WorldWideScience

Sample records for imaging instrument mimi

  1. Identifying Cassini's Magnetospheric Location Using Magnetospheric Imaging Instrument (MIMI) Data and Machine Learning

    Science.gov (United States)

    Vandegriff, J. D.; Smith, G. L.; Edenbaum, H.; Peachey, J. M.; Mitchell, D. G.

    2017-12-01

    We analyzed data from Cassini's Magnetospheric Imaging Instrument (MIMI) and Magnetometer (MAG) and attempted to identify the region of Saturn's magnetosphere that Cassini was in at a given time using machine learning. MIMI data are from the Charge-Energy-Mass Spectrometer (CHEMS) instrument and the Low-Energy Magnetospheric Measurement System (LEMMS). We trained on data where the region is known based on a previous analysis of Cassini Plasma Spectrometer (CAPS) plasma data. Three magnetospheric regions are considered: Magnetosphere, Magnetosheath, and Solar Wind. MIMI particle intensities, magnetic field values, and spacecraft position are used as input attributes, and the output is the CAPS-based region, which is available from 2004 to 2012. We then use the trained classifier to identify Cassini's magnetospheric regions for times after 2012, when CAPS data is no longer available. Training accuracy is evaluated by testing the classifier performance on a time range of known regions that the classifier has never seen. Preliminary results indicate a 68% accuracy on such test data. Other techniques are being tested that may increase this performance. We present the data and algorithms used, and will describe the latest results, including the magnetospheric regions post-2012 identified by the algorithm.

  2. Android and iPhone Apps for Viewing Browse Plots from the Magnetospheric Imaging Instrument (MIMI) on Cassin

    Science.gov (United States)

    Vandegriff, J. D.; Kusterer, M. B.; Byun, S.; Steele, R. J.; Mitchell, D. G.

    2017-12-01

    We present a new mobile app for Android and an existing app for iPhone, both capable of viewing the numerous browse plots available for data collected by the MIMI suite on NASA's Cassini spacecraft. Both apps allow convenient mobile access to pre-made plots of data from various instruments on the suite, including daily, and monthly plots of particle intensities (line plots and spectrograms) from LEMMS, CHEMS and INCA. Also, the apps can show short movies made from sequences of INCA neutral atom images. Browsing the plots or movies is as simple as swiping to the left or right, and the app hides all access details needed to finding the images. Note that the app requires a data connection, since it locates and downloads the plot files live from various instrument team servers. We will demonstrate the current versions of both apps, which are available in Apple's App Store and the Google Play Store.

  3. CASSINI E/J/S/SW MIMI INCA SENSOR UNCALIBRATED DATA V1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cassini Magnetospheric Imaging Instrument(MIMI) Imaging Neutral Camera (INCA) uncalibrated data set includes all data collected from the MIMI Data Processing...

  4. CASSINI E/J/S/SW MIMI INCA SENSOR UNCALIBRATED DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cassini Magnetospheric Imaging Instrument(MIMI) Imaging Neutral Camera (INCA) uncalibrated data set includes all data collected from the MIMI Data Processing...

  5. CASSINI S MIMI CHEMS SENSOR CALIBRATED DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cassini Magnetospheric Imaging Instrument(MIMI) Charge Energy Mass Spectrometer (CHEMS) contains a deflection system and an overall field of view of 159 x 4 deg....

  6. Medical Image Data and Datasets in the Era of Machine Learning-Whitepaper from the 2016 C-MIMI Meeting Dataset Session.

    Science.gov (United States)

    Kohli, Marc D; Summers, Ronald M; Geis, J Raymond

    2017-08-01

    At the first annual Conference on Machine Intelligence in Medical Imaging (C-MIMI), held in September 2016, a conference session on medical image data and datasets for machine learning identified multiple issues. The common theme from attendees was that everyone participating in medical image evaluation with machine learning is data starved. There is an urgent need to find better ways to collect, annotate, and reuse medical imaging data. Unique domain issues with medical image datasets require further study, development, and dissemination of best practices and standards, and a coordinated effort among medical imaging domain experts, medical imaging informaticists, government and industry data scientists, and interested commercial, academic, and government entities. High-level attributes of reusable medical image datasets suitable to train, test, validate, verify, and regulate ML products should be better described. NIH and other government agencies should promote and, where applicable, enforce, access to medical image datasets. We should improve communication among medical imaging domain experts, medical imaging informaticists, academic clinical and basic science researchers, government and industry data scientists, and interested commercial entities.

  7. MIMI: multimodality, multiresource, information integration environment for biomedical core facilities.

    Science.gov (United States)

    Szymanski, Jacek; Wilson, David L; Zhang, Guo-Qiang

    2009-10-01

    The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administratively, a core facility must be able to manage the scheduling of its equipment and to maintain a flexible and effective billing system to track material, resource, and personnel costs and charge for services to sustain its operation. It must also have the ability to regularly monitor the usage and performance of its equipment and to provide summary statistics on resources spent on different categories of research. To address these informatics challenges, we introduce a comprehensive system called MIMI (multimodality, multiresource, information integration environment) that integrates the administrative and scientific support of a core facility into a single web-based environment. We report the design, development, and deployment experience of a baseline MIMI system at an imaging core facility and discuss the general applicability of such a system in other types of core facilities. These initial results suggest that MIMI will be a unique, cost-effective approach to addressing the informatics infrastructure needs of core facilities and similar research laboratories.

  8. Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.

    Science.gov (United States)

    Isozaki, K.; Tsujimura, T.; Nomura, S.; Morii, E.; Koshimizu, U.; Nishimune, Y.; Kitamura, Y.

    1994-01-01

    The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, the mast cell deficiency of mi/mi mice has been attributed at least in part to the deficient expression of c-kit. However, it remained to be examined whether the c-kit expression was also deficient in tissues of mi/mi mice. In the present study, we examined the c-kit expression by mi/mi skin mast cells using in situ hybridization and immunohistochemistry. Moreover, we examined the c-kit expression by various cells other than mast cells in tissues of mi/mi mice. We found that the c-kit expression was deficient in mast cells but not in erythroid precursors, testicular germ cells, and neurons of mi/mi mice. This suggested that the regulation of the c-kit transcription by the mi factor was dependent on cell types. Mice of mi/mi genotype appeared to be a useful model to analyze the function of transcription factors in the whole-animal level. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7524330

  9. Nuclear medicine imaging instrumentations for molecular imaging

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Song, Tae Yong; Choi, Yong

    2004-01-01

    Small animal models are extensively utilized in the study of biomedical sciences. Current animal experiments and analysis are largely restricted to in vitro measurements and need to sacrifice animals to perform tissue or molecular analysis. This prevents researchers from observing in vivo the natural evolution of the process under study. Imaging techniques can provide repeatedly in vivo anatomic and molecular information noninvasively. Small animal imaging systems have been developed to assess biological process in experimental animals and increasingly employed in the field of molecular imaging studies. This review outlines the current developments in nuclear medicine imaging instrumentations including fused multi-modality imaging systems for small animal imaging

  10. Cassini MIMI Close-Up of Saturn Energetic Particles: Low Altitude Trapped Radiation, Auroral Ion Acceleration, and Interchange Flow Channels

    Science.gov (United States)

    Mitchell, D. G.; Krimigis, S. M.; Krupp, N.; Paranicas, C.; Roussos, E.; Kollmann, P.

    2017-12-01

    We present observations from the final orbits of the Cassini Mission at Saturn by the Magnetospheric Imaging Instrument (MIMI). Crossing inside the D-Ring at the equator and just above Saturn's atmosphere, these orbits covered regions never visited previously in the mission. Highlights include the confirmation of an inner radiation belt analogous to the inner radiation belt at Earth by the Low Energy Magnetospheric Measurement System (LEMMS), with surprising twists—Saturn's D-ring material appears to be a source for these particles. Details will be presented in another session. The Grand Finale orbits also afforded a close-up view of the auroral ion acceleration regions by the Ion and Neutral Camera (INCA). Ionospheric ions at the base of auroral field lines are accelerated perpendicular to the magnetic field to 10's and 100's of keV, and charge exchange with exospheric neutrals to be emitted as energetic neutral atoms and images by INCA. We show that this acceleration region lies at about 0.1 Rs. Another feature seen previously in the mission but imaged with greater resolution is a flow channel associated with interchange motion in the middle magnetosphere. We show this feature to extend over several Saturn radii in the radial direction, and over about 2 Saturn radii azimuthally. Additional data have been received since the writing of this abstract and before Cassini's plunge into the atmosphere on September 15, so additional features may be presented.

  11. Mimi Mercedez and übermateriality of sex work

    Directory of Open Access Journals (Sweden)

    Milica Ivić

    2015-10-01

    Full Text Available Starting from Beatriz Preciado’s claim in her 2013 book Testo Junkie that all current conceptions of labour (immaterial, cognitive, linguistic, even biopolitical treat the human body as desexualised, and her proposition that the paradigmatic model of labour today is “pharmacopornopolitical”, I would propose to examine the contemporary practice using the example of a Serbian female artist named Mimi Mercedez – a stripper and trap singer.

  12. A Thermal Imaging Instrument with Uncooled Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed work, we will perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. We will define the science and...

  13. Physics instrumentation for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, D. W. [Geneva University Hospital, Geneva (Switzerland)

    1993-04-15

    The first Nobel Physics Prize, awarded in 1901, went to Wilhelm Röntgen for his discovery of X-rays in 1895. This, and the most recent physics Nobel, to Georges Charpak last year for his detector developments, span several generations of applied science. As well as helping to launch the science of atomic physics, Röntgen's discovery also marked the dawn of a medical science - radiography - using beams of various kinds to image what otherwise cannot be seen. Ever since, physicists and radiologists have worked hand in hand to improve imaging techniques and widen their medical applications.

  14. Physics instrumentation for medical imaging

    International Nuclear Information System (INIS)

    Townsend, D.W.

    1993-01-01

    The first Nobel Physics Prize, awarded in 1901, went to Wilhelm Röntgen for his discovery of X-rays in 1895. This, and the most recent physics Nobel, to Georges Charpak last year for his detector developments, span several generations of applied science. As well as helping to launch the science of atomic physics, Röntgen's discovery also marked the dawn of a medical science - radiography - using beams of various kinds to image what otherwise cannot be seen. Ever since, physicists and radiologists have worked hand in hand to improve imaging techniques and widen their medical applications

  15. Development of nuclear imaging instrument and software

    International Nuclear Information System (INIS)

    Kim, Jang Hee; Chung Jae Myung; Nam, Sang Won; Chang, Hyung Uk

    1999-03-01

    In the medical diagnosis, the nuclear medical instrument using the radioactive isotope are commonly utilized. In the foreign countries, the medical application and development of the most advanced nuclear medical instrument such as Single Photon Emission Computer Tomography (SPECT) and position emission tomograph (PET), have been extensively carried out. However, in Korea, such highly expensive instruments have been all, imported, paying foreign currency. Since 1997, much efforts, the development of the radio nuclide medical instrument, the drive of the domestic production, etc. have been made to establish our own technologies and to balance the international payments under the support of the Ministry of Science and Technology. At present time, 180 nuclear imaging instruments are now in operation and 60 of them are analog camera. In analog camera, the vector X-Y monitor is need for are image display. Since the analog camera, signal can not be process in the digital form, we have difficulties to transfer and store the image data. The image displayed at the monitor must be stored in the form of polaroid or X ray film. In order to discard these disadvantages, if we developed the computer interface system, the performance analog camera will be comparable with that of the digital camera. The final objective of the research is that using the interface system developed in this research, we reconstruct the image data transmitted to the personal computer in the form of the generalized data file

  16. Ultrasonic imaging with a fixed instrument configuration

    Energy Technology Data Exchange (ETDEWEB)

    Witten, A.; Tuggle, J.; Waag, R.C.

    1988-07-04

    Diffraction tomography is a technique based on an inversion of the wave equation which has been proposed for high-resolution ultrasonic imaging. While this approach has been considered for diagnostic medical applications, it has, until recently, been limited by practical limitations on the speed of data acquisition associated with instrument motions. This letter presents the results of an experimental study directed towards demonstrating tomography utilizing a fixed instrument configuration.

  17. A Thermal Imaging Instrument with Uncooled Detectors

    Science.gov (United States)

    Joseph, A. T.; Barrentine, E. M.; Brown, A. D.

    2017-12-01

    In this work, we perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. The National Research Council's Committee on Implementation of a Sustained Land Imaging Program has identified the inclusion of a thermal imager as critical for both current and future land imaging missions. Such an imaging instrument operating in two bands located at approximately 11 and 12 microns (for example, in Landsat 8, and also Landsat 9 when launched) will provide essential information for furthering our hydrologic understanding at scales of human influence, and produce field-scale moisture information through accurate retrievals of evapotranspiration (ET). Landsat 9 is slated to recycle the TIRS-2 instrument launched with Landsat 8 that uses cooled quantum well infrared photodetectors (QWIPs), hence requiring expensive and massive cryocooler technology to achieve its required spectral and spatial accuracies. Our goal is to conceptualize and develop a thermal imaging instrument which leverages recent and imminent technology advances in uncooled detectors. Such detector technology will offer the benefit of greatly reduced instrument cost, mass, and power at the expense of some acceptable loss in detector sensitivity. It would also allow a thermal imaging instrument to be fielded on board a low-cost platform, e.g., a CubeSat. Sustained and enhanced land imaging is crucial for providing high-quality science data on change in land use, forest health, crop status, environment, and climate. Accurate satellite mapping of ET at the agricultural field scale (the finest spatial scale of the environmental processes of interest) requires high-quality thermal data to produce the corresponding accurate land surface temperature (LST) retrievals used to drive an ET model. Such an imaging instrument would provide important information on the following: 1) the relationship between land-use and land/water management practices and water use dynamics; 2) the

  18. Infrared Sky Imager (IRSI) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Victor R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    The Infrared Sky Imager (IRSI) deployed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility is a Solmirus Corp. All Sky Infrared Visible Analyzer. The IRSI is an automatic, continuously operating, digital imaging and software system designed to capture hemispheric sky images and provide time series retrievals of fractional sky cover during both the day and night. The instrument provides diurnal, radiometrically calibrated sky imagery in the mid-infrared atmospheric window and imagery in the visible wavelengths for cloud retrievals during daylight hours. The software automatically identifies cloudy and clear regions at user-defined intervals and calculates fractional sky cover, providing a real-time display of sky conditions.

  19. Instrumentation of the ESRF medical imaging facility

    CERN Document Server

    Elleaume, H; Berkvens, P; Berruyer, G; Brochard, T; Dabin, Y; Domínguez, M C; Draperi, A; Fiedler, S; Goujon, G; Le Duc, G; Mattenet, M; Nemoz, C; Pérez, M; Renier, M; Schulze, C; Spanne, P; Suortti, P; Thomlinson, W; Estève, F; Bertrand, B; Le Bas, J F

    1999-01-01

    At the European Synchrotron Radiation Facility (ESRF) a beamport has been instrumented for medical research programs. Two facilities have been constructed for alternative operation. The first one is devoted to medical imaging and is focused on intravenous coronary angiography and computed tomography (CT). The second facility is dedicated to pre-clinical microbeam radiotherapy (MRT). This paper describes the instrumentation for the imaging facility. Two monochromators have been designed, both are based on bent silicon crystals in the Laue geometry. A versatile scanning device has been built for pre-alignment and scanning of the patient through the X-ray beam in radiography or CT modes. An intrinsic germanium detector is used together with large dynamic range electronics (16 bits) to acquire the data. The beamline is now at the end of its commissioning phase; intravenous coronary angiography is intended to start in 1999 with patients and the CT pre-clinical program is underway on small animals. The first in viv...

  20. Evolution of electron pitch angle distributions across Saturn's middle magnetospheric region from MIMI/LEMMS

    Science.gov (United States)

    Clark, G.; Paranicas, C.; Santos-Costa, D.; Livi, S.; Krupp, N.; Mitchell, D. G.; Roussos, E.; Tseng, W.-L.

    2014-12-01

    We provide a global view of ~20 to 800 keV electron pitch angle distributions (PADs) close to Saturn's current sheet using observations from the Cassini MIMI/LEMMS instrument. Previous work indicated that the nature of pitch angle distributions in Saturn's inner to middle magnetosphere changes near the radial distance of 10RS. This work confirms the existence of a PAD transition region. Here we go further and develop a new technique to statistically quantify the spatial profile of butterfly PADs as well as present new spatial trends on the isotropic PAD. Additionally, we perform a case study analysis and show the PADs exhibit strong energy dependent features throughout this transition region. We also present a diffusion theory model based on adiabatic transport, Coulomb interactions with Saturn's neutral gas torus, and an energy dependent radial diffusion coefficient. A data-model comparison reveals that adiabatic transport is the dominant transport mechanism between ~8 to 12RS, however interactions with Saturn's neutral gas torus become dominant inside ~7RS and govern the flux level of ~20 to 800 keV electrons. We have also found that field-aligned fluxes were not well reproduced by our modeling approach. We suggest that wave-particle interactions and/or a polar source of the energetic particles needs further investigation.

  1. MWIR hyperspectral imaging with the MIDAS instrument

    Science.gov (United States)

    Honniball, Casey I.; Wright, Rob; Lucey, Paul G.

    2017-02-01

    Hyperspectral imaging (HSI) in the Mid-Wave InfraRed (MWIR, 3-5 microns) can provide information on a variety of science applications from determining the chemical composition of lava lakes on Jupiter's moon Io, to investigating the amount of carbon liberated into the Earth's atmosphere during a wildfire. The limited signal available in the MWIR presents technical challenges to achieving high signal-to-noise ratios, and therefore it is typically necessary to cryogenically cool MWIR instruments. With recent improvements in microbolometer technology and emerging interferometric techniques, we have shown that uncooled microbolometers coupled with a Sagnac interferometer can achieve high signal-to-noise ratios for long-wave infrared HSI. To explore if this technique can be applied to the MWIR, this project, with funding from NASA, has built the Miniaturized Infrared Detector of Atmospheric Species (MIDAS). Standard characterization tests are used to compare MIDAS against a cryogenically cooled photon detector to evaluate the MIDAS instruments' ability to quantify gas concentrations. Atmospheric radiative transfer codes are in development to explore the limitations of MIDAS and identify the range of science objectives that MIDAS will most likely excel at. We will simulate science applications with gas cells filled with varying gas concentrations and varying source temperatures to verify our results from lab characterization and our atmospheric modeling code.

  2. The Wide Field Imager instrument for Athena

    Science.gov (United States)

    Meidinger, Norbert; Barbera, Marco; Emberger, Valentin; Fürmetz, Maria; Manhart, Markus; Müller-Seidlitz, Johannes; Nandra, Kirpal; Plattner, Markus; Rau, Arne; Treberspurg, Wolfgang

    2017-08-01

    ESA's next large X-ray mission ATHENA is designed to address the Cosmic Vision science theme 'The Hot and Energetic Universe'. It will provide answers to the two key astrophysical questions how does ordinary matter assemble into the large-scale structures we see today and how do black holes grow and shape the Universe. The ATHENA spacecraft will be equipped with two focal plane cameras, a Wide Field Imager (WFI) and an X-ray Integral Field Unit (X-IFU). The WFI instrument is optimized for state-of-the-art resolution spectroscopy over a large field of view of 40 amin x 40 amin and high count rates up to and beyond 1 Crab source intensity. The cryogenic X-IFU camera is designed for high-spectral resolution imaging. Both cameras share alternately a mirror system based on silicon pore optics with a focal length of 12 m and large effective area of about 2 m2 at an energy of 1 keV. Although the mission is still in phase A, i.e. studying the feasibility and developing the necessary technology, the definition and development of the instrumentation made already significant progress. The herein described WFI focal plane camera covers the energy band from 0.2 keV to 15 keV with 450 μm thick fully depleted back-illuminated silicon active pixel sensors of DEPFET type. The spatial resolution will be provided by one million pixels, each with a size of 130 μm x 130 μm. The time resolution requirement for the WFI large detector array is 5 ms and for the WFI fast detector 80 μs. The large effective area of the mirror system will be completed by a high quantum efficiency above 90% for medium and higher energies. The status of the various WFI subsystems to achieve this performance will be described and recent changes will be explained here.

  3. Interview with Peter Samis and Mimi Michaelson, Authors of "Creating the Visitor-Centered Museum"

    Science.gov (United States)

    Spero, Susan

    2017-01-01

    "Creating the Visitor-Centered Museum" offers insight into why and how 10 case study museums have transformed to serve the needs of their public. Susan Spero interviews authors Peter Samis and Mimi Michaelson about the purpose of the book, their case study choices, the key characteristics of visitor-centered institutions and their…

  4. Image reconstruction design of industrial CT instrument for teaching

    International Nuclear Information System (INIS)

    Zou Yongning; Cai Yufang

    2009-01-01

    Industrial CT instrument for teaching is applied to teaching and study in field of physics and radiology major, image reconstruction is an important part of software on CT instrument. The paper expatiate on CT physical theory and first generation CT reconstruction algorithm, describe scan process of industrial CT instrument for teaching; analyze image artifact as result of displacement of rotation center, implement method of center displacement correcting, design and complete image reconstruction software, application shows that reconstructed image is very clear and qualitatively high. (authors)

  5. Hybrid imaging: Instrumentation and Data Processing

    Science.gov (United States)

    Cal-Gonzalez, Jacobo; Rausch, Ivo; Shiyam Sundar, Lalith K.; Lassen, Martin L.; Muzik, Otto; Moser, Ewald; Papp, Laszlo; Beyer, Thomas

    2018-05-01

    State-of-the-art patient management frequently requires the use of non-invasive imaging methods to assess the anatomy, function or molecular-biological conditions of patients or study subjects. Such imaging methods can be singular, providing either anatomical or molecular information, or they can be combined, thus, providing "anato-metabolic" information. Hybrid imaging denotes image acquisitions on systems that physically combine complementary imaging modalities for an improved diagnostic accuracy and confidence as well as for increased patient comfort. The physical combination of formerly independent imaging modalities was driven by leading innovators in the field of clinical research and benefited from technological advances that permitted the operation of PET and MR in close physical proximity, for example. This review covers milestones of the development of various hybrid imaging systems for use in clinical practice and small-animal research. Special attention is given to technological advances that helped the adoption of hybrid imaging, as well as to introducing methodological concepts that benefit from the availability of complementary anatomical and biological information, such as new types of image reconstruction and data correction schemes. The ultimate goal of hybrid imaging is to provide useful, complementary and quantitative information during patient work-up. Hybrid imaging also opens the door to multi-parametric assessment of diseases, which will help us better understand the causes of various diseases that currently contribute to a large fraction of healthcare costs.

  6. Hybrid Imaging: Instrumentation and Data Processing

    Directory of Open Access Journals (Sweden)

    Jacobo Cal-Gonzalez

    2018-05-01

    Full Text Available State-of-the-art patient management frequently requires the use of non-invasive imaging methods to assess the anatomy, function or molecular-biological conditions of patients or study subjects. Such imaging methods can be singular, providing either anatomical or molecular information, or they can be combined, thus, providing “anato-metabolic” information. Hybrid imaging denotes image acquisitions on systems that physically combine complementary imaging modalities for an improved diagnostic accuracy and confidence as well as for increased patient comfort. The physical combination of formerly independent imaging modalities was driven by leading innovators in the field of clinical research and benefited from technological advances that permitted the operation of PET and MR in close physical proximity, for example. This review covers milestones of the development of various hybrid imaging systems for use in clinical practice and small-animal research. Special attention is given to technological advances that helped the adoption of hybrid imaging, as well as to introducing methodological concepts that benefit from the availability of complementary anatomical and biological information, such as new types of image reconstruction and data correction schemes. The ultimate goal of hybrid imaging is to provide useful, complementary and quantitative information during patient work-up. Hybrid imaging also opens the door to multi-parametric assessment of diseases, which will help us better understand the causes of various diseases that currently contribute to a large fraction of healthcare costs.

  7. Status of the Neutron Imaging and Diffraction Instrument IMAT

    Science.gov (United States)

    Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.

    A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.

  8. A multi-object spectral imaging instrument

    OpenAIRE

    Gibson, G.M.; Dienerowitz, M.; Kelleher, P.A.; Harvey, A.R.; Padgett, M.J.

    2013-01-01

    We have developed a snapshot spectral imaging system which fits onto the side camera port of a commercial inverted microscope. The system provides spectra, in real time, from multiple points randomly selected on the microscope image. Light from the selected points in the sample is directed from the side port imaging arm using a digital micromirror device to a spectrometer arm based on a dispersing prism and CCD camera. A multi-line laser source is used to calibrate the pixel positions on the ...

  9. A multi-object spectral imaging instrument

    International Nuclear Information System (INIS)

    Gibson, G M; Dienerowitz, M; Kelleher, P A; Harvey, A R; Padgett, M J

    2013-01-01

    We have developed a snapshot spectral imaging system which fits onto the side camera port of a commercial inverted microscope. The system provides spectra, in real time, from multiple points randomly selected on the microscope image. Light from the selected points in the sample is directed from the side port imaging arm using a digital micromirror device to a spectrometer arm based on a dispersing prism and CCD camera. A multi-line laser source is used to calibrate the pixel positions on the CCD for wavelength. A CMOS camera on the front port of the microscope allows the full image of the sample to be displayed and can also be used for particle tracking, providing spectra of multiple particles moving in the sample. We demonstrate the system by recording the spectra of multiple fluorescent beads in aqueous solution and from multiple points along a microscope sample channel containing a mixture of red and blue dye. (paper)

  10. Optical Methods and Instrumentation in Brain Imaging and Therapy

    CERN Document Server

    2013-01-01

    This book provides a comprehensive up-to-date review of optical approaches used in brain imaging and therapy. It covers a variety of imaging techniques including diffuse optical imaging, laser speckle imaging, photoacoustic imaging and optical coherence tomography. A number of laser-based therapeutic approaches are reviewed, including photodynamic therapy, fluorescence guided resection and photothermal therapy. Fundamental principles and instrumentation are discussed for each imaging and therapeutic technique. Represents the first publication dedicated solely to optical diagnostics and therapeutics in the brain Provides a comprehensive review of the principles of each imaging/therapeutic modality Reviews the latest advances in instrumentation for optical diagnostics in the brain Discusses new optical-based therapeutic approaches for brain diseases

  11. Independent monitor unit calculation for intensity modulated radiotherapy using the MIMiC multileaf collimator

    International Nuclear Information System (INIS)

    Chen Zhe; Xing Lei; Nath, Ravinder

    2002-01-01

    A self-consistent monitor unit (MU) and isocenter point-dose calculation method has been developed that provides an independent verification of the MU for intensity modulated radiotherapy (IMRT) using the MIMiC (Nomos Corporation) multileaf collimator. The method takes into account two unique features of IMRT using the MIMiC: namely the gantry-dynamic arc delivery of intensity modulated photon beams and the slice-by-slice dose delivery for large tumor volumes. The method converts the nonuniform beam intensity planned at discrete gantry angles of 5 deg. or 10 deg. into conventional nonmodulated beam intensity apertures of elemental arc segments of 1 deg. This approach more closely simulates the actual gantry-dynamic arc delivery by MIMiC. Because each elemental arc segment is of uniform intensity, the MU calculation for an IMRT arc is made equivalent to a conventional arc with gantry-angle dependent beam apertures. The dose to the isocenter from each 1 deg. elemental arc segment is calculated by using the Clarkson scatter summation technique based on measured tissue-maximum-ratio and output factors, independent of the dose calculation model used in the IMRT planning system. For treatments requiring multiple treatment slices, the MU for the arc at each treatment slice takes into account the MU, leakage and scatter doses from other slices. This is achieved by solving a set of coupled linear equations for the MUs of all involved treatment slices. All input dosimetry data for the independent MU/isocenter point-dose calculation are measured directly. Comparison of the MU and isocenter point dose calculated by the independent program to those calculated by the Corvus planning system and to direct measurements has shown good agreement with relative difference less than ±3%. The program can be used as an independent initial MU verification for IMRT plans using the MIMiC multileaf collimators

  12. Single photon imaging. New instrumentation and techniques

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.

    1981-01-01

    The performance of Anger scintillation cameras continues to be enhanced through a series of small improvements which result in significantly better imaging characteristics. The most recent changes in camera design consist of: (1) the introduction of photomultipliers with better photocathode and electron collection efficiencies, (2) the use of thinner (3/8 or 1/4 in) crystals giving slightly better intrinsic resolution for low gamma-ray energies, (3) inclusion of a spatially varying energy window to compensate for variations of light collection efficiency, (4) event-by-event, real-time distortion removal for uniformity correction, and (5) introduction of new methods to improve the count-rate capability. Whereas some of these improvements are due to better understanding of the fundamentals of camera design, others are the result of technological advances in electronic components such as analogue-to-digital converters, microprocessors and high-density digital memories. The development of single photon tomography has developed along two parallel paths. Multipinhole and rotating slant-hole collimator attachments provide some degree of longitudinal tomography, and are currently being applied to cardiac imaging. At the same time rotating camera systems capable of transverse as well as longitudinal imaging are being refined technically and evaluated clinically. Longitudinal tomography is of limited use in quantitative studies and is likely to be an interim solution to three-dimensional imaging. Rotating camera systems, on the other hand, not only provide equal resolution in all three dimensions but are also capable of providing quantitative accuracy. This is the result of progress in attenuation correction and the design of special collimators. Single photon tomography provides a small but noticeable improvement in diagnostic accuracy which is likely to result in widespread use of rotating camera systems in the future

  13. Imaging instrument for positron emitting heavy ion beam injection

    International Nuclear Information System (INIS)

    Llacer, J.; Chatterjee, A.; Jackson, H.C.; Lin, J.C.; Zunzunegui, M.V.

    1978-10-01

    The design and performance of an instrument for the imaging of coincidence annihilation gamma rays emitted from the end point of the trajectories of radioactive high-energy heavy ions is described. The positron-emitting heavy ions are the result of nuclear fragmentation of accelerated heavy ions used in cancer therapy or diagnostic medicine. The instrument constructed is capable of locating the ion beam trajectory end point within 1 mm for an injected activity of 200 nanoCi in a measurement time of 1 sec in some favorable conditions. Limited imaging in three dimensions is also demonstrated

  14. Neutrons and music: Imaging investigation of ancient wind musical instruments

    Science.gov (United States)

    Festa, G.; Tardino, G.; Pontecorvo, L.; Mannes, D. C.; Senesi, R.; Gorini, G.; Andreani, C.

    2014-10-01

    A set of seven musical instruments and two instruments cares from the 'Fondo Antico della Biblioteca del Sacro Convento' in Assisi, Italy, were investigated through neutron and X-ray imaging techniques. Historical and scientific interests around ancient musical instruments motivate an intense research effort for their characterization using non-destructive and non-invasive techniques. X-ray and neutron tomography/radiography were applied to the study of composite material samples containing wood, hide and metals. The study was carried out at the NEUTRA beamline, PSI (Paul Scherrer Institute, Switzerland). Results of the measurements provided new information on the composite and multi-scale structure, such as: the internal structure of the samples, position of added materials like metals, wood fiber displays, deformations, presence of adhesives and their spatial distribution and novel insight about construction methods to guide the instruments' restoration process.

  15. A New Instrument Design for Imaging Low Energy Neutral Atoms

    Science.gov (United States)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  16. Global auroral imaging instrumentation for the dynamics explorer mission

    International Nuclear Information System (INIS)

    Frank, L.A.; Craven, J.D.; Ackerson, K.L.; English, M.R.; Eather, R.H.; Carovillano, R.L.

    1981-01-01

    The instrumentation for gaining global images of the auroral oval from the high-altitude spacecraft of the Dynamics Explorer Mission is described. Three spin-scan auroral imaging (SAI) photometers are expected to be able to effectively view the dim emissions from earth in the presence of strong stray light sources near their fields-of-view along the sunlit portion of the spacecraft orbit. A special optical design which includes an off-axis parabolic mirror as the focusing element and super-reflecting mirror surfaces is used to minimize the effects of stray light. The rotation of the spacecraft and an instrument scanning mirror provide the two-dimensional array of pixels comprising an image frame. (orig.)

  17. Neutrons and music: Imaging investigation of ancient wind musical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Festa, G., E-mail: giulia.festa@roma2.infn.it [Università degli Studi di Roma Tor Vergata (Italy); Università degli Studi di Milano-Bicocca (Italy); Consiglio Nazionale delle Ricerche-IPCF, Messina (Italy); Tardino, G. [BauArt Basel, Basel (Switzerland); Pontecorvo, L. [Conservatorio di Cosenza – Cosenza Conservatory (Italy); Mannes, D.C. [Paul Scherrer Institut, Villigen (Switzerland); Senesi, R. [Università degli Studi di Roma Tor Vergata (Italy); Consiglio Nazionale delle Ricerche-IPCF, Messina (Italy); Gorini, G. [Università degli Studi di Milano-Bicocca (Italy); Andreani, C. [Università degli Studi di Roma Tor Vergata (Italy); Consiglio Nazionale delle Ricerche-IPCF, Messina (Italy)

    2014-10-01

    A set of seven musical instruments and two instruments cares from the ‘Fondo Antico della Biblioteca del Sacro Convento’ in Assisi, Italy, were investigated through neutron and X-ray imaging techniques. Historical and scientific interests around ancient musical instruments motivate an intense research effort for their characterization using non-destructive and non-invasive techniques. X-ray and neutron tomography/radiography were applied to the study of composite material samples containing wood, hide and metals. The study was carried out at the NEUTRA beamline, PSI (Paul Scherrer Institute, Switzerland). Results of the measurements provided new information on the composite and multi-scale structure, such as: the internal structure of the samples, position of added materials like metals, wood fiber displays, deformations, presence of adhesives and their spatial distribution and novel insight about construction methods to guide the instruments’ restoration process.

  18. Neutrons and music: Imaging investigation of ancient wind musical instruments

    International Nuclear Information System (INIS)

    Festa, G.; Tardino, G.; Pontecorvo, L.; Mannes, D.C.; Senesi, R.; Gorini, G.; Andreani, C.

    2014-01-01

    A set of seven musical instruments and two instruments cares from the ‘Fondo Antico della Biblioteca del Sacro Convento’ in Assisi, Italy, were investigated through neutron and X-ray imaging techniques. Historical and scientific interests around ancient musical instruments motivate an intense research effort for their characterization using non-destructive and non-invasive techniques. X-ray and neutron tomography/radiography were applied to the study of composite material samples containing wood, hide and metals. The study was carried out at the NEUTRA beamline, PSI (Paul Scherrer Institute, Switzerland). Results of the measurements provided new information on the composite and multi-scale structure, such as: the internal structure of the samples, position of added materials like metals, wood fiber displays, deformations, presence of adhesives and their spatial distribution and novel insight about construction methods to guide the instruments’ restoration process

  19. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  20. Compact instrument for fluorescence image-guided surgery

    Science.gov (United States)

    Wang, Xinghua; Bhaumik, Srabani; Li, Qing; Staudinger, V. Paul; Yazdanfar, Siavash

    2010-03-01

    Fluorescence image-guided surgery (FIGS) is an emerging technique in oncology, neurology, and cardiology. To adapt intraoperative imaging for various surgical applications, increasingly flexible and compact FIGS instruments are necessary. We present a compact, portable FIGS system and demonstrate its use in cardiovascular mapping in a preclinical model of myocardial ischemia. Our system uses fiber optic delivery of laser diode excitation, custom optics with high collection efficiency, and compact consumer-grade cameras as a low-cost and compact alternative to open surgical FIGS systems. Dramatic size and weight reduction increases flexibility and access, and allows for handheld use or unobtrusive positioning over the surgical field.

  1. Quality assurance of imaging instruments for nuclear medicine

    International Nuclear Information System (INIS)

    Sera, T.; Csernay, L.

    1993-01-01

    Advanced quality control and assurance techniques for imaging instrumentation used in medical diagnosis are overviewed. The measurement systems for the homogeneity, linearity, geometrical resolution, energy resolution, sensitivity and pulse yield output of gamma camera detectors are presented in detail. The two most important quality control standards, the National Electrical Manufacturers' Association (NEMA) and the International Atomic Energy Agency standards and tests are described. Their use in gamma camera calibration is proposed. (R.P.) 22 refs.; 1 tabs

  2. Q & A with Ed Tech Leaders: Interview with Curtis J. Bonk, Mimi Miyoung Lee, Thomas C. Reeves, & Thomas H. Reynolds

    Science.gov (United States)

    Viner, Mark; Gardner, Ellen; Shaughnessy, Michael F.

    2016-01-01

    Curtis J. Bonk, is Professor of Instructional Systems Technology at Indiana University and President of CourseShare. Mimi Miyoung Lee is Associate Professor in the Department of Curriculum and instruction at the University of Houston. Thomas C. Reeves is Professor Emeritus of Learning, Design, and Technology at the University of Georgia. Thomas H.…

  3. Active instrumental guidance in interventional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wildermuth, S.; Erhart, P.; Leung, D.A.; Goehde, S.; Schoenenberger, A.; Debatin, J.F.

    1998-01-01

    Purpose: An active MR-based guidance system for visualisation of invasive instruments is described. Methods: The principle of MR tracking is based on the integration of a miniaturised coil into the tip of the instrument itself. A phantom experiment was designed to demonstrate the localising accuracy of this technique. In [dition, bicompatibility and warming effects were evaluated. Preliminary intravascular applications that were performed in animal experiments under MR guidance included embolisation, vascular occlusion as well as transjugular intrahepatic punctures. Percutaneous biopsies, cholecystostomies and laparoscopic applications were also evaluated with MR tracking. Results: Phantom experiments confirmed an excellent localisation accuracy of MR tracking compared to conventional r[iography. At a field strength of 0.5 T, the temperature increase remained below 2 C. Results of phantom experiments revealed a potential of significant heating dependent on the sequence parameters employed. MR tracking allowed a robust, simultaneously biplanar visualisation of the instrument tips in real time. Based on MR 'ro[ map' images, various intravascular and percutaneous interventions were successfully performed in vivo under MR guidance. Conclusions: MR tracking is a flexible concept permitting monitoring in the guidance of instruments in an MR environment. Various preliminary in vitro and in vivo experiments demonstrate safety, localisation accuracy and feasibility of this biplanar localisation technique in real time. (orig.) [de

  4. Positron emission tomography: Physics, instrumentation, and image analysis

    International Nuclear Information System (INIS)

    Porenta, G.

    1994-01-01

    Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources. PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and userfriendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center. (author)

  5. DIPSI: the diffraction image phase sensing instrument for APE

    Science.gov (United States)

    Montoya-Martínez, Luzma; Reyes, Marcos; Schumacher, Achim; Hernández, Elvio

    2006-06-01

    Large segmented mirrors require efficient co-phasing techniques in order to avoid the image degradation due to segments misalignment. For this purpose in the last few years new co-phasing techniques have been developed in collaboration with several European institutes. The Active Phasing Experiment (APE) will be a technical instrument aimed at testing different phasing techniques for an Extremely Large Telescope (ELT). A mirror composed of 61 hexagonal segments will be conjugated to the primary mirror of the VLT (Very Large Telescope). Each segment can be moved in piston, tip and tilt. Three new types of co-phasing sensors dedicated to the measurement of segmentation errors will be tested, evaluated and compared: ZEUS (Zernike Unit for Segment phasing) developed by LAM and IAC, PYPS (PYramid Phase Sensor) developed by INAF/ARCETRI, and DIPSI (Diffraction Image Phase Sensing Instrument) developed by IAC, GRANTECAN and LAM. This experiment will first run in the laboratory with point-like polychromatic sources and a turbulence generator. In a second step, it will be mounted at the Nasmyth platform focus of a VLT unit telescope. This paper describes the scientific concept of DIPSI, its optomechanical design, the signal analysis to retrieve segment piston and tip-tilt, the multiwavelength algorithm to increase the capture range, and the multiple segmentation case, including both simulation and laboratory tests results.

  6. Mass media image of selected instruments of economic develepment

    Directory of Open Access Journals (Sweden)

    Kruliš Ladislav

    2016-07-01

    Full Text Available The goal of this paper is twofold. Firstly, two instruments of economic development – investment incentives and cluster initiatives – were compared according to the frequency of their occurrence in selected mass media sources in the Czech Republic in the periods 2004-2005 and 2011-2012. Secondly, the mass media image of these two instruments of economic development was evaluated with respect to the frames deductively constructed from literature review. The findings pointed out a higher occurrence of the mass media articles/news dealing with investment incentives. These articles/news were, additionally, more controversial and covered a wider spectrum of frames. Politicians were a relatively more frequent type of actors who created the media message from the articles/news. On the contrary, the mass media articles/news concerning cluster initiatives typically created the frame of positive effects of clusters. The messages were told either by economic experts or by public authority representatives who were closely connected with cluster initiatives. Spatial origin of these messages was rather limited. The definitional vagueness, intangible and uncontroversial nature of cluster initiatives restrained their media appeal.

  7. Recent Developments in Instrumentation for Pre-Clinical Imaging Studies

    International Nuclear Information System (INIS)

    Meikle, S.R.

    2002-01-01

    Full text: Recent advances in imaging instrumentation have led to a variety of tomograph designs for dedicated pre clinical imaging of laboratory animals. These advances make it possible to image and quantify the kinetics of radiolabelled pharmaceuticals in a wide range of animal models from rodents to non-human primates. Applications include evaluation of promising new radiopharmaceuticals, study of the molecular origins of human disease and evaluation of new forms of therapy. These applications and advances in instrumentation are equally applicable to positron emitters and single photon emitters. This paper provides an overview of recent advances which have led to the current state-of-the-art in pre clinical imaging. The common inorganic scintillators that have been used for SPECT and PET, including some of the promising materials recently studied. The current crystal of choice for SPECT imaging is NaI(Tl) because of its high light output and density which make it well suited to imaging photons in the 100-200 keV range. However, NaI(Tl) has the disadvantage that it must be hermetically sealed to prevent absorption of moisture from the environment. Therefore, investigators have explored a number of alternative inorganic crystals, including CsI(Tl) and cerium-doped yttrium aluminium perovskite (YAP), as well as solid state detectors such as cadmium zinc telluride (CZT). Many of the crystals used in SPECT have also been tried for PET, including NaI(Tl) and YAP. However these crystals have lower stopping power than BGO and NaI(Tl) is also relatively slow. A very promising scintillator for PET is cerium-doped lutetium oxyorthosilicate (LSO) (1) which has similar stopping power to BGO and relatively high light output and fast decay. The first PET scanner to use LSO was the UCLA animal scanner, microPET, which also makes use of a number of other new technologies and unique design features. Recently, improvements in multi-anode and crossed wire position sensitive

  8. Meteosat third generation imager: simulation of the flexible combined imager instrument chain

    Science.gov (United States)

    Just, Dieter; Gutiérrez, Rebeca; Roveda, Fausto; Steenbergen, Theo

    2014-10-01

    The Meteosat Third Generation (MTG) Programme is the next generation of European geostationary meteorological systems. The first MTG satellite, MTG-I1, which is scheduled for launch at the end of 2018, will host two imaging instruments: the Flexible Combined Imager (FCI) and the Lightning Imager. The FCI will provide continuation of the SEVIRI imager operations on the current Meteosat Second Generation satellites (MSG), but with an improved spatial, temporal and spectral resolution, not dissimilar to GOES-R (of NASA/NOAA). Unlike SEVIRI on the spinning MSG spacecraft, the FCI will be mounted on a 3-axis stabilised platform and a 2-axis tapered scan will provide a full coverage of the Earth in 10 minute repeat cycles. Alternatively, a rapid scanning mode can cover smaller areas, but with a better temporal resolution of up to 2.5 minutes. In order to assess some of the data acquisition and processing aspects which will apply to the FCI, a simplified end-to-end imaging chain prototype was set up. The simulation prototype consists of four different functional blocks: - A function for the generation of FCI-like references images - An image acquisition simulation function for the FCI Line-of-Sight calculation and swath generation - A processing function that reverses the swath generation process by rectifying the swath data - An evaluation function for assessing the quality of the processed data with respect to the reference images This paper presents an overview of the FCI instrument chain prototype, covering instrument characteristics, reference image generation, image acquisition simulation, and processing aspects. In particular, it provides in detail the description of the generation of references images, highlighting innovative features, but also limitations. This is followed by a description of the image acquisition simulation process, and the rectification and evaluation function. The latter two are described in more detail in a separate paper. Finally, results

  9. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  10. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised

  11. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  12. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  13. MimiLook: A Phylogenetic Workflow for Detection of Gene Acquisition in Major Orthologous Groups of Megavirales.

    Science.gov (United States)

    Jain, Sourabh; Panda, Arup; Colson, Philippe; Raoult, Didier; Pontarotti, Pierre

    2017-04-07

    With the inclusion of new members, understanding about evolutionary mechanisms and processes by which members of the proposed order, Megavirales, have evolved has become a key area of interest. The central role of gene acquisition has been shown in previous studies. However, the major drawback in gene acquisition studies is the focus on few MV families or putative families with large variation in their genetic structure. Thus, here we have tried to develop a methodology by which we can detect horizontal gene transfers (HGTs), taking into consideration orthologous groups of distantly related Megavirale families. Here, we report an automated workflow MimiLook, prepared as a Perl command line program, that deduces orthologous groups (OGs) from ORFomes of Megavirales and constructs phylogenetic trees by performing alignment generation, alignment editing and protein-protein BLAST (BLASTP) searching across the National Center for Biotechnology Information (NCBI) non-redundant (nr) protein sequence database. Finally, this tool detects statistically validated events of gene acquisitions with the help of the T-REX algorithm by comparing individual gene tree with NCBI species tree. In between the steps, the workflow decides about handling paralogs, filtering outputs, identifying Megavirale specific OGs, detection of HGTs, along with retrieval of information about those OGs that are monophyletic with organisms from cellular domains of life. By implementing MimiLook, we noticed that nine percent of Megavirale gene families (i.e., OGs) have been acquired by HGT, 80% OGs were Megaviralespecific and eight percent were found to be sharing common ancestry with members of cellular domains (Eukaryote, Bacteria, Archaea, Phages or other viruses) and three percent were ambivalent. The results are briefly discussed to emphasize methodology. Also, MimiLook is relevant for detecting evolutionary scenarios in other targeted phyla with user defined modifications. It can be accessed at

  14. Monitor Unit Calculation for the Multileaf Intensity Modulating Collimator (MIMiCTM) in the PeacockTM Plan System

    International Nuclear Information System (INIS)

    Kania, Aleksander A.; Bleier, Alan R.; Carol, Mark P.

    1995-01-01

    A finite-size pencil beam method has been chosen for dose modelling in conformal radiotherapy when the Multileaf Intensity Modulating Collimator (MIMiC) is used to deliver the treatment. The MIMiC has two rows of 20 tungsten leaves which retract toward or away from the accelerator gantry, producing two intensity-modulated transaxial treatment slices which are 20 cm x 1 or 2 cm at isocenter. The treatment field is thus a fan beam made up of 40 sub-beams or finite-size pencil beams, leading to the choice of the model. Rotational treatments with the MIMiC are modelled in Peacock Plan as a set of ports spaced at gantry angle increments of 5 deg. to 10 deg. . The fractional time spent by the leaf in the beam during the gantry angle increment determines the intensity. The intensities from each leaf for each port are optimized in Peacock Plan, one treatment slice at a time, and then the dose from all slices is combined. The treatment planning system uses a two-dimensional measured pencil beam profile from one leaf at a selected reference depth along with measured open field, broad beam profiles at several depths. This makes beam data collection simple and dosimetrically flexible. The nature of the measured data imposes some conditions on calculation of Monitor Units (MU). The calculation must also take into consideration that two independent slices are delivered at the same time, and that multiple slices may be used to treat targets which are longer in the inferior-superior direction than the field produced by two slices. The MU calculation method is derived and presented as an enhancement of the traditional method of MU determination for treatments based on static ports. Experimental results indicative of the validity and limitations of the model will be demonstrated

  15. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  16. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  17. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  18. GEO-CAPE Coastal Ecosystem Dynamics Imager (COEDI) Instrument Design

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary goal of this study is to build a breadboard instrument and prove the functionality of the optical-mechanical assembly for the Coastal Ecosystem Dynamics...

  19. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  20. Novel instrumentation of multispectral imaging technology for detecting tissue abnormity

    Science.gov (United States)

    Yi, Dingrong; Kong, Linghua

    2012-10-01

    Multispectral imaging is becoming a powerful tool in a wide range of biological and clinical studies by adding spectral, spatial and temporal dimensions to visualize tissue abnormity and the underlying biological processes. A conventional spectral imaging system includes two physically separated major components: a band-passing selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochromatic camera, and is expensive and bulky. Recently micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the clinical requirement for medical diagnostic imaging applications. However the challenging issue of how to integrate and place the micro filter mosaic chip to the targeting focal plane, i.e., the imaging sensor, of an off-shelf CMOS/CCD camera is not reported anywhere. This paper presents the methods and results of integrating such a miniaturized filter with off-shelf CMOS imaging sensors to produce handheld real-time multispectral imaging devices for the application of early stage pressure ulcer (ESPU) detection. Unlike conventional multispectral imaging devices which are bulky and expensive, the resulting handheld real-time multispectral ESPU detector can produce multiple images at different center wavelengths with a single shot, therefore eliminates the image registration procedure required by traditional multispectral imaging technologies.

