WorldWideScience

Sample records for imaging device design

  1. The Image Transceiver Device: Studies of Improved Physical Design.

    Science.gov (United States)

    David, Yitzhak; Efron, Uzi

    2008-07-25

    The Image Transceiver Device (ITD) design is based on combining LCOS micro-display, image processing tools and back illuminated APS imager in single CMOS chip [1]. The device is under development for Head-Mounted Display applications in augmented and virtual reality systems. The main issues with the present design are a high crosstalk of the backside imager and the need to shield the pixel circuitry from the photocharges generated in the silicon substrate. In this publication we present a modified, "deep p-well" ITD pixel design, which provides a significantly reduced crosstalk level, as well as an effective shielding of photo-charges for the pixel circuitry. The simulation performed using Silvaco software [ATLAS Silicon Device Simulator, Ray Trace and Light Absorption programs, Silvaco International, 1998] shows that the new approach provides high photo response and allows increasing the optimal thickness of the die over and above the 10-15 micrometers commonly used for back illuminated imaging devices, thereby improving its mechanical ruggedness following the thinning process and also providing a more efficient absorption of the long wavelength photons. The proposed deep p-well pixel structure is also a technology solution for the fabrication of high performance back illuminated CMOS image sensors.

  2. The Image Transceiver Device: Studies of Improved Physical Design

    Directory of Open Access Journals (Sweden)

    Uzi Efron

    2008-07-01

    Full Text Available The Image Transceiver Device (ITD design is based on combining LCOS micro-display, image processing tools and back illuminated APS imager in single CMOS chip [1]. The device is under development for Head-Mounted Display applications in augmented and virtual reality systems. The main issues with the present design are a high crosstalk of the backside imager and the need to shield the pixel circuitry from the photocharges generated in the silicon substrate. In this publication we present a modified, “deep p-well” ITD pixel design, which provides a significantly reduced crosstalk level, as well as an effective shielding of photo-charges for the pixel circuitry. The simulation performed using Silvaco software [ATLAS Silicon Device Simulator, Ray Trace and Light Absorption programs, Silvaco International, 1998] shows that the new approach provides high photo response and allows increasing the optimal thickness of the die over and above the 10-15 micrometers commonly used for back illuminated imaging devices, thereby improving its mechanical ruggedness following the thinning process and also providing a more efficient absorption of the long wavelength photons. The proposed deep p-well pixel structure is also a technology solution for the fabrication of high performance back illuminated CMOS image sensors.

  3. The optical-mechanical design of DMD modulation imaging device

    Science.gov (United States)

    Li, Tianting; Xu, Xiping; Qiao, Yang; Li, Lei; Pan, Yue

    2014-09-01

    In order to avoid the phenomenon of some image information were lost, which is due to the jamming signals, such as incident laser, make the pixels dot on CCD saturated. In this article a device of optical-mechanical structure was designed, which utilized the DMD (Digital Micro mirror Device) to modulate the image. The DMD reflection imaging optical system adopts the telecentric light path. However, because the design is not only required to guarantee a 66° angle between the optical axis of the relay optics and the DMD, but also to ensure that the optical axis of the projection system keeps parallel with the perpendicular bisector of the micro-mirror which is in the "flat" state, so the TIR prism is introduced,and making the relay optics and the DMD satisfy the optical institution's requirements. In this paper, a mechanical structure of the imaging optical system was designed and at the meanwhile the lens assembly has been well connected and fixed and fine-tuned by detailed structural design, which included the tilt decentered lens, wedge flanges, prisms. By optimizing the design, the issues of mutual restraint between the inverting optical system and the projecting system were well resolved, and prevented the blocking of the two systems. In addition, the structure size of the whole DMD reflection imaging optical system was minimized; it reduced the energy loss and ensured the image quality.

  4. Design of free space optical omnidirectional transceivers for indoor applications using non-imaging optical devices

    Science.gov (United States)

    Agrawal, Navik; Davis, Christopher C.

    2008-08-01

    Omnidirectional free space optical communication receivers can employ multiple non-imaging collectors, such as compound parabolic concentrators (CPCs), in an array-like fashion to increase the amount of possible light collection. CPCs can effectively channel light collected over a large aperture to a small area photodiode. The aperture to length ratio of such devices can increase the overall size of the transceiver unit, which may limit the practicality of such systems, especially when small size is desired. New non-imaging collector designs with smaller sizes, larger field of view (FOV), and comparable transmission curves to CPCs, offer alternative transceiver designs. This paper examines how transceiver performance is affected by the use of different non-imaging collector shapes that are designed for wide FOV with reduced efficiency compared with shapes such as the CPC that are designed for small FOV with optimal efficiency. Theoretical results provide evidence indicating that array-like transceiver designs using various non-imaging collector shapes with less efficient transmission curves, but a larger FOV will be an effective means for the design of omnidirectional optical transceiver units. The results also incorporate the effects of Fresnel loss at the collector exit aperture-photodiode interface, which is an important consideration for indoor omnidirectional FSO systems.

  5. Design Through Integration of On-Board Calibration Device with Imaging Spectroscopy Instruments

    Science.gov (United States)

    Stange, Michael

    2012-01-01

    The main purpose of the Airborne Visible and Infrared Imaging Spectroscopy (AVIRIS) project is to "identify, measure, and monitor constituents of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures." The project designs, builds, and tests various imaging spectroscopy instruments that use On-Board Calibration devices (OBC) to check the accuracy of the data collected by the spectrometers. The imaging instrument records the spectral signatures of light collected during flight. To verify the data is correct, the OBC shines light which is collected by the imaging spectrometer and compared against previous calibration data to track spectral response changes in the instrument. The spectral data has the calibration applied to it based on the readings from the OBC data in order to ensure accuracy.

  6. Electronic portal imaging devices

    International Nuclear Information System (INIS)

    Lief, Eugene

    2008-01-01

    The topics discussed include, among others, the following: Role of portal imaging; Port films vs. EPID; Image guidance: Elekta volume view; Delivery verification; Automation tasks of portal imaging; Types of portal imaging (Fluorescent screen, mirror, and CCD camera-based imaging; Liquid ion chamber imaging; Amorpho-silicon portal imagers; Fluoroscopic portal imaging; Kodak CR reader; and Other types of portal imaging devices); QA of EPID; and Portal dosimetry (P.A.)

  7. Evaluating imaging devices

    International Nuclear Information System (INIS)

    Rollo, F.D.

    1977-01-01

    The performance of any imaging device depends on two principal factors inherent to the device, namely, plane sensitivity and spatial resolution. These factors may be defined as follows: plane sensitivity is the counts per second recorded by the imaging device for each disintegration per second per square centimeter occurring within a plane sheet of radioactivity. Spatial resolution may be defined as the fidelity with which the imaging device reproduces the activity distribution of an object in the image plane. In all imaging devices, a trade-off exists between these two parameters; that is, as sensitivity improves, spatial resolution is degraded, and vice versa. Therefore, to fully evaluate an imaging system a technique should be selected that measures both parameters and reflects the trade-off between the two. In addition, the method should approximate the clinical problem, namely, the detection of a focal lesion within an activity distribution. Several methods have been described to evaluate nuclear imaging devices. The more common techniques include the use of organ phantoms, bar phantoms, line-spread functions, modulation transfer functions, contrast efficiency functions, and performance index functions. Each of these techniques is briefly described in this chapter, and their advantages and disadvantages are discussed. In addition, a phantom that can be used to simply and completely measure overall imaging system performance is described

  8. [Electronic Device for Retinal and Iris Imaging].

    Science.gov (United States)

    Drahanský, M; Kolář, R; Mňuk, T

    This paper describes design and construction of a new device for automatic capturing of eye retina and iris. This device has two possible ways of utilization - either for biometric purposes (persons recognition on the base of their eye characteristics) or for medical purposes as supporting diagnostic device. eye retina, eye iris, device, acquisition, image.

  9. Performance study of a fan beam collimator designed for a multi-modality small animal imaging device

    International Nuclear Information System (INIS)

    Sabbir Ahmed, ASM; Kramer, Gary H.; Semmler, Wolfrad; Peter, Jorg

    2011-01-01

    This paper describes the methodology to design and conduct the performances of a fan beam collimator. This fan beam collimator was designed to use with a multi-modality small animal imaging device and the performance of the collimator was studied for a 3D geometry. Analytical expressions were formulated to calculate the parameters for the collimator. A Monte Carlo model was developed to analyze the scattering and image noises for a 3D object. The results showed that the performance of the fan beam collimator was strongly dependent on the source distribution and position. The fan beam collimator showed increased counting efficiency in comparison to a parallel hole collimator. Inside attenuating medium, the increased attenuating effect outweighed the fan beam increased counting efficiency.

  10. Design and evaluation of a high-performance charge coupled device camera for astronomical imaging

    International Nuclear Information System (INIS)

    Shang, Yuanyuan; Guan, Yong; Zhang, Weigong; Pan, Wei; Liu, Hui; Zhang, Jie

    2009-01-01

    The Space Solar Telescope (SST) is the first Chinese space astronomy mission. This paper introduces the design of a high-performance 2K × 2K charge coupled device (CCD) camera that is an important payload in the Space Solar Telescope. The camera is composed of an analogue system and a digital embedded system. The analogue system is first discussed in detail, including the power and bias voltage supply circuit, power protection unit, CCD clock driver circuit, 16 bit A/D converter and low-noise amplifier circuit. The digital embedded system integrated with an NIOS II soft-core processor serves as the control and data acquisition system of the camera. In addition, research on evaluation methods for CCDs was carried out to evaluate the performance of the TH7899 CCD camera in relation to the requirements of the SST project. We present the evaluation results, including readout noise, linearity, quantum efficiency, dark current, full-well capacity, charge transfer efficiency and gain. The results show that this high-performance CCD camera can satisfy the specifications of the SST project

  11. Method using in vivo quantitative spectroscopy to guide design and optimization of low-cost, compact clinical imaging devices: emulation and evaluation of multispectral imaging systems

    Science.gov (United States)

    Saager, Rolf B.; Baldado, Melissa L.; Rowland, Rebecca A.; Kelly, Kristen M.; Durkin, Anthony J.

    2018-04-01

    With recent proliferation in compact and/or low-cost clinical multispectral imaging approaches and commercially available components, questions remain whether they adequately capture the requisite spectral content of their applications. We present a method to emulate the spectral range and resolution of a variety of multispectral imagers, based on in-vivo data acquired from spatial frequency domain spectroscopy (SFDS). This approach simulates spectral responses over 400 to 1100 nm. Comparing emulated data with full SFDS spectra of in-vivo tissue affords the opportunity to evaluate whether the sparse spectral content of these imagers can (1) account for all sources of optical contrast present (completeness) and (2) robustly separate and quantify sources of optical contrast (crosstalk). We validate the approach over a range of tissue-simulating phantoms, comparing the SFDS-based emulated spectra against measurements from an independently characterized multispectral imager. Emulated results match the imager across all phantoms (<3 % absorption, <1 % reduced scattering). In-vivo test cases (burn wounds and photoaging) illustrate how SFDS can be used to evaluate different multispectral imagers. This approach provides an in-vivo measurement method to evaluate the performance of multispectral imagers specific to their targeted clinical applications and can assist in the design and optimization of new spectral imaging devices.

  12. Wireless device connection problems and design solutions

    Science.gov (United States)

    Song, Ji-Won; Norman, Donald; Nam, Tek-Jin; Qin, Shengfeng

    2016-09-01

    Users, especially the non-expert users, commonly experience problems when connecting multiple devices with interoperability. While studies on multiple device connections are mostly concentrated on spontaneous device association techniques with a focus on security aspects, the research on user interaction for device connection is still limited. More research into understanding people is needed for designers to devise usable techniques. This research applies the Research-through-Design method and studies the non-expert users' interactions in establishing wireless connections between devices. The "Learning from Examples" concept is adopted to develop a study focus line by learning from the expert users' interaction with devices. This focus line is then used for guiding researchers to explore the non-expert users' difficulties at each stage of the focus line. Finally, the Research-through-Design approach is used to understand the users' difficulties, gain insights to design problems and suggest usable solutions. When connecting a device, the user is required to manage not only the device's functionality but also the interaction between devices. Based on learning from failures, an important insight is found that the existing design approach to improve single-device interaction issues, such as improvements to graphical user interfaces or computer guidance, cannot help users to handle problems between multiple devices. This study finally proposes a desirable user-device interaction in which images of two devices function together with a system image to provide the user with feedback on the status of the connection, which allows them to infer any required actions.

  13. [Design of SCM inoculation device].

    Science.gov (United States)

    Qian, Mingli; Xie, Haiyuan

    2014-01-01

    The first step of bacilli culture is inoculation bacteria on culture medium. Designing a device to increase efficiency of inoculation is significative. The new device is controlled by SCM. The stepper motor can drive the culture medium rotating, accelerating, decelerating, overturn and suspending. The device is high practicability and efficient, let inoculation easy for operator.

  14. A device for multimodal imaging of skin

    Science.gov (United States)

    Spigulis, Janis; Garancis, Valerijs; Rubins, Uldis; Zaharans, Eriks; Zaharans, Janis; Elste, Liene

    2013-03-01

    A compact prototype device for diagnostic imaging of skin has been developed and tested. Polarized LED light at several spectral regions is used for illumination, and round skin spot of diameter 30mm is imaged by a CMOS sensor via crossoriented polarizing filter. Four consecutive imaging series are performed: (1) RGB image at white LED illumination for revealing subcutaneous structures; (2) four spectral images at narrowband LED illumination (450nm, 540nm, 660nm, 940nm) for mapping of the main skin chromophores; (3) video-imaging under green LED illumination for mapping of skin blood perfusion; (4) autofluorescence video-imaging under UV (365nm) LED irradiation for mapping of the skin fluorophores. Design details of the device as well as preliminary results of clinical tests are presented.

  15. Design and high-volume manufacture of low-cost molded IR aspheres for personal thermal imaging devices

    Science.gov (United States)

    Zelazny, A. L.; Walsh, K. F.; Deegan, J. P.; Bundschuh, B.; Patton, E. K.

    2015-05-01

    The demand for infrared optical elements, particularly those made of chalcogenide materials, is rapidly increasing as thermal imaging becomes affordable to the consumer. The use of these materials in conjunction with established lens manufacturing techniques presents unique challenges relative to the cost sensitive nature of this new market. We explore the process from design to manufacture, and discuss the technical challenges involved. Additionally, facets of the development process including manufacturing logistics, packaging, supply chain management, and qualification are discussed.

  16. Fusion engineering device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  17. Fusion Engineering Device design description

    International Nuclear Information System (INIS)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  18. Fusion engineering device design description

    International Nuclear Information System (INIS)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  19. An efficient HW and SW design of H.264 video compression, storage and playback on FPGA devices for handheld thermal imaging systems

    Science.gov (United States)

    Gunay, Omer; Ozsarac, Ismail; Kamisli, Fatih

    2017-05-01

    Video recording is an essential property of new generation military imaging systems. Playback of the stored video on the same device is also desirable as it provides several operational benefits to end users. Two very important constraints for many military imaging systems, especially for hand-held devices and thermal weapon sights, are power consumption and size. To meet these constraints, it is essential to perform most of the processing applied to the video signal, such as preprocessing, compression, storing, decoding, playback and other system functions on a single programmable chip, such as FPGA, DSP, GPU or ASIC. In this work, H.264/AVC (Advanced Video Coding) compatible video compression, storage, decoding and playback blocks are efficiently designed and implemented on FPGA platforms using FPGA fabric and Altera NIOS II soft processor. Many subblocks that are used in video encoding are also used during video decoding in order to save FPGA resources and power. Computationally complex blocks are designed using FPGA fabric, while blocks such as SD card write/read, H.264 syntax decoding and CAVLC decoding are done using NIOS processor to benefit from software flexibility. In addition, to keep power consumption low, the system was designed to require limited external memory access. The design was tested using 640x480 25 fps thermal camera on CYCLONE V FPGA, which is the ALTERA's lowest power FPGA family, and consumes lower than 40% of CYCLONE V 5CEFA7 FPGA resources on average.

  20. Microscopy imaging device with advanced imaging properties

    Science.gov (United States)

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  1. A high-temperature furnace and a heating/drawing device designed for time-resolved X-ray diffraction measurements of polymer solids using imaging plates

    International Nuclear Information System (INIS)

    Murakami, Syozo; Tanno, Kiyomitsu; Tsuji, Masaki; Kohjiya, Shinzo

    1995-01-01

    For time-resolved X-ray diffraction measurements using the imaging plate system in the drawing and/or heating process of polymer solids, a high-temperature furnace for heat treatment and a heating/drawing device were newly designed and constructed. Then, to demonstrate their performance, some experimental results obtained in the drawing process of an extruded/blown film of high-density polyethylene at room temperature and in the crystallization process of an oriented amorphous film of poly(ethylene naphthalene-2,6-dicarboxylate) by heating were presented. Other experimental results obtained using them were also briefly cited. (author)

  2. Development of a human body RMN imaging device

    International Nuclear Information System (INIS)

    Saint-Jalmes, H.

    1984-03-01

    Imaging device for human body is studied in this thesis. The section images presented are got by a projection-reconstruction method associated to a section plane selection by an oscillating gradient application. Different stages of the machine development are presented: - design and calculation of a resistive magnet for very homogeneous field imaging - design of gradient coils for imaging magnets - realization of control and acquisition interfaces - realization of imaging software in real time [fr

  3. Design of microwave active devices

    CERN Document Server

    Gautier , Jean-Luc

    2014-01-01

    This book presents methods for the design of the main microwave active devices. The first chapter focuses on amplifiers working in the linear mode. The authors present the problems surrounding narrowband and wideband impedance matching, stability, polarization and the noise factor, as well as specific topologies such as the distributed amplifier and the differential amplifier. Chapter 2 concerns the power amplifier operation. Specific aspects on efficiency, impedance matching and class of operation are presented, as well as the main methods of linearization and efficiency improvement. Freq

  4. Design and implementation of I2Vote-An interactive image-based voting system using windows mobile devices

    NARCIS (Netherlands)

    van Ooijen, P. M. A.; Broekema, A.; Oudkerk, M.

    Purpose: To develop, implement and test a novel audience response system (ARS) that allows image based interaction for radiology education. Methods: The ARS developed in this project is based on standard Personal Digital Assistants (PDAs) (HP iPAQ 114 classic handheld) running Microsoft (R) Windows

  5. Design and implementation of I2Vote--an interactive image-based voting system using windows mobile devices.

    Science.gov (United States)

    van Ooijen, P M A; Broekema, A; Oudkerk, M

    2011-08-01

    To develop, implement and test a novel audience response system (ARS) that allows image based interaction for radiology education. The ARS developed in this project is based on standard Personal Digital Assistants (PDAs) (HP iPAQ 114 classic handheld) running Microsoft® Windows Mobile® 6 Classic with a large 3.5 in. TFT touch screen (320×240 pixel resolution), high luminance and integrated IEEE 802.11b/g wireless. For software development Visual Studio 2008 professional (Microsoft) was used and all components were written in C#. Two test sessions were conducted to test the software technically followed by two real classroom tests in a radiology class for medical students on thoracic radiology. The novel ARS, called I2Vote, was successfully implemented and provided an easy to use, stable setup. The acceptance of both students and teachers was very high and the interaction with the students improved because of the anonymous interaction possibility. An easy to use handheld based ARS that enables interactive, image-based, teaching is achieved. The system effectively adds an extra dimension to the use of an ARS. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Microwave impedance imaging on semiconductor memory devices

    Science.gov (United States)

    Kundhikanjana, Worasom; Lai, Keji; Yang, Yongliang; Kelly, Michael; Shen, Zhi-Xun

    2011-03-01

    Microwave impedance microscopy (MIM) maps out the real and imaginary components of the tip-sample impedance, from which the local conductivity and dielectric constant distribution can be derived. The stray field contribution is minimized in our shielded cantilever design, enabling quantitative analysis of nano-materials and device structures. We demonstrate here that the MIM can spatially resolve the conductivity variation in a dynamic random access memory (DRAM) sample. With DC or low-frequency AC bias applied to the tip, contrast between n-doped and p-doped regions in the dC/dV images is observed, and p-n junctions are highlighted in the dR/dV images. The results can be directly compared with data taken by scanning capacitance microscope (SCM), which uses unshielded cantilevers and resonant electronics, and the MIM reveals more information of the local dopant concentration than SCM.

  7. Use of mobile devices for medical imaging.

    Science.gov (United States)

    Hirschorn, David S; Choudhri, Asim F; Shih, George; Kim, Woojin

    2014-12-01

    Mobile devices have fundamentally changed personal computing, with many people forgoing the desktop and even laptop computer altogether in favor of a smaller, lighter, and cheaper device with a touch screen. Doctors and patients are beginning to expect medical images to be available on these devices for consultative viewing, if not actual diagnosis. However, this raises serious concerns with regard to the ability of existing mobile devices and networks to quickly and securely move these images. Medical images often come in large sets, which can bog down a network if not conveyed in an intelligent manner, and downloaded data on a mobile device are highly vulnerable to a breach of patient confidentiality should that device become lost or stolen. Some degree of regulation is needed to ensure that the software used to view these images allows all relevant medical information to be visible and manipulated in a clinically acceptable manner. There also needs to be a quality control mechanism to ensure that a device's display accurately conveys the image content without loss of contrast detail. Furthermore, not all mobile displays are appropriate for all types of images. The smaller displays of smart phones, for example, are not well suited for viewing entire chest radiographs, no matter how small and numerous the pixels of the display may be. All of these factors should be taken into account when deciding where, when, and how to use mobile devices for the display of medical images. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  8. Design and Implementation of a Video-Zoom Driven Digital Audio-Zoom System for Portable Digital Imaging Devices

    Science.gov (United States)

    Park, Nam In; Kim, Seon Man; Kim, Hong Kook; Kim, Ji Woon; Kim, Myeong Bo; Yun, Su Won

    In this paper, we propose a video-zoom driven audio-zoom algorithm in order to provide audio zooming effects in accordance with the degree of video-zoom. The proposed algorithm is designed based on a super-directive beamformer operating with a 4-channel microphone system, in conjunction with a soft masking process that considers the phase differences between microphones. Thus, the audio-zoom processed signal is obtained by multiplying an audio gain derived from a video-zoom level by the masked signal. After all, a real-time audio-zoom system is implemented on an ARM-CORETEX-A8 having a clock speed of 600 MHz after different levels of optimization are performed such as algorithmic level, C-code, and memory optimizations. To evaluate the complexity of the proposed real-time audio-zoom system, test data whose length is 21.3 seconds long is sampled at 48 kHz. As a result, it is shown from the experiments that the processing time for the proposed audio-zoom system occupies 14.6% or less of the ARM clock cycles. It is also shown from the experimental results performed in a semi-anechoic chamber that the signal with the front direction can be amplified by approximately 10 dB compared to the other directions.

  9. 21 CFR 892.2040 - Medical image hardcopy device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a medical...

  10. Class 1 devices case studies in medical devices design

    CERN Document Server

    Ogrodnik, Peter J

    2014-01-01

    The Case Studies in Medical Devices Design series consists of practical, applied case studies relating to medical device design in industry. These titles complement Ogrodnik's Medical Device Design and will assist engineers with applying the theory in practice. The case studies presented directly relate to Class I, Class IIa, Class IIb and Class III medical devices. Designers and companies who wish to extend their knowledge in a specific discipline related to their respective class of operation will find any or all of these titles a great addition to their library. Class 1 Devices is a companion text to Medical Devices Design: Innovation from Concept to Market. The intention of this book, and its sister books in the series, is to support the concepts presented in Medical Devices Design through case studies. In the context of this book the case studies consider Class I (EU) and 510(k) exempt (FDA) . This book covers classifications, the conceptual and embodiment phase, plus design from idea to PDS. These title...

  11. Nuclear Medicine Imaging Devices. Chapter 11

    Energy Technology Data Exchange (ETDEWEB)

    Lodge, M. A.; Frey, E. C. [Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD (United States)

    2014-12-15

    Imaging forms an important part of nuclear medicine and a number of different imaging devices have been developed. This chapter describes the principles and technological characteristics of the main imaging devices used in nuclear medicine. The two major categories are gamma camera systems and positron emission tomography (PET) systems. The former are used to image γ rays emitted by any nuclide, while the latter exploit the directional correlation between annihilation photons emitted by positron decay. The first section of this chapter discusses the principal components of gamma cameras and how they are used to form 2-D planar images as well as 3-D tomographic images (single photon emission computed tomography (SPECT)). The second section describes related instrumentation that has been optimized for PET data acquisition. A major advance in nuclear medicine was achieved with the introduction of multi-modality imaging systems including SPECT/computed tomography (CT) and PET/CT. In these systems, the CT images can be used to provide an anatomical context for the functional nuclear medicine images and allow for attenuation compensation. The third section in this chapter provides a discussion of the principles of these devices.

  12. Fusion Engineering Device. Volume II. Design description

    International Nuclear Information System (INIS)

    1981-10-01

    This volume summarizes the design of the FED. It includes a description of the major systems and subsystems, the supporting plasma design analysis, a projected device cost and associated construction schedule, and a description of the facilities to house and support the device. This effort represents the culmination of the FY81 studies conducted at the Fusion Engineering Design Center (FEDC). Unique in these design activities has been the collaborative involvement of the Design Center personnel and numerous resource physicists from the fusion community who have made significant contributions in the physics design analysis as well as the physics support of the engineering design of the major FED systems and components

  13. An image scanning device using radiating energy

    International Nuclear Information System (INIS)

    Jacob, Daniel.

