated luminescence and optically stimulated luminescence. The most commonly used...... luminescence stimulation and detection techniques are reviewed and information is given on recent developments in instrument design and on the stale of the art in luminescence measurements and analysis. (C) 1998 Elsevier Science Ltd. All rights reserved....

  18. Dynamic Optimization of Bytecode Instrumentation

    OpenAIRE

    Zheng Yudi; Bulej Lubomír; Zhang Cheng; Kell Stephen; Ansaloni Danilo; Binder Walter

    2013-01-01

    Accuracy completeness and performance are all major concerns in the context of dynamic program analysis. Emphasizing one of these factors may compromise the other factors. For example improving completeness of an analysis may seriously impair performance. In this paper we present an analysis model and a framework that enables reducing analysis overhead at runtime through adaptive instrumentation of the base program. Our approach targets analyses implemented with code instrumentation technique...

  19. Notes on instrumentation and control

    CERN Document Server

    Roy, G J

    2013-01-01

    Notes on Instrumentation and Control presents topics on pressure (i.e., U-tube manometers and elastic type gauges), temperature (i.e. glass thermometer, bi-metallic strip thermometer, filled system thermometer, vapor pressure thermometer), level, and flow measuring devices. The book describes other miscellaneous instruments, signal transmitting devices, supply and control systems, and monitoring systems. The theory of automatic control and semi-conductor devices are also considered. Marine engineers will find the book useful.

  20. Accounting Issues On Financial Instruments

    OpenAIRE

    Shiba, Kenji

    1995-01-01

    Financial Instruments should be measured at the present value by using the current effective yield as the discount rate by reference to the current market interest rate and the risk premium. The fair value or the current market price are surrogates of the present value. The present value determined by using the historical effective yield as the discount rate is allowed under limited circumstances. However, the historical cost is not allowed as a measurement basis of financial instruments. Thi...

  1. Instrumental development and data processing

    International Nuclear Information System (INIS)

    Franzen, J.

    1978-01-01

    A review of recent developments in mass spectrometry instrumentation is presented under the following headings: introduction (scope of mass spectrometry compared with neighbouring fields); ion sources and ionization techniques; spectrometers (instrumental developments); measuring procedures; coupling techniques; data systems; conclusions (that mass spectrometry should have a broader basis and that there would be mutual profit from a better penetration of mass spectrometry into fields of routine application). (U.K.)

  2. Recent developments in combining LODESR imaging with proton NMR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, I.; Robb, F.J.L.; McCallum, S.J.; Koptioug, A.; Lurie, D.J. [Department of Biomedical Physics and Bioengineering, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom)

    1998-07-01

    We have designed and constructed RF coil assemblies and the appropriate instrumentation for combining proton NMR imaging with LODESR imaging. This has enabled us to collect sequential images from the same sample using both methods. The coil assembly consists of a crossed ellipse coil for LODESR and proton NMR signal detection and a saddle coil for excitation of the ESR resonance. Images have been collected of phantoms containing copper sulphate and Tempol solutions. NMR images were collected (4.3 min) and within 30 s LODESR data collection started (collection time 2.5 min). Only the Tempol solutions are visible in the LODESR images. (author)

  3. Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  4. Isotope-equipped measuring instruments

    International Nuclear Information System (INIS)

    Miyagawa, Kazuo; Amano, Hiroshi

    1980-01-01

    In the steel industry, though the investment in isotope-equipped measuring instruments is small as compared with that in machinery, they play important role in the moisture measurement in sintering and blast furnaces, the thickness measurement in rolling process and others in automatic control systems. The economic aspect of the isotope-equipped measuring instruments is described on the basis of the practices in Kimitsu Works of Nippon Steel Corporation: distribution of such instruments, evaluation of economic effects, usefulness evaluation in view of raising the accuracy, and usefulness evaluation viewed from the failure of the isotope instruments. The evaluation of economic effects was made under the premise that the isotope-equipped measuring instruments are not employed. Then, the effects of raising the accuracy are evaluated for a γ-ray plate thickness gauge and a neutron moisture gauge for coke in a blast furnace. Finally, the usefulness was evaluated, assuming possible failure of the isotope-equipped measuring instruments. (J.P.N.)

  5. Nuclear medicine and imaging research. Progress report, January 1, 1981-December 31, 1981

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.C.

    1981-09-01

    The Progress Report for the period January 1, 1981-December 31, 1981 of the Franklin Memorial Research Institute discusses instrumentation and quantitative methods of evaluation in nuclear medicine and imaging research. Imaging systems and image evaluation are discussed in four projects: Radiation Detector Studies, Dual Purpose Scanner for Thyroid Imaging, Instrumentation for Image Processing and Enhancement, and Energy-Coded Processing in Nuclear Medicine

  6. IOT Overview: Optical Spectro-Imagers

    Science.gov (United States)

    Patat, F.

    Taking the FORS instruments as a representative case, I review the Calibration Plan for optical spectro-imagers currently offered at ESO, discussing various aspects related both to the scientific outcome and the instrument/site monitoring. I also describe ongoing and future calibration projects planned by the Instrument Operations Teams, trying to give an objective view on the limitations of the Calibration Plans currently implemented at ESO for this class of instruments.