  1. Instruments

    International Nuclear Information System (INIS)

    Buehrer, W.

    1996-01-01

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs

  2. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    International Nuclear Information System (INIS)

    Boutet, Sebastien

    2011-01-01

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  3. Automatic classification of minimally invasive instruments based on endoscopic image sequences

    Science.gov (United States)

    Speidel, Stefanie; Benzko, Julia; Krappe, Sebastian; Sudra, Gunther; Azad, Pedram; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger

    2009-02-01

    Minimally invasive surgery is nowadays a frequently applied technique and can be regarded as a major breakthrough in surgery. The surgeon has to adopt special operation-techniques and deal with difficulties like the complex hand-eye coordination and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality techniques. To analyze the current situation for context-aware assistance, we need intraoperatively gained sensor data and a model of the intervention. A situation consists of information about the performed activity, the used instruments, the surgical objects, the anatomical structures and defines the state of an intervention for a given moment in time. The endoscopic images provide a rich source of information which can be used for an image-based analysis. Different visual cues are observed in order to perform an image-based analysis with the objective to gain as much information as possible about the current situation. An important visual cue is the automatic recognition of the instruments which appear in the scene. In this paper we present the classification of minimally invasive instruments using the endoscopic images. The instruments are not modified by markers. The system segments the instruments in the current image and recognizes the instrument type based on three-dimensional instrument models.

  4. Prototyping a Global Soft X-Ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Carter, J. A.; Chiao, M. P.; Chornay, D. J.; Cravens, T.; Galeazzi, M.; Keller, J. W.; Koutroumpa, D.; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobstereye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission.

  5. Prototyping a Global Soft X-ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, Michael R.; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chornay, Dennis J.; Cravens, Thomas; Galeazzi, Massimiliano; Keller, John W.; Koutroumpa, Dimitra; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the FSA AXIOM mission

  6. Negligible contribution of reservoir dams to organic and inorganic transport in the lower Mimi River, Japan

    Science.gov (United States)

    Nukazawa, Kei; Kihara, Kousuke; Suzuki, Yoshihiro

    2017-12-01

    Rivers fulfill an essential ecological role by forming networks for material transport from upland forests to coastal areas. The way in which dams affect the organic and inorganic cycles in such systems is not well understood. Herein, we investigated the longitudinal profiles of the various components of the water chemistry across three cascade dams in Japan: the Yamasubaru Dam, Saigou Dam, and Ohuchibaru Dam, which are situated along the sediment-productive Mimi River in different flow conditions. We analyzed the following water quality components: suspended solids (SS), turbidity, total iron (TFe), dissolved iron (DFe), total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), humic substance (HS), and major ionic components (Na+, Mg2+, Ca2+, Cl-, NO3-, and SO42-) in the downstream channels of the three dams during the low-intermediate-flow and high-flow events from 2012 to 2014. We estimated hourly loads of each component using hourly turbidity data and discharge data (i.e., L-Q model) separately, and the results are integrated to estimate the annual fluxes. The annual fluxes between the methods were compared to verify predictability of the conventional L-Q models. Annual flux of TOC, TN, DFe, and HS estimated by the turbidity displayed similar values, whereas the flux of SS, TFe, and TP tended to increase downstream of the dams. Among the dams, estimated flux proportions for TP and TFe were higher during high-flow events (74%-94%). Considering geographic conditions (e.g., absence of major tributary between the dams), the result implies that accumulated TP and TFe in the reservoirs may be flushed and transported downstream with SS over the short height dams during flood events. Assuming this process, the reservoir dams probably make only a fractional contribution to the organic and inorganic transport in the catchment studied. The percent flux errors for SS, TFe, and TP fluxes ranged from -7.2% to -97% (except for the TP flux in 2013), which

  7. Comparison of Immediate With Delayed Stenting Using the Minimalist Immediate Mechanical Intervention Approach in Acute ST-Segment-Elevation Myocardial Infarction: The MIMI Study.

    Science.gov (United States)

    Belle, Loic; Motreff, Pascal; Mangin, Lionel; Rangé, Grégoire; Marcaggi, Xavier; Marie, Antoine; Ferrier, Nadine; Dubreuil, Olivier; Zemour, Gilles; Souteyrand, Géraud; Caussin, Christophe; Amabile, Nicolas; Isaaz, Karl; Dauphin, Raphael; Koning, René; Robin, Christophe; Faurie, Benjamin; Bonello, Laurent; Champin, Stanislas; Delhaye, Cédric; Cuilleret, François; Mewton, Nathan; Genty, Céline; Viallon, Magalie; Bosson, Jean Luc; Croisille, Pierre

    2016-03-01

    Delayed stent implantation after restoration of normal epicardial flow by a minimalist immediate mechanical intervention aims to decrease the rate of distal embolization and impaired myocardial reperfusion after percutaneous coronary intervention. We sought to confirm whether a delayed stenting (DS) approach (24-48 hours) improves myocardial reperfusion, versus immediate stenting, in patients with acute ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention. In the prospective, randomized, open-label minimalist immediate mechanical intervention (MIMI) trial, patients (n=140) with ST-segment-elevation myocardial infarction ≤12 hours were randomized to immediate stenting (n=73) or DS (n=67) after Thrombolysis In Myocardial Infarction 3 flow restoration by thrombus aspiration. Patients in the DS group underwent a second coronary arteriography for stent implantation a median of 36 hours (interquartile range 29-46) after randomization. The primary end point was microvascular obstruction (% left ventricular mass) on cardiac magnetic resonance imaging performed 5 days (interquartile range 4-6) after the first procedure. There was a nonsignificant trend toward lower microvascular obstruction in the immediate stenting group compared with DS group (1.88% versus 3.96%; P=0.051), which became significant after adjustment for the area at risk (P=0.049). Median infarct weight, left ventricular ejection fraction, and infarct size did not differ between groups. No difference in 6-month outcomes was apparent for the rate of major cardiovascular and cerebral events. The present findings do not support a strategy of DS versus immediate stenting in patients with ST-segment-elevation infarction undergoing primary percutaneous coronary intervention and even suggested a deleterious effect of DS on microvascular obstruction size. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01360242. © 2016 American Heart Association, Inc.

  8. Laser Speckle Contrast Imaging: theory, instrumentation and applications.

    Science.gov (United States)

    Senarathna, Janaka; Rege, Abhishek; Li, Nan; Thakor, Nitish V

    2013-01-01

    Laser Speckle Contrast Imaging (LSCI) is a wide field of view, non scanning optical technique for observing blood flow. Speckles are produced when coherent light scattered back from biological tissue is diffracted through the limiting aperture of focusing optics. Mobile scatterers cause the speckle pattern to blur; a model can be constructed by inversely relating the degree of blur, termed speckle contrast to the scatterer speed. In tissue, red blood cells are the main source of moving scatterers. Therefore, blood flow acts as a virtual contrast agent, outlining blood vessels. The spatial resolution (~10 μm) and temporal resolution (10 ms to 10 s) of LSCI can be tailored to the application. Restricted by the penetration depth of light, LSCI can only visualize superficial blood flow. Additionally, due to its non scanning nature, LSCI is unable to provide depth resolved images. The simple setup and non-dependence on exogenous contrast agents have made LSCI a popular tool for studying vascular structure and blood flow dynamics. We discuss the theory and practice of LSCI and critically analyze its merit in major areas of application such as retinal imaging, imaging of skin perfusion as well as imaging of neurophysiology.

  9. MicroASC instrument onboard Juno spacecraft utilizing inertially controlled imaging

    DEFF Research Database (Denmark)

    Pedersen, David Arge Klevang; Jørgensen, Andreas Härstedt; Benn, Mathias

    2016-01-01

    This contribution describes the post-processing of the raw image data acquired by the microASC instrument during the Earth-fly-by of the Juno spacecraft. The images show a unique view of the Earth and Moon system as seen from afar. The procedure utilizes attitude measurements and inter......-calibration of the Camera Head Units of the microASC system to trigger the image capturing. The triggering is synchronized with the inertial attitude and rotational phase of the sensor acquiring the images. This is essentially works as inertially controlled imaging facilitating image acquisition from unexplored...

  10. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation)

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled ''Instrumentation and Quantitative Methods of Evaluation.'' Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging

  11. Design Through Integration of On-Board Calibration Device with Imaging Spectroscopy Instruments

    Science.gov (United States)

    Stange, Michael

    2012-01-01

    The main purpose of the Airborne Visible and Infrared Imaging Spectroscopy (AVIRIS) project is to "identify, measure, and monitor constituents of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures." The project designs, builds, and tests various imaging spectroscopy instruments that use On-Board Calibration devices (OBC) to check the accuracy of the data collected by the spectrometers. The imaging instrument records the spectral signatures of light collected during flight. To verify the data is correct, the OBC shines light which is collected by the imaging spectrometer and compared against previous calibration data to track spectral response changes in the instrument. The spectral data has the calibration applied to it based on the readings from the OBC data in order to ensure accuracy.

  12. Multi-resolution waveguide image slicer for the PEPSI instrument

    Science.gov (United States)

    Beckert, Erik; Strassmeier, Klaus G.; Woche, Manfred; Harnisch, Gerd; Hornaff, Marcel; Weber, Michael; Barnes, Stuart

    2016-07-01

    A waveguide image slicer with resolutions up to 270.000 (planned: 300.000) for the fiber fed PEPSI echelle spectrograph at the LBT and single waveguide thicknesses of down to 70 μm has been manufactured and tested. The waveguides were macroscopically prepared, stacked up to an order of seven and thinned back to square stack cross sections. A high filling ratio was achieved by realizing homogenous adhesive gaps of 3.6 μm, using index matching adhesives for TIR within the waveguides. The image slicer stacks are used in immersion mode and are miniaturized to enable implementation in a set of 2x8. The overall efficiency is between 92 % and 96 %.

  13. Data collection instrumentation for ultrasonic imaging under sodium

    International Nuclear Information System (INIS)

    McKnight, J.A.; Parker, J.A.

    1981-05-01

    A team at the Risley Nuclear Power Development Establishment has been developing apparatus for the production of ultrasonic images under opaque liquids. The technique is intended for examining objects under liquid sodium at 300 0 C, and the range of possible methods is restricted as a consequence. The method chosen uses pulse-echo ultrasonics combined with mechanical scanning to assemble the final image. The data is collected using a CAMAC system under the control of an Intel 8080 microprocessor. The data is analysed separately and presented on a colour display using a DEC LSl 11 microprocessor controlled system. To achieve the required performance a number of special electronic assemblies were made. A single image requires 2.5 M byte of data. The cost of using the apparatus on a Fast Reactor is such that it is prudent to provide back-up data collection through a data link, and to maximise the data collection rate. This causes problems with the interrupt cycle time of the CAMAC controller, which can be resolved using synchronous programs specifically tailored to each application. (author)

  14. Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial

    Science.gov (United States)

    Leproux, Anaïs; O'Sullivan, Thomas D.; Cerussi, Albert; Durkin, Amanda; Hill, Brian; Hylton, Nola; Yodh, Arjun G.; Carp, Stefan A.; Boas, David; Jiang, Shudong; Paulsen, Keith D.; Pogue, Brian; Roblyer, Darren; Yang, Wei; Tromberg, Bruce J.

    2017-12-01

    We present a framework for characterizing the performance of an experimental imaging technology, diffuse optical spectroscopic imaging (DOSI), in a 2-year multicenter American College of Radiology Imaging Network (ACRIN) breast cancer study (ACRIN-6691). DOSI instruments combine broadband frequency-domain photon migration with time-independent near-infrared (650 to 1000 nm) spectroscopy to measure tissue absorption and reduced scattering spectra and tissue hemoglobin, water, and lipid composition. The goal of ACRIN-6691 was to test the effectiveness of optically derived imaging endpoints in predicting the final pathologic response of neoadjuvant chemotherapy (NAC). Sixty patients were enrolled over a 2-year period at participating sites and received multiple DOSI scans prior to and during 3- to 6-month NAC. The impact of three sources of error on accuracy and precision, including different operators, instruments, and calibration standards, was evaluated using a broadband reflectance standard and two different solid tissue-simulating optical phantoms. Instruments showed <0.0010 mm-1 (10.3%) and 0.06 mm-1 (4.7%) deviation in broadband absorption and reduced scattering, respectively, over the 2-year duration of ACRIN-6691. These variations establish a useful performance criterion for assessing instrument stability. The proposed procedures and tests are not limited to DOSI; rather, they are intended to provide methods to characterize performance of any instrument used in translational optical imaging.

  15. The image of psychology programs: the value of the instrumental-symbolic framework.

    Science.gov (United States)

    Van Hoye, Greet; Lievens, Filip; De Soete, Britt; Libbrecht, Nele; Schollaert, Eveline; Baligant, Dimphna

    2014-01-01

    As competition for funding and students intensifies, it becomes increasingly important for psychology programs to have an image that is attractive and makes them stand out from other programs. The current study uses the instrumental-symbolic framework from the marketing domain to determine the image of different master's programs in psychology and examines how these image dimensions relate to student attraction and competitor differentiation. The samples consist of both potential students (N = 114) and current students (N = 68) of three psychology programs at a Belgian university: industrial and organizational psychology, clinical psychology, and experimental psychology. The results demonstrate that both instrumental attributes (e.g., interpersonal activities) and symbolic trait inferences (e.g., sincerity) are key components of the image of psychology programs and predict attractiveness as well as differentiation. In addition, symbolic image dimensions seem more important for current students of psychology programs than for potential students.

  16. Assessment and evaluation of the performance of nuclear medicine and ultrasound imaging instrumentation

    International Nuclear Information System (INIS)

    Bergmann, Helmar; Kollmann, Christian

    1996-01-01

    The purpose of this work has been to assess the quality of instrumentation used for the collection of representative patient images during the coordinated research program entitled ''Evaluation of Imaging Procedures for the Diagnosis of Liver Diseases''. Previous work carried out during earlier phases of the project was concerned with the establishment of methods for comparison of the quality of such instrumentation. In this stage the quality of both gamma cameras and ultrasound scanners were assessed using the previously established methods. The evaluation was partly used to validate acceptable working conditions of the equipment during the collection of patient studies, partly to obtain basic data in order to be able to characterize the imaging quality of the devices. This would permit to both identify equipment unsuitable to be used in the study and to take into account the imaging quality token performing the ROC analysis of the evaluation of the patient images

  17. Double-theodolite measurement system used in the image calibration of space photographic instrument

    Institute of Scientific and Technical Information of China (English)

    LI Yan; QIAO Yan-feng; SU Wan-xin; LIU Ze-xun

    2005-01-01

    The purpose of characterizing the image of space photographic instrument is to gain the space included angles from three coordinate axes in the three-dimensional coordinate of the image and the directionality of the three axes of coordinate in the frame of axes of the instrument. The two reference frames will keep in the same direction finally by adjusting according to space angles. This problem was solved by a new high-precision measurement system composed of a double-theodolite and a set of communication system. In the survey system, two TDA5005 total stations from Leica Company will be selected as the double-theodolite and the interdependence of both coordinate systems can be achieved by moving the stations only at one time. Therefore, this measurement system provides a highly efficient and high-precision surveying method to the image calibration of the space photographic instrument. According to the experiment, its measuring accuracy can reach arc-second level.

  18. Innovative operating modes and techniques for the spaceborne imaging radar-C instrument

    Science.gov (United States)

    Huneycutt, Bryan L.

    1990-01-01

    The operation of the spaceborne imaging radar-C (SIR-C) is discussed. The SIR-C instrument has been designed to obtain simultaneous multifrequency and simultaneous multipolarization radar images from a low earth orbit. It is a multiparameter imaging radar which will be flown during at least two different seasons. The instrument has been designed to operate in innovative modes such as the squint alignment mode, the extended aperture mode, the scansar mode, and the interferometry mode. The instrument has been designed to demonstrate innovative engineering techniques such as beam nulling for echo tracking, pulse-repetition frquency hopping for Doppler centroid tracking, generating the frequency step chirp for radar parameter flexibility, block floating point quantizing for data rate compression, and elevation beamwidth broadening for increasing the swath illumination.

  19. Skeletal remodeling dynamics: New approaches with imaging instrumentation

    International Nuclear Information System (INIS)

    Parks, N.J.; Pinkerton, K.E.; Seibert, J.A.; Pool, R.R.

    1991-01-01

    This report of progress and future objectives timetable is based on an included schematic of goals and objectives and the project abstract which is included as Appendix 1. Five matters are summarized in the order of (1) novel methods of calcified bone confocal microscopy and reconstruction image analysis of decalcified beagle and human cortical bone serial sections, (2) macroscopic cross-correlation of beagle and human cortical and cancellous bone fractions with CT analysis, (3) guidance to the most radiobiologically important skeletal regions of interest with the just completed 90 Sr bone tumor map from life time beagle studies, (4) deposition patterns of radioactive agents that participate in apatite crystal nucleation processes in bone and leave radiation-excited electrons trapped in bone mineral, and (5) the budget period timetable. The discovery that beta particles from 166 Ho (T 1/2 =26 hr, β max = 1.8 MeV) phosphonic acid bone agents leave detectable, long-lived, electron paramagnetic resonance signals in bone is included in Appendix 2 as a joint report

  20. Mammography: an effective instrument in the medical image

    International Nuclear Information System (INIS)

    Palacios P, L.L.; Rivera M, T.

    2007-01-01

    Full text: The history of the mastographers goes back from 1895 in that the german physique Roentgen of Guillermo discovered the radiographs. In 1913 Albert Solomon used one it schemes of conventional x-ray machine to visualize breast cancer but it is not until that in 1966 the first one is developed a machine dedicated to the mastography. The evolution of the radiology technology has had a lot of turnaround in such a way that in the present time is required to emit digital mammographies via satellite to the doctors in remote position around the world. The mastography is a diagnostic method that is good to detect possible lesions in mamma, in the one that X-rays are used to obtain images of the mamma. This should be carried out by an X-ray equipment specially designed to make the study of mamma. According to those data of the Secretary of Health, in Mexico, to the beginning of the previous six year period, in existence had single 132 mastographers in the whole country, and to the finish of this six years they had 441 mastographers. Likewise, the one numbers of mastographs arrive at 172,000 at the end of the 2006 of 43,000 that its were carried out in 2000. This index reflects the concern of our group of concerning investigation to the radiological protection, for what the present work is an analysis about the situation of mastography in Mexico and it dosimetry. (Author)

  1. Modern spinal instrumentation. Part 2: Multimodality imaging approach for assessment of complications

    International Nuclear Information System (INIS)

    Allouni, A.K.; Davis, W.; Mankad, K.; Rankine, J.; Davagnanam, I.

    2013-01-01

    Radiologists frequently encounter studies demonstrating spinal instrumentation, either as part of the patient's postoperative evaluation, or as incidental to a study performed for another purpose. It is important for the reporting radiologist to identify potential complications of commonly used spinal implants. Part 1 of this review examined both the surgical approaches used and the normal appearances of these spinal implants and bone grafting techniques. This second part of the review will focus on the multimodal imaging strategy adopted in the assessment of the instrumented spine and the demonstration of imaging findings of common postoperative complications.

  2. Newton's Telescope in Print: the Role of Images in the Reception of Newton's Instrument

    NARCIS (Netherlands)

    Dupré, Sven

    2008-01-01

    While Newton tried to make his telescope into a proof of the supremacy of his theory of colours over older theories, his instrument was welcomed as a way to shorten telescopes, not as a way to solve the problem of chromatic aberration. This paper argues that the image published together with the

  3. [Perfusion imaging: Instrumentation, modeling, and radiopharmaceuticals: Report of the scientific meeting: Final technical report

    International Nuclear Information System (INIS)

    Graham, M.M.

    1987-01-01

    This meeting provided an excellent overview of the state-of-the-art in perfusion imaging from the viewpoints of mathematical data analysis, radiochemical synthesis and evaluation, and instrumentation physics. The participants and audience had an opportunity to see how each of these aspects is essential for continued progress in this field

  4. NESSI and `Alopeke: Two new dual-channel speckle imaging instruments

    Science.gov (United States)

    Scott, Nicholas J.

    2018-01-01

    NESSI and `Alopeke are two new speckle imagers built at NASA's Ames Research Center for community use at the WIYN and Gemini telescopes, respectively. The two instruments are functionally similar and include the capability for wide-field imaging in additional to speckle interferometry. The diffraction-limited imaging available through speckle effectively eliminates distortions due to the presence of Earth's atmosphere by `freezing out' changes in the atmosphere by taking extremely short exposures and combining the resultant speckles in Fourier space. This technique enables angular resolutions equal to the theoretical best possible for a given telescope, effectively giving space-based resolution from the ground. Our instruments provide the highest spatial resolution available today on any single aperture telescope.A primary role of these instruments is exoplanet validation for the Kepler, K2, TESS, and many RV programs. Contrast ratios of 6 or more magnitudes are easily obtained. The instrument uses two emCCD cameras providing simultaneous dual-color observations help to characterize detected companions. High resolution imaging enables the identification of blended binaries that contaminate many exoplanet detections, leading to incorrectly measured radii. In this way small, rocky systems, such as Kepler-186b and the TRAPPIST-1 planet family, may be validated and thus the detected planets radii are correctly measured.

  5. Optical Performance of Breadboard Amon-Ra Imaging Channel Instrument for Deep Space Albedo Measurement

    Directory of Open Access Journals (Sweden)

    Won Hyun Park

    2007-03-01

    Full Text Available The AmonRa instrument, the primary payload of the international EARTHSHINE mission, is designed for measurement of deep space albedo from L1 halo orbit. We report the optical design, tolerance analysis and the optical performance of the breadborad AmonRa imaging channel instrument optimized for the mission science requirements. In particular, an advanced wavefront feedback process control technique was used for the instrumentation process including part fabrication, system alignment and integration. The measured performances for the complete breadboard system are the RMS 0.091 wave(test wavelength: 632.8 nm in wavefront error, the ensquared energy of 61.7%(in 14 μ m and the MTF of 35.3%(Nyquist frequency: 35.7 mm^{-1} at the center field. These resulting optical system performances prove that the breadboard AmonRa instrument, as built, satisfies the science requirements of the EARTHSHINE mission.

  6. Development and Current Status of Skull-Image Superimposition - Methodology and Instrumentation.

    Science.gov (United States)

    Lan, Y

    1992-12-01

    This article presents a review of the literature and an evaluation on the development and application of skull-image superimposition technology - both instrumentation and methodology - contributed by a number of scholars since 1935. Along with a comparison of the methodologies involved in the two superimposition techniques - photographic and video - the author characterized the techniques in action and the recent advances in computer image superimposition processing technology. The major disadvantage of conventional approaches is its relying on subjective interpretation. Through painstaking comparison and analysis, computer image processing technology can make more conclusive identifications by direct testing and evaluating the various programmed indices. Copyright © 1992 Central Police University.

  7. Imaging x-ray sources at a finite distance in coded-mask instruments

    International Nuclear Information System (INIS)

    Donnarumma, Immacolata; Pacciani, Luigi; Lapshov, Igor; Evangelista, Yuri

    2008-01-01

    We present a method for the correction of beam divergence in finite distance sources imaging through coded-mask instruments. We discuss the defocusing artifacts induced by the finite distance showing two different approaches to remove such spurious effects. We applied our method to one-dimensional (1D) coded-mask systems, although it is also applicable in two-dimensional systems. We provide a detailed mathematical description of the adopted method and of the systematics introduced in the reconstructed image (e.g., the fraction of source flux collected in the reconstructed peak counts). The accuracy of this method was tested by simulating pointlike and extended sources at a finite distance with the instrumental setup of the SuperAGILE experiment, the 1D coded-mask x-ray imager onboard the AGILE (Astro-rivelatore Gamma a Immagini Leggero) mission. We obtained reconstructed images of good quality and high source location accuracy. Finally we show the results obtained by applying this method to real data collected during the calibration campaign of SuperAGILE. Our method was demonstrated to be a powerful tool to investigate the imaging response of the experiment, particularly the absorption due to the materials intercepting the line of sight of the instrument and the conversion between detector pixel and sky direction

  8. Quantitative imaging of the human upper airway: instrument design and clinical studies

    Science.gov (United States)

    Leigh, M. S.; Armstrong, J. J.; Paduch, A.; Sampson, D. D.; Walsh, J. H.; Hillman, D. R.; Eastwood, P. R.

    2006-08-01

    Imaging of the human upper airway is widely used in medicine, in both clinical practice and research. Common imaging modalities include video endoscopy, X-ray CT, and MRI. However, no current modality is both quantitative and safe to use for extended periods of time. Such a capability would be particularly valuable for sleep research, which is inherently reliant on long observation sessions. We have developed an instrument capable of quantitative imaging of the human upper airway, based on endoscopic optical coherence tomography. There are no dose limits for optical techniques, and the minimally invasive imaging probe is safe for use in overnight studies. We report on the design of the instrument and its use in preliminary clinical studies, and we present results from a range of initial experiments. The experiments show that the instrument is capable of imaging during sleep, and that it can record dynamic changes in airway size and shape. This information is useful for research into sleep disorders, and potentially for clinical diagnosis and therapies.

  9. Assessing the body image: relevance, application and instruments for oncological settings.

    Science.gov (United States)

    Annunziata, Maria Antonietta; Giovannini, Lorena; Muzzatti, Barbara

    2012-05-01

    Body image is the sum of physical, cognitive, emotional, and relational elements that, when integrated, allow the development of a whole, healthy self-identity. Even though body image is normally studied in relation to eating disorders, it can also be influenced by other pathologies, including cancer. In oncology, an effective body image assessment is fundamental. The physical effects of cancer and cancer treatments are important and frequently irreversible also on a functional and emotional level; however, only few surveys have investigated body image in this peculiar context. An extensive literature review was carried out in PubMed and PsycINFO. We considered articles published from 1990 to 2010. Two hundred sixty-three papers matched the search criteria. Assessment methodologies included clinical interviews, self-report measures, questionnaires, symptom check lists, and graphic tests and projective techniques. After excluding the instruments that referred to eating disorders, validated only for adolescents, and/or projective and graphic tests, we found 81 articles with six questionnaires specifically dedicated to body image assessment in oncology. From our systematic review, we could identify six instruments specifically designed for assessing body image in the oncological area. In this paper, we discuss their general characteristics, psychometrics properties and the clinical implications, and body image relevance on the quality of life in cancer patients.

  10. On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory

    Science.gov (United States)

    Hoeksema, J. T.; Baldner, C. S.; Bush, R. I.; Schou, J.; Scherrer, P. H.

    2018-03-01

    The Helioseismic and Magnetic Imager (HMI) instrument is a major component of NASA's Solar Dynamics Observatory (SDO) spacecraft. Since commencement of full regular science operations on 1 May 2010, HMI has operated with remarkable continuity, e.g. during the more than five years of the SDO prime mission that ended 30 September 2015, HMI collected 98.4% of all possible 45-second velocity maps; minimizing gaps in these full-disk Dopplergrams is crucial for helioseismology. HMI velocity, intensity, and magnetic-field measurements are used in numerous investigations, so understanding the quality of the data is important. This article describes the calibration measurements used to track the performance of the HMI instrument, and it details trends in important instrument parameters during the prime mission. Regular calibration sequences provide information used to improve and update the calibration of HMI data. The set-point temperature of the instrument front window and optical bench is adjusted regularly to maintain instrument focus, and changes in the temperature-control scheme have been made to improve stability in the observable quantities. The exposure time has been changed to compensate for a 20% decrease in instrument throughput. Measurements of the performance of the shutter and tuning mechanisms show that they are aging as expected and continue to perform according to specification. Parameters of the tunable optical-filter elements are regularly adjusted to account for drifts in the central wavelength. Frequent measurements of changing CCD-camera characteristics, such as gain and flat field, are used to calibrate the observations. Infrequent expected events such as eclipses, transits, and spacecraft off-points interrupt regular instrument operations and provide the opportunity to perform additional calibration. Onboard instrument anomalies are rare and seem to occur quite uniformly in time. The instrument continues to perform very well.

  11. Instrument translation and initial psychometric evaluation of the Danish Body Image Quality of Life Inventory

    DEFF Research Database (Denmark)

    Rasmussen, Trine Bernholdt; Berg, Selina Kikkenborg; Dixon, Jane

    2016-01-01

    . The purpose of the study was thus to translate and validate a Danish version of the Body Image Quality of Life Inventory (BIQLI), in order to obtain a valid instrument applicable for healthcare research. METHODS: The study consisted of two phases: (i) instrument adaptation, including forward and back...... to be semantically sound, yet concerns about face validity did arise through cognitive interviews. Danish college students (n = 189, 65 men, Mage = 21.1 years) participated in the piloting of the BIQLI-DA. Convergent construct validity was demonstrated through associations to related constructs. Exploratory factor...

  12. Higs-instrument: design and demonstration of a high performance gas concentration imager

    Science.gov (United States)

    Verlaan, A. L.; Klop, W. A.; Visser, H.; van Brug, H.; Human, J.

    2017-09-01

    Climate change and environmental conditions are high on the political agenda of international governments. Laws and regulations are being setup all around the world to improve the air quality and to reduce the impact. The growth of a number of trace gasses, including CO2, Methane and NOx are especially interesting due to their environmental impact. The regulations made are being based on both models and measurements of the trend of those trace gases over the years. Now the regulations are in place also enforcement and therewith measurements become more and more important. Instruments enabling high spectral and spatial resolution as well as high accurate measurements of trace gases are required to deliver the necessary inputs. Nowadays those measurements are usually performed by space based spectrometers. The requirement for high spectral resolution and measurement accuracy significantly increases the size of the instruments. As a result the instrument and satellite becomes very expensive to develop and to launch. Specialized instruments with a small volume and the required performance will offer significant advantages in both cost and performance. Huib's Innovative Gas Sensor (HIGS, named after its inventor Huib Visser), currently being developed at TNO is an instrument that achieves exactly that. Designed to measure only a single gas concentration, opposed to deriving it from a spectrum, it achieves high performance within a small design volume. The instrument enables instantaneous imaging of the gas distribution of the selected gas. An instrument demonstrator has been developed for NO2 detection. Laboratory measurements proved the measurement technique to be successful. An on-sky measurement campaign is in preparation. This paper addresses both the instrument design as well as the demonstrated performances.

  13. Calibration results using highly aberrated images for aligning the JWST instruments to the telescope

    Science.gov (United States)

    Smith, Koby Z.; Acton, D. Scott; Gallagher, Ben B.; Knight, J. Scott; Dean, Bruce H.; Jurling, Alden S.; Zielinski, Thomas P.

    2016-07-01

    The James Webb Space Telescope (JWST) project is an international collaboration led by NASA's Goddard Space Flight Center (GSFC) in Greenbelt, MD. JWST is NASA's flagship observatory that will operate nearly a million miles away from Earth at the L2 Lagrange point. JWST's optical design is a three-mirror anastigmat with four main optical components; 1) the eighteen Primary Mirror Segment Assemblies (PMSA), 2) a single Secondary Mirror Assembly (SMA), 3) an Aft-Optics Subsystem (AOS) consisting of a Tertiary Mirror and Fine Steering Mirror, and 4) an Integrated Science Instrument Module consisting of the various instruments for JWST. JWST's optical system has been designed to accommodate a significant amount of alignment capability and risk with the PMSAs and SMA having rigid body motion available on-orbit just for alignment purposes. However, the Aft-Optics Subsystem (AOS) and Integrated Science Instrument Module (ISIM) are essentially fixed optical subsystems within JWST, and therefore the cryogenic alignment of the AOS to the ISIM is critical to the optical performance and mission success of JWST. In support of this cryogenic alignment of the AOS to ISIM, an array of fiber optic sources, known as the AOS Source Plate Assembly (ASPA), are placed near the intermediate image location of JWST (between the secondary and tertiary mirrors) during thermal vacuum ground-test operations. The AOS produces images of the ASPA fiber optic sources at the JWST focal surface location, where they are captured by the various science instruments. In this manner, the AOS provides an optical yardstick by which the instruments within ISIM can evaluate their relative positions to and the alignment of the AOS to ISIM can be quantified. However, since the ASPA is located at the intermediate image location of the JWST three-mirror anastigmat design, the images of these fiber optic sources produced by the AOS are highly aberrated with approximately 2-3μm RMS wavefront error consisting

  14. A practical exposure-equivalent metric for instrumentation noise in x-ray imaging systems

    International Nuclear Information System (INIS)

    Yadava, G K; Kuhls-Gilcrist, A T; Rudin, S; Patel, V K; Hoffmann, K R; Bednarek, D R

    2008-01-01

    The performance of high-sensitivity x-ray imagers may be limited by additive instrumentation noise rather than by quantum noise when operated at the low exposure rates used in fluoroscopic procedures. The equipment-invasive instrumentation noise measures (in terms of electrons) are generally difficult to make and are potentially not as helpful in clinical practice as would be a direct radiological representation of such noise that may be determined in the field. In this work, we define a clinically relevant representation for instrumentation noise in terms of noise-equivalent detector entrance exposure, termed the instrumentation noise-equivalent exposure (INEE), which can be determined through experimental measurements of noise-variance or signal-to-noise ratio (SNR). The INEE was measured for various detectors, thus demonstrating its usefulness in terms of providing information about the effective operating range of the various detectors. A simulation study is presented to demonstrate the robustness of this metric against post-processing, and its dependence on inherent detector blur. These studies suggest that the INEE may be a practical gauge to determine and compare the range of quantum-limited performance for clinical x-ray detectors of different design, with the implication that detector performance at exposures below the INEE will be instrumentation-noise limited rather than quantum-noise limited

  15. Magnetic particle imaging an introduction to imaging principles and scanner instrumentation

    CERN Document Server

    Knopp, Tobias

    2012-01-01

    This is an overview of recent progress in magnetic particle imaging, which uses various static and oscillating magnetic fields and tracer materials made from iron oxide nanoparticles to perform background-free measurements of the particles' local concentration.

  16. An instrument control and data analysis program for imaging and in vivo spectroscopy

    International Nuclear Information System (INIS)

    Roos, M.S.; Mushlin, R.A.; Veklerov, E.; Port, J.D.; Ladd, C.; Harrison, C.G.

    1987-01-01

    The spectrometer control data processing environment and the libraries of macros designed are used to support imaging and in vivo spectroscopy at the Lawrence Berkeley Laboratory, the Massachusetts Institute of Technology, and the Brigham and Women's Hospital in systems ranging from a 2-T animal spectrometer to a 0.5-T whole body imager. Experiments that have been successfully implemented include multi-slice, multi-echo imaging fast steady state free precession imaging and 31 P spectroscopy. The flexibility of the macro programming structure allowed very rapid development of these macro libraries. We have demonstrated that instrumentation developed around standard hosts, buses, and operating systems can yield research tools with performance comparable to highly specialized systems. The combination of low macro instruction overhead, provision of user access to system internals, and a rich command set controlling basic acquisition and processing functions provides a foundation on which libraries of macros may be built to serve a broad range of users, perhaps more easily than a system with larger sets of less primitive commands and a more limited batch processor. Well defined program interfaces for macros and for installing commands, as well as the ability to modify instrument control code significantly broaden the range of experiments accessible to the researcher

  17. Integration of instrumentation and processing software of a laser speckle contrast imaging system

    Science.gov (United States)

    Carrick, Jacob J.

    Laser speckle contrast imaging (LSCI) has the potential to be a powerful tool in medicine, but more research in the field is required so it can be used properly. To help in the progression of Michigan Tech's research in the field, a graphical user interface (GUI) was designed in Matlab to control the instrumentation of the experiments as well as process the raw speckle images into contrast images while they are being acquired. The design of the system was successful and is currently being used by Michigan Tech's Biomedical Engineering department. This thesis describes the development of the LSCI GUI as well as offering a full introduction into the history, theory and applications of LSCI.

  18. Body-mounted robotic instrument guide for image-guided cryotherapy of renal cancer

    Science.gov (United States)

    Hata, Nobuhiko; Song, Sang-Eun; Olubiyi, Olutayo; Arimitsu, Yasumichi; Fujimoto, Kosuke; Kato, Takahisa; Tuncali, Kemal; Tani, Soichiro; Tokuda, Junichi

    2016-01-01

    Purpose: Image-guided cryotherapy of renal cancer is an emerging alternative to surgical nephrectomy, particularly for those who cannot sustain the physical burden of surgery. It is well known that the outcome of this therapy depends on the accurate placement of the cryotherapy probe. Therefore, a robotic instrument guide may help physicians aim the cryotherapy probe precisely to maximize the efficacy of the treatment and avoid damage to critical surrounding structures. The objective of this paper was to propose a robotic instrument guide for orienting cryotherapy probes in image-guided cryotherapy of renal cancers. The authors propose a body-mounted robotic guide that is expected to be less susceptible to guidance errors caused by the patient’s whole body motion. Methods: Keeping the device’s minimal footprint in mind, the authors developed and validated a body-mounted, robotic instrument guide that can maintain the geometrical relationship between the device and the patient’s body, even in the presence of the patient’s frequent body motions. The guide can orient the cryotherapy probe with the skin incision point as the remote-center-of-motion. The authors’ validation studies included an evaluation of the mechanical accuracy and position repeatability of the robotic instrument guide. The authors also performed a mock MRI-guided cryotherapy procedure with a phantom to compare the advantage of robotically assisted probe replacements over a free-hand approach, by introducing organ motions to investigate their effects on the accurate placement of the cryotherapy probe. Measurements collected for performance analysis included accuracy and time taken for probe placements. Multivariate analysis was performed to assess if either or both organ motion and the robotic guide impacted these measurements. Results: The mechanical accuracy and position repeatability of the probe placement using the robotic instrument guide were 0.3 and 0.1 mm, respectively, at a depth

  19. CASSINI S MIMI INCA SENSOR CALIBRATED DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Ion and Neutral Camera (INCA) obtains remote images of the global distribution of energetic ions for energies from 7 keV/nucleon to 8 MeV/nucleon, discriminated...

  20. Advanced Spectroscopic and Thermal Imaging Instrumentation for Shock Tube and Ballistic Range Facilities

    Science.gov (United States)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.

  1. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Yueh [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Wei-Tse; Chen, Yi-Sheng; Hwu, En-Te; Chang, Chia-Seng; Hwang, Ing-Shouh, E-mail: ishwang@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hsu, Wei-Hao [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This work demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.

  2. An instrument control and data analysis program for NMR imaging and spectroscopy

    International Nuclear Information System (INIS)

    Roos, M.S.; Mushlin, R.A.; Veklerov, E.; Port, J.D.; Ladd, C.; Harrison, C.G.

    1988-01-01

    We describe a software environment created to support real-time instrument control and signal acquisition as well as array-processor based signal and image processing in up to five dimensions. The environment is configured for NMR imaging and in vivo spectroscopy. It is designed to provide flexible tools for implementing novel NMR experiments in the research laboratory. Data acquisition and processing operations are programmed in macros which are loaded in assembled from to minimize instruction overhead. Data arrays are dynamically allocated for efficient use of memory and can be mapped directly into disk files. The command set includes primitives for real-time control of data acquisition, scalar arithmetic, string manipulation, branching, a file system and vector operations carried out by an array processor. 6 figs

  3. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Instrument Design and Calibration

    Science.gov (United States)

    Englert, Christoph R.; Harlander, John M.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Stump, J. Eloise; Hancock, Jed; Peterson, James Q.; Kumler, Jay; Morrow, William H.; Mooney, Thomas A.; Ellis, Scott; Mende, Stephen B.; Harris, Stewart E.; Stevens, Michael H.; Makela, Jonathan J.; Harding, Brian J.; Immel, Thomas J.

    2017-10-01

    The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth's limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.

  4. The Inner Magnetospheric Imager (IMI): Instrument heritage and orbit viewing analysis

    Science.gov (United States)

    Wilson, Gordon R.

    1992-12-01

    For the last two years an engineering team in the Program Development Office at MSFC has been doing design studies for the proposed Inner Magnetospheric Imager (IMI) mission. This team had a need for more information about the instruments that this mission would carry so that they could get a better handle on instrument volume, mass, power, and telemetry needs as well as information to help assess the possible cost of such instruments and what technology development they would need. To get this information, an extensive literature search was conducted as well as interviews with several members of the IMI science working group. The results of this heritage survey are summarized below. There was also a need to evaluate the orbits proposed for this mission from the stand point of their suitability for viewing the various magnetospheric features that are planned for this mission. This was accomplished by first, identifying the factors which need to be considered in selecting an orbit, second, translating these considerations into specific criteria, and third, evaluating the proposed orbits against these criteria. The specifics of these criteria and the results of the orbit analysis are contained in the last section of this report.

  5. ABISM: an interactive image quality assessment tool for adaptive optics instruments

    Science.gov (United States)

    Girard, Julien H.; Tourneboeuf, Martin

    2016-07-01

    ABISM (Automatic Background Interactive Strehl Meter) is a interactive tool to evaluate the image quality of astronomical images. It works on seeing-limited point spread functions (PSF) but was developed in particular for diffraction-limited PSF produced by adaptive optics (AO) systems. In the VLT service mode (SM) operations framework, ABISM is designed to help support astronomers or telescope and instruments operators (TIOs) to quickly measure the Strehl ratio (SR) during or right after an observing block (OB) to evaluate whether it meets the requirements/predictions or whether is has to be repeated and will remain in the SM queue. It's a Python-based tool with a graphical user interface (GUI) that can be used with little AO knowledge. The night astronomer (NA) or Telescope and Instrument Operator (TIO) can launch ABISM in one click and the program is able to read keywords from the FITS header to avoid mistakes. A significant effort was also put to make ABISM as robust (and forgiven) with a high rate of repeatability. As a matter of fact, ABISM is able to automatically correct for bad pixels, eliminate stellar neighbours and estimate/fit properly the background, etc.

  6. Energetic neutral atom imaging with the Polar CEPPAD/IPS instrument: Initial forward modeling results

    International Nuclear Information System (INIS)

    Henderson, M.G.; Reeves, G.D.; Moore, K.R.; Spence, H.E.; Jorgensen, A.M.; Roelof, E.C.

    1997-01-01

    Although the primary function of the CEP-PAD/IPS instrument on Polar is the measurement of energetic ions in-situ, it has also proven to be a very capable Energetic neutral Atom (ENA) imager. Raw ENA images are currently being constructed on a routine basis with a temporal resolution of minutes during both active and quiet times. However, while analyses of these images by themselves provide much information on the spatial distribution and dynamics of the energetic ion population in the ring current, detailed modeling is required to extract the actual ion distributions. In this paper, the authors present the initial results of forward modeling an IPS ENA image obtained during a small geo-magnetic storm on June 9, 1997. The equatorial ion distribution inferred with this technique reproduces the expected large noon/midnight and dawn/dusk asymmetries. The limitations of the model are discussed and a number of modifications to the basic forward modeling technique are proposed which should significantly improve its performance in future studies

  7. Thermal design and performance of the REgolith x-ray imaging spectrometer (REXIS) instrument

    Science.gov (United States)

    Stout, Kevin D.; Masterson, Rebecca A.

    2014-08-01

    The REgolith X-ray Imaging Spectrometer (REXIS) instrument is a student collaboration instrument on the OSIRIS-REx asteroid sample return mission scheduled for launch in September 2016. The REXIS science mission is to characterize the elemental abundances of the asteroid Bennu on a global scale and to search for regions of enhanced elemental abundance. The thermal design of the REXIS instrument is challenging due to both the science requirements and the thermal environment in which it will operate. The REXIS instrument consists of two assemblies: the spectrometer and the solar X-ray monitor (SXM). The spectrometer houses a 2x2 array of back illuminated CCDs that are protected from the radiation environment by a one-time deployable cover and a collimator assembly with coded aperture mask. Cooling the CCDs during operation is the driving thermal design challenge on the spectrometer. The CCDs operate in the vicinity of the electronics box, but a 130 °C thermal gradient is required between the two components to cool the CCDs to -60 °C in order to reduce noise and obtain science data. This large thermal gradient is achieved passively through the use of a copper thermal strap, a large radiator facing deep space, and a two-stage thermal isolation layer between the electronics box and the DAM. The SXM is mechanically mounted to the sun-facing side of the spacecraft separately from the spectrometer and characterizes the highly variable solar X-ray spectrum to properly interpret the data from the asteroid. The driving thermal design challenge on the SXM is cooling the silicon drift detector (SDD) to below -30 °C when operating. A two-stage thermoelectric cooler (TEC) is located directly beneath the detector to provide active cooling, and spacecraft MLI blankets cover all of the SXM except the detector aperture to radiatively decouple the SXM from the flight thermal environment. This paper describes the REXIS thermal system requirements, thermal design, and analyses, with

  8. Development of quality control and instrumentation performance metrics for diffuse optical spectroscopic imaging instruments in the multi-center clinical environment

    Science.gov (United States)

    Keene, Samuel T.; Cerussi, Albert E.; Warren, Robert V.; Hill, Brian; Roblyer, Darren; Leproux, AnaÑ--s.; Durkin, Amanda F.; O'Sullivan, Thomas D.; Haghany, Hosain; Mantulin, William W.; Tromberg, Bruce J.

    2013-03-01

    Instrument equivalence and quality control are critical elements of multi-center clinical trials. We currently have five identical Diffuse Optical Spectroscopic Imaging (DOSI) instruments enrolled in the American College of Radiology Imaging Network (ACRIN, #6691) trial located at five academic clinical research sites in the US. The goal of the study is to predict the response of breast tumors to neoadjuvant chemotherapy in 60 patients. In order to reliably compare DOSI measurements across different instruments, operators and sites, we must be confident that the data quality is comparable. We require objective and reliable methods for identifying, correcting, and rejecting low quality data. To achieve this goal, we developed and tested an automated quality control algorithm that rejects data points below the instrument noise floor, improves tissue optical property recovery, and outputs a detailed data quality report. Using a new protocol for obtaining dark-noise data, we applied the algorithm to ACRIN patient data and successfully improved the quality of recovered physiological data in some cases.

  9. Nuclear medicine and imaging research. Instrumentation and quantitative methods of evaluation. Progress report, January 15, 1984-January 14, 1985

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1984-09-01

    This program addresses problems involving the basic science and technology of radioactive tracer methods as they relate to nuclear medicine and imaging. The broad goal is to develop new instruments and methods for image formation, processing, quantitation and display, so as to maximize the diagnostic information per unit of absorbed radiation dose to the patient. Project I addresses problems associated with the quantitative imaging of single-photon emitters; Project II addresses similar problems associated with the quantitative imaging of positron emitters; Project III addresses methodological problems associated with the quantitative evaluation of the efficacy of diagnostic imaging procedures

  10. Can masses of non-experts train highly accurate image classifiers? A crowdsourcing approach to instrument segmentation in laparoscopic images.

    Science.gov (United States)

    Maier-Hein, Lena; Mersmann, Sven; Kondermann, Daniel; Bodenstedt, Sebastian; Sanchez, Alexandro; Stock, Christian; Kenngott, Hannes Gotz; Eisenmann, Mathias; Speidel, Stefanie

    2014-01-01

    Machine learning algorithms are gaining increasing interest in the context of computer-assisted interventions. One of the bottlenecks so far, however, has been the availability of training data, typically generated by medical experts with very limited resources. Crowdsourcing is a new trend that is based on outsourcing cognitive tasks to many anonymous untrained individuals from an online community. In this work, we investigate the potential of crowdsourcing for segmenting medical instruments in endoscopic image data. Our study suggests that (1) segmentations computed from annotations of multiple anonymous non-experts are comparable to those made by medical experts and (2) training data generated by the crowd is of the same quality as that annotated by medical experts. Given the speed of annotation, scalability and low costs, this implies that the scientific community might no longer need to rely on experts to generate reference or training data for certain applications. To trigger further research in endoscopic image processing, the data used in this study will be made publicly available.

  11. Direct observation of two dimensional trace gas distributions with an airborne Imaging DOAS instrument

    Directory of Open Access Journals (Sweden)

    K.-P. Heue

    2008-11-01

    Full Text Available In many investigations of tropospheric chemistry information about the two dimensional distribution of trace gases on a small scale (e.g. tens to hundreds of metres is highly desirable. An airborne instrument based on imaging Differential Optical Absorption Spectroscopy has been built to map the two dimensional distribution of a series of relevant trace gases including NO2, HCHO, C2H2O2, H2O, O4, SO2, and BrO on a scale of 100 m.

    Here we report on the first tests of the novel aircraft instrument over the industrialised South African Highveld, where large variations in NO2 column densities in the immediate vicinity of several sources e.g. power plants or steel works, were measured. The observed patterns in the trace gas distribution are interpreted with respect to flux estimates, and it is seen that the fine resolution of the measurements allows separate sources in close proximity to one another to be distinguished.

  12. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing.

    Science.gov (United States)

    Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Retzlaff, Rebecca; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo

    2017-07-01

    This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.

  13. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing

    Directory of Open Access Journals (Sweden)

    Thomas Udelhoven

    2017-07-01

    Full Text Available This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping. The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1–5 days at off-nadir. At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month. To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1 a hyperspectral TIR system with ~75 bands at 7.2–12.5 µm (instrument NEDT 0.05 K–0.1 K and a ground sampling distance (GSD of 60 m, and (2 a panchromatic high-resolution TIR-imager with two channels (8.0–10.25 µm and 10.25–12.5 µm and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1–3 days to combine data from the visible and near infrared (VNIR, the shortwave infrared (SWIR and TIR spectral regions and to refine parameter retrieval.