    1976-01-01

    Said invention relates to an image scanning device using radiating energy. More particularly, it relates to a device for generating a scanning beam of rectangular cross section from a γ or X-ray source. Said invention can be applied to radiographic units of the 'microdose' type used by airline staffs and others for the fast efficient inspection of luggage and parcels in view of detecting hidden things [fr

  14. Design of biomedical devices and systems

    CERN Document Server

    King, Paul H

    2008-01-01

    Introduction to Biomedical Engineering Design. Fundamental Design Tools. Design Team Management, Reporting, and Documentation. Product Definition. Product Documentation. Product Development. Hardware Development Methods and Tools. Software Development Methods and Tools. Human Factors. Industrial Design. Biomaterials and Material Testing. Safety Engineering: Devices and Processes. Testing. Analysis of Test Data. Reliability and Liability. Food and Drug Administration. Regulations and Standards. Licensing, Patents, Copyrights, and Trade Secrets. Manufacturing and Quality Control. Miscellaneous Issues. Product Issues. Professional Issues. Design Case Studies. Future Design Issues.

  15. Design of wearable health monitoring device

    Science.gov (United States)

    Devara, Kresna; Ramadhanty, Savira; Abuzairi, Tomy

    2018-02-01

    Wearable smart health monitoring devices have attracted considerable attention in both research community and industry. Some of the causes are the increasing healthcare costs, along with the growing technology. To address this demand, in this paper, design and evaluation of wearable health monitoring device integrated with smartphone were presented. This device was designed for patients in need of constant health monitoring. The performance of the proposed design has been tested by conducting measurement once in 2 minutes for 10 minutes to obtain heart rate and body temperature data. The comparation between data measured by the proposed device and that measured by the reference device yields only an average error of 1.45% for heart rate and 1.04% for body temperature.

  16. Antenna design for mobile devices

    CERN Document Server

    Zhang, Zhijun

    2017-01-01

    - Integrates state-of-the-art technologies with a special section for step-by-step antenna design - Features up-to-date bio-safety and electromagnetic compatibility regulation compliance and latest standards - Newly updated with MIMO antenna design, measurements and requirements - Accessible to readers of many levels, from introductory to specialist - Written by a practicing expert who has hired and trained numerous engineers

  17. Handbook on advanced design and manufacturing technologies for biomedical devices

    CERN Document Server

    2013-01-01

    The last decades have seen remarkable advances in computer-aided design, engineering and manufacturing technologies, multi-variable simulation tools, medical imaging, biomimetic design, rapid prototyping, micro and nanomanufacturing methods and information management resources, all of which provide new horizons for the Biomedical Engineering fields and the Medical Device Industry. Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices covers such topics in depth, with an applied perspective and providing several case studies that help to analyze and understand the key factors of the different stages linked to the development of a novel biomedical device, from the conceptual and design steps, to the prototyping and industrialization phases. Main research challenges and future potentials are also discussed, taking into account relevant social demands and a growing market already exceeding billions of dollars. In time, advanced biomedical devices will decisively change methods and resu...

  18. Practical design control implementation for medical devices

    CERN Document Server

    Justiniano, Jose

    2003-01-01

    Bringing together the concepts of design control and reliability engineering, this book is a must for medical device manufacturers. It helps them meet the challenge of designing and developing products that meet or exceed customer expectations and also meet regulatory requirements. Part One covers motivation for design control and validation, design control requirements, process validation and design transfer, quality system for design control, and measuring design control program effectiveness. Part Two discusses risk analysis and FMEA, designing-in reliability, reliability and design verific

  19. Design of acoustic devices by topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole; Jensen, Jakob Søndergaard

    2003-01-01

    The goal of this study is to design and optimize structures and devices that are subjected to acoustic waves. Examples are acoustic lenses, sound walls, waveguides and loud speakers. We formulate the design problem as a topology optimization problem, i.e. distribute material in a design domain...... such that the acoustic response is optimized....

  20. Contextual inquiry for medical device design

    CERN Document Server

    Privitera, Mary Beth

    2015-01-01

    Contextual Inquiry for Medical Device Design helps users understand the everyday use of medical devices and the way their usage supports the development of better products and increased market acceptance. The text explains the concept of contextual inquiry using real-life examples to illustrate its application. Case studies provide a frame of reference on how contextual inquiry is successfully used during product design, ultimately producing safer, improved medical devices. Presents the ways contextual inquiry can be used to inform the evaluation and business case of technologyHelps users

  1. Movable collimator for positron annihilation imaging device

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1982-01-01

    A positron annihilation imaging device has two or more rings of detectors from which three or more slices through the object being scanned can be determined at once. A technique is provided for adjusting the slice widths. One slice may be imaged by all detectors in adjacent planes simultaneously, and reconstructed as if all detectors were in the same plane. The single slice facility is provided without the necessity of rotating the detector array or moving it in any way during data collection, allowing the possibility of doing physiologically gated imaging of a single slice

  2. A new 3-dimensional head fixation device for brain imaging

    International Nuclear Information System (INIS)

    Goto, Ryoi; Kawashima, Ryuta; Yoshioka, Seiro; Ono, Shuichi; Ito, Hiroshi; Sato, Kazunori; Akaizawa, Takashi; Koyama, Masamichi; Fukuda, Hiroshi

    1995-01-01

    We have developed a new head fixation device for studies of brain function. This device was designed to immobilize subject's heads during image scanning and to precisely reproduce the head position for two different imaging modalities such as MRI and PET. The device consists of a plastic frame, a pillow filled with beads of styrene foam, and a face mask of thermoplastic resin which was originally intended for application in radiotherapy. A bridge for biting was incorporated into the mask for stable fixation. The device enables immobilization of subject's heads with good reproducibility of position at the practical level. Our results indicate that this head fixation system is useful for fixation of head during activation studies using PET. (author)

  3. Informatics in radiology: Efficiency metrics for imaging device productivity.

    Science.gov (United States)

    Hu, Mengqi; Pavlicek, William; Liu, Patrick T; Zhang, Muhong; Langer, Steve G; Wang, Shanshan; Place, Vicki; Miranda, Rafael; Wu, Teresa Tong

    2011-01-01

    Acute awareness of the costs associated with medical imaging equipment is an ever-present aspect of the current healthcare debate. However, the monitoring of productivity associated with expensive imaging devices is likely to be labor intensive, relies on summary statistics, and lacks accepted and standardized benchmarks of efficiency. In the context of the general Six Sigma DMAIC (design, measure, analyze, improve, and control) process, a World Wide Web-based productivity tool called the Imaging Exam Time Monitor was developed to accurately and remotely monitor imaging efficiency with use of Digital Imaging and Communications in Medicine (DICOM) combined with a picture archiving and communication system. Five device efficiency metrics-examination duration, table utilization, interpatient time, appointment interval time, and interseries time-were derived from DICOM values. These metrics allow the standardized measurement of productivity, to facilitate the comparative evaluation of imaging equipment use and ongoing efforts to improve efficiency. A relational database was constructed to store patient imaging data, along with device- and examination-related data. The database provides full access to ad hoc queries and can automatically generate detailed reports for administrative and business use, thereby allowing staff to monitor data for trends and to better identify possible changes that could lead to improved productivity and reduced costs in association with imaging services. © RSNA, 2011.

  4. Metrological characterization of 3D imaging devices

    Science.gov (United States)

    Guidi, G.

    2013-04-01

    Manufacturers often express the performance of a 3D imaging device in various non-uniform ways for the lack of internationally recognized standard requirements for metrological parameters able to identify the capability of capturing a real scene. For this reason several national and international organizations in the last ten years have been developing protocols for verifying such performance. Ranging from VDI/VDE 2634, published by the Association of German Engineers and oriented to the world of mechanical 3D measurements (triangulation-based devices), to the ASTM technical committee E57, working also on laser systems based on direct range detection (TOF, Phase Shift, FM-CW, flash LADAR), this paper shows the state of the art about the characterization of active range devices, with special emphasis on measurement uncertainty, accuracy and resolution. Most of these protocols are based on special objects whose shape and size are certified with a known level of accuracy. By capturing the 3D shape of such objects with a range device, a comparison between the measured points and the theoretical shape they should represent is possible. The actual deviations can be directly analyzed or some derived parameters can be obtained (e.g. angles between planes, distances between barycenters of spheres rigidly connected, frequency domain parameters, etc.). This paper shows theoretical aspects and experimental results of some novel characterization methods applied to different categories of active 3D imaging devices based on both principles of triangulation and direct range detection.

  5. Design and optimization of thermoacoustic devices

    International Nuclear Information System (INIS)

    Babaei, Hadi; Siddiqui, Kamran

    2008-01-01

    Thermoacoustics deals with the conversion of heat energy into sound energy and vice versa. It is a new and emerging technology which has a strong potential towards the development of sustainable and renewable energy systems by utilizing waste heat or solar energy. Although simple to fabricate, the designing of thermoacoustic devices is very challenging. In the present study, a comprehensive design and optimization algorithm is developed for designing thermoacoustic devices. The unique feature of the present algorithm is its ability to design thermoacoustically-driven thermoacoustic refrigerators that can serve as sustainable refrigeration systems. In addition, new features based on the energy balance are also included to design individual thermoacoustic engines and acoustically-driven thermoacoustic refrigerators. As a case study, a thermoacoustically-driven thermoacoustic refrigerator has been designed and optimized based on the developed algorithm. The results from the algorithm are in good agreement with that obtained from the computer code DeltaE

  6. Probabilistic Design of Wave Energy Devices

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Kofoed, Jens Peter; Ferreira, C.B.

    2011-01-01

    Wave energy has a large potential for contributing significantly to production of renewable energy. However, the wave energy sector is still not able to deliver cost competitive and reliable solutions. But the sector has already demonstrated several proofs of concepts. The design of wave energy...... devices is a new and expanding technical area where there is no tradition for probabilistic design—in fact very little full scale devices has been build to date, so it can be said that no design tradition really exists in this area. For this reason it is considered to be of great importance to develop...... and advocate for a probabilistic design approach, as it is assumed (in other areas this has been demonstrated) that this leads to more economical designs compared to designs based on deterministic methods. In the present paper a general framework for probabilistic design and reliability analysis of wave energy...

  7. Positron annihilation imaging device having movable collimator

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1981-01-01

    This patent application relates to a positron annihilation imaging device comprising two circular arrays of detectors disposed in spaced apart parallel planes and circumferentially offset by half the detector spacing, axially movable annular outer collimator rings, generally disposed in a pair of opposite planes outside the associated planes of the detectors, each collimator being movable toward the opposite collimator. An inner collimator of annular configuration is disposed between the two rows of detectors and is formed in two rings which may be separated axially. The outer and inner collimators serve to enhance data readout and imaging. (author)

  8. Movable collimator for positron annihilation imaging device

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1981-01-01

    A positron annihilation imaging device having two circular arrays of detectors disposed in spaced apart parallel planes wherein axially movable annular collimator rings are generally disposed in a pair of opposite planes outside the associated planes of the collimators to each collimator being movable toward the opposite collimator and a central collimator of annular configuration generally disposed between the two rows of detectors but being split into two rings which may be separated, the outer and inner collimators serving to enhance data readout and imaging

  9. Real-time computer treatment of THz passive device images with the high image quality

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  10. Developing biomedical devices design, innovation and protection

    CERN Document Server

    Andreoni, Giuseppe; Colombo, Barbara

    2013-01-01

    During the past two decades incredible progress has been achieved in the instruments and devices used in the biomedical field. This progress stems from continuous scientific research that has taken advantage of many findings and advances in technology made available by universities and industry. Innovation is the key word, and in this context legal protection and intellectual property rights (IPR) are of crucial importance. This book provides students and practitioners with the fundamentals for designing biomedical devices and explains basic design principles. Furthermore, as an aid to the dev

  11. Spine device clinical trials: design and sponsorship.

    Science.gov (United States)

    Cher, Daniel J; Capobianco, Robyn A

    2015-05-01

    Multicenter prospective randomized clinical trials represent the best evidence to support the safety and effectiveness of medical devices. Industry sponsorship of multicenter clinical trials is purported to lead to bias. To determine what proportion of spine device-related trials are industry-sponsored and the effect of industry sponsorship on trial design. Analysis of data from a publicly available clinical trials database. Clinical trials of spine devices registered on ClinicalTrials.gov, a publicly accessible trial database, were evaluated in terms of design, number and location of study centers, and sample size. The relationship between trial design characteristics and study sponsorship was evaluated using logistic regression and general linear models. One thousand six hundred thrity-eight studies were retrieved from ClinicalTrials.gov using the search term "spine." Of the 367 trials that focused on spine surgery, 200 (54.5%) specifically studied devices for spine surgery and 167 (45.5%) focused on other issues related to spine surgery. Compared with nondevice trials, device trials were far more likely to be sponsored by the industry (74% vs. 22.2%, odds ratio (OR) 9.9 [95% confidence interval 6.1-16.3]). Industry-sponsored device trials were more likely multicenter (80% vs. 29%, OR 9.8 [4.8-21.1]) and had approximately four times as many participating study centers (pdevices not sponsored by the industry. Most device-related spine research is industry-sponsored. Multicenter trials are more likely to be industry-sponsored. These findings suggest that previously published studies showing larger effect sizes in industry-sponsored vs. nonindustry-sponsored studies may be biased as a result of failure to take into account the marked differences in design and purpose. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Image Quality Characteristics of Handheld Display Devices for Medical Imaging

    Science.gov (United States)

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  13. Design controls for the medical device industry

    CERN Document Server

    Teixeira, Marie B

    2013-01-01

    The second edition of a bestseller, Design Controls for the Medical Device Industry provides a comprehensive review of the latest design control requirements, as well as proven tools and techniques to ensure your company's design control program evolves in accordance with current industry practice. The text assists in the development of an effective design control program that not only satisfies the US FDA Quality System Regulation (QSR) and ISO 9001 and 13485 standards, but also meets today's third-party auditor/investigator expectations and saves you valuable time and money.The author's cont

  14. Design of digital systems and devices

    CERN Document Server

    Adamski, Marian; Wegrzyn, Marek

    2011-01-01

    This book includes a variety of design and test methods targeted on different digital devices, as well as different logic elements. The authors of the book represent such countries as Israel, Poland, Russia, and Ukraine. The book is divided by three main parts, including thirteen different Chapters.

  15. The design and validation of a magnetic resonance imaging-compatible device for obtaining mechanical properties of plantar soft tissue via gated acquisition.

    Science.gov (United States)

    Williams, Evan D; Stebbins, Michael J; Cavanagh, Peter R; Haynor, David R; Chu, Baocheng; Fassbind, Michael J; Isvilanonda, Vara; Ledoux, William R

    2015-10-01

    Changes in the mechanical properties of the plantar soft tissue in people with diabetes may contribute to the formation of plantar ulcers. Such ulcers have been shown to be in the causal pathway for lower extremity amputation. The hydraulic plantar soft tissue reducer (HyPSTER) was designed to measure in vivo, rate-dependent plantar soft tissue compressive force and three-dimensional deformations to help understand, predict, and prevent ulcer formation. These patient-specific values can then be used in an inverse finite element analysis to determine tissue moduli, and subsequently used in a foot model to show regions of high stress under a wide variety of loading conditions. The HyPSTER uses an actuator to drive a magnetic resonance imaging-compatible hydraulic loading platform. Pressure and actuator position were synchronized with gated magnetic resonance imaging acquisition. Achievable loading rates were slower than those found in normal walking because of a water-hammer effect (pressure wave ringing) in the hydraulic system when the actuator direction was changed rapidly. The subsequent verification tests were, therefore, performed at 0.2 Hz. The unloaded displacement accuracy of the system was within 0.31%. Compliance, presumably in the system's plastic components, caused a displacement loss of 5.7 mm during a 20-mm actuator test at 1354 N. This was accounted for with a target to actual calibration curve. The positional accuracy of the HyPSTER during loaded displacement verification tests from 3 to 9 mm against a silicone backstop was 95.9% with a precision of 98.7%. The HyPSTER generated minimal artifact in the magnetic resonance imaging scanner. Careful analysis of the synchronization of the HyPSTER and the magnetic resonance imaging scanner was performed. With some limitations, the HyPSTER provided key functionality in measuring dynamic, patient-specific plantar soft tissue mechanical properties. © IMechE 2015.

  16. Designs for mechanical circulatory support device studies.

    Science.gov (United States)

    Neaton, James D; Normand, Sharon-Lise; Gelijns, Annetine; Starling, Randall C; Mann, Douglas L; Konstam, Marvin A

    2007-02-01

    There is increased interest in mechanical circulatory support devices (MCSDs), such as implantable left ventricular assist devices (LVADs), as "destination" therapy for patients with advanced heart failure. Because patient availability to evaluate these devices is limited and randomized trials have been slow in enrolling patients, a workshop was convened to consider designs for MCSD development including alternatives to randomized trials. A workshop was jointly planned by the Heart Failure Society of America and the US Food and Drug Administration and was convened in March 2006. One of the panels was asked to review different designs for evaluating new MCSDs. Randomized trials have many advantages over studies with no controls or with nonrandomized concurrent or historical controls. These advantages include the elimination of bias in the assignment of treatments and the balancing, on average, of known and unknown baseline covariates that influence response. These advantages of randomization are particularly important for studies in which the treatments may not differ from one another by a large amount (eg, a head-to-head study of an approved LVAD with a new LVAD). However, researchers have found it difficult to recruit patients to randomized studies because the number of clinical sites that can carry out the studies is not large. Also, there is a reluctance to randomize patients when the control device is considered technologically inferior. Thus ways of improving the design of randomized trials were discussed, and the advantages and disadvantages of alternative designs were considered. The panel concluded that designs should include a randomized component. Randomized designs might be improved by allowing the control device to be chosen before randomization, by first conducting smaller vanguard studies, and by allowing crossovers in trials with optimal medical management controls. With use of data from completed trials, other databases, and registries, alternative

  17. Emerging Semitransparent Solar Cells: Materials and Device Design.

    Science.gov (United States)

    Tai, Qidong; Yan, Feng

    2017-09-01

    Semitransparent solar cells can provide not only efficient power-generation but also appealing images and show promising applications in building integrated photovoltaics, wearable electronics, photovoltaic vehicles and so forth in the future. Such devices have been successfully realized by incorporating transparent electrodes in new generation low-cost solar cells, including organic solar cells (OSCs), dye-sensitized solar cells (DSCs) and organometal halide perovskite solar cells (PSCs). In this review, the advances in the preparation of semitransparent OSCs, DSCs, and PSCs are summarized, focusing on the top transparent electrode materials and device designs, which are all crucial to the performance of these devices. Techniques for optimizing the efficiency, color and transparency of the devices are addressed in detail. Finally, a summary of the research field and an outlook into the future development in this area are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Design of active feedback for rehabilitation device

    Directory of Open Access Journals (Sweden)

    Liska Ondrej

    2016-01-01

    Full Text Available Sensor systems are an essential part of automated equipment. They are even more important in machines that come in contact with people, because they have a significant impact on safety. This paper describes the design of active feedback for rehabilitation device driven by pneumatic artificial muscles. Here are presented three methods for measuring the load of the robot. The first is a system composed of Force Sensitive Resistors (FSR placed in the handle of the device. Two other methods are intended to measure the load of the actuator composed of artificial muscles. The principle of one method is to measure the difference in filling pressures of the muscles, second is based on strain measurement in the drive cables. The paper describes advantages and disadvantages of using each of these methods in a rehabilitation device

  19. Quality assurance for electronic portal imaging devices

    International Nuclear Information System (INIS)

    Shalev, S.; Rajapakshe, R.; Gluhchev, G.; Luchka, K.

    1997-01-01

    Electronic portal imaging devices (EPIDS) are assuming an ever-increasing role in the verification of radiation treatment accuracy. They are used both in a passive capacity, for the determination of field displacement distributions (''setup errors''), and also in an active role whereby the patient setup is corrected on the basis of electronic portal images. In spite of their potential impact on the precision of patient treatment, there are few quality assurance procedures available, and most of the EPIDS in clinical use are subject, at best, to only perfunctory quality assurance. The goals of this work are (a) to develop an objective and reproducible test for EPID image quality on the factory floor and during installation of the EPID on site; (b) to provide the user with a simple and accurate tool for acceptance, commissioning, and routine quality control; and (c) to initiate regional, national and international collaboration in the implementation of standardized, objective, and automated quality assurance procedures. To this end we have developed an automated test in which a simple test object is imaged daily, and the spatial and contrast resolution of the EPID are automatically evaluated in terms of ''acceptable'', ''warning'' and ''stop'' criteria. Our experience over two years shows the test to be highly sensitive, reproducible, and inexpensive in time and effort. Inter-institutional trials are under way in Canada, US and Europe which indicate large variations in EPID image quality from one EPID to another, and from one center to another. We expect the new standardized quality assurance procedure to lead to improved, and consistent image quality, increased operator acceptance of the technology, and agreement on uniform standards by equipment suppliers and health care agencies. (author)

  20. Tiny Devices Project Sharp, Colorful Images

    Science.gov (United States)

    2009-01-01

    Displaytech Inc., based in Longmont, Colorado and recently acquired by Micron Technology Inc. of Boise, Idaho, first received a Small Business Innovation Research contract in 1993 from Johnson Space Center to develop tiny, electronic, color displays, called microdisplays. Displaytech has since sold over 20 million microdisplays and was ranked one of the fastest growing technology companies by Deloitte and Touche in 2005. Customers currently incorporate the microdisplays in tiny pico-projectors, which weigh only a few ounces and attach to media players, cell phones, and other devices. The projectors can convert a digital image from the typical postage stamp size into a bright, clear, four-foot projection. The company believes sales of this type of pico-projector may exceed $1.1 billion within 5 years.

  1. Compact imaging Bragg spectrometer for fusion devices

    International Nuclear Information System (INIS)

    Bertschinger, G.; Biel, W.; Jaegers, H.; Marchuk, O.

    2004-01-01

    A compact imaging x-ray spectrometer has been designed for tokamaks and stellarators to measure the plasma parameters at different spatial chords. It has been optimized for high spectral resolution and high sensitivity. High spectral resolution is obtained by using solid state detectors and minimizing the imaging errors of the spherical crystals. It is shown, that using spherical crystals the solid angle and hence the throughput can be increased significantly, without compromising the spectral resolution. The design is useful for the measurement of the spectra of He- and H-like ions from Si to Kr. The spectral resolution is sufficient for the measurement of plasma parameters. The temporal resolution is high enough for transport studies by gas puff and laser ablation experiments. The design is based on a modified Johann spectrometer mount, utilizing a spherically bent crystal instead of the cylindrically bent crystal in the traditional Johann mount. The astigmatism of the wavelength selective reflection on the spherical crystal is applied to obtain imaging of an extended plasma source on a two-dimensional detector. For each element, a separate crystal is required, only in few cases, a crystal can be used for the spectra of two elements. For the spectra of most of the He-like ions from Si up to Kr, suitable crystal cuts have been found on quartz, silicon and germanium crystals with Bragg angles in a small interval around the design value of 53.5 deg. All of the crystals have the same radius. They are fixed on a rotational table. The distance to the detector is adjusted by an x-y table to fit to the Rowland circle

  2. Multimodality imaging of the Essure tubal occlusion device

    International Nuclear Information System (INIS)

    Simpson, W.L.; Beitia, L.

    2012-01-01

    The Essure device is a permanent birth-control device, which is gaining popularity. The micro-inserts are composed of metallic elements that can be seen on radiography, computed tomography, ultrasound, and magnetic resonance imaging. Knowledge of the normal location and appearance of the Essure device will ensure appropriate patient care. The purpose of this review is to describe the Essure tubal occlusion device and illustrate its normal and abnormal appearance using various imaging methods.

  3. Optimal patch code design via device characterization

    Science.gov (United States)

    Wu, Wencheng; Dalal, Edul N.

    2012-01-01

    In many color measurement applications, such as those for color calibration and profiling, "patch code" has been used successfully for job identification and automation to reduce operator errors. A patch code is similar to a barcode, but is intended primarily for use in measurement devices that cannot read barcodes due to limited spatial resolution, such as spectrophotometers. There is an inherent tradeoff between decoding robustness and the number of code levels available for encoding. Previous methods have attempted to address this tradeoff, but those solutions have been sub-optimal. In this paper, we propose a method to design optimal patch codes via device characterization. The tradeoff between decoding robustness and the number of available code levels is optimized in terms of printing and measurement efforts, and decoding robustness against noises from the printing and measurement devices. Effort is drastically reduced relative to previous methods because print-and-measure is minimized through modeling and the use of existing printer profiles. Decoding robustness is improved by distributing the code levels in CIE Lab space rather than in CMYK space.