  7. The Portable Dynamic Fundus Instrument: Uses in telemedicine and research

    Science.gov (United States)

    Hunter, Norwood; Caputo, Michael; Billica, Roger; Taylor, Gerald; Gibson, C. Robert; Manuel, F. Keith; Mader, Thomas; Meehan, Richard

    1994-01-01

    For years ophthalmic photographs have been used to track the progression of many ocular diseases such as macular degeneration and glaucoma as well as the ocular manifestations of diabetes, hypertension, and hypoxia. In 1987 a project was initiated at the Johnson Space Center (JSC) to develop a means of monitoring retinal vascular caliber and intracranial pressure during space flight. To conduct telemedicine during space flight operations, retinal images would require real-time transmissions from space. Film-based images would not be useful during in-flight operations. Video technology is beneficial in flight because the images may be acquired, recorded, and transmitted to the ground for rapid computer digital image processing and analysis. The computer analysis techniques developed for this project detected vessel caliber changes as small as 3 percent. In the field of telemedicine, the Portable Dynamic Fundus Instrument demonstrates the concept and utility of a small, self-contained video funduscope. It was used to record retinal images during the Gulf War and to transmit retinal images from the Space Shuttle Columbia during STS-50. There are plans to utilize this device to provide a mobile ophthalmic screening service in rural Texas. In the fall of 1993 a medical team in Boulder, Colorado, will transmit real-time images of the retina during remote consultation and diagnosis. The research applications of this device include the capability of operating in remote locations or small, confined test areas. There has been interest shown utilizing retinal imaging during high-G centrifuge tests, high-altitude chamber tests, and aircraft flight tests. A new design plan has been developed to incorporate the video instrumentation into face-mounted goggle. This design would eliminate head restraint devices, thus allowing full maneuverability to the subjects. Further development of software programs will broaden the application of the Portable Dynamic Fundus Instrument in

  8. Smarter Instruments, Smarter Archives: Machine Learning for Tactical Science

    Science.gov (United States)

    Thompson, D. R.; Kiran, R.; Allwood, A.; Altinok, A.; Estlin, T.; Flannery, D.

    2014-12-01

    . We show recent examples from science data pipelines deployed onboard aircraft as well as tactical visualizations for non-image instrument data.

  9. Biomedical photoacoustics: fundamentals, instrumentation and perspectives on nanomedicine.

    Science.gov (United States)

    Zou, Chunpeng; Wu, Beibei; Dong, Yanyan; Song, Zhangwei; Zhao, Yaping; Ni, Xianwei; Yang, Yan; Liu, Zhe

    Photoacoustic imaging (PAI) is an integrated biomedical imaging modality which combines the advantages of acoustic deep penetration and optical high sensitivity. It can provide functional and structural images with satisfactory resolution and contrast which could provide abundant pathological information for disease-oriented diagnosis. Therefore, it has found vast applications so far and become a powerful tool of precision nanomedicine. However, the investigation of PAI-based imaging nanomaterials is still in its infancy. This perspective article aims to summarize the developments in photoacoustic technologies and instrumentations in the past years, and more importantly, present a bright outlook for advanced PAI-based imaging nanomaterials as well as their emerging biomedical applications in nanomedicine. Current challenges and bottleneck issues have also been discussed and elucidated in this article to bring them to the attention of the readership.

  10. Developing a Multimedia Instrument for Technical Vocabulary Learning: A Case of EFL Undergraduate Physics Education

    Science.gov (United States)

    Rusanganwa, Joseph Appolinary

    2015-01-01

    The aim of the present study is to investigate the process of constructing a Multimedia Assisted Vocabulary Learning (MAVL) instrument at a university in Rwanda in 2009. The instrument is used in a one-computer classroom where students were taught in a foreign language and had little access to books. It consists of video clips featuring images,…

  11. From Qualitative Data to Instrument Development: The Women's Breast Conflict Scale

    Science.gov (United States)

    Thomas, Eileen

    2011-01-01

    The purpose of this article is to describe the initial development of the Women's Breast Conflict Scale, a predictive instrument designed to identify women who may be least likely to follow recommended mammography screening guidelines. This new instrument incorporates self/body image, teasing, family norms and values, and societal/media…

  12. On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    Science.gov (United States)

    Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg

    2007-01-01

    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).

  13. Second harmonic generation imaging

    CERN Document Server

    2013-01-01

    Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical applications. The book features contributions by experts in second-harmonic imaging, including many pioneering researchers in the field. Written for researchers at all levels, it takes an in-depth look at the current state of the art and possibilities of SHG microscopy. Organized into three sections, the book: Provides an introduction to the physics of the process, step-by-step instructions on how to build an SHG microscope, and comparisons with related imaging techniques Gives an overview of the capabilities of SHG microscopy for imaging tissues and cells—including cell membranes, muscle, collagen in tissues, and microtubules in live cells—by summarizing experi...