  14. Descent imager/spectral radiometer (DISR) instrument aboard the Huygens probe of Titan

    Science.gov (United States)

    Tomasko, Martin G.; Doose, Lyn R.; Smith, Peter H.; Fellows, C.; Rizk, B.; See, C.; Bushroe, M.; McFarlane, E.; Wegryn, E.; Frans, E.; Clark, R.; Prout, M.; Clapp, S.

    1996-10-01

    The Huygen's probe of the atmosphere of Saturn's moon Titan includes one optical instrument sensitive to the wavelengths of solar radiation. The goals of this investigation fall into four broad areas: 1) the measurement of the profile of solar heating to support an improved understanding of the thermal balance of Titan and the role of the greenhouse effect in maintaining Titan's temperature structure; 2) the measurement of the size, vertical distribution, and optical properties of the aerosol and cloud particles in Titan's atmosphere to support studies of the origin, chemistry, life cycles, and role in the radiation balance of Titan played by these particles; 3) the composition of the atmosphere, particularly the vertical profile of the mixing ratio of methane, a condensable constituent in Titan's atmosphere; and 4) the physical state, composition, topography, and physical processes at work in determining the nature of the surface of Titan and its interaction with Titan's atmosphere. In order to accomplish these objectives, the Descent Imager/Spectral Radiometer (DISR) instrument makes extensive use of fiber optics to bring the light from several different sets of foreoptics to a silicon CCD detector, to a pair of InGaAs linear array detectors, and to three silicon photometers. Together these detectors permit DISR to make panoramic images of the clouds and surface of Titan, to measure the spectrum of upward and downward streaming sunlight from 350 to 1700 nm at a resolving power of about 200, to measure the reflection spectrum of >= 3000 locations on the surface, to measure the brightness and polarization of the solar aureole between 4 and 30 degrees from the sun at 500 and 935 nm, to separate the direct and diffuse downward solar flux at each wavelength measured, and to measure the continuous reflection spectrum of the ground between 850 and 1600 nm using an onboard lamp in the last 100 m of the descent.

  15. A New Instrument for the IRTF: the MIT Optical Rapid Imaging System (MORIS)

    Science.gov (United States)

    Gulbis, Amanda A. S.; Elliot, J. L.; Rojas, F. E.; Bus, S. J.; Rayner, J. T.; Stahlberger, W. E.; Tokunaga, A. T.; Adams, E. R.; Person, M. J.

    2010-10-01

    NASA's 3-m Infrared Telescope Facility (IRTF) on Mauna Kea, HI plays a leading role in obtaining planetary science observations. However, there has been no capability for high-speed, visible imaging from this telescope. Here we present a new IRTF instrument, MORIS, the MIT Optical Rapid Imaging System. MORIS is based on POETS (Portable Occultation Eclipse and Transit Systems; Souza et al., 2006, PASP, 118, 1550). Its primary component is an Andor iXon camera, a 512x512 array of 16-micron pixels with high quantum efficiency, low read noise, low dark current, and full-frame readout rates of between 3.5 Hz (6 e /pixel read noise) and 35 Hz (49 e /pixel read noise at electron-multiplying gain=1). User-selectable binning and subframing can increase the cadence to a few hundred Hz. An electron-multiplying mode can be employed for photon counting, effectively reducing the read noise to sub-electron levels at the expense of dynamic range. Data cubes, or individual frames, can be triggered to nanosecond accuracy using a GPS. MORIS is mounted on the side-facing widow of SpeX (Rayner et al. 2003, PASP, 115, 362), allowing simultaneous near-infrared and visible observations. The mounting box contains 3:1 reducing optics to produce a 60 arcsec x 60 arcsec field of view at f/12.7. It hosts a ten-slot filter wheel, with Sloan g×, r×, i×, and z×, VR, Johnson V, and long-pass red filters. We describe the instrument design, components, and measured characteristics. We report results from the first science observations, a 24 June 2008 stellar occultation by Pluto. We also discuss a recent overhaul of the optical path, performed in order to eliminate scattered light. This work is supported in part by NASA Planetary Major Equipment grant NNX07AK95G. We are indebted to the University of Hawai'i Institute for Astronomy machine shop, in particular Randy Chung, for fabricating instrument components.

  16. Advances in nuclear medicine instrumentation: considerations in the design and selection of an imaging system

    International Nuclear Information System (INIS)

    Links, J.M.

    1998-01-01

    Nuclear medicine remains a vibrant and dynamic medical specialty because it so adeptly marries advances in basic science research, technology, and medical practice in attempting to solve patients' problems. As a physicist, it is my responsibility to identify or design new instrumentation and techniques, and to implement, validate, and help apply these new approaches in the practice of nuclear medicine. At Johns Hopkins, we are currently in the process of purchasing both a single-photon/coincidence tomographic imaging system and a dedicated positron emission tomography (PET) scanner. Given the exciting advances that have been made, but the conflicting opinions of manufacturers and colleagues alike regarding ''best'' choices, it seemed useful to review what is new now, and what is on the horizon, to help identify all of the important considerations in the design and selection of an imaging system. It is important to note that many of the ''advances'' described here are in an early stage of development, and may never make it to routine clinical practice. Further, not all of the advances are of equal importance, or have the same degree of general clinical applicability. Please also note that the references contained herein are for illustrative purposes and are not all-inclusive; no implication that those chosen are ''better'' than others not mentioned is intended. (orig.)

  17. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak.

    Science.gov (United States)

    Pan, X M; Yang, Z J; Ma, X D; Zhu, Y L; Luhmann, N C; Domier, C W; Ruan, B W; Zhuang, G

    2016-11-01

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  18. AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Tommasini, R.; Carpenter, A. C.; Palmer, N. E.; Zacharias, R.; Felker, B.; Holder, J. P.; Allen, F. V.; Bell, P. M.; Bradley, D.; Montesanti, R.; Landen, O. L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

    2014-11-15

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV–200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  19. Semi-automatic system for UV images analysis of historical musical instruments

    Science.gov (United States)

    Dondi, Piercarlo; Invernizzi, Claudia; Licchelli, Maurizio; Lombardi, Luca; Malagodi, Marco; Rovetta, Tommaso

    2015-06-01

    The selection of representative areas to be analyzed is a common problem in the study of Cultural Heritage items. UV fluorescence photography is an extensively used technique to highlight specific surface features which cannot be observed in visible light (e.g. restored parts or treated with different materials), and it proves to be very effective in the study of historical musical instruments. In this work we propose a new semi-automatic solution for selecting areas with the same perceived color (a simple clue of similar materials) on UV photos, using a specifically designed interactive tool. The proposed method works in two steps: (i) users select a small rectangular area of the image; (ii) program automatically highlights all the areas that have the same color of the selected input. The identification is made by the analysis of the image in HSV color model, the most similar to the human perception. The achievable result is more accurate than a manual selection, because it can detect also points that users do not recognize as similar due to perception illusion. The application has been developed following the rules of usability, and Human Computer Interface has been improved after a series of tests performed by expert and non-expert users. All the experiments were performed on UV imagery of the Stradivari violins collection stored by "Museo del Violino" in Cremona.

  20. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X. M.; Yang, Z. J., E-mail: yangzj@hust.edu.cn; Ma, X. D.; Ruan, B. W.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhu, Y. L. [School of Physics, University of Science and Technology of China, Anhui 230026 (China); Luhmann, N. C.; Domier, C. W. [Davis Millimeter Wave Research Center, University of California, Davis, California 95616 (United States)

    2016-11-15

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  1. AXIS: an instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF.

    Science.gov (United States)

    Hall, G N; Izumi, N; Tommasini, R; Carpenter, A C; Palmer, N E; Zacharias, R; Felker, B; Holder, J P; Allen, F V; Bell, P M; Bradley, D; Montesanti, R; Landen, O L

    2014-11-01

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV-200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  2. Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device.

    Science.gov (United States)

    Hahn, Paul; Carrasco-Zevallos, Oscar; Cunefare, David; Migacz, Justin; Farsiu, Sina; Izatt, Joseph A; Toth, Cynthia A

    2015-07-01

    To characterize the first in-human intraoperative imaging using a custom prototype spectral-domain microscope-integrated optical coherence tomography (MIOCT) device during vitreoretinal surgery with instruments in the eye. Under institutional review board approval for a prospective intraoperative study, MIOCT images were obtained at surgical pauses with instruments held static in the vitreous cavity and then concurrently with surgical maneuvers. Postoperatively, MIOCT images obtained at surgical pauses were compared with images obtained with a high-resolution handheld spectral-domain OCT (HHOCT) system with objective endpoints, including acquisition of images acceptable for analysis and identification of predefined macular morphologic or pathologic features. Human MIOCT images were successfully obtained before incision and during pauses in surgical maneuvers. MIOCT imaging confirmed preoperative diagnoses, such as epiretinal membrane, full-thickness macular hole, and vitreomacular traction and demonstrated successful achievement of surgical goals. MIOCT and HHOCT images obtained at surgical pauses in two cohorts of five patients were comparable with greater than or equal to 80% correlation in 80% of patients. Real-time video-imaging concurrent with surgical manipulations enabled, for the first time using this device, visualization of dynamic instrument-retina interaction with targeted OCT tracking. MIOCT is successful for imaging at surgical pauses and for real-time image guidance with implementation of targeted OCT tracking. Even faster acquisition speeds are currently being developed with incorporation of a swept-source MIOCT engine. Further refinements and investigations will be directed toward continued integration for real-time volumetric imaging of surgical maneuvers. Ongoing development of seamless MIOCT systems will likely transform surgical visualization, approaches, and decision-making.

  3. Experimental investigation on the influence of instrument settings on pixel size and nonlinearity in SEM image formation

    DEFF Research Database (Denmark)

    Carli, Lorenzo; Genta, Gianfranco; Cantatore, Angela

    2010-01-01

    The work deals with an experimental investigation on the influence of three Scanning Electron Microscope (SEM) instrument settings, accelerating voltage, spot size and magnification, on the image formation process. Pixel size and nonlinearity were chosen as output parameters related to image...... quality and resolution. A silicon grating calibrated artifact was employed to investigate qualitatively and quantitatively, through a designed experiment approach, the parameters relevance. SEM magnification was found to account by far for the largest contribution on both parameters under consideration...

  4. Thermal annealing response following irradiation of a CMOS imager for the JUICE JANUS instrument

    Science.gov (United States)

    Lofthouse-Smith, D.-D.; Soman, M. R.; Allanwood, E. A. H.; Stefanov, K. D.; Holland, A. D.; Leese, M.; Turne, P.

    2018-03-01

    ESA's JUICE (JUpiter ICy moon Explorer) spacecraft is an L-class mission destined for the Jovian system in 2030. Its primary goals are to investigate the conditions for planetary formation and the emergence of life, and how does the solar system work. The JANUS camera, an instrument on JUICE, uses a 4T back illuminated CMOS image sensor, the CIS115 designed by Teledyne e2v. JANUS imager test campaigns are studying the CIS115 following exposure to gammas, protons, electrons and heavy ions, simulating the harsh radiation environment present in the Jovian system. The degradation of 4T CMOS device performance following proton fluences is being studied, as well as the effectiveness of thermal annealing to reverse radiation damage. One key parameter for the JANUS mission is the Dark current of the CIS115, which has been shown to degrade in previous radiation campaigns. A thermal anneal of the CIS115 has been used to accelerate any annealing following the irradiation as well as to study the evolution of any performance characteristics. CIS115s have been irradiated to double the expected End of Life (EOL) levels for displacement damage radiation (2×1010 protons, 10 MeV equivalent). Following this, devices have undergone a thermal anneal cycle at 100oC for 168 hours to reveal the extent to which CIS115 recovers pre-irradiation performance. Dark current activation energy analysis following proton fluence gives information on trap species present in the device and how effective anneal is at removing these trap species. Thermal anneal shows no quantifiable change in the activation energy of the dark current following irradiation.

  5. Gamma-Ray Imaging Spectrometer (GRIS) instrument and plans for serving SN 1987A

    International Nuclear Information System (INIS)

    Tueller, J.; Barthelmy, S.; Gehrels, N.; Teegarden, B.J.; Leventhal, M.; MacCallum, C.J.

    1988-01-01

    The Gamma-Ray Imaging Spectrometer (GRIS) is a powerful second-generation high-resolution gamma-ray spectrometer. It consists of an array of seven large (typically >200 cm 3 ) n-type Germanium detectors surrounded by a thick (15 m) NaI active shield. Its energy range is 0.02 to 10 MeV. A new detector segmentation technique will be employed to reduce the detector background. The β-decay background component, which is expected to be dominant in the 0.2--2 MeV range, will be suppressed by roughly a factor of 20. The 3σ GRIS sensitivity to a narrow Fe line at 847 keV (expected to be the most intense from a supernova) will be ∼2 x 10 -4 photons/cm 2 -s for an 8 hr observation of the LMC over Alice Springs, Australia with unsegmented detectors. The instrument in simplified form will be ready to observe SN 1987A in early 1988

  6. Beamline Design and Instrumentation for the Imaging and Coherence Beamline I13L at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Pešić, Z. D.; De Fanis, A.; Rau, C.

    2013-03-01

    I13L is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. In this paper we will discuss the fundamental design concepts of the beamline and explain their implications for the civil engineering of the endstation building and the beamline instrumentation. For the latter this paper will focus on the beamline mirror systems and monochromators.

  7. Beamline Design and Instrumentation for the Imaging and Coherence Beamline I13L at the Diamond Light Source

    International Nuclear Information System (INIS)

    Wagner, U H; Pešić, Z D; Fanis, A De; Rau, C

    2013-01-01

    I13L is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. In this paper we will discuss the fundamental design concepts of the beamline and explain their implications for the civil engineering of the endstation building and the beamline instrumentation. For the latter this paper will focus on the beamline mirror systems and monochromators.

  8. First-light instrument for the 3.6-m Devasthal Optical Telescope: 4Kx4K CCD Imager

    Science.gov (United States)

    Pandey, Shashi Bhushan; Yadav, Rama Kant Singh; Nanjappa, Nandish; Yadav, Shobhit; Reddy, Bheemireddy Krishna; Sahu, Sanjit; Srinivasan, Ramaiyengar

    2018-04-01

    As a part of in-house instrument developmental activity at ARIES, the 4Kx4K CCD Imager is designed and developed as a first-light instrument for the axial port of the 3.6-m Devasthal Optical Telescope (DOT). The f/9 beam of the telescope having a plate-scale of 6.4"/mm is utilized to conduct deeper photom-etry within the central 10' field of view. The pixel size of the blue-enhanced liquid nitrogen cooled STA4150 4Kx4K CCD chip is 15 μm, with options to select gain and speed values to utilize the dynamic range. Using the Imager, it is planned to image the central 6.5'x6.5' field of view of the telescope for various science goals by getting deeper images in several broad-band filters for point sources and objects with low surface brightness. The fully assembled Imager along with automated filter wheels having Bessel UBV RI and SDSS ugriz filters was tested in late 2015 at the axial port of the 3.6-m DOT. This instrument was finally mounted at the axial port of the 3.6-m DOT on 30 March 2016 when the telescope was technically activated jointly by the Prime Ministers of India and Belgium. It is expected to serve as a general purpose multi-band deep imaging instrument for a variety of science goals including studies of cosmic transients, active galaxies, star clusters and optical monitoring of X-ray sources discovered by the newly launched Indian space-mission called ASTROSAT, and follow-up of radio bright objects discovered by the Giant Meterwave Radio Telescope.

  9. Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO)

    Science.gov (United States)

    Schou, J.; Scherrer, P. H.; Bush, R. I.; Wachter, R.; Couvidat, S.; Rabello-Soares, M. C.; Bogart, R. S.; Hoeksema, J. T.; Liu, Y.; Duvall, T. L., Jr.; hide

    2012-01-01

    The Helioseismic and Magnetic Imager (HMI) investigation will study the solar interior using helioseismic techniques as well as the magnetic field near the solar surface. The HMI instrument is part of the Solar Dynamics Observatory (SDO) that was launched on 11 February 2010. The instrument is designed to measure the Doppler shift, intensity, and vector magnetic field at the solar photosphere using the 6173 Fe I absorption line. The instrument consists of a front-window filter, a telescope, a set of wave plates for polarimetry, an image-stabilization system, a blocking filter, a five-stage Lyot filter with one tunable element, two wide-field tunable Michelson interferometers, a pair of 4096(exo 2) pixel cameras with independent shutters, and associated electronics. Each camera takes a full-disk image roughly every 3.75 seconds giving an overall cadence of 45 seconds for the Doppler, intensity, and line-of-sight magnetic-field measurements and a slower cadence for the full vector magnetic field. This article describes the design of the HMI instrument and provides an overview of the pre-launch calibration efforts. Overviews of the investigation, details of the calibrations, data handling, and the science analysis are provided in accompanying articles.

  10. NEW INSTRUMENTS FOR SURVEY: ON LINE SOFTWARES FOR 3D RECONTRUCTION FROM IMAGES

    Directory of Open Access Journals (Sweden)

    E. Fratus de Balestrini

    2012-09-01

    Full Text Available 3d scanning technologies had a significant development and have been widely used in documentation of cultural, architectural and archeological heritages. Modern methods of three-dimensional acquiring and modeling allow to represent an object through a digital model that combines visual potentialities of images (normally used for documentation to the accuracy of the survey, becoming at the same time support for the visualization that for metric evaluation of any artefact that have an historical or artistic interest, opening up new possibilities for cultural heritage's fruition, cataloging and study. Despite this development, because of the small catchment area and the 3D laser scanner's sophisticated technologies, the cost of these instruments is very high and beyond the reach of most operators in the field of cultural heritages. This is the reason why they have appeared low-cost technologies or even free, allowing anyone to approach the issues of acquisition and 3D modeling, providing tools that allow to create three-dimensional models in a simple and economical way. The research, conducted by the Laboratory of Photogrammetry of the University IUAV of Venice, of which we present here some results, is intended to figure out whether, with Arc3D, it is possible to obtain results that can be somehow comparable, in therms of overall quality, to those of the laser scanner, and/or whether it is possible to integrate them. They were carried out a series of tests on certain types of objects, models made with Arc3D, from raster images, were compared with those obtained using the point clouds from laser scanner. We have also analyzed the conditions for an optimal use of Arc3D: environmental conditions (lighting, acquisition tools (digital cameras and type and size of objects. After performing the tests described above, we analyzed the patterns generated by Arc3D to check what other graphic representations can be obtained from them: orthophotos and drawings

  11. Engineering design of the Regolith X-ray Imaging Spectrometer (REXIS) instrument: an OSIRIS-REx student collaboration

    Science.gov (United States)

    Jones, Michael; Chodas, Mark; Smith, Matthew J.; Masterson, Rebecca A.

    2014-07-01

    OSIRIS-REx is a NASA New Frontiers mission scheduled for launch in 2016 that will travel to the asteroid Bennu and return a pristine sample of the asteroid to Earth. The REgolith X-ray Imaging Spectrometer (REXIS) is a student collaboration instrument on-board the OSIRIS-REx spacecraft. REXIS is a NASA risk Class D instrument, and its design and development is largely student led. The engineering team consists of MIT graduate and undergraduate students and staff at the MIT Space Systems Laboratory. The primary goal of REXIS is the education of science and engineering students through participation in the development of light hardware. In light, REXIS will contribute to the mission by providing an elemental abundance map of the asteroid and by characterizing Bennu among the known meteorite groups. REXIS is sensitive to X-rays between 0.5 and 7 keV, and uses coded aperture imaging to map the distribution of iron with 50 m spatial resolution. This paper describes the science goals, concept of operations, and overall engineering design of the REXIS instrument. Each subsystem of the instrument is addressed with a high-level description of the design. Critical design elements such as the Thermal Isolation Layer (TIL), radiation cover, coded-aperture mask, and Detector Assembly Mount (DAM) are discussed in further detail.

  12. Nuclear medicine and imaging research. Instrumentation and quantitative methods of evaluation. Progress report, January 15, 1985-January 14, 1986

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1985-09-01

    This program of research addresses problems involving the basic science and technology of radioactive tracer methods as they relate to nuclear medicine and imaging. The broad goal is to develop new instruments and methods for image formation, processing, quantitation, and display, so as to maximize the diagnostic information per unit of absorbed radiation dose to the patient. These developments are designed to meet the needs imposed by new radiopharmaceuticals developed to solve specific biomedical problems, as well as to meet the instrumentation needs associated with radiopharmaceutical production and quantitative clinical feasibility studies of the brain with PET VI. Project I addresses problems associated with the quantitative imaging of single-photon emitters; Project II addresses similar problems associated with the quantitative imaging of positron emitters; Project III addresses methodological problems associated with the quantitative evaluation of the efficacy of diagnostic imaging procedures. The original proposal covered work to be carried out over the three-year contract period. This report covers progress made during Year Three. 36 refs., 1 tab

  13. SALSA-A new instrument for strain imaging in engineering materials and components

    International Nuclear Information System (INIS)

    Pirling, Thilo; Bruno, Giovanni; Withers, Philip J.

    2006-01-01

    Residual stresses are very hard to predict and if undetected can lead to premature failure or unexpected behaviour of engineering materials or components. This paper describes the operation of a new residual strain-mapping instrument, Strain Analyser for Large and Small scale engineering Applications (SALSA), recently commissioned at the public user facility, the Institut Laue-Langevin in Grenoble, France. A unique feature of this neutron diffraction instrument is the sample manipulator, which is the first of its kind, allowing precise scanning of large and heavy (<500 kg) samples along any trajectory involving translations, tilts and rotations. Other notable features of the instrument are also described

  14. Development of the science instrument CLUPI: the close-up imager on board the ExoMars rover

    Science.gov (United States)

    Josset, J.-L.; Beauvivre, S.; Cessa, V.; Martin, P.

    2017-11-01

    First mission of the Aurora Exploration Programme of ESA, ExoMars will demonstrate key flight and in situ enabling technologies, and will pursue fundamental scientific investigations. Planned for launch in 2013, ExoMars will send a robotic rover to the surface of Mars. The Close-UP Imager (CLUPI) instrument is part of the Pasteur Payload of the rover fixed on the robotic arm. It is a robotic replacement of one of the most useful instruments of the field geologist: the hand lens. Imaging of surfaces of rocks, soils and wind drift deposits at high resolution is crucial for the understanding of the geological context of any site where the Pasteur rover may be active on Mars. At the resolution provided by CLUPI (approx. 15 micrometer/pixel), rocks show a plethora of surface and internal structures, to name just a few: crystals in igneous rocks, sedimentary structures such as bedding, fracture mineralization, secondary minerals, details of the surface morphology, sedimentary bedding, sediment components, surface marks in sediments, soil particles. It is conceivable that even textures resulting from ancient biological activity can be visualized, such as fine lamination due to microbial mats (stromatolites) and textures resulting from colonies of filamentous microbes, potentially present in sediments and in palaeocavitites in any rock type. CLUPI is a complete imaging system, consisting of an APS (Active Pixel Sensor) camera with 27° FOV optics. The sensor is sensitive to light between 400 and 900 nm with 12 bits digitization. The fixed focus optics provides well focused images of 4 cm x 2.4 cm rock area at a distance of about 10 cm. This challenging camera system, less than 200g, is an independent scientific instrument linked to the rover on board computer via a SpaceWire interface. After the science goals and specifications presentation, the development of this complex high performance miniaturized imaging system will be described.

  15. Preclinical molecular imaging: development of instrumentation for translational research with small laboratory animals.

    Science.gov (United States)

    Mejia, Jorge; Miranda, Ana Claudia Camargo; Durante, Ana Claudia Ranucci; Oliveira, Larissa Rolim de; Barboza, Marycel Rosa Felisa Figols de; Rosell, Katerin Taboada; Jardim, Daniele Pereira; Campos, Alexandre Holthausen; Reis, Marilia Alves Dos; Catanoso, Marcela Forli; Galvis-Alonso, Orfa Yineth; Cabral, Francisco Romero

    2016-01-01

    To present the result of upgrading a clinical gamma-camera to be used to obtain in vivo tomographic images of small animal organs, and its application to register cardiac, renal and neurological images. An updated version of the miniSPECT upgrading device was built, which is composed of mechanical, electronic and software subsystems. The device was attached to a Discovery VH (General Electric Healthcare) gamma-camera, which was retired from the clinical service and installed at the Centro de Imagem Pré-Clínica of the Hospital Israelita Albert Einstein. The combined system was characterized, determining operational parameters, such as spatial resolution, magnification, maximum acceptable target size, number of projections, and acquisition and reconstruction times. Images were obtained with 0.5mm spatial resolution, with acquisition and reconstruction times between 30 and 45 minutes, using iterative reconstruction with 10 to 20 iterations and 4 projection subsets. The system was validated acquiring in vivo tomographic images of the heart, kidneys and brain of normal animals (mice and adult rats), using the radiopharmaceuticals technetium-labeled hexakis-2-methoxy-isobutyl isonitrile (99mTc-Sestamibi), technetium-labeled dimercaptosuccinic acid (99mTc-DMSA) and technetium-labeled hexamethyl propyleneamine oxime (99mTc-HMPAO). This kind of application, which consists in the adaptation for an alternative objective of already existing instrumentation, resulted in a low-cost infrastructure option, allowing to carry out large scale in vivo studies with enhanced quality in several areas, such as neurology, nephrology, cardiology, among others. Apresentar o resultado da adaptação de uma gama câmara clínica para uso dedicado na obtenção de imagens tomográficas in vivo de órgãos de pequenos animais de experimentação, e de sua aplicação na obtenção de imagens cardíacas, renais e neurológicas. Foi construída uma versão atualizada do dispositivo de adapta

  16. Gender Associations for Musical Instruments in Nursery Children: The Effect of Sound and Image

    Science.gov (United States)

    Marshall, Nigel; Shibazaki, Kagari

    2013-01-01

    This paper reports on the results of a study carried out with 105 children, aged between three and four years in three nursery units in London and Surrey, UK. The aim of this study was to explore the level of association which young children have between various musical instruments, musical styles and a particular gender. However, we also aimed to…

  17. Comparison of two skin imaging analysis instruments: The VISIA® from Canfield vs the ANTERA 3D® CS from Miravex.

    Science.gov (United States)

    Linming, F; Wei, H; Anqi, L; Yuanyu, C; Heng, X; Sushmita, P; Yiming, L; Li, L

    2018-02-01

    The skin imaging analysis instruments are widely used to record and measure the surface and subsurface skin conditions. The main aim of this study is to reveal the differences and correlations in measuring wrinkle, skin texture, coloration/evenness, vascular features, and pore between two commercially available instruments. Twenty-eight subjects were enrolled in the study. A 2*2 cm cardboard was used to make sure the two instruments analyze the same area. Pictures were taken and analyzed by the VISIA ® from Canfield and the ANTERA 3D ® CS from Miravex, in sequence. The spot, ultraviolet spot, brown spot, red area, texture values measured with VISIA ® were positively correlated with age, while the pore and wrinkle values showed no significance. The wrinkle, texture, melanin, hemoglobin, pore index, pore volume values measured with ANTERA 3D ® had a significantly positive correlation with age. The spot, brown spot values from VISIA ® were positively correlated with the melanin value from ANTERA 3D ® . Texture value measured with the two instruments revealed positive linear correlation. Strong correlation was found between the red area value from VISIA ® and the hemoglobin value from ANTERA 3D ® . Ultraviolet spot from VISIA ® showed no linear correlation with the melanin value from ANTERA 3D ® . Neither of the wrinkle and pore measured with the two instruments showed linear correlation. ANTERA 3D ® relies on multidirectional illumination obtained by LEDs of different wavelengths from different directions which make it advanced at the qualitative evaluation of various dermatologic conditions. Compared with VISIA ® , ANTERA 3D ® is more sensitive in the assessment of wrinkle and it may also be available to evaluate the aging-related enlarged pore. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Instruments for radiation measurement in life sciences (5). Development of imaging technology in life science. 4. Real-time bioradiography

    International Nuclear Information System (INIS)

    Sasaki, Toru; Iwamoto, Akinori; Tsuboi, Hisashi; Katoh, Toru; Kudo, Hiroyuki; Kazawa, Erito; Watanabe, Yasuyoshi

    2006-01-01

    Real-time bioradiography, new bioradiography method, can collect and produce image of metabolism and function of cell in real-time. The principles of instrumentation, development process and the application examples of neuroscience and biomedical gerontology are stated. The bioradiography method, the gas-tissue live-cell autoradiography method and the real-time bioradiography method are explained. As the application examples, the molecular mechanism of oxidative stress at brain ischemia and the analysis of SOD gene knockout animals are reported. Comparison between FDG-PET of epileptic brain and FDG- bioradiography image of live-cell of brain tissue, the real-time bioradiography system, improvement of image by surface treatment, the detection limit of β + ray from F 18 , image of living-slices of brain tissue by FDG-real-time bioradiography and radioluminography, continuous FDG image of living-slices of rat brain tissue, and analysis of carbohydrate metabolism of living-slices of brain tissue of mouse lacking SOD gene during aerophobia and reoxygenation process are reported. (S.Y.)

  19. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    DEFF Research Database (Denmark)

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus

    2010-01-01

    -invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy......, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and computed tomography (CT) are used to communicate the actual image data created by the modalities. Care must be taken for data security...

  20. Word images as policy instruments: Lessons from the Yucca Mountain Controversey

    International Nuclear Information System (INIS)

    Conary, J.S.; Soden, D.L.; Carns, D.E.

    1993-01-01

    A study is described which explores word images which have developed about nuclear issues by Nevadans. The study is based on results of a survey conducted regarding issues related to the Yucca Mountain repository

  1. Word images as policy instruments: Lessons from the Yucca Mountain Controversey

    Energy Technology Data Exchange (ETDEWEB)

    Conary, J.S.; Soden, D.L.; Carns, D.E.

    1993-08-01

    A study is described which explores word images which have developed about nuclear issues by Nevadans. The study is based on results of a survey conducted regarding issues related to the Yucca Mountain repository.

  2. An instrument for small-animal imaging using time-resolved diffuse and fluorescence optical methods

    International Nuclear Information System (INIS)

    Montcel, Bruno; Poulet, Patrick

    2006-01-01

    We describe time-resolved optical methods that use diffuse near-infrared photons to image the optical properties of tissues and their inner fluorescent probe distribution. The assembled scanner uses picosecond laser diodes at 4 wavelengths, an 8-anode photo-multiplier tube and time-correlated single photon counting. Optical absorption and reduced scattering images as well as fluorescence emission images are computed from temporal profiles of diffuse photons. This method should improve the spatial resolution and the quantification of fluorescence signals. We used the diffusion approximation of the radiation transport equation and the finite element method to solve the forward problem. The inverse problem is solved with an optimization algorithm such as ART or conjugate gradient. The scanner and its performances are presented, together with absorption, scattering and fluorescent images obtained with it

  3. Instrument Design for the CubeSat Ultraviolet Transient/Imaging Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing a mission concept for a CubeSat-based synoptic imaging survey to explore the ultraviolet sky for several key discoveries in time-domain...

  4. Performance characteristics of UV imaging instrumentation for diffusion, dissolution and release testing studies

    DEFF Research Database (Denmark)

    Jensen, Sabrine S; Jensen, Henrik; Goodall, David M

    2016-01-01

    UV imaging is capable of providing spatially and temporally resolved absorbance measurements, which is highly beneficial in drug diffusion, dissolution and release testing studies. For optimal planning and design of experiments, knowledge about the capabilities and limitations of the imaging syst...... mainly to depend on collimation of light, the light path, the positioning of the object relative to the line of 100μm fibres which forms the light source, and the distance of the object from the sensor surface....

  5. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    International Nuclear Information System (INIS)

    Sattler, Bernhard; Lee, John A.; Lonsdale, Markus; Coche, Emmanuel

    2010-01-01

    The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy. By the choice of the PET-Tracer, a variety of different metabolic processes can be visualized. First and foremost, this is the glucose metabolism of a tissue as well as for instance hypoxia or cell proliferation. This paper comprises the system characteristics of hybrid PET/CT systems. Acquisition and processing protocols are described in general and modifications to cope with the special needs in radiooncology. This starts with the different position of the patient on a special table top, continues with the use of the same fixation material as used for positioning of the patient in radiooncology while simulation and irradiation and leads to special processing protocols that include the delineation of the volumes that are subject to treatment planning and irradiation (PTV, GTV, CTV, etc.). General CT acquisition and processing parameters as well as the use of contrast enhancement of the CT are described. The possible risks and pitfalls the investigator could face during the hybrid-imaging procedure are explained and listed. The interdisciplinary use of different imaging modalities implies a increase of the volume of data created. These data need to be stored and communicated fast, safe and correct. Therefore, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and

  6. Aberration compensation of an ultrasound imaging instrument with a reduced number of channels.

    Science.gov (United States)

    Jiang, Wei; Astheimer, Jeffrey P; Waag, Robert C

    2012-10-01

    Focusing and imaging qualities of an ultrasound imaging system that uses aberration correction were experimentally investigated as functions of the number of parallel channels. Front-end electronics that consolidate signals from multiple physical elements can be used to lower hardware and computational costs by reducing the number of parallel channels. However, the signals from sparse arrays of synthetic elements yield poorer aberration estimates. In this study, aberration estimates derived from synthetic arrays of varying element sizes are evaluated by comparing compensated receive focuses, compensated transmit focuses, and compensated b-scan images of a point target and a cyst phantom. An array of 80 x 80 physical elements with a pitch of 0.6 x 0.6 mm was used for all of the experiments and the aberration was produced by a phantom selected to mimic propagation through abdominal wall. The results show that aberration correction derived from synthetic arrays with pitches that have a diagonal length smaller than 70% of the correlation length of the aberration yield focuses and images of approximately the same quality. This connection between correlation length of the aberration and synthetic element size provides a guideline for determining the number of parallel channels that are required when designing imaging systems that employ aberration correction.

  7. Flow mapping of multiphase flows using a novel single stem endoscopic particle image velocimetry instrument

    International Nuclear Information System (INIS)

    Lad, N; Adebayo, D; Aroussi, A

    2011-01-01

    Particle image velocimetry (PIV) is a successful flow mapping technique which can optically quantify large portions of a flow regime. This enables the method to be completely non-intrusive. The ability to be non-intrusive to any flow has allowed PIV to be used in a large range of industrial sectors for many applications. However, a fundamental disadvantage of the conventional PIV technique is that it cannot easily be used with flows which have no or limited optical access. Flows which have limited optical access for PIV measurement have been addressed using endoscopic PIV techniques. This system uses two separate probes which relay a light sheet and imaging optics to a planar position within the desired flow regime. This system is effective in medical and engineering applications. The present study has been involved in the development of a new endoscopic PIV system which integrates the illumination and imaging optics into one rigid probe. This paper focuses on the validation of the images taken from the novel single stem endoscopic PIV system. The probe is used within atomized spray flow and is compared with conventional PIV measurement and also pitot-static data. The endoscopic PIV system provides images which create localized velocity maps that are comparable with the global measurement of the conventional PIV system. The velocity information for both systems clearly show similar results for the spray characterization and are also validated using the pitot-static data

  8. The chinese space program as the image instrument of the great China

    Directory of Open Access Journals (Sweden)

    Daniel Lemus Delgado

    2012-10-01

    Full Text Available This article analyzes the Chinese space program and how the bureaucratic elite acts to convert China as a leading nation in international arena. This article assumes that, beyond the scientific advances that space exploration has in multiple fields of knowledge, the support to the space program depicts a way to project a positive image of China. This image is a China rising in the international community. The author discusses how space missions and the discourse around the space program strengthen national pride. Thus, China’s space program projects the image of a Greater China. The article concludes that the space program shows that China is modernizing rapidly and is able to be a world power.

  9. Instrumentation and data handling. I. Positron coincidence imaging with the TOKIM system

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    In addition to the conventional singles mode of operation, the TOKIM system's two Anger-type gamma cameras may be used in the (stationary, 180 0 opposition) coincidence mode, making it possible to achieve tomographic imaging with three-dimensional spatial resolution and high detection sensitivity, utilizing β + emitting radioisotopes. This method, however, suffers from certain inherent limitations. Our efforts during this past year to improve upon the TOKIM imaging capability in the β + mode have been directed towards the reduction of the limitations by the following means: the removal of out of focal plane image contributions through a computerized iterative correction procedure, coupled with coincidence aperture limitation to achieve uniform sensitivity across a reasonable portion of the detector pair diameter, and the application of Muehllehner's graded filter approach to the TOKIM to increase the ratio of usable coincidence events versus singles count rate

  10. The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions

    Science.gov (United States)

    Malin, Michal C.; Ravine, Michael A.; Caplinger, Michael A.; Tony Ghaemi, F.; Schaffner, Jacob A.; Maki, Justin N.; Bell, James F.; Cameron, James F.; Dietrich, William E.; Edgett, Kenneth S.; Edwards, Laurence J.; Garvin, James B.; Hallet, Bernard; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sletten, Ron; Sullivan, Robert J.; Sumner, Dawn Y.; Aileen Yingst, R.; Duston, Brian M.; McNair, Sean; Jensen, Elsa H.

    2017-08-01

    The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam-34 has an f/8, 34 mm focal length lens, and the M-100 an f/10, 100 mm focal length lens. The M-34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 μrad; the M-100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 μrad. The M-34 can focus from 0.5 m to infinity, and the M-100 from 1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the 2 m tall Remote Sensing Mast, have a 360° azimuth and 180° elevation field of regard. Mars Descent Imager is fixed-mounted to the bottom left front side of the rover at 66 cm above the surface. Its fixed focus lens is in focus from 2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of 70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression.

  11. Safari: instrument design of the far-infrared imaging spectrometer for spica

    Science.gov (United States)

    Jellema, W.; Pastor, C.; Naylor, D.; Jackson, B.; Sibthorpe, B.; Roelfsema, P.

    2017-11-01

    The next great leap forward in space-based far-infrared astronomy will be made by the Japanese-led SPICA mission, which is anticipated to be launched late 2020's as the next large astrophysics mission of JAXA, in partnership with ESA and with key European contributions. Filling in the gap between JWST and ALMA, the SPICA mission will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 3m-class telescope, provided by European industry, to realize zodiacal background limited performance, high spatial resolution and large collecting area. Making full advantage of the deeply cooled telescope (architecture. We will describe the reference design of the SAFARI focal- plane unit, the implementation of the various optical instrument functions designed around the central large-stroke FTS system, the photometric band definition and out-of-band filtering by quasioptical elements, the control of straylight, diffraction and thermal emission in the long-wavelength limit, and how we interface to the large-format FPA arrays at one end and the SPICA telescope assembly at the other end. We will briefly discuss the key performance drivers with special emphasis on the optical techniques adopted to overcome issues related to very low background operation of SAFARI. A summary and discussion of the expected instrument performance and an overview of the astronomical capabilities finally conclude the paper.

  12. E-PR as an instrument of forming the foreign policy image of Ukraine

    Directory of Open Access Journals (Sweden)

    Tereshchuk Vitaliy Ivanovych

    2015-12-01

    Full Text Available The article discusses the role of the Internet as a global communication tool in the PR-support of the implementation of Ukraine's foreign policy. The article pays particular attention to the features of the websites of the Ministry of Foreign Affairs and diplomatic missions of Ukraine as an image-forming tool.

  13. Instrumentation and method for measuring NIR light absorbed in tissue during MR imaging in medical NIRS measurements

    Science.gov (United States)

    Myllylä, Teemu S.; Sorvoja, Hannu S. S.; Nikkinen, Juha; Tervonen, Osmo; Kiviniemi, Vesa; Myllylä, Risto A.

    2011-07-01

    Our goal is to provide a cost-effective method for examining human tissue, particularly the brain, by the simultaneous use of functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). Due to its compatibility requirements, MRI poses a demanding challenge for NIRS measurements. This paper focuses particularly on presenting the instrumentation and a method for the non-invasive measurement of NIR light absorbed in human tissue during MR imaging. One practical method to avoid disturbances in MR imaging involves using long fibre bundles to enable conducting the measurements at some distance from the MRI scanner. This setup serves in fact a dual purpose, since also the NIRS device will be less disturbed by the MRI scanner. However, measurements based on long fibre bundles suffer from light attenuation. Furthermore, because one of our primary goals was to make the measuring method as cost-effective as possible, we used high-power light emitting diodes instead of more expensive lasers. The use of LEDs, however, limits the maximum output power which can be extracted to illuminate the tissue. To meet these requirements, we improved methods of emitting light sufficiently deep into tissue. We also show how to measure NIR light of a very small power level that scatters from the tissue in the MRI environment, which is characterized by strong electromagnetic interference. In this paper, we present the implemented instrumentation and measuring method and report on test measurements conducted during MRI scanning. These measurements were performed in MRI operating rooms housing 1.5 Tesla-strength closed MRI scanners (manufactured by GE) in the Dept. of Diagnostic Radiology at the Oulu University Hospital.

  14. The Concept of Alliance as an Image and Positioning Instrument for Institutions of Higher Learning

    Directory of Open Access Journals (Sweden)

    Víctor Manuel Alcántar Enríquez

    2004-05-01

    Full Text Available The present work provides a foundation for the concept of alliance which includes the ability of this to foster the university’s societal position as based on public perception of the institution. Accordingly, the work briefly addresses the development of the university’s collaboration with the productive sector, and emphasizes the need for institutions of higher learning to consider as well, those social sectors (including the government outside the realm of industry or technological expansion. The study concludes by affirming that alliance can become an effective instrument for promoting the university. It is therefore necessary to research the social perception of the university as a means of bolstering its relevance.

  15. Terahertz imaging and tomography as efficient instruments for testing polymer additive manufacturing objects.

    Science.gov (United States)

    Perraud, J B; Obaton, A F; Bou-Sleiman, J; Recur, B; Balacey, H; Darracq, F; Guillet, J P; Mounaix, P

    2016-05-01

    Additive manufacturing (AM) technology is not only used to make 3D objects but also for rapid prototyping. In industry and laboratories, quality controls for these objects are necessary though difficult to implement compared to classical methods of fabrication because the layer-by-layer printing allows for very complex object manufacturing that is unachievable with standard tools. Furthermore, AM can induce unknown or unexpected defects. Consequently, we demonstrate terahertz (THz) imaging as an innovative method for 2D inspection of polymer materials. Moreover, THz tomography may be considered as an alternative to x-ray tomography and cheaper 3D imaging for routine control. This paper proposes an experimental study of 3D polymer objects obtained by additive manufacturing techniques. This approach allows us to characterize defects and to control dimensions by volumetric measurements on 3D data reconstructed by tomography.

  16. Current instrument status of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    Science.gov (United States)

    Eastwood, Michael L.; Sarture, Charles M.; Chrien, Thomas G.; Green, Robert O.; Porter, Wallace M.

    1991-01-01

    An upgraded version of AVIRIS, an airborne imaging spectrometer based on a whiskbroom-type scanner coupled via optical fibers to four dispersive spectrometers, that has been in operation since 1987 is described. Emphasis is placed on specific AVIRIS subsystems including foreoptics, fiber optics, and an in-flight reference source; spectrometers and detector dewars; a scan drive mechanism; a signal chain; digital electronics; a tape recorder; calibration systems; and ground support requirements.

  17. Nuclear medicine and image research: instrumentation and quantitative methods of evaluation. Comprehensive 3-year progress report, January 15, 1983-January 14, 1986

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1985-09-01

    This program of research addresses problems involving the basic science and technology of radioactive tracer methods as they relate to nuclear medicine and imaging. The broad goal is to develop new instruments and methods for image formation, processing, quantitation, and display, so as to maximize the diagnostic information per unit of absorbed radiation dose to the patient. Project I addresses problems with the quantitative imaging a single-photon emitters; Project II addresses similar problems associated with the quantitative imaging of positron emitters; Project III addresses methodological problems associated with the quantitative evaluation of the efficacy of diagnostic imaging procedures

  18. Evaluation of three imaging instruments in dogs with liver hematomas: concise communication

    International Nuclear Information System (INIS)

    Frick, M.P.; Knight, L.C.; Ponto, R.A.; Loken, M.K.

    1979-01-01

    Single-gamma emission computerized tomography (ECT) was compared with transmission computerized tomography (TCT) and scintillation-camera imaging (SC) in eight dogs with acute, solitary hematomas in the left liver lobe. The superior performance of TCT was attributed to its inherently better spatial resolution than those of ECT or SC, and to the fact that studies with TCT could be performed during apnea. ECT was more sensitive than SC to small changes in the spatial distribution of radionuclides. In addition, the ECT, by virtue of its sectioning capability, was more sensitive than is SC to differences in radionuclide concentrations at the same depth in an organ

  19. Diffuse Optical Tomography for Brain Imaging: Continuous Wave Instrumentation and Linear Analysis Methods

    Science.gov (United States)

    Giacometti, Paolo; Diamond, Solomon G.

    Diffuse optical tomography (DOT) is a functional brain imaging technique that measures cerebral blood oxygenation and blood volume changes. This technique is particularly useful in human neuroimaging measurements because of the coupling between neural and hemodynamic activity in the brain. DOT is a multichannel imaging extension of near-infrared spectroscopy (NIRS). NIRS uses laser sources and light detectors on the scalp to obtain noninvasive hemodynamic measurements from spectroscopic analysis of the remitted light. This review explains how NIRS data analysis is performed using a combination of the modified Beer-Lambert law (MBLL) and the diffusion approximation to the radiative transport equation (RTE). Laser diodes, photodiode detectors, and optical terminals that contact the scalp are the main components in most NIRS systems. Placing multiple sources and detectors over the surface of the scalp allows for tomographic reconstructions that extend the individual measurements of NIRS into DOT. Mathematically arranging the DOT measurements into a linear system of equations that can be inverted provides a way to obtain tomographic reconstructions of hemodynamics in the brain.

  20. Development of instrumentation for imaging scattered cold neutrons. Phase 1 report

    International Nuclear Information System (INIS)

    Walter, J.

    1988-01-01

    The project involves the development of a cold neutron imaging array consisting of a neutron to charged particle convertor and an array of Si detector pixels. Each detector pixel has its own preamplifier/signal conditioning chain and its own data storage registers. The parallel processing capability will be contained on WSI-ASIC sub-array wafers with 196 channels per wafer. Such sub-arrays can be assembled into large focal plane arrays. The high speed of the silicon detectors and signal conditioning chains makes 100,000 cps per pixel a realistic goal. Calculations and experimental measurements of neutron detection efficiency as a function of neutron wavelength are very encouraging. Preliminary design studies of the preamplifier/signal conditioning chain appear to present no insurmountable technical problems

  1. Spectroscopic CZT detectors development for x- and gamma-ray imaging instruments

    Science.gov (United States)

    Quadrini, Egidio M.; Uslenghi, Michela; Alderighi, Monica; Casini, Fabio; D'Angelo, Sergio; Fiorini, Mauro; La Palombara, Nicola; Mancini, Marcello; Monti, Serena; Bazzano, Angela; Di Cosimo, Sergio; Frutti, Massimo; Natalucci, Lorenzo; Ubertini, Pietro; Guadalupi, Giuseppe M.; Sassi, Matteo; Negri, Barbara

    2007-09-01

    In the context of R&D studies financed by the Italian Space Agency (ASI), a feasibility study to evaluate the Italian Industry interest in medium-large scale production of enhanced CZT detectors has been performed by an Italian Consortium. The R&D investment aims at providing in-house source of high quality solid state spectrometers for Space Astrophysics applications. As a possible spin-off industrial applications to Gamma-ray devices for non-destructive inspections in medical, commercial and security fields have been considered by ASI. The short term programme mainly consists of developing proprietary procedures for 2-3" CZT crystals growth, including bonding and contact philosophy, and a newly designed low-power electronics readout chain. The prototype design and breadboarding is based on a fast signal AD conversion with the target in order to perform a new run for an already existing low-power (digital photon energy reconstruction with particular care for multiple events and polarimetry evaluations. Scientific requirement evaluations for Space Astrophysics Satellite applications have been carried out in parallel, targeted to contribute to the ESA Cosmic Vision 2015-2025 Announcement of Opportunity. Detailed accommodation studies are undergoing, as part of this programme, to size a "Large area arcsecond angular resolution Imager" for the Gamma Ray Imager satellite (Knödlseder et al., this conference).and a new Gamma-ray Wide Field Camera for the "EDGE" proposal (Piro et al., this conference). Finally, an extended market study for cost analysis evaluation in view of the foreseen massive detector production has been performed.