  4. Robust Optimal Design of Quantum Electronic Devices

    Directory of Open Access Journals (Sweden)

    Ociel Morales

    2018-01-01

    Full Text Available We consider the optimal design of a sequence of quantum barriers, in order to manufacture an electronic device at the nanoscale such that the dependence of its transmission coefficient on the bias voltage is linear. The technique presented here is easily adaptable to other response characteristics. There are two distinguishing features of our approach. First, the transmission coefficient is determined using a semiclassical approximation, so we can explicitly compute the gradient of the objective function. Second, in contrast with earlier treatments, manufacturing uncertainties are incorporated in the model through random variables; the optimal design problem is formulated in a probabilistic setting and then solved using a stochastic collocation method. As a measure of robustness, a weighted sum of the expectation and the variance of a least-squares performance metric is considered. Several simulations illustrate the proposed technique, which shows an improvement in accuracy over 69% with respect to brute-force, Monte-Carlo-based methods.

  5. Lansce Wire Scanning Diagnostics Device Mechanical Design

    International Nuclear Information System (INIS)

    Rodriguez Esparza, Sergio; Batygin, Yuri K.; Gilpatrick, John D.; Gruchalla, Michael E.; Maestas, Alfred J.; Pillai, Chandra; Raybun, Joseph L.; Sattler, F.D.; Sedillo, James Daniel; Smith, Brian G.

    2011-01-01

    The Accelerator Operations and Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

  6. Lansce Wire Scanning Diagnostics Device Mechanical Design

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Maestas, Alfred J. [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Raybun, Joseph L. [Los Alamos National Laboratory; Sattler, F. D. [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2011-01-01

    The Accelerator Operations & Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

  7. MEMS/Electronic Device Design and Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility allows DoD to design and characterize state-of-the-art microelectromechanical systems (MEMS) and electronic devices. Device designers develop their own...

  8. Fast, cheap and in control: spectral imaging with handheld devices

    Science.gov (United States)

    Gooding, Edward A.; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.

    2017-05-01

    Remote sensing has moved out of the laboratory and into the real world. Instruments using reflection or Raman imaging modalities become faster, cheaper and more powerful annually. Enabling technologies include virtual slit spectrometer design, high power multimode diode lasers, fast open-loop scanning systems, low-noise IR-sensitive array detectors and low-cost computers with touchscreen interfaces. High-volume manufacturing assembles these components into inexpensive portable or handheld devices that make possible sophisticated decision-making based on robust data analytics. Examples include threat, hazmat and narcotics detection; remote gas sensing; biophotonic screening; environmental remediation and a host of other applications.

  9. Fast Fiber-Coupled Imaging Devices

    Energy Technology Data Exchange (ETDEWEB)

    Brockington, Samuel; Case, Andrew; Witherspoon, Franklin

    2018-04-22

    HyperV Technologies Corp. has successfully designed, built and experimentally demonstrated a full scale 1024 pixel 100 MegaFrames/s fiber coupled camera with 12 or 14 bits, and record lengths of 32K frames, exceeding our original performance objectives. This high-pixel-count, fiber optically-coupled, imaging diagnostic can be used for investigating fast, bright plasma events. In Phase 1 of this effort, a 100 pixel fiber-coupled fast streak camera for imaging plasma jet profiles was constructed and successfully demonstrated. The resulting response from outside plasma physics researchers emphasized development of increased pixel performance as a higher priority over increasing pixel count. In this Phase 2 effort, HyperV therefore focused on increasing the sample rate and bit-depth of the photodiode pixel designed in Phase 1, while still maintaining a long record length and holding the cost per channel to levels which allowed up to 1024 pixels to be constructed. Cost per channel was $53.31, very close to our original target of $50 per channel. The system consists of an imaging "camera head" coupled to a photodiode bank with an array of optical fibers. The output of these fast photodiodes is then digitized at 100 Megaframes per second and stored in record lengths of 32,768 samples with bit depths of 12 to 14 bits per pixel. Longer record lengths are possible with additional memory. A prototype imaging system with up to 1024 pixels was designed and constructed and used to successfully take movies of very fast moving plasma jets as a demonstration of the camera performance capabilities. Some faulty electrical components on the 64 circuit boards resulted in only 1008 functional channels out of 1024 on this first generation prototype system. We experimentally observed backlit high speed fan blades in initial camera testing and then followed that with full movies and streak images of free flowing high speed plasma jets (at 30-50 km/s). Jet structure and jet collisions onto

  10. Design methodology for wing trailing edge device mechanisms

    OpenAIRE

    Martins Pires, Rui Miguel

    2007-01-01

    Over the last few decades the design of high lift devices has become a very important part of the total aircraft design process. Reviews of the design process are performed on a regular basis, with the intent to improve and optimize the design process. This thesis describes a new and innovative methodology for the design and evaluation of mechanisms for Trailing Edge High-Lift devices. The initial research reviewed existing High-Lift device design methodologies and current f...

  11. Contribution of a winged phlebotomy device design to blood splatter.

    Science.gov (United States)

    Haiduven, Donna J; McGuire-Wolfe, Christine; Applegarth, Shawn P

    2012-11-01

    Despite a proliferation of phlebotomy devices with engineered sharps injury protection (ESIP), the impact of various winged device designs on blood splatter occurring during venipuncture procedures has not been explored. To evaluate the potential for blood splatter of 6 designs of winged phlebotomy devices. A laboratory-based device evaluation without human subjects, using a simulated patient venous system. We evaluated 18 winged phlebotomy devices of 6 device designs by Terumo, BD Vacutainer (2 designs), Greiner, Smith Medical, and Kendall (designated A-F, respectively). Scientific filters were positioned around the devices and weighed before and after venipuncture was performed. Visible blood on filters, exam gloves, and devices and measurable blood splatter were the primary units of analysis. The percentages of devices and gloves with visible blood on them and filters with measurable blood splatter ranged from 0% to 20%. There was a statistically significant association between device design and visible blood on devices ([Formula: see text]) and between device design and filters with measurable blood splatter ([Formula: see text]), but not between device design and visible blood on gloves. A wide range of associations were demonstrated between device design and visible blood on gloves or devices and incidence of blood splatter. The results of this evaluation suggest that winged phlebotomy devices with ESIP may produce blood splatter during venipuncture. Reinforcing the importance of eye protection and developing a methodology to assess ocular exposure to blood splatter are major implications for healthcare personnel who use these devices. Future studies should focus on evaluating different designs of intravascular devices (intravenous catheters, other phlebotomy devices) for blood splatter.

  12. Opto-mechanical design of small infrared cloud measuring device

    Science.gov (United States)

    Zhang, Jiao; Yu, Xun; Tao, Yu; Jiang, Xu

    2018-01-01

    In order to make small infrared cloud measuring device can be well in a wide temperature range and day-night environment, a design idea using catadioptric infrared panoramic imaging optical system and simple mechanical structure for realizing observation clode under all-weather conditions was proposed. Firstly, the optical system of cloud measuring device was designed. An easy-to-use numerical method was proposed to acquire the profile of a catadioptric mirror, which brought the property of equidistance projection and played the most important role in a catadioptric panoramic lens. Secondly, the mechanical structure was studied in detail. Overcoming the limitations of traditional primary mirror support structure, integrative design was used for refractor and mirror support structure. Lastly, temperature adaptability and modes of the mirror support structure were analyzed. Results show that the observation range of the cloud measuring device is wide and the structure is simple, the fundamental frequency of the structure is greater than 100 Hz, the surface precision of the system reflector reaches PV of λ/10 and RMS of λ/40under the load of temperature range - 40 60°C, it can meet the needs of existing meteorological observation.

  13. Micro and nano devices in passive millimetre wave imaging systems

    Science.gov (United States)

    Appleby, R.

    2013-06-01

    The impact of micro and nano technology on millimetre wave imaging from the post war years to the present day is reviewed. In the 1950s whisker contacted diodes in mixers and vacuum tubes were used to realise both radiometers and radars but required considerable skill to realise the performance needed. Development of planar semiconductor devices such as Gunn and Schottky diodes revolutionised mixer performance and provided considerable improvement. The next major breakthrough was high frequency transistors based on gallium arsenide which were initially used at intermediate frequencies but later after further development at millimeter wave frequencies. More recently Monolithic Microwave Integrated circuits(MMICs) offer exceptional performance and the opportunity for innovative design in passive imaging systems. In the future the use of micro and nano technology will continue to drive system performance and we can expect to see integration of antennae, millimetre wave and sub millimetre wave circuits and signal processing.

  14. LANSCE wire scanning diagnostics device mechanical design

    International Nuclear Information System (INIS)

    Rodriguez Esparza, Sergio

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) is one of the major experimental science facilities at the Los Alamos National Laboratory (LANL). The core of LANSCE's work lies in the operation of a powerful linear accelerator, which accelerates protons up to 84% the speed oflight. These protons are used for a variety of purposes, including materials testing, weapons research and isotopes production. To assist in guiding the proton beam, a series of over one hundred wire scanners are used to measure the beam profile at various locations along the half-mile length of the particle accelerator. A wire scanner is an electro-mechanical device that moves a set of wires through a particle beam and measures the secondary emissions from the resulting beam-wire interaction to obtain beam intensity information. When supplemented with data from a position sensor, this information is used to determine the cross-sectional profile of the beam. This measurement allows beam operators to adjust parameters such as acceleration, beam steering, and focus to ensure that the beam reaches its destination as effectively as possible. Some of the current wire scanners are nearly forty years old and are becoming obsolete. The problem with current wire scanners comes in the difficulty of maintenance and reliability. The designs of these wire scanners vary making it difficult to keep spare parts that would work on all designs. Also many of the components are custom built or out-dated technology and are no longer in production.

  15. LANSCE wire scanning diagnostics device mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) is one of the major experimental science facilities at the Los Alamos National Laboratory (LANL). The core of LANSCE's work lies in the operation of a powerful linear accelerator, which accelerates protons up to 84% the speed oflight. These protons are used for a variety of purposes, including materials testing, weapons research and isotopes production. To assist in guiding the proton beam, a series of over one hundred wire scanners are used to measure the beam profile at various locations along the half-mile length of the particle accelerator. A wire scanner is an electro-mechanical device that moves a set of wires through a particle beam and measures the secondary emissions from the resulting beam-wire interaction to obtain beam intensity information. When supplemented with data from a position sensor, this information is used to determine the cross-sectional profile of the beam. This measurement allows beam operators to adjust parameters such as acceleration, beam steering, and focus to ensure that the beam reaches its destination as effectively as possible. Some of the current wire scanners are nearly forty years old and are becoming obsolete. The problem with current wire scanners comes in the difficulty of maintenance and reliability. The designs of these wire scanners vary making it difficult to keep spare parts that would work on all designs. Also many of the components are custom built or out-dated technology and are no longer in production.

  16. Biomedical Optical Imaging Technologies Design and Applications

    CERN Document Server

    2013-01-01

    This book provides an introduction to design of biomedical optical imaging technologies and their applications. The main topics include: fluorescence imaging, confocal imaging, micro-endoscope, polarization imaging, hyperspectral imaging, OCT imaging, multimodal imaging and spectroscopic systems. Each chapter is written by the world leaders of the respective fields, and will cover: principles and limitations of optical imaging technology, system design and practical implementation for one or two specific applications, including design guidelines, system configuration, optical design, component requirements and selection, system optimization and design examples, recent advances and applications in biomedical researches and clinical imaging. This book serves as a reference for students and researchers in optics and biomedical engineering.

  17. Multimodality imaging of the Essure tubal occlusion device.

    Science.gov (United States)

    Simpson, W L; Beitia, L

    2012-12-01

    The Essure device is a permanent birth-control device, which is gaining popularity. The micro-inserts are composed of metallic elements that can be seen on radiography, computed tomography, ultrasound, and magnetic resonance imaging. Knowledge of the normal location and appearance of the Essure device will ensure appropriate patient care. The purpose of this review is to describe the Essure tubal occlusion device and illustrate its normal and abnormal appearance using various imaging methods. Copyright © 2012 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. Power magnetic devices a multi-objective design approach

    CERN Document Server

    Sudhoff, Scott D

    2014-01-01

    Presents a multi-objective design approach to the many power magnetic devices in use today Power Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices-including inductors, transformers, electromagnets, and rotating electric machinery-using a structured design approach based on formal single- and multi-objective optimization. The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for ind

  19. Devices for Evaluating Imaging Systems. Chapter 15

    Energy Technology Data Exchange (ETDEWEB)

    Demirkaya, O.; Al-Mazrou, R. [Department of Biomedical Physics, King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia)

    2014-12-15

    A quality management system (QMS) has three main components: (a) Quality assurance (QA); (b) Quality improvement; (c) Quality control (QC). The aim of a QMS is to ensure that the deliverables meet the requirements set forth by the users. The deliverables can be, in general, all the services provided in a nuclear medicine department, and the diagnostic imaging services in particular. In this section, the primary focus is the diagnostic imaging equipment and images produced by them.

  20. 21 CFR 892.2010 - Medical image storage device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image storage device. 892.2010 Section 892.2010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED..., and digital memory. (b) Classification. Class I (general controls). The device is exempt from the...

  1. Design of a device for sky light polarization measurements.

    Science.gov (United States)

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-08-14

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky.

  2. Progress and Design Concerns of Nanostructured Solar Energy Harvesting Devices.

    Science.gov (United States)

    Leung, Siu-Fung; Zhang, Qianpeng; Tavakoli, Mohammad Mahdi; He, Jin; Mo, Xiaoliang; Fan, Zhiyong

    2016-05-01

    Integrating devices with nanostructures is considered a promising strategy to improve the performance of solar energy harvesting devices such as photovoltaic (PV) devices and photo-electrochemical (PEC) solar water splitting devices. Extensive efforts have been exerted to improve the power conversion efficiencies (PCE) of such devices by utilizing novel nanostructures to revolutionize device structural designs. The thicknesses of light absorber and material consumption can be substantially reduced because of light trapping with nanostructures. Meanwhile, the utilization of nanostructures can also result in more effective carrier collection by shortening the photogenerated carrier collection path length. Nevertheless, performance optimization of nanostructured solar energy harvesting devices requires a rational design of various aspects of the nanostructures, such as their shape, aspect ratio, periodicity, etc. Without this, the utilization of nanostructures can lead to compromised device performance as the incorporation of these structures can result in defects and additional carrier recombination. The design guidelines of solar energy harvesting devices are summarized, including thin film non-uniformity on nanostructures, surface recombination, parasitic absorption, and the importance of uniform distribution of photo-generated carriers. A systematic view of the design concerns will assist better understanding of device physics and benefit the fabrication of high performance devices in the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Design of wheel-type walking-assist device

    International Nuclear Information System (INIS)

    Jung, Seung Ho; Kim, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil; Jung, Kyung Min; Lee, Sung Uk

    2006-03-01

    In this research, a outdoor wheel-type walking-assist device is developed to help an elder having a poor muscular strength at legs for walking, sitting and standing up easily at outdoors, and also for going and downing stairs. In conceptually designing, the environments of an elder's activity, the size of an elder's body and a necessary function of helping an elder are considered. This device has 4 wheels for stability. When an elder walks in incline plane with the proposed device, a rear-wing is rotated to keep the supporting device horizontal, regardless of an angle of inclination. A height-controlling device, which can control the height of the supporting device for adjusting an elder's height, is varied vertically to help an elder to sit and stand-up easily. Moreover, a outdoor wheel-type walking-assist device is conceptually designed and is made. In order to design it, the preview research is investigated firstly. On the basis of the proposed walking-assist device, the outdoor walking-assist device is designed and made. The outdoor wheel-type walking-assist device can go and down stairs automatically. This device go up and down the stair of having maximum 20cm height and an angle of 25 degrees with maximum 4 sec/stairs speed, and move at flatland with 60cm/sec speed

  4. Design of a leak detection device for marine airtight container

    Science.gov (United States)

    Li, Yuan; Zhu, Faxin; Lu, Jinshu; Li, Yule; Wu, Wenfeng; Zhang, Jianwei; Qin, Beichen

    2018-04-01

    The ship airtight container as the research object, according to the tightness of the traditional detection methods of sealed container from the shortcomings of the design of modern ship sealed container leak detection device based on the requirements of the use of AutoCAD to design a ship leakage detection device using airtight container, and introduces its working principle and main components. Finally, from the aspects of technology, structure, operation and economy, the feasibility analysis of the leak detection device for marine airtight container is designed, and it is concluded that the device has the advantages of simple operation, short detection time, easy maintenance and cost control, and has high feasibility.

  5. Fluorescence imaging spectrometer optical design

    Science.gov (United States)

    Taiti, A.; Coppo, P.; Battistelli, E.

    2015-09-01

    The optical design of the FLuORescence Imaging Spectrometer (FLORIS) studied for the Fluorescence Explorer (FLEX) mission is discussed. FLEX is a candidate for the ESA's 8th Earth Explorer opportunity mission. FLORIS is a pushbroom hyperspectral imager foreseen to be embarked on board of a medium size satellite, flying in tandem with Sentinel-3 in a Sun synchronous orbit at a height of about 815 km. FLORIS will observe the vegetation fluorescence and reflectance within a spectral range between 500 and 780 nm. Multi-frames acquisitions on matrix detectors during the satellite movement will allow the production of 2D Earth scene images in two different spectral channels, called HR and LR with spectral resolution of 0.3 and 2 nm respectively. A common fore optics is foreseen to enhance by design the spatial co-registration between the two spectral channels, which have the same ground spatial sampling (300 m) and swath (150 km). An overlapped spectral range between the two channels is also introduced to simplify the spectral coregistration. A compact opto-mechanical solution with all spherical and plane optical elements is proposed, and the most significant design rationales are described. The instrument optical architecture foresees a dual Babinet scrambler, a dioptric telescope and two grating spectrometers (HR and LR), each consisting of a modified Offner configuration. The developed design is robust, stable vs temperature, easy to align, showing very high optical quality along the whole field of view. The system gives also excellent correction for transverse chromatic aberration and distortions (keystone and smile).

  6. Design of biomedical devices and systems

    CERN Document Server

    Press, CRC

    2014-01-01

    ""This book is a comprehensive overview of all the pieces that need to come together to bring a medical device from an idea to an approved device. It is an impressive compilation of information that is not easily found elsewhere, and included extensive references for every chapter. The writing is clear, yet succinct. The book is well organized with labeled subsections that let the reader find exactly what content he/she may want to explore. Each chapter has exercises that can be used as a self-assessment or to supplement a class.""-Anna Iwaniec Hickerson, Keck Graduate Institute of Appl

  7. Common hyperspectral image database design

    Science.gov (United States)

    Tian, Lixun; Liao, Ningfang; Chai, Ali

    2009-11-01

    This paper is to introduce Common hyperspectral image database with a demand-oriented Database design method (CHIDB), which comprehensively set ground-based spectra, standardized hyperspectral cube, spectral analysis together to meet some applications. The paper presents an integrated approach to retrieving spectral and spatial patterns from remotely sensed imagery using state-of-the-art data mining and advanced database technologies, some data mining ideas and functions were associated into CHIDB to make it more suitable to serve in agriculture, geological and environmental areas. A broad range of data from multiple regions of the electromagnetic spectrum is supported, including ultraviolet, visible, near-infrared, thermal infrared, and fluorescence. CHIDB is based on dotnet framework and designed by MVC architecture including five main functional modules: Data importer/exporter, Image/spectrum Viewer, Data Processor, Parameter Extractor, and On-line Analyzer. The original data were all stored in SQL server2008 for efficient search, query and update, and some advance Spectral image data Processing technology are used such as Parallel processing in C#; Finally an application case is presented in agricultural disease detecting area.

  8. Positron annihilation imaging device using multiple offset rings of detectors

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1981-01-01

    This patent application relates to a positron annihilation imaging device comprising two or more coaxial circular arrays of detectors (2,2'), with the detectors in one array angularly offset with respect to the detectors in the adjacent array to detect more than one tomographic image simultaneously through different cross-sections of a patient. (author)

  9. Systematic design of acoustic devices by topology optimization

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2005-01-01

    We present a method to design acoustic devices with topology optimization. The general algorithm is exemplified by the design of a reflection chamber that minimizes the transmission of acoustic waves in a specified frequency range.......We present a method to design acoustic devices with topology optimization. The general algorithm is exemplified by the design of a reflection chamber that minimizes the transmission of acoustic waves in a specified frequency range....

  10. Application and Design Characteristics of Generalized Training Devices.

    Science.gov (United States)

    Parker, Edward L.

    This program identified applications and developed design characteristics for generalized training devices. The first of three sequential phases reviewed in detail new developments in Naval equipment technology that influence the design of maintenance training devices: solid-state circuitry, modularization, digital technology, standardization,…

  11. Designing and manufacturing of solar imaging and tracking system

    Directory of Open Access Journals (Sweden)

    Mehrdad Hosseini

    2017-11-01

    Full Text Available Abstract – in this study, designing and manufacturing of solar imaging and tracking system in order to research and spectroscopy applications are investigated. The device has the ability to be used as a Telescope, spectroscope, spectrophotometer and spectrohelioscope. The results obtained from this device are used in the various field of research such as absorption spectra of the surface of the sun, transit of planets in front of the sun, Doppler effects, evaluation of the Fraunhofer lines, plot of intensity versus wavelength and studying of Solar Flares. In this research, design and manufacture of the device, along with some of the results, are reported.

  12. [Digital thoracic radiology: devices, image processing, limits].

    Science.gov (United States)

    Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E

    2001-09-01

    In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing.

  13. Safety considerations in the design of the Fusion Engineering Device

    International Nuclear Information System (INIS)

    Barrett, R.J.

    1983-01-01

    The US Department of Energy (DOE) regulations and guidelines for radiation protection have been reviewed and are being applied to the device design. Direct radiation protection is provided by the device shield and the reactor building walls. Radiation from the activated device components and the tritium fuel is to be controlled with shielding, contamination control, and ventilation. The potential release of tritium from the plant has influenced the selection of reactor building and plant designs and specifications. The safety of the plant workers is affected primarily by the radiation from the activated device components and from plasma chamber debris

  14. Parallel Processing of Images in Mobile Devices using BOINC

    Science.gov (United States)

    Curiel, Mariela; Calle, David F.; Santamaría, Alfredo S.; Suarez, David F.; Flórez, Leonardo

    2018-04-01

    Medical image processing helps health professionals make decisions for the diagnosis and treatment of patients. Since some algorithms for processing images require substantial amounts of resources, one could take advantage of distributed or parallel computing. A mobile grid can be an adequate computing infrastructure for this problem. A mobile grid is a grid that includes mobile devices as resource providers. In a previous step of this research, we selected BOINC as the infrastructure to build our mobile grid. However, parallel processing of images in mobile devices poses at least two important challenges: the execution of standard libraries for processing images and obtaining adequate performance when compared to desktop computers grids. By the time we started our research, the use of BOINC in mobile devices also involved two issues: a) the execution of programs in mobile devices required to modify the code to insert calls to the BOINC API, and b) the division of the image among the mobile devices as well as its merging required additional code in some BOINC components. This article presents answers to these four challenges.

  15. Parallel Processing of Images in Mobile Devices using BOINC

    Directory of Open Access Journals (Sweden)

    Curiel Mariela

    2018-04-01

    Full Text Available Medical image processing helps health professionals make decisions for the diagnosis and treatment of patients. Since some algorithms for processing images require substantial amounts of resources, one could take advantage of distributed or parallel computing. A mobile grid can be an adequate computing infrastructure for this problem. A mobile grid is a grid that includes mobile devices as resource providers. In a previous step of this research, we selected BOINC as the infrastructure to build our mobile grid. However, parallel processing of images in mobile devices poses at least two important challenges: the execution of standard libraries for processing images and obtaining adequate performance when compared to desktop computers grids. By the time we started our research, the use of BOINC in mobile devices also involved two issues: a the execution of programs in mobile devices required to modify the code to insert calls to the BOINC API, and b the division of the image among the mobile devices as well as its merging required additional code in some BOINC components. This article presents answers to these four challenges.

  16. Safety considerations in the design of the fusion engineering device

    International Nuclear Information System (INIS)

    Barrett, R.J.

    1983-01-01

    Safety considerations play a significant role in the design of a near-term Fusion Engineering Device (FED). For the safety of the general public and the plant workers, the radiation environment caused by the reacting plasma and the potential release of tritium fuel are the dominant considerations. The U.S. Department of Energy (DOE) regulations and guidelines for radiation protection have been reviewed and are being applied to the device design. Direct radiation protection is provided by the device shield and the reactor building walls. Radiation from the activated device components and the tritium fuel is to be controlled with shielding, contamination control, and ventilation. The potential release of tritium from the plant has influenced the selection of reactor building and plant designs and specifications. The safety of the plant workers is affected primarily by the radiation from the activated device components and from plasma chamber debris. The highly activated device components make it necessary to design many of the maintenance activities in the reactor building for totally remote operation. The hot cell facility has evolved as a totally remote maintenance facility due to the high radiation levels of the device components. Safety considerations have had substantial impacts on the design of FED. Several examples of safety-related design impacts are discussed in the paper. Feasible solutions have been identified for all outstanding safety-related items, and additional optimization of these solutions is anticipated in future design studies

  17. Towards sustainable design for single-use medical devices.

    Science.gov (United States)

    Hanson, Jacob J; Hitchcock, Robert W

    2009-01-01

    Despite their sophistication and value, single-use medical devices have become commodity items in the developed world. Cheap raw materials along with large scale manufacturing and distribution processes have combined to make many medical devices more expensive to resterilize, package and restock than to simply discard. This practice is not sustainable or scalable on a global basis. As the petrochemicals that provide raw materials become more expensive and the global reach of these devices continues into rapidly developing economies, there is a need for device designs that take into account the total life-cycle of these products, minimize the amount of non-renewable materials consumed and consider alternative hybrid reusable / disposable approaches. In this paper, we describe a methodology to perform life cycle and functional analyses to create additional design requirements for medical devices. These types of sustainable approaches can move the medical device industry even closer to the "triple bottom line"--people, planet, profit.