  14. Scintigraphic instruments and techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Bornand, Bernard; Soussaline Francoise

    1979-11-01

    This bibliographical supplement brings out the importance assumed from now on by comparative studies on various imagery systems: radioisotopic scintigraphy, computerized tomography and ultra sonography. Another aspect to emerge is the anxiety of the medical world faced with ethical and economic problems in weighing up as accurately as possible the justifiability and consequences of clinical decisions, hence the value of visual observations and interpretations of images, as well as the quality of the instruments used. Four lists of bibliographical notices with abstracts covering the period late 1976-early 1979 mention 258 articles from journals, 67 conference lectures, 13 reports, 3 theses and 44 invention patents respectively. To these lists are attached the author, inventor and subject indices [fr

  15. Instrumentation optimization for positron emission mammography

    Energy Technology Data Exchange (ETDEWEB)

    Moses, William W. E-mail: wwmoses@lbl.gov; Qi Jinyi

    2004-07-11

    The past several years have seen designs for PET cameras optimized to image the breast, commonly known as Positron Emission Mammography (PEM) cameras. The guiding principal behind PEM instrumentation is that a camera whose field of view is restricted to a single breast has higher performance and lower cost than a conventional PET camera. The most common geometry is a pair of parallel planes of detector modules, although geometries that encircle the breast have also been proposed. The ability of the detectors to measure the depth of interaction (DOI) is also a relevant feature. This paper finds that while both the additional solid angle coverage afforded by encircling the breast and the decreased blurring afforded by the DOI measurement improve performance, for small lesions the ability to measure DOI is more important than the ability to encircle the breast.

  16. Instrumentation optimization for positron emission mammography

    Energy Technology Data Exchange (ETDEWEB)

    Moses, William W.; Qi, Jinyi

    2003-06-05

    The past several years have seen designs for PET cameras optimized to image the breast, commonly known as Positron Emission Mammography or PEM cameras. The guiding principal behind PEM instrumentation is that a camera whose field of view is restricted to a single breast has higher performance and lower cost than a conventional PET camera. The most common geometry is a pair of parallel planes of detector modules, although geometries that encircle the breast have also been proposed. The ability of the detector modules to measure the depth of interaction (DOI) is also a relevant feature. This paper finds that while both the additional solid angle coverage afforded by encircling the breast and the decreased blurring afforded by the DOI measurement improve performance, the ability to measure DOI is more important than the ability to encircle the breast.

  17. Instrumentation optimization for positron emission mammography

    International Nuclear Information System (INIS)

    Moses, William W.; Qi, Jinyi

    2003-01-01

    The past several years have seen designs for PET cameras optimized to image the breast, commonly known as Positron Emission Mammography or PEM cameras. The guiding principal behind PEM instrumentation is that a camera whose field of view is restricted to a single breast has higher performance and lower cost than a conventional PET camera. The most common geometry is a pair of parallel planes of detector modules, although geometries that encircle the breast have also been proposed. The ability of the detector modules to measure the depth of interaction (DOI) is also a relevant feature. This paper finds that while both the additional solid angle coverage afforded by encircling the breast and the decreased blurring afforded by the DOI measurement improve performance, the ability to measure DOI is more important than the ability to encircle the breast

  18. Register of Validated Short Dietary Assessment Instruments

    Science.gov (United States)

    The register contains descriptive information about the instruments identified (over 135) along with any associated validation studies and publications, and copies of the instruments themselves when available.

  19. Readiness Issues for Emergency Response Instrumentation

    International Nuclear Information System (INIS)

    Riland, C.A.; Bowman, D.R.; Tighe, R.J.

    1999-01-01

    Issues in maintaining readiness of instruments for deployment and use in emergency response situations often differ from those in maintaining instruments for normal operations. Confunding circumstances include use or non-availability of check sources, ensuring instruments are always in calibration and operable, possible use of instruments in different climates, packaging of instrumentation for deployment, transport of instrumentation and check sources, and ensuring users are familiar with the instruments. Methods and procedures for addressing these issues are presented. Instrumentation used for survey, in situ measurements, electronic dosimetry, and air monitoring are discussed

  20. Readiness Issues for Emergency Response Instrumentation

    International Nuclear Information System (INIS)

    Riland, C.A.; Bowman, D.R.; Tighe, R.J.

    1999-01-01

    Issues in maintaining readiness of instruments for deployment and use in emergency response situation often differ from those in maintaining instruments for normal operations. Confunding circumstances include use of non-availability of check sources, ensuring instruments are always in calibration and operable, possible use of instruments in different climates, packaging of instrumentation for deployment, transport of instrumentation and check sources, and ensuring users are familiar with instruments. Methods and procedures for addressing these issues are presented. Instrumentation used for survey, in situ measurements, electronic dosimetry, and air conditioning are discussed

  1. 31 CFR 596.307 - Monetary instruments.

    Science.gov (United States)

    2010-07-01

    ... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY TERRORISM LIST GOVERNMENTS SANCTIONS REGULATIONS General Definitions § 596.307 Monetary instruments. The term monetary instruments shall have the meaning...