  2. Future space-based direct imaging platforms: high fidelity simulations and instrument testbed development

    Science.gov (United States)

    Hicks, Brian A.; Eberhardt, Andrew; SAINT, VNC, LUVOIR

    2017-06-01

    The direct detection and characterization of habitable zone (HZ) Earth-like exoplanets is predicated on light gathering power of a large telescope operating with tens of millicarcsecond angular resolution, and at contrast scales on the order of 0.1 ppb. Accessing a statistically significant sample of planets to search for habitable worlds will likely build on the knowledge and insfrastructure gained through JWST, later advancing to assembly in space or formation flying approaches that may eventually be used to achieve even greater photometric sensitivity or resolution. in order to address contrast, a means of starlight suppression is needed that contends with complex aperture diffraction. The Visible Nulling Coronagraph (VNC) is one such approach that destructively interferes starlight to enable detection and characterization of extrasolar objects.The VNC is being incorporated into an end-to-end telescope-coronagraph system demonstrator called the Segmented Aperture Interferometric Nulling Testbed (SAINT). Development of the VNC has a rich legacy, and successfully demonstrating its capability with SAINT will mark milestones towards meeting the high-contrast direct imaging needs of future large space telescopes. SAINT merges the VNC with an actively-controlled segmented aperture telescope via a fine pointing system and aims to demonstrate 1e-8 contrast nulling of a segmented aperture at an inner working angle of four diffraction radii over a 20 nm visible bandpass. The system comprises four detectors for wavefront sensing, one of which is the high-contrast focal plane. The detectors provide feedback to control the segmented telescope primary mirror, a fast steering mirror, a segmented deformable mirror, and a delay stage. All of these components must work in concert with passive optical elements that are designed, fabricated, and aligned pairwise to achieve the requisite wavefront symmetry needed to push the state of the art in broadband destructive interferometric

  3. Clinical safety of an MRI conditional implantable cardioverter defibrillator system: A prospective Monocenter ICD-Magnetic resonance Imaging feasibility study (MIMI).

    Science.gov (United States)

    Kypta, Alexander; Blessberger, Hermann; Hoenig, Simon; Saleh, Karim; Lambert, Thomas; Kammler, Juergen; Fellner, Franz; Lichtenauer, Michael; Steinwender, Clemens

    2016-03-01

    The aim of this study was to evaluate the safety and efficacy of the Lumax 740(®) Implantable Cardioverter Defibrillator (ICD) system in patients undergoing a defined 1.5 Tesla (T) MRI. Between November 2013 and April 2014, eighteen patients (age range, 41-78 years; mean age, 64 years) implanted with a Lumax 740(®) ICD system for at least 6 weeks before an MRI were enrolled into this single-center feasibility study. The local ethics committee approved the study before patients gave written informed consent. Patients underwent defined MRI 1.5T of the brain and lower lumbar spine with three safety follow-up evaluations obtained during the 3-month study period. Data were analyzed descriptively. Study endpoints were the absence of either MRI and pacing system related serious adverse device effects (SADE), or of a ventricular pacing threshold increase >0.5V, or of an R-wave amplitude attenuation battery status. Sixteen patients completed the MRI and the follow-up period. As no SADE occurred, the SADE free rate was 100%. Freedom from ventricular pacing threshold increase was 100% (16/16; 95%CI: 82.9%; 100.0%). There were no significant differences between baseline and follow-up measurements of sensing amplitudes (-0.58 ± 2.07 mV, P = 0.239, -0.41 ± 1.04 mV, P = 0.133, and -0.25 ± 1.36 mV, P = 0.724, for immediately after, 1 month and 3 months after MRI scan, respectively) and pacing thresholds (-0.047 ± 0.18 V, P = 0.317, -0.019 ± 0.11 V, P = 0.490, and 0.075 ± 0.19 V, P = 0.070, for immediately after, 1 month and 3 months after MRI scan, respectively). Lead impedances after the MRI scan were significantly lower as compared with baseline values (-22.8 ± 21.69 Ω, P = 0.001, -21.62 ± 39.71 Ω, P = 0.040, and -33.68 ± 57.73 Ω, P = 0.018, for immediately after, 1 month and 3 months after MRI scan, respectively). MRI scans in patients with MRI conditional ICD system (Lumax 740(®) ) are feasible and can be performed safely under defined conditions in a hospital setting. © 2015 Wiley Periodicals, Inc.

  4. Nuclear medicine and imaging research: instrumentation and quantitative methods of evaluation. Comprehensive progress report, January 1, 1980-January 14, 1983

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.C.

    1982-07-01

    Progress is reported for the period January 1980 through January 1983 in the following project areas: (1) imaging systems in nuclear medicine and image evaluation; and (2) methodology for quantitative evaluation of diagnostic performance

  5. Instruments for radiation measurement in life sciences (5). ''Development of imaging technology in life science''. 9. Advantages of RI and fluorescence in imaging

    International Nuclear Information System (INIS)

    Furukawa, Takako; Jin, Zhao-Hui

    2009-01-01

    Imaging has been used as an effective research tool in many fields. In recent years, ''molecular imaging'' has come to attract a major attention as it studies molecular events in living animals and humans. Variety of modalities is used in molecular imaging, sometimes in combination, and the machines and techniques are going through rapid progress. Two of popular modalities among them are fluorescence imaging and radioisotope (RI) imaging such as positron emission tomography (PET) and single photon emission tomography (SPECT). Fluorescence imaging provides rich selection in imaging probes and the resolution can reach into sub-cellular level. RI imaging, especially PET, is superior to the others in quantitative analysis and the direct applicability to humans. In this article the two imaging modalities are overviewed comparing their characteristics. (author)

  6. Iterative inversion of global magnetospheric ion distributions using energetic neutral atom (ENA images recorded by the NUADU/TC2 instrument

    Directory of Open Access Journals (Sweden)

    L. Lu

    2008-06-01

    Full Text Available A method has been developed for extracting magnetospheric ion distributions from Energetic Neutral Atom (ENA measurements made by the NUADU instrument on the TC-2 spacecraft. Based on a constrained linear inversion, this iterative technique is suitable for use in the case of an ENA image measurement, featuring a sharply peaked spatial distribution. The method allows for magnetospheric ion distributions to be extracted from a low-count ENA image recorded over a short integration time (5 min. The technique is demonstrated through its application to a set of representative ENA images recorded in energy Channel~2 (hydrogen: 50–81 keV, oxygen: 138–185 keV of the NUADU instrument during a geomagnetic storm. It is demonstrated that this inversion method provides a useful tool for extracting ion distribution information from ENA data that are characterized by high temporal and spatial resolution. The recovered ENA images obtained from inverted ion fluxes match most effectively the measurements made at maximum ENA intensity.

  7. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation.

    Science.gov (United States)

    Wang, Jia; Liu, Feng; Mo, Yuxiang; Wang, Zhaoying; Zhang, Sichun; Zhang, Xinrong

    2017-11-01

    Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi 3 + beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm 2 . The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.

  8. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation

    Science.gov (United States)

    Wang, Jia; Liu, Feng; Mo, Yuxiang; Wang, Zhaoying; Zhang, Sichun; Zhang, Xinrong

    2017-11-01

    Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi3+ beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm2. The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.

  9. Preliminary Results from the First Deployment of a Tethered-Balloon Cloud Particle Imager Instrument Package in Arctic Stratus Clouds at Ny-Alesund

    Science.gov (United States)

    Lawson, P.; Stamnes, K.; Stamnes, J.; Zmarzly, P.; O'Connor, D.; Koskulics, J.; Hamre, B.

    2008-12-01

    A tethered balloon system specifically designed to collect microphysical data in mixed-phase clouds was deployed in Arctic stratus clouds during May 2008 near Ny-Alesund, Svalbard, at 79 degrees North Latitude. This is the first time a tethered balloon system with a cloud particle imager (CPI) that records high-resolution digital images of cloud drops and ice particles has been operated in cloud. The custom tether supplies electrical power to the instrument package, which in addition to the CPI houses a 4-pi short-wavelength radiometer and a met package that measures temperature, humidity, pressure, GPS position, wind speed and direction. The instrument package was profiled vertically through cloud up to altitudes of 1.6 km. Since power was supplied to the instrument package from the ground, it was possible to keep the balloon package aloft for extended periods of time, up to 9 hours at Ny- Ålesund, which was limited only by crew fatigue. CPI images of cloud drops and the sizes, shapes and degree of riming of ice particles are shown throughout vertical profiles of Arctic stratus clouds. The images show large regions of mixed-phase cloud from -8 to -2 C. The predominant ice crystal habits in these regions are needles and aggregates of needles. The amount of ice in the mixed-phase clouds varied considerably and did not appear to be a function of temperature. On some occasions, ice was observed near cloud base at -2 C with supercooled cloud above to - 8 C that was devoid of ice. Measurements of shortwave radiation are also presented. Correlations between particle distributions and radiative measurements will be analyzed to determine the effect of these Arctic stratus clouds on radiative forcing.

  10. Development of a portable X-ray and gamma-ray detector instrument and imaging camera for use in radioactive and hazardous materials management

    International Nuclear Information System (INIS)

    Scyoc, J.M. van; James, R.B.; Anderson, R.J.

    1997-08-01

    The overall goal of this LDRD project was to develop instruments for use in the management of radioactive and hazardous wastes. Devices for identifying and imaging such wastes are critical to developing environmental remediation strategies. Field portable units are required to enable the on-site analysis of solids, liquids, and gas effluents. Red mercuric iodide (α-HgI 2 ) is a semiconductor material that can be operated as a high-energy-resolution radiation detector at ambient temperatures. This property provides the needed performance of conventional germanium- and silicon-based devices, while eliminating the need for the cryogenic cooling of such instruments. The first year of this project focused on improving the materials properties of the mercuric iodide to enable the new sensor technology; in particular the charge carrier traps limiting device performance were determined and eliminated. The second year involved the development of a field portable x-ray fluorescence analyzer for compositional analyses. The third and final year of the project focused on the development of imaging sensors to provide the capability for mapping the composition of waste masses. This project resulted in instruments useful not only for managing hazardous and radioactive wastes, but also in a variety of industrial and national security applications

  11. Dynamic Torsional and Cyclic Fracture Behavior of ProFile Rotary Instruments at Continuous or Reciprocating Rotation as Visualized with High-speed Digital Video Imaging.

    Science.gov (United States)

    Tokita, Daisuke; Ebihara, Arata; Miyara, Kana; Okiji, Takashi

    2017-08-01

    This study examined the dynamic fracture behavior of nickel-titanium rotary instruments in torsional or cyclic loading at continuous or reciprocating rotation by means of high-speed digital video imaging. The ProFile instruments (size 30, 0.06 taper; Dentsply Maillefer, Ballaigues, Switzerland) were categorized into 4 groups (n = 7 in each group) as follows: torsional/continuous (TC), torsional/reciprocating (TR), cyclic/continuous (CC), and cyclic/reciprocating (CR). Torsional loading was performed by rotating the instruments by holding the tip with a vise. For cyclic loading, a custom-made device with a 38° curvature was used. Dynamic fracture behavior was observed with a high-speed camera. The time to fracture was recorded, and the fractured surface was examined with scanning electron microscopy. The TC group initially exhibited necking of the file followed by the development of an initial crack line. The TR group demonstrated opening and closing of a crack according to its rotation in the cutting and noncutting directions, respectively. The CC group separated without any detectable signs of deformation. In the CR group, initial crack formation was recognized in 5 of 7 samples. The reciprocating rotation exhibited a longer time to fracture in both torsional and cyclic fatigue testing (P rotary instruments, as visualized with high-speed digital video imaging, varied between the different modes of rotation and different fatigue testing. Reciprocating rotation induced a slower crack propagation and conferred higher fatigue resistance than continuous rotation in both torsional and cyclic loads. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Instruments for radiation measurement in biosciences. Series 3. radioluminography. 11. Application of imaging plate in transmission electron microscopy

    International Nuclear Information System (INIS)

    Oikawa, Tetsuo

    1999-01-01

    Properties and application of the imaging plate (IP) in transmission electron microscopy (TEM) are reviewed. TEM has the resolution level of around 0.2 nm, which enables direct observation of molecules and atoms. In TEM, there are such recording systems as photographic film, TV camera, slow-scan CCD camera and IP. IP, to the electron beam, has the higher sensitivity than the film and has the broad dynamic range. Linearity between the input beam intensity and output signal is good, which makes it possible to record the image even with the small electron dose. Signal/noise ratio and detective quantum efficiency are important factors for precise image analysis. Fading phenomenon is a defect of IP, which weakens the signal output as time passing. For instance of application, IP is used for imaging of AgBr crystal fragile to strong electron beam required for the film. IP is necessary for quantitative analysis of TEM images and for the recently developed energy-filter TEM. (K.H.)

  13. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  14. Development of XFCT imaging strategy for monitoring the spatial distribution of platinum-based chemodrugs: Instrumentation and phantom validation

    Energy Technology Data Exchange (ETDEWEB)

    Kuang Yu [Department of Radiation Oncology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305-5847 and Medical Physics Program, University of Nevada, Las Vegas, Nevada 89154-3037 (United States); Pratx, Guillem; Bazalova, Magdalena; Qian Jianguo; Meng Bowen; Xing Lei [Department of Radiation Oncology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305-5847 (United States)

    2013-03-15

    Purpose: Developing an imaging method to directly monitor the spatial distribution of platinum-based (Pt) drugs at the tumor region is of critical importance for early assessment of treatment efficacy and personalized treatment. In this study, the authors investigated the feasibility of imaging platinum (Pt)-based drug distribution using x-ray fluorescence (XRF, a.k.a. characteristic x ray) CT (XFCT). Methods: A 5-mm-diameter pencil beam produced by a polychromatic x-ray source equipped with a tungsten anode was used to stimulate emission of XRF photons from Pt drug embedded within a water phantom. The phantom was translated and rotated relative to the stationary pencil beam in a first-generation CT geometry. The x-ray energy spectrum was collected for 18 s at each position using a cadmium telluride detector. The spectra were then used for the K-shell XRF peak isolation and sinogram generation for Pt. The distribution and concentration of Pt were reconstructed with an iterative maximum likelihood expectation maximization algorithm. The capability of XFCT to multiplexed imaging of Pt, gadolinium (Gd), and iodine (I) within a water phantom was also investigated. Results: Measured XRF spectrum showed a sharp peak characteristic of Pt with a narrow full-width at half-maximum (FWHM) (FWHM{sub K{alpha}1}= 1.138 keV, FWHM{sub K{alpha}2}= 1.052 keV). The distribution of Pt drug in the water phantom was clearly identifiable on the reconstructed XRF images. Our results showed a linear relationship between the XRF intensity of Pt and its concentrations (R{sup 2}= 0.995), suggesting that XFCT is capable of quantitative imaging. A transmission CT image was also obtained to show the potential of the approach for providing attenuation correction and morphological information. Finally, the distribution of Pt, Gd, and I in the water phantom was clearly identifiable in the reconstructed images from XFCT multiplexed imaging. Conclusions: XFCT is a promising modality for monitoring

  15. a Circleless "2D/3D Total STATION": a Low Cost Instrument for Surveying, Recording Point Clouds, Documentation, Image Acquisition and Visualisation

    Science.gov (United States)

    Scherer, M.

    2013-07-01

    Hardware and software of the universally applicable instrument - referred to as a 2D/3D total station - are described here, as well as its practical use. At its core it consists of a 3D camera - often also called a ToF camera, a pmd camera or a RIM-camera - combined with a common industrial 2D camera. The cameras are rigidly coupled with their optical axes in parallel. A new type of instrument was created mounting this 2D/3D system on a tripod in a specific way. Because of it sharing certain characteristics with a total station and a tacheometer, respectively, the new device was called a 2D/3D total station. It may effectively replace a common total station or a laser scanner in some respects. After a brief overview of the prototype's features this paper then focuses on the methodological characteristics for practical application. Its usability as a universally applicable stand-alone instrument is demonstrated for surveying, recording RGB-coloured point clouds as well as delivering images for documentation and visualisation. Because of its limited range (10m without reflector and 150 m to reflector prisms) and low range accuracy (ca. 2 cm to 3 cm) compared to present-day total stations and laser scanners, the practical usage of the 2D/3D total station is currently limited to acquisition of accidents, forensic purpuses, speleology or facility management, as well as architectural recordings with low requirements regarding accuracy. However, the author is convinced that in the near future advancements in 3D camera technology will allow this type of comparatively low cost instrument to replace the total station as well as the laser scanner in an increasing number of areas.

  16. SU-E-I-51: Quantitative Assessment of X-Ray Imaging Detector Performance in a Clinical Setting - a Simple Approach Using a Commercial Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, J; Bujila, R; Omar, A; Nowik, P; Mobini-Kesheh, S; Lindstroem, J [Karolinska University Hospital, Solna (Sweden)

    2015-06-15

    Purpose: To measure and compare the performance of X-ray imaging detectors in a clinical setting using a dedicated instrument for the quantitative determination of detector performance. Methods: The DQEPro (DQE Instruments Inc., London, Ontario Canada) was used to determine the MTF, NPS and DQE using an IEC compliant methodology for three different imaging modalities: conventional radiography (CsI-based detector), general-purpose radioscopy (CsI-based detector), and mammography (a-Se based detector). The radiation qualities (IEC) RQA-5 and RQA-M-2 were used for the CsI-based and a-Se-based detectors, respectively. The DQEPro alleviates some of the difficulties associated with DQE measurements by automatically positioning test devices over the detector, guiding the user through the image acquisition process and providing software for calculations. Results: A comparison of the NPS showed that the image noise of the a-Se detector was less correlated than the CsI detectors. A consistently higher performance was observed for the a-Se detector at all spatial frequencies (MTF: 0.97@0.25 cy/mm, DQE: 0.72@0.25 cy/mm) and the DQE drops off slower than for the CsI detectors. The CsI detector used for conventional radiography displayed a higher performance at low spatial frequencies compared to the CsI detector used for radioscopy (DQE: 0.65 vs 0.60@0.25 cy/mm). However, at spatial frequencies above 1.3 cy/mm, the radioscopy detector displayed better performance than the conventional radiography detector (DQE: 0.35 vs 0.24@2.00 cy/mm). Conclusion: The difference in the MTF, NPS and DQE that was observed for the two different CsI detectors and the a-Se detector reflect the imaging tasks that the different detector types are intended for. The DQEPro has made the determination and calculation of quantitative metrics of X-ray imaging detector performance substantially more convenient and accessible to undertake in a clinical setting.

  17. The NUADU experiment on TC-2 and the first Energetic Neutral Atom (ENA images recorded by this instrument

    Directory of Open Access Journals (Sweden)

    S. McKenna-Lawlor

    2005-11-01

    Full Text Available The Earth’s ring current and how it responds to varying interplanetary conditions is described and an account provided of the production of Energetic Neutral Atoms (ENAs in the geo-corona. Also, the potential to remotely monitor, on a global scale, the temporal and spatial evolution of magnetospheric plasma populations through analysing ENA images recorded during magnetic storms/substorms is indicated. A technical account of the Energetic NeUtral Atom Detector Unit NUADU aboard China’s TC-2 mission (measurement range 45–>158 keV follows, together with an account of the scientific objectives of NUADU, both in stand-alone mode and in the context of multi-point imaging. Low altitude ENA emissions recorded by NUADU during south polar passages of TC-2 at the time of a moderate magnetic storm in September 2004, as well as bright ring current emissions recorded in November 2004 during a major geomagnetic storm, are presented and discussed in the context of various, accompanying, terrestrial disturbances. Also, ENA observations of the November 2004 ring current imaged simultaneously by TC-2/NUADU and by IMAGE/ HENA (viewing, respectively, from the Northern and Southern Hemispheres, are compared.

  18. Diffusion-weighted magnetic resonance imaging - a new instrument in the diagnosis of Creutzfeldt-Jacob's disease

    International Nuclear Information System (INIS)

    Romi, Fredrik; Smivoll, Alf Inge; Moerk, Sverre; Tysnes, Ole-Bjoern

    2000-01-01

    Creutzfeldt-Jacob's disease (CID) is characterised by rapidly progressive dementia, ataxia, myoclonus and several other neurological deficits. It generally affects older adults and occurs in sporadic, genetic and iatrogenic forms. Death occurs usually within one year after onset of the disease. The diagnosis is based on clinical criteria, neuro physiological and radiological findings and confirmed by post mortal histopathology. During the last two years several cases of CID have been reported with diffusion-weighted magnetic resonance imaging (MR) abnormalities represented by increased signal intensity indicating reduced diffusion in basal ganglia and/or cortex cerebric. These abnormalities seem to be characteristic of CID. We report a case of CID in a 54 year old woman who developed vertigo, nystagmus, ataxia, myoclonus and dementia over a period of eight months. Diffusion-weighted magnetic resonance imaging showed increased signal intensity in corpus striatum and gyrus conguli. The diagnosis was post mortally confirmed with histopathology. (Author) 7 figs., 15 refs

  19. FluidCam 1&2 - UAV-based Fluid Lensing Instruments for High-Resolution 3D Subaqueous Imaging and Automated Remote Biosphere Assessment of Reef Ecosystems

    Science.gov (United States)

    Chirayath, V.; Instrella, R.

    2016-02-01

    We present NASA ESTO FluidCam 1 & 2, Visible and NIR Fluid-Lensing-enabled imaging payloads for Unmanned Aerial Vehicles (UAVs). Developed as part of a focused 2014 earth science technology grant, FluidCam 1&2 are Fluid-Lensing-based computational optical imagers designed for automated 3D mapping and remote sensing of underwater coastal targets from airborne platforms. Fluid Lensing has been used to map underwater reefs in 3D in American Samoa and Hamelin Pool, Australia from UAV platforms at sub-cm scale, which has proven a valuable tool in modern marine research for marine biosphere assessment and conservation. We share FluidCam 1&2 instrument validation and testing results as well as preliminary processed data from field campaigns. Petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk reefs demonstrate broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to improving bathymetry data for physical oceanographic models and understanding climate change's impact on coastal zones, global oxygen production, carbon sequestration.

  20. Instrumental interaction

    OpenAIRE

    Luciani , Annie

    2007-01-01

    International audience; The expression instrumental interaction as been introduced by Claude Cadoz to identify a human-object interaction during which a human manipulates a physical object - an instrument - in order to perform a manual task. Classical examples of instrumental interaction are all the professional manual tasks: playing violin, cutting fabrics by hand, moulding a paste, etc.... Instrumental interaction differs from other types of interaction (called symbolic or iconic interactio...

  1. Perspectives of imaging of single protein molecules with the present design of the European XFEL. Pt. 1. X-ray source, beamline optics and instrument simulations

    International Nuclear Information System (INIS)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor; Geloni, Gianluca; Yefanov, Oleksandr

    2014-08-01

    The Single Particles, Clusters and Biomolecules (SPB) instrument at the European XFEL is located behind the SASE1 undulator, and aims to support imaging and structure determination of biological specimen between about 0.1 μm and 1 μm size. The instrument is designed to work at photon energies from 3 keV up to 16 keV. This wide operation range is a cause for challenges to the focusing optics. In particular, a long propagation distance of about 900 m between X-ray source and sample leads to a large lateral photon beam size at the optics. The beam divergence is the most important parameter for the optical system, and is largest for the lowest photon energies and for the shortest pulse duration (corresponding to the lowest charge). Due to the large divergence of nominal X-ray pulses with duration shorter than 10 fs, one suffers diffraction from mirror aperture, leading to a 100-fold decrease in fluence at photon energies around 4 keV, which are ideal for imaging of single biomolecules. The nominal SASE1 output power is about 50 GW. This is very far from the level required for single biomolecule imaging, even assuming perfect beamline and focusing efficiency. Here we demonstrate that the parameters of the accelerator complex and of the SASE1 undulator offer an opportunity to optimize the SPB beamline for single biomolecule imaging with minimal additional costs and time. Start to end simulations from the electron injector at the beginning of the accelerator complex up to the generation of diffraction data indicate that one can achieve diffraction without diffraction with about 0.5 photons per Shannon pixel at near-atomic resolution with 10 13 photons in a 4 fs pulse at 4 keV photon energy and in a 100 nm focus, corresponding to a fluence of 10 23 ph/cm 2 . This result is exemplified using the RNA Pol II molecule as a case study.

  2. Perspectives of imaging of single protein molecules with the present design of the European XFEL. Pt. 1. X-ray source, beamline optics and instrument simulations

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Yefanov, Oleksandr [Center for Free-Electron Laser Science, Hamburg (Germany)

    2014-08-15

    The Single Particles, Clusters and Biomolecules (SPB) instrument at the European XFEL is located behind the SASE1 undulator, and aims to support imaging and structure determination of biological specimen between about 0.1 μm and 1 μm size. The instrument is designed to work at photon energies from 3 keV up to 16 keV. This wide operation range is a cause for challenges to the focusing optics. In particular, a long propagation distance of about 900 m between X-ray source and sample leads to a large lateral photon beam size at the optics. The beam divergence is the most important parameter for the optical system, and is largest for the lowest photon energies and for the shortest pulse duration (corresponding to the lowest charge). Due to the large divergence of nominal X-ray pulses with duration shorter than 10 fs, one suffers diffraction from mirror aperture, leading to a 100-fold decrease in fluence at photon energies around 4 keV, which are ideal for imaging of single biomolecules. The nominal SASE1 output power is about 50 GW. This is very far from the level required for single biomolecule imaging, even assuming perfect beamline and focusing efficiency. Here we demonstrate that the parameters of the accelerator complex and of the SASE1 undulator offer an opportunity to optimize the SPB beamline for single biomolecule imaging with minimal additional costs and time. Start to end simulations from the electron injector at the beginning of the accelerator complex up to the generation of diffraction data indicate that one can achieve diffraction without diffraction with about 0.5 photons per Shannon pixel at near-atomic resolution with 10{sup 13} photons in a 4 fs pulse at 4 keV photon energy and in a 100 nm focus, corresponding to a fluence of 10{sup 23}ph/cm{sup 2}. This result is exemplified using the RNA Pol II molecule as a case study.

  3. The latest radiation instrument

    International Nuclear Information System (INIS)

    Kang, Se Sik; Gwon, Dal Gwan; Kim, Gyeong Geum

    2008-08-01

    This book deals with the latest radiation instrument, which is comprised of eight chapters. It explains X rays instrument for medial treatment, X-ray tube instrument and permissible burden with its history, structure and characteristic high voltage apparatus with high voltage rectifier circuit, X-ray control apparatus for medical treatment, X-ray image equipment X-ray television apparatus and CCD 205, X-ray apparatus of install and types, Digital X-ray apparatus with CR 261 and DR 269, performance management on X-ray for medical treatment with its history, necessity and management in the radiation field.

  4. Instruments for radiation measurement in biosciences. Series 3. radioluminography. 13. Application of imaging plate for radiation control works

    International Nuclear Information System (INIS)

    Yamadera, Akira

    2000-01-01

    The imaging plate (IP) is useful for measurement of both distribution and intensity of radiation. This paper described application of IP in radiation control works. Since IP has the 500 times higher sensitivity than the film badge for X-ray-range radiation of 12-120 keV, it can be useful as a personnel dosemeter in medical field. IP is suitable for measurement of radioactivity in a lot of samples and it can be useful for measurement of smear test papers although a problem concerning 3 H monitoring remains. Since IP gives the two-dimensional information of radiation distribution, IP can be useful for monitoring of contamination status such as its site and area. A contamination accident occurred by 68 Ge in PET apparatus is described for instance. IP can be also useful for measurement of the low level radioactivity in solutions, such as waste water. The author made an apparatus for drain monitoring which composed from acryl-box and IP. The surface of the former box, containing the water, is stuck by various shields of acryl- and lead-plates and is in contact with IP. Both measurement of radioactivity concentration and identification of radionuclide are possible. The important defect is pointed out to be fading phenomenon in those works above. (K.H.)

  5. Wide-angle imaging LIDAR (WAIL): a ground-based instrument for monitoring the thickness and density of optically thick clouds

    International Nuclear Information System (INIS)

    Love, Steven P.; Davis, A.B.; Rohde, C.A.; Ho, Cheng

    2001-01-01

    Traditional lidar provides little information on dense clouds beyond the range to their base (ceilometry), due to their extreme opacity. At most optical wavelengths, however, laser photons are not absorbed but merely scattered out of the beam, and thus eventually escape the cloud via multiple scattering, producing distinctive extended space- and time-dependent patterns which are, in essence, the cloud's radiative Green functions. These Green functions, essentially 'movies' of the time evolution of the spatial distribution of escaping light, are the primary data products of a new type of lidar: Wide Angle Imaging Lidar (WAIL). WAIL data can be used to infer both optical depth and physical thickness of clouds, and hence the cloud liquid water content. The instrumental challenge is to accommodate a radiance field varying over many orders of magnitude and changing over widely varying time-scales. Our implementation uses a high-speed microchannel plate/crossed delay line imaging detector system with a 60-degree full-angle field of view, and a 532 nm doubled Nd:YAG laser. Nighttime field experiments testing various solutions to this problem show excellent agreement with diffusion theory, and retrievals yield plausible values for the optical and geometrical parameters of the observed cloud decks.

  6. A Robust 96.6-dB-SNDR 50-kHz-Bandwidth Switched-Capacitor Delta-Sigma Modulator for IR Imagers in Space Instrumentation.

    Science.gov (United States)

    Dei, Michele; Sutula, Stepan; Cisneros, Jose; Pun, Ernesto; Jansen, Richard Jan Engel; Terés, Lluís; Serra-Graells, Francisco

    2017-06-02

    Infrared imaging technology, used both to study deep-space bodies' radiation and environmental changes on Earth, experienced constant improvements in the last few years, pushing data converter designers to face new challenges in terms of speed, power consumption and robustness against extremely harsh operating conditions. This paper presents a 96.6-dB-SNDR (Signal-to-Noise-plus-Distortion Ratio) 50-kHz-bandwidth fourth-order single-bit switched-capacitor delta-sigma modulator for ADC operating at 1.8 V and consuming 7.9 mW fit for space instrumentation. The circuit features novel Class-AB single-stage switched variable-mirror amplifiers (SVMAs) enabling low-power operation, as well as low sensitivity to both process and temperature deviations for the whole modulator. The physical implementation resulted in a 1.8-mm 2 chip integrated in a standard 0.18-µm 1-poly-6-metal (1P6M) CMOS technology, and it reaches a 164.6-dB Schreier figure of merit from experimental SNDR measurements without making use of any clock bootstrapping,analogcalibration,nordigitalcompensationtechnique. Whencoupledtoa2048×2048 IR imager, the current design allows more than 50 frames per minute with a resolution of 16 effective number of bits (ENOB) while consuming less than 300 mW.

  7. Invited Article: First Flight in Space of a Wide-field-of-view Soft X-Ray Imager Using Lobster-Eye Optics: Instrument Description and Initial Flight Results

    Science.gov (United States)

    Collier, Michael; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chomay, Dennis J.; Cravens, Thomas E.; Galeazzi, Massiniliano; Keller, John; Koutroumpa, Dimitra

    2015-01-01

    We describe the development, launch into space, and initial results from a prototype wide eld-of-view (FOV) soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The Sheath Transport Observer for the Redistribution of Mass (STORM) is the rst instrument using this type of optics launched into space and provides proof-of-concept for future ight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the moon, and the solar wind interaction with planetary bodies like Venus and Mars.

  8. Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results.

    Science.gov (United States)

    Collier, Michael R; Porter, F Scott; Sibeck, David G; Carter, Jenny A; Chiao, Meng P; Chornay, Dennis J; Cravens, Thomas E; Galeazzi, Massimiliano; Keller, John W; Koutroumpa, Dimitra; Kujawski, Joseph; Kuntz, Kip; Read, Andy M; Robertson, Ina P; Sembay, Steve; Snowden, Steven L; Thomas, Nicholas; Uprety, Youaraj; Walsh, Brian M

    2015-07-01

    We describe the development, launch into space, and initial results from a prototype wide field-of-view soft X-ray imager that employs lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The sheath transport observer for the redistribution of mass is the first instrument using this type of optics launched into space and provides proof-of-concept for future flight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the Moon, and the solar wind interaction with planetary bodies like Venus and Mars [Kuntz et al., Astrophys. J. (in press)].

  9. Instrumentation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides instrumentation support for flight tests of prototype weapons systems using a vast array of airborne sensors, transducers, signal conditioning and encoding...

  10. The Moon Mineralogy Mapper (M3) imaging spectrometerfor lunar science: Instrument description, calibration, on‐orbit measurements, science data calibration and on‐orbit validation

    Science.gov (United States)

    C. Pieters,; P. Mouroulis,; M. Eastwood,; J. Boardman,; Green, R.O.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Cate, D.; Chatterjee, A.; Clark, R.; Barr, D.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, K.; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriguez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric

  11. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation

    Science.gov (United States)

    Green, R.O.; Pieters, C.; Mouroulis, P.; Eastwood, M.; Boardman, J.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Barr, D.; Buratti, B.; Cate, D.; Chatterjee, A.; Clark, R.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, Kenneth; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriquez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric

  12. Tempo de enfermagem em centro de diagnóstico por imagem: desenvolvimento de instrumento Nursing time in a diagnostic imaging center: development of an instrument

    Directory of Open Access Journals (Sweden)

    Carla Weidle Marques da Cruz

    2013-01-01

    Full Text Available OBJETIVO: Desenvolver um instrumento para medir o tempo despendido pela equipe de enfermagem, nas intervenções realizadas em centros de diagnóstico por imagem. MÉTODOS: Estudo transversal desenvolvido em hospital geral particular, conforme estas etapas: A Identificação das atividades de enfermagem por meio de revisão bibliográfica e observação em campo. B Mapeamento cruzado das atividades identificadas em intervenções de enfermagem, conforme a Classificação de Intervenções de Enfermagem (NIC. C Validação das intervenções. D Teste-piloto do instrumento com utilização da técnica de amostragem do trabalho. RESULTADOS: Foram validadas pelos juízes 92 atividades de enfermagem correspondentes a 32 intervenções da Classificação de Intervenções de Enfermagem NIC. As intervenções mais frequentes foram: Assistência em Exames, Documentação, Gerenciamento de Caso, Acompanhamento por telefone, Cuidados na admissão e Troca de Informações sobre cuidados de Saúde. CONCLUSÃO: O instrumento proposto para medição do tempo de trabalho da enfermagem, fundamentado nas intervenções de enfermagem em Centro de Diagnóstico por Imagem, foi validado e encontra-se disponível para utilização.OBJECTIVE: To develop an instrument to measure the time spent by nursing staff in interventions performed in diagnostic imaging centers. METHODS: Cross-sectional study conducted in private general hospital, according to these steps: A Identification of nursing activities through literature review and field observation. B Crossed-mapping of the activities identified in nursing interventions, according to the Nursing Interventions Classification (NIC. C Validation of interventions. D Pilot-test with instrument's utilization, with work-sampling technique. RESULTS: Were validated by the judges 92 nursing activities corresponding to 32 interventions NIC.. These interventions were most frequent: Assistance in exams, Documentation, Case Management

  13. Instrumentation development

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Yow, J.L. Jr.

    1988-01-01

    Instrumentation is developed for the Civilian Radioactive Waste Management Program to meet several different (and sometimes conflicting) objectives. This paper addresses instrumentation development for data needs that are related either directly or indirectly to a repository site, but does not touch on instrumentation for work with waste forms or other materials. Consequently, this implies a relatively large scale for the measurements, and an in situ setting for instrument performance. In this context, instruments are needed for site characterization to define phenomena, develop models, and obtain parameter values, and for later design and performance confirmation testing in the constructed repository. The former set of applications is more immediate, and is driven by the needs of program design and performance assessment activities. A host of general technical and nontechnical issues have arisen to challenge instrumentation development. Instruments can be classed into geomechanical, geohydrologic, or other specialty categories, but these issues cut across artificial classifications. These issues are outlined. Despite this imposing list of issues, several case histories are cited to evaluate progress in the area

  14. Instrumental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-15

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  15. Instrumental analysis

    International Nuclear Information System (INIS)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-01

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  16. LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed. (orig.) 891 HP/orig. 892 BRE [de

  17. ICFA: Instrumentation school

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-10-15

    74 students, including 45 from developing countries, ten lecturers and nine laboratory instructors participated in the novel instrumentation school held in June at the International Centre for Theoretical Physics (ICTP), Trieste, Italy, sponsored by ICTP and arranged through the Instrumentation Panel of the International Committee for Future Accelerators (ICF). During the two weeks of the course, students had the chance to construct and test a proportional chamber, measure the lifetime of cosmic ray muons, operate and analyse the performance of an 8-wire imaging drift chamber, or study noise and signal processing using a silicon photodiode.

  18. ICFA: Instrumentation school

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    74 students, including 45 from developing countries, ten lecturers and nine laboratory instructors participated in the novel instrumentation school held in June at the International Centre for Theoretical Physics (ICTP), Trieste, Italy, sponsored by ICTP and arranged through the Instrumentation Panel of the International Committee for Future Accelerators (ICF). During the two weeks of the course, students had the chance to construct and test a proportional chamber, measure the lifetime of cosmic ray muons, operate and analyse the performance of an 8-wire imaging drift chamber, or study noise and signal processing using a silicon photodiode

  19. Instrumental Capital

    Directory of Open Access Journals (Sweden)

    Gabriel Valerio

    2007-07-01

    Full Text Available During the history of human kind, since our first ancestors, tools have represented a mean to reach objectives which might otherwise seemed impossibles. In the called New Economy, where tangibles assets appear to be losing the role as the core element to produce value versus knowledge, tools have kept aside man in his dairy work. In this article, the author's objective is to describe, in a simple manner, the importance of managing the organization's group of tools or instruments (Instrumental Capital. The characteristic conditions of this New Economy, the way Knowledge Management deals with these new conditions and the sub-processes that provide support to the management of Instrumental Capital are described.

  20. Innovative instrumentation

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all

  1. Innovative instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1983-11-15

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all.

  2. Instrumental aspects

    Directory of Open Access Journals (Sweden)

    Qureshi Navid

    2017-01-01

    Full Text Available Every neutron scattering experiment requires the choice of a suited neutron diffractometer (or spectrometer in the case of inelastic scattering with its optimal configuration in order to accomplish the experimental tasks in the most successful way. Most generally, the compromise between the incident neutron flux and the instrumental resolution has to be considered, which is depending on a number of optical devices which are positioned in the neutron beam path. In this chapter the basic instrumental principles of neutron diffraction will be explained. Examples of different types of experiments and their respective expectable results will be shown. Furthermore, the production and use of polarized neutrons will be stressed.

  3. Surgical Instrument

    NARCIS (Netherlands)

    Dankelman, J.; Horeman, T.

    2009-01-01

    The present invention relates to a surgical instrument for minimall-invasive surgery, comprising a handle, a shaft and an actuating part, characterised by a gastight cover surrounding the shaft, wherein the cover is provided with a coupler that has a feed- through opening with a loskable seal,

  4. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  5. Commissioning Instrument for the GTC

    Science.gov (United States)

    Cuevas, S.; Sánchez, B.; Bringas, V.; Espejo, C.; Flores, R.; Chapa, O.; Lara, G.; Chavolla, A.; Anguiano, G.; Arciniega, S.; Dorantes, A.; González, J. L.; Montoya, J. M.; Toral, R.; Hernández, H.; Nava, R.; Devaney, N.; Castro, J.; Cavaller-Marqués, L.

    2005-12-01

    During the GTC integration phase, the Commissioning Instrument (CI) will be a diagnostic tool for performance verification. The CI features four operation modes: imaging, pupil imaging, Curvature WFS, and high resolution Shack-Hartmann WFS. This instrument was built by the Instituto de Astronomía UNAM and the Centro de Ingeniería y Desarrollo Industrial (CIDESI) under GRANTECAN contract after a public bid. In this paper we made a general instrument overview and we show some of the performance final results obtained when the Factory Acceptance tests previous to its transport to La Palma.

  6. The 2007 ESO Instrument Calibration Workshop

    CERN Document Server

    Kaufer, Andreas; ESO Workshop

    2008-01-01

    The 2007 ESO Instrument Calibration workshop brought together more than 120 participants with the objective to a) foster the sharing of information, experience and techniques between observers, instrument developers and instrument operation teams, b) review the actual precision and limitations of the applied instrument calibration plans, and c) collect the current and future requirements by the ESO users. These present proceedings include the majority of the workshop’s contributions and document the status quo of instrument calibration at ESO in large detail. Topics covered are: Optical Spectro-Imagers, Optical Multi-Object Spectrographs, NIR and MIR Spectro-Imagers, High-Resolution Spectrographs, Integral Field Spectrographs, Adaptive Optics Instruments, Polarimetric Instruments, Wide Field Imagers, Interferometric Instruments as well as other crucial aspects such as data flow, quality control, data reduction software and atmospheric effects. It was stated in the workshop that "calibration is a life-long l...

  7. Nuclear instrumentation

    International Nuclear Information System (INIS)

    Weill, Jacky; Fabre, Rene.

    1981-01-01

    This article sums up the Research and Development effort at present being carried out in the five following fields of applications: Health physics and Radioprospection, Control of nuclear reactors, Plant control (preparation and reprocessing of the fuel, testing of nuclear substances, etc.), Research laboratory instrumentation, Detectors. It also sets the place of French industrial activities by means of an estimate of the French market, production and flow of trading with other countries [fr

  8. Divided Instruments

    Science.gov (United States)

    Chapman, A.; Murdin, P.

    2000-11-01

    Although the division of the zodiac into 360° probably derives from Egypt or Assyria around 2000 BC, there is no surviving evidence of Mesopotamian cultures embodying this division into a mathematical instrument. Almost certainly, however, it was from Babylonia that the Greek geometers learned of the 360° circle, and by c. 80 BC they had incorporated it into that remarkably elaborate device gener...

  9. Instrumentation development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Areas being investigated for instrumentation improvement during low-level pollution monitoring include laser opto-acoustic spectroscopy, x-ray fluorescence spectroscopy, optical fluorescence spectroscopy, liquid crystal gas detectors, advanced forms of atomic absorption spectroscopy, electro-analytical chemistry, and mass spectroscopy. Emphasis is also directed toward development of physical methods, as opposed to conventional chemical analysis techniques for monitoring these trace amounts of pollution related to energy development and utilization

  10. Instrumentation maintenance

    International Nuclear Information System (INIS)

    Mack, D.A.

    1976-09-01

    It is essential to any research activity that accurate and efficient measurements be made for the experimental parameters under consideration for each individual experiment or test. Satisfactory measurements in turn depend upon having the necessary instruments and the capability of ensuring that they are performing within their intended specifications. This latter requirement can only be achieved by providing an adequate maintenance facility, staffed with personnel competent to understand the problems associated with instrument adjustment and repair. The Instrument Repair Shop at the Lawrence Berkeley Laboratory is designed to achieve this end. The organization, staffing and operation of this system is discussed. Maintenance policy should be based on studies of (1) preventive vs. catastrophic maintenance, (2) records indicating when equipment should be replaced rather than repaired and (3) priorities established to indicate the order in which equipment should be repaired. Upon establishing a workable maintenance policy, the staff should be instructed so that they may provide appropriate scheduled preventive maintenance, calibration and corrective procedures, and emergency repairs. The education, training and experience of the maintenance staff is discussed along with the organization for an efficient operation. The layout of the various repair shops is described in the light of laboratory space and financial constraints

  11. Enhancements to and characterization of the very early time electromagnetic (VETEM) prototype instrument and applications to shallow subsurface imaging at sites in the DOE complex. 1998 annual progress report

    International Nuclear Information System (INIS)

    Chew, W.C.; Wright, D.L.

    1998-01-01

    'The objective of this project is to enhance the state-of-the-art of electromagnetic imaging of the shallow (0 to 5 m) subsurface in electrically conductive media where ground penetrating radar (GPR) provides insufficient penetration and time domain electromagnetic (TEM) systems provide insufficient resolution. This objective is being pursued by instrumentation enhancements to the existing very early time electromagnetic (VETEM) system coupled with physical and numerical modeling. Success in this endeavor will improve the speed and accuracy of waste pit and trench location and characterization, and could have additional applications to shallow DNAPL and LNAPL spill and cleanup monitoring, clay cap integrity assessment, and landfill stabilization monitoring. This could result in significant savings in time and money during characterization, remediation, and decommissioning of facilities. This report summarizes accomplishments after 8 months of a three-year project. The authors have focused mainly on instrumentation and numerical modeling during this time.'

  12. Seismic instrumentation

    International Nuclear Information System (INIS)

    1984-06-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The aim of this RFS is to define the type, location and operating conditions for seismic instrumentation needed to determine promptly the seismic response of nuclear power plants features important to safety to permit comparison of such response with that used as the design basis

  13. Meteorological instrumentation

    International Nuclear Information System (INIS)

    1982-06-01

    RFS or ''Regles Fondamentales de Surete'' (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety , while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the ''Service Central de Surete des Installations Nucleaires'' or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to specify the meteorological instrumentation required at the site of each nuclear power plant equipped with at least one pressurized water reactor

  14. [2000 year history of tonsillectomy. Images from the history of otorhinolaryngology, highlighted by instruments from the collection of the German Medical History Museum in Ingolstadt].

    Science.gov (United States)

    Feldmann, H

    1997-12-01

    The etymology of the anatomical terms and their use in history are elucidated: "Tonsil" (from Latin tonsa = the oar) in use since Celsus (about 40 AD). The Greek terms of that time, "antiádes", "paristhmia", were not adopted in later medical terminology. "Amygdala" (Greek/Latin = the almond) was introduced by Vesalius in 1543. Vesalius was also the first to depict the tonsils in a specimen of the whole human body; Duverney (1761) gives the first exact depiction of the pharyngeal region. Special anatomical and histological studies of the tonsils were carried out in the 19 century. Cornelius Celsus in Rome (about 40 AD) described the blunt removal of the tonsils by use of the finger. This method was favoured anew by numerous laryngologists at the beginning of the 20th century when it had been realised that a gentle enucleation of the entire tonsil including its capsule was advisable against cutting off a slice, but before long this procedure was discarded again for hygienic reasons. Precursors of special instruments for tonsillectomy were instruments designed for shortening the uvula: uvulotomy. Paré (1564) and Scultetus (1655) devised instruments that permitted placing a thread shaped like a snare around the uvula and cutting it off by strangulation. Hildanus (1646), Scultetus (1655) and Heister (1763) presented an instrument of the guillotine-type for uvulotomy. This instrument was modified by P. S. Physick (USA 1828) and used for tonsillotomy. It became the prototype for a number of similar instruments which were to follow: W. M. F. Fahnestock (USA 1832). M. Mackenzie (London 1880), G. Sluder (USA 1911). Besides these guillotines snares were also perfected and used for tonsillotomy, e.g. by W. Brünings (1908). The concentration on tonsillotomy aimed at performing the operation as quickly as possible, especially in children, as it was not yet possible to sustain general anaesthesia for a longer period of time while doing surgery in the pharynx. The operation of

  15. [History of the ear speculum. Images from the history of otorhinolaryngology, highlighted by instruments from the collection of the German Medical History Museum in Ingolstadt].

    Science.gov (United States)

    Feldmann, H

    1996-05-01

    BACKGROUND. Inspection of or interventions in the external ear canal and the nostrils pose similar technical problems. This is the reason why early instruments devised for otoscopy and rhinoscopy were based on an identical principle. They were shaped like a pair of tongs, comparable to nasal specula of today. A similar type of instrument had been developed earlier by barber surgeons for inspecting narrow wound cavities. TONG-SHAPED SPECULA. The first description and illustration of an aural and nasal speculum was provided by Guy de Chauliac in Montpellier, France in 1363. Sophisticated models were presented by Fabricius Hildanus in Germany in 1646 and J.J. Perret in Paris in 1772, who offered them in his illustrated catalogue of surgical instruments at fixed prices. W. Kramer (1836) in Berlin improved this tong-shaped instrument and devised the ear speculum named after him that was generally favored during the first half of the 19th century. Further variations of this type were presented by Lincke and Schmalz (1846) in Germany. FUNNEL-SHAPED SPECULA. Ignaz Gruber in Vienna in 1838 devised the first tunnel-shaped ear specula made of metal. They had a simple conical shape, were not divided into separate jaws, and could not be spread. Gruber himself did not publish his invention, but he demonstrated his ear specula to W. R. Wilde from Dublin, who had paid a visit to his office in Vienna. Wilde reported on this in 1844, and subsequently systematically refined Gruber's specula. A. v. Tröltsch from Würzburg (Germany) had seen these instruments at Wilde's office and it was Wilde himself and v. Tröltsch who helped this type of ear speculum to gain acceptance on an international scale. A different type of bottle-shaped ear speculum was first used by Schmalz (1846) and Erhard (1859) in Germany, but it was only developed into a commercially available instrument by Josef Gruber in Vienna in 1870. The ear specula most in use today were first presented by A. Hartmann in

  16. Radiological instrument

    International Nuclear Information System (INIS)

    Kronenberg, S.; McLaughlin, W.L.; Seibentritt, C.R. Jr.

    1986-01-01

    An instrument is described for measuring radiation, particularly nuclear radiation, comprising: a radiation sensitive structure pivoted toward one end and including a pair of elongated solid members contiguously joined together along their length dimensions and having a common planar interface therebetween. One of the pairs of members is comprised of radiochromic material whose index of refraction changes due to anomolous dispersion as a result of being exposed to nuclear radiation. The pair of members further has mutually different indices of refraction with the member having the larger index of refraction further being transparent for the passage of light and of energy therethrough; means located toward the other end of the structure for varying the angle of longitudinal elevation of the pair of members; means for generating and projecting a beam of light into one end of the member having the larger index of refraction. The beam of light is projected toward the planar interface where it is reflected out of the other end of the same member as a first output beam; means projecting a portion of the beam of light into one end of the member having the larger index of refraction where it traverses therethrough without reflection and out of the other end of the same member as a second output beam; and means adjacent the structure for receiving the first and second output beams, whereby a calibrated change in the angle of elevation of the structure between positions of equal intensity of the first and second output beams prior to and following exposure provides a measure of the radiation sensed due to a change of refraction of the radiochromic material

  17. Acute vertebral fracture after spinal fusion: a case report illustrating the added value of single-source dual-energy computed tomography to magnetic resonance imaging in a patient with spinal Instrumentation

    International Nuclear Information System (INIS)

    Fuchs, M.; Putzier, M.; Pumberger, M.; Hermann, K.G.; Diekhoff, T.