  18. Design and Simulation of MEMS Devices using Interval Analysis

    International Nuclear Information System (INIS)

    Shanmugavalli, M; Uma, G; Vasuki, B; Umapathy, M

    2006-01-01

    Modeling and simulation of MEMS devices are used to optimize the design, to improve the performance of the device, to reduce time to market, to minimize development time and cost by avoiding unnecessary design cycles and foundry runs. The major design objectives in any device design, is to meet the required functional parameters and the reliability of the device. The functional parameters depend on the geometry of the structure, material properties and process parameters. All model parameters act as input to optimize the functional parameters. The major difficulty the designer faces is the dimensions and properties used in the simulation of the MEMS devices can not be exactly followed during fabrication. In order to overcome this problem, the designer must test the device in simulation for bound of parameters involved in it. The paper demonstrates the use of interval methods to assess the electromechanical behaviour of micro electromechanical systems (MEMS) under the presence of manufacturing and process uncertainties. Interval method guides the design of pullin voltage analysis of fixed-fixed beam to achieve a robust and reliable design in a most efficient way. The methods are implemented numerically using Coventorware and analytically using Intlab

  19. Silicon photonics design from devices to systems

    CERN Document Server

    Chrostowski, Lukas

    2015-01-01

    From design and simulation through to testing and fabrication, this hands-on introduction to silicon photonics engineering equips students with everything they need to begin creating foundry-ready designs. In-depth discussion of real-world issues and fabrication challenges ensures that students are fully equipped for careers in industry. Step-by-step tutorials, straightforward examples, and illustrative source code fragments guide students through every aspect of the design process, providing a practical framework for developing and refining key skills. Offering industry-ready expertise, the text supports existing PDKs for CMOS UV-lithography foundry services (OpSIS, ePIXfab, imec, LETI, IME and CMC) and the development of new kits for proprietary processes and clean-room based research. Accompanied by additional online resources to support students, this is the perfect learning package for senior undergraduate and graduate students studying silicon photonics design, and academic and industrial researchers in...

  20. Design Optimization of Internal Flow Devices

    DEFF Research Database (Denmark)

    Madsen, Jens Ingemann

    The power of computational fluid dynamics is boosted through the use of automated design optimization methodologies. The thesis considers both derivative-based search optimization and the use of response surface methodologies.......The power of computational fluid dynamics is boosted through the use of automated design optimization methodologies. The thesis considers both derivative-based search optimization and the use of response surface methodologies....

  1. Designing Gestural Interfaces Touchscreens and Interactive Devices

    CERN Document Server

    Saffer, Dan

    2008-01-01

    If you want to get started in new era of interaction design, this is the reference you need. Packed with informative illustrations and photos, Designing Gestural Interfaces provides you with essential information about kinesiology, sensors, ergonomics, physical computing, touchscreen technology, and new interface patterns -- information you need to augment your existing skills in traditional" websites, software, or product development. This book will help you enter this new world of possibilities."

  2. Perceptually Aware Image Retargeting for Mobile Devices.

    Science.gov (United States)

    Zhou, Yinzuo; Zhang, Luming; Zhang, Chao; Li, Ping; Li, Xuelong

    2018-05-01

    Retargeting aims at adapting an original high-resolution photograph/video to a low-resolution screen with an arbitrary aspect ratio. Conventional approaches are generally based on desktop PCs, since the computation might be intolerable for mobile platforms (especially when retargeting videos). Typically, only low-level visual features are exploited, and human visual perception is not well encoded. In this paper, we propose a novel retargeting framework that rapidly shrinks a photograph/video by leveraging human gaze behavior. Specifically, we first derive a geometry-preserving graph ranking algorithm, which efficiently selects a few salient object patches to mimic the human gaze shifting path (GSP) when viewing a scene. Afterward, an aggregation-based CNN is developed to hierarchically learn the deep representation for each GSP. Based on this, a probabilistic model is developed to learn the priors of the training photographs that are marked as aesthetically pleasing by professional photographers. We utilize the learned priors to efficiently shrink the corresponding GSP of a retargeted photograph/video to maximize its similarity to those from the training photographs. Extensive experiments have demonstrated that: 1) our method requires less than 35 ms to retarget a photograph (or a video frame) on popular iOS/Android devices, which is orders of magnitude faster than the conventional retargeting algorithms; 2) the retargeted photographs/videos produced by our method significantly outperform those of its competitors based on a paired-comparison-based user study; and 3) the learned GSPs are highly indicative of human visual attention according to the human eye tracking experiments.

  3. Arc plasma devices: Evolving mechanical design from numerical ...

    Indian Academy of Sciences (India)

    feeds power into the system for sustained operation. Depending ... distribution, velocity profiles, device efficiency, spatial concentration of nascent active species .... where V is the arc voltage and ϕ is the work function of the anode material. The first .... to predict correct potential drop within the device in a number of designs.

  4. Noise characteristics of neutron images obtained by cooled CCD device

    International Nuclear Information System (INIS)

    Taniguchi, Ryoichi; Sasaki, Ryoya; Okuda, Shuichi; Okamoto, Ken-Ichi; Ogawa, Yoshihiro; Tsujimoto, Tadashi

    2009-01-01

    The noise characteristics of a cooled CCD device induced by neutron and gamma ray irradiation have been investigated. In the cooled CCD images, characteristic white spot noises (CCD noise) frequently appeared, which have a shape like a pixel in most cases and their brightness is extremely high compared with that of the image pattern. They could be divided into the two groups, fixed pattern noise (FPN) and random noise. The former always appeared in the same position in the image and the latter appeared at any position. In the background image, nearly all of the CCD noises were found to be the FPN, while many of them were the random noise during the irradiation. The random CCD noises increased with irradiation and decreased soon after the irradiation. In the case of large irradiation, a part of the CCD noise remained as the FPN. These facts suggest that the CCD noise is a phenomenon strongly relating to radiation damage of the CCD device.

  5. Single-Image Distance Measurement by a Smart Mobile Device.

    Science.gov (United States)

    Chen, Shangwen; Fang, Xianyong; Shen, Jianbing; Wang, Linbo; Shao, Ling

    2017-12-01

    Existing distance measurement methods either require multiple images and special photographing poses or only measure the height with a special view configuration. We propose a novel image-based method that can measure various types of distance from single image captured by a smart mobile device. The embedded accelerometer is used to determine the view orientation of the device. Consequently, pixels can be back-projected to the ground, thanks to the efficient calibration method using two known distances. Then the distance in pixel is transformed to a real distance in centimeter with a linear model parameterized by the magnification ratio. Various types of distance specified in the image can be computed accordingly. Experimental results demonstrate the effectiveness of the proposed method.

  6. The benefits of the Atlas of Human Cardiac Anatomy website for the design of cardiac devices.

    Science.gov (United States)

    Spencer, Julianne H; Quill, Jason L; Bateman, Michael G; Eggen, Michael D; Howard, Stephen A; Goff, Ryan P; Howard, Brian T; Quallich, Stephen G; Iaizzo, Paul A

    2013-11-01

    This paper describes how the Atlas of Human Cardiac Anatomy website can be used to improve cardiac device design throughout the process of development. The Atlas is a free-access website featuring novel images of both functional and fixed human cardiac anatomy from over 250 human heart specimens. This website provides numerous educational tutorials on anatomy, physiology and various imaging modalities. For instance, the 'device tutorial' provides examples of devices that were either present at the time of in vitro reanimation or were subsequently delivered, including leads, catheters, valves, annuloplasty rings and stents. Another section of the website displays 3D models of the vasculature, blood volumes and/or tissue volumes reconstructed from computed tomography and magnetic resonance images of various heart specimens. The website shares library images, video clips and computed tomography and MRI DICOM files in honor of the generous gifts received from donors and their families.

  7. Arc plasma devices: Evolving mechanical design from numerical

    Indian Academy of Sciences (India)

    A recipe for obtaining mechanical design of arc plasma devices from numerical ... to the plasma of the mixture of molecular gases like nitrogen and oxygen. ... Temperature field, associated fluid dynamics and electrical characteristics of a ...

  8. Interaction devices for hands-on desktop design

    Science.gov (United States)

    Ju, Wendy; Madsen, Sally; Fiene, Jonathan; Bolas, Mark T.; McDowall, Ian E.; Faste, Rolf

    2003-05-01

    Starting with a list of typical hand actions - such as touching or twisting - a collection of physical input device prototypes was created to study better ways of engaging the body and mind in the computer aided design process. These devices were interchangeably coupled with a graphics system to allow for rapid exploration of the interplay between the designer's intent, body motions, and the resulting on-screen design. User testing showed that a number of key considerations should influence the future development of such devices: coupling between the physical and virtual worlds, tactile feedback, and scale. It is hoped that these explorations contribute to the greater goal of creating user interface devices that increase the fluency, productivity and joy of computer-augmented design.

  9. The Role and Design of Screen Images in Software Documentation.

    Science.gov (United States)

    van der Meij, Hans

    2000-01-01

    Discussion of learning a new computer software program focuses on how to support the joint handling of a manual, input devices, and screen display. Describes a study that examined three design styles for manuals that included screen images to reduce split-attention problems and discusses theory versus practice and cognitive load theory.…

  10. Design Course for Micropower Generation Devices

    Science.gov (United States)

    Mitsos, Alexander

    2009-01-01

    A project-based design course is developed for man-portable power generation via microfabricated fuel cell systems. Targeted audience are undergraduate chemical/process engineering students in their final year. The course covers 6 weeks, with three hours of lectures per week. Two alternative projects are developed, one focusing on selection of…

  11. Calibration Device Designed for proof ring used in SCC Experiment

    Science.gov (United States)

    Hu, X. Y.; Kang, Z. Y.; Yu, Y. L.

    2017-11-01

    In this paper, a calibration device for proof ring used in SCC (Stress Corrosion Cracking) experiment was designed. A compact size loading device was developed to replace traditional force standard machine or a long screw nut. The deformation of the proof ring was measured by a CCD (Charge-Coupled Device) during the calibration instead of digital caliper or a dial gauge. The calibration device was verified at laboratory that the precision of force loading is ±0.1% and the precision of deformation measurement is ±0.002mm.

  12. New Design of Blade Untwisting Device of Cyclone Unit

    Directory of Open Access Journals (Sweden)

    D. I. Misiulia

    2010-01-01

    Full Text Available The paper presents a new design of a blade untwisting device where blades are considered as a main element of the device. A profile of the blades corresponds to a circular arch. An inlet angle of  the blades is determined by stream aerodynamics in an exhaust pipe, and an exit angle is determined by rectilinear gas motion. Optimum geometrical parameters of the untwisting device have been determined and its application allows to reduce a pressure drop in the ЦН-15 cyclones by 28–30 % while screw-blade untwisting device recovers only 19–20 % of energy.

  13. A review of performance of near-infrared fluorescence imaging devices used in clinical studies

    Science.gov (United States)

    Zhu, B

    2015-01-01

    Near-infrared fluorescence (NIRF) molecular imaging holds great promise as a new “point-of-care” medical imaging modality that can potentially provide the sensitivity of nuclear medicine techniques, but without the radioactivity that can otherwise place limitations of usage. Recently, NIRF imaging devices of a variety of designs have emerged in the market and in investigational clinical studies using indocyanine green (ICG) as a non-targeting NIRF contrast agent to demark the blood and lymphatic vasculatures both non-invasively and intraoperatively. Approved in the USA since 1956 for intravenous administration, ICG has been more recently used off label in intradermal or subcutaneous administrations for fluorescence imaging of the lymphatic vasculature and lymph nodes. Herein, we summarize the devices of a variety of designs, summarize their performance in lymphatic imaging in a tabular format and comment on necessary efforts to develop standards for device performance to compare and use these emerging devices in future, NIRF molecular imaging studies. PMID:25410320

  14. Concept and design of super junction devices

    Science.gov (United States)

    Zhang, Bo; Zhang, Wentong; Qiao, Ming; Zhan, Zhenya; Li, Zhaoji

    2018-02-01

    The super junction (SJ) has been recognized as the " milestone” of the power MOSFET, which is the most important innovation concept of the voltage-sustaining layer (VSL). The basic structure of the SJ is a typical junction-type VSL (J-VSL) with the periodic N and P regions. However, the conventional VSL is a typical resistance-type VSL (R-VSL) with only an N or P region. It is a qualitative change of the VSL from the R-VSL to the J-VSL, introducing the bulk depletion to increase the doping concentration and optimize the bulk electric field of the SJ. This paper firstly summarizes the development of the SJ, and then the optimization theory of the SJ is discussed for both the vertical and the lateral devices, including the non-full depletion mode, the minimum specific on-resistance optimization method and the equivalent substrate model. The SJ concept breaks the conventional " silicon limit” relationship of R on∝V B 2.5, showing a quasi-linear relationship of R on∝V B 1.03.

  15. Making Image More Energy Efficient for OLED Smart Devices

    Directory of Open Access Journals (Sweden)

    Deguang Li

    2016-01-01

    Full Text Available Now, more and more mobile smart devices are emerging massively; energy consumption of these devices has become an important consideration due to the limitation of battery capacity. Displays are the dominant energy consuming component of battery-operated devices, giving rise to organic light-emitting diode (OLED as a new promising display technology, which consumes different power when displaying different content due to their emissive nature. Based on this property, we propose an approach to improve image energy efficiency on OLED displays by perceiving image content. The key idea of our approach is to eliminate undesired details while preserving the region of interest of the image by leveraging the color and spatial information. First, we use edge detection algorithm to extract region of interest (ROI of an image. Next, we gradually change luminance and saturation of region of noninterest (NON-ROI of the image. Then we perform detailed experiment and case study to validate our approach; experiment results show that our approach can save 22.5% energy on average while preserving high quality of the image.

  16. Design and experimentation of BSFQ logic devices

    International Nuclear Information System (INIS)

    Hosoki, T.; Kodaka, H.; Kitagawa, M.; Okabe, Y.

    1999-01-01

    Rapid single flux quantum (RSFQ) logic needs synchronous pulses for each gate, so the clock-wiring problem is more serious when designing larger scale circuits with this logic. So we have proposed a new SFQ logic which follows Boolean algebra perfectly by using set and reset pulses. With this logic, the level information of current input is transmitted with these pulses generated by level-to-pulse converters, and each gate calculates logic using its phase level made by these pulses. Therefore, our logic needs no clock in each gate. We called this logic 'Boolean SFQ (BSFQ) logic'. In this paper, we report design and experimentation for an AND gate with inverting input based on BSFQ logic. The experimental results for OR and XOR gates are also reported. (author)

  17. New concept of microprocessor protective devices design

    Directory of Open Access Journals (Sweden)

    Gurevich Vladimir

    2010-01-01

    Full Text Available Transition from electromechanical to digital protective relays is accompanied with serious technical problems. The author offers a new approach in designing the digital relays capable of solving these problems. It is proposed to construct digital relays in the form of standard modules from which it would be possible to assemble the digital relay in the same way as now a personal computer.

  18. A concept ideation framework for medical device design.

    Science.gov (United States)

    Hagedorn, Thomas J; Grosse, Ian R; Krishnamurty, Sundar

    2015-06-01

    Medical device design is a challenging process, often requiring collaboration between medical and engineering domain experts. This collaboration can be best institutionalized through systematic knowledge transfer between the two domains coupled with effective knowledge management throughout the design innovation process. Toward this goal, we present the development of a semantic framework for medical device design that unifies a large medical ontology with detailed engineering functional models along with the repository of design innovation information contained in the US Patent Database. As part of our development, existing medical, engineering, and patent document ontologies were modified and interlinked to create a comprehensive medical device innovation and design tool with appropriate properties and semantic relations to facilitate knowledge capture, enrich existing knowledge, and enable effective knowledge reuse for different scenarios. The result is a Concept Ideation Framework for Medical Device Design (CIFMeDD). Key features of the resulting framework include function-based searching and automated inter-domain reasoning to uniquely enable identification of functionally similar procedures, tools, and inventions from multiple domains based on simple semantic searches. The significance and usefulness of the resulting framework for aiding in conceptual design and innovation in the medical realm are explored via two case studies examining medical device design problems. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Thermal modeling and design of electronic systems and devices

    International Nuclear Information System (INIS)

    Wirtz, R.A.; Lehmann, G.L.

    1990-01-01

    The thermal control electronic devices, particularly those in complex systems with high heat flux density, continues to be of interest to engineers involved in system cooling design and analysis. This volume contains papers presented at the 1990 ASME Winter Annual Meeting in two K-16 sponsored sessions: Empirical Modeling of Heat Transfer in Complex Electronic Systems and Design and Modeling of Heat Transfer Devices in High-Density Electronics. The first group deals with understanding the heat transfer processes in these complex systems. The second group focuses on the use of analysis techniques and empirically determined data in predicting device and system operating performance

  20. Understanding and Design of Polymer Device Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, Antoine [Princeton Univ., NJ (United States)

    2015-10-26

    The research performed under grant DE-FG02-04ER46165 between May 2008 and April 2011 focused on the understanding and control of interfaces of organic semiconductors in general, and polymer interfaces more specifically. This work was a joined effort by three experimentalists and a theoretician. Emphasis was placed on the determination of the electronic structure of these interfaces, i.e. the relative energy position of molecular levels across these interfaces. From these electronic structures depend the injection, extraction and transport of charge carriers into, from and across, respectively, all (opto)electronic devices made of these semiconductors. A significant fraction of our work focused on ways to modify and optimize interfaces, for example via chemical doping of the semiconductors to reduce interface energy barriers or via deposition of ultra-thin work function-reducing polymer or self-assembled monolayers of dipolar molecules. Another significant fraction of our work was devoted to exploring alternate and unconventional interface formation methods, in particular the soft-contact lamination of both metal contacts and polymer overlayers on top of polymer films. These methods allowed us to better understand the impact of hot metal atom evaporation on a soft organic surface, as well as the key mechanisms that control the energetics of polymer/polymer heterojunctions. Finally, a significant fraction of the research was directed to understanding the electronic structure of buried polymer heterojunctions, in particular within donor/acceptor blends of interest in organic photovoltaic applications. The work supported by this grant resulted in 17 publications in some of the best peer-reviewed journals of the field, as well as numerous presentations at US and international conferences.

  1. 77 FR 38829 - Certain Electronic Imaging Devices; Institution of Investigation

    Science.gov (United States)

    2012-06-29

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-850] Certain Electronic Imaging Devices; Institution of Investigation AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on May 23, 2012...

  2. Characterisation of a CMOS charge transfer device for TDI imaging

    International Nuclear Information System (INIS)

    Rushton, J.; Holland, A.; Stefanov, K.; Mayer, F.

    2015-01-01

    The performance of a prototype true charge transfer imaging sensor in CMOS is investigated. The finished device is destined for use in TDI applications, especially Earth-observation, and to this end radiation tolerance must be investigated. Before this, complete characterisation is required. This work starts by looking at charge transfer inefficiency and then investigates responsivity using mean-variance techniques

  3. Endoscopic device for functional imaging of the retina

    Science.gov (United States)

    Barriga, Simon; Lohani, Sweyta; Martell, Bret; Soliz, Peter; Ts'o, Dan

    2011-03-01

    Non-invasive imaging of retinal function based on the recording of spatially distributed reflectance changes evoked by visual stimuli has to-date been performed primarily using modified commercial fundus cameras. We have constructed a prototype retinal functional imager, using a commercial endoscope (Storz) for the frontend optics, and a low-cost back-end that includes the needed dichroic beam splitter to separate the stimulus path from the imaging path. This device has been tested to demonstrate its performance for the delivery of adequate near infrared (NIR) illumination, intensity of the visual stimulus and reflectance return in the imaging path. The current device was found to be capable of imaging reflectance changes of 0.1%, similar to that observable using the modified commercial fundus camera approach. The visual stimulus (a 505nm spot of 0.5secs) was used with an interrogation illumination of 780nm, and a sequence of imaged captured. At each pixel, the imaged signal was subtracted and normalized by the baseline reflectance, so that the measurement was ΔR/R. The typical retinal activity signal observed had a ΔR/R of 0.3-1.0%. The noise levels were measured when no stimulus was applied and found to vary between +/- 0.05%. Functional imaging has been suggested as a means to provide objective information on retina function that may be a preclinical indicator of ocular diseases, such as age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy. The endoscopic approach promises to yield a significantly more economical retinal functional imaging device that would be clinically important.

  4. Shortening User Interface Design Iterations through Realtime Visualisation of Design Actions on the Target Device

    OpenAIRE

    MESKENS, Jan; LUYTEN, Kris; CONINX, Karin

    2009-01-01

    In current mobile user interface design tools, it is time consuming to export a design to the target device. This makes it hard for designers to iterate over the user interfaces they are creating. We propose Gummy-live, a GUI builder for mobile devices allowing designers to test and observe immediately on the target device each step they take in the GUI builder. This way, designers are stimulated to iteratively test and refine user interface prototypes in order to take the target device charac...

  5. Optical design of low cost imaging systems for mobile medical applications

    Science.gov (United States)

    Kass, Alexander; Slyper, Ronit; Levitz, David

    2015-03-01

    Colposcopes, the gold standard devices for imaging the cervix at high magnfication, are expensive and sparse in low resource settings. Using a lens attachment, any smartphone camera can be turned into an imaging device for tissues such as the cervix. We create a smartphone-based colposcope using a simple lens design for high magnification. This particular design is useful because it allows parameters such as F-number, depth of field, and magnification to be controlled easily. We were therefore able to determine a set of design steps which are general to mobile medical imaging devices and allow them to maintain requisite image quality while still being rugged and affordable.

  6. Image timing and detector performance of a matrix ion-chamber electronic portal imaging device

    International Nuclear Information System (INIS)

    Greer, P.

    1996-01-01

    The Oncology Centre of Auckland Hospital recently purchased a Varian PortalVision TM electronic portal imaging device (EPID). Image acquisition times, input-output characteristics and contrast-detail curves of this matrix liquid ion-chamber EPID have been measured to examine the variation in imaging performance with acquisition mode. The variation in detector performance with acquisition mode has been examined. The HV cycle time can be increased to improve image quality. Consideration should be given to the acquisition mode and HV cycle time used when imaging to ensure adequate imaging performance with reasonable imaging time. (author)

  7. Traceable working standards with SI units of radiance for characterizing the measurement performance of investigational clinical NIRF imaging devices

    Science.gov (United States)

    Zhu, Banghe; Rasmussen, John C.; Litorja, Maritoni; Sevick-Muraca, Eva M.

    2017-03-01

    All medical devices for Food and Drug market approval require specifications of performance based upon International System of Units (SI) or units derived from SI for reasons of traceability. Recently, near-infrared fluorescence (NIRF) imaging devices of a variety of designs have emerged on the market and in investigational clinical studies. Yet the design of devices used in the clinical studies vary widely, suggesting variable device performance. Device performance depends upon optimal excitation of NIRF imaging agents, rejection of backscattered excitation and ambient light, and selective collection of fluorescence emanating from the fluorophore. There remains no traceable working standards with SI units of radiance to enable prediction that a given molecular imaging agent can be detected in humans by a given NIRF imaging device. Furthermore, as technologies evolve and as NIRF imaging device components change, there remains no standardized means to track device improvements over time and establish clinical performance without involving clinical trials, often costly. In this study, we deployed a methodology to calibrate luminescent radiance of a stable, solid phantom in SI units of mW/cm2/sr for characterizing the measurement performance of ICCD and IsCMOS camera based NIRF imaging devices, such as signal-to-noise ratio (SNR) and contrast. The methodology allowed determination of superior SNR of the ICCD over the IsCMOS system; comparable contrast of ICCD and IsCMOS depending upon binning strategies.

  8. Design of low noise imaging system

    Science.gov (United States)

    Hu, Bo; Chen, Xiaolai

    2017-10-01

    In order to meet the needs of engineering applications for low noise imaging system under the mode of global shutter, a complete imaging system is designed based on the SCMOS (Scientific CMOS) image sensor CIS2521F. The paper introduces hardware circuit and software system design. Based on the analysis of key indexes and technologies about the imaging system, the paper makes chips selection and decides SCMOS + FPGA+ DDRII+ Camera Link as processing architecture. Then it introduces the entire system workflow and power supply and distribution unit design. As for the software system, which consists of the SCMOS control module, image acquisition module, data cache control module and transmission control module, the paper designs in Verilog language and drives it to work properly based on Xilinx FPGA. The imaging experimental results show that the imaging system exhibits a 2560*2160 pixel resolution, has a maximum frame frequency of 50 fps. The imaging quality of the system satisfies the requirement of the index.