  2. LIFTERS-hyperspectral imaging at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Fields, D. [Lawrence Livermore National Lab., CA (United States); Bennett, C.; Carter, M.

    1994-11-15

    LIFTIRS, the Livermore Imaging Fourier Transform InfraRed Spectrometer, recently developed at LLNL, is an instrument which enables extremely efficient collection and analysis of hyperspectral imaging data. LIFTIRS produces a spatial format of 128x128 pixels, with spectral resolution arbitrarily variable up to a maximum of 0.25 inverse centimeters. Time resolution and spectral resolution can be traded off for each other with great flexibility. We will discuss recent measurements made with this instrument, and present typical images and spectra.

  3. Selected topics in image science

    International Nuclear Information System (INIS)

    Nalcioglu, O.; Cho, Z.H.

    1984-01-01

    A review of the state of the art in diagnostic imaging via computers. Applications covered include emission tomography, digital radiography, and ultrasound and nuclear magnetic resonance imaging. Contents, abridged: Direct Fourier reconstruction techniques. Radiation detectors for CT instrumentation. Single photon emission computed tomography: potentials and limitations. Matched filtering for digital subtraction angiography

  4. Geometric and dimensional characteristics of simulated curved canals prepared with proTaper instruments

    Science.gov (United States)

    MARTINS, Renata de Castro; BAHIA, Maria Guiomar de Azevedo; BUONO, Vicente Tadeu Lopes

    2010-01-01

    Objective This study identified which regions of ProTaper instruments work during curved root canal instrumentation. Material and methods Twelve ProTaper instruments of each type, S1, S2, F1, and F2, were assessed morphometrically by measuring tip angle, tip length, tip diameter, length of each pitch along the cutting blades, and instrument diameter at each millimeter from the tip. Curved canals in resin blocks were explored with manual stainless steel files and prepared with ProTaper instruments until the apical end following four distinct sequences of instrumentation: S1; S1 and S2; S1, S2, and F1; S1, S2, F1, and F2. Image analysis was employed for measuring canal diameters. The diameters of the canals and diameters of the instruments were compared. Data were analyzed by one-way ANOVA and Tukey’s test. Results No statistically significant difference was found between the canals and instrument diameters (p>0.05). The largest diameters in the end-point of the instrumented canals were obtained with F1 and F2 instruments and in the initial and middle thirds with S1 and S2 instruments. Conclusions All instruments worked at the tip and along their cutting blades, being susceptible to fail by torsion, fatigue, or the combination of these two mechanisms. PMID:20379681

  5. Wide Field Instrument Adjutant Scientist

    Science.gov (United States)

    Spergel, David

    As Wide Field Instrument Adjutant Scientist, my goal will be to maximize the science capability of the mission in a cost-contained environment. I hope to work with the HQ, project and the FSWG to assure mission success. I plan to play a leadership role in communicating the WFIRST science capabilities to the astronomy community , obtain input from both science teams and the broader community that help derive performance requirements and calibration metrics. I plan to focus on developing the observing program for the deep fields and focus on using them to calibrate instrument performance and capabilities. I plan to organize workshops that will bring together WFIRST team members with astronomers working on LSST, Euclid, JWST, and the ELTs to maximize combined science return. I am also eager to explore the astrometric and stellar seismology capabilities of the instrument with a goal of maximizing science return without affecting science requirements.

  6. Technical presentation - KEITHLEY Instruments - CANCELLED

    CERN Multimedia

    FI Department

    2009-01-01

    10 March 2009 13:30 – 15:30, Council Chamber, Bldg. 503 Keithley markets highly accurate instruments and data acquisition products, as well as complete system solutions for high-volume production and assembly testing. Keithley Instruments, Inc. designs, develops, manufactures and markets complex electronic instruments and systems geared to the specialized needs of electronics manufacturers for high-performance production testing, process monitoring, product development and research. Products and Services: Digital Multimeters and Data Acquisition Systems Current / Voltage Source and Measure Products Low Current / High Resistance Measurement Products Function/Pulse/Arbitrary/Pattern Generators Low Voltage/Low Resistance Measurement Products RF Spectrum Analyzer / RF Signal Generator / RF Switching Semiconductor Device Characterization Program: Topic 1: Welcome and short overview of new Products SMU 26XXA / ARB Generator 3390 / DMM 3706 / E-Meter 6517B Topic 2a: Te...

  7. Introduction to instrumentation and measurements

    CERN Document Server

    Northrop, Robert B

    2014-01-01

    Weighing in on the growth of innovative technologies, the adoption of new standards, and the lack of educational development as it relates to current and emerging applications, the third edition of Introduction to Instrumentation and Measurements uses the authors' 40 years of teaching experience to expound on the theory, science, and art of modern instrumentation and measurements (I&M). What's New in This Edition: This edition includes material on modern integrated circuit (IC) and photonic sensors, micro-electro-mechanical (MEM) and nano-electro-mechanical (NEM) sensors, chemical and radiation sensors, signal conditioning, noise, data interfaces, and basic digital signal processing (DSP), and upgrades every chapter with the latest advancements. It contains new material on the designs of micro-electro-mechanical (MEMS) sensors, adds two new chapters on wireless instrumentation and microsensors, and incorporates extensive biomedical examples and problems. Containing 13 chapters, this third edition: Describ...