    2016-01-01

    Magnetic resonance imaging (MRI) is degraded by metal-implant-induced artifacts when used for the diagnostic assessment of vertebral compression fractures in patients with instrumented spinal fusion. Dual-energy computed tomography (DECT) offers a promising supplementary imaging tool in these patients. This case report describes an 85-year-old woman who presented with a suspected acute vertebral fracture after long posterior lumbar interbody fusion. This is the first report of a vertebral fracture that showed bone marrow edema on DECT; however, edema was missed by an MRI STIR sequence owing to metal artifacts. Bone marrow assessment using DECT is less susceptible to metal artifacts than MRI, resulting in improved visualization of vertebral edema in the vicinity of fused vertebral bodies. (orig.)

  18. Analysis on detection accuracy of binocular photoelectric instrument optical axis parallelism digital calibration instrument

    Science.gov (United States)

    Ying, Jia-ju; Yin, Jian-ling; Wu, Dong-sheng; Liu, Jie; Chen, Yu-dan

    2017-11-01

    Low-light level night vision device and thermal infrared imaging binocular photoelectric instrument are used widely. The maladjustment of binocular instrument ocular axises parallelism will cause the observer the symptom such as dizziness, nausea, when use for a long time. Binocular photoelectric equipment digital calibration instrument is developed for detecting ocular axises parallelism. And the quantitative value of optical axis deviation can be quantitatively measured. As a testing instrument, the precision must be much higher than the standard of test instrument. Analyzes the factors that influence the accuracy of detection. Factors exist in each testing process link which affect the precision of the detecting instrument. They can be divided into two categories, one category is factors which directly affect the position of reticle image, the other category is factors which affect the calculation the center of reticle image. And the Synthesize error is calculated out. And further distribute the errors reasonably to ensure the accuracy of calibration instruments.

  19. Developments in analytical instrumentation

    Science.gov (United States)

    Petrie, G.

    The situation regarding photogrammetric instrumentation has changed quite dramatically over the last 2 or 3 years with the withdrawal of most analogue stereo-plotting machines from the market place and their replacement by analytically based instrumentation. While there have been few new developments in the field of comparators, there has been an explosive development in the area of small, relatively inexpensive analytical stereo-plotters based on the use of microcomputers. In particular, a number of new instruments have been introduced by manufacturers who mostly have not been associated previously with photogrammetry. Several innovative concepts have been introduced in these small but capable instruments, many of which are aimed at specialised applications, e.g. in close-range photogrammetry (using small-format cameras); for thematic mapping (by organisations engaged in environmental monitoring or resources exploitation); for map revision, etc. Another innovative and possibly significant development has been the production of conversion kits to convert suitable analogue stereo-plotting machines such as the Topocart, PG-2 and B-8 into fully fledged analytical plotters. The larger and more sophisticated analytical stereo-plotters are mostly being produced by the traditional mainstream photogrammetric systems suppliers with several new instruments and developments being introduced at the top end of the market. These include the use of enlarged photo stages to handle images up to 25 × 50 cm format; the complete integration of graphics workstations into the analytical plotter design; the introduction of graphics superimposition and stereo-superimposition; the addition of correlators for the automatic measurement of height, etc. The software associated with this new analytical instrumentation is now undergoing extensive re-development with the need to supply photogrammetric data as input to the more sophisticated G.I.S. systems now being installed by clients, instead

  20. Optimization of Sample Preparation and Instrumental Parameters for the Rapid Analysis of Drugs of Abuse in Hair samples by MALDI-MS/MS Imaging

    Science.gov (United States)

    Flinders, Bryn; Beasley, Emma; Verlaan, Ricky M.; Cuypers, Eva; Francese, Simona; Bassindale, Tom; Clench, Malcolm R.; Heeren, Ron M. A.

    2017-08-01

    Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) has been employed to rapidly screen longitudinally sectioned drug user hair samples for cocaine and its metabolites using continuous raster imaging. Optimization of the spatial resolution and raster speed were performed on intact cocaine contaminated hair samples. The optimized settings (100 × 150 μm at 0.24 mm/s) were subsequently used to examine longitudinally sectioned drug user hair samples. The MALDI-MS/MS images showed the distribution of the most abundant cocaine product ion at m/z 182. Using the optimized settings, multiple hair samples obtained from two users were analyzed in approximately 3 h: six times faster than the standard spot-to-spot acquisition method. Quantitation was achieved using longitudinally sectioned control hair samples sprayed with a cocaine dilution series. A multiple reaction monitoring (MRM) experiment was also performed using the `dynamic pixel' imaging method to screen for cocaine and a range of its metabolites, in order to differentiate between contaminated hairs and drug users. Cocaine, benzoylecgonine, and cocaethylene were detectable, in agreement with analyses carried out using the standard LC-MS/MS method. [Figure not available: see fulltext.

  1. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    Science.gov (United States)

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; Martin, Aiden A.; Depond, Philip J.; Guss, Gabriel M.; Thampy, Vivek; Fong, Anthony Y.; Weker, Johanna Nelson; Stone, Kevin H.; Tassone, Christopher J.; Kramer, Matthew J.; Toney, Michael F.; Van Buuren, Anthony; Matthews, Manyalibo J.

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ˜1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ˜50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.

  2. IASI instrument: technical description and measured performances

    Science.gov (United States)

    Hébert, Ph.; Blumstein, D.; Buil, C.; Carlier, T.; Chalon, G.; Astruc, P.; Clauss, A.; Siméoni, D.; Tournier, B.

    2017-11-01

    IASI is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The IASI system includes 3 instruments that will be mounted on the Metop satellite series, a data processing software integrated in the EPS (EUMETSAT Polar System) ground segment and a technical expertise centre implemented in CNES Toulouse. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The optical configuration is based on a Michelson interferometer and the interferograms are processed by an on-board digital processing subsystem, which performs the inverse Fourier transforms and the radiometric calibration. The infrared imager co-registers the IASI soundings with AVHRR imager (AVHRR is another instrument on the Metop satellite). The presentation will focus on the architectures of the instrument, the description of the implemented technologies and the measured performance of the first flight model. CNES is leading the IASI program in association with EUMETSAT. The instrument Prime is ALCATEL SPACE.

  3. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers.

    Science.gov (United States)

    Cui, Yang; Hanley, Luke

    2015-06-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.

  4. Imaging

    International Nuclear Information System (INIS)

    Kellum, C.D.; Fisher, L.M.; Tegtmeyer, C.J.

    1987-01-01

    This paper examines the advantages of the use of excretory urography for diagnosis. According to the authors, excretory urography remains the basic radiologic examination of the urinary tract and is the foundation for the evaluation of suspected urologic disease. Despite development of the newer diagnostic modalities such as isotope scanning, ultrasonography, CT, and magnetic resonsance imaging (MRI), excretory urography has maintained a prominent role in ruorradiology. Some indications have been altered and will continue to change with the newer imaging modalities, but the initial evaluation of suspected urinary tract structural abnormalities; hematuria, pyuria, and calculus disease is best performed with excretory urography. The examination is relatively inexpensive and simple to perform, with few contraindictions. Excretory urography, when properly performed, can provide valuable information about the renal parenchyma, pelvicalyceal system, ureters, and urinary bladder

  5. raw data collected from Malvern Instrument

    Data.gov (United States)

    U.S. Environmental Protection Agency — These are raw data/image files from the Malvern Zetasizer Instrument. This dataset is associated with the following publication: Buse, H., J. Hoelle, C. Muhlen, and...

  6. Next Generation UV Coronagraph Instrumentation for Solar Cycle-24

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... New concepts for next generation instrumentation include imaging ultraviolet spectrocoronagraphs and large aperture ultraviolet coronagraph spectrometers. An imaging instrument would be the first to obtain absolute spectral line intensities of the extended corona over a wide field of view. Such images ...

  7. Instruments for radiation measurement in life sciences (5). 'Development of imaging Technology in life sciences'. 5. X-ray CT for laboratory animals

    International Nuclear Information System (INIS)

    Tamegai, Toshiaki

    2007-01-01

    X-ray computed tomography, commercialized by EMI Co., UK, in 1973 and now used world-widely, is used not only for medical use but also for laboratory animals such as rats and mice to measure bone density and to obtain fine structures of bones. This paper introduces X-ray CT apparatus specifically designed for laboratory animals. Besides general explanations about the method, followed by emphasis on important performance of the measuring system, the paper explains technical aspects for obtaining the CT imaging scan procedure thus showing several photographs as example and introducing some clinical applications. (S. Ohno)

  8. Formation Flying and Deformable Instruments

    International Nuclear Information System (INIS)

    Rio, Yvon

    2009-01-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  9. Formation Flying and Deformable Instruments

    Science.gov (United States)

    Rio, Yvon

    2009-05-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  10. Evaluating musical instruments

    International Nuclear Information System (INIS)

    Campbell, D. Murray

    2014-01-01

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians

  11. The QUIET Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, C.; et al.

    2012-07-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ({approx}1{sup o}). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0:1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0:01. The two arrays together cover multipoles in the range {ell} {approx} 25 -- 975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument.

  12. CARMENES instrument overview

    Science.gov (United States)

    Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdiñas, Z. M.; Cárdenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernández, M.; Galadí, D.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Álvarez, E.; González Hernández, J. I.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Castaño, L.; Herrero, E.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K. F.; Jeffers, S.; Joergens, V.; de Juan, E.; Kehr, M.; Klein, R.; Kürster, M.; Lamert, A.; Lalitha, S.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, Mauro; López Martí, B.; López-Santiago, J.; Mall, U.; Mandel, H.; Martín, E. L.; Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Passegger, V.-M.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez-Pérez, E.; Rohloff, R.-R.; Rosich, A.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sanz-Forcada, J.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Solano, E.; Stahl, O.; Storz, C.; Stürmer, J.; Suárez, J. C.; Ulbrich, R. G.; Veredas, G.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. R.; Zechmeister, M.; Abellán de Paco, F. J.; Anglada-Escudé, G.; del Burgo, C.; Klutsch, A.; Lizon, J. L.; López-Morales, M.; Morales, J. C.; Perryman, M. A. C.; Tulloch, S. M.; Xu, W.

    2014-07-01

    fibers are continually actuated to reduce modal noise. The spectrographs are mounted on benches inside vacuum tanks located in the coudé laboratory of the 3.5m dome. Each vacuum tank is equipped with a temperature stabilization system capable of keeping the temperature constant to within +/-0.01°C over 24 hours. The visible-light spectrograph will be operated near room temperature, while the near-IR spectrograph will be cooled to ~ 140 K. The CARMENES instrument passed its final design review in February 2013. The MAIV phase is currently ongoing. First tests at the telescope are scheduled for early 2015. Completion of the full instrument is planned for the fall of 2015. At least 600 useable nights have been allocated at the Calar Alto 3.5m Telescope for the CARMENES survey in the time frame until 2018. A data base of M stars (dubbed CARMENCITA) has been compiled from which the CARMENES sample can be selected. CARMENCITA contains information on all relevant properties of the potential targets. Dedicated imaging, photometric, and spectroscopic observations are underway to provide crucial data on these stars that are not available in the literature.

  13. Megavoltage CT imaging as a by-product of multileaf collimator leakage

    International Nuclear Information System (INIS)

    Ruchala, K.J.; Kapatoes, J.M.; Olivera, G.H.; Schloesser, E.A.; Reckwerdt, P.J.; Mackie, T.R.

    2000-01-01

    In addition to their potential for the delivery of highly conformal radiation therapy treatments, tomotherapeutic treatments also feature increased potential for verification. For example, megavoltage CT allows one to use the megavoltage linac to generate tomographic images of the patient in the treatment position. This is typically done before or after radiation therapy treatments. However, it is also possible to collect MVCT images entirely during the treatment itself. This process utilizes the leakage radiation through the closed leaves of the Nomos MIMiC MLC, along with slight inefficiencies in treatment delivery, to generate MVCT images during treatment that require neither additional time nor dose. The image quality is limited, yet sufficient to see a patient's external boundary, density differences over 8% for 25.0 mm objects and resolutions of 3.0 mm for high-contrast objects. Such images can potentially be viewed during treatment, used to flag additional CT immediately after the treatment and provide a representation of the patient's exact position during treatment for use with dose reconstruction. (author)

  14. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  15. Vision though afocal instruments: generalized magnification and eye-instrument interaction

    Science.gov (United States)

    Harris, William F.; Evans, Tanya

    2018-04-01

    In Gaussian optics all observers experience the same magnification, the instrument's angular magnification, when viewing distant objects though a telescope or other afocal instruments. However, analysis in linear optics shows that this is not necessarily so in the presence of astigmatism. Because astigmatism may distort and rotate images it is appropriate to work with generalized angular magnification represented by a 2 × 2 matrix. An expression is derived for the generalized magnification for an arbitrary eye looking through an arbitrary afocal instrument. With afocal instruments containing astigmatic refracting elements not all eyes experience the same generalized magnification; there is interaction between eye and instrument. Eye-instrument interaction may change as the instrument is rotated about its longitudinal axis, there being no interaction in particular orientations. A simple numerical example is given. For sake of completeness, expressions for generalized magnification are also presented in the case of instruments that are not afocal and objects that are not distant.

  16. Health physics instrument manual

    International Nuclear Information System (INIS)

    Gupton, E.D.

    1978-08-01

    The purpose of this manual is to provide apprentice health physics surveyors and other operating groups not directly concerned with radiation detection instruments a working knowledge of the radiation detection and measuring instruments in use at the Laboratory. The characteristics and applications of the instruments are given. Portable instruments, stationary instruments, personnel monitoring instruments, sample counters, and miscellaneous instruments are described. Also, information sheets on calibration sources, procedures, and devices are included. Gamma sources, beta sources, alpha sources, neutron sources, special sources, a gamma calibration device for badge dosimeters, and a calibration device for ionization chambers are described

  17. Astronomical Instruments in India

    Science.gov (United States)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  18. Troubleshooting in nuclear instruments

    International Nuclear Information System (INIS)

    1987-06-01

    This report on troubleshooting of nuclear instruments is the product of several scientists and engineers, who are closely associated with nuclear instrumentation and with the IAEA activities in the field. The text covers the following topics: Preamplifiers, amplifiers, scalers, timers, ratemeters, multichannel analyzers, dedicated instruments, tools, instruments, accessories, components, skills, interfaces, power supplies, preventive maintenance, troubleshooting in systems, radiation detectors. The troubleshooting and repair of instruments is illustrated by some real examples

  19. Varying ultrasound power level to distinguish surgical instruments and tissue.

    Science.gov (United States)

    Ren, Hongliang; Anuraj, Banani; Dupont, Pierre E

    2018-03-01

    We investigate a new framework of surgical instrument detection based on power-varying ultrasound images with simple and efficient pixel-wise intensity processing. Without using complicated feature extraction methods, we identified the instrument with an estimated optimal power level and by comparing pixel values of varying transducer power level images. The proposed framework exploits the physics of ultrasound imaging system by varying the transducer power level to effectively distinguish metallic surgical instruments from tissue. This power-varying image-guidance is motivated from our observations that ultrasound imaging at different power levels exhibit different contrast enhancement capabilities between tissue and instruments in ultrasound-guided robotic beating-heart surgery. Using lower transducer power levels (ranging from 40 to 75% of the rated lowest ultrasound power levels of the two tested ultrasound scanners) can effectively suppress the strong imaging artifacts from metallic instruments and thus, can be utilized together with the images from normal transducer power levels to enhance the separability between instrument and tissue, improving intraoperative instrument tracking accuracy from the acquired noisy ultrasound volumetric images. We performed experiments in phantoms and ex vivo hearts in water tank environments. The proposed multi-level power-varying ultrasound imaging approach can identify robotic instruments of high acoustic impedance from low-signal-to-noise-ratio ultrasound images by power adjustments.

  20. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  1. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  2. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  3. The neuron net method for processing the clear pixels and method of the analytical formulas for processing the cloudy pixels of POLDER instrument images

    Science.gov (United States)

    Melnikova, I.; Mukai, S.; Vasilyev, A.

    Data of remote measurements of reflected radiance with the POLDER instrument on board of ADEOS satellite are used for retrieval of the optical thickness, single scattering albedo and phase function parameter of cloudy and clear atmosphere. The method of perceptron neural network that from input values of multiangle radiance and Solar incident angle allows to obtain surface albedo, the optical thickness, single scattering albedo and phase function parameter in case of clear sky. Two last parameters are determined as optical average for atmospheric column. The calculation of solar radiance with using the MODTRAN-3 code with taking into account multiple scattering is accomplished for neural network learning. All mentioned parameters were randomly varied on the base of statistical models of possible measured parameters variation. Results of processing one frame of remote observation that consists from 150,000 pixels are presented. The methodology elaborated allows operative determining optical characteristics as cloudy as clear atmosphere. Further interpretation of these results gives the possibility to extract the information about total contents of atmospheric aerosols and absorbing gases in the atmosphere and create models of the real cloudiness An analytical method of interpretation that based on asymptotic formulas of multiple scattering theory is applied to remote observations of reflected radiance in case of cloudy pixel. Details of the methodology and error analysis were published and discussed earlier. Here we present results of data processing of pixel size 6x6 km In many studies the optical thickness is evaluated earlier in the assumption of the conservative scattering. But in case of true absorption in clouds the large errors in parameter obtained are possible. The simultaneous retrieval of two parameters at every wavelength independently is the advantage comparing with earlier studies. The analytical methodology is based on the transfer theory asymptotic

  4. Validation of the sensitivity of the National Emergency X-Radiography Utilization Study (NEXUS Head computed tomographic (CT decision instrument for selective imaging of blunt head injury patients: An observational study.

    Directory of Open Access Journals (Sweden)

    William R Mower

    2017-07-01

    Full Text Available Clinicians, afraid of missing intracranial injuries, liberally obtain computed tomographic (CT head imaging in blunt trauma patients. Prior work suggests that clinical criteria (National Emergency X-Radiography Utilization Study [NEXUS] Head CT decision instrument [DI] can reliably identify patients with important injuries, while excluding injury, and the need for imaging in many patients. Validating this DI requires confirmation of the hypothesis that the lower 95% confidence limit for its sensitivity in detecting serious injury exceeds 99.0%. A secondary goal of the study was to complete an independent validation and comparison of the Canadian and NEXUS Head CT rules among the subgroup of patients meeting the inclusion and exclusion criteria.We conducted a prospective observational study of the NEXUS Head CT DI in 4 hospital emergency departments between April 2006 and December 2015. Implementation of the rule requires that patients satisfy 8 criteria to achieve "low-risk" classification. Patients are excluded from "low-risk" classification and assigned "high-risk" status if they fail to meet 1 or more criteria. We examined the instrument's performance in assigning "high-risk" status to patients requiring neurosurgical intervention among a cohort of 11,770 blunt head injury patients. The NEXUS Head CT DI assigned high-risk status to 420 of 420 patients requiring neurosurgical intervention (sensitivity, 100.0% [95% confidence interval [CI]: 99.1%-100.0%]. The instrument assigned low-risk status to 2,823 of 11,350 patients who did not require neurosurgical intervention (specificity, 24.9% [95% CI: 24.1%-25.7%]. None of the 2,823 low-risk patients required neurosurgical intervention (negative predictive value [NPV], 100.0% [95% CI: 99.9%-100.0%]. The DI assigned high-risk status to 759 of 767 patients with significant intracranial injuries (sensitivity, 99.0% [95% CI: 98.0%-99.6%]. The instrument assigned low-risk status to 2,815 of 11

  5. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    can empower performers by producing super instrument works that allow the concert instrument to become an ensemble controlled by a single player. The existing instrumental skills of the performer can be multiplied and the qualities of regular acoustic instruments extended or modified. Such a situation......The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...... have become interested in different ways of “supersizing” acoustic instruments in order to open up previously-unheard instrumental sounds. Super instruments vary a great deal but each has a transformative effect on the identity and performance practice of the performing musician. Furthermore, composers...

  6. BOMBAY: Instrumentation school

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Promising students had a foretaste of the latest laboratory techniques at the ICFA 1993 India School on Instrumentation in High Energy Physics held from February 15-26 and hosted by the Tata Institute of Fundamental Research (TIFR), Bombay. The scientific programme was put together by the ICFA Panel for Future Instrumentation, Innovation and Development, chaired by Tord Ekelof (Uppsala). The programme included lectures and topical seminars covering a wide range of detector subjects. In small groups, students got acquainted with modern detector technologies in the laboratory sessions, using experimental setups assembled in various institutes world-wide and shipped to Bombay for the School. The techniques covered included multiwire proportional chambers for detection of particles and photons, gaseous detectors for UV photons and X-ray imaging, the study of charge drift in silicon detectors, measurement of the muon lifetime using liquid scintillators, tracking using scintillating fibres, and electronics for sensitive detectors. The India School was attended by around 80 students from 20 countries; 34 came from Indian universities. It was the fifth in this series, previous Schools having been at Trieste (1987, 1989 and 1991) organized by the ICFA Panel and hosted and sponsored by the International Centre for Theoretical Physics, and in 1990, organized at Rio de Janeiro in collaboration with the Centro Brasileiro de Pesquisas Fisicas. The School was jointly directed by Suresh Tonwar (TIFR), Fabio Sauli (CERN) and Marleigh Sheaff (University of Wisconsin), and sponsored by TIFR and DAE (India), CERN (Switzerland), ICTP and INFN (Italy), British Council and RAL (UK), NSF and DOE (USA), KEK (Japan), IPP (Canada) and DESY (Germany)

  7. Instrument Modeling and Synthesis

    Science.gov (United States)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  8. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1975-01-01

    A liquid metal cooled nuclear reactor is described which has an equal number of fuel sub-assemblies and sensing instruments. Each instrument senses temperature and rate of coolant flow of a coolant derived from a group of three sub-assemblies so that an abnormal value for one sub-assembly will be indicated on three instruments thereby providing for redundancy of up to two of the three instruments. The abnormal value may be a precurser to unstable boiling of coolant

  9. Aeroacoustics of Musical Instruments

    NARCIS (Netherlands)

    Fabre, B.; Gilbert, J.; Hirschberg, Abraham; Pelorson, X.

    2012-01-01

    We are interested in the quality of sound produced by musical instruments and their playability. In wind instruments, a hydrodynamic source of sound is coupled to an acoustic resonator. Linear acoustics can predict the pitch of an instrument. This can significantly reduce the trial-and-error process

  10. Quantification of human epidermal growth factor receptor 2 immunohistochemistry using the Ventana Image Analysis System: correlation with gene amplification by fluorescence in situ hybridization: the importance of instrument validation for achieving high (>95%) concordance rate.

    Science.gov (United States)

    Dennis, Jake; Parsa, Rezvaneh; Chau, Donnie; Koduru, Prasad; Peng, Yan; Fang, Yisheng; Sarode, Venetia Rumnong

    2015-05-01

    The use of computer-based image analysis for scoring human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) has gained a lot of interest recently. We investigated the performance of the Ventana Image Analysis System (VIAS) in HER2 quantification by IHC and its correlation with fluorescence in situ hybridization (FISH). We specifically compared the 3+ IHC results using the manufacturer's machine score cutoffs versus laboratory-defined cutoffs with the FISH assay. Using the manufacturer's 3+ cutoff (VIAS score; 2.51 to 3.5), 181/536 (33.7%) were scored 3+, and FISH was positive in 147/181 (81.2%), 2 (1.1%) were equivocal, and 32 (17.6%) were FISH (-). Using the laboratory-defined 3+ cutoff (VIAS score 3.5), 52 (28.7%) cases were downgraded to 2+, of which 29 (55.7%) were FISH (-), and 23 (44.2%) were FISH (+). With the revised cutoff, there were improvements in the concordance rate from 89.1% to 97.0% and in the positive predictive value from 82.1% to 97.6%. The false-positive rate for 3+ decreased from 9.0% to 0.8%. Six of 175 (3.4%) IHC (-) cases were FISH (+). Three cases with a VIAS score 3.5 showed polysomy of chromosome 17. In conclusion, the VIAS may be a valuable tool for assisting pathologists in HER2 scoring; however, the positive cutoff defined by the manufacturer is associated with a high false-positive rate. This study highlights the importance of instrument validation/calibration to reduce false-positive results.

  11. Spinal imaging and image analysis

    CERN Document Server

    Yao, Jianhua

    2015-01-01

    This book is instrumental to building a bridge between scientists and clinicians in the field of spine imaging by introducing state-of-the-art computational methods in the context of clinical applications.  Spine imaging via computed tomography, magnetic resonance imaging, and other radiologic imaging modalities, is essential for noninvasively visualizing and assessing spinal pathology. Computational methods support and enhance the physician’s ability to utilize these imaging techniques for diagnosis, non-invasive treatment, and intervention in clinical practice. Chapters cover a broad range of topics encompassing radiological imaging modalities, clinical imaging applications for common spine diseases, image processing, computer-aided diagnosis, quantitative analysis, data reconstruction and visualization, statistical modeling, image-guided spine intervention, and robotic surgery. This volume serves a broad audience as  contributions were written by both clinicians and researchers, which reflects the inte...

  12. Status of safeguards instrumentation

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    The International Atomic Energy Agency is performing safeguards at some nuclear power reactors, 50 bulk processing facilities, and 170 research facilities. Its verification activities require the use of instruments to measure nuclear materials and of surveillance instruments to maintain continuity of knowledge of the locations of nuclear materials. Instruments that are in use and under development to measure weight, volume, concentration, and isotopic composition of nuclear materials, and the major surveillance instruments, are described in connection with their uses at representative nuclear facilities. The current status of safeguards instrumentation and the needs for future development are discussed

  13. Early modern mathematical instruments.

    Science.gov (United States)

    Bennett, Jim

    2011-12-01

    In considering the appropriate use of the terms "science" and "scientific instrument," tracing the history of "mathematical instruments" in the early modern period is offered as an illuminating alternative to the historian's natural instinct to follow the guiding lights of originality and innovation, even if the trail transgresses contemporary boundaries. The mathematical instrument was a well-defined category, shared across the academic, artisanal, and commercial aspects of instrumentation, and its narrative from the sixteenth to the eighteenth century was largely independent from other classes of device, in a period when a "scientific" instrument was unheard of.

  14. Galileo's Instruments of Credit Telescopes, Images, Secrecy

    CERN Document Server

    Biagioli, Mario

    2006-01-01

    In six short years, Galileo Galilei went from being a somewhat obscure mathematics professor running a student boarding house in Padua to a star in the court of Florence to the recipient of dangerous attention from the Inquisition for his support of Copernicanism. In that brief period, Galileo made a series of astronomical discoveries that reshaped the debate over the physical nature of the heavens: he deeply modified the practices and status of astronomy with the introduction of the telescope and pictorial evidence, proposed a radical reconfiguration of the relationship between theology and a

  15. Health physics instrumentation - a progress report

    International Nuclear Information System (INIS)

    Maushart, R.

    1992-01-01

    Health Physics Instruments have changed rather dramatically in the past decade. On the one hand, technological innovations like Microprocessors, data storage facilities and imaging displays have altered shape, size and appearance of the classical devices, particularly the hand-held ones. On the other hand, instruments are increasingly being considered as an integral part of Radiation Protection procedures and organizations, supporting a smooth and reliable implementation of all necessary measures. This implies ease of operation, and extensive self-checking and performance control features. Since there are different categories of users with quite different degrees of motivation and training, the measuring instruments of the future will have to be adapted to specific types of users. Instruments for 'professional' radiation protection - for example in nuclear power plants and nuclear technology - will differ from instruments used in the radionuclide laboratory, where radiation protection will necessarily have to be done as a 'side-job'. (author)

  16. Experimental image alignment system

    Science.gov (United States)

    Moyer, A. L.; Kowel, S. T.; Kornreich, P. G.

    1980-01-01

    A microcomputer-based instrument for image alignment with respect to a reference image is described which uses the DEFT sensor (Direct Electronic Fourier Transform) for image sensing and preprocessing. The instrument alignment algorithm which uses the two-dimensional Fourier transform as input is also described. It generates signals used to steer the stage carrying the test image into the correct orientation. This algorithm has computational advantages over algorithms which use image intensity data as input and is suitable for a microcomputer-based instrument since the two-dimensional Fourier transform is provided by the DEFT sensor.

  17. Instrumentation a reader

    CERN Document Server

    Pope, P

    1990-01-01

    This book contains a selection of papers and articles in instrumentation previously pub­ lished in technical periodicals and journals of learned societies. Our selection has been made to illustrate aspects of current practice and applications of instrumentation. The book does not attempt to be encyclopaedic in its coverage of the subject, but to provide some examples of general transduction techniques, of the sensing of particular measurands, of components of instrumentation systems and of instrumentation practice in two very different environments, the food industry and the nuclear power industry. We have made the selection particularly to provide papers appropriate to the study of the Open University course T292 Instrumentation. The papers have been chosen so that the book covers a wide spectrum of instrumentation techniques. Because of this, the book should be of value not only to students of instrumen­ tation, but also to practising engineers and scientists wishing to glean ideas from areas of instrumen...

  18. Instrumentation for Nuclear Applications

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this project was to develop and coordinate nuclear instrumentation standards with resulting economies for the nuclear and radiation fields. There was particular emphasis on coordination and management of the Nuclear Instrument Module (NIM) System, U.S. activity involving the CAMAC international standard dataway system, the FASTBUS modular high-speed data acquisition and control system and processing and management of national nuclear instrumentation and detector standards, as well as a modest amount of assistance and consultation services to the Pollutant Characterization and Safety Research Division of the Office of Health and Environmental Research. The principal accomplishments were the development and maintenance of the NIM instrumentation system that is the predominant instrumentation system in the nuclear and radiation fields worldwide, the CAMAC digital interface system in coordination with the ESONE Committee of European Laboratories, the FASTBUS high-speed system and numerous national and international nuclear instrumentation standards

  19. VIRUS instrument enclosures

    Science.gov (United States)

    Prochaska, T.; Allen, R.; Mondrik, N.; Rheault, J. P.; Sauseda, M.; Boster, E.; James, M.; Rodriguez-Patino, M.; Torres, G.; Ham, J.; Cook, E.; Baker, D.; DePoy, Darren L.; Marshall, Jennifer L.; Hill, G. J.; Perry, D.; Savage, R. D.; Good, J. M.; Vattiat, Brian L.

    2014-08-01

    The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) instrument will be installed at the Hobby-Eberly Telescope† in the near future. The instrument will be housed in two enclosures that are mounted adjacent to the telescope, via the VIRUS Support Structure (VSS). We have designed the enclosures to support and protect the instrument, to enable servicing of the instrument, and to cool the instrument appropriately while not adversely affecting the dome environment. The system uses simple HVAC air handling techniques in conjunction with thermoelectric and standard glycol heat exchangers to provide efficient heat removal. The enclosures also provide power and data transfer to and from each VIRUS unit, liquid nitrogen cooling to the detectors, and environmental monitoring of the instrument and dome environments. In this paper, we describe the design and fabrication of the VIRUS enclosures and their subsystems.

  20. Radiation protection instrument 1993

    International Nuclear Information System (INIS)

    1993-04-01

    The Radiation Protection Instrument, 1993 (Legislative Instrument 1559) prescribes the powers and functions of the Radiation Protection Board established under the Ghana Atomic Energy Commission by the Atomic Energy Commission (Amendment) Law, 1993 (P.N.D.C. Law 308). Also included in the Legislative Instrument are schedules on control and use of ionising radiation and radiation sources as well as procedures for notification, licensing and inspection of ionising radiation facilities. (EAA)

  1. Networked Instrumentation Element

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers have developed a networked instrumentation system that connects modern experimental payloads to existing analog and digital communications...

  2. Instrument validation project

    International Nuclear Information System (INIS)

    Reynolds, B.A.; Daymo, E.A.; Geeting, J.G.H.; Zhang, J.

    1996-06-01

    Westinghouse Hanford Company Project W-211 is responsible for providing the system capabilities to remove radioactive waste from ten double-shell tanks used to store radioactive wastes on the Hanford Site in Richland, Washington. The project is also responsible for measuring tank waste slurry properties prior to injection into pipeline systems, including the Replacement of Cross-Site Transfer System. This report summarizes studies of the appropriateness of the instrumentation specified for use in Project W-211. The instruments were evaluated in a test loop with simulated slurries that covered the range of properties specified in the functional design criteria. The results of the study indicate that the compact nature of the baseline Project W-211 loop does not result in reduced instrumental accuracy resulting from poor flow profile development. Of the baseline instrumentation, the Micromotion densimeter, the Moore Industries thermocouple, the Fischer and Porter magnetic flow meter, and the Red Valve Pressure transducer meet the desired instrumental accuracy. An alternate magnetic flow meter (Yokagawa) gave nearly identical results as the baseline fischer and Porter. The Micromotion flow meter did not meet the desired instrument accuracy but could potentially be calibrated so that it would meet the criteria. The Nametre on-line viscometer did not meet the desired instrumental accuracy and is not recommended as a quantitative instrument although it does provide qualitative information. The recommended minimum set of instrumentation necessary to ensure the slurry meets the Project W-058 acceptance criteria is the Micromotion mass flow meter and delta pressure cells

  3. Instrument performance evaluation

    International Nuclear Information System (INIS)

    Swinth, K.L.

    1993-03-01

    Deficiencies exist in both the performance and the quality of health physics instruments. Recognizing the implications of such deficiencies for the protection of workers and the public, in the early 1980s the DOE and the NRC encouraged the development of a performance standard and established a program to test a series of instruments against criteria in the standard. The purpose of the testing was to establish the practicality of the criteria in the standard, to determine the performance of a cross section of available instruments, and to establish a testing capability. Over 100 instruments were tested, resulting in a practical standard and an understanding of the deficiencies in available instruments. In parallel with the instrument testing, a value-impact study clearly established the benefits of implementing a formal testing program. An ad hoc committee also met several times to establish recommendations for the voluntary implementation of a testing program based on the studies and the performance standard. For several reasons, a formal program did not materialize. Ongoing tests and studies have supported the development of specific instruments and have helped specific clients understand the performance of their instruments. The purpose of this presentation is to trace the history of instrument testing to date and suggest the benefits of a centralized formal program

  4. [Controlling instruments in radiology].

    Science.gov (United States)

    Maurer, M

    2013-10-01

    Due to the rising costs and competitive pressures radiological clinics and practices are now facing, controlling instruments are gaining importance in the optimization of structures and processes of the various diagnostic examinations and interventional procedures. It will be shown how the use of selected controlling instruments can secure and improve the performance of radiological facilities. A definition of the concept of controlling will be provided. It will be shown which controlling instruments can be applied in radiological departments and practices. As an example, two of the controlling instruments, material cost analysis and benchmarking, will be illustrated.

  5. Ocean Optics Instrumentation Systems

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation suites for a wide variety of measurements to characterize the ocean’s optical environment. These packages have been developed to...

  6. Overview of LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed

  7. Invited Article: Deep Impact instrument calibration

    International Nuclear Information System (INIS)

    Klaasen, Kenneth P.; Mastrodemos, Nickolaos; A'Hearn, Michael F.; Farnham, Tony; Groussin, Olivier; Ipatov, Sergei; Li Jianyang; McLaughlin, Stephanie; Sunshine, Jessica; Wellnitz, Dennis; Baca, Michael; Delamere, Alan; Desnoyer, Mark; Thomas, Peter; Hampton, Donald; Lisse, Carey

    2008-01-01

    Calibration of NASA's Deep Impact spacecraft instruments allows reliable scientific interpretation of the images and spectra returned from comet Tempel 1. Calibrations of the four onboard remote sensing imaging instruments have been performed in the areas of geometric calibration, spatial resolution, spectral resolution, and radiometric response. Error sources such as noise (random, coherent, encoding, data compression), detector readout artifacts, scattered light, and radiation interactions have been quantified. The point spread functions (PSFs) of the medium resolution instrument and its twin impactor targeting sensor are near the theoretical minimum [∼1.7 pixels full width at half maximum (FWHM)]. However, the high resolution instrument camera was found to be out of focus with a PSF FWHM of ∼9 pixels. The charge coupled device (CCD) read noise is ∼1 DN. Electrical cross-talk between the CCD detector quadrants is correctable to <2 DN. The IR spectrometer response nonlinearity is correctable to ∼1%. Spectrometer read noise is ∼2 DN. The variation in zero-exposure signal level with time and spectrometer temperature is not fully characterized; currently corrections are good to ∼10 DN at best. Wavelength mapping onto the detector is known within 1 pixel; spectral lines have a FWHM of ∼2 pixels. About 1% of the IR detector pixels behave badly and remain uncalibrated. The spectrometer exhibits a faint ghost image from reflection off a beamsplitter. Instrument absolute radiometric calibration accuracies were determined generally to <10% using star imaging. Flat-field calibration reduces pixel-to-pixel response differences to ∼0.5% for the cameras and <2% for the spectrometer. A standard calibration image processing pipeline is used to produce archival image files for analysis by researchers.

  8. Invited Article: Deep Impact instrument calibration.

    Science.gov (United States)

    Klaasen, Kenneth P; A'Hearn, Michael F; Baca, Michael; Delamere, Alan; Desnoyer, Mark; Farnham, Tony; Groussin, Olivier; Hampton, Donald; Ipatov, Sergei; Li, Jianyang; Lisse, Carey; Mastrodemos, Nickolaos; McLaughlin, Stephanie; Sunshine, Jessica; Thomas, Peter; Wellnitz, Dennis

    2008-09-01

    Calibration of NASA's Deep Impact spacecraft instruments allows reliable scientific interpretation of the images and spectra returned from comet Tempel 1. Calibrations of the four onboard remote sensing imaging instruments have been performed in the areas of geometric calibration, spatial resolution, spectral resolution, and radiometric response. Error sources such as noise (random, coherent, encoding, data compression), detector readout artifacts, scattered light, and radiation interactions have been quantified. The point spread functions (PSFs) of the medium resolution instrument and its twin impactor targeting sensor are near the theoretical minimum [ approximately 1.7 pixels full width at half maximum (FWHM)]. However, the high resolution instrument camera was found to be out of focus with a PSF FWHM of approximately 9 pixels. The charge coupled device (CCD) read noise is approximately 1 DN. Electrical cross-talk between the CCD detector quadrants is correctable to <2 DN. The IR spectrometer response nonlinearity is correctable to approximately 1%. Spectrometer read noise is approximately 2 DN. The variation in zero-exposure signal level with time and spectrometer temperature is not fully characterized; currently corrections are good to approximately 10 DN at best. Wavelength mapping onto the detector is known within 1 pixel; spectral lines have a FWHM of approximately 2 pixels. About 1% of the IR detector pixels behave badly and remain uncalibrated. The spectrometer exhibits a faint ghost image from reflection off a beamsplitter. Instrument absolute radiometric calibration accuracies were determined generally to <10% using star imaging. Flat-field calibration reduces pixel-to-pixel response differences to approximately 0.5% for the cameras and <2% for the spectrometer. A standard calibration image processing pipeline is used to produce archival image files for analysis by researchers.

  9. Visual tracking of da Vinci instruments for laparoscopic surgery

    Science.gov (United States)

    Speidel, S.; Kuhn, E.; Bodenstedt, S.; Röhl, S.; Kenngott, H.; Müller-Stich, B.; Dillmann, R.

    2014-03-01

    Intraoperative tracking of laparoscopic instruments is a prerequisite to realize further assistance functions. Since endoscopic images are always available, this sensor input can be used to localize the instruments without special devices or robot kinematics. In this paper, we present an image-based markerless 3D tracking of different da Vinci instruments in near real-time without an explicit model. The method is based on different visual cues to segment the instrument tip, calculates a tip point and uses a multiple object particle filter for tracking. The accuracy and robustness is evaluated with in vivo data.

  10. Space Infrared Telescope Facility (SIRTF) science instruments

    International Nuclear Information System (INIS)

    Ramos, R.; Hing, S.M.; Leidich, C.A.; Fazio, G.; Houck, J.R.

    1989-01-01

    Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem. 8 refs

  11. Instrument-induced spatial crosstalk deconvolution algorithm

    Science.gov (United States)

    Wright, Valerie G.; Evans, Nathan L., Jr.

    1986-01-01

    An algorithm has been developed which reduces the effects of (deconvolves) instrument-induced spatial crosstalk in satellite image data by several orders of magnitude where highly precise radiometry is required. The algorithm is based upon radiance transfer ratios which are defined as the fractional bilateral exchange of energy betwen pixels A and B.

  12. Contrast echocardiography: history, micro bubble characteristics and instrumental techniques

    International Nuclear Information System (INIS)

    Cubides, Carlos; Restrepo, Gustavo; Aristizabal, Dagnovar; Munera, Ana

    2006-01-01

    This article describes the history of contrast echocardiography, the physical characteristics of the contrast agent's micro bubbles, the main instrumental tools (mechanical index, focus and focusing, frame rate), and the echocardiography techniques (second harmonic imaging, fusion harmonic, power pulse inversion imaging, triggered imaging, intermittent harmonic power Doppler, color power angio and acoustic densitometry), actually available for clinical use

  13. Advances in Miniaturized Instruments for Genomics

    Directory of Open Access Journals (Sweden)

    Cihun-Siyong Alex Gong

    2014-01-01

    Full Text Available In recent years, a lot of demonstrations of the miniaturized instruments were reported for genomic applications. They provided the advantages of miniaturization, automation, sensitivity, and specificity for the development of point-of-care diagnostics. The aim of this paper is to report on recent developments on miniaturized instruments for genomic applications. Based on the mature development of microfabrication, microfluidic systems have been demonstrated for various genomic detections. Since one of the objectives of miniaturized instruments is for the development of point-of-care device, impedimetric detection is found to be a promising technique for this purpose. An in-depth discussion of the impedimetric circuits and systems will be included to provide total consideration of the miniaturized instruments and their potential application towards real-time portable imaging in the “-omics” era. The current excellent demonstrations suggest a solid foundation for the development of practical and widespread point-of-care genomic diagnostic devices.

  14. Instrumentation reference book

    CERN Document Server

    Boyes, Walt

    2002-01-01

    Instrumentation is not a clearly defined subject, having a 'fuzzy' boundary with a number of other disciplines. Often categorized as either 'techniques' or 'applications' this book addresses the various applications that may be needed with reference to the practical techniques that are available for the instrumentation or measurement of a specific physical quantity or quality. This makes it of direct interest to anyone working in the process, control and instrumentation fields where these measurements are essential.* Comprehensive and authoritative collection of technical information* Writte

  15. Soil monitoring instrumentation

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1980-01-01

    The Los Alamos Scientific Laboratory (LASL) has an extensive program for the development of nondestructive assay instrumentation for the quantitative analysis of transuranic (TRU) materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. Included are wastes generated in decontamination and decommissioning of outdated nuclear facilities as well as wastes from old waste burial ground exhumation programs. The assay instrumentation is designed to have detection limits below 10 nCi/g wherever practicable. Because of the topic of this workshop, only the assay instrumentation applied specifically to soil monitoring will be discussed here. Four types of soil monitors are described

  16. Soil monitoring instrumentation

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1981-01-01

    The Los Alamos Scientific Laboratory (LASL) has an extensive program for the development of nondestructive assay instrumentation for the quantitative analysis of transuranic (TRU) materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. Included are wastes generated in decontamination and decommissioning of outdated nuclear facilities, as well as from old waste-burial-ground exhumation programs. The assay instrumentation is designed to have detection limits below 10 nCi/g wherever practicable. The assay instrumentation that is applied specifically to soil monitoring is discussed

  17. Jones' instrument technology

    CERN Document Server

    Jones, Ernest Beachcroft; Kingham, Edward G; Radnai, Rudolf

    1985-01-01

    Jones' Instrument Technology, Volume 5: Automatic Instruments and Measuring Systems deals with general trends in automatic instruments and measuring systems. Specific examples are provided to illustrate the principles of such devices. A brief review of a considerable number of standards is undertaken, with emphasis on the IEC625 Interface System. Other relevant standards are reviewed, including the interface and backplane bus standards. This volume is comprised of seven chapters and begins with a short introduction to the principles of automatic measurements, classification of measuring system

  18. Medical instruments in museums

    DEFF Research Database (Denmark)

    Söderqvist, Thomas; Arnold, Ken

    2011-01-01

    This essay proposes that our understanding of medical instruments might benefit from adding a more forthright concern with their immediate presence to the current historical focus on simply decoding their meanings and context. This approach is applied to the intriguingly tricky question of what...... actually is meant by a "medical instrument." It is suggested that a pragmatic part of the answer might lie simply in reconsidering the holdings of medical museums, where the significance of the physical actuality of instruments comes readily to hand....

  19. Environment for the instruments

    International Nuclear Information System (INIS)

    Ambro, P.

    1992-01-01

    A properly conditioned AC power supply is necessary for reliable functioning of instruments. Electric mains power is produced primarily for industry, workshops, lighting and household uses. Its quality is adjusted to these uses. In areas sand countries with a fast growing demand for electric power, these requirements are far from being met. Electronic instruments and computers, especially in these countries, need protection against disturbances of the mains supply. A clean and dry environment is needed for reliable functioning and long life of instruments. High humidity, specially at higher temperatures, changes the characteristics of electronic components. Moreover, under these conditions fungal growth causes leakage of currents and corrosion causes poor contacts. The presence of dust enhances these effects. They give rise to malfunction of instruments, particularly of high voltage equipment

  20. CCAT Heterodyne Instrument Development

    Data.gov (United States)

    National Aeronautics and Space Administration — This work will extend and proof-out the design concept for a high pixel count (128 pixels in 2 bands) submillimeter-wave heterodyne receiver array instrument for the...

  1. Environment for the instruments

    Energy Technology Data Exchange (ETDEWEB)

    Ambro, P

    1993-12-31

    A properly conditioned AC power supply is necessary for reliable functioning of instruments. Electric mains power is produced primarily for industry, workshops, lighting and household uses. Its quality is adjusted to these uses. In areas sand countries with a fast growing demand for electric power, these requirements are far from being met. Electronic instruments and computers, especially in these countries, need protection against disturbances of the mains supply. A clean and dry environment is needed for reliable functioning and long life of instruments. High humidity, specially at higher temperatures, changes the characteristics of electronic components. Moreover, under these conditions fungal growth causes leakage of currents and corrosion causes poor contacts. The presence of dust enhances these effects. They give rise to malfunction of instruments, particularly of high voltage equipment

  2. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  3. Nuclear instrument technician training

    International Nuclear Information System (INIS)

    Wollesen, E.S.

    1991-01-01

    This paper reports on Nuclear Instrument Technician (NIT) training that has developed at an accelerated rate over the past three decades. During the 1960's commercial nuclear power plants were in their infancy. For that reason, there is little wonder that NIT training had little structure and little creditability. NIT training, in many early plants, was little more than On-The Job Training (OJT). The seventies brought changes in Instrumentation and Controls as well as emphasis on the requirements for more in depth training and documentation. As in the seventies, the eighties saw not only changes in technologies but tighter requirements, standardized training and the development of accredited Nuclear Instrument Training; thus the conclusion: Nuclear Instrument Training Isn't What It Used To Be

  4. Carbon Footprint Reduction Instruments

    Science.gov (United States)

    This page outlines the major differences between Renewable Energy Certificates (REC) and Project Offsets and what types of claims each instrument allows the organization to make in regards to environmental emissions claims.

  5. Instrument care: everyone's responsibility

    Directory of Open Access Journals (Sweden)

    Renée du Toit

    2011-12-01

    Full Text Available Everyone working in an ophthalmic operating theatre must be competent in the care, handling, storage, and maintenance of instruments. This will help to improve surgical outcomes, maintain an economic and affordable service for patients, and provide a safe environment for the wellbeing of patients and staff.Including instrument care in theatre courses and in-service training is one way of ensuring staff competence.

  6. Instrument uncertainty predictions

    International Nuclear Information System (INIS)

    Coutts, D.A.

    1991-07-01

    The accuracy of measurements and correlations should normally be provided for most experimental activities. The uncertainty is a measure of the accuracy of a stated value or equation. The uncertainty term reflects a combination of instrument errors, modeling limitations, and phenomena understanding deficiencies. This report provides several methodologies to estimate an instrument's uncertainty when used in experimental work. Methods are shown to predict both the pretest and post-test uncertainty

  7. Experimenting with woodwind instruments

    Science.gov (United States)

    Lo Presto, Michael C.

    2007-05-01

    Simple experiments involving musical instruments of the woodwind family can be used to demonstrate the basic physics of vibrating air columns in resonance tubes using nothing more than straightforward measurements and data collection hardware and software. More involved experimentation with the same equipment can provide insight into the effects of holes in the tubing and other factors that make simple tubes useful as musical instruments.

  8. Maintenance of scientific instruments

    International Nuclear Information System (INIS)

    Lucero, E.