  9. Transcatheter Mitral Valve Devices - Functional Mechanical Designs.

    Science.gov (United States)

    Kliger, Chad

    2014-03-01

    Mitral regurgitation is a complex disorder involving a multitude of components of the mitral apparatus. With the desire for less invasive treatment approaches, transcatheter mitral valve therapies (TMVT) are directed at these components and available at varying stages of development. Therapeutic advancements and the potential to combine technologies may further improve their efficacy and safety. Transcatheter mitral valve replacement, while preserving the mitral apparatus, may emerge as an alternative or even a more suitable treatment option. In addition, early data on transcatheter mitral valve-in-valve and valve-in-ring implantation are encouraging and this approach may be an alternative to reoperation in the high-risk patient. This review details the expanding functional mechanical designs of current active TMVT.

  10. An FPGA-based heterogeneous image fusion system design method

    Science.gov (United States)

    Song, Le; Lin, Yu-chi; Chen, Yan-hua; Zhao, Mei-rong

    2011-08-01

    Taking the advantages of FPGA's low cost and compact structure, an FPGA-based heterogeneous image fusion platform is established in this study. Altera's Cyclone IV series FPGA is adopted as the core processor of the platform, and the visible light CCD camera and infrared thermal imager are used as the image-capturing device in order to obtain dualchannel heterogeneous video images. Tailor-made image fusion algorithms such as gray-scale weighted averaging, maximum selection and minimum selection methods are analyzed and compared. VHDL language and the synchronous design method are utilized to perform a reliable RTL-level description. Altera's Quartus II 9.0 software is applied to simulate and implement the algorithm modules. The contrast experiments of various fusion algorithms show that, preferably image quality of the heterogeneous image fusion can be obtained on top of the proposed system. The applied range of the different fusion algorithms is also discussed.

  11. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  12. Design considerations for medical devices in the home environment.

    Science.gov (United States)

    Kaufman-Rivi, Diana; Collins-Mitchell, Janette; Jetley, Raoul

    2010-01-01

    Patient demographics, economic forces, and technological advancements contribute to the rise in home care services. Advanced medical devices and equipment originally designed for use by trained personnel in hospitals and clinics are increasingly migrating into the home. Unlike the clinical setting, the home is an uncontrolled environment with additional hazards. The compatibility of the device with the recipient's knowledge, abilities, lifestyle, and home environment plays a significant role in their therapy and rehabilitation. The advent of new device technologies such as wireless devices and interoperability of systems lends a new and complex perspective for medical device use in the home that must also be addressed. Adequately assessing and matching the patient and their caregiver with the appropriate device technology while considering the suitability of the home environment for device operation and maintenance is a challenge that relies on good human factors principles. There is a need to address these challenges in the growing home care sector In this article, the authors take a look at some important considerations and design issues for medical devices used in the home care environment.

  13. Are Portable Stereophotogrammetric Devices Reliable in Facial Imaging? A Validation Study of VECTRA H1 Device.

    Science.gov (United States)

    Gibelli, Daniele; Pucciarelli, Valentina; Cappella, Annalisa; Dolci, Claudia; Sforza, Chiarella

    2018-01-31

    Modern 3-dimensional (3D) image acquisition systems represent a crucial technologic development in facial anatomy because of their accuracy and precision. The recently introduced portable devices can improve facial databases by increasing the number of applications. In the present study, the VECTRA H1 portable stereophotogrammetric device was validated to verify its applicability to 3D facial analysis. Fifty volunteers underwent 4 facial scans using portable VECTRA H1 and static VECTRA M3 devices (2 for each instrument). Repeatability of linear, angular, surface area, and volume measurements was verified within the device and between devices using the Bland-Altman test and the calculation of absolute and relative technical errors of measurement (TEM and rTEM, respectively). In addition, the 2 scans obtained by the same device and the 2 scans obtained by different devices were registered and superimposed to calculate the root mean square (RMS; point-to-point) distance between the 2 surfaces. Most linear, angular, and surface area measurements had high repeatability in M3 versus M3, H1 versus H1, and M3 versus H1 comparisons (range, 82.2 to 98.7%; TEM range, 0.3 to 2.0 mm, 0.4° to 1.8°; rTEM range, 0.2 to 3.1%). In contrast, volumes and RMS distances showed evident differences in M3 versus M3 and H1 versus H1 comparisons and reached the maximum when scans from the 2 different devices were compared. The portable VECTRA H1 device proved reliable for assessing linear measurements, angles, and surface areas; conversely, the influence of involuntary facial movements on volumes and RMS distances was more important compared with the static device. Copyright © 2018 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Design issues for semi-passive optical communication devices

    Science.gov (United States)

    Glaser, I.

    2007-09-01

    Optical smart cards are devices containing a retro-reflector, light modulator, and some computing and data storage capabilities to affect semi-passive communication. They do not produce light; instead they modulate and send back light received from a stationary unit. These devices can replace contact-based smart cards as well as RF based ones for applications ranging from identification to transmitting and validating data. Since their transmission is essentially focused on the receiving unit, they are harder to eavesdrop than RF devices, yet need no physical contact or alignment. In this paper we explore optical design issues of these devices and estimate their optical behavior. Specifically, we analyze how these compact devices can be optimized for selected application profiles. Some of the key parameters addressed are effective light efficiency (how much modulated signal can be received by the stationary unit given the amount of light it transmits), range of tilt angles (angle between device surface normal to the line connecting the optical smart card with the stationary unit) through which the device would be effective, and power requirements of the semi-passive unit. In addition, issues concerning compact packaging of this device are discussed. Finally, results of the analysis are employed to produce a comparison of achievable capabilities of these optical smart cards, as opposed to alternative devices, and discuss potential applications were they can be best utilized.

  15. Electronics Related to Nuclear Medicine Imaging Devices. Chapter 7

    Energy Technology Data Exchange (ETDEWEB)

    Ott, R. J. [Joint Department of Physics, Royal Marsden Hospital and Institute of Cancer Research, Surrey (United Kingdom); Stephenson, R. [Rutherford Appleton Laboratory, Oxfordshire (United Kingdom)

    2014-12-15

    Nuclear medicine imaging is generally based on the detection of X rays and γ rays emitted by radionuclides injected into a patient. In the previous chapter, the methods used to detect these photons were described, based most commonly on a scintillation counter although there are imaging devices that use either gas filled ionization detectors or semiconductors. Whatever device is used, nuclear medicine images are produced from a very limited number of photons, due mainly to the level of radioactivity that can be safely injected into a patient. Hence, nuclear medicine images are usually made from many orders of magnitude fewer photons than X ray computed tomography (CT) images, for example. However, as the information produced is essentially functional in nature compared to the anatomical detail of CT, the apparently poorer image quality is overcome by the nature of the information produced. The low levels of photons detected in nuclear medicine means that photon counting can be performed. Here each photon is detected and analysed individually, which is especially valuable, for example, in enabling scattered photons to be rejected. This is in contrast to X ray imaging where images are produced by integrating the flux entering the detectors. Photon counting, however, places a heavy burden on the electronics used for nuclear medicine imaging in terms of electronic noise and stability. This chapter will discuss how the signals produced in the primary photon detection process can be converted into pulses providing spatial, energy and timing information, and how this information is used to produce both qualitative and quantitative images.

  16. THE EVOLUTION OF INTERFACE DESIGN ON MOBILE DEVICES

    Directory of Open Access Journals (Sweden)

    Atila Isik

    2016-09-01

    Full Text Available The most typical characteristic of 21. century is the light velocity changing of technology. Dizzily developments in the field of human-robot interaction, mobile communication and education as affect all the fields of life also have an impact on art and design area. Striking increase of interest had been seen for mobile devices which are product of developing technology as tablet and mobile phone. While this increase happening at the present time user interfaces at mobile world and user practices developed as much as dominating design tendency. And became primary impotance for visual designers. This study aims utulizing future options for designers and the oppurtunities and reach a conclusions with examining evolution field of interface design spesific to mobile devices. From Skemorfizm to ordinary design and Google’s recent transition of material design principles were discussed together in this study. And this workout deal with interface design logic of users for working with new computational arificial facts devices as wearable smart objects and devices which able to connect to internet.

  17. Gas recombination device design and cost study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Under a contract with Argonne National Laboratory, VARTA Batterie AG. conducted a design and cost study of hydrogen-oxygen recombination devices (HORD) for use with utility load-leveling lead-acid cells. Design specifications for the devices, through extensive calculation of the heat-flow conditions of the unit, were developed. Catalyst and condenser surface areas were specified. The exact dimensions can, however, be adjusted to the cell dimension and the space available above the cell. Design specifications were also developed for additional components required to ensure proper function of the recombination device, including metal hydride compound decomposer, aerosol retainer, and gas storage component. Costs for HORD were estimated to range from $4 to $10/kWh cell capacity for the production of a large number of units (greater than or equal to 10,000 units). The cost is a function of cell size and positive grid design. 21 figures, 2 tables.

  18. Culture, Interface Design, and Design Methods for Mobile Devices

    Science.gov (United States)

    Lee, Kun-Pyo

    Aesthetic differences and similarities among cultures are obviously one of the very important issues in cultural design. However, ever since products became knowledge-supporting tools, the visible elements of products have become more universal so that the invisible parts of products such as interface and interaction are getting more important. Therefore, the cultural design should be extended to the invisible elements of culture like people's conceptual models beyond material and phenomenal culture. This chapter aims to explain how we address the invisible cultural elements in interface design and design methods by exploring the users' cognitive styles and communication patterns in different cultures. Regarding cultural interface design, we examined users' conceptual models while interacting with mobile phone and website interfaces, and observed cultural difference in performing tasks and viewing patterns, which appeared to agree with cultural cognitive styles known as Holistic thoughts vs. Analytic thoughts. Regarding design methods for culture, we explored how to localize design methods such as focus group interview and generative session for specific cultural groups, and the results of comparative experiments revealed cultural difference on participants' behaviors and performance in each design method and led us to suggest how to conduct them in East Asian culture. Mobile Observation Analyzer and Wi-Pro, user research tools we invented to capture user behaviors and needs especially in their mobile context, were also introduced.

  19. Analysis of patient setup accuracy using electronic portal imaging device

    International Nuclear Information System (INIS)

    Onogi, Yuzo; Aoki, Yukimasa; Nakagawa, Keiichi

    1996-01-01

    Radiation therapy is performed in many fractions, and accurate patient setup is very important. This is more significant nowadays because treatment planning and radiation therapy are more precisely performed. Electronic portal imaging devices and automatic image comparison algorithms let us analyze setup deviations quantitatively. With such in mind we developed a simple image comparison algorithm. Using 2459 electronic verification images (335 ports, 123 treatment sites) generated during the past three years at our institute, we evaluated the results of the algorithm, and analyzed setup deviations according to the area irradiated, use of a fixing device (shell), and arm position. Calculated setup deviation was verified visually and their fitness was classified into good, fair, bad, and incomplete. The result was 40%, 14%, 22%, 24% respectively. Using calculated deviations classified as good (994 images), we analyzed setup deviations. Overall setup deviations described in 1 SD along axes x, y, z, was 1.9 mm, 2.5 mm, 1.7 mm respectively. We classified these deviations into systematic and random components, and found that random error was predominant in our institute. The setup deviations along axis y (cranio-caudal direction) showed larger distribution when treatment was performed with the shell. Deviations along y (cranio-caudal) and z (anterior-posterior) had larger distribution when treatment occurred with the patient's arm elevated. There was a significant time-trend error, whose deviations become greater with time. Within all evaluated ports, 30% showed a time-trend error. Using an electronic portal imaging device and automatic image comparison algorithm, we are able to analyze setup deviations more precisely and improve setup method based on objective criteria. (author)

  20. Wearable device for skin contact thermography: design, construction and testing

    International Nuclear Information System (INIS)

    Giansanti, D.; Maccioni, G.

    2008-01-01

    The need for wearable devices for thermal monitoring is rising. These devices could be used to continuously monitor patients for breast cancer investigation or vascular, dermatological and rheumatic disorders, in viability studies, or during physical exercise. We designed and constructed a wearable device for skin-contact thermography that uses integrated silicon sensors. The device was validated using a phantom with a dynamic bench test. The thermal resolution was greater than 0.030'C, and the spatial resolution was equal to 1.6x10-5 m'2. We also investigated the device's performance on five clinical subjects. Results of these studies showed a maximal error of less than 0.10'C in each evaluation [it

  1. Prospective clinical evaluation of an electronic portal imaging device

    International Nuclear Information System (INIS)

    Michalski, Jeff M.; Graham, Mary V.; Bosch, Walter R.; Wong, John; Gerber, Russell L.; Cheng, Abel; Tinger, Alfred; Valicenti, Richard K.

    1996-01-01

    Purpose: To determine whether the clinical implementation of an electronic portal imaging device can improve the precision of daily external beam radiotherapy. Methods and Materials: In 1991, an electronic portal imaging device was installed on a dual energy linear accelerator in our clinic. After training the radiotherapy technologists in the acquisition and evaluation of portal images, we performed a randomized study to determine whether online observation, interruption, and intervention would result in more precise daily setup. The patients were randomized to one of two groups: those whose treatments were actively monitored by the radiotherapy technologists and those that were imaged but not monitored. The treating technologists were instructed to correct the following treatment errors: (a) field placement error (FPE) > 1 cm; (b) incorrect block; (c) incorrect collimator setting; (d) absent customized block. Time of treatment delivery was recorded by our patient tracking and billing computers and compared to a matched set of patients not participating in the study. After the patients radiation therapy course was completed, an offline analysis of the patient setup error was planned. Results: Thirty-two patients were treated to 34 anatomical sites in this study. In 893 treatment sessions, 1,873 fields were treated (1,089 fields monitored and 794 fields unmonitored). Ninety percent of the treated fields had at least one image stored for offline analysis. Eighty-seven percent of these images were analyzed offline. Of the 1,011 fields imaged in the monitored arm, only 14 (1.4%) had an intervention recorded by the technologist. Despite infrequent online intervention, offline analysis demonstrated that the incidence of FPE > 10 mm in the monitored and unmonitored groups was 56 out of 881 (6.1%) and 95 out of 595 (11.2%), respectively; p 10 mm was confined to the pelvic fields. The time to treat patients in this study was 10.78 min (monitored) and 10.10 min (unmonitored

  2. Low Power Design for Future Wearable and Implantable Devices

    Directory of Open Access Journals (Sweden)

    Katrine Lundager

    2016-10-01

    Full Text Available With the fast progress in miniaturization of sensors and advances in micromachinery systems, a gate has been opened to the researchers to develop extremely small wearable/implantable microsystems for different applications. However, these devices are reaching not to a physical limit but a power limit, which is a critical limit for further miniaturization to develop smaller and smarter wearable/implantable devices (WIDs, especially for multi-task continuous computing purposes. Developing smaller and smarter devices with more functionality requires larger batteries, which are currently the main power provider for such devices. However, batteries have a fixed energy density, limited lifetime and chemical side effect plus the fact that the total size of the WID is dominated by the battery size. These issues make the design very challenging or even impossible. A promising solution is to design batteryless WIDs scavenging energy from human or environment including but not limited to temperature variations through thermoelectric generator (TEG devices, body movement through Piezoelectric devices, solar energy through miniature solar cells, radio-frequency (RF harvesting through antenna etc. However, the energy provided by each of these harvesting mechanisms is very limited and thus cannot be used for complex tasks. Therefore, a more comprehensive solution is the use of different harvesting mechanisms on a single platform providing enough energy for more complex tasks without the need of batteries. In addition to this, complex tasks can be done by designing Integrated Circuits (ICs, as the main core and the most power consuming component of any WID, in an extremely low power mode by lowering the supply voltage utilizing low-voltage design techniques. Having the ICs operational at very low voltages, will enable designing battery-less WIDs for complex tasks, which will be discussed in details throughout this paper. In this paper, a path towards battery

  3. Parametric mechanical design of new insertion devices at the APS.

    Energy Technology Data Exchange (ETDEWEB)

    Grimmer, J.; Kmak, R.

    2005-01-01

    Three permanent-magnet, planar, hybrid insertion device (ID) designs have recently been completed at the APS. The periods of these undulators are 2.7 cm, 3.0 cm and 3.5 cm with nominal lengths of 2.4 m. Several design studies were performed for the initial 2.7-cm-period device. Then a parametric solid model for the initial device was developed and value engineered to minimize manufacturing, assembly and tuning costs. The model allowed the very rapid design of subsequent devices of similar periods and allowed commonality of several components of the IDs. This design family incorporates a low-cost method of pole retention and registration. Poles are secured by screws in two holes tapped into each pole. Pole location is registered by means of two small dowel pins in mating holes reamed into each pole and a 'divider' plate common to the poles and magnets. This divider plate is flexible along its length so shimming behind it can be used to accurately change the height of a pair of poles for tuning. Another feature of the design is modular construction to allow each device to be used full length or shortened to a nominal 2.1 m length for use in APS 'canted undulator' sectors.

  4. Design of Ablation Test Device for Brick Coating of Gun

    Science.gov (United States)

    shirui, YAO; yongcai, CHEN; fei, WANG; jianxin, ZHAO

    2018-03-01

    As a result of the live ammunition test conditions, the barrel resistance of the barrel coating has high cost, time consuming, low efficiency and high test site requirements. This article designed a simple, convenient and efficient test device. Through the internal trajectory calculation by Matlab, the ablation environment produced by the ablation test device has achieved the expected effect, which is consistent with the working condition of the tube in the launching state, which can better reflect the ablation of the coating.

  5. Design, modelling and simulation aspects of an ankle rehabilitation device

    Science.gov (United States)

    Racu, C. M.; Doroftei, I.

    2016-08-01

    Ankle injuries are amongst the most common injuries of the lower limb. Besides initial treatment, rehabilitation of the patients plays a crucial role for future activities and proper functionality of the foot. Traditionally, ankle injuries are rehabilitated via physiotherapy, using simple equipment like elastic bands and rollers, requiring intensive efforts of therapists and patients. Thus, the need of robotic devices emerges. In this paper, the design concept and some modelling and simulation aspects of a novel ankle rehabilitation device are presented.

  6. Nanomedical device and systems design challenges, possibilities, visions

    CERN Document Server

    2014-01-01

    Nanomedical Device and Systems Design: Challenges, Possibilities, Visions serves as a preliminary guide toward the inspiration of specific investigative pathways that may lead to meaningful discourse and significant advances in nanomedicine/nanotechnology. This volume considers the potential of future innovations that will involve nanomedical devices and systems. It endeavors to explore remarkable possibilities spanning medical diagnostics, therapeutics, and other advancements that may be enabled within this discipline. In particular, this book investigates just how nanomedical diagnostic and

  7. Reading device of a radiation image contained in a radioluminescent screen and tomography device containing it

    International Nuclear Information System (INIS)

    Allemand, R.; Cuzin, M.; Parot, P.

    1984-01-01

    The present invention is aimed at improving the random access time to a stimulable radioluminescent screen point (and consequently the reading time of the screen image); it is noticeably useful for longitudinal tomography. The reading device contains a source emitting a stimulation radiation beam towards the stimulable radioluminescent screen, a control mean of the stimulation radiation beam and a deflection mean which allows the beam to scan the screen surface. The device is characterized by the use of a very fast acousto-optical type deflection mean [fr

  8. Design study on divertor plates of Large Helical Device (LHD)

    International Nuclear Information System (INIS)

    Noda, N.; Kubota, Y.; Sagara, A.

    1992-10-01

    A conceptual design has been completed for the divertor plates of the Large Helical Device (LHD, R = 3.9 m, a p = 50 ∼ 60 cm, B h = 3 ∼ 4T/ superconducting coils of NbTi) and the detailed technical design is now in progress. The design concept and the status of research and development (R and D) programs are described. (author)

  9. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.

    Science.gov (United States)

    Hamed, Abbi; Masamune, Ken; Tse, Zion Tsz Ho; Lamperth, Michael; Dohi, Takeyoshi

    2012-07-01

    Minimally invasive surgery is a widely used medical technique, one of the drawbacks of which is the loss of direct sense of touch during the operation. Palpation is the use of fingertips to explore and make fast assessments of tissue morphology. Although technologies are developed to equip minimally invasive surgery tools with haptic feedback capabilities, the majority focus on tissue stiffness profiling and tool-tissue interaction force measurement. For greatly increased diagnostic capability, a magnetic resonance imaging-compatible tactile sensor design is proposed, which allows minimally invasive surgery to be performed under image guidance, combining the strong capability of magnetic resonance imaging soft tissue and intuitive palpation. The sensing unit is based on a piezoelectric sensor methodology, which conforms to the stringent mechanical and electrical design requirements imposed by the magnetic resonance environment The sensor mechanical design and the device integration to a 0.2 Tesla open magnetic resonance imaging scanner are described, together with the device's magnetic resonance compatibility testing. Its design limitations and potential future improvements are also discussed. A tactile sensing unit based on a piezoelectric sensor principle is proposed, which is designed for magnetic resonance imaging guided interventions.

  10. Sweep devices for picosecond image-converter streak cameras

    International Nuclear Information System (INIS)

    Cunin, B.; Miehe, J.A.; Sipp, B.; Schelev, M.Ya.; Serduchenko, J.N.; Thebault, J.

    1979-01-01

    Four different sweep devices based on microwave tubes, avalanche transistors, krytrons, and laser-triggered spark gaps are treated in detail. These control circuits are developed for picosecond image-converter cameras and generate sweep pulses providing streak speeds in the range of 10 7 to 5x10 10 cm/sec with maximum time resolution better than 10 -12 sec. Special low-jitter triggering schemes reduce the jitter to less than 5x10 -11 sec. Some problems arising in the construction and matching of the sweep devices and image-streak tube are discussed. Comparative parameters of nanosecond switching elements are presented. The results described can be used by other authors involved in streak camera development

  11. Plug-and-Design: Bringing a Design Environment to a Mobile Device

    OpenAIRE

    MESKENS, Jan; LUYTEN, Kris; CONINX, Karin

    2009-01-01

    Due to the large amount of mobile devices that continue to appear on the consumer market, mobile user interface design becomes increasingly important. The major issue with many existing mobile user interface design approaches is the time and effort that is needed to deploy a user interface design to the target device. In order to address this issue, we propose the plug-and-design tool that relies on a continuous multi-device mouse pointer to design user interfaces directly on the mobile targe...

  12. Plug-and-Design: Embracing Mobile Devices as Part of the Design Environment

    OpenAIRE

    MESKENS, Jan; LUYTEN, Kris; CONINX, Karin

    2009-01-01

    Due to the large amount of mobile devices that continue to appear on the consumer market, mobile user interface design becomes increasingly important. The major issue with many existing mobile user interface design approaches is the time and effort that is needed to deploy a user interface design to the target device. In order to address this issue, we propose the plug-and-design tool that relies on a continuous multi-device mouse pointer to design user interfaces directly on the mobile targe...

  13. Device for congruent X-ray images of teeth

    International Nuclear Information System (INIS)

    Wegner, H.; Zeumer, H.

    1987-01-01

    This invention has to do with a device for congruent X-ray images of teeth by means of the long-tube parallel technique and the long-tube semi-angle technique. The aim is to have no disturbing lever forces in order to avoid mechanical tensions between patient and X-ray tube assembly and to achieve a true projection of teeth and jaw-bone part also under unfavourable anatomical conditions

  14. Pilot Study for OCT Guided Design and Fit of a Prosthetic Device for Treatment of Corneal Disease

    Directory of Open Access Journals (Sweden)

    Hong-Gam T. Le

    2012-01-01

    Full Text Available Purpose. To assess optical coherence tomography (OCT for guiding design and fit of a prosthetic device for corneal disease. Methods. A prototype time domain OCT scanner was used to image the anterior segment of patients fitted with large diameter (18.5–20 mm prosthetic devices for corneal disease. OCT images were processed and analyzed to characterize corneal diameter, corneal sagittal height, scleral sagittal height, scleral toricity, and alignment of device. Within-subject variance of OCT-measured parameters was evaluated. OCT-measured parameters were compared with device parameters for each eye fitted. OCT image correspondence with ocular alignment and clinical fit was assessed. Results. Six eyes in 5 patients were studied. OCT measurement of corneal diameter (coefficient of variation, %, cornea sagittal height (%, and scleral sagittal height (% is highly repeatable within each subject. OCT image-derived measurements reveal strong correlation between corneal sagittal height and device corneal height ( and modest correlation between scleral and on-eye device toricity (. Qualitative assessment of a fitted device on OCT montages reveals correspondence with slit lamp images and clinical assessment of fit. Conclusions. OCT imaging of the anterior segment is suitable for custom design and fit of large diameter (18.5–20 mm prosthetic devices used in the treatment of corneal disease.

  15. Parametric Mechanical Design of New Insertion Devices at the APS

    CERN Document Server

    Grimmer, John H

    2005-01-01

    Three permanent-magnet, planar, hybrid ID designs have recently been completed at the APS. The periods of the devices are 2.7 cm, 3.0 cm and 3.5 cm with nominal lengths of 2.4 m. Several design studies were performed for the initial 2.7 cm period device to investigate the utility of various design features. Then a parametric solid model for the initial device was developed and value engineered to minimize manufacturing, assembly and tuning costs. The model allowed the very rapid design of subsequent devices of similar periods and allowed commonality of several components of the IDs. This design family incorporates a low-cost method of pole retention and registration. Poles are secured by screws in two holes tapped into each pole. Pole location is registered by means of two small dowel pins for each pole in mating holes reamed into each pole and a base plate common to the poles and magnets. This base plate is flexible in bending along its length so shimming behind it can be used to accurately change the height...