  8. Advanced Light Source instrumentation overview

    International Nuclear Information System (INIS)

    Kim, C.H.; Hinkson, J.

    1992-10-01

    The accelerator instrumentation played a vital role in commissioning the ALS injector accelerator. It helped us to see whether electron dynamics agreed with our theoretical predictions and important beam parameters met the design specifications. It helped us to see where beam losses occurred and why. In this paper we will start with a brief description of the ALS accelerator complex and the expected performance of it. Then we will describe each diagnostics instrument by its construction, operational principle, requirements, and our experiences with it. We will describe the wall current monitor, the scintillator, the Faraday cup, the beam collimator, the beam position monitor, the direct-current current transformer (DCCT), the traveling wave electrodes the Sabersky finger, and other special instruments. Finally, we will go into some detail on how we measured the beam emittances, the closed orbit, and the betatron tunes

  9. Advancements in Actuated Musical Instruments

    DEFF Research Database (Denmark)

    Overholt, Daniel; Berdahl, Edgar; Hamilton, Robert

    2011-01-01

    This article presents recent developments in actuated musical instruments created by the authors, who also describe an ecosystemic model of actuated performance activities that blur traditional boundaries between the physical and virtual elements of musical interfaces. Actuated musical instruments...... in that they produce sound via vibrating element(s) that are co-manipulated by humans and electromechanical systems. We examine the possibilities that arise when such instruments are played in different performative environments and music-making scenarios, and we postulate that such designs may give rise to new...... methods of musical performance. The Haptic Drum, the Feedback Resonance Guitar, the Electromagnetically Prepared Piano, the Overtone Fiddle and Teleoperation with Robothands are described, along with musical examples and reflections on the emergent properties of the performance ecologies...

  10. HTGR Measurements and Instrumentation Systems

    International Nuclear Information System (INIS)

    Ball, Sydney J.; Holcomb, David Eugene; Cetiner, Mustafa Sacit

    2012-01-01

    This report provides an integrated overview of measurements and instrumentation for near-term future high-temperature gas-cooled reactors (HTGRs). Instrumentation technology has undergone revolutionary improvements since the last HTGR was constructed in the United States. This report briefly describes the measurement and communications needs of HTGRs for normal operations, maintenance and inspection, fuel fabrication, and accident response. The report includes a description of modern communications technologies and also provides a potential instrumentation communications architecture designed for deployment at an HTGR. A principal focus for the report is describing new and emerging measurement technologies with high potential to improve operations, maintenance, and accident response for the next generation of HTGRs, known as modular HTGRs, which are designed with passive safety features. Special focus is devoted toward describing the failure modes of the measurement technologies and assessing the technology maturity.

  11. The urban environmental perception with use of photographic images: a semiotic instrument named Game of the Perception A percepção ambiental urbana com uso de imagens fotográficas: um instrumento semiótico denominado Jogo da Percepção

    Directory of Open Access Journals (Sweden)

    Luzia Marta Bellini

    2007-01-01

    Full Text Available This article about signs of urban environmental perception was developed in the city of Medianeira, Southwestern Paraná – Brazil. Part of perceptive information of local social actors was obtained by means of analysis of photographic images with the use of a new investigation instrument that we named Game of the Perception. The activity of the Game encouraged the participating social actors to observe the context of the local environment and perceptually judge practices and habits of the city population, and also experience odd situations on effective practices and use of the environment. Este artigo sobre percepção sígnica ambiental urbana foi desenvolvido na cidade de Medianeira, Sudoeste do Paraná – Brasil. Parte das informações perceptivas dos atores sociais locais foi obtida por meio da análise de imagens fotográficas com o uso de um novo instrumento de investigação que denominamos Jogo da Percepção. A atividade do Jogo estimulou os atores sociais participantes a observar o contexto do ambiente local e ajuizar perceptivamente costumes e hábitos da população da cidade bem como vivenciar situações de estranhamento sobre práticas vigentes no uso do ambiente.

  12. Advanced Instrumentation for Transient Reactor Testing

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael L.; Anderson, Mark; Imel, George; Blue, Tom; Roberts, Jeremy; Davis, Kurt

    2018-01-31

    Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and design increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).

  13. Web based remote instrumentation and control

    International Nuclear Information System (INIS)

    Dhekne, P.S.; Patil, Jitendra; Kulkarni, Jitendra; Babu, Prasad; Lad, U.C.; Rahurkar, A.G.; Kaura, H.K.