    1986-01-01

    During the last years Colombia has increased the use of nuclear techniques, instruments and equipment in ambitious health programs, as well as in research centers, industry and education; this has resulted in numerous maintenance problems. As an alternative solution IAN has established a Central Maintenance Laboratory for nuclear instruments within an International Atomic Energy Agency program for eight Latin American and nine Asian Countries. Established strategies and some results are detailed in this writing

  9. Advanced optical instruments technology

    Science.gov (United States)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-08-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  10. Problems with radiological surveillance instrumentation

    International Nuclear Information System (INIS)

    Swinth, K.L.; Tanner, J.E.; Fleming, D.M.

    1984-09-01

    Many radiological surveillance instruments are in use at DOE facilities throughout the country. These instruments are an essential part of all health physics programs, and poor instrument performance can increase program costs or compromise program effectiveness. Generic data from simple tests on newly purchased instruments shows that many instruments will not meet requirements due to manufacturing defects. In other cases, lack of consideration of instrument use has resulted in poor acceptance of instruments and poor reliability. The performance of instruments is highly variable for electronic and mechanical performance, radiation response, susceptibility to interferences and response to environmental factors. Poor instrument performance in these areas can lead to errors or poor accuracy in measurements

  11. Problems with radiological surveillance instrumentation

    International Nuclear Information System (INIS)

    Swinth, K.L.; Tanner, J.E.; Fleming, D.M.

    1985-01-01

    Many radiological surveillance instruments are in use at DOE facilities throughout the country. These instruments are an essential part of all health physics programs, and poor instrument performance can increase program costs or compromise program effectiveness. Generic data from simple tests on newly purchased instruments shows that many instruments will not meet requirements due to manufacturing defects. In other cases, lack of consideration of instrument use has resulted in poor acceptance of instruments and poor reliability. The performance of instruments is highly variable for electronic and mechanical performance, radiation response, susceptibility to interferences and response to environmental factors. Poor instrument performance in these areas can lead to errors or poor accuracy in measurements

  12. Some emergency instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, P H

    1986-10-01

    The widespread release of activity and the resultant spread of contamination after the Chernobyl accident resulted in requests to NRPB to provide instruments for, and expertise in, the measurement of radiation. The most common request was for advice on the usefulness of existing instruments, but Board staff were also involved in their adaptation or in the development of new instruments specially to meet the circumstances of the accident. The accident occurred on 26 April. On 1 May, NRPB was involved at Heathrow Airport in the monitoring of the British students who had returned from Kiev and Minsk. The main purpose was to reassure the students by checking that their persons and belongings did not have significant surface contamination. Additional measurements were also made of iodine activity in thyroid using hand-held detectors or a mobile body monitor. This operation was arranged with the Foreign and Commonwealth Office, which had also received numerous requests for instruments from embassies and consulates in countries close to the scene of the accident. There was concern for the well-being of staff and other United Kingdom nationals who resided in or intended to visit the most affected countries. The board supplied suitable instruments, and the FCO distributed them to embassies. The frequency of environmental monitoring was increased from 29 April in anticipation of contamination and appropriate Board instrumentation was deployed. After the Chernobyl cloud arrived in the UK on 2 May, there were numerous requests from local government, public authorities, private companies and members of the public for information and advice on monitoring equipment and procedures. Some of these requirements could be met with existing equipment but members of the public were usually advised not to proceed. At a later stage, the contamination of foodstuffs and livestock required the development of an instrument capable of detecting low levels of {sup 137}Cs and {sup 134}Cs in food

  13. TROPOMI and TROPI: UV/VIS/NIR/SWIR instruments

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.; Eskes, H.; Weele, M. van; Veefkind, P.; Oss, R. van; Aben, I.; Jongma, R.T.; Landgraf, J.; Vries, J. de; Visser, H.

    2006-01-01

    TROPOMI (Tropospheric Ozone-Monitoring Instrument) is a five-channel UV-VIS-NIR-SWIR non-scanning nadir viewing imaging spectrometer that combines a wide swath (114°) with high spatial resolution (10 × 10 km 2). The instrument heritage consists of GOME on ERS-2, SCIAMACHY on Envisat and, especially,

  14. MIMI: Multimodality, Multiresource, Information Integration Environment for Biomedical Core Facilities

    OpenAIRE

    Szymanski, Jacek; Wilson, David L.; Zhang, Guo-Qiang

    2007-01-01

    The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administrativel...

  15. Reactor instrumentation and control

    International Nuclear Information System (INIS)

    Wach, D.; Beraha, D.

    1980-01-01

    The methods for measuring radiation are shortly reviewed. The instrumentation for neutron flux measurement is classified into out-of-core and in-core instrumentation. The out-of-core instrumentation monitors the operational range from the subcritical reactor to full power. This large range is covered by several measurement channels which derive their signals from counter tubes and ionization chambers. The in-core instrumentation provides more detailed information on the power distribution in the core. The self-powered neutron detectors and the aeroball system in PWR reactors are discussed. Temperature and pressure measurement devices are briefly discussed. The different methods for leak detection are described. In concluding the plant instrumentation part some new monitoring systems and analysis methods are presented: early failure detection methods by noise analysis, acoustic monitoring and vibration monitoring. The presentation of the control starts from an qualitative assessment of the reactor dynamics. The chosen control strategy leads to the definition of the part-load diagram, which provides the set-points for the different control systems. The tasks and the functions of these control systems are described. In additiion to the control, a number of limiting systems is employed to keep the reactor in a safe operating region. Finally, an outlook is given on future developments in control, concerning mainly the increased application of process computers. (orig./RW)

  16. Instrumental analysis, second edition

    International Nuclear Information System (INIS)

    Christian, G.D.; O'Reilly, J.E.

    1988-01-01

    The second edition of Instrumental Analysis is a survey of the major instrument-based methods of chemical analysis. It appears to be aimed at undergraduates but would be equally useful in a graduate course. The volume explores all of the classical quantitative methods and contains sections on techniques that usually are not included in a semester course in instrumentation (such as electron spectroscopy and the kinetic methods). Adequate coverage of all of the methods contained in this book would require several semesters of focused study. The 25 chapters were written by different authors, yet the style throughout the book is more uniform than in the earlier edition. With the exception of a two-chapter course in analog and digital circuits, the book purports to de-emphasize instrumentation, focusing more on the theory behind the methods and the application of the methods to analytical problems. However, a detailed analysis of the instruments used in each method is by no means absent. The book has the favor of a user's guide to analysis

  17. Quality control of nuclear medicine instruments 1991

    International Nuclear Information System (INIS)

    1991-05-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of ''Quality Control of Nuclear Medicine Instruments'', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems. Figs and tabs

  18. Quality control of nuclear medicine instruments, 1991

    International Nuclear Information System (INIS)

    1996-12-01

    This document gives detailed guidance on the quality control of various instruments used in nuclear medicine. A first preliminary document was drawn up in 1979. A revised and extended version, incorporating recommended procedures, test schedules and protocols was prepared in 1982. The first edition of 'Quality Control of Nuclear Medicine Instruments', IAEA-TECDOC-317, was printed in late 1984. Recent advances in the field of nuclear medicine imaging made it necessary to add a chapter on Camera-Computer Systems and another on SPECT Systems

  19. Biochemistry Instrumentation Core Technology Center

    Data.gov (United States)

    Federal Laboratory Consortium — The UCLA-DOE Biochemistry Instrumentation Core Facility provides the UCLA biochemistry community with easy access to sophisticated instrumentation for a wide variety...

  20. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  1. Industrial Products for Beam Instrumentation

    CERN Document Server

    Schmickler, Hermann

    2001-01-01

    In various branches of high technology industry there has been considerable progress in the past years which could be used for beam instrumentation. The subject will be introduced by two short demonstrations: a demonstration of modern audio electronics with 24bit-96kHz ADC, digital signal electronics and application programs under windows on a PC, which allow to change the parameters of the signal treatment. Potential applications are data monitoring at constant sampling frequency, orbit feedbacks (including high power audio amplifiers), noise reduction on beam current transformers... digital treatment of video signals webcams, frame grabbers, CCD-data via USB, all one needs for image acquisitions, in particular interesting for profile measurements. These introductory demonstrations will not last longer than 30 minutes. The remaining time will be used to pass through the audience collecting information into a two dimensional table, which shall contain as row index the accelerator and as column index the t...

  2. Robotic-surgical instrument wrist pose estimation.

    Science.gov (United States)

    Fabel, Stephan; Baek, Kyungim; Berkelman, Peter

    2010-01-01

    The Compact Lightweight Surgery Robot from the University of Hawaii includes two teleoperated instruments and one endoscope manipulator which act in accord to perform assisted interventional medicine. The relative positions and orientations of the robotic instruments and endoscope must be known to the teleoperation system so that the directions of the instrument motions can be controlled to correspond closely to the directions of the motions of the master manipulators, as seen by the the endoscope and displayed to the surgeon. If the manipulator bases are mounted in known locations and all manipulator joint variables are known, then the necessary coordinate transformations between the master and slave manipulators can be easily computed. The versatility and ease of use of the system can be increased, however, by allowing the endoscope or instrument manipulator bases to be moved to arbitrary positions and orientations without reinitializing each manipulator or remeasuring their relative positions. The aim of this work is to find the pose of the instrument end effectors using the video image from the endoscope camera. The P3P pose estimation algorithm is used with a Levenberg-Marquardt optimization to ensure convergence. The correct transformations between the master and slave coordinate frames can then be calculated and updated when the bases of the endoscope or instrument manipulators are moved to new, unknown, positions at any time before or during surgical procedures.

  3. Characteristics of protective instrumentation

    International Nuclear Information System (INIS)

    Reichart, G.

    1982-01-01

    Protective Instrumentation (PI) for Nuclear Power Plants (NPP) is a general term for an highly reliable instrumentation, which provides information for keeping the system within safe limits, for initation of countermeasures in the case of an incident or for mitigation of consequences of an accident. In German NPPs one can find a hierarchical structure of protective instrumentation, wherein the Reactor Protection System (RPS) has the highest priority. To meet the reliability requirements different design principles are used, like - redundancy - diversity - fail safe - decoupling. The presentation gives an overview about the different design principles and characterizes their reliability aspects. As an example for the technical realization the RPS of a German NPP is discussed in some detail. Furthermore some information about other type of PI is given and reliability aspects of the interaction of operating personell with these systems are mentioned. (orig.)

  4. Aethalometer™ Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    The Aethalometer is an instrument that provides a real-time readout of the concentration of “Black” or “Elemental” carbon aerosol particles (BC or E) in an air stream (see Figure 1 and Figure 2). It is a self-contained instrument that measures the rate of change of optical transmission through a spot on a filter where aerosol is being continuously collected and uses the information to calculate the concentration of optically absorbing material in the sampled air stream. The instrument measures the transmitted light intensities through the “sensing” portion of the filter, on which the aerosol spot is being collected, and a “reference” portion of the filter as a check on the stability of the optical source. A mass flowmeter monitors the sample air flow rate. The data from these three measurements is used to determine the mean BC content of the air stream.

  5. The IKARUS instrument

    International Nuclear Information System (INIS)

    Gerster, H.J.; Stein, G.

    1994-01-01

    When the Federal Government decided on a 25% reduction of CO 2 emissions till 2005 in 1990 the necessity resulted that an instrument has to be developed for the analysis and assessment of the ecological, economic and energetic impact of different reduction strategies. The development task was awarded by the BMFT to the Research Centre Juelich in cooperation with well-known institutions of energy system research. The total instrument is scheduled to be finished by the end of 1994. For the decentral use of the instrument by a wide specialist public the developed models and data banks which are equipped with a user-friendly surface are suited for larger PCs (486, 16 MB RAM/500-1000 MB ROM). (orig.) [de

  6. ISSUERS OF FINANCIAL INSTRUMENTS

    Directory of Open Access Journals (Sweden)

    Cristian GHEORGHE

    2016-05-01

    Full Text Available The rules laid down by Romanian Capital Market Law and the regulations put in force for its implementation apply to issuers of financial instruments admitted to trading on the regulated market established in Romania. But the issuers remain companies incorporated under Company Law of 1990. Such dual regulations need increased attention in order to observe the legal status of the issuers/companies and financial instruments/shares. Romanian legislator has chosen to implement in Capital Market Law special rules regarding the administration of the issuers of financial instruments, not only rules regarding admitting and maintaining to a regulated market. Thus issuers are, in Romanian Law perspective, special company that should comply special rule regarding board of administration and general shareholders meeting.

  7. Virtual Sensor Test Instrumentation

    Science.gov (United States)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  8. Interfacing to accelerator instrumentation

    International Nuclear Information System (INIS)

    Shea, T.J.

    1995-01-01

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed

  9. Spectroelectrochemical Instrument Measures TOC

    Science.gov (United States)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  10. Neutron multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1983-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  11. Standard NIM instrumentation system

    International Nuclear Information System (INIS)

    1990-05-01

    NIM is a standard modular instrumentation system that is in wide use throughout the world. As the NIM system developed and accommodations were made to a dynamic instrumentation field and a rapidly advancing technology, additions, revisions and clarifications were made. These were incorporated into the standard in the form of addenda and errata. This standard is a revision of the NIM document, AEC Report TID-20893 (Rev. 4) dated July 1974. It includes all the addenda and errata items that were previously issued as well as numerous additional items to make the standard current with modern technology and manufacturing practice

  12. Virtual Reality Musical Instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low-cost technologies have created a wide interest in virtual reality. In the field of computer music, the term “virtual musical instruments” has been used for a long time to describe software simulations, extensions of existing musical instruments......, and ways to control them with new interfaces for musical expression. Virtual reality musical instruments (VRMIs) that include a simulated visual component delivered via a head-mounted display or other forms of immersive visualization have not yet received much attention. In this article, we present a field...

  13. Instrumentation Cables Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Chris Bensdotter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteria 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift

  14. Celadon Figurines Play Instruments

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    This group of figurines, each 0.15m tall, were unearthed from a Tang Dynasty tomb in Changsha in 1977. Music was very developed in the Tang Dynasty. Colorful musical instruments and dances were popular both among the people and in the palace. These vivid-looking figurines wear pleated skirts with small sleeves and open chest, a style influenced by the non-Han nationalities living in the north and west of China. Some of the musical instruments were brought from the Western Regions. The figurines are playing the xiao (a vertical bamboo flute), the konghou (an

  15. Inspector-instrument interface in portable NDA instrumentation

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. An inspector-instrument interface design that allows communication of procedures, responses, and results between the instrument and user is presented. This capability has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer

  16. Inspector-instrument interface in portable NDA instrumentation

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. This report describes an inspector-instrument interface design which allows communication of procedures, responses, and results between the instrument and user. The interface has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer

  17. Nuclear imaging: Advances and trends

    International Nuclear Information System (INIS)

    Herk, G. van

    1986-01-01

    In this article, nuclear imaging instruments that are likely to be of interest to the nuclear medicine community of developing countries are emphasized. The advances, trends, developments, and future directions in the field of nuclear imaging are mentioned

  18. Power station instrumentation

    International Nuclear Information System (INIS)

    Jervis, M.W.

    1993-01-01

    Power stations are characterized by a wide variety of mechanical and electrical plant operating with structures, liquids and gases working at high pressures and temperatures and with large mass flows. The voltages and currents are also the highest that occur in most industries. In order to achieve maximum economy, the plant is operated with relatively small margins from conditions that can cause rapid plant damage, safety implications, and very high financial penalties. In common with other process industries, power stations depend heavily on control and instrumentation. These systems have become particularly significant, in the cost-conscious privatized environment, for providing the means to implement the automation implicit in maintaining safety standards, improving generation efficiency and reducing operating manpower costs. This book is for professional instrumentation engineers who need to known about their use in power stations and power station engineers requiring information about the principles and choice of instrumentation available. There are 8 chapters; chapter 4 on instrumentation for nuclear steam supply systems is indexed separately. (Author)

  19. University Reactor Instrumentation Program

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1992-11-01

    Recognizing that the University Reactor Instrumentation Program was developed in response to widespread needs in the academic community for modernization and improvement of research and training reactors at institutions such as the University of Florida, the items proposed to be supported by this grant over its two year period have been selected as those most likely to reduce foreed outages, to meet regulatory concerns that had been expressed in recent years by Nuclear Regulatory Commission inspectors or to correct other facility problems and limitations. Department of Energy Grant Number DE-FG07-90ER129969 was provided to the University of Florida Training Reactor(UFTR) facility through the US Department of Energy's University Reactor Instrumentation Program. The original proposal submitted in February, 1990 requested support for UFTR facility instrumentation and equipment upgrades for seven items in the amount of $107,530 with $13,800 of this amount to be the subject of cost sharing by the University of Florida and $93,730 requested as support from the Department of Energy. A breakdown of the items requested and total cost for the proposed UFTR facility instrumentation and equipment improvements is presented

  20. Neutron instrumentation for biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, S.A. [Institut Laue-Langevin, Grenoble (France)

    1994-12-31

    In the October 1994 round of proposals at the ILL, the external biology review sub- committee was asked to allocate neutron beam time to a wide range of experiments, on almost half the total number of scheduled neutron instruments: on 3 diffractometers, on 3 small angle scattering instruments, and on some 6 inelastic scattering spectrometers. In the 3.5 years since the temporary reactor shutdown, the ILL`s management structure has been optimized, budgets and staff have been trimmed, the ILL reactor has been re-built, and many of the instruments up-graded, many powerful (mainly Unix) workstations have been introduced, and the neighboring European Synchrotron Radiation Facility has established itself as the leading synchrotron radiation source and has started its official user program. The ILL reactor remains the world`s most intense dedicated neutron source. In this challenging context, it is of interest to review briefly the park of ILL instruments used to study the structure and energetics of small and large biological systems. A brief summary will be made of each class of experiments actually proposed in the latest ILL proposal round.

  1. The ozone monitoring instrument

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.R.; Mälkki, A.; Visser, H.; Vries, J. de; Stammes, P.; Lundell, J.O.V.; Saari, H.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Adminsitration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial

  2. Economic Policy Instruments

    DEFF Research Database (Denmark)

    Klemmensen, Børge

    2007-01-01

    Økonomiske instrumenter begrundes med behovet for politiske indgreb, der muliggør internaliseringen af omkostningerne ved de miljøpåvirkninger, produktion and levevis afstedkommer, således at hensyntagen til miljøet bliver en del af virksomheders og husholdningers omkostninger og dermed en tilsky...

  3. Radiometric well logging instruments

    International Nuclear Information System (INIS)

    Davydov, A.V.

    1975-01-01

    The technical properties of well instruments for radioactive logging used in the radiometric logging complexes PKS-1000-1 (''Sond-1'') and PRKS-2 (''Vitok-2'') are described. The main features of the electric circuit of the measuring channels are given

  4. Advanced instrumentation and teleoperation

    International Nuclear Information System (INIS)

    Decreton, M.

    1998-01-01

    SCK-CEN's advanced instrumentation and teleoperation project aims at evaluating the potential of a telerobotic approach in a nuclear environment and, in particular, the use of remote-perception systems. Main achievements in 1997 in the areas of R and D on radiation tolerance for remote sensing, optical fibres and optical-fibre sensors, and computer-aided teleoperation are reported

  5. Health physics instrumentation needs

    International Nuclear Information System (INIS)

    Selby, J.M.; Swinth, K.L.; Kenoyer, J.L.

    1984-10-01

    Deficiencies and desirable improvements can be identified in every technical area in which health physics instruments are employed. The needed improvements cover the full spectrum including long-term reliability, human factors, accuracy, ruggedness, ease of calibration, improved radiation response, and improved mixed field response. Some specific areas of deficiency noted along with needed improvements. 17 references

  6. Virtual reality musical instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low cost technologies has created a wide interest in virtual reality (VR), but how to design and evaluate multisensory interactions in VR remains as a challenge. In this paper, we focus on virtual reality musical instruments, present an overview of our...

  7. Creating a Super Instrument

    DEFF Research Database (Denmark)

    Kallionpää, Maria; Gasselseder, Hans-Peter

    2015-01-01

    Thanks to the development of new technology, musical instruments are no more tied to their existing acoustic or technical limitations as almost all parameters can be augmented or modified in real time. An increasing number of composers, performers, and computer programmers have thus become intere...

  8. CMO Site: Ocean Instrumentation

    Science.gov (United States)

    1997-02-01

    Precipitation , Lightning, Visibility 0150 A InterOcea Hawser Strain 1.. systems, inc. and more... n 1946 3540 aero court san diego ca 92123-1799 usa phone: (619...AGU’s Microgal culture Association, P.O. Box 1004, April 8-10, 1997-Underwater Gravimetry : Instruments, Observa- Niland, CA 92257; (619) 359-3474

  9. Instrumentation in thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Julius, H.W.

    1986-01-01

    In the performance of a thermoluminescence dosimetry (TLD) system the equipment plays an important role. Crucial parameters of instrumentation in TLD are discussed in some detail. A review is given of equipment available on the market today - with some emphasis on automation - which is partly based on information from industry and others involved in research and development. (author)

  10. Ion chamber instrument

    International Nuclear Information System (INIS)

    Stephan, D.H.

    1975-01-01

    An electrical ionization chamber is described having a self-supporting wall of cellular material which is of uniform areal density and formed of material, such as foamed polystyrene, having an average effective atomic number between about 4 and about 9, and easily replaceable when on the instrument. (auth)

  11. Integrating Nephelometer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Uin, J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Integrating Nephelometer (Figure 1) is an instrument that measures aerosol light scattering. It measures aerosol optical scattering properties by detecting (with a wide angular integration – from 7 to 170°) the light scattered by the aerosol and subtracting the light scattered by the carrier gas, the instrument walls and the background noise in the detector (zeroing). Zeroing is typically performed for 5 minutes every day at midnight UTC. The scattered light is split into red (700 nm), green (550 nm), and blue (450 nm) wavelengths and captured by three photomultiplier tubes. The instrument can measure total scatter as well as backscatter only (from 90 to 170°) (Heintzenberg and Charlson 1996; Anderson et al. 1996; Anderson and Ogren 1998; TSI 3563 2015) At ARM (Atmospheric Radiation Measurement), two identical Nephelometers are usually run in series with a sample relative humidity (RH) conditioner between them. This is possible because Nephelometer sampling is non-destructive and the sample can be passed on to another instrument. The sample RH conditioner scans through multiple RH values in cycles, treating the sample. This kind of setup allows to study how aerosol particles’ light scattering properties are affected by humidification (Anderson et al. 1996). For historical reasons, the two Nephelometers in this setup are labeled “wet” and “dry”, with the “dry” Nephelometer usually being the one before the conditioner and sampling ambient air (the names are switched for the MAOS measurement site due to the high RH of the ambient air).

  12. Measurement and Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Harold

    2018-01-02

    This is a chapter for a book called the Standard Handbook for Electrical Engineering. Though it is not obvious from the title, the book deals mainly with power engineering. The first chapter (not mine) is about the fundamental quantities used in measurement. This chapter is about the process and the instrumentation.

  13. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  14. CRISP instrument manual

    International Nuclear Information System (INIS)

    Bucknall, D.G.; Langridge, Sean

    1997-05-01

    This document is a user manual for CRISP, one of the two neutron reflectomers at ISIS. CRISP is highly automated allowing precision reproducible measurements. The manual provides detailed instructions for the setting-up and running of the instrument and advice on data analysis. (UK)

  15. An instrument for X-ray set quality assurance measurements

    International Nuclear Information System (INIS)

    Willetts, R.J.; West, M.B.; Brydon, J.

    1989-01-01

    This paper describes a prototype electronic instrument for performing quality assurance (QA) measurements on diagnostic radiological equipment with a view to long-term performance assessment on a Regional basis. The instrument is based on a Tandy 200 laptop computer and has been developed primarily to include the assessment of image intensifier/TV systems in a general QA package. It is capable of accepting signals from the following sources: (1) a radiation detector (diode array); (2) a Keithley kV divider (Keithley Instruments, Inc.); (3) the video output of an image intensifier system. (author)

  16. Purging sensitive science instruments with nitrogen in the STS environment

    Science.gov (United States)

    Lumsden, J. M.; Noel, M. B.

    1983-01-01

    Potential contamination of extremely sensitive science instruments during prelaunch, launch, and earth orbit operations are a major concern to the Galileo and International Solar Polar Mission (ISPM) Programs. The Galileo Program is developing a system to purify Shuttle supplied nitrogen gas for in-flight purging of seven imaging and non-imaging science instruments. Monolayers of contamination deposited on critical surfaces can degrade some instrument sensitivities as much as fifty percent. The purging system provides a reliable supply of filtered and fried nitrogen gas during these critical phases of the mission when the contamination potential is highest. The Galileo and ISPM Programs are including the system as Airborne Support Equipment (ASE).

  17. The Science of String Instruments

    CERN Document Server

    Rossing, Thomas D

    2010-01-01

    Many performing musicians, as well as instrument builders, are coming to realize the importance of understanding the science of musical instruments. This book explains how string instruments produce sound. It presents basic ideas in simple language, and it also translates some more sophisticated ideas in non-technical language. It should be of interest to performers, researchers, and instrument makers alike.

  18. A comparison of instrumentation using Naviflex and Profile nickel-titanium engine-driven rotary instruments.

    Science.gov (United States)

    Ottosen, S R; Nicholls, J I; Steiner, J C

    1999-06-01

    This study was designed to compare the changes in canal configuration resulting from instrumentation by either Profile or Naviflex instruments. Forty mesial canals in extracted human molar teeth were embedded and sectioned at two root levels. Reassembled teeth were instrumented with a modified crown-down technique as described in the Profile training video for Profile files and in a similar manner for Naviflex instruments. Superimposed pre- and postinstrumented cross-sectional root images were projected, traced, and scanned into a computer for analysis. Canal movement, in relation to the furca, and canal area change were recorded. The results showed no significant difference in canal center movement or canal area change between the Profile or Naviflex groups. The degree of canal curvature had no effect on canal center movement or canal area change.

  19. Image, Image, Image

    Science.gov (United States)

    Howell, Robert T.

    2004-01-01

    With all the talk today about accountability, budget cuts, and the closing of programs in public education, teachers cannot overlook the importance of image in the field of industrial technology. It is very easy for administrators to cut ITE (industrial technology education) programs to save school money--money they might shift to teaching the…

  20. Instrument pre-development activities for FLEX

    Science.gov (United States)

    Pettinato, L.; Fossati, E.; Coppo, P. M.; Taiti, A.; Labate, D.; Capanni, A.; Taccola, M.; Bézy, J. L.; Francois, M.; Meynart, R.; Erdmann, L.; Triebel, P.

    2017-09-01

    The FLuorescence Imaging Spectrometer (FLORIS) is the payload of the FLuorescence Explorer Mission (FLEX) of the European Space Agency. The mission objective is to perform quantitative measurements of the solar induced vegetation fluorescence to monitor photosynthetic activity. FLORIS works in a push-broom configuration and it is designed to acquire data in the 500-780 nm spectral range, with a sampling of 0.1 nm in the oxygen bands (759-769 nm and 686- 697 nm) and 0.5-2.0 nm in the red edge, chlorophyll absorption and Photochemical Reflectance Index bands. FLEX will fly in formation with Sentinel-3 to benefit of the measurements made by the Sentinel-3 instruments OLCI and SLSTR, particularly for cloud screening, proper characterization of the atmospheric state and determination of the surface temperature. The instrument concept is based on a common telescope and two modified Offner spectrometers with reflective concave gratings both for the High Resolution (HR) and Low Resolution (LR) spectrometers. In the frame of the instrument pre-development Leonardo Company (I) has built and tested an elegant breadboard of the instrument consisting of the telescope and the HR spectrometer. The development of the LR spectrometer is in charge of OHB System AG (D) and is currently in the manufacturing phase. The main objectives of the activity are: anticipate the development of the instrument and provide early risk retirement of critical components, evaluate the system performances such as imaging quality parameters, straylight, ghost, polarization sensitivity and environmental influences, verify the adequacy of critical tests such as spectral characterization and straylight, define and optimize instrument alignment procedures. Following a brief overview of the FLEX mission, the paper will cover the design and the development of the optics breadboard with emphasis on the results obtained during the tests and the lessons learned for the flight unit.

  1. Instrumentation and quantitative methods of evaluation

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1991-01-01

    This report summarizes goals and accomplishments of the research program entitled Instrumentation and Quantitative Methods of Evaluation, during the period January 15, 1989 through July 15, 1991. This program is very closely integrated with the radiopharmaceutical program entitled Quantitative Studies in Radiopharmaceutical Science. Together, they constitute the PROGRAM OF NUCLEAR MEDICINE AND QUANTITATIVE IMAGING RESEARCH within The Franklin McLean Memorial Research Institute (FMI). The program addresses problems involving the basic science and technology that underlie the physical and conceptual tools of radiotracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 234 refs., 11 figs., 2 tabs

  2. netherland hydrological modeling instrument

    Science.gov (United States)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many

  3. Quality control of nuclear medicine instrumentation

    International Nuclear Information System (INIS)

    Mould, R.F.

    1983-09-01

    The proceedings of a conference held by the Hospital Physicists' Association in London 1983 on the quality control of nuclear medicine instrumentation are presented. Section I deals with the performance of the Anger gamma camera including assessment during manufacture, acceptance testing, routine testing and long-term assessment of results. Section II covers interfaces, computers, the quality control problems of emission tomography and the quality of software. Section III deals with radionuclide measurement and impurity assessment and Section IV the presentation of images and the control of image quality. (U.K.)

  4. Instrumentation and information portrayal

    International Nuclear Information System (INIS)

    Rollo, F.D.; Patton, J.A.

    1984-01-01

    Nuclear medicine is a specialty that has the goal of providing essential diagnostic information to the referring physician on a timely basis. This can only be accomplished in a reliable and responsible manner when the members of the nuclear medicine team are knowledgeable with regard to the performance capabilities of the various imaging devices available, the various factors that can affect image quality, and the quality assurance practices that will ensure optimum performance of the imaging devices on a continuing basis. This chapter provides the background information required to accomplish the goals of a conscientious nuclear medicine department

  5. A GC Instrument Simulator

    Science.gov (United States)

    Armitage, D. Bruce

    1999-02-01

    This simulator was developed to help students beginning the study of gas chromatographic instruments to understand their operation. It is not meant to teach chromatographic theory. The instrument simulator is divided into 5 sections. One is for sample preparation. Another is used to manage carrier gases and choose a detector and column. The third sets the conditions for either isothermal or programmed temperature operation. A fourth section models manual injections, and the fifth is the autosampler. The operator has a choice among 6 columns of differing diameters and packing polarities and a choice of either isothermal or simple one-stage temperature programming. The simulator can be operated in either single-sample mode or as a 10-sample autosampler. The integrator has two modes of operation, a "dumb" mode in which only the retention time, area of the peak, and percentage area are listed and a "smart" mode that also lists the components' identities. The identities are obtained from a list of names and retention times created by the operator. Without this list only the percentages and areas are listed. The percentages are based on the areas obtained from the chromatogram and not on the actual percentages assigned during sample preparation. The data files for the compounds used in the simulator are ASCII files and can be edited easily to add more compounds than the 11 included with the simulator. A maximum of 10 components can be used in any one sample. Sample mixtures can be made on a percent-by-volume basis, but not by mass of sample per volume of solvent. A maximum of 30 compounds can be present in any one file, but the number of files is limited only by the operating system. (I suggest that not more than 20 compounds be used in any one file, as scrolling through large numbers of compounds is annoying to say the least.) File construction and layout are discussed in detail in the User's Manual. Chromatograms are generated by calculating a retention time based on

  6. Data acquisition instruments: Psychopharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.S. III

    1998-01-01

    This report contains the results of a Direct Assistance Project performed by Lockheed Martin Energy Systems, Inc., for Dr. K. O. Jobson. The purpose of the project was to perform preliminary analysis of the data acquisition instruments used in the field of psychiatry, with the goal of identifying commonalities of data and strategies for handling and using the data in the most advantageous fashion. Data acquisition instruments from 12 sources were provided by Dr. Jobson. Several commonalities were identified and a potentially useful data strategy is reported here. Analysis of the information collected for utility in performing diagnoses is recommended. In addition, further work is recommended to refine the commonalities into a directly useful computer systems structure.

  7. Social Responsibility Instruments

    Directory of Open Access Journals (Sweden)

    Katarzyna Mizera

    2008-09-01

    Full Text Available Responsible business notion is more and more present in Polish economy, however the results of the research carried out in Polish business still shows a low level of CRS idea knowledge, especially in small and medium companies. Although responsible business notion is generally known, its details, ways of preparing strategy, instruments and what is more its benefits are still narrowly spread. Many business people face the lack of knowledge and information, which on one hand make it easier to spread and deepen wrong stereotypes connected with this notion and on the other hand make business people unwilling to implement CRS in their companies. The subjects of this article are examples of instruments which are responsible for realization of social responsibility strategy.

  8. Radiation measuring instrument

    International Nuclear Information System (INIS)

    Genrich, V.

    1985-01-01

    A highly sensitive and compactly structured radiation measuring instrument for detecting ionizing radiation, in particular for measuring dose rates and contamination. The laminar structure of the associated counter tube, using only a few, simple plastic parts and a highly elastic counter wire, makes it possible to use the simplest manufacturing techniques. The service life of the counter tube construction, which is completely and permanently sealed and filled with gas, is expected to be more than 12 years. The described counter tube can be adapted in optimal fashion to the available space in a pocket instrument if it is used in combination with a specialized high-voltage generator which is low in interference voltage and with a pulse evaluation circuit having a means of compensating for interference voltage

  9. Instrumentation for Reflectance Spectroscopy and Microspectroscopy with Application to Astrobiology

    Science.gov (United States)

    Mouroulis, Pantazis; Blaney, Diana L.; Green, Robert O.

    2008-01-01

    We present instrument concepts for in-situ reflectance spectroscopy over a spatial resolution range from several meters to tens of micrometers. These have been adapted to the low mass and power requirements of rover or similar platforms. Described are a miniaturized imaging spectrometer for rover mast, a combined mast and arm point spectrometer, and an imaging microspectrometer for the rover arm.

  10. Radon-Instrumentation

    International Nuclear Information System (INIS)

    Moreno y Moreno, A.

    2003-01-01

    The presentation of the active and passive methods for radon, their identification and measure, instrumentation and characteristics are the objectives of this work. Active detectors: Active Alpha Cam Continuous Air Monitor, Model 758 of Victoreen, Model CMR-510 Continuous Radon Monitor of the Signature Femto-Tech. Passive detectors: SSNTD track detectors in solids Measurement Using Charcoal Canisters, disk of activated coal deposited in a metallic box Electrets Methodology. (Author)

  11. Testing Aircraft Instruments.

    Science.gov (United States)

    1981-02-11

    1. Have test data been collected, recorded, and presented in accordance with this TOP? Yes No Comment : 2. Were the facilities, test equipment...instrumentation, and support accommodations adequate to accomplish the test objectives? Yes No Comment : 3. Have all data collected been reviewed for...correctness and completeness? Yes No Comment : 4. Were the test results compromised in any way due to insufficient test planning? Yes No Comment : 5. Were the

  12. Transgressive or Instrumental?

    DEFF Research Database (Denmark)

    Chemi, Tatiana

    2018-01-01

    Contemporary practices that connect the arts with learning are widespread at all level of educational systems and in organisations, but they include very diverse approaches, multiple methods and background values. Regardless of explicit learning benefits, the arts/learning partnerships bring about...... creativity and the other on practices of arts-integration. My final point rests on the belief that the opposition of transgression and instrumentality is a deceiving perspective on the arts, against the background of the aesthetic plurality and hybridity....

  13. EPRTM Reactor neutron instrumentation

    International Nuclear Information System (INIS)

    Pfeiffer, Maxime; SALA, Stephanie

    2013-06-01

    The core safety during operation is linked, in particular, to the respect of criteria related to the heat generated in fuel rods and to the heat exchange between the rods and the coolant. This local power information is linked to the power distribution in the core. In order to evaluate the core power distribution, the EPR TM reactor relies on several types of neutron detectors: - ionization chambers located outside the vessel and used for protection and monitoring - a fixed in-core instrumentation based on Cobalt Self Powered Neutron Detectors used for protection and monitoring - a mobile reference in-core instrumentation based on Vanadium aero-balls This document provides a description of this instrumentation and its use in core protection, limitation, monitoring and control functions. In particular, a description of the detectors and the principles of their signal generation is supplied as well as the description of the treatments related to these detectors in the EPR TM reactor I and C systems (including periodical calibration). (authors)

  14. Mandolin Family Instruments

    Science.gov (United States)

    Cohen, David J.; Rossing, Thomas D.

    The mandolin family of instruments consists of plucked chordophones, each having eight strings in four double courses. With the exception of the mandobass, the courses are tuned in intervals of fifths, as are the strings in violin family instruments. The soprano member of the family is the mandolin, tuned G3-D4-A4-E5. The alto member of the family is the mandola, tuned C3-G3-D4-A4. The mandola is usually referred to simply as the mandola in the USA, but is called the tenor mandola in Europe. The tenor member of the family is the octave mandolin, tuned G2-D3-A3-E4. It is referred to as the octave mandolin in the USA, and as the octave mandola in Europe. The baritone member of the family is the mandocello, or mandoloncello, tuned C2-G2-D3-A3. A variant of the mandocello not common in the USA is the five-course liuto moderno, or simply liuto, designed for solo repertoire. Its courses are tuned C2-G2-D3-A3-E4. A mandobass was also made by more than one manufacturer during the early twentieth century, though none are manufactured today. They were fretted instruments with single string courses tuned E1-A1-D2-G2. There are currently a few luthiers making piccolo mandolins, tuned C4-G4-D5-A5.

  15. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1976-01-01

    Reference is made to the instrumentation of liquid metal cooled fast reactors. In order to ensure the safe operation of such reactors it is necessary to constantly monitor the coolant flowing through the fuel assemblies for temperature and rate of flow, requiring a large number of sensors. An improved and simplified arrangement is claimed in which the fuel assemblies feed a fraction of coolant to three instrument units arranged to sense the temperature and rate of flow of samples of coolant. Each instrument unit comprises a sleeve housing a sensing unit and has a number of inlet ducts arranged for receiving coolant from a fuel assembly together with a single outlet. The sensing unit has three thermocouple hot junctions connected in series, the hot junctions and inlet ducts being arranged in pairs. Electromagnetic windings around an inductive core are arranged to sense variation in flow of liquid metal by flux distortion. Fission product sensing means may also be provided. Full constructional details are given. (U.K.)

  16. NMR imaging

    International Nuclear Information System (INIS)

    Andrew, E.R.

    1983-01-01

    Since hydrogen is the most abundant element in all living organisms, proton NMR lends itself well as a method of investigation in biology and medicine. NMR imaging has some special advantages as a diagnostic tool: no ionizing radiation is used, it is noninvasive; it provides a safer means of imaging than the use of x-rays, gamma rays, positrons, or heavy ions. In contrast with ultrasound, the radiation penetrates the bony structures without attenuation. In additional to morphological information, NMR imaging provides additional diagnostic insights through relaxation parameters, which are not available from other imaging methods. In the decade since the first primitive NMR images were obtained, the quality of images now obtained approaches those from CT x-ray scanners. Prototype instruments are being constructed for clinical evaluation and the first whole-body scanners are beginning to appear on the market at costs comparable to CT scanners. Primary differences in equipment for conventional NMR and NMR imaging are the much larger aperture magnets that are required for the examination of human subjects and the addition of coils to generate field gradients and facilities for manipulating the gradients. Early results from clinical trials in many parts of the world are encouraging, and in a few years, the usefuleness of this modality of medical imaging to the medical profession in diagnosis and treatment of disease will be defined. 10 figures

  17. 75 FR 82372 - Application(s) for Duty-Free Entry of Scientific Instruments

    Science.gov (United States)

    2010-12-30

    ... Minnesota School of Dentistry, 6-150 MoosT, 515 Delaware St., S E, Minneapolis, MN 55455. Instrument: Dental... biofilm of dental decay in children. This custom made imaging system will image under resin composite...

  18. Instrumentation for environmental monitoring: biomedical

    International Nuclear Information System (INIS)

    1979-05-01

    An update is presented to Volume four of the six-volume series devoted to a survey of instruments useful for measurements in biomedicine related to environmental research and monitoring. Results of the survey are given as descriptions of the physical and operating characteristics of available instruments, critical comparisons among instrumentation methods, and recommendations of promising methodology and development of new instrumentation. Methods of detection and analysis of gaseous organic pollutants and metals, including Ni and As are presented. Instrument techniques and notes are included on atomic spectrometry and uv and visible absorption instrumentation

  19. Automatic track counting with an optic RAM-based instrument

    International Nuclear Information System (INIS)

    Staderini, E.M.; Castellano, Alfredo

    1986-01-01

    A new image sensor, the optic RAM, is now used in a microprocessor controlled instrument to read and digitize images from CR39 solid state nuclear track detectors. The system performs image analysis, filtering, tracks counting and evaluation in a fully automatic way, not requiring an optic microscope, nor photographic or television devices. The proposed system is a very compact and low power device. (author)

  20. Payment Instrument Characteristics

    DEFF Research Database (Denmark)

    Holst, Jacques; Kjeldsen, Martin; Hedman, Jonas

    2015-01-01

    Over the last decade, we have witnessed payment innovations that fundamentally have changed the ways we pay. Payment innovations, such as mobile payments and on-line banking, include characteristics or features that are essential to understand if we want to know how and why payers choose among...... payment innovations. Using the Repertory Grid technique to explore 15 payers’ perception of six payment instruments, including coins, banknotes, debit cards, credit cards, mobile payments, and on-line banking, we identify 16 payment characteristics. The characteristics aggregate seventy-six unique...

  1. Operational Test Instrumentation Guide.

    Science.gov (United States)

    1981-11-01

    System. A topographic, transit-level measuring system, instrumented with altimeter, clinometers, compasses , and an alidade, plane table, and stadia rod...dual hangar 250 x 135 feet with two door openings, 80 feet each. There is no compass swing base, no electronic landing aids, ro aircraft wash or...month) of SDG &E) Haybarn Canyon 15,000 6,183,870 Lan Pulgas 1,500 433,890 Las Pulgas Well #41621 100 4,258 Las Pulgas Well #41611 150 7,548 Las Flores

  2. Beam Instrumentation and Diagnostics

    CERN Document Server

    Strehl, Peter

    2006-01-01

    This treatise covers all aspects of the design and the daily operations of a beam diagnostic system for a large particle accelerator. A very interdisciplinary field, it involves contributions from physicists, electrical and mechanical engineers and computer experts alike so as to satisfy the ever-increasing demands for beam parameter variability for a vast range of operation modi and particles. The author draws upon 40 years of research and work, most of them spent as the head of the beam diagnostics group at GSI. He has illustrated the more theoretical aspects with many real-life examples that will provide beam instrumentation designers with ideas and tools for their work.

  3. Instrumentation for tomograph positioning

    International Nuclear Information System (INIS)

    Frenkel, A.D.B.; Castello Branco, L.M.; Reznik, D.S.; Santos, C.A.C.; Borges, J.C.

    1986-01-01

    The COPPE's Nuclear Instrumentation Lab. has been developing researches directed towards the implementation of a Computer-Based Tomography System. Basically, the system reported in this paper can be divided into three major parts: the mechanical part, responsible for the physical movement (Stepper-Motors, table, etc.); the electronic part, which controls the mechanical part and handles the data-acquisition process (microcomputer, interfaces, etc.); and finally, the support of a software-oriented system, including control programs and information processing routines. (Author) [pt

  4. Easy instrumental analysis

    International Nuclear Information System (INIS)

    Ko, Myeong Su; Kim, Tae Hwa; Park, Gyu Hyeon; Yang, Jong Beom; Oh, Chang Hwan; Lee, Kyoung Hye

    2010-04-01

    This textbook describes instrument analysis in easy way with twelve chapters. The contents of the book are pH measurement on principle, pH meter, pH measurement, examples of the experiments, centrifugation, Absorptiometry, Fluorescent method, Atomic absorption analysis, Gas-chromatography, Gas chromatography-mass spectrometry, High performance liquid chromatography liquid chromatograph-mass spectrometry, Electrophoresis on practical case and analysis of the result and examples, PCR on principle, device, application and examples and Enzyme-linked immunosorbent assay with indirect ELISA, sandwich ELISA and ELISA reader.

  5. Maintenance of nuclear instruments

    International Nuclear Information System (INIS)

    Oliveira Rebelo, A.M. de; Santos, C.J.F. dos; Jesus, E.F.O. de; Silva, L.E.M.C.; Borges, J.C.

    1988-01-01

    A program to design and repairing of nuclear instruments for teaching and research was founded in the UFRJ to find solutions for technical support problem - The GEMD-RADIACOES. This group has assisted to several groups of the University in recuperation and conservation of devices like: Linear scanner, Cromatograph and system of radiation detection in general. Recuperation of these devices had required a study of theirs operations modes, to make it possible the setting up of a similar system. Recuperation also involves operation tests, calibration and technical for users, orienting them to get the best performance. (Author) [pt

  6. Easy instrumental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Myeong Su; Kim, Tae Hwa; Park, Gyu Hyeon; Yang, Jong Beom; Oh, Chang Hwan; Lee, Kyoung Hye

    2010-04-15

    This textbook describes instrument analysis in easy way with twelve chapters. The contents of the book are pH measurement on principle, pH meter, pH measurement, examples of the experiments, centrifugation, Absorptiometry, Fluorescent method, Atomic absorption analysis, Gas-chromatography, Gas chromatography-mass spectrometry, High performance liquid chromatography liquid chromatograph-mass spectrometry, Electrophoresis on practical case and analysis of the result and examples, PCR on principle, device, application and examples and Enzyme-linked immunosorbent assay with indirect ELISA, sandwich ELISA and ELISA reader.

  7. Instruments of Transformative Governance

    DEFF Research Database (Denmark)

    Borrás, Susana

    production and distribution channels. PDPs aim at overcoming current market and government failures by pooling resources in the attempt to solve this global social challenge. Thus, PDPs are a case of instruments of transformative research and innovation, operating in a transnational governance context....... They exhibit three novelties: they address strategic long-term problems in a holistic manner, set substantive output-oriented goals, and are implemented through new organizational structures. After characterizing the different types of current PDPs and the context in which they emerged, the paper examines...

  8. Diamonds for beam instrumentation

    International Nuclear Information System (INIS)

    Griesmayer, Erich

    2013-01-01

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  9. Pesticide reducing instruments

    DEFF Research Database (Denmark)

    Jacobsen, Lars-Bo; Jensen, Jørgen Dejgård; Andersen, Martin

    2005-01-01

    -mentioned models and tools. All three scenarios are constructed such that they result in the same welfare implication (measured by national consumption in the CGE model). The scenarios are: 1) pesticide taxes resulting in a 25 percent overall reduction; 2) use of unsprayed field margins, resulting in the same...... for improving bio-diversity and securing drinking water. That is, combining economic modeling with physical biological modeling and geological evaluation allows us to select unsprayed field margins as the most effective instrument. Sensitivity analysis conducted on bio-diversity suggest that this result...

  10. Calibration of radiation monitoring instruments

    International Nuclear Information System (INIS)

    1973-01-01

    Radiation protection is dependent on good radiation monitoring, and properly calibrated instruments are essential for this work. Simple procedures for periodically checking and recalibrating different kinds of radiation monitoring instruments are shown in this training film

  11. Calibration of "Babyline" RP instruments

    CERN Multimedia

    2015-01-01

      If you have old RP instrumentation of the “Babyline” type, as shown in the photo, please contact the Radiation Protection Group (Joffrey Germa, 73171) to have the instrument checked and calibrated. Thank you. Radiation Protection Group

  12. Calibration of radiation monitoring instruments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-12-31

    Radiation protection is dependent on good radiation monitoring, and properly calibrated instruments are essential for this work. Simple procedures for periodically checking and recalibrating different kinds of radiation monitoring instruments are shown in this training film

  13. Instruments for Water Quality Monitoring

    Science.gov (United States)

    Ballinger, Dwight G.

    1972-01-01

    Presents information regarding available instruments for industries and agencies who must monitor numerous aquatic parameters. Charts denote examples of parameters sampled, testing methods, range and accuracy of test methods, cost analysis, and reliability of instruments. (BL)

  14. COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    Dominique Lafon

    2011-05-01

    Full Text Available The goal of this article is to present specific capabilities and limitations of the use of color digital images in a characterization process. The whole process is investigated, from the acquisition of digital color images to the analysis of the information relevant to various applications in the field of material characterization. A digital color image can be considered as a matrix of pixels with values expressed in a vector-space (commonly 3 dimensional space whose specificity, compared to grey-scale images, is to ensure a coding and a representation of the output image (visualisation printing that fits the human visual reality. In a characterization process, it is interesting to regard color image attnbutes as a set of visual aspect measurements on a material surface. Color measurement systems (spectrocolorimeters, colorimeters and radiometers and cameras use the same type of light detectors: most of them use Charge Coupled Devices sensors. The difference between the two types of color data acquisition systems is that color measurement systems provide a global information of the observed surface (average aspect of the surface: the color texture is not taken into account. Thus, it seems interesting to use imaging systems as measuring instruments for the quantitative characterization of the color texture.