  16. Images and visuality in ICT Educational design

    DEFF Research Database (Denmark)

    Buhl, Mie

    2008-01-01

    The functions and learning potential of images and ICT-based designs for learning are the results of the educational designer's ideas and aesthetic production skills. The concept of educational designs emphasises the educational dimension in the development of ICT-based learning tools...... and environments, and in the form of models for the use of exisitng applications in leaning cultures. the intrinsic breadth of various types of images creates new possibilities and challenges for the educational designer of teaching and learning processes. the digital media have moved the boundaries between images...

  17. Thermal design of an irradiation device with cobalt

    International Nuclear Information System (INIS)

    Parkansky, David; Halpert, Silvia G.; Vazquez, Luis A.

    1999-01-01

    The thermal behavior of a device to transport 60 Co rods has been calculated. The device has been designed to be also used to radio sterilize medical supplies and hospital wastes. The calculations show that, in normal conditions, the maximum temperature of the external surface of the device is 55 C and that of the shielding lead is 110 C. In fire conditions, without taking into account the radiation of heath to or from the combustion gases, the lead does not reach the melting point. If the gases are taken into account, only 6.3 % of the lead is melted down. The transport-irradiation device complies with the IAEA recommendations on the safe transport of radioactive material

  18. Conceptual design of cesium removal device for ITER NBI maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Shibanuma, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Cesium is required in order to generate a stable negative ion of hydrogen in an ion source of the neutral beam injector (NBI), which is one of the plasma-heating devices for International Thermonuclear Experimental Reactor (ITER). After long time operation of the NBI, the cesium deposits to the insulators supporting the electrode. Due to the deterioration of the insulation resistance, the continuous operation of the NBI will be difficult. In addition, the NBI device is activated by neutrons from D-T plasma, so that periodic removal and cleaning of the cesium on the insulators by remove handling is required. A study of the cesium removal scenario and the device is therefore required considering remote handling. In this report, a cesium removal procedure and conceptual design of the cesium removal device using laser ablation technique are studied, and the feasibility of the laser ablation method is shown. (author)

  19. 3D Design Tools for Vacuum Electron Devices

    International Nuclear Information System (INIS)

    Levush, Baruch

    2003-01-01

    A reduction of development costs will have a significant impact on the total cost of the vacuum electron devices. Experimental testing cycles can be reduced or eliminated through the use of simulation-based design methodology, thereby reducing the time and cost of development. Moreover, by use of modern optimization tools for automating the process of seeking specific solution parameters and for studying dependencies of performance on parameters, new performance capabilities can be achieved, without resorting to expensive cycles of hardware fabrication and testing. Simulation-based-design will also provide the basis for sensitivity studies for determining the manufacturing tolerances associated with a particular design. Since material properties can have a critical effect on the performance of the vacuum electron devices, the design tools require precise knowledge of material characteristics, such as dielectric properties of the support rods, loss profile etc. Sensitivity studies must therefore include the effects of materials properties variation on device performance. This will provide insight for choosing the proper technological processes in order to achieve these tolerances, which is of great importance for achieving cost reduction. A successful design methodology depends on the development of accurate and efficient design tools with predictive capabilities. These design tools must be based on realistic models capable of high fidelity representation of geometry and materials, they must have optimization capabilities, and they must be easy to use

  20. Product design - Molecules, devices, functional products, and formulated products

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Ng, Ka M.

    2015-01-01

    Chemical product design is a multidisciplinary and diverse subject. This article provides an overview of product design while focusing on product conceptualization. Four product types are considered - molecular products, formulated products, devices and functional products. For molecular products......, computer-aided design tools are used to predict the physicochemical properties of single molecules and blends. For formulated products, an integrated experiment-modeling approach is used to generate the formula with the specified product attributes. For devices and functional products, conceptual product...... design is carried out by modeling the product based on thermodynamics, kinetics and transport processes, by performing experiments, and by decision making based on rule-based methods The results are product specifications in terms of the type of ingredients, composition, and the structure, form, shape...

  1. Validation of a new imaging device for telemedical ulcer monitoring

    DEFF Research Database (Denmark)

    Rasmussen, Benjamin Schnack; Frøkjær, Johnny; Bisgaard Jørgensen, Line

    2015-01-01

    between the new portable camera and the iPhone images vs. clinical assessment as the 'gold standard'. The study included 36 foot ulcers. Four specialists rated the ulcers and filled out a questionnaire, which formed the basis of the evaluation. RESULTS: We found fair to very good intra-rater agreement...... for the new PID and iPhone, respectively. The gold standard was evaluated by assessing the ulcer twice by two different specialists. Kappa values were moderate to very good with respect to inter-rater agreement except for two variables. The agreement between standard and new equipment compared to the gold......PURPOSE: To clarify whether a new portable imaging device (PID) providing 3D images for telemedical use constitutes a more correct expression of the clinical situation compared to standard telemedical equipment in this case iPhone 4s. METHOD: We investigated intra- and interindividual variability...

  2. Medical image informatics infrastructure design and applications.

    Science.gov (United States)

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII.

  3. Screen Time: Alumni Magazines Have Their Designs on Mobile Devices

    Science.gov (United States)

    Walker, Theresa

    2011-01-01

    Alumni magazines have their designs on mobile devices. The efforts are tied together, no matter the platform, by a desire for the magazine to be where its readers are and a spirit of experimentation that is akin to what is happening with social media. None of the magazine editors went into this process with any numerical expectations for…

  4. Designing web surveys for the multi-device internet

    NARCIS (Netherlands)

    de Bruijne, M.A.

    2015-01-01

    The rise of the mobile internet has rapidly changed the landscape for fielding web surveys. The devices that respondents use to take a web survey vary greatly in size and user interface. This diversity in the interaction between survey and respondent makes it challenging to design a web survey for

  5. Design and Fabrication of Vertically-Integrated CMOS Image Sensors

    Science.gov (United States)

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860

  6. Design of a multimedia gateway for mobile devices

    Science.gov (United States)

    Hens, Raf; Goeminne, Nico; Van Hoecke, Sofie; Verdickt, Tom; Bouve, Thomas; Gielen, Frank; Demeester, Piet

    2005-03-01

    Although mobile users are currently offered a lot more capabilities on their mobile devices, they still experience some limitations. They can surf the Internet, read their e-mail and receive MMS messages, but they have limited processing power, storage capacity and bandwidth and are limited in their access to peripherals (e.g. printers). We have designed and implemented a multimedia gateway for mobile devices that reduces these limitations. It gives the mobile devices transparent access to high capacity devices connected to the gateway, which is built around a central, modularly extensible server that can run on any PC or home gateway. It manages two sets of modules: one set offering the actual services and another set handling the IP-based wireless interaction with the client applications on the mobile devices. These modules can be added and removed dynamically, offering new services on the fly. Currently services for storage, printing, domotics and playing music are provided. Others can easily be added later on. This paper discusses the architecture and development, the management of modules, the actual services and their benefits. Besides a proprietary implementation, it also looks into OSGi and how both platforms compare to each other, concerning design, architecture, ease of development, functionality, ...

  7. Design study of a bar-type EMR device

    KAUST Repository

    Sun, Jian; Gooneratne, Chinthaka Pasan; Kosel, Jü rgen

    2012-01-01

    It is well known that extraordinary magnetoresistance (EMR) depends on the geometric parameters of the EMR device and the locations of the electrodes. In this paper, the performance of a bar-type EMR device is simulated with respect to the device geometry and electrode locations. The performance is evaluated with regards to the output sensitivity of the device, rather than the often analyzed EMR ratio, since it is more relevant than the EMR ratio for potential applications ranging from read heads to smart biomedical sensors. The results obtained with the finite element method show the dependence of the output sensitivity on the device geometry the placements of the electric contacts as well as the strength of the applied magnetic field in different configurations and allow finding the optimum parameters. Within the studied range of -1 to 1 T both IVVI and VIIV configurations show very similar behavior. For EMR sensors of high sensitivity, the results suggest that a simple two-contact device would provide the best performance replacing the conventional four-contact design. © 2012 IEEE.

  8. Liquid-liquid extraction. Choice, calculation and design of devices

    International Nuclear Information System (INIS)

    Leybros, J.

    2005-01-01

    The aim of this work is to study the problematic due to the choice of an equipment, to its size and to its industrial bringing into operation. Besides its efficiency to carry out a mass transfer, the economical interest of an industrial device will be proportional to its specific rate (volume treated by surface unit of the cross section of the extractor). Nevertheless, as it seems to be logic to maximize the three parameters which have an influence on it (transfer coefficient, interfacial surface and transfer potential), there exists no device which can modify separately any of these parameters. In order to satisfy these aims, a great diversity of devices have been put on the market. Indeed, it exists about twenty different industrial devices. This diversity leads the engineer, during the design of a solvent extraction device, to take difficult and subjective decisions without pilot experiment on the considered system. The main problem of an economical and optimized calculation of the liquid-liquid extractors from theoretical data has still not found totally satisfying solutions. Thus, except in some cases where we have empirical correlations, the recourse to prototype experiments is required and the most recent advances have resulted essentially to define more reliable rules for the extrapolation of these experiments for the size of industrial devices. (O.M.)

  9. The design of cathode for organic photovoltaic devices

    Science.gov (United States)

    Song, De; Shi, Feng; Xia, Xuan; Li, Ye; Duanmu, Qingduo

    2016-11-01

    We have discussed the effect of the residual gas in the Al metal cathode deposition process and consequently influence the performance of organic photovoltaic devices (such as organic photoelectron detector or solar cell). We believe that the origin of degradation in Jsc and FF from the Al cathode device should be the formation of AlOx in the C60-Al interface, which contaminate the interface and plays a role like an energy barrier that block the charge collect process. To solve this problem the Ag and Alq3 layer had been inserted before the Al. Owing to the advantageous of Alq3 and Ag layer, the device which Al cathode prepared at a lower vacuum condition exhibits a comparable performance to that device which Al cathode deposited in regular situation. As an additional benefit, since the introducing of Alq3/Ag layer in the VOPc/C60 organic photovoltaic device performs a better near-infrared response, this phenomenon has been confirmed by means of both simulation and experimental data. So the design of our new cathode structure provides a degree of freedom to modulate the light absorption for organic photovoltaic devices in short-wave and long-wave.

  10. Design study of a bar-type EMR device

    KAUST Repository

    Sun, Jian

    2012-05-01

    It is well known that extraordinary magnetoresistance (EMR) depends on the geometric parameters of the EMR device and the locations of the electrodes. In this paper, the performance of a bar-type EMR device is simulated with respect to the device geometry and electrode locations. The performance is evaluated with regards to the output sensitivity of the device, rather than the often analyzed EMR ratio, since it is more relevant than the EMR ratio for potential applications ranging from read heads to smart biomedical sensors. The results obtained with the finite element method show the dependence of the output sensitivity on the device geometry the placements of the electric contacts as well as the strength of the applied magnetic field in different configurations and allow finding the optimum parameters. Within the studied range of -1 to 1 T both IVVI and VIIV configurations show very similar behavior. For EMR sensors of high sensitivity, the results suggest that a simple two-contact device would provide the best performance replacing the conventional four-contact design. © 2012 IEEE.

  11. Design of portable electrocardiogram device using DSO138

    Science.gov (United States)

    Abuzairi, Tomy; Matondang, Josef Stevanus; Purnamaningsih, Retno Wigajatri; Basari, Ratnasari, Anita

    2018-02-01

    Cardiovascular disease has been one of the leading causes of sudden cardiac deaths in many countries, covering Indonesia. Electrocardiogram (ECG) is a medical test to detect cardiac abnormalities by measuring the electrical activity generated by the heart, as the heart contracts. By using ECG, we can observe anomaly at the time of heart abnormalities. In this paper, design of portable ECG device is presented. The portable ECG device was designed to easily use in the village clinic or houses, due to the small size device and other benefits. The device was designed by using four units: (1) ECG electrode; (2) ECG analog front-end; (3) DSO138; and (4) battery. To create a simple electrode system in the portable ECG, 1-lead ECG with two electrodes were applied. The analog front-end circuitry consists of three integrated circuits, an instrumentation amplifier AD820AN, a low noise operational amplifier OPA134, and a low offset operational amplifier TL082. Digital ECG data were transformed to graphical data on DSO138. The results show that the portable ECG is successfully read the signal from 1-lead ECG system.

  12. Product Design – From Molecules to Formulations to Devices

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Ng, Ka M.

    2014-01-01

    Product design is a multidisciplinary and diverse subject. This article focuses on product conceptualization (what-to-make) and briefly reviews the corresponding manufacturing processes (how-to-make). Four product types are considered – molecular products, formulated products, devices...... and functional products. For molecular products, computer-aided design tools are used to predict the physicochemical properties of single molecules and blends. For formulated products, an integrated experiment-molecular modelling approach to generate the formula with the specified product attributes is followed....... For devices and functional products, conceptual product design is carried out by modelling the product based on thermodynamics, kinetics and transport processes, by performing experiments, and by decision making based on experience. The results are product specifications in terms of the type of ingredients...

  13. Fabrication of fine imaging devices using an external proton microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, T., E-mail: sakai.takuro@jaea.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Yasuda, R.; Iikura, H.; Nojima, T. [Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Koka, M.; Satoh, T.; Ishii, Y. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), Takasaki, Gunma 370-1292 (Japan); Oshima, A. [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan)

    2014-08-01

    We have successfully fabricated novel microscopic imaging devices made from UV/EB curable resin using an external scanning proton microbeam. The devices are micro-structured fluorescent plates that consist of an array of micro-pillars that align periodically. The base material used in the pillars is UV/EB curable resin and each pillar contains phosphor grains. The pattern exposures were performed using a proton beam writing technique. The height of the pillars depends on the range of the proton beam. Optical microscopy and scanning electron microscopy have been used to characterize the samples. The results show that the fabricated fluorescent plates are expected to be compatible with both spatial resolution and detection efficiency.

  14. Designing sensory-substitution devices: Principles, pitfalls and potential1.

    Science.gov (United States)

    Kristjánsson, Árni; Moldoveanu, Alin; Jóhannesson, Ómar I; Balan, Oana; Spagnol, Simone; Valgeirsdóttir, Vigdís Vala; Unnthorsson, Rúnar

    2016-09-21

    An exciting possibility for compensating for loss of sensory function is to augment deficient senses by conveying missing information through an intact sense. Here we present an overview of techniques that have been developed for sensory substitution (SS) for the blind, through both touch and audition, with special emphasis on the importance of training for the use of such devices, while highlighting potential pitfalls in their design. One example of a pitfall is how conveying extra information about the environment risks sensory overload. Related to this, the limits of attentional capacity make it important to focus on key information and avoid redundancies. Also, differences in processing characteristics and bandwidth between sensory systems severely constrain the information that can be conveyed. Furthermore, perception is a continuous process and does not involve a snapshot of the environment. Design of sensory substitution devices therefore requires assessment of the nature of spatiotemporal continuity for the different senses. Basic psychophysical and neuroscientific research into representations of the environment and the most effective ways of conveying information should lead to better design of sensory substitution systems. Sensory substitution devices should emphasize usability, and should not interfere with other inter- or intramodal perceptual function. Devices should be task-focused since in many cases it may be impractical to convey too many aspects of the environment. Evidence for multisensory integration in the representation of the environment suggests that researchers should not limit themselves to a single modality in their design. Finally, we recommend active training on devices, especially since it allows for externalization, where proximal sensory stimulation is attributed to a distinct exterior object.

  15. Concave omnidirectional imaging device for cylindrical object based on catadioptric panoramic imaging

    Science.gov (United States)

    Wu, Xiaojun; Wu, Yumei; Wen, Peizhi

    2018-03-01

    To obtain information on the outer surface of a cylinder object, we propose a catadioptric panoramic imaging system based on the principle of uniform spatial resolution for vertical scenes. First, the influence of the projection-equation coefficients on the spatial resolution and astigmatism of the panoramic system are discussed, respectively. Through parameter optimization, we obtain the appropriate coefficients for the projection equation, and so the imaging quality of the entire imaging system can reach an optimum value. Finally, the system projection equation is calibrated, and an undistorted rectangular panoramic image is obtained using the cylindrical-surface projection expansion method. The proposed 360-deg panoramic-imaging device overcomes the shortcomings of existing surface panoramic-imaging methods, and it has the advantages of low cost, simple structure, high imaging quality, and small distortion, etc. The experimental results show the effectiveness of the proposed method.

  16. Safety of Magnetic Resonance Imaging in Patients with Cardiac Devices.

    Science.gov (United States)

    Nazarian, Saman; Hansford, Rozann; Rahsepar, Amir A; Weltin, Valeria; McVeigh, Diana; Gucuk Ipek, Esra; Kwan, Alan; Berger, Ronald D; Calkins, Hugh; Lardo, Albert C; Kraut, Michael A; Kamel, Ihab R; Zimmerman, Stefan L; Halperin, Henry R

    2017-12-28

    Patients who have pacemakers or defibrillators are often denied the opportunity to undergo magnetic resonance imaging (MRI) because of safety concerns, unless the devices meet certain criteria specified by the Food and Drug Administration (termed "MRI-conditional" devices). We performed a prospective, nonrandomized study to assess the safety of MRI at a magnetic field strength of 1.5 Tesla in 1509 patients who had a pacemaker (58%) or an implantable cardioverter-defibrillator (42%) that was not considered to be MRI-conditional (termed a "legacy" device). Overall, the patients underwent 2103 thoracic and nonthoracic MRI examinations that were deemed to be clinically necessary. The pacing mode was changed to asynchronous mode for pacing-dependent patients and to demand mode for other patients. Tachyarrhythmia functions were disabled. Outcome assessments included adverse events and changes in the variables that indicate lead and generator function and interaction with surrounding tissue (device parameters). No long-term clinically significant adverse events were reported. In nine MRI examinations (0.4%; 95% confidence interval, 0.2 to 0.7), the patient's device reset to a backup mode. The reset was transient in eight of the nine examinations. In one case, a pacemaker with less than 1 month left of battery life reset to ventricular inhibited pacing and could not be reprogrammed; the device was subsequently replaced. The most common notable change in device parameters (>50% change from baseline) immediately after MRI was a decrease in P-wave amplitude, which occurred in 1% of the patients. At long-term follow-up (results of which were available for 63% of the patients), the most common notable changes from baseline were decreases in P-wave amplitude (in 4% of the patients), increases in atrial capture threshold (4%), increases in right ventricular capture threshold (4%), and increases in left ventricular capture threshold (3%). The observed changes in lead parameters

  17. The Design and Development of Test Platform for Wheat Precision Seeding Based on Image Processing Techniques

    OpenAIRE

    Li , Qing; Lin , Haibo; Xiu , Yu-Feng; Wang , Ruixue; Yi , Chuijie

    2009-01-01

    International audience; The test platform of wheat precision seeding based on image processing techniques is designed to develop the wheat precision seed metering device with high efficiency and precision. Using image processing techniques, this platform gathers images of seeds (wheat) on the conveyer belt which are falling from seed metering device. Then these data are processed and analyzed to calculate the qualified rate, reseeding rate and leakage sowing rate, etc. This paper introduces t...

  18. Design of temperature detection device for drum of belt conveyor

    Science.gov (United States)

    Zhang, Li; He, Rongjun

    2018-03-01

    For difficult wiring and big measuring error existed in the traditional temperature detection method for drum of belt conveyor, a temperature detection device for drum of belt conveyor based on Radio Frequency(RF) communication is designed. In the device, detection terminal can collect temperature data through tire pressure sensor chip SP370 which integrates temperature detection and RF emission. The receiving terminal which is composed of RF receiver chip and microcontroller receives the temperature data and sends it to Controller Area Network(CAN) bus. The test results show that the device meets requirements of field application with measuring error ±3.73 ° and single button battery can provide continuous current for the detection terminal over 1.5 years.

  19. Content analysis of Australian direct-to-consumer websites for emerging breast cancer imaging devices.

    Science.gov (United States)

    Vreugdenburg, Thomas D; Laurence, Caroline O; Willis, Cameron D; Mundy, Linda; Hiller, Janet E

    2014-09-01

    To describe the nature and frequency of information presented on direct-to-consumer websites for emerging breast cancer imaging devices. Content analysis of Australian website advertisements from 2 March 2011 to 30 March 2012, for three emerging breast cancer imaging devices: digital infrared thermal imaging, electrical impedance scanning and electronic palpation imaging. Type of imaging offered, device safety, device performance, application of device, target population, supporting evidence and comparator tests. Thirty-nine unique Australian websites promoting a direct-to-consumer breast imaging device were identified. Despite a lack of supporting evidence, 22 websites advertised devices for diagnosis, 20 advertised devices for screening, 13 advertised devices for prevention and 13 advertised devices for identifying breast cancer risk factors. Similarly, advertised ranges of diagnostic sensitivity (78%-99%) and specificity (44%-91%) were relatively high compared with published literature. Direct comparisons with conventional screening tools that favoured the new device were highly prominent (31 websites), and one-third of websites (12) explicitly promoted their device as a suitable alternative. Australian websites for emerging breast imaging devices, which are also available internationally, promote the use of such devices as safe and effective solutions for breast cancer screening and diagnosis in a range of target populations. Many of these claims are not supported by peer-reviewed evidence, raising questions about the manner in which these devices and their advertising material are regulated, particularly when they are promoted as direct alternatives to established screening interventions.

  20. Design and Calibration of a New 6 DOF Haptic Device

    Directory of Open Access Journals (Sweden)

    Huanhuan Qin

    2015-12-01

    Full Text Available For many applications such as tele-operational robots and interactions with virtual environments, it is better to have performance with force feedback than without. Haptic devices are force reflecting interfaces. They can also track human hand positions simultaneously. A new 6 DOF (degree-of-freedom haptic device was designed and calibrated in this study. It mainly contains a double parallel linkage, a rhombus linkage, a rotating mechanical structure and a grasping interface. Benefited from the unique design, it is a hybrid structure device with a large workspace and high output capability. Therefore, it is capable of multi-finger interactions. Moreover, with an adjustable base, operators can change different postures without interrupting haptic tasks. To investigate the performance regarding position tracking accuracy and static output forces, we conducted experiments on a three-dimensional electric sliding platform and a digital force gauge, respectively. Displacement errors and force errors are calculated and analyzed. To identify the capability and potential of the device, four application examples were programmed.

  1. Design and Calibration of a New 6 DOF Haptic Device

    Science.gov (United States)

    Qin, Huanhuan; Song, Aiguo; Liu, Yuqing; Jiang, Guohua; Zhou, Bohe

    2015-01-01

    For many applications such as tele-operational robots and interactions with virtual environments, it is better to have performance with force feedback than without. Haptic devices are force reflecting interfaces. They can also track human hand positions simultaneously. A new 6 DOF (degree-of-freedom) haptic device was designed and calibrated in this study. It mainly contains a double parallel linkage, a rhombus linkage, a rotating mechanical structure and a grasping interface. Benefited from the unique design, it is a hybrid structure device with a large workspace and high output capability. Therefore, it is capable of multi-finger interactions. Moreover, with an adjustable base, operators can change different postures without interrupting haptic tasks. To investigate the performance regarding position tracking accuracy and static output forces, we conducted experiments on a three-dimensional electric sliding platform and a digital force gauge, respectively. Displacement errors and force errors are calculated and analyzed. To identify the capability and potential of the device, four application examples were programmed. PMID:26690449

  2. Research of CITP-II tritium production irradiation device design

    International Nuclear Information System (INIS)

    Zhang Zhihua; Deng Yongjun; Mi Xiangmiao; Li Rundong; Liu Zhiyong

    2012-01-01

    As the core component of CITP-II, the online tritium production irradiation device is the pivotal equipment in the research on tritium production and release of tritium breeders. The design of CITP-II online tritium production irradiation device creatively makes replacing the breeders online come true; as tritium production capacity, the self-shielding factor of device, and neutron flux were studied. The influence of different load models and load thicknesses of breeders to tritium production capacity was calculated. The hydrodynamics parameters of device in solid-gas phase were computed. Thermal parameters, such as the heat power of breeders, hotspot, temperature grads distributions, utmost temperature, uneven factors, were analyzed. Creatively designed nonlinear electric heater equalized breeders' even heat power. The influence laws of the components, pressure of gap gas and carrier gas to the balance temperature were got. And the key thermal parameters were ascertained. The key thermal parameters and the changing laws were got and provide the basis for structural optimization and safety analysis. They can also be referenced for the study of breeders' tritium production and release. (authors)

  3. Conceptual design of the Topaz II anticriticality device

    International Nuclear Information System (INIS)

    Trujillo, D.; Bultman, D.; Potter, R.C.; Sanchez, L.; Skobelev, V.E.