    2001-01-01

    The Web-based technology provides a very powerful communication medium for transmitting effectively multimedia information containing data generated from various sources, which may be in the form of audio, video, text, still or moving images etc. Large number of sophisticated web based software tools are available that can be used to monitor and control distributed electronic instrumentation projects. For example data can be collected online from various smart sensors/instruments such as images from CCD camera, pressure/ humidity sensor, light intensity transducer, smoke detectors etc and uploaded in real time to a central web server. This information can be processed further, to take control action in real time from any remote client, of course with due security care. The web-based technology offers greater flexibility, higher functionality, and high degree of integration providing standardization. Further easy to use standard browser based interface at the client end to monitor, view and control the desired process parameters allow you to cut down the development time and cost to a great extent. A system based on a web client-server approach has been designed and developed at Computer division, BARC and is operational since last year to monitor and control remotely various environmental parameters of distributed computer centers. In this paper we shall discuss details of this system, its current status and additional features which are currently under development. This type of system is typically very useful for Meteorology, Environmental monitoring of Nuclear stations, Radio active labs, Nuclear waste immobilization plants, Medical and Biological research labs., Security surveillance and in many such distributed situations. A brief description of various tools used for this project such as Java, CGI, Java Script, HTML, VBScript, M-JPEG, TCP/IP, UDP, RTP etc. along with their merits/demerits have also been included

  14. Recent developments in nuclear instruments

    International Nuclear Information System (INIS)

    Vaidya, P.P.

    2004-01-01

    Full text : Nuclear Instrumentation is a field of vital importance for DAE. It has important applications in many areas of interest such as Reactor Monitoring and control, Accelerator based research, Laser and nuclear physics experiments, Health and environmental monitoring, Astrophysics experiments etc. It is a specialized field involving expertise in detection of radioactivity down to the level of few events per minute as well as processing and analysis of signals which can be as small as few hundred micro volts embedded in noise. Some applications involve digitizing and processing these signals with 0.001% accuracy and timing accuracies of a fraction of nano sec. Rapid developments in semiconductor related technologies have influenced the field of nuclear instrumentation. Development of FPGA's and ASIC's have made it possible to develop miniaturized smart and portable instruments for field applications. Advancements in field of computers, communications and various field buses have been successfully utilized for smart, portable and DSP based instrumentation. Smart sensor with detector and front-end electronics on a single silicon chip is now a reality. These instruments are also made intelligent by addition of fuzzy logic, artificial neural networks and expert systems. Electronics Division of BARC has made significant contribution to the field of nuclear instrumentation to achieve self-reliance in this area. This has also led to development of several new methods, which have been published in international journals and appreciated worldwide. As a step towards achieving complete self-reliance a programme for development of FPGA's, HMC's and ASIC's has been undertaken and is being followed with special emphasis. This also includes development of detector and front- end electronics on a single chip. This talk brings out details of these developments and describes the 'state of art' work done in India

  15. An introduction to biomedical instrumentation

    CERN Document Server

    Dewhurst, D J

    1976-01-01

    An Introduction to Biomedical Instrumentation presents a course of study and applications covering the basic principles of medical and biological instrumentation, as well as the typical features of its design and construction. The book aims to aid not only the cognitive domain of the readers, but also their psychomotor domain as well. Aside from the seminar topics provided, which are divided into 27 chapters, the book complements these topics with practical applications of the discussions. Figures and mathematical formulas are also given. Major topics discussed include the construction, handli

  16. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Young, S.E.; Becker, C.H.; Coggiola, M.J. [SRI International, Menlo Park, CA (United States); Wollnik, H. [Giessen Univ. (Germany)

    1997-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  17. Neutron-multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  18. Instruments Sniff Organic Surface Contaminants

    Science.gov (United States)

    Adler-Golden, Steven; Matthew, Michael W.

    1995-01-01

    Portable instruments detecting both nonvolatile and volatile organic surface contaminants in real time developed. Instruments easy to use: operate under ordinary ambient atmospheric conditions, without need to use messy liquid solvents or install and remove witness plates, and without need to cut specimens from surfaces to be inspected. Principle of detection involves sweeping pure, activated gas across surface spot inspected, then monitoring light emitted at wavelengths characteristic of excited molecules formed by chemical reactions between activated gas and contaminants. Gas activated by dc discharge, radio-frequency induction, microwave radiation, laser beam, hot filaments, or any other suitable means that excites some of gas molecules.

  19. Instrumentation for Colliding Beam Physics

    CERN Document Server

    2017-01-01

    INSTR17, the International Conference on Instrumentation for Colliding Beam Physics, will be held in the Budker Institute of Nuclear Physics, Novosibirsk, Russia, on 27 February – 4 March, 2017. The conference covers novel methods of particle detection used in various experiments at particle accelerators as well as in astrophysics. It is organized in close relationship with the Vienna Conference on Instrumentation (last held in 2016) and the Pisa Meeting on Advanced Detectors (last held in 2015). The deadline for registration and abstract submission is 15 January. For more details visit the conference website instr17.inp.nsk.su. Will be published in: JINST

  20. Development of an embedded instrument for autofocus and polarization alignment of polarization maintaining fiber

    Science.gov (United States)

    Feng, Di; Fang, Qimeng; Huang, Huaibo; Zhao, Zhengqi; Song, Ningfang

    2017-12-01

    The development and implementation of a practical instrument based on an embedded technique for autofocus and polarization alignment of polarization maintaining fiber is presented. For focusing efficiency and stability, an image-based focusing algorithm fully considering the image definition evaluation and the focusing search strategy was used to accomplish autofocus. For improving the alignment accuracy, various image-based algorithms of alignment detection were developed with high calculation speed and strong robustness. The instrument can be operated as a standalone device with real-time processing and convenience operations. The hardware construction, software interface, and image-based algorithms of main modules are described. Additionally, several image simulation experiments were also carried out to analyze the accuracy of the above alignment detection algorithms. Both the simulation results and experiment results indicate that the instrument can achieve the accuracy of polarization alignment <±0.1 deg.