  15. RICE: A Reliable and Efficient Remote Instrumentation Collaboration Environment

    Directory of Open Access Journals (Sweden)

    Prasad Calyam

    2008-01-01

    Full Text Available Remote access of scientific instruments over the Internet (i.e., remote instrumentation demand high-resolution (2D and 3D video image transfers with simultaneous real-time mouse and keyboard controls. Consequently, user quality of experience (QoE is highly sensitive to network bottlenecks. Further, improper user control while reacting to impaired video caused due to network bottlenecks could result in physical damages to the expensive instrument equipment. Hence, it is vital to understand the interplay between (a user keyboard/mouse actions toward the instrument, and (b corresponding network reactions for transfer of instrument video images toward the user. In this paper, we first present an analytical model for characterizing user and network interplay during remote instrumentation sessions in terms of demand and supply interplay principles of traditional economics. Next, we describe the trends of the model parameters using subjective and objective measurements obtained from QoE experiments. Thereafter, we describe our Remote Instrumentation Collaboration Environment (RICE software that leverages our experiences from the user and network interplay studies, and has functionalities that facilitate reliable and efficient remote instrumentation such as (a network health awareness to detect network bottleneck periods, and (b collaboration tools for multiple participants to interact during research and training sessions.

  16. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  17. SOFIA science instruments: commissioning, upgrades and future opportunities

    Science.gov (United States)

    Smith, Erin C.; Miles, John W.; Helton, L. Andrew; Sankrit, Ravi; Andersson, B. G.; Becklin, Eric E.; De Buizer, James M.; Dowell, C. D.; Dunham, Edward W.; Güsten, Rolf; Harper, Doyal A.; Herter, Terry L.; Keller, Luke D.; Klein, Randolf; Krabbe, Alfred; Logsdon, Sarah; Marcum, Pamela M.; McLean, Ian S.; Reach, William T.; Richter, Matthew J.; Roellig, Thomas L.; Sandell, Göran; Savage, Maureen L.; Temi, Pasquale; Vacca, William D.; Vaillancourt, John E.; Van Cleve, Jeffrey E.; Young, Erick T.

    2014-07-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter effective aperture telescope housed in the aft section of a Boeing 747SP aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 μm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1μm imager built by Lowell Observatory; GREAT (German Receiver for Astronomy at Terahertz Frequencies), a multichannel heterodyne spectrometer from 60-240 μm, developed by a consortium led by the Max Planck Institute for Radio Astronomy; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 μm wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-200 μm IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross-Echelle Spectrograph), a 5-28 μm highresolution spectrometer designed at the University of Texas and being completed by UC Davis and NASA Ames Research Center. HAWC+ (High-resolution Airborne Wideband Camera) is a 50-240 μm imager that was originally developed at the University of Chicago as a first-generation instrument (HAWC), and is being upgraded at JPL to add polarimetry and new detectors developed at Goddard Space Flight Center (GSFC). SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details the current instrument capabilities and status, as well as the plans for future instrumentation.

  18. Nuclear electronic instrumentation

    International Nuclear Information System (INIS)

    Ramirez J, F. J.

    2010-01-01

    The activities carried out in the Instituto Nacional de Investigaciones Nucleares (ININ) in the field of the nuclear electronic instrumentation included those activities corresponding to the design and production of nuclear instruments in a first stage, as well as the internal activities of design, repair and maintenance that have supported to other projects of the institution during many years. It is mentioned of the presence and constant collaboration of the ININ with the IAEA in different projects and programs. Also, it is mentioned on the establishment of the Radiation Detectors Laboratory, which for their characteristics and repair capacities of radiation detectors of cooled semiconductor, it is only in their specialty. It is emphasized the investigation and the development in the field of new radiation detectors and applications, as well as the important contribution in this field, in institutions like: Mexican Petroleum, National Commission of Nuclear Safety and Safeguards and Federal Commission of Electricity. Finally a position of the future of these activities is made, considering the speed of the advances of the electronic and nuclear technology. (Author)

  19. Neutron instrumentation system

    International Nuclear Information System (INIS)

    Akiyama, Takao; Arita, Setsuo; Yuchi, Hiroyuki

    1989-01-01

    The neutron instrumentation system of this invention can greatly reduce the possibility that the shutdown flux is increased greater than a predetermiend value to cause scram due to vibrations caused by earthquakes or shocks in the neutron instrumentation system without injuring the reactor safety. That is, a sensor having a zero sensitivity to a neutron flux which is an object to be detected by the sensor (dummy sensor) is used together with a conventional sensor (a sensor having predetermined sensitivity to a neutron flux as an object to be measured ----- true sensor). Further, identical signal transmission cables, connector and the signal processing circuits are used for both of true sensor and the dummy sensor. The signal from the dummy sensor is subtracted from the signal from the true sensor at the output of the signal processing circuit. Since the output of the dummy sensor is zero during normal operation, the subtracted value is the same as the value from the true sensor. If the true sensor causes an output with the reason other than the neutron flux, this is outputted also from the dummy sensor but does not appear in the subtracted value. (I.S.)

  20. Incore instrument device

    International Nuclear Information System (INIS)

    Sakima, Naoki

    1996-01-01

    An incore instrument device has an integrally disposed touch panel having a function of displaying an operation indication method such as for setting of conditions for incore measurement and information processing and results of the incore measurement and a function capable of conducting operation indication such as for setting conditions and information processing for incore measurement relative to a control section upon touching an information position on a displayed information. In addition, an information processing section comprising a man-machine function program formed so as to recognize the content of the operation indication for the incore measurement by touching and let the control section to conduct it is disposed to the outside by way of a communication interface. In addition, a programming device is disposed for forming and rewriting the program of the man-machine function relative to the information processing section. Then, when various indication operations are conducted upon performing incore measurement, a view point can be concentrated to one predetermined point thereby enabling to improve the operationability without danger. In addition, the programming of the man-machine function does not apply unnecessary load to the control section in the incore instrumentation device. (N.H.)

  1. Balances instruments, manufacturers, history

    CERN Document Server

    Robens, Erich; Kiefer, Susanne

    2014-01-01

    The book deals mainly with direct mass determination by means of a conventional balances. It covers the history of the balance from the beginnings in Egypt earlier than 3000 BC to recent developments. All balance types are described with emphasis on scientific balances. Methods of indirect mass determination, which are applied to very light objects like molecules and the basic particles of matter and celestial bodies, are included.  As additional guidance, today’s manufacturers are listed and the profile of important companies is reviewed. Several hundred photographs, reproductions and drawings show instruments and their uses. This book includes commercial weighing instruments for merchandise and raw materials in workshops as well as symbolic weighing in the ancient Egyptian’s ceremony of ‘Weighing of the Heart’, the Greek fate balance, the Roman  Justitia, Juno Moneta and Middle Ages scenes of the Last Judgement with Jesus or St. Michael and of modern balances. The photographs are selected from the...

  2. Advancements in Actuated Musical Instruments

    DEFF Research Database (Denmark)

    Overholt, Daniel; Berdahl, Edgar; Hamilton, Robert

    2011-01-01

    are physical instruments that have been endowed with virtual qualities controlled by a computer in real-time but which are nevertheless tangible. These instruments provide intuitive and engaging new forms of interaction. They are different from traditional (acoustic) and fully automated (robotic) instruments...

  3. Rio de Janeiro: Instrumentation school

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Students from Latin America were able to get hands-on experience in state-of-the-art physics instrumentation in this year's School on Instrumentation for High Energy Physics organized by the active Instrumentation Panel of ICFA (the International Committee for Future Accelerators) at the Centro Brasileiro de Pesquicas Fisicas (CBPF), Rio de Janeiro, in July

  4. Instrument Remote Control via the Astronomical Instrument Markup Language

    Science.gov (United States)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  5. Instrumentation and quantitative methods of evaluation. Progress report, January 15-September 14, 1986

    International Nuclear Information System (INIS)

    Beck, R.N.

    1986-09-01

    This document reports progress under grant entitled ''Instrumentation and Quantitative Methods of Evaluation.'' Individual reports are presented on projects entitled the physical aspects of radionuclide imaging, image reconstruction and quantitative evaluation, PET-related instrumentation for improved quantitation, improvements in the FMI cyclotron for increased utilization, and methodology for quantitative evaluation of diagnostic performance

  6. Human pavlovian-instrumental transfer.

    Science.gov (United States)

    Talmi, Deborah; Seymour, Ben; Dayan, Peter; Dolan, Raymond J

    2008-01-09

    The vigor with which a participant performs actions that produce valuable outcomes is subject to a complex set of motivational influences. Many of these are believed to involve the amygdala and the nucleus accumbens, which act as an interface between limbic and motor systems. One prominent class of influences is called pavlovian-instrumental transfer (PIT), in which the motivational characteristics of a predictor influence the vigor of an action with respect to which it is formally completely independent. We provide a demonstration of behavioral PIT in humans, with an audiovisual predictor of the noncontingent delivery of money inducing participants to perform more avidly an action involving squeezing a handgrip to earn money. Furthermore, using functional magnetic resonance imaging, we show that this enhanced motivation was associated with a trial-by-trial correlation with the blood oxygenation level-dependent (BOLD) signal in the nucleus accumbens and a subject-by-subject correlation with the BOLD signal in the amygdala. Our data dovetails well with the animal literature and sheds light on the neural control of vigor.

  7. Human Pavlovian–Instrumental Transfer

    Science.gov (United States)

    Talmi, Deborah; Seymour, Ben; Dayan, Peter; Dolan, Raymond J.

    2009-01-01

    The vigor with which a participant performs actions that produce valuable outcomes is subject to a complex set of motivational influences. Many of these are believed to involve the amygdala and the nucleus accumbens, which act as an interface between limbic and motor systems. One prominent class of influences is called pavlovian–instrumental transfer (PIT), in which the motivational characteristics of a predictor influence the vigor of an action with respect to which it is formally completely independent. We provide a demonstration of behavioral PIT in humans, with an audiovisual predictor of the noncontingent delivery of money inducing participants to perform more avidly an action involving squeezing a handgrip to earn money. Furthermore, using functional magnetic resonance imaging, we show that this enhanced motivation was associated with a trial-by-trial correlation with the blood oxygenation level-dependent (BOLD) signal in the nucleus accumbens and a subject-by-subject correlation with the BOLD signal in the amygdala. Our data dovetails well with the animal literature and sheds light on the neural control of vigor. PMID:18184778

  8. Safeguards instrument to monitor spent reactor fuel

    International Nuclear Information System (INIS)

    Nicholson, N.; Dowdy, E.J.; Holt, D.M.; Stump, C.

    1981-01-01

    A hand-held instrument for monitoring irradiated nuclear fuel inventories located in water-filled storage ponds has been developed. This instrument provides sufficient precise qualitative and quantitative information to be useful as a confirmatory technique to International Atomic Energy Agency inspectors, and is believed to be of potential use to nuclear fuel managers and to operators of spent-fuel storage facilities, both at reactor and away-from-reactor, and to operators of nuclear fuel reprocessing plants. Because the Cerenkov radiation glow can barely be seen by the unaided eye under darkened conditions, a night vision device is incorporated to aid the operator in locating the fuel assembly to be measured. Beam splitting optics placed in front of the image intensifier and a preset aperture select a predetermined portion of the observed scene for measurement of the light intensity using a photomultiplier (PM) tube and digital readout. The PM tube gain is adjusted by use of an internal optical reference source, providing long term repeatability and instrument-to-instrument cnsistency. Interchangeable lenses accommodate various viewing and measuring conditions

  9. The XGS instrument on-board THESEUS

    International Nuclear Information System (INIS)

    Fuschino, F.; Baldazzi, G.; Rignanese, L. P.; Campana, R.; Labanti, C.; Marisaldi, M.; Amati, L.; Frontera, F.; Fiorini, M.; Uslenghi, M.; Evangelista, Y.; Feroci, M.; Elmi, I.; Rachevski, A.; Zampa, G.; Zampa, N.; Vacchi, A.; Rashevskaya, I.; Bellutti, P.; Piemonte, C.

    2016-01-01

    Consolidated techniques used for space-borne X-ray and gamma-ray instruments are based on the use of scintillators coupled to Silicon photo-detectors. This technology associated with modern very low noise read-out electronics allows the design of innovative architectures able to reduce drastically the system complexity and power consumption, also with a moderate-to-high number of channels. These detector architectures can be exploited in the design of space instrumentation for gamma-spectroscopy with the benefit of possible smart background rejection strategies. We describe a detector prototype with 3D imaging capabilities to be employed in future gamma-ray and particle space missions in the 0.002-100 MeV energy range. The instrument is based on a stack of scintillating bars read out by Silicon Drift Detectors (SDDs) at both ends. The spatial segmentation and the crystal double-side readout allow a 3D position reconstruction with ∼3 mm accuracy within the full active volume, using a 2D readout along the two external faces of the detector. Furthermore, one of the side of SDDs can be used simultaneously to detect X-rays in the 2-30 keV energy range. The characteristics of this instrument make it suitable in next generation gamma-ray and particle space missions for Earth or outer space observations, and it will be briefly illustrated. (paper)

  10. The XGS instrument on-board THESEUS

    Science.gov (United States)

    Fuschino, F.; Campana, R.; Labanti, C.; Marisaldi, M.; Amati, L.; Fiorini, M.; Uslenghi, M.; Baldazzi, G.; Evangelista, Y.; Elmi, I.; Feroci, M.; Frontera, F.; Rachevski, A.; Rignanese, L. P.; Vacchi, A.; Zampa, G.; Zampa, N.; Rashevskaya, I.; Bellutti, P.; Piemonte, C.

    2016-10-01

    Consolidated techniques used for space-borne X-ray and gamma-ray instruments are based on the use of scintillators coupled to Silicon photo-detectors. This technology associated with modern very low noise read-out electronics allows the design of innovative architectures able to reduce drastically the system complexity and power consumption, also with a moderate-to-high number of channels. These detector architectures can be exploited in the design of space instrumentation for gamma-spectroscopy with the benefit of possible smart background rejection strategies. We describe a detector prototype with 3D imaging capabilities to be employed in future gamma-ray and particle space missions in the 0.002-100 MeV energy range. The instrument is based on a stack of scintillating bars read out by Silicon Drift Detectors (SDDs) at both ends. The spatial segmentation and the crystal double-side readout allow a 3D position reconstruction with ∼3 mm accuracy within the full active volume, using a 2D readout along the two external faces of the detector. Furthermore, one of the side of SDDs can be used simultaneously to detect X-rays in the 2-30 keV energy range. The characteristics of this instrument make it suitable in next generation gamma-ray and particle space missions for Earth or outer space observations, and it will be briefly illustrated.

  11. Astronomical Instrumentation System Markup Language

    Science.gov (United States)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  12. Control of training instrument

    International Nuclear Information System (INIS)

    Seo, K. W.; Joo, Y. C.; Park, J. C.; Hong, C. S.; Choi, I. K.; Cho, B. J.; Lee, H. Y.; Seo, I. S.; Park, N. K.

    1996-01-01

    This report describes the annual results on control of training instrument. The scope and contents are the following: 1. Control of Compact Nuclear Simulator 2. Control of Radiation/Radioactivity Measurement 3. Control of Non-Destructive Testing Equipment 4. Control of Chemical Equipment 5. Control of Personal Computer 6. Other related Lecture Aid Equipment. Efforts were employed to upgrade the training environment through retrofitting experimental facilities, compiling teaching materials and reforcing audio-visual aids. The Nuclear Training Center executed the open-door training courses for 2,496 engineers/scientists from the nuclear regulatory, nuclear industries, research institutes and other related organizations by means of offering 45 training courses during the fiscal year 1995. (author). 15 tabs., 7 figs., 13 refs

  13. Portable musical instrument amplifier

    Science.gov (United States)

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  14. Instrument design and automation

    International Nuclear Information System (INIS)

    Wernlund, R.F.

    1984-01-01

    The ion mobility spectrometer-mass spectrometer (IMS-MS) is described and consists of two separate instruments coupled in tandem: an ion mobility spectrometer coupled to a quadrupole mass spectrometer. The two insturments operate at different pressures in a synergistic manner, supplying both drift time and mass information about ions which are formed at atmospheric pressure in the ion mobility spectrometer tube. Two types of ion intensity signals are presented to the data processor. The IMS produces an analog voltage with major components from dc to 5 KHz. The mass spectrometer signal output resides in the pulse count rate derived from a series of TTL level pulses where each pulse represents the arrival of a single ion. The hardware, software, interfacing capabilities and basic data acquisition program are described in detail

  15. FMIT diagnostic instrumentation

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.; Chamberlin, D.D.

    1985-01-01

    The Fusion Materials Irradiation Test facility (FMIT) cw prototype accelerator has noninterceptive beamline instrumentation to measure beam parameters. The transverse emittances and beam profiles are measured with an array of photodiode sensors viewing light emitted from the beam region. Tomographic reconstructions of both spatial-density distributions and of transverse-emittance distributions are performed throughout a quadrupole focusing section. Beam bunches passing through capacitive probes produce bipolar waveforms whose zero crossing corresponds to the bunch's longitudinal centroid. By measuring the time required for a bunch to travel the known distance between two probes, velocity and energy are determined. A toroidal transformer measures the average ac beam current. Beam spill is measured by a set of movable jaws that intercept the beam edges. Each jaw contains a water flow channel whose flow rate and differential temperature are measured to derive a transverse power distribution. Beam centroid position is measured by a four-lobe, magnetic-loop pickup. 5 refs., 6 figs

  16. Instrumented Pipeline Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  17. Ideology as instrument.

    Science.gov (United States)

    Glassman, Michael; Karno, Donna

    2007-12-01

    Comments on the article by J. T. Jost, which argued that the end-of-ideology claims that emerged in the aftermath of World War II were both incorrect and detrimental to the field of political psychology. M. Glassman and D. Karno make three critical points. First, Jost objectified ideology as a grand strategy implemented at the individual level, rather than as an instrument used for a specific purpose in activity. In doing so, he set ideology up as an "object" that guides human behavior rather than as a rational part of human experience. Second, they take issue with the idea that, because somebody acts in a manner that can be categorized as ideological, there actually is such a thing as ideology separate from that event and/or political experience and that psychologists ought to understand the meaning of ideology in order to understand future human activities as outside observers. Third, Jost seems to see this objective ideology as a unidirectional, causal mechanism for activity, a mechanism that assumes individuals act according to ideology, which eclipses the possibility that immediate ideological positions are the residue of purposeful activity. Glassman and Karno suggest that it may be better to take a pluralistic view of ideology in human action. Where ideology does exist, it is as a purposeful instrument--part of a logically based action to meet some ends-in-view--a mixture of immediate goals tied to secondary belief systems (which have been integrated to serve the material purposes of the purveyors of these ideologies). So if we are to understand ideology, we can only understand it through its use in human activity. (Copyright) 2007 APA.

  18. Diffusion-weighted magnetic resonance imaging - a new instrument in the diagnosis of Creutzfeldt-Jacob's disease; Diffusjonsvektet magnetisk resonanstomografi - nytt i diagnostikken av Creutzfeldt-Jakobs sykdom

    Energy Technology Data Exchange (ETDEWEB)

    Romi, Fredrik; Smivoll, Alf Inge; Moerk, Sverre; Tysnes, Ole-Bjoern

    2000-07-01

    Creutzfeldt-Jacob's disease (CID) is characterised by rapidly progressive dementia, ataxia, myoclonus and several other neurological deficits. It generally affects older adults and occurs in sporadic, genetic and iatrogenic forms. Death occurs usually within one year after onset of the disease. The diagnosis is based on clinical criteria, neuro physiological and radiological findings and confirmed by post mortal histopathology. During the last two years several cases of CID have been reported with diffusion-weighted magnetic resonance imaging (MR) abnormalities represented by increased signal intensity indicating reduced diffusion in basal ganglia and/or cortex cerebric. These abnormalities seem to be characteristic of CID. We report a case of CID in a 54 year old woman who developed vertigo, nystagmus, ataxia, myoclonus and dementia over a period of eight months. Diffusion-weighted magnetic resonance imaging showed increased signal intensity in corpus striatum and gyrus conguli. The diagnosis was post mortally confirmed with histopathology. (Author) 7 figs., 15 refs.

  19. Swift Burst Alert Telescope (BAT) Instrument Response

    International Nuclear Information System (INIS)

    Parsons, A.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Hullinger, D.; Krimm, H.; Markwardt, C.; Tueller, J.; Fenimore, E.; Palmer, D.; Sato, G.; Takahashi, T.; Nakazawa, K.; Okada, Y.; Takahashi, H.; Suzuki, M.; Tashiro, M.

    2004-01-01

    The Burst Alert Telescope (BAT), a large coded aperture instrument with a wide field-of-view (FOV), provides the gamma-ray burst triggers and locations for the Swift Gamma-Ray Burst Explorer. In addition to providing this imaging information, BAT will perform a 15 keV - 150 keV all-sky hard x-ray survey based on the serendipitous pointings resulting from the study of gamma-ray bursts, and will also monitor the sky for transient hard x-ray sources. For BAT to provide spectral and photometric information for the gamma-ray bursts, the transient sources and the all-sky survey, the BAT instrument response must be determined to an increasingly greater accuracy. This paper describes the spectral models and the ground calibration experiments used to determine the BAT response to an accuracy suitable for gamma-ray burst studies

  20. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. I. INSTRUMENT DESCRIPTION AND FIRST RESULTS

    International Nuclear Information System (INIS)

    Horch, Elliott P.; Veillette, Daniel R.; Shah, Sagar C.; O'Rielly, Grant V.; Baena Galle, Roberto; Van Altena, William F.

    2009-01-01

    First results of a new speckle imaging system, the Differential Speckle Survey Instrument, are reported. The instrument is designed to take speckle data in two filters simultaneously with two independent CCD imagers. This feature results in three advantages over other speckle cameras: (1) twice as many frames can be obtained in the same observation time which can increase the signal-to-noise ratio for astrometric measurements, (2) component colors can be derived from a single observation, and (3) the two colors give substantial leverage over atmospheric dispersion, allowing for subdiffraction-limited separations to be measured reliably. Fifty-four observations are reported from the first use of the instrument at the Wisconsin-Indiana-Yale-NOAO 3.5 m Telescope 9 The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatories. in 2008 September, including seven components resolved for the first time. These observations are used to judge the basic capabilities of the instrument.

  1. Pancreatitis Quality of Life Instrument: Development of a new instrument

    Directory of Open Access Journals (Sweden)

    Wahid Wassef

    2014-02-01

    Full Text Available Objectives: The goal of this project was to develop the first disease-specific instrument for the evaluation of quality of life in chronic pancreatitis. Methods: Focus groups and interview sessions were conducted, with chronic pancreatitis patients, to identify items felt to impact quality of life which were subsequently formatted into a paper-and-pencil instrument. This instrument was used to conduct an online survey by an expert panel of pancreatologists to evaluate its content validity. Finally, the modified instrument was presented to patients during precognitive testing interviews to evaluate its clarity and appropriateness. Results: In total, 10 patients were enrolled in the focus groups and interview sessions where they identified 50 items. Once redundant items were removed, the 40 remaining items were made into a paper-and-pencil instrument referred to as the Pancreatitis Quality of Life Instrument. Through the processes of content validation and precognitive testing, the number of items in the instrument was reduced to 24. Conclusions: This marks the development of the first disease-specific instrument to evaluate quality of life in chronic pancreatitis. It includes unique features not found in generic instruments (economic factors, stigma, and spiritual factors. Although this marks a giant step forward, psychometric evaluation is still needed prior to its clinical use.

  2. Ultrahigh Resolution 3-Dimensional Imaging, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop innovative instrumentation for the rapid, 3-dimensional imaging of biological tissues with cellular resolution. Our approach...

  3. Magnetic resonance instrumentation

    International Nuclear Information System (INIS)

    Bell, R.A.

    1987-01-01

    Magnetic resonance (MR), while opening new vistas to diagnostic medicine, utilizes equipment that is unfamiliar to most clinicians. Beyond learning to cope with new terms, such as spin-echo, T1, T2, and spin density, health care professionals are faced with the inclusion of magnetic and radiofrequency effects in their facilities produced by a complex array of devices. It is the purpose of this chapter to outline the components of an MR imaging system, to discuss their functions, and to note the variations in equipment commercially available

  4. Synthesis imaging in radio astronomy

    International Nuclear Information System (INIS)

    Perley, R.A.; Schwab, F.R.; Bridle, A.H.

    1989-01-01

    Recent advances in techniques and instrumentation for radio synthesis imaging in astronomy are discussed in a collection of review essays. Topics addressed include coherence in radio astronomy, the interferometer in practice, primary antenna elements, cross correlators, calibration and editing, sensitivity, deconvolution, self-calibration, error recognition, and image analysis. Consideration is given to wide-field imaging (bandwidth and time-average smearing, noncoplanar arrays, and mosaicking), high-dynamic-range imaging, spectral-line imaging, VLBI, solar imaging with a synthesis telescope, synthesis imaging of spatially coherent objects, noise in images of very bright sources, synthesis observing strategies, and the design of aperture-synthesis arrays

  5. Industrial instrumentation principles and design

    CERN Document Server

    Padmanabhan, Tattamangalam R

    2000-01-01

    Pneumatic, hydraulic and allied instrumentation schemes have given way to electronic schemes in recent years thanks to the rapid strides in electronics and allied areas. Principles, design and applications of such state-of-the-art instrumentation schemes form the subject matter of this book. Through representative examples, the basic building blocks of instrumentation schemes are identified and each of these building blocks discussed in terms of its design and interface characteristics. The common generic schemes synthesized with such building blocks are dealt with subsequently. This forms the scope of Part I. The focus in Part II is on application. Displacement and allied instrumentation, force and allied instrumentation and process instrumentation in terms of temperature, flow, pressure level and other common process variables are dealt with separately and exhaustively. Despite the diversity in the sensor principles and characteristics and the variety in the applications and their environments, it is possib...

  6. Impact Disdrometers Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, Mary Jane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    To improve the quantitative description of precipitation processes in climate models, the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility has been collecting observations of the drop size spectra of rain events since early in 2006. Impact disdrometers were the initial choice due to their reliability, ease of maintenance, and relatively low cost. Each of the two units deployed was accompanied by a nearby tipping bucket. In 2010, the tipping buckets were replaced by weighing buckets rain gauges. Five video disdrometers were subsequently purchased and are described in ARM’s VDIS Handbook.1 As of April 2011, three of the weighing bucket instruments were deployed, one was to travel with the second ARM Mobile Facility, and the fifth was a spare. Two of the video disdrometers were deployed, a third was to be deployed later in the spring of 2011, one was to travel with the second ARM Mobile Facility, and the last was a spare. Detailed descriptions of impact disdrometers and their datastreams are provided in this document.

  7. TFTR CAMAC instrumentation system

    International Nuclear Information System (INIS)

    Del Gatto, H.J.; Bradish, C.J.

    1983-01-01

    The TFTR Central Instrumentation Control and Data Acquisition (CICADA) system makes extensive use of CAMAC equipment. The system consists of eight CAMAC highways operating from eight Gould 75/32 computers. Links up to 3.5 miles in length with more than fifty CAMAC crates have been implemented and are currently in use. Data transfer along the highway is implemented in bit serial format. The link speed is run at 5MHz. The length and complexity of the link requires the reformatting of the NRZ input/output format of the L-2 crate controller. U-Port adapter modules are used to interface the modified serial highway to the L-2 controllers. The modified serial highway uses a transmission technique that requires the distribution of both Bi-Phase encoded data and a 5MHz clock. The Serial Driver interfaces to the GOULD computer through use of a High Speed Data (HSD) interface board which attaches to the computers internal bus. All transfers to and from the computer are accomplished by direct memory access (DMA). In addition to the standard CAMAC link the system also includes a Block Transfer (BT) system. This system provides an alternate path for transferring data between the computers and the CAMAC modules. The BT system is interfaced to the host computers through HSD boards and to the CAMAC crates through use of an auxiliary crate controllers

  8. Detectors for Tomorrow's Instruments

    Science.gov (United States)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  9. Measurement, instrumentation, and sensors handbook

    CERN Document Server

    Eren, Halit

    2014-01-01

    The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized acco

  10. Experimenting with string musical instruments

    Science.gov (United States)

    LoPresto, Michael C.

    2012-03-01

    What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.

  11. Basics of radiation physics and instrumentation

    International Nuclear Information System (INIS)

    Royal, H.D.

    1985-01-01

    Continued technical developments are greatly changing medical diagnosis and medical care. In the field of cardiology, a number of new imaging techniques are currently available. This chapter reviews several topics that are important in the practice of nuclear cardiology. The first section discusses some of the basics of nuclear physics. Familiarity with these fundamentals is essential for an in-depth understanding of nuclear cardiology. The second section presents information on radiotracers and provides dosimetry estimates for commonly performed studies. The third section reviews the instruments used to detect radioactivity. The final section discusses computers and their applications and limitations in nuclear cardiology

  12. Evaluating the Relational Coordination instrument

    DEFF Research Database (Denmark)

    Edwards, Kasper; Lundstrøm, Sanne Lykke

    2014-01-01

    consistency, interrater agreement and reliability, structural validity, content validity. However as relational coordination is being used as a diagnostics tool it is important to examine further if the instrument can measure changes. Indeed we need to know how precise and sensitive the instrument is when....... We distinguish between statistical and clinical significance. Statistical significance is calculated using T-test. Clinical significance is the minimal amount of change in relational coordination score that is not considered noise. Sensitivity of the instrument i.e. the ability of the instrument...

  13. Effect of Instrumentation Length and Instrumentation Systems: Hand Versus Rotary Files on Apical Crack Formation - An In vitro Study.

    Science.gov (United States)

    Devale, Madhuri R; Mahesh, M C; Bhandary, Shreetha

    2017-01-01

    Stresses generated during root canal instrumentation have been reported to cause apical cracks. The smaller, less pronounced defects like cracks can later propagate into vertical root fracture, when the tooth is subjected to repeated stresses from endodontic or restorative procedures. This study evaluated occurrence of apical cracks with stainless steel hand files, rotary NiTi RaCe and K3 files at two different instrumentation lengths. In the present in vitro study, 60 mandibular premolars were mounted in resin blocks with simulated periodontal ligament. Apical 3 mm of the root surfaces were exposed and stained using India ink. Preoperative images of root apices were obtained at 100x using stereomicroscope. The teeth were divided into six groups of 10 each. First two groups were instrumented with stainless steel files, next two groups with rotary NiTi RaCe files and the last two groups with rotary NiTi K3 files. The instrumentation was carried out till the apical foramen (Working Length-WL) and 1 mm short of the apical foramen (WL-1) with each file system. After root canal instrumentation, postoperative images of root apices were obtained. Preoperative and postoperative images were compared and the occurrence of cracks was recorded. Descriptive statistical analysis and Chi-square tests were used to analyze the results. Apical root cracks were seen in 30%, 35% and 20% of teeth instrumented with K-files, RaCe files and K3 files respectively. There was no statistical significance among three instrumentation systems in the formation of apical cracks (p=0.563). Apical cracks were seen in 40% and 20% of teeth instrumented with K-files; 60% and 10% of teeth with RaCe files and 40% and 0% of teeth with K3 files at WL and WL-1 respectively. For groups instrumented with hand files there was no statistical significance in number of cracks at WL and WL-1 (p=0.628). But for teeth instrumented with RaCe files and K3 files significantly more number of cracks were seen at WL than

  14. Effect of Instrumentation Length and Instrumentation Systems: Hand Versus Rotary Files on Apical Crack Formation – An In vitro Study

    Science.gov (United States)

    Mahesh, MC; Bhandary, Shreetha

    2017-01-01

    Introduction Stresses generated during root canal instrumentation have been reported to cause apical cracks. The smaller, less pronounced defects like cracks can later propagate into vertical root fracture, when the tooth is subjected to repeated stresses from endodontic or restorative procedures. Aim This study evaluated occurrence of apical cracks with stainless steel hand files, rotary NiTi RaCe and K3 files at two different instrumentation lengths. Materials and Methods In the present in vitro study, 60 mandibular premolars were mounted in resin blocks with simulated periodontal ligament. Apical 3 mm of the root surfaces were exposed and stained using India ink. Preoperative images of root apices were obtained at 100x using stereomicroscope. The teeth were divided into six groups of 10 each. First two groups were instrumented with stainless steel files, next two groups with rotary NiTi RaCe files and the last two groups with rotary NiTi K3 files. The instrumentation was carried out till the apical foramen (Working Length-WL) and 1 mm short of the apical foramen (WL-1) with each file system. After root canal instrumentation, postoperative images of root apices were obtained. Preoperative and postoperative images were compared and the occurrence of cracks was recorded. Descriptive statistical analysis and Chi-square tests were used to analyze the results. Results Apical root cracks were seen in 30%, 35% and 20% of teeth instrumented with K-files, RaCe files and K3 files respectively. There was no statistical significance among three instrumentation systems in the formation of apical cracks (p=0.563). Apical cracks were seen in 40% and 20% of teeth instrumented with K-files; 60% and 10% of teeth with RaCe files and 40% and 0% of teeth with K3 files at WL and WL-1 respectively. For groups instrumented with hand files there was no statistical significance in number of cracks at WL and WL-1 (p=0.628). But for teeth instrumented with RaCe files and K3 files

  15. Fluoroscopic Imaging Systems. Chapter 8

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A. K. [University of Texas MD Anderson Cancer Center, Houston (United States)

    2014-09-15

    Fluoroscopy refers to the use of an X ray beam and a suitable image receptor for viewing images of processes or instruments in the body in real time. Fluoroscopic imaging trades the high signal to noise ratio (SNR) of radiography for high temporal resolution, as factors that maintain patient dose at an acceptable level must be used.

  16. TH-A-17A-01: Innovation in PET Instrumentation and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Casey, M [Siemens Healthcare, Knoxville, Tennessee (United States); Miyaoka, R [University of Washington, Seattle, WA (United States); Shao, Y [University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Innovation in PET instrumentation has led to the new millennium revolutionary imaging applications for diagnosis, therapeutic guidance, and development of new molecular imaging probes, etc. However, after several decades innovations, will the advances of PET technology and applications continue with the same trend and pace? What will be the next big thing beyond the PET/CT, PET/MRI, and Time-of-flight PET? How will the PET instrumentation and imaging performance be further improved by novel detector research and advanced imaging system development? Or will the development of new algorithms and methodologies extend the limit of current instrumentation and leapfrog the imaging quality and quantification for practical applications? The objective of this session is to present an overview of current status and advances in the PET instrumentation and applications with speakers from leading academic institutes and a major medical imaging company. Presenting with both academic research projects and commercial technology developments, this session will provide a glimpse of some latest advances and challenges in the field, such as using semiconductor photon-sensor based PET detectors to improve performance and enable new applications, as well as the technology trend that may lead to the next breakthrough in PET imaging for clinical and preclinical applications. Both imaging and image-guided therapy subjects will be discussed. Learning Objectives: Describe the latest innovations in PET instrumentation and applications Understand the driven force behind the PET instrumentation innovation and development Learn the trend of PET technology development for applications.

  17. TH-A-17A-01: Innovation in PET Instrumentation and Applications

    International Nuclear Information System (INIS)

    Casey, M; Miyaoka, R; Shao, Y

    2014-01-01

    Innovation in PET instrumentation has led to the new millennium revolutionary imaging applications for diagnosis, therapeutic guidance, and development of new molecular imaging probes, etc. However, after several decades innovations, will the advances of PET technology and applications continue with the same trend and pace? What will be the next big thing beyond the PET/CT, PET/MRI, and Time-of-flight PET? How will the PET instrumentation and imaging performance be further improved by novel detector research and advanced imaging system development? Or will the development of new algorithms and methodologies extend the limit of current instrumentation and leapfrog the imaging quality and quantification for practical applications? The objective of this session is to present an overview of current status and advances in the PET instrumentation and applications with speakers from leading academic institutes and a major medical imaging company. Presenting with both academic research projects and commercial technology developments, this session will provide a glimpse of some latest advances and challenges in the field, such as using semiconductor photon-sensor based PET detectors to improve performance and enable new applications, as well as the technology trend that may lead to the next breakthrough in PET imaging for clinical and preclinical applications. Both imaging and image-guided therapy subjects will be discussed. Learning Objectives: Describe the latest innovations in PET instrumentation and applications Understand the driven force behind the PET instrumentation innovation and development Learn the trend of PET technology development for applications

  18. Instruments to assess integrated care

    DEFF Research Database (Denmark)

    Lyngsø, Anne Marie; Godtfredsen, Nina Skavlan; Høst, Dorte

    2014-01-01

    INTRODUCTION: Although several measurement instruments have been developed to measure the level of integrated health care delivery, no standardised, validated instrument exists covering all aspects of integrated care. The purpose of this review is to identify the instruments concerning how to mea...... was prevalent. It is uncertain whether development of a single 'all-inclusive' model for assessing integrated care is desirable. We emphasise the continuing need for validated instruments embedded in theoretical contexts.......INTRODUCTION: Although several measurement instruments have been developed to measure the level of integrated health care delivery, no standardised, validated instrument exists covering all aspects of integrated care. The purpose of this review is to identify the instruments concerning how...... to measure the level of integration across health-care sectors and to assess and evaluate the organisational elements within the instruments identified. METHODS: An extensive, systematic literature review in PubMed, CINAHL, PsycINFO, Cochrane Library, Web of Science for the years 1980-2011. Selected...

  19. Atomic absorption instrument functional description

    International Nuclear Information System (INIS)

    Bystroff, R.I.; Boyle, W.G. Jr.; Barton, G.W. Jr.

    1976-01-01

    This report describes a proposed system for automating atomic absorption analysis. The system consists of two atomic absorption instruments and an automatic sampler that can be attached to either instrument. A computer program controls the sampling and gathers data. The program then uses the data to perform bookkeeping, data processing, and report writing

  20. Nuclear instrumentation evaluation and analysis

    International Nuclear Information System (INIS)

    Park, Suk Jun; Han, Sang Joon; Chung, Chong Eun; Han, Kwang Soo; Kim, Dong Hwa; Park, Byung Hae; Moon, Je Sun; Lee, Chel Kwon; Song, Ki Sang; Choi, Myung Jin; Kim, Seung Bok; Kim, Jung Bok

    1986-12-01

    This project provides the program for improving instrumentation reliability as well as developing a cost-effective preventive maintenance activity through evaluation and analysis of nuclear instrumentation concerning pilot plants, large-scale test facilities and various laboratories on KAERI site. In addition, it discusses the program for enhancing safe operations and improving facility availability through establishment of maintenance technology. (Author)

  1. A Database Management Assessment Instrument

    Science.gov (United States)

    Landry, Jeffrey P.; Pardue, J. Harold; Daigle, Roy; Longenecker, Herbert E., Jr.

    2013-01-01

    This paper describes an instrument designed for assessing learning outcomes in data management. In addition to assessment of student learning and ABET outcomes, we have also found the instrument to be effective for determining database placement of incoming information systems (IS) graduate students. Each of these three uses is discussed in this…

  2. Experimenting with String Musical Instruments

    Science.gov (United States)

    LoPresto, Michael C.

    2012-01-01

    What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…

  3. Developing a workplace resilience instrument.

    Science.gov (United States)

    Mallak, Larry A; Yildiz, Mustafa

    2016-05-27

    Resilience benefits from the use of protective factors, as opposed to risk factors, which are associated with vulnerability. Considerable research and instrument development has been conducted in clinical settings for patients. The need existed for an instrument to be developed in a workplace setting to measure resilience of employees. This study developed and tested a resilience instrument for employees in the workplace. The research instrument was distributed to executives and nurses working in the United States in hospital settings. Five-hundred-forty completed and usable responses were obtained. The instrument contained an inventory of workplace resilience, a job stress questionnaire, and relevant demographics. The resilience items were written based on previous work by the lead author and inspired by Weick's [1] sense-making theory. A four-factor model yielded an instrument having psychometric properties showing good model fit. Twenty items were retained for the resulting Workplace Resilience Instrument (WRI). Parallel analysis was conducted with successive iterations of exploratory and confirmatory factor analyses. Respondents were classified based on their employment with either a rural or an urban hospital. Executives had significantly higher WRI scores than nurses, controlling for gender. WRI scores were positively and significantly correlated with years of experience and the Brief Job Stress Questionnaire. An instrument to measure individual resilience in the workplace (WRI) was developed. The WRI's four factors identify dimensions of workplace resilience for use in subsequent investigations: Active Problem-Solving, Team Efficacy, Confident Sense-Making, and Bricolage.

  4. Instrument for Study of Microbial Thermal Inactivation

    Science.gov (United States)

    Dickerson, R. W.; Read, R. B.

    1968-01-01

    An instrument was designed for the study of thermal inactivation of microorganisms using heating times of less than 1 sec. The instrument operates on the principle of rapid automatic displacement of the microorganism to and from a saturated steam atmosphere, and the operating temperature range is 50 to 90 C. At a temperature of 70 C, thermometric lag (time required to respond to 63.2% of a step change) of the fluid sample containing microorganisms was 0.12 sec. Heating time required to heat the sample to within 0.1 C of the exposure temperature was less than 1 sec, permitting exposure periods as brief as 1 sec, provided the proper corrections are made for the lethal effect of heating. The instrument is most useful for heat exposure periods of less than 5 min, and, typically, more than 500 samples can be processed for microbial inactivation determinations within an 8-hr period. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 Fig. 8 PMID:4874466

  5. Space instrumentation: physics and astronomy in harmony?

    International Nuclear Information System (INIS)

    Aderin, M

    2008-01-01

    Surrey Satellite Technology Limited was formed as a company in 1985 and has been involved in 23 small satellite missions, making it the most successful and experienced small satellite supplier in the world. The challenge of getting a satellite into space takes a dedicated multidisciplinary team of physicists and engineers working together to achieve a common goal. In this paper the author will look at the breakdown of the teams for a number of space projects including NigeriaSAT1; one of the satellites that make up the Disaster Monitoring Constellation (DMC), which produces high quality commercial images for monitoring agriculture and the environment as well as dedicating a proportion of it's time to disaster monitoring. Commercial projects like this will be contrasted to instruments such as the Integral Field Unit (IFU) for the NIRSpec instrument on the James Webb Space Telescope (JWST is the replacement for the Hubble Space telescope). Although both projects have been running through commercial contracts at SSTL, how does the final goal of the instrument influence the synergy between the physics and the engineering needed to make it, and what, if any, economic differences are seen?

  6. Smart antennas for nuclear instruments

    International Nuclear Information System (INIS)

    Jain, Ranjan Bala; Singhi, B.M.

    2005-01-01

    The advances in the field of computer and communications are leading to the development of smart embedded nuclear instruments. These instruments have highly sophisticated signal-processing algorithms based on FPGA and ASICS, provisions of present day connectivity and user interfaces. The developments in the connectivity, standards and bus technologies have made possible to access these instruments on LAN and WAN with suitable reliability and security. To get rid of wires i.e. in order to access these instruments, without wires at any place, wireless technology has evolved and become integral part of day-to-day activities. The environment monitoring can be done remotely, if smart antennas are incorporated on these instruments

  7. Recognition of Instrumentation Gauge in the Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Nuclear emergency robots were developed in 2001 as the countermeasure following the criticality accident at the JCO (uranium refinery facility) in Tokaimura, Japan in 1999. We assumed that these nuclear emergency robots were deployed (or put into) for a mitigation (or management) of severe accident, for example, occurred at Fukushima Daiichi nuclear power plant. In the case, the image understanding using a color CCD camera, loaded on the nuclear emergency robot, is important. We proposed an image processing technique to read indication value of the IC water level gauges using the structural characteristics of the instrumentation panels (water level gauges) located inside the reactor building. At first, we recognized the scales on the instrumentation panel using the geometric shape of the panel. And then, we could read the values of the instrumentation gauge by calculating the slope of the needle on the gauge. Using the proposed algorithm, we deciphered instrumentation panels for the four water level gauges and indicators shown on the IC video released by TEPCO and Japanese Nuclear Regulatory Commission of Japan. In this paper, recognition of the instrumentation gauges inside reactor building of the nuclear power plant by an image processing technology is described.

  8. Instrumentation with polarized neutrons

    International Nuclear Information System (INIS)

    Boeni, P.; Muenzer, W.; Ostermann, A.

    2009-01-01

    Neutron scattering with polarization analysis is an indispensable tool for the investigation of novel materials exhibiting electronic, magnetic, and orbital degrees of freedom. In addition, polarized neutrons are necessary for neutron spin precession techniques that path the way to obtain extremely high resolution in space and time. Last but not least, polarized neutrons are being used for fundamental studies as well as very recently for neutron imaging. Many years ago, neutron beam lines were simply adapted for polarized beam applications by adding polarizing elements leading usually to unacceptable losses in neutron intensity. Recently, an increasing number of beam lines are designed such that an optimum use of polarized neutrons is facilitated. In addition, marked progress has been obtained in the technology of 3 He polarizers and the reflectivity of large-m supermirrors. Therefore, if properly designed, only factors of approximately 2-3 in neutron intensity are lost. It is shown that S-benders provide neutron beams with an almost wavelength independent polarization. Using twin cavities, polarized beams with a homogeneous phase space and P>0.99 can be produced without significantly sacrificing intensity. It is argued that elliptic guides, which are coated with large m polarizing supermirrors, provide the highest flux.

  9. Analysis instrument by gammagraphy

    International Nuclear Information System (INIS)

    Lyons, F.T.

    1978-01-01

    The invention concerns an apparatus for forming the image of a cross section for nuclear medicine providing rapid collection of the radiations emitted by a cross section of a body organ, such as the brain of a patient injected with a labelled substance, the apparatus permitting rapid high sensitivity digital determination and spatial determination of the radioactivity of the organ in a cross section. A very important characteristic of the invention is that the collimator employed is highly focused on a single focus, in other words all the holes of the collimator converge on the focus and the collimator covers a large solid angle between around 0.05 and one steradian, preferably around 0.4 steradian, for collecting radiations. Under the invention, the most advantageous number of collimators is equal to 12 for the sensitivity and resolution achieved to be high in a short period, for example about 2 minutes per slice. The most advantageous range for the number of collimators is that of even numbers between 6 and 24. An even number of collimators is an advantage, since the collimators can then be arranged in pairs, each collimator scanning half the section of the organ so that the attenuation and dispersion effects are minimal [fr

  10. Modern spinal instrumentation. Part 1: Normal spinal implants

    International Nuclear Information System (INIS)

    Davis, W.; Allouni, A.K.; Mankad, K.; Prezzi, D.; Elias, T.; Rankine, J.; Davagnanam, I.

    2013-01-01

    The general radiologist frequently encounters studies demonstrating spinal instrumentation, either as part of the patient's postoperative evaluation or as incidental to a study performed for another purpose. There are various surgical approaches and devices used in spinal surgery with an increased understanding of spinal and spinal implant biomechanics drives development of modern fixation devices. It is, therefore, important that the radiologist can recognize commonly used devices and identify their potential complications demonstrated on imaging. The aim of part 1 of this review is to familiarize the reader with terms used to describe surgical approaches to the spine, review the function and normal appearances of commonly used instrumentations, and understand the importance of the different fixation techniques. The second part of this review will concentrate on the roles that the different imaging techniques play in assessing the instrumented spine and the recognition of complications that can potentially occur.

  11. Kinetic inductance detectors (KIDs) for the SAFARI instrument on SPICA

    NARCIS (Netherlands)

    Ferrari, L.; Baryshev, A M; Baselmans, J. J. A.; de Lange, G.; Diener, P.; Kooi, J. W.; Lankwarden, J. J.; Yates, S. J. C.; Oschmann, Jacobus M.; Clampin, Mark C.; MacEwen, Howard A.

    Kinetic Inductance Detectors (KIDs) with frequency domain read-out are intrinsically very suitable to use as building blocks for very large arrays. KIDs therefore are an attractive detector option for the SAFARI instrument on SPICA, Millimetron and also for large scale ground based imaging arrays.

  12. High degree modes and instrumental effects

    Energy Technology Data Exchange (ETDEWEB)

    Korzennik, S G [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Rabello-Soares, M C; Schou, J [Stanford University, Stanford, CA (United States)], E-mail: skorzennik@cfa.harvard.edu

    2008-10-15

    Full-disk observations taken with the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) spacecraft, or the upgraded Global Oscillations Network Group (GONG) instruments, have enough spatial resolution to resolve modes up to {iota} = 1000 if not {iota} = 1500. The inclusion of such high-degree modes (i.e., {iota} {<=} 1000) improves dramatically inferences near the surface. Unfortunately, observational and instrumental effects cause the characterization of high degree modes to be quite complicated. Indeed, the characteristics of the solar acoustic spectrum are such that, for a given order, mode lifetimes get shorter and spatial leaks get closer in frequency as the degree of a mode increases. A direct consequence of this property is that individual modes are resolved only at low and intermediate degrees. At high degrees the individual modes blend into ridges and the power distribution of the ridge defines the ridge central frequency, masking the underlying mode frequency. An accurate model of the amplitude of the peaks that contribute to the ridge power distribution is needed to recover the underlying mode frequency from fitting the ridge. We present a detailed discussion of the modeling of the ridge power distribution, and the contribution of the various observational and instrumental effects on the spatial leakage, in the context of the MDI instrument. We have constructed a physically motivated model (rather than an ad hoc correction scheme) that results in a methodology that can produce unbiased estimates of high-degree modes. This requires that the instrumental characteristics are well understood, a task that has turned out to pose a major challenge. We also present our latest results, where most of the known instrumental and observational effects that affect specifically high-degree modes were removed. These new results allow us to focus our attention on changes with solar activity. Finally, we present variations of mode

  13. How discriminating are discriminative instruments?

    Science.gov (United States)

    Hankins, Matthew

    2008-05-27

    The McMaster framework introduced by Kirshner & Guyatt is the dominant paradigm for the development of measures of health status and health-related quality of life (HRQL). The framework defines the functions of such instruments as evaluative, predictive or discriminative. Evaluative instruments are required to be sensitive to change (responsiveness), but there is no corresponding index of the degree to which discriminative instruments are sensitive to cross-sectional differences. This paper argues that indices of validity and reliability are not sufficient to demonstrate that a discriminative instrument performs its function of discriminating between individuals, and that the McMaster framework would be augmented by the addition of a separate index of discrimination. The coefficient proposed by Ferguson (Delta) is easily adapted to HRQL instruments and is a direct, non-parametric index of the degree to which an instrument distinguishes between individuals. While Delta should prove useful in the development and evaluation of discriminative instruments, further research is required to elucidate the relationship between the measurement properties of discrimination, reliability and responsiveness.

  14. How discriminating are discriminative instruments?

    Directory of Open Access Journals (Sweden)

    Hankins Matthew

    2008-05-01

    Full Text Available Abstract The McMaster framework introduced by Kirshner & Guyatt is the dominant paradigm for the development of measures of health status and health-related quality of life (HRQL. The framework defines the functions of such instruments as evaluative, predictive or discriminative. Evaluative instruments are required to be sensitive to change (responsiveness, but there is no corresponding index of the degree to which discriminative instruments are sensitive to cross-sectional differences. This paper argues that indices of validity and reliability are not sufficient to demonstrate that a discriminative instrument performs its function of discriminating between individuals, and that the McMaster framework would be augmented by the addition of a separate index of discrimination. The coefficient proposed by Ferguson (Delta is easily adapted to HRQL instruments and is a direct, non-parametric index of the degree to which an instrument distinguishes between individuals. While Delta should prove useful in the development and evaluation of discriminative instruments, further research is required to elucidate the relationship between the measurement properties of discrimination, reliability and responsiveness.

  15. UAVSAR Program: Initial Results from New Instrument Capabilities

    Science.gov (United States)

    Lou, Yunling; Hensley, Scott; Moghaddam, Mahta; Moller, Delwyn; Chapin, Elaine; Chau, Alexandra; Clark, Duane; Hawkins, Brian; Jones, Cathleen; Marks, Phillip; hide

    2013-01-01

    UAVSAR is an imaging radar instrument suite that serves as NASA's airborne facility instrument to acquire scientific data for Principal Investigators as well as a radar test-bed for new radar observation techniques and radar technology demonstration. Since commencing operational science observations in January 2009, the compact, reconfigurable, pod-based radar has been acquiring L-band fully polarimetric SAR (POLSAR) data with repeat-pass interferometric (RPI) observations underneath NASA Dryden's Gulfstream-III jet to provide measurements for science investigations in solid earth and cryospheric studies, vegetation mapping and land use classification, archaeological research, soil moisture mapping, geology and cold land processes. In the past year, we have made significant upgrades to add new instrument capabilities and new platform options to accommodate the increasing demand for UAVSAR to support scientific campaigns to measure subsurface soil moisture, acquire data in the polar regions, and for algorithm development, verification, and cross-calibration with other airborne/spaceborne instruments.

  16. Instrumentation in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Fabjan, C W [European Organization for Nuclear Research, Geneva (Switzerland); Pilcher, J E [Chicago Univ., IL (United States); eds.

    1988-01-01

    The first International Committee for Future Accelerators Instrumentation School was held at the International Centre for Theoretical Physics, Trieste, Italy from 8 to 19 June 1987. The School was attended by 74 students of whom 45 were from developing countries, 10 lecturers and 9 laboratory instructors. The next generation of elementary particle physics experiments would depend vitally on new ideas in instrumentation. This is a field where creativity and imagination play a major role and large budgets are not a prerequisite. One of the unique features was the presentation of four laboratory experiments using modern techniques and instrumentation. Refs, figs and tabs.

  17. Adjustable extender for instrument module

    International Nuclear Information System (INIS)

    Sevec, J.B.; Stein, A.D.

    1975-01-01

    A blank extender module used to mount an instrument module in front of its console for repair or test purposes has been equipped with a rotatable mount and means for locking the mount at various angles of rotation for easy accessibility. The rotatable mount includes a horizontal conduit supported by bearings within the blank module. The conduit is spring-biased in a retracted position within the blank module and in this position a small gear mounted on the conduit periphery is locked by a fixed pawl. The conduit and instrument mount can be pulled into an extended position with the gear clearing the pawl to permit rotation and adjustment of the instrument

  18. Instrumentation in elementary particle physics

    International Nuclear Information System (INIS)

    Fabjan, C.W.; Pilcher, J.E.

    1988-01-01

    The first International Committee for Future Accelerators Instrumentation School was held at the International Centre for Theoretical Physics, Trieste, Italy from 8 to 19 June 1987. The School was attended by 74 students of whom 45 were from developing countries, 10 lecturers and 9 laboratory instructors. The next generation of elementary particle physics experiments would depend vitally on new ideas in instrumentation. This is a field where creativity and imagination play a major role and large budgets are not a prerequisite. One of the unique features was the presentation of four laboratory experiments using modern techniques and instrumentation. Refs, figs and tabs

  19. Traceability of radiation protection instruments

    Science.gov (United States)

    Hino, Y.; Kurosawa, T.

    2007-08-01

    Radiation protection instruments are used in daily measurement of dose and activities in workplaces and environments for safety management. The requirements for calibration certificates with traceability are increasing for these instruments to ensure the consistency and reliabilities of the measurement results. The present traceability scheme of radiation protection instruments for dose and activity measurements is described with related IEC/ISO requirements. Some examples of desirable future calibration systems with recent new technologies are also discussed to establish the traceability with reasonable costs and reliabilities.

  20. Steam 80 steam generator instrumentation

    International Nuclear Information System (INIS)

    Carson, W.H.; Harris, H.H.

    1980-01-01

    This paper describes two special instrumentation packages in an integral economizer (preheater) steam generator of one of the first System 80 plants scheduled to go into commercial operation. The purpose of the instrumentation is to obtain accurate operating information from regions of the secondary side of the steam generator inaccessible to normal plant instrumentation. In addition to verification of the System 80 steam generator design predictions, the data obtained will assist in verification of steam generator thermal/hydraulic computer codes developed for generic use in the industry

  1. Brain spect imaging

    International Nuclear Information System (INIS)

    Lee, R.G.L.; Hill, T.C.; Holman, B.L.

    1989-01-01

    This paper discusses how the rapid development of single-photon radiopharmaceuticals has given new life to tomographic brain imaging in nuclear medicine. Further developments in radiopharmaceuticals and refinements in neuro-SPECT (single-photon emission computed tomography) instrumentation should help to reinstate brain scintigraphy as an important part of neurologic diagnosis. SPECT of the brain evolved from experimentation using prototype instrumentation during the early 1960s. Although tomographic studies provided superior diagnostic accuracy when compared to planar techniques, the arrival of X-ray CT of the head resulted in the rapid demise of technetium brain imaging

  2. Deformation of HyFlex CM instruments and their shape recovery following heat sterilization.

    Science.gov (United States)

    Alfoqom Alazemi, M; Bryant, S T; Dummer, P M H

    2015-06-01

    To assess the deformation of HyFlex CM instruments (Coltene Whaledent) when used in two instrumentation sequences and to assess their shape recovery after heat sterilization. Simulated root canals with four different shapes were prepared with HyFlex CM instruments using a single-length technique (n = 40) or a crown down technique (n = 40). Pre-preparation, post-preparation and post-sterilization standardized images of each instrument were recorded. Assessment of instrument deformation and their subsequent shape recovery was carried out visually and by comparing the digitised images. Data analysis was carried out using chi-square tests. None of the 400 instruments fractured. Visual assessment of instruments post-preparation revealed that 30.5% had unwound and 0.5% had reverse winding. Following sterilization 8.5% remained unwound and 0.5% remained with reverse winding. When assessing instrument shape using digital images, 35.25% were unwound post-preparation, which reduced to 11% post-sterilization. Nine size 25, 0.08 instruments deformed, but none fully regained their original shape after sterilization; however, other sizes of deformed instruments did regain their shape (P recovery. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  3. Instrumentation for Air Pollution Monitoring

    Science.gov (United States)

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  4. Survey of instruments for micrometeorology

    National Research Council Canada - National Science Library

    Monteith, John Lennox

    1972-01-01

    ... have been developed for micrometeorological measurements. Many of these instruments can be used by ecologists to measure and define the environment of plants and animals and to explore the ways in which organisms modify the environment they are exposed...

  5. Digital instrumentation for retrofit applications

    International Nuclear Information System (INIS)

    Dennis, U.E.

    1986-01-01

    There can be many reasons for applying retrofit designs to existing power plants. Whatever the reasons, care in planning and instrument design will be required in order to derive the full benefits afforded by today's technology. Specifically, the availability of microprocessors and their related integrated circuits make possible capabilities, accuracies, reliabilities, maintainability and user interfaces not achievable when original equipment was designed. Some of the motives for the replacement of current instrumentation are examined and the various benefits and pitfalls of applying present day microprocessor technology to new designs are discussed. From this, a set of design objectives can be formulated that can best take advantage of modern technology. General Electric's design solution, a family of instruments called NUMAC (Nuclear Measurement, Analysis and Control) is described, followed by descriptions of instruments currently in production and those contemplated for design in the near future

  6. Economic instruments for environmental mitigation

    International Nuclear Information System (INIS)

    Wilkinson, A.

    1995-01-01

    A joint International Chamber of Commerce (ICC)/World Energy Council (WEC) Working Group has been studying a range of policy instruments which are being used or considered for use to address the question of ever increasing energy demand versus environmental protection, and pollution reduction. Economic instruments for such environmental protection include direct regulation, market-based instruments, and voluntary approaches. No single policy or device was likely to suffice in addressing the diversity of environmental problems currently faced. Altering energy prices must be seen in a social context, but some direct regulation may also be inevitable. Generally economic instruments of change were preferred as these were viewed as more flexible and cost-effective. (UK)

  7. PEP instrumentation and control system

    Energy Technology Data Exchange (ETDEWEB)

    Melen, R.

    1980-06-01

    This paper describes the operating characteristics of the primary components that form the PEP Instrumentation and Control System. Descriptions are provided for the computer control system, beam monitors, and other support systems.

  8. Technical Training seminar: Texas Instruments

    CERN Multimedia

    2006-01-01

    Monday 6 November TECHNICAL TRAINING SEMINAR 14:00 to 17:30 - Training Centre Auditorium (bldg. 593) Texas Instruments Technical Seminar Michael Scholtholt, Field Application Engineer / TEXAS INSTRUMENTS (US, D, CH) POWER - A short approach to Texas Instruments power products Voltage mode vs. current mode control Differentiating DC/DC converters by analyzing control and compensation schemes: line / load regulation, transient response, BOM, board space, ease-of-use Introduction to the SWIFT software FPGA + CPLD power solutions WIRELESS / CHIPCON Decision criteria when choosing a RF platform Introduction to Texas Instruments wireless products: standardized platforms proprietary platforms ( 2.4 GHz / sub 1 GHz) development tools Antenna design: example for 2.4 GHz questions, discussion Industrial partners: Robert Medioni, François Caloz / Spoerle Electronic, CH-1440 Montagny (VD), Switzerland Phone: +41 24 447 0137, email: RMedioni@spoerle.com, http://www.spoerle.com Language: English. Free s...

  9. PEP instrumentation and control system

    International Nuclear Information System (INIS)

    Melen, R.

    1980-06-01

    This paper describes the operating characteristics of the primary components that form the PEP Instrumentation and Control System. Descriptions are provided for the computer control system, beam monitors, and other support systems

  10. Intelligent instrumentation principles and applications

    CERN Document Server

    Bhuyan, Manabendra

    2011-01-01

    With the advent of microprocessors and digital-processing technologies as catalyst, classical sensors capable of simple signal conditioning operations have evolved rapidly to take on higher and more specialized functions including validation, compensation, and classification. This new category of sensor expands the scope of incorporating intelligence into instrumentation systems, yet with such rapid changes, there has developed no universal standard for design, definition, or requirement with which to unify intelligent instrumentation. Explaining the underlying design methodologies of intelligent instrumentation, Intelligent Instrumentation: Principles and Applications provides a comprehensive and authoritative resource on the scientific foundations from which to coordinate and advance the field. Employing a textbook-like language, this book translates methodologies to more than 80 numerical examples, and provides applications in 14 case studies for a complete and working understanding of the material. Beginn...

  11. A Finescale Lagrangian Instrument System

    National Research Council Canada - National Science Library

    Toole, John

    2003-01-01

    ... from conventional, bottom-anchored moorings. An initial trial of the concept targeting the upper ocean was carried out off Bermuda in November 2001 with an instrument profiling between 12 and 28O-m depth...

  12. Instrumental development and data processing

    International Nuclear Information System (INIS)

    Franzen, J.

    1978-01-01

    A review of recent developments in mass spectrometry instrumentation is presented under the following headings: introduction (scope of mass spectrometry compared with neighbouring fields); ion sources and ionization techniques; spectrometers (instrumental developments); measuring procedures; coupling techniques; data systems; conclusions (that mass spectrometry should have a broader basis and that there would be mutual profit from a better penetration of mass spectrometry into fields of routine application). (U.K.)

  13. MITS instrumentation error analysis report

    International Nuclear Information System (INIS)

    Nelson, D.W.; Hillon, D.D.

    1980-01-01

    The MITS (Machine Interface Test System) installation consists of three types of process monitoring and control instrumentation: flow, pressure, and temperature. An effort has been made to assess the various instruments used and assign a value to the accuracy that can be expected. Efforts were also made to analyze the calibration and installation procedures to be used and determine how these might effect the system accuracy

  14. Notes on instrumentation and control

    CERN Document Server

    Roy, G J

    2013-01-01

    Notes on Instrumentation and Control presents topics on pressure (i.e., U-tube manometers and elastic type gauges), temperature (i.e. glass thermometer, bi-metallic strip thermometer, filled system thermometer, vapor pressure thermometer), level, and flow measuring devices. The book describes other miscellaneous instruments, signal transmitting devices, supply and control systems, and monitoring systems. The theory of automatic control and semi-conductor devices are also considered. Marine engineers will find the book useful.

  15. Nucleonic instruments from VUPJT Tesla

    International Nuclear Information System (INIS)

    Smola, J.

    1986-01-01

    The instruments currently produced by Tesla Premysleni are listed and briefly characterized. They include a low level alpha-beta counter, an automatic low level alpha-beta counter, detection units for environmental sample counting, instruments for measuring specific activity of liquids and radon concentration in water, a radioactive aerosol meter, dose ratemeters, portable alpha-beta indicators for surface contamintion monitoring, neutron monitors, single-, two- and three-channel spectrometric units. (M.D.)

  16. NCTM workshop splinter session, IR thermal measurement instruments

    Science.gov (United States)

    Kaplan, Herbert

    1989-06-01

    The splinter session dealing with commercial industrial thermal measurement state-of-the-hardware had a total attendance of 15. Two papers were presented in the splinter session as follows: (1) Development of an Infrared Imaging System for the Surface Tension Driven Convection Experiment, Alexander D. Pline, NASA LeRC; (2) A Space-qualified PtSi Thermal Imaging System, Robert W. Astheimer, Barnes Engineering Div., EDO Corp. In addition a brief description of SPRITE detector technology was presented by Richard F. Leftwich of Magnovox. As anticipated, the discussions were concerned mainly with thermal imaging figures of merit rather than those for point measurement instruments. The need for uniform guidelines whereby infrared thermal imaging instruments could be specified and evaluated was identified as most important, particularly where temperature measurements are required. Presently there are differences in the way different manufacturers present significant performance parameters in their instrument data sheets. Furthermore, the prospective user has difficulty relating these parameters to actual measurement needs, and procedures by which performance can be verified are poorly defined. The current availability of powerful thermal imaging diagnostic software was discussed.

  17. Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  18. Isotope-equipped measuring instruments

    International Nuclear Information System (INIS)

    Miyagawa, Kazuo; Amano, Hiroshi

    1980-01-01

    In the steel industry, though the investment in isotope-equipped measuring instruments is small as compared with that in machinery, they play important role in the moisture measurement in sintering and blast furnaces, the thickness measurement in rolling process and others in automatic control systems. The economic aspect of the isotope-equipped measuring instruments is described on the basis of the practices in Kimitsu Works of Nippon Steel Corporation: distribution of such instruments, evaluation of economic effects, usefulness evaluation in view of raising the accuracy, and usefulness evaluation viewed from the failure of the isotope instruments. The evaluation of economic effects was made under the premise that the isotope-equipped measuring instruments are not employed. Then, the effects of raising the accuracy are evaluated for a γ-ray plate thickness gauge and a neutron moisture gauge for coke in a blast furnace. Finally, the usefulness was evaluated, assuming possible failure of the isotope-equipped measuring instruments. (J.P.N.)

  19. Instrumentation for optical remote sensing from space; Proceedings of the Meeting, Cannes, France, November 27-29, 1985

    Science.gov (United States)

    Seeley, John S. (Editor); Lear, John W. (Editor); Russak, Sidney L. (Editor); Monfils, Andre (Editor)

    1986-01-01

    Papers are presented on such topics as the development of the Imaging Spectrometer for Shuttle and space platform applications; the in-flight calibration of pushbroom remote sensing instruments for the SPOT program; buttable detector arrays for 1.55-1.7 micron imaging; the design of the Improved Stratospheric and Mesospheric Sounder on the Upper Atmosphere Research Satellite; and SAGE II design and in-orbit performance. Consideration is also given to the Shuttle Imaging Radar-B/C instruments; the Venus Radar Mapper multimode radar system design; various ISO instruments (ISOCAM, ISOPHOT, and SWS and LWS); and instrumentation for the Space Infrared Telescope Facility.

  20. Nuclear medicine and imaging research. Progress report, January 1, 1981-December 31, 1981

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.C.

    1981-09-01

    The Progress Report for the period January 1, 1981-December 31, 1981 of the Franklin Memorial Research Institute discusses instrumentation and quantitative methods of evaluation in nuclear medicine and imaging research. Imaging systems and image evaluation are discussed in four projects: Radiation Detector Studies, Dual Purpose Scanner for Thyroid Imaging, Instrumentation for Image Processing and Enhancement, and Energy-Coded Processing in Nuclear Medicine

  1. The Portable Dynamic Fundus Instrument: Uses in telemedicine and research

    Science.gov (United States)

    Hunter, Norwood; Caputo, Michael; Billica, Roger; Taylor, Gerald; Gibson, C. Robert; Manuel, F. Keith; Mader, Thomas; Meehan, Richard

    1994-01-01

    For years ophthalmic photographs have been used to track the progression of many ocular diseases such as macular degeneration and glaucoma as well as the ocular manifestations of diabetes, hypertension, and hypoxia. In 1987 a project was initiated at the Johnson Space Center (JSC) to develop a means of monitoring retinal vascular caliber and intracranial pressure during space flight. To conduct telemedicine during space flight operations, retinal images would require real-time transmissions from space. Film-based images would not be useful during in-flight operations. Video technology is beneficial in flight because the images may be acquired, recorded, and transmitted to the ground for rapid computer digital image processing and analysis. The computer analysis techniques developed for this project detected vessel caliber changes as small as 3 percent. In the field of telemedicine, the Portable Dynamic Fundus Instrument demonstrates the concept and utility of a small, self-contained video funduscope. It was used to record retinal images during the Gulf War and to transmit retinal images from the Space Shuttle Columbia during STS-50. There are plans to utilize this device to provide a mobile ophthalmic screening service in rural Texas. In the fall of 1993 a medical team in Boulder, Colorado, will transmit real-time images of the retina during remote consultation and diagnosis. The research applications of this device include the capability of operating in remote locations or small, confined test areas. There has been interest shown utilizing retinal imaging during high-G centrifuge tests, high-altitude chamber tests, and aircraft flight tests. A new design plan has been developed to incorporate the video instrumentation into face-mounted goggle. This design would eliminate head restraint devices, thus allowing full maneuverability to the subjects. Further development of software programs will broaden the application of the Portable Dynamic Fundus Instrument in

  2. On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    Science.gov (United States)

    Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg

    2007-01-01

    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).

  3. Biomedical photoacoustics: fundamentals, instrumentation and perspectives on nanomedicine.

    Science.gov (United States)

    Zou, Chunpeng; Wu, Beibei; Dong, Yanyan; Song, Zhangwei; Zhao, Yaping; Ni, Xianwei; Yang, Yan; Liu, Zhe

    Photoacoustic imaging (PAI) is an integrated biomedical imaging modality which combines the advantages of acoustic deep penetration and optical high sensitivity. It can provide functional and structural images with satisfactory resolution and contrast which could provide abundant pathological information for disease-oriented diagnosis. Therefore, it has found vast applications so far and become a powerful tool of precision nanomedicine. However, the investigation of PAI-based imaging nanomaterials is still in its infancy. This perspective article aims to summarize the developments in photoacoustic technologies and instrumentations in the past years, and more importantly, present a bright outlook for advanced PAI-based imaging nanomaterials as well as their emerging biomedical applications in nanomedicine. Current challenges and bottleneck issues have also been discussed and elucidated in this article to bring them to the attention of the readership.

  4. Developing a Multimedia Instrument for Technical Vocabulary Learning: A Case of EFL Undergraduate Physics Education

    Science.gov (United States)

    Rusanganwa, Joseph Appolinary

    2015-01-01

    The aim of the present study is to investigate the process of constructing a Multimedia Assisted Vocabulary Learning (MAVL) instrument at a university in Rwanda in 2009. The instrument is used in a one-computer classroom where students were taught in a foreign language and had little access to books. It consists of video clips featuring images,…

  5. From Qualitative Data to Instrument Development: The Women's Breast Conflict Scale

    Science.gov (United States)

    Thomas, Eileen

    2011-01-01

    The purpose of this article is to describe the initial development of the Women's Breast Conflict Scale, a predictive instrument designed to identify women who may be least likely to follow recommended mammography screening guidelines. This new instrument incorporates self/body image, teasing, family norms and values, and societal/media…

  6. Imaging AMS

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, S.P.H.T. [Univ. of Oxford (United Kingdom)]|[Lawrence Livermore National Lab., CA (United States); Ramsey, C.B.; Hedges, R.E.M. [Univ. of Oxford (United Kingdom)

    1993-12-01

    The benefits of simultaneous high effective mass resolution and large spectrometer acceptance that accelerator mass spectrometry has afforded the bulk analysis of material samples by secondary ion mass spectrometry may also be applied to imaging SIMS. The authors are exploring imaging AMS with the addition to the Oxford {sup 14}C-AMS system of a scanning secondary ion source. It employs a sub micron probe and a separate Cs flood to further increase the useful ion yield. The source has been accommodated on the system by directly injecting sputtered ions into the accelerator without mass analysis. They are detected with a range of devices including new high-bandwidth detectors. Qualitative mass spectra may be easily generated by varying only the post-accelerator analysis magnet. Selected ion signals may be used for imaging. In developing the instrument for bioscience research the authors are establishing its capability for measuring the lighter elements prevalent in biological tissue. Importantly, the machine can map the distributions of radiocarbon labeled compounds with an efficiency of about 1{per_thousand}. A background due to misidentification of non-{sup 14}C ions as a result of the reduced ion mass filtering is too small to hinder high magnification microscopy.

  7. Comparison of instrumented anterior interbody fusion with instrumented circumferential lumbar fusion.

    Science.gov (United States)

    Madan, S S; Boeree, N R

    2003-12-01

    Posterior lumbar interbody fusion (PLIF) restores disc height, the load bearing ability of anterior ligaments and muscles, root canal dimensions, and spinal balance. It immobilizes the painful degenerate spinal segment and decompresses the nerve roots. Anterior lumbar interbody fusion (ALIF) does the same, but could have complications of graft extrusion, compression and instability contributing to pseudarthrosis in the absence of instrumentation. The purpose of this study was to assess and compare the outcome of instrumented circumferential fusion through a posterior approach [PLIF and posterolateral fusion (PLF)] with instrumented ALIF using the Hartshill horseshoe cage, for comparable degrees of internal disc disruption and clinical disability. It was designed as a prospective study, comparing the outcome of two methods of instrumented interbody fusion for internal disc disruption. Between April 1994 and June 1998, the senior author (N.R.B.) performed 39 instrumented ALIF procedures and 35 instrumented circumferential fusion with PLIF procedures. The second author, an independent assessor (S.M.), performed the entire review. Preoperative radiographic assessment included plain radiographs, magnetic resonance imaging (MRI) and provocative discography in all the patients. The outcome in the two groups was compared in terms of radiological improvement and clinical improvement, measured on the basis of improvement of back pain and work capacity. Preoperatively, patients were asked to fill out a questionnaire giving their demographic details, maximum walking distance and current employment status in order to establish the comparability of the two groups. Patient assessment was with the Oswestry Disability Index, quality of life questionnaire (subjective), pain drawing, visual analogue scale, disability benefit, compensation status, and psychological profile. The results of the study showed a satisfactory outcome (scorelife questionnaire) score of 71.8% (28 patients) in

  8. Musical Sound, Instruments, and Equipment

    Science.gov (United States)

    Photinos, Panos

    2017-12-01

    'Musical Sound, Instruments, and Equipment' offers a basic understanding of sound, musical instruments and music equipment, geared towards a general audience and non-science majors. The book begins with an introduction of the fundamental properties of sound waves, and the perception of the characteristics of sound. The relation between intensity and loudness, and the relation between frequency and pitch are discussed. The basics of propagation of sound waves, and the interaction of sound waves with objects and structures of various sizes are introduced. Standing waves, harmonics and resonance are explained in simple terms, using graphics that provide a visual understanding. The development is focused on musical instruments and acoustics. The construction of musical scales and the frequency relations are reviewed and applied in the description of musical instruments. The frequency spectrum of selected instruments is explored using freely available sound analysis software. Sound amplification and sound recording, including analog and digital approaches, are discussed in two separate chapters. The book concludes with a chapter on acoustics, the physical factors that affect the quality of the music experience, and practical ways to improve the acoustics at home or small recording studios. A brief technical section is provided at the end of each chapter, where the interested reader can find the relevant physics and sample calculations. These quantitative sections can be skipped without affecting the comprehension of the basic material. Questions are provided to test the reader's understanding of the material. Answers are given in the appendix.

  9. Apical instrumentation in endodontic therapy

    Directory of Open Access Journals (Sweden)

    Kurniasri Darliana

    2007-07-01

    Full Text Available Cleaning and shaping of the root canal as the foundation for successful endodontic therapy. Cleaning of the root canal as the removal of all the contents of the root canal systems before and during shaping. Mechanical cleaning as the most important part of the root canal therapy. Instrumentation of the apical region has long been considered to be an essential component in the cleaning and shaping process. The apical area as the critical zone for instrumentation. The apical portion of the root canal system can retain microorganisms that could potentially cause periradicular inflammation. The nickel-titanium rotary instrumentation system to facilitate the cleaning and shaping process. Larger instrumentation sizes not only allow proper irrigation but also significantly decrease remaining bacteria in the canal system. How the larger apical sizes preparation must be achieved to clinical success. This paper will describe the major factors impacting the selection of final apical size, the factors are the anatomy of the apical constriction, root canal diameter, apical instrumentation, and bacteria in dentin tubuli.

  10. The VUV instrument SPICE for Solar Orbiter: performance ground testing

    Science.gov (United States)

    Caldwell, Martin E.; Morris, Nigel; Griffin, Douglas K.; Eccleston, Paul; Anderson, Mark; Pastor Santos, Carmen; Bruzzi, Davide; Tustain, Samuel; Howe, Chris; Davenne, Jenny; Grundy, Timothy; Speight, Roisin; Sidher, Sunil D.; Giunta, Alessandra; Fludra, Andrzej; Philippon, Anne; Auchere, Frederic; Hassler, Don; Davila, Joseph M.; Thompson, William T.; Schuehle, Udo H.; Meining, Stefan; Walls, Buddy; Phelan, P.; Dunn, Greg; Klein, Roman M.; Reichel, Thomas; Gyo, Manfred; Munro, Grant J.; Holmes, William; Doyle, Peter

    2017-08-01

    SPICE is an imaging spectrometer operating at vacuum ultraviolet (VUV) wavelengths, 70.4 - 79.0 nm and 97.3 - 104.9 nm. It is a facility instrument on the Solar Orbiter mission, which carries 10 science instruments in all, to make observations of the Sun's atmosphere and heliosphere, at close proximity to the Sun, i.e to 0.28 A.U. at perihelion. SPICE's role is to make VUV measurements of plasma in the solar atmosphere. SPICE is designed to achieve spectral imaging at spectral resolution >1500, spatial resolution of several arcsec, and two-dimensional FOV of 11 x16arcmins. The many strong constraints on the instrument design imposed by the mission requirements prevent the imaging performance from exceeding those of previous instruments, but by being closer to the sun there is a gain in spatial resolution. The price which is paid is the harsher environment, particularly thermal. This leads to some novel features in the design, which needed to be proven by ground test programs. These include a dichroic solar-transmitting primary mirror to dump the solar heat, a high in-flight temperature (60deg.C) and gradients in the optics box, and a bespoke variable-line-spacing grating to minimise the number of reflective components used. The tests culminate in the systemlevel test of VUV imaging performance and pointing stability. We will describe how our dedicated facility with heritage from previous solar instruments, is used to make these tests, and show the results, firstly on the Engineering Model of the optics unit, and more recently on the Flight Model. For the keywords, select up to 8 key terms for a search on your manuscript's subject.

  11. 31 CFR 596.307 - Monetary instruments.

    Science.gov (United States)

    2010-07-01

    ... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY TERRORISM LIST GOVERNMENTS SANCTIONS REGULATIONS General Definitions § 596.307 Monetary instruments. The term monetary instruments shall have the meaning...

  12. An overview of instrumentation for the Large Binocular Telescope

    Science.gov (United States)

    Wagner, R. Mark

    2012-09-01

    An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' x 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multiobject spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23-m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning on the LBT and utilizing the installed adaptive secondary mirrors in both single- sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. The delivery of both LUCI2 and MODS2 is anticipated before the end of 2012. The

  13. Scintigraphic instruments and techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Bornand, Bernard; Soussaline Francoise

    1979-11-01

    This bibliographical supplement brings out the importance assumed from now on by comparative studies on various imagery systems: radioisotopic scintigraphy, computerized tomography and ultra sonography. Another aspect to emerge is the anxiety of the medical world faced with ethical and economic problems in weighing up as accurately as possible the justifiability and consequences of clinical decisions, hence the value of visual observations and interpretations of images, as well as the quality of the instruments used. Four lists of bibliographical notices with abstracts covering the period late 1976-early 1979 mention 258 articles from journals, 67 conference lectures, 13 reports, 3 theses and 44 invention patents respectively. To these lists are attached the author, inventor and subject indices [fr

  14. Instrumentation optimization for positron emission mammography

    International Nuclear Information System (INIS)

    Moses, William W.; Qi, Jinyi

    2003-01-01

    The past several years have seen designs for PET cameras optimized to image the breast, commonly known as Positron Emission Mammography or PEM cameras. The guiding principal behind PEM instrumentation is that a camera whose field of view is restricted to a single breast has higher performance and lower cost than a conventional PET camera. The most common geometry is a pair of parallel planes of detector modules, although geometries that encircle the breast have also been proposed. The ability of the detector modules to measure the depth of interaction (DOI) is also a relevant feature. This paper finds that while both the additional solid angle coverage afforded by encircling the breast and the decreased blurring afforded by the DOI measurement improve performance, the ability to measure DOI is more important than the ability to encircle the breast

  15. The dream: a psychodynamically informative instrument.

    Science.gov (United States)

    Glucksman, M L

    2001-01-01

    The dream is a unique psychodynamically informative instrument for evaluating the subjective correlates of brain activity during REM sleep. These include feelings, percepts, memories, wishes, fantasies, impulses, conflicts, and defenses, as well as images of self and others. Dream analysis can be used in a variety of clinical settings to assist in diagnostic assessment, psychodynamic formulation, evaluation of clinical change, and the management of medically ill patients. Dreams may serve as the initial indicators of transference, resistance, impending crisis, acting-out, conflict resolution, and decision-making. A clinically functional categorization of dreams can facilitate an understanding of psychopathology, psychodynamics, personality structure, and various components of the psychotherapeutic process. Examples of different types of dreams are provided to illustrate their relevance and use in various clinical situations.

  16. Satellite instrument provides nighttime sensing capability

    Science.gov (United States)

    Showstack, Randy

    2012-12-01

    "This is not your father's low-light sensor," Steve Miller, senior research scientist and deputy director of the Cooperative Institute for Research in the Atmosphere at Colorado State University, Fort Collins, said at a 5 December news briefing at the AGU Fall Meeting. He and others at the briefing were showing off the nighttime sensing capability of the day/night band of the Visible Infrared Imaging Radiometer Suite (VIIRS) of instruments onboard the Suomi National Polar-orbiting Partnership (NPP) Earth-observing research satellite, a joint NASA and National Oceanic and Atmospheric Administration (NOAA) satellite that was launched on 28 October 2011. Noting that low-light satellite technology has been available for about 40 years, Miller said that the VIIRS day/night band "is truly a paradigm shift in the technology and capability."

  17. Refabricated and instrumented fuel rods

    International Nuclear Information System (INIS)

    Silberstein, K.

    2005-01-01

    Nuclear Fuel for power reactors capabilities evaluation is strongly based on the intimate knowledge of its behaviour under irradiation. This knowledge can be acquired from refabricated and instrumented fuel rods irradiated at different levels in commercial reactors. This paper presents the development and qualification of a new technique called RECTO related to a double-instrumented rod re-fabrication process developed by CEA/LECA hot laboratory facility at CADARACHE. The technique development includes manufacturing of the properly dimensioned cavity in the fuel pellet stack to house the thermocouple and the use of a newly designed pressure transducer. An analytic irradiation of such a double-instrumented fuel rod will be performed in OSIRIS test reactor starting October 2004. (Author)

  18. HTGR Measurements and Instrumentation Systems

    International Nuclear Information System (INIS)

    Ball, Sydney J.; Holcomb, David Eugene; Cetiner, Mustafa Sacit

    2012-01-01

    This report provides an integrated overview of measurements and instrumentation for near-term future high-temperature gas-cooled reactors (HTGRs). Instrumentation technology has undergone revolutionary improvements since the last HTGR was constructed in the United States. This report briefly describes the measurement and communications needs of HTGRs for normal operations, maintenance and inspection, fuel fabrication, and accident response. The report includes a description of modern communications technologies and also provides a potential instrumentation communications architecture designed for deployment at an HTGR. A principal focus for the report is describing new and emerging measurement technologies with high potential to improve operations, maintenance, and accident response for the next generation of HTGRs, known as modular HTGRs, which are designed with passive safety features. Special focus is devoted toward describing the failure modes of the measurement technologies and assessing the technology maturity.

  19. Seismic Instrumentation Placement Recommendations Report

    International Nuclear Information System (INIS)

    Kennedy, W.N.

    1998-01-01

    DOE Order 420.1, ''Facility Safety'', requires that facilities or sites with hazardous materials be provided with instrumentation or other means to detect and record the occurrences and severity of seismic events. These requirements assure that necessary records are available after an earthquake for evaluation purposes and to supplement other data to justify a facility restart or curtailing plant operations after an earthquake. This report documents the basis for the selection of Savannah River Site areas and existing facilities to be instrumented. The need to install instrumentation in new facilities such as the Actinide Packaging and Storage Facility, Commercial Light Water Reactor Tritium Extraction Facility and the Accelerator Production of Tritium Facility will be assessed separately

  20. Introduction to instrumentation and measurements

    CERN Document Server

    Northrop, Robert B

    2014-01-01

    Weighing in on the growth of innovative technologies, the adoption of new standards, and the lack of educational development as it relates to current and emerging applications, the third edition of Introduction to Instrumentation and Measurements uses the authors' 40 years of teaching experience to expound on the theory, science, and art of modern instrumentation and measurements (I&M). What's New in This Edition: This edition includes material on modern integrated circuit (IC) and photonic sensors, micro-electro-mechanical (MEM) and nano-electro-mechanical (NEM) sensors, chemical and radiation sensors, signal conditioning, noise, data interfaces, and basic digital signal processing (DSP), and upgrades every chapter with the latest advancements. It contains new material on the designs of micro-electro-mechanical (MEMS) sensors, adds two new chapters on wireless instrumentation and microsensors, and incorporates extensive biomedical examples and problems. Containing 13 chapters, this third edition: Describ...

  1. Technical presentation - KEITHLEY Instruments - CANCELLED

    CERN Multimedia

    FI Department

    2009-01-01

    10 March 2009 13:30 – 15:30, Council Chamber, Bldg. 503 Keithley markets highly accurate instruments and data acquisition products, as well as complete system solutions for high-volume production and assembly testing. Keithley Instruments, Inc. designs, develops, manufactures and markets complex electronic instruments and systems geared to the specialized needs of electronics manufacturers for high-performance production testing, process monitoring, product development and research. Products and Services: Digital Multimeters and Data Acquisition Systems Current / Voltage Source and Measure Products Low Current / High Resistance Measurement Products Function/Pulse/Arbitrary/Pattern Generators Low Voltage/Low Resistance Measurement Products RF Spectrum Analyzer / RF Signal Generator / RF Switching Semiconductor Device Characterization Program: Topic 1: Welcome and short overview of new Products SMU 26XXA / ARB Generator 3390 / DMM 3706 / E-Meter 6517B Topic 2a: Te...

  2. Safeguards instrumentation: past, present, future

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    1982-01-01

    Instruments are essential for accounting, for surveillance and for protection of nuclear materials. The development and application of such instrumentation is reviewed, with special attention to international safeguards applications. Active and passive nondestructive assay techniques are some 25 years of age. The important advances have been in learning how to use them effectively for specific applications, accompanied by major advances in radiation detectors, electronics, and, more recently, in mini-computers. The progress in seals has been disappointingly slow. Surveillance cameras have been widely used for many applications other than safeguards. The revolution in TV technology will have important implications. More sophisticated containment/surveillance equipment is being developed but has yet to be exploited. On the basis of this history, some expectations for instrumentation in the near future are presented

  3. Solution assay instrument operations manual

    International Nuclear Information System (INIS)

    Li, T.K.; Marks, T.; Parker, J.L.

    1983-09-01

    An at-line solution assay instrument (SAI) has been developed and installed in a plutonium purification and americium recovery process area in the Los Alamos Plutonium Processing Facility. The instrument was designed for accurate, timely, and simultaneous nondestructive analysis of plutonium and americium in process solutions that have a wide range of concentrations and americium/plutonium ratios and for routine operation by process technicians who lack instrumentation background. The SAI, based on transmission-corrected, high-resolution gamma-ray spectroscopy, has two measurement stations attached to a single multichannel analyzer/computer system. To ensure the quality of assay results, the SAI has an internal measurement control program, which requires daily and weekly check runs and monitors key aspects of all assay runs. For a 25-ml sample, the assay precision is 5 g/l within a 2000-s count time

  4. Second harmonic generation imaging

    CERN Document Server

    2013-01-01

    Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical applications. The book features contributions by experts in second-harmonic imaging, including many pioneering researchers in the field. Written for researchers at all levels, it takes an in-depth look at the current state of the art and possibilities of SHG microscopy. Organized into three sections, the book: Provides an introduction to the physics of the process, step-by-step instructions on how to build an SHG microscope, and comparisons with related imaging techniques Gives an overview of the capabilities of SHG microscopy for imaging tissues and cells—including cell membranes, muscle, collagen in tissues, and microtubules in live cells—by summarizing experi...

  5. Preparation of severely curved simulated root canals using engine-driven rotary and conventional hand instruments.

    Science.gov (United States)

    Szep, S; Gerhardt, T; Leitzbach, C; Lüder, W; Heidemann, D

    2001-03-01

    This in vitro study evaluated the efficacy and safety of six different nickel-titanium engine-driven instruments used with a torque-controlled engine device and nickel-titanium hand and stainless steel hand instruments in preparation of curved canals. A total of 80 curved (36 degrees) simulated root canals were prepared. Images before and after were superimposed, and instrumentation areas were observed. Time of instrumentation, instrument failure, change in working length and weight loss were also recorded. Results show that stainless steel hand instruments cause significantly less transportation towards the inner wall of the canal than do nickel-titanium hand instruments. No instrument fracture occurred with hand instruments, but 30-60% breakage of instruments was recorded during instrumentation with the engine-driven devices. The working length was maintained by all types of instruments. Newly developed nickel-titanium rotary files were not able to prevent straightening of the severely curved canals when a torque-controlled engine-driven device was used.

  6. Recent developments in nuclear instruments

    International Nuclear Information System (INIS)

    Vaidya, P.P.

    2004-01-01

    Full text : Nuclear Instrumentation is a field of vital importance for DAE. It has important applications in many areas of interest such as Reactor Monitoring and control, Accelerator based research, Laser and nuclear physics experiments, Health and environmental monitoring, Astrophysics experiments etc. It is a specialized field involving expertise in detection of radioactivity down to the level of few events per minute as well as processing and analysis of signals which can be as small as few hundred micro volts embedded in noise. Some applications involve digitizing and processing these signals with 0.001% accuracy and timing accuracies of a fraction of nano sec. Rapid developments in semiconductor related technologies have influenced the field of nuclear instrumentation. Development of FPGA's and ASIC's have made it possible to develop miniaturized smart and portable instruments for field applications. Advancements in field of computers, communications and various field buses have been successfully utilized for smart, portable and DSP based instrumentation. Smart sensor with detector and front-end electronics on a single silicon chip is now a reality. These instruments are also made intelligent by addition of fuzzy logic, artificial neural networks and expert systems. Electronics Division of BARC has made significant contribution to the field of nuclear instrumentation to achieve self-reliance in this area. This has also led to development of several new methods, which have been published in international journals and appreciated worldwide. As a step towards achieving complete self-reliance a programme for development of FPGA's, HMC's and ASIC's has been undertaken and is being followed with special emphasis. This also includes development of detector and front- end electronics on a single chip. This talk brings out details of these developments and describes the 'state of art' work done in India

  7. Web based remote instrumentation and control

    International Nuclear Information System (INIS)

    Dhekne, P.S.; Patil, Jitendra; Kulkarni, Jitendra; Babu, Prasad; Lad, U.C.; Rahurkar, A.G.; Kaura, H.K.

    2001-01-01

    The Web-based technology provides a very powerful communication medium for transmitting effectively multimedia information containing data generated from various sources, which may be in the form of audio, video, text, still or moving images etc. Large number of sophisticated web based software tools are available that can be used to monitor and control distributed electronic instrumentation projects. For example data can be collected online from various smart sensors/instruments such as images from CCD camera, pressure/ humidity sensor, light intensity transducer, smoke detectors etc and uploaded in real time to a central web server. This information can be processed further, to take control action in real time from any remote client, of course with due security care. The web-based technology offers greater flexibility, higher functionality, and high degree of integration providing standardization. Further easy to use standard browser based interface at the client end to monitor, view and control the desired process parameters allow you to cut down the development time and cost to a great extent. A system based on a web client-server approach has been designed and developed at Computer division, BARC and is operational since last year to monitor and control remotely various environmental parameters of distributed computer centers. In this paper we shall discuss details of this system, its current status and additional features which are currently under development. This type of system is typically very useful for Meteorology, Environmental monitoring of Nuclear stations, Radio active labs, Nuclear waste immobilization plants, Medical and Biological research labs., Security surveillance and in many such distributed situations. A brief description of various tools used for this project such as Java, CGI, Java Script, HTML, VBScript, M-JPEG, TCP/IP, UDP, RTP etc. along with their merits/demerits have also been included

  8. Advanced Instrumentation for Transient Reactor Testing

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael L.; Anderson, Mark; Imel, George; Blue, Tom; Roberts, Jeremy; Davis, Kurt

    2018-01-31

    Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and design increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).

  9. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Young, S.E.; Becker, C.H.; Coggiola, M.J. [SRI International, Menlo Park, CA (United States); Wollnik, H. [Giessen Univ. (Germany)

    1997-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  10. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z; Young, S E; Becker, C H; Coggiola, M J [SRI International, Menlo Park, CA (United States); Wollnik, H [Giessen Univ. (Germany)

    1998-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  11. Neutron-multiplication measurement instrument

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results.

  12. Neutron-multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  13. Practical course on reactor instrumentation

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2004-06-01

    This course is based on the description of the instrumentation of the TRIGA-reactor Vienna, which is used for training research and isotope production. It comprises the following chapters: 1. instrumentation, 2. calibration of the nuclear channels, 3. rod drop time of the control rods, 4. neutron flux density measurements using compensated ionization, 5. neutron flux density measurement with fission chambers (FC), 6. neutron flux density measurement with self-powered neutron detectors (SPND), 7. pressurized water reactor simulator, 8. verification of the radiation level during reactor operation. There is one appendix about neutron-sensitive thermocouples. (nevyjel)

  14. Neutron beam instruments at Harwell

    International Nuclear Information System (INIS)

    Baston, A.H.; Harris, D.H.C.

    1978-11-01

    A list and brief descriptions are given of the neutron beam facilities for U.K. scientists at Harwell and in academic institutions, available under an agreement between the Science Research Council and AERE (Harwell). The list falls under the following headings: reactor instruments (single crystal diffractometers, powder diffractometers, triple axis spectrometers, time-of-flight cold neutron twin rotor spectrometer, beryllium filter spectrometer, MARX spectrometer, Harwell small-angle scattering spectrometer); LINAC instruments (total scattering spectrometer, back scattering spectrometer, active sample spectrometer, inelastic rotor spectrometer, constant Q spectrometer); ancillary equipment (cryostats, superconducting magnets, electromagnets, furnaces). (U.K.)

  15. An introduction to biomedical instrumentation

    CERN Document Server

    Dewhurst, D J

    1976-01-01

    An Introduction to Biomedical Instrumentation presents a course of study and applications covering the basic principles of medical and biological instrumentation, as well as the typical features of its design and construction. The book aims to aid not only the cognitive domain of the readers, but also their psychomotor domain as well. Aside from the seminar topics provided, which are divided into 27 chapters, the book complements these topics with practical applications of the discussions. Figures and mathematical formulas are also given. Major topics discussed include the construction, handli

  16. New instruments for radiation protection

    International Nuclear Information System (INIS)

    Bartos, D.; Ciobanu, M.; Constantin, F.; Petcu, M.; Plostinaru, V.D.; Rusu, Al.; Lupu, A.C.; Lupu, F.

    2003-01-01

    Though a century old, the radiation protection is actual by its purpose: a dose as low as reasonable achievable is to be received either by involved professionals or population. This threshold is dependent on the technical progress. Some major developments like surface mounted device technology, consumer almost ideal operational amplifiers, microcontrollers and the news signal digital processing techniques, offer the opportunity to design improved instruments for radioprotection. To put in a light portable instrument both the whole measuring system and the 'intelligence' - a microcontroller and the associated software - are the main ideas applied by the authors. The result is presented: a family of eight members, at least, based on two parents. (authors)

  17. Advances in control and instrumentation

    International Nuclear Information System (INIS)

    Surendar, Ch.

    1994-01-01

    Control and instrumentation systems have seen significant changes from pneumatic to electronic with the advent of transistors and integrated circuits. Miniaturization was realised. With the introduction of microprocessors there has been a revolutionary change in the approach in instrumentation and control systems in the areas of sensors, data acquisition/transmission, processing for control, and presentation of the information to the operator. An effort is made to give some insight into these areas, with some idea of the advantages to which these systems are being put to use in the nuclear facilities, particularly nuclear power reactors. (author)

  18. LIFTERS-hyperspectral imaging at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Fields, D. [Lawrence Livermore National Lab., CA (United States); Bennett, C.; Carter, M.

    1994-11-15

    LIFTIRS, the Livermore Imaging Fourier Transform InfraRed Spectrometer, recently developed at LLNL, is an instrument which enables extremely efficient collection and analysis of hyperspectral imaging data. LIFTIRS produces a spatial format of 128x128 pixels, with spectral resolution arbitrarily variable up to a maximum of 0.25 inverse centimeters. Time resolution and spectral resolution can be traded off for each other with great flexibility. We will discuss recent measurements made with this instrument, and present typical images and spectra.

  19. Selected topics in image science

    International Nuclear Information System (INIS)

    Nalcioglu, O.; Cho, Z.H.

    1984-01-01

    A review of the state of the art in diagnostic imaging via computers. Applications covered include emission tomography, digital radiography, and ultrasound and nuclear magnetic resonance imaging. Contents, abridged: Direct Fourier reconstruction techniques. Radiation detectors for CT instrumentation. Single photon emission computed tomography: potentials and limitations. Matched filtering for digital subtraction angiography

  20. UV imaging in pharmaceutical analysis

    DEFF Research Database (Denmark)

    Østergaard, Jesper

    2018-01-01

    UV imaging provides spatially and temporally resolved absorbance measurements, which are highly useful in pharmaceutical analysis. Commercial UV imaging instrumentation was originally developed as a detector for separation sciences, but the main use is in the area of in vitro dissolution...