    1993-01-01

    The Topaz II Flight Safety team requires that the hardware for the Rusian-built reactor be modified to ensure that the reactor remains subcritical in the event of an inadvertent accident in which the reactor is submersed in wet sand or water. In April 1993, the American Flight safety team chose the fuel-out anticriticality device as the baseline for the hardware design. We describe the initial stages of the hardware design; show how the mechanism works; and describe its function, the functional and operational requirements, and the difficult design problems encountered. Also described, are the initial interactions between the Russian and American design teams. Because the effort is to add an American modification to a Russian flight reactor, this project has required unusual technical cooperation and consultation with the Russian design team

  4. Initial trade and design studies for the fusion engineering device

    International Nuclear Information System (INIS)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-06-01

    The Magnetic Fusion Energy Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. The Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), initiated a program of trade and design studies in October 1980 to support the selection of the FED concept. This document presents the results of these initial trade and design studies. Based on these results, a baseline configuration has been identified and the Design Center effort for the remainder of the fiscal year will be devoted to the development of a self-consistent FED design description

  5. Design of device for testing in the gamma irradiator

    International Nuclear Information System (INIS)

    Mariano H, E.

    1991-02-01

    In eves of the recharge of the Gamma Irradiator, JS-6500 it was detected, that there was contamination in the container that housed the pencils of Co-60, coming from Argentina, country to which the ININ buys it recharges. It was determined that the contamination in the container was it interns and after discussing several solution options it was determined to manufacture a device to make a washing of the pencils. It was touch to the Management of Radiological Safety to determine the conceptual design of the device to make the washing and the way of operation of the same one. The Management of Prototypes and Models was responsibility of the mechanical design and its production. (Author)

  6. Design of Gear Churning Power Loss Measurement Device

    OpenAIRE

    Wang Bin; Zhou Ya Jie; Wang Ping

    2017-01-01

    To explore the impacts of gear churning power losses, a research was conducted to achieve the internal causes of power losses of churning gear by designing a gear churning power losses measurement device. The gear churning power losses could be influenced by different gear modules, the number of teeth and the axial position of gear. Finally, the impacts of gear churning power losses were discussed by comparing experimental data and theoretical data.

  7. Design for embedded image processing on FPGAs

    CERN Document Server

    Bailey, Donald G

    2011-01-01

    "Introductory material will consider the problem of embedded image processing, and how some of the issues may be solved using parallel hardware solutions. Field programmable gate arrays (FPGAs) are introduced as a technology that provides flexible, fine-grained hardware that can readily exploit parallelism within many image processing algorithms. A brief review of FPGA programming languages provides the link between a software mindset normally associated with image processing algorithms, and the hardware mindset required for efficient utilization of a parallel hardware design. The bulk of the book will focus on the design process, and in particular how designing an FPGA implementation differs from a conventional software implementation. Particular attention is given to the techniques for mapping an algorithm onto an FPGA implementation, considering timing, memory bandwidth and resource constraints, and efficient hardware computational techniques. Extensive coverage will be given of a range of image processing...

  8. Design of an Implantable Device for Ocular Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jae-Hwan Lee

    2012-01-01

    Full Text Available Ocular diseases, such as, glaucoma, age-related macular degeneration (AMD, diabetic retinopathy, and retinitis pigmentosa require drug management in order to prevent blindness and affecting million of adults in USA and worldwide. There is an increasing need to develop devices for drug delivery to address ocular diseases. This study focuses on the design, simulation, and development of an implantable ocular drug delivery device consisting of micro-/nanochannels embedded between top and bottom covers with a drug reservoir made from polydimethylsiloxane (PDMS which is silicon-based organic and biodegradable polymer. Several simulations were carried out with six different micro-channel configurations in order to see the feasibility for ocular drug delivery applications. Based on the results obtained, channel design of osmotic I and osmotic II satisfied the diffusion rates required for ocular drug delivery. Finally, a prototype illustrating the three components of the drug delivery design is presented. In the future, the device will be tested for its functionality and diffusion characteristics.

  9. Respiratory protective device design using control system techniques

    Science.gov (United States)

    Burgess, W. A.; Yankovich, D.

    1972-01-01

    The feasibility of a control system analysis approach to provide a design base for respiratory protective devices is considered. A system design approach requires that all functions and components of the system be mathematically identified in a model of the RPD. The mathematical notations describe the operation of the components as closely as possible. The individual component mathematical descriptions are then combined to describe the complete RPD. Finally, analysis of the mathematical notation by control system theory is used to derive compensating component values that force the system to operate in a stable and predictable manner.

  10. Optically trapped atomic resonant devices for narrow linewidth spectral imaging

    Science.gov (United States)

    Qian, Lipeng

    This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the

  11. Hip fracture discrimination by the Achilles Insight QUS imaging device

    International Nuclear Information System (INIS)

    Damilakis, John; Papadokostakis, George; Perisinakis, Kostas; Maris, Thomas G.; Karantanas, Apostolos H.

    2007-01-01

    The importance of osteoporosis as a major health problem is well recognized. Its major clinical manifestation is low energy fractures. Considerable effort has been directed towards search of noninvasive methods for assessing osteoporotic fracture risk. The aim of this study was to evaluate the ability of quantitative ultrasound (QUS) variables measured by a new heel QUS imaging device to discriminate between postmenopausal women with and without hip fracture. The subjects included 30 postmenopausal female patients with hip fracture and 30 age-matched healthy women. Measurements were acquired using the Achilles Insight QUS imaging device. Bone mineral density (BMD) measurements were carried out using the Lunar Prodigy DXA scanner. Achilles Insight provides images of the heel bone and measures broadband ultrasound attenuation (BUA) and speed of sound (SOS) values in a circular region of interest. A third QUS variable, the stiffness index (SI) was also determined. The short-term precision for healthy subjects was 2.05%, 0.17% and 1.91% for BUA, SOS and SI, respectively. Corresponding values for patients with fractures were 1.80%, 0.16% and 2.04%. All QUS variables measured using the Achilles Insight were significant discriminators of hip fractures (area under ROC curve = 0.77, 0.74 and 0.77 for BUA, SOS and SI, respectively). BMD measurements of the hip had the greatest discriminatory ability (area under ROC curve = 0.88). Statistically significant differences were found between the area under the ROC curve of BMD and the corresponding curves of the QUS variables (P < 0.05 for each of the three comparisons). QUS variables measured by Achilles Insight can be expected to be useful as indicators of the risk of hip fracture in postmenopausal women

  12. Design control considerations for biologic-device combination products.

    Science.gov (United States)

    Anderson, Dave; Liu, Roger; Anand Subramony, J; Cammack, Jon

    2017-03-01

    Combination products are therapeutic and diagnostic medical products that combine drugs, devices, and/or biological products with one another. Historically, biologics development involved identifying efficacious doses administered to patients intravenously or perhaps by a syringe. Until fairly recently, there has been limited focus on developing an accompanying medical device, such as a prefilled syringe or auto-injector, to enable easy and more efficient delivery. For the last several years, and looking forward, where there may be little to distinguish biologics medicines with relatively similar efficacy profiles, the biotechnology market is beginning to differentiate products by patient-focused, biologic-device based combination products. As innovative as biologic-device combination products are, they can pose considerable development, regulatory, and commercialization challenges due to unique physicochemical properties and special clinical considerations (e.g., dosing volumes, frequency, co-medications, etc.) of the biologic medicine. A biologic-device combination product is a marriage between two partners with "cultural differences," so to speak. There are clear differences in the development, review, and commercialization processes of the biologic and the device. When these two cultures come together in a combination product, developers and reviewers must find ways to address the design controls and risk management processes of both the biologic and device, and knit them into a single entity with supporting product approval documentation. Moreover, digital medicine and connected health trends are pushing the boundaries of combination product development and regulations even further. Despite an admirable cooperation between industry and FDA in recent years, unique product configurations and design features have resulted in review challenges. These challenges have prompted agency reviewers to modernize consultation processes, while at the same time, promoting

  13. Automatic analysis of image quality control for Image Guided Radiation Therapy (IGRT) devices in external radiotherapy

    International Nuclear Information System (INIS)

    Torfeh, Tarraf

    2009-01-01

    On-board imagers mounted on a radiotherapy treatment machine are very effective devices that improve the geometric accuracy of radiation delivery. However, a precise and regular quality control program is required in order to achieve this objective. Our purpose consisted of developing software tools dedicated to an automatic image quality control of IGRT devices used in external radiotherapy: 2D-MV mode for measuring patient position during the treatment using high energy images, 2D-kV mode (low energy images) and 3D Cone Beam Computed Tomography (CBCT) MV or kV mode, used for patient positioning before treatment. Automated analysis of the Winston and Lutz test was also proposed. This test is used for the evaluation of the mechanical aspects of treatment machines on which additional constraints are carried out due to the on-board imagers additional weights. Finally, a technique of generating digital phantoms in order to assess the performance of the proposed software tools is described. Software tools dedicated to an automatic quality control of IGRT devices allow reducing by a factor of 100 the time spent by the medical physics team to analyze the results of controls while improving their accuracy by using objective and reproducible analysis and offering traceability through generating automatic monitoring reports and statistical studies. (author) [fr

  14. Image guided placement of temporary anchorage devices for tooth movement

    Energy Technology Data Exchange (ETDEWEB)

    Bahl-Palomo, L.; Bissada, N. [Case Western Reserve Univ. School of Dental Medicine, Dept. of Periodontics, Cleveland, OH (United States); Palomo, J.M.; Hans, M.G. [Case Western Reserve Univ. School of Dental Medicine, Dept. of Orthodontics, Cleveland, OH (United States)

    2007-06-15

    The aim of this project is to develop an image guided protocol for placement of a temporary anchorage device without surgically reflecting a mucoperiosteal flap. Eighteen orthodontic cases were selected for skeletal anchorage from the department of orthodontics at Case University. CBCT images of the subjects were taken using the Hitachi CB MercuRay system set at 15 mA, 120 kVp. CBCT images evaluated the ideal location for TAD placement in three dimensions. Horizontal and vertical linear measurements were taken from fixed dental landmarks to clearly define the location for placement. Transverse slices were used to evaluate the thickness of the buccal plate. Using the transverse view, the angle of insertion was determined such that the maximum buccal plate surface area would contact the screw. TADs were placed in the optimum location, with the most appropriate angle of insertion using a closed approach and with minimal local anesthesia and without flap elevation. Results: All TADs were placed without anatomic encroachment and enabled fixed orthodontic anchorage. (orig.)

  15. Image guided placement of temporary anchorage devices for tooth movement

    International Nuclear Information System (INIS)

    Bahl-Palomo, L.; Bissada, N.; Palomo, J.M.; Hans, M.G.

    2007-01-01

    The aim of this project is to develop an image guided protocol for placement of a temporary anchorage device without surgically reflecting a mucoperiosteal flap. Eighteen orthodontic cases were selected for skeletal anchorage from the department of orthodontics at Case University. CBCT images of the subjects were taken using the Hitachi CB MercuRay system set at 15 mA, 120 kVp. CBCT images evaluated the ideal location for TAD placement in three dimensions. Horizontal and vertical linear measurements were taken from fixed dental landmarks to clearly define the location for placement. Transverse slices were used to evaluate the thickness of the buccal plate. Using the transverse view, the angle of insertion was determined such that the maximum buccal plate surface area would contact the screw. TADs were placed in the optimum location, with the most appropriate angle of insertion using a closed approach and with minimal local anesthesia and without flap elevation. Results: All TADs were placed without anatomic encroachment and enabled fixed orthodontic anchorage. (orig.)

  16. Gemini Planet Imager: Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B

    2007-05-10

    completely limited by quasi-static wave front errors, so that contrast does not improve with integration times longer than about 1 minute. Using the rotation of the Earth to distinguish companions from artifacts or multiwavelength imaging improves this somewhat, but GPI will still need to surpass the performance of existing systems by one to two orders of magnitude--an improvement comparable to the transition from photographic plates to CCDs. This may sound daunting, but other areas of optical science have achieved similar breakthroughs, for example, the transition to nanometer-quality optics for extreme ultraviolet lithography, the development of MEMS wave front control devices, and the ultra-high contrast demonstrated by JPL's High Contrast Imaging Test-bed. In astronomy, the Sloan Digital Sky Survey, long baseline radio interferometry, and multi-object spectrographs have led to improvements of similar or greater order of magnitude. GPI will be the first project to apply these revolutionary techniques to ground-based astronomy, with a systems engineering approach that studies the impact of every design decision on the key metric--final detectable planet contrast.

  17. A design approach for integrating thermoelectric devices using topology optimization

    International Nuclear Information System (INIS)

    Soprani, S.; Haertel, J.H.K.; Lazarov, B.S.; Sigmund, O.; Engelbrecht, K.

    2016-01-01

    Highlights: • The integration of a thermoelectric (TE) cooler into a robotic tool is optimized. • Topology optimization is suggested as design tool for TE integrated systems. • A 3D optimization technique using temperature dependent TE properties is presented. • The sensitivity of the optimization process to the boundary conditions is studied. • A working prototype is constructed and compared to the model results. - Abstract: Efficient operation of thermoelectric devices strongly relies on the thermal integration into the energy conversion system in which they operate. Effective thermal integration reduces the temperature differences between the thermoelectric module and its thermal reservoirs, allowing the system to operate more efficiently. This work proposes and experimentally demonstrates a topology optimization approach as a design tool for efficient integration of thermoelectric modules into systems with specific design constraints. The approach allows thermal layout optimization of thermoelectric systems for different operating conditions and objective functions, such as temperature span, efficiency, and power recovery rate. As a specific application, the integration of a thermoelectric cooler into the electronics section of a downhole oil well intervention tool is investigated, with the objective of minimizing the temperature of the cooled electronics. Several challenges are addressed: ensuring effective heat transfer from the load, minimizing the thermal resistances within the integrated system, maximizing the thermal protection of the cooled zone, and enhancing the conduction of the rejected heat to the oil well. The design method incorporates temperature dependent properties of the thermoelectric device and other materials. The 3D topology optimization model developed in this work was used to design a thermoelectric system, complete with insulation and heat sink, that was produced and tested. Good agreement between experimental results and

  18. Assessment of image quality in x-ray radiography imaging using a small plasma focus device

    International Nuclear Information System (INIS)

    Kanani, A.; Shirani, B.; Jabbari, I.; Mokhtari, J.

    2014-01-01

    This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm. - Highlights: • We investigated a small plasma focus as pulsed x-ray source for radiography applications. • The image quality was studied by several parameters such as image contrast, LSF and MTF. • The x-ray source focal spot was obtained to be ∼0.6 mm using the penumbra imaging method. • The x-ray dose measurement showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. • The profiles of LSF and MTF showed that the cut-off frequency is about 1.5 cycles/mm

  19. Electromagnetic Vibration Energy Harvesting Devices Architectures, Design, Modeling and Optimization

    CERN Document Server

    Spreemann, Dirk

    2012-01-01

    Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design–flow. Electromagnetic Vibration Energy Harvesting Devices targets the design...

  20. Design and Evolution of the Asporto Heart Preservation Device.

    Science.gov (United States)

    Rivard, Andrew L

    2015-06-01

    The Asporto Heart Preservation Device is a system providing perfusion of cardioplegia to the donor heart using a computer-controlled peristaltic pump in a thermoelectrically cooled and insulated container. In 1998, a user interface was developed at the University of Minnesota consisting of a touch screen and battery-backed microcontroller. Power was supplied by a 120 VAC to 12 VDC converter. An upgrade to the insulated cooler and microcontroller occurred in 2002, which was followed by proof of concept experimental pre-clinical transplants and tests demonstrating the efficacy of the device with isolated donor hearts. During the period between 2002 and 2006, a variety of donor organ containers were developed, modified, and tested to provide an optimal sterile environment and fluid path. Parallel development paths encompass formalized design specifications for final prototypes of the touch screen/microcontroller, organ container, and thermoelectric cooler.

  1. Image quality and stability of image-guided radiotherapy (IGRT) devices: A comparative study

    International Nuclear Information System (INIS)

    Stock, Markus; Pasler, Marlies; Birkfellner, Wolfgang; Homolka, Peter; Poetter, Richard; Georg, Dietmar

    2009-01-01

    Introduction: Our aim was to implement standards for quality assurance of IGRT devices used in our department and to compare their performances with that of a CT simulator. Materials and methods: We investigated image quality parameters for three devices over a period of 16 months. A multislice CT was used as a benchmark and results related to noise, spatial resolution, low contrast visibility (LCV) and uniformity were compared with a cone beam CT (CBCT) at a linac and simulator. Results: All devices performed well in terms of LCV and, in fact, exceeded vendor specifications. MTF was comparable between CT and linac CBCT. Integral nonuniformity was, on average, 0.002 for the CT and 0.006 for the linac CBCT. Uniformity, LCV and MTF varied depending on the protocols used for the linac CBCT. Contrast-to-noise ratio was an average of 51% higher for the CT than for the linac and simulator CBCT. No significant time trend was observed and tolerance limits were implemented. Discussion: Reasonable differences in image quality between CT and CBCT were observed. Further research and development are necessary to increase image quality of commercially available CBCT devices in order for them to serve the needs for adaptive and/or online planning.

  2. Image quality and stability of image-guided radiotherapy (IGRT) devices: A comparative study.

    Science.gov (United States)

    Stock, Markus; Pasler, Marlies; Birkfellner, Wolfgang; Homolka, Peter; Poetter, Richard; Georg, Dietmar

    2009-10-01

    Our aim was to implement standards for quality assurance of IGRT devices used in our department and to compare their performances with that of a CT simulator. We investigated image quality parameters for three devices over a period of 16months. A multislice CT was used as a benchmark and results related to noise, spatial resolution, low contrast visibility (LCV) and uniformity were compared with a cone beam CT (CBCT) at a linac and simulator. All devices performed well in terms of LCV and, in fact, exceeded vendor specifications. MTF was comparable between CT and linac CBCT. Integral nonuniformity was, on average, 0.002 for the CT and 0.006 for the linac CBCT. Uniformity, LCV and MTF varied depending on the protocols used for the linac CBCT. Contrast-to-noise ratio was an average of 51% higher for the CT than for the linac and simulator CBCT. No significant time trend was observed and tolerance limits were implemented. Reasonable differences in image quality between CT and CBCT were observed. Further research and development are necessary to increase image quality of commercially available CBCT devices in order for them to serve the needs for adaptive and/or online planning.

  3. GPU-based Parallel Application Design for Emerging Mobile Devices

    Science.gov (United States)

    Gupta, Kshitij

    A revolution is underway in the computing world that is causing a fundamental paradigm shift in device capabilities and form-factor, with a move from well-established legacy desktop/laptop computers to mobile devices in varying sizes and shapes. Amongst all the tasks these devices must support, graphics has emerged as the 'killer app' for providing a fluid user interface and high-fidelity game rendering, effectively making the graphics processor (GPU) one of the key components in (present and future) mobile systems. By utilizing the GPU as a general-purpose parallel processor, this dissertation explores the GPU computing design space from an applications standpoint, in the mobile context, by focusing on key challenges presented by these devices---limited compute, memory bandwidth, and stringent power consumption requirements---while improving the overall application efficiency of the increasingly important speech recognition workload for mobile user interaction. We broadly partition trends in GPU computing into four major categories. We analyze hardware and programming model limitations in current-generation GPUs and detail an alternate programming style called Persistent Threads, identify four use case patterns, and propose minimal modifications that would be required for extending native support. We show how by manually extracting data locality and altering the speech recognition pipeline, we are able to achieve significant savings in memory bandwidth while simultaneously reducing the compute burden on GPU-like parallel processors. As we foresee GPU computing to evolve from its current 'co-processor' model into an independent 'applications processor' that is capable of executing complex work independently, we create an alternate application framework that enables the GPU to handle all control-flow dependencies autonomously at run-time while minimizing host involvement to just issuing commands, that facilitates an efficient application implementation. Finally, as

  4. Design and fabrication of directional diffractive device on glass substrate for multiview holographic 3D display

    Science.gov (United States)

    Su, Yanfeng; Cai, Zhijian; Liu, Quan; Zou, Wenlong; Guo, Peiliang; Wu, Jianhong

    2018-01-01

    Multiview holographic 3D display based on the nano-grating patterned directional diffractive device can provide 3D images with high resolution and wide viewing angle, which has attracted considerable attention. However, the current directional diffractive device fabricated on the photoresist is vulnerable to damage, which will lead to the short service life of the device. In this paper, we propose a directional diffractive device on glass substrate to increase its service life. In the design process, the period and the orientation of the nano-grating at each pixel are carefully calculated accordingly by the predefined position of the viewing zone, and the groove parameters are designed by analyzing the diffraction efficiency of the nano-grating pixel on glass substrate. In the experiment, a 4-view photoresist directional diffractive device with a full coverage of pixelated nano-grating arrays is efficiently fabricated by using an ultraviolet continuously variable spatial frequency lithography system, and then the nano-grating patterns on the photoresist are transferred to the glass substrate by combining the ion beam etching and the reactive ion beam etching for controlling the groove parameters precisely. The properties of the etched glass device are measured under the illumination of a collimated laser beam with a wavelength of 532nm. The experimental results demonstrate that the light utilization efficiency is improved and optimized in comparison with the photoresist device. Furthermore, the fabricated device on glass substrate is easier to be replicated and of better durability and practicability, which shows great potential in the commercial applications of 3D display terminal.

  5. A New Optical Design for Imaging Spectroscopy

    Science.gov (United States)

    Thompson, K. L.

    2002-05-01

    We present an optical design concept for imaging spectroscopy, with some advantages over current systems. The system projects monochromatic images onto the 2-D array detector(s). Faint object and crowded field spectroscopy can be reduced first using image processing techniques, then building the spectrum, unlike integral field units where one must first extract the spectra, build data cubes from these, then reconstruct the target's integrated spectral flux. Like integral field units, all photons are detected simultaneously, unlike tunable filters which must be scanned through the wavelength range of interest and therefore pay a sensitivity pentalty. Several sample designs are presented, including an instrument optimized for measuring intermediate redshift galaxy cluster velocity dispersions, one designed for near-infrared ground-based adaptive optics, and one intended for space-based rapid follow-up of transient point sources such as supernovae and gamma ray bursts.

  6. Preliminary design study of a steady state tokamak device

    International Nuclear Information System (INIS)

    Miya, Naoyuki; Nakajima, Shinji; Ushigusa, Kenkichi; and athors)

    1992-09-01

    Preliminary design study has been made for a steady tokamak with the plasma current of 10MA, as the next to the JT-60U experimental programs. The goal of the research program is the integrated study of steady state, high-power physics and technology. Present candidate design is to use superconducting TF and PF magnet systems and long pulse operation of 100's-1000's of sec with non inductive current drive mainly by 500keV negative ion beam injection of 60MW. Low activation material such as titanium alloy is chosen for the water tank type vacuum vessel, which is also the nuclear shield for the superconducting coils. The present preliminary design study shows that the device can meet the existing JT-60U facility capability. (author)

  7. Assessment of image quality in x-ray radiography imaging using a small plasma focus device

    Science.gov (United States)

    Kanani, A.; Shirani, B.; Jabbari, I.; Mokhtari, J.

    2014-08-01

    This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm.

  8. Design for Additive Bio-Manufacturing: From Patient-Specific Medical Devices to Rationally Designed Meta-Biomaterials.

    Science.gov (United States)

    Zadpoor, Amir A

    2017-07-25

    Recent advances in additive manufacturing (AM) techniques in terms of accuracy, reliability, the range of processable materials, and commercial availability have made them promising candidates for production of functional parts including those used in the biomedical industry. The complexity-for-free feature offered by AM means that very complex designs become feasible to manufacture, while batch-size-indifference enables fabrication of fully patient-specific medical devices. Design for AM (DfAM) approaches aim to fully utilize those features for development of medical devices with substantially enhanced performance and biomaterials with unprecedented combinations of favorable properties that originate from complex geometrical designs at the micro-scale. This paper reviews the most important approaches in DfAM particularly those applicable to additive bio-manufacturing including image-based design pipelines, parametric and non-parametric designs, metamaterials, rational and computationally enabled design, topology optimization, and bio-inspired design. Areas with limited research have been identified and suggestions have been made for future research. The paper concludes with a brief discussion on the practical aspects of DfAM and the potential of combining AM with subtractive and formative manufacturing processes in so-called hybrid manufacturing processes.

  9. Design for Additive Bio-Manufacturing: From Patient-Specific Medical Devices to Rationally Designed Meta-Biomaterials

    Directory of Open Access Journals (Sweden)

    Amir A. Zadpoor

    2017-07-01

    Full Text Available Recent advances in additive manufacturing (AM techniques in terms of accuracy, reliability, the range of processable materials, and commercial availability have made them promising candidates for production of functional parts including those used in the biomedical industry. The complexity-for-free feature offered by AM means that very complex designs become feasible to manufacture, while batch-size-indifference enables fabrication of fully patient-specific medical devices. Design for AM (DfAM approaches aim to fully utilize those features for development of medical devices with substantially enhanced performance and biomaterials with unprecedented combinations of favorable properties that originate from complex geometrical designs at the micro-scale. This paper reviews the most important approaches in DfAM particularly those applicable to additive bio-manufacturing including image-based design pipelines, parametric and non-parametric designs, metamaterials, rational and computationally enabled design, topology optimization, and bio-inspired design. Areas with limited research have been identified and suggestions have been made for future research. The paper concludes with a brief discussion on the practical aspects of DfAM and the potential of combining AM with subtractive and formative manufacturing processes in so-called hybrid manufacturing processes.

  10. From molecular design and materials construction to organic nanophotonic devices.

    Science.gov (United States)

    Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2014-12-16

    CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more

  11. MYRRHA/XT-ADS primary system design and experimental devices

    International Nuclear Information System (INIS)

    Maes, D.