  1. Gamma-Ray Instrument for Polarimetry, Spectroscopy and Imaging (GIPSI)

    National Research Council Canada - National Science Library

    Kroeger, R. A; Johnson, W. N; Kinzer, R. L; Kurfess, J. D; Inderhees, S. E; Phlips, B. F; Graham, B. L

    1996-01-01

    .... Gamma-ray polarimetry in the energy band around 60-300 keV is an interesting area of high energy astrophysics where observations have not been possible with the technologies employed in current and past space missions...

  2. Psyche Mission: Scientific Models and Instrument Selection

    Science.gov (United States)

    Polanskey, C. A.; Elkins-Tanton, L. T.; Bell, J. F., III; Lawrence, D. J.; Marchi, S.; Park, R. S.; Russell, C. T.; Weiss, B. P.

    2017-12-01

    NASA has chosen to explore (16) Psyche with their 14th Discovery-class mission. Psyche is a 226-km diameter metallic asteroid hypothesized to be the exposed core of a planetesimal that was stripped of its rocky mantle by multiple hit and run collisions in the early solar system. The spacecraft launch is planned for 2022 with arrival at the asteroid in 2026 for 21 months of operations. The Psyche investigation has five primary scientific objectives: A. Determine whether Psyche is a core, or if it is unmelted material. B. Determine the relative ages of regions of Psyche's surface. C. Determine whether small metal bodies incorporate the same light elements as are expected in the Earth's high-pressure core. D. Determine whether Psyche was formed under conditions more oxidizing or more reducing than Earth's core. E. Characterize Psyche's topography. The mission's task was to select the appropriate instruments to meet these objectives. However, exploring a metal world, rather than one made of ice, rock, or gas, requires development of new scientific models for Psyche to support the selection of the appropriate instruments for the payload. If Psyche is indeed a planetary core, we expect that it should have a detectable magnetic field. However, the strength of the magnetic field can vary by orders of magnitude depending on the formational history of Psyche. The implications of both the extreme low-end and the high-end predictions impact the magnetometer and mission design. For the imaging experiment, what can the team expect for the morphology of a heavily impacted metal body? Efforts are underway to further investigate the differences in crater morphology between high velocity impacts into metal and rock to be prepared to interpret the images of Psyche when they are returned. Finally, elemental composition measurements at Psyche using nuclear spectroscopy encompass a new and unexplored phase space of gamma-ray and neutron measurements. We will present some end

  3. Literature Review of Multicultural Instrumentation

    Science.gov (United States)

    Sarraj, Huda; Carter, Stacy; Burley, Hansel

    2015-01-01

    Demographic changes at the national level emphasize a critical need for multicultural education to be included as part of undergraduate education. This critical review of the literature examines 10 multicultural instruments that are suitable for use in K-12 or higher education institutions. This is a novel literature review in that it is the first…

  4. Loyaliteitsprogramma's: zinvol CRM-instrument?

    NARCIS (Netherlands)

    Leenheer, J.

    2006-01-01

    Loyalty programs have been widely adopted by companies and their customers. A loyalty program is a relational marketing instrument that aims to enhance customer loyalty. However, skepticism exists about the implementation and effectiveness of loyalty programs. This paper studies for whom, when and

  5. Presentation of a new instrument

    DEFF Research Database (Denmark)

    Russell, M B; Rasmussen, B K; Brennum, J

    1992-01-01

    A new instrument, the Diagnostic Headache Diary, based on the operational diagnostic criteria of the International Headache Society (IHS), was tested in 61 migraine patients from a headache research clinic using the clinical diagnosis (IHS criteria) for comparison. All patients kept the diary...

  6. Maintenance of nuclear medicine instruments

    International Nuclear Information System (INIS)

    Ambro, P.