    2009-01-01

    The EUROTRANS project is an integrated project in the Sixth European Framework Program in the context of Partitioning and Transmutation. The objective of this project is to work towards an ETD (European Transmutation Demonstration) in a step-wise manner. The first step is to carry out an advanced design of a small-scale XT-ADS (eXperimental Transmutation in an Accelerator Driven System) for realisation in a short-term (about 10 years) as well as to accomplish a generic conceptual design of EFIT (European Facility for Industrial Transmutation) for realisation in the long-term. The MYRRHA-2005 design served as a starting basis for the XT-ADS. Many options have been revisited and the framework is now set up. While the MYRRHA-2005 design was still a conceptual design, the intention is to get at the end of the EUROTRANS project (March 2009) an advanced design of the XT-ADS, albeit a first advanced design. While the design work performed during the first years of the project (2005-2006) was mainly devoted to optimise and enhance the primary and secondary system configuration according to the suggestions and contributions of our industrial partners (Ansaldo Nucleare, Areva, Suez-Tractebel) within the DM1 (Domain 1 D ESIGN ) , the last year work objectives mainly consisted of (1) the release of the Remote Handling Design Catalogue for XT-ADS and (2) the formulation of the specification of the experimental devices according to the XT-ADS objectives and adapted to the actual XT-ADS core and core support structure design; (3) the detailed calculations of the main XT-ADS primary and secondary system components

  12. A multi-channel scaler designed with programmable logic device

    International Nuclear Information System (INIS)

    Sun Yongjie; Li Cheng; Xing Tao; Zhang Junjie

    2004-01-01

    This scaler used programmable logic device is a design for the electronics of telescope system of the beam. The scaler can scale 30 ECL inputs at the same time. With the EPP (Enhanced Parallel Port) modes of the Parallel Port, the transmitted rate of data is 2 MB/s. This scaler can be used in the position system of MWPC (Multi-Wires Proportional Chamber). Tested with particles of 5 x 10 3 /s, the scaler gives a credible and stable result. (authors)

  13. Real-time volume rendering of digital medical images on an iOS device

    Science.gov (United States)

    Noon, Christian; Holub, Joseph; Winer, Eliot

    2013-03-01

    Performing high quality 3D visualizations on mobile devices, while tantalizingly close in many areas, is still a quite difficult task. This is especially true for 3D volume rendering of digital medical images. Allowing this would empower medical personnel a powerful tool to diagnose and treat patients and train the next generation of physicians. This research focuses on performing real time volume rendering of digital medical images on iOS devices using custom developed GPU shaders for orthogonal texture slicing. An interactive volume renderer was designed and developed with several new features including dynamic modification of render resolutions, an incremental render loop, a shader-based clipping algorithm to support OpenGL ES 2.0, and an internal backface culling algorithm for properly sorting rendered geometry with alpha blending. The application was developed using several application programming interfaces (APIs) such as OpenSceneGraph (OSG) as the primary graphics renderer coupled with iOS Cocoa Touch for user interaction, and DCMTK for DICOM I/O. The developed application rendered volume datasets over 450 slices up to 50-60 frames per second, depending on the specific model of the iOS device. All rendering is done locally on the device so no Internet connection is required.

  14. Mobile point-of-care monitors and diagnostic device design

    CERN Document Server

    Karlen, Walter

    2014-01-01

    PrefaceEditorsContributorsSensors and SystemsInterfacing Diagnostics with Consumer ElectronicsPakorn Preechaburana, Anke Suska, and Daniel FilippiniLab on a CellphoneAhmet F. Coskun, Hongying Zhu, Onur Mudanyali, and Aydogan OzcanThe Phone OximeterChristian Leth PetersenCurrent Technology and Advances in Transepidermal Water Loss SensorsPietro Salvo, Bernardo Melai, Nicola Calisi, and Fabio Di FrancescoPortable High-Frequency Ultrasound Imaging System Design and Hardware Considerations

  15. Dependable Design Flow for Protection Systems using Programmable Logic Devices

    CERN Document Server

    Kwiatkowski, M

    2011-01-01

    Programmable Logic Devices (PLD) such as Field Programmable Gate Arrays (FPGA) are becoming more prevalent in protection and safety-related electronic systems. When employing such programmable logic devices, extra care and attention needs to be taken. The final synthesis result, used to generate the bit-stream to program the device, must be shown to meet the design’s requirements. This paper describes how to maximize confidence using techniques such as Formal Methods, exhaustive Hardware Description Language (HDL) code simulation and hardware testing. An example is given for one of the critical functions of the Safe Machine Parameters (SMP) system, used in the protection of the Large Hadron Collider (LHC) at CERN. CERN is also working towards an adaptation of the IEC- 61508 lifecycle designed for Machine Protection Systems (MPS), and the High Energy Physics environment, implementation of a protection function in FPGA code is only one small step of this lifecycle. The ultimate aim of this project is to cre...

  16. Design, fabrication and transportation of Si rotating device

    International Nuclear Information System (INIS)

    Kimura, Nobuaki; Imaizumi, Tomomi; Takemoto, Noriyuki; Tanimoto, Masataka; Saito, Takashi; Hori, Naohiko; Tsuchiya, Kunihiko; Romanova, Nataliya; Gizatulin, Shamil; Martyushov, Alexandr; Nakipov, Darkhan; Chakrov, Petr; Tanaka, Futoshi; Nakajima, Takeshi

    2012-06-01

    Si semiconductor production by Neutron Transmutation Doping (NTD) method using the Japan Materials Testing Reactor (JMTR) has been investigated in Neutron Irradiation and Testing Reactor Center, Japan Atomic Energy Agency (JAEA) in order to expand industry use. As a part of investigations, irradiation test of silicon ingot for development of NTD-Si with high quality was planned using WWR-K in Institute of Nuclear Physics (INP), National Nuclear Center of Republic of Kazakhstan (NNC-RK) based on one of specific topics of cooperation (STC), Irradiation Technology for NTD-Si (STC No.II-4), on the implementing arrangement between NNC-RK and the JAEA for 'Nuclear Technology on Testing/Research Reactors' in cooperation in research and development in nuclear energy and technology. As for the irradiation test, Si rotating device was fabricated in JAEA, and the fabricated device was transported with irradiation specimens from JAEA to INP-NNC-RK. This report described the design, the fabrication, the performance test of the Si rotating device and transportation procedures. (author)

  17. Performance of a malaria microscopy image analysis slide reading device

    Directory of Open Access Journals (Sweden)

    Prescott William R

    2012-05-01

    Full Text Available Abstract Background Viewing Plasmodium in Romanovsky-stained blood has long been considered the gold standard for diagnosis and a cornerstone in management of the disease. This method however, requires a subjective evaluation by trained, experienced diagnosticians and establishing proficiency of diagnosis is fraught with many challenges. Reported here is an evaluation of a diagnostic system (a “device” consisting of a microscope, a scanner, and a computer algorithm that evaluates scanned images of standard Giemsa-stained slides and reports species and parasitaemia. Methods The device was challenged with two independent tests: a 55 slide, expert slide reading test the composition of which has been published by the World Health Organization (“WHO55” test, and a second test in which slides were made from a sample of consenting subjects participating in a malaria incidence survey conducted in Equatorial Guinea (EGMIS test. These subjects’ blood was tested by malaria RDT as well as having the blood smear diagnosis unequivocally determined by a worldwide panel of a minimum of six reference microscopists. Only slides with unequivocal microscopic diagnoses were used for the device challenge, n = 119. Results On the WHO55 test, the device scored a “Level 4” using the WHO published grading scheme. Broken down by more traditional analysis parameters this result was translated to 89% and 70% sensitivity and specificity, respectively. Species were correctly identified in 61% of the slides and the quantification of parasites fell within acceptable range of the validated parasitaemia in 10% of the cases. On the EGMIS test it scored 100% and 94% sensitivity/specificity, with 64% of the species correct and 45% of the parasitaemia within an acceptable range. A pooled analysis of the 174 slides used for both tests resulted in an overall 92% sensitivity and 90% specificity with 61% species and 19% quantifications correct. Conclusions In its

  18. Technical Validation of ARTSENS–An Image Free Device for Evaluation of Vascular Stiffness

    Science.gov (United States)

    Radhakrishnan, Ravikumar; Kusmakar, Shitanshu; Thrivikraman, Arya Sree; Sivaprakasam, Mohanasankar

    2015-01-01

    Vascular stiffness is an indicator of cardiovascular health, with carotid artery stiffness having established correlation to coronary heart disease and utility in cardiovascular diagnosis and screening. State of art equipment for stiffness evaluation are expensive, require expertise to operate and not amenable for field deployment. In this context, we developed ARTerial Stiffness Evaluation for Noninvasive Screening (ARTSENS), a device for image free, noninvasive, automated evaluation of vascular stiffness amenable for field use. ARTSENS has a frugal hardware design, utilizing a single ultrasound transducer to interrogate the carotid artery, integrated with robust algorithms that extract arterial dimensions and compute clinically accepted measures of arterial stiffness. The ability of ARTSENS to measure vascular stiffness in vivo was validated by performing measurements on 125 subjects. The accuracy of results was verified with the state-of-the-art ultrasound imaging-based echo-tracking system. The relation between arterial stiffness measurements performed in sitting posture for ARTSENS measurement and sitting/supine postures for imaging system was also investigated to examine feasibility of performing ARTSENS measurements in the sitting posture for field deployment. This paper verified the feasibility of the novel ARTSENS device in performing accurate in vivo measurements of arterial stiffness. As a portable device that performs automated measurement of carotid artery stiffness with minimal operator input, ARTSENS has strong potential for use in large-scale screening. PMID:27170892

  19. Comprehensive model for predicting perceptual image quality of smart mobile devices.

    Science.gov (United States)

    Gong, Rui; Xu, Haisong; Luo, M R; Li, Haifeng

    2015-01-01

    An image quality model for smart mobile devices was proposed based on visual assessments of several image quality attributes. A series of psychophysical experiments were carried out on two kinds of smart mobile devices, i.e., smart phones and tablet computers, in which naturalness, colorfulness, brightness, contrast, sharpness, clearness, and overall image quality were visually evaluated under three lighting environments via categorical judgment method for various application types of test images. On the basis of Pearson correlation coefficients and factor analysis, the overall image quality could first be predicted by its two constituent attributes with multiple linear regression functions for different types of images, respectively, and then the mathematical expressions were built to link the constituent image quality attributes with the physical parameters of smart mobile devices and image appearance factors. The procedure and algorithms were applicable to various smart mobile devices, different lighting conditions, and multiple types of images, and performance was verified by the visual data.

  20. EDITORIAL: Design and function of molecular and bioelectronics devices

    Science.gov (United States)

    Krstic, Predrag; Forzani, Erica; Tao, Nongjian; Korkin, Anatoli

    2007-10-01

    Further rapid progress of electronics, in particular the increase of computer power and breakthroughs in sensor technology for industrial, medical diagnostics and environmental applications, strongly depends on the scaling of electronic devices, ultimately to the size of molecules. Design of controllable molecular-scale devices may resolve the problem of energy dissipation at the nanoscale and take advantage of molecular self-assembly in the so-called bottom-up approach. This special issue of Nanotechnology is devoted to a better understanding of the function and design of molecular-scale devices that are relevant to future electronics and sensor technology. Papers contained in this special issue are selected from the symposium Nano and Giga Challenges in Electronics and Photonics: From Atoms to Materials to Devices to System Architecture (12-16 March, 2007, Phoenix, Arizona, USA), as well as from original and novel scientific contributions of invited world-renown researchers. It addresses both theoretical and experimental achievements in the fields of molecular and bioelectronics, chemical and biosensors at the molecular level, including carbon nanotubes, novel nanostructures, as well as related research areas and industrial applications. The conference series Nano and Giga Challenges in Electronics and Photonics was launched as a truly interdisciplinary forum to bridge scientists and engineers to work across boundaries in the design of future information technologies, from atoms to materials to devices to system architecture. Following the first two successful meetings in Moscow, Russia (NGCM2002) and Krakow, Poland (NGCM2004), the third Nano and Giga Forum (NGC2007) was held in 2007 hosted by Arizona State University. Besides this special issue of Nanotechnology, two other collections (in the journal Solid State Electronics and the tutorial book in the series Nanostructure Science and Technology Springer) have published additional selected and invited papers

  1. Study on 3D printer production of auxiliary device for upper limb for medical imaging test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Gyun [Dept. of Radiological Science, Far East University, Eumsung (Korea, Republic of); Yoon, Jae Ho [Jukwang Precision Co., Ltd., Gumi (Korea, Republic of); Choi, Seong Dae [Dept. of Mechanical system engineering, Kumoh Institute of Technology, Gumi (Korea, Republic of)

    2015-12-15

    There is a progressive development in the medical imaging technology, especially of descriptive capability for anatomical structure of human body thanks to advancement of information technology and medical devices. But however maintenance of correct posture is essential for the medical imaging checkup on the shoulder joint requiring rotation of the upper limb due to the complexity of human body. In the cases of MRI examination, long duration and fixed posture are critical, as failure to comply with them leads to minimal possibility of reproducibility only with the efforts of the examiner and will of the patient. Thus, this study aimed to develop an auxiliary device that enables rotation of the upper limb as well as fixing it at quantitative angles for medical imaging examination capable of providing diagnostic values. An auxiliary device has been developed based on the results of precedent studies, by designing a 3D model with the CATIA software, an engineering application, and producing it with the 3D printer. The printer is Objet350 Connex from Stratasys, and acrylonitrile- butadiene-styrene(ABS) is used as the material of the device. Dimensions are 120 X 150 X 190 mm, with the inner diameter of the handle being 125.9 mm. The auxiliary device has 4 components including the body (outside), handle (inside), fixture terminal and the connection part. The body and handle have the gap of 2.1 mm for smooth rotation, while the 360 degree of scales have been etched on the handle so that the angle required for observation may be recorded per patient for traceability and dual examination.

  2. Study on 3D printer production of auxiliary device for upper limb for medical imaging test

    International Nuclear Information System (INIS)

    Kim, Hyeong Gyun; Yoon, Jae Ho; Choi, Seong Dae

    2015-01-01

    There is a progressive development in the medical imaging technology, especially of descriptive capability for anatomical structure of human body thanks to advancement of information technology and medical devices. But however maintenance of correct posture is essential for the medical imaging checkup on the shoulder joint requiring rotation of the upper limb due to the complexity of human body. In the cases of MRI examination, long duration and fixed posture are critical, as failure to comply with them leads to minimal possibility of reproducibility only with the efforts of the examiner and will of the patient. Thus, this study aimed to develop an auxiliary device that enables rotation of the upper limb as well as fixing it at quantitative angles for medical imaging examination capable of providing diagnostic values. An auxiliary device has been developed based on the results of precedent studies, by designing a 3D model with the CATIA software, an engineering application, and producing it with the 3D printer. The printer is Objet350 Connex from Stratasys, and acrylonitrile- butadiene-styrene(ABS) is used as the material of the device. Dimensions are 120 X 150 X 190 mm, with the inner diameter of the handle being 125.9 mm. The auxiliary device has 4 components including the body (outside), handle (inside), fixture terminal and the connection part. The body and handle have the gap of 2.1 mm for smooth rotation, while the 360 degree of scales have been etched on the handle so that the angle required for observation may be recorded per patient for traceability and dual examination

  3. A quantitative image quality comparison of four different image guided radiotherapy devices

    International Nuclear Information System (INIS)

    Stuetzel, Julia; Oelfke, Uwe; Nill, Simeon

    2008-01-01

    Purpose: A study to quantitatively compare the image quality of four different image guided radiotherapy (IGRT) devices based on phantom measurements with respect to the additional dose delivered to the patient. Methods: Images of three different head-sized phantoms (diameter 16-18 cm) were acquired with the following four IGRT-CT solutions: (i) the Siemens Primatom single slice fan beam computed tomography (CT) scanner with an acceleration voltage of 130 kV, (ii) a Tomotherapy HI-ART II unit using a fan beam scanner with an energy of 3.5 MeV and (iii) the Siemens Artiste prototype, providing the possibility to perform kV (121 kV) and MV (6 MV) cone beam (CB) CTs. For each device three scan protocols (named low, normal, high) were selected to yield the same weighted computed tomography dose index (CTDI w ). Based on the individual inserts of the different phantoms the image quality achieved with each device at a certain dose level was characterized in terms of homogeneity, spatial resolution, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and electron density-to-CT-number conversion. Results: Based on the current findings for head-sized phantoms all devices show an electron density-to-CT-number conversion almost independent of the imaging parameters and hence can be suited for treatment planning purposes. The evaluation of the image quality, however, points out clear differences due to the different energies and geometries. The Primatom standard CT scanner shows throughout the best performance, especially for soft tissue contrast and spatial resolution with low imaging doses. Reasonable soft tissue contrast can be obtained with slightly higher doses compared to the CT scanner with the kVCB and the Tomotherapy unit. In order to get similar results with the MVCB system a much higher dose needs to be applied to the patient. Conclusion: Considering the entire investigations, especially in terms of contrast and spatial resolution, a rough tendency for

  4. PRESBYOPIA OPTOMETRY METHOD BASED ON DIOPTER REGULATION AND CHARGE COUPLE DEVICE IMAGING TECHNOLOGY.

    Science.gov (United States)

    Zhao, Q; Wu, X X; Zhou, J; Wang, X; Liu, R F; Gao, J

    2015-01-01

    With the development of photoelectric technology and single-chip microcomputer technology, objective optometry, also known as automatic optometry, is becoming precise. This paper proposed a presbyopia optometry method based on diopter regulation and Charge Couple Device (CCD) imaging technology and, in the meantime, designed a light path that could measure the system. This method projects a test figure to the eye ground and then the reflected image from the eye ground is detected by CCD. The image is then automatically identified by computer and the far point and near point diopters are determined to calculate lens parameter. This is a fully automatic objective optometry method which eliminates subjective factors of the tested subject. Furthermore, it can acquire the lens parameter of presbyopia accurately and quickly and can be used to measure the lens parameter of hyperopia, myopia and astigmatism.

  5. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  6. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    International Nuclear Information System (INIS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-01-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems

  7. Design of microdevices for long-term live cell imaging

    International Nuclear Information System (INIS)

    Chen, Huaying; Nordon, Robert E; Rosengarten, Gary; Li, Musen

    2012-01-01

    Advances in fluorescent live cell imaging provide high-content information that relates a cell's life events to its ancestors. An important requirement to track clonal growth and development is the retention of motile cells derived from an ancestor within the same microscopic field of view for days to weeks, while recording fluorescence images and controlling the mechanical and biochemical microenvironments that regulate cell growth and differentiation. The aim of this study was to design a microwell device for long-term, time-lapse imaging of motile cells with the specific requirements of (a) inoculating devices with an average of one cell per well and (b) retaining progeny of cells within a single microscopic field of view for extended growth periods. A two-layer PDMS microwell culture device consisting of a parallel-plate flow cell bonded on top of a microwell array was developed for cell capture and clonal culture. Cell deposition statistics were related to microwell geometry (plate separation and well depth) and the Reynolds number. Computational fluid dynamics was used to simulate flow in the microdevices as well as cell–fluid interactions. Analysis of the forces acting upon a cell was used to predict cell docking zones, which were confirmed by experimental observations. Cell–fluid dynamic interactions are important considerations for design of microdevices for long-term, live cell imaging. The analysis of force and torque balance provides a reasonable approximation for cell displacement forces. It is computationally less intensive compared to simulation of cell trajectories, and can be applied to a wide range of microdevice geometries to predict the cell docking behavior. (paper)

  8. Design of optically stable image reflector system.

    Science.gov (United States)

    Tsai, Chung-Yu

    2013-08-01

    The design of a partially optically stable (POS) reflector system, in which the exit ray direction and image pose are unchanged as the reflector system rotates about a specific directional vector, was presented in an earlier study by the current group [Appl. Phys. B100, 883-890 (2010)]. The present study further proposes an optically stable image (OSI) reflector system, in which not only is the optical stability property of the POS system retained, but the image position and total ray path length are also fixed. An analytical method is proposed for the design of OSI reflector systems comprising multiple reflectors. The validity of the proposed approach is demonstrated by means of two illustrative examples.

  9. PT-symmetric planar devices for field transformation and imaging

    International Nuclear Information System (INIS)

    Valagiannopoulos, C A; Monticone, F; Alù, A

    2016-01-01

    The powerful tools of transformation optics (TO) allow an effective distortion of a region of space by carefully engineering the material inhomogeneity and anisotropy, and have been successfully applied in recent years to control electromagnetic fields in many different scenarios, e.g., to realize invisibility cloaks and planar lenses. For various field transformations, it is not necessary to use volumetric inhomogeneous materials, and suitably designed ultrathin metasurfaces with tailored spatial or spectral responses may be able to realize similar functionalities within smaller footprints and more robust mechanisms. Here, inspired by the concept of metamaterial TO lenses, we discuss field transformations enabled by parity-time (PT) symmetric metasurfaces, which can emulate negative refraction. We first analyze a simple realization based on homogeneous and local metasurfaces to achieve negative refraction and imaging, and we then extend our results to arbitrary PT-symmetric two-port networks to realize aberration-free planar imaging. (paper)

  10. Tritium Systems Test Assembly: design for major device fabrication review

    International Nuclear Information System (INIS)

    Anderson, J.L.; Sherman, R.H.

    1977-06-01

    This document has been prepared for the Major Device Fabrication Review for the Tritium Systems Test Assembly (TSTA). The TSTA is dedicated to the development, demonstration, and interfacing of technologies related to the deuterium-tritium fuel cycle for fusion reactor systems. The principal objectives for TSTA are: (a) demonstrate the fuel cycle for fusion reactor systems; (b) develop test and qualify equipment for tritium service in the fusion program; (c) develop and test environmental and personnel protective systems; (d) evaluate long-term reliability of components; (e) demonstrate long-term safe handling of tritium with no major releases or incidents; and (f) investigate and evaluate the response of the fuel cycle and environmental packages to normal, off-normal, and emergency situations. This document presents the current status of a conceptual design and cost estimate for TSTA. The total cost to design, construct, and operate TSTA through FY-1981 is estimated to be approximately $12.2 M

  11. A design approach for integrating thermoelectric devices using topology optimization

    DEFF Research Database (Denmark)

    Soprani, Stefano; Haertel, Jan Hendrik Klaas; Lazarov, Boyan Stefanov

    2016-01-01

    Efficient operation of thermoelectric devices strongly relies on the thermal integration into the energy conversion system in which they operate. Effective thermal integration reduces the temperature differences between the thermoelectric module and its thermal reservoirs, allowing the system...... to operate more efficiently. This work proposes and experimentally demonstrates a topology optimization approach as a design tool for efficient integration of thermoelectric modules into systems with specific design constraints. The approach allows thermal layout optimization of thermoelectric systems...... for different operating conditions and objective functions, such as temperature span, efficiency, and power recoveryrate. As a specific application, the integration of a thermoelectric cooler into the electronics section ofa downhole oil well intervention tool is investigated, with the objective of minimizing...

  12. Mechanical Design of the Intensity Measurement Devices for the LHC

    CERN Document Server

    Belorhad, D; Odier, P; Thoulet, S

    2008-01-01

    The intensity measurement for the LHC ring is provided by eight current transformers (2×DCCT, 2×FBCT per beam). The measurement resolution of 1?Arms at 1s average for the DCCTs and ±10^9p in 25ns for the FBCTs is required. Such constraints call for low noise electronics and a compact magnetically shielded mechanical design. Correct integration of these devices into the vacuum system also requires the vacuum chambers equipped with the non-evaporable getter (NEG) film. The NEG is activated by heating the vacuum chamber to 200?C and more. Such temperatures affect the structure of the magnetic materials, which form the base part of the intensity measurement devices, and degrade their performace. A cooling circuit is needed. Due to the mechanical constraints, the cooling circuit, as well as heating element must form an integral part of the design. The aim of this paper is to present the solutions to these problems and discuss the mechanical construction of the DCCTs and FBCTs currently being installed in the LH...

  13. An MR-compatible device for delivering smoked marijuana during functional imaging.

    Science.gov (United States)

    Frederick, Blaise deB; Lindsey, Kimberly P; Nickerson, Lisa D; Ryan, Elizabeth T; Lukas, Scott E

    2007-05-01

    Smoking is the preferred method of administration for two of the most frequently abused drugs, marijuana and nicotine. The high temporal and spatial resolution of functional magnetic resonance imaging (fMRI) make it a natural choice for studying the neurobiological effects of smoked drugs if the challenges of smoking in a magnetic resonance (MR) scanner can be overcome. We report on a design for an MR-compatible smoking device that can be used for smoking marijuana (or tobacco) during fMRI examinations. Nine volunteers smoked marijuana cigarettes (3.51% Delta9-THC) on two occasions: with and without the device. The device allowed subjects to smoke while they lay in the scanner, while containing all smoke and odors. Plasma Delta9-THC, subjective reports of intoxication, and heart rate increases are reported, and were all similar in individuals smoking marijuana either with or without the device. The use of this device will help advance research studies on smoked drugs including marijuana, tobacco and crack cocaine.

  14. 3D Printing Openable Imaging Phantom Design

    International Nuclear Information System (INIS)

    Kim, Myoung Keun; Won