    1992-01-01

    Maintenance of instruments is generally of two kinds: (a) corrective maintenance, on a non-scheduled basis, to restore equipment to a functional status by repairs; (b) preventive maintenance, to keep equipment in a specified functional condition by providing systematic inspection, quality control, detection and correction of early malfunctions. Most of the instruments used in nuclear medicine are rather complex systems built from mechanical, electrical and electronic parts. Any one of these components is liable to fail at some time or other. Repair could be done only by a specialist who is able to evaluate the condition of the various parts ranging from cables to connectors, from scintillators to photomultipliers, from microprocessors to microswitches. The knowledge of the intricacies of the various electronic components required for their repairs is quite wide and varied. The electronics industry turns out more and more multi-purpose chips which can carry out the functions of many parts used in the instruments of the earlier generation. This provides protection against unauthorized copying of the circuits but it serves another purpose as well of inhibiting repairs by non-factory personnel. These trends of the instrument design should be taken into consideration when a policy has to be developed for the repairs of the hospital based equipment

  7. Mobile Instruments Measure Atmospheric Pollutants

    Science.gov (United States)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  8. Instruments to assess integrated care

    DEFF Research Database (Denmark)

    Lyngsø, Anne Marie; Godtfredsen, Nina Skavlan; Høst, Dorte

    2014-01-01

    to measure the level of integration across health-care sectors and to assess and evaluate the organisational elements within the instruments identified. METHODS: An extensive, systematic literature review in PubMed, CINAHL, PsycINFO, Cochrane Library, Web of Science for the years 1980-2011. Selected...

  9. Meteorological instrumentation for nuclear installations

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. Finally, it is presented an analysis of the problems associated with grounding of a typical meteorological station. (Author) [pt

  10. Meteorological instrumentation for nuclear facilities

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. An analysis of the problems associated with grounding of a typical meteorological station is presented. (Author) [pt

  11. Market-based Economic Instruments

    DEFF Research Database (Denmark)

    Klemmensen, Børge

    2007-01-01

    Grundkategorien her er markedet som den optimale allokeringsmekanisme for de belastninger, som de økonomiske instrumenter / miljøskatterne påfører. Det mest omfattende og spektakulære eksempel på markedet som allokatorer af skatter er EU's børs for forureningstilladelser, dvs reelt CO-2 beskatnin...

  12. Scientific Instruments and Epistemology Engines

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Tomáš

    2012-01-01

    Roč. 34, č. 4 (2012), s. 529-540 ISSN 1210-0250 R&D Projects: GA ČR(CZ) GAP401/11/2338 Institutional support: RVO:67985955 Keywords : material culture of science * scientific instruments * epistemology engines * experimental systems Subject RIV: AA - Philosophy ; Religion

  13. Alternative instruments for the CAP?

    NARCIS (Netherlands)

    Silvis, H.J.; Rijswick, van C.W.J.; Bont, de C.J.A.M.

    2001-01-01

    With parallel negotiations taking place on enlargement of the EU and a new WTO agreement, EU's Common Agricultural Policy is facing further reforms. This report addresses the issue of whether any alternatives can be found for the instruments of this policy, and looks at decoupled payments, a net

  14. Highly Stable, Large Format EUV Imager, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Higher detection efficiency and better radiation tolerance imagers are needed for the next generation of EUV instruments. Previously, CCD technology has demonstrated...

  15. EUV Doppler Imaging for CubeSat Platforms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mature the design and fabricate the Flare Initiation Doppler Imager (FIDI) instrument to demonstrate low-spacecraft-resource EUV technology (most notably,...

  16. 14 CFR 121.307 - Engine instruments.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments... following engine instruments: (a) A carburetor air temperature indicator for each engine. (b) A cylinder...

  17. 40 CFR 1065.915 - PEMS instruments.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false PEMS instruments. 1065.915 Section... instruments. (a) Instrument specifications. We recommend that you use PEMS that meet the specifications of... that meets the same specifications as each lab instrument it replaces. For field testing or for testing...

  18. 14 CFR 23.1305 - Powerplant instruments.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Powerplant instruments. 23.1305 Section 23... Powerplant instruments. The following are required powerplant instruments: (a) For all airplanes. (1) A fuel... the powerplant instruments required by paragraph (a) of this section, the following powerplant...

  19. 76 FR 1063 - Modifications of Debt Instruments

    Science.gov (United States)

    2011-01-07

    ... Modifications of Debt Instruments AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Final regulation. SUMMARY: This document contains final regulations relating to the modification of debt instruments. The... into account to determine whether a modified debt instrument will be recharacterized as an instrument...

  20. Instrumentation and severe accident plant status interpretation

    International Nuclear Information System (INIS)

    Chao, J.; Machiels, A.J.; Oehlberg, R.N.; Negin, C.A.; James, R.

    1992-01-01

    EPRI is conducting a project related to instrumentation and severe accident plant status interpretation. The project will recognize the facts that (i) instrument responses during severe accidents do not need to be as accurate as during normal operation, and (ii) not all instrument loops will see a severe environment. In particular, the proposed work is to provide technology to get the most information from the existing instrumentation under severe accident conditions by developing (1) calculational aids to determine actual plant parameters based on severe-accident-affected instrument readings, and (2) means to utilize indications from operational instruments to infer parameters values for failed instruments, or where no instrument may exist. Specific deliverables for this project are (i) an instrumentation data base that will include both instrumentation failures and successes under severe conditions, and contain instrument performance information from both nuclear and non-nuclear industry situations; (ii) methods to assess the validity of instrument signals and estimate the performance of individual instrument loops; and (iii) calculational aids to estimate and interpret instrument readings under severe accident conditions, including the ability to extrapolate readings from functioning instruments to locations where instruments have failed. (orig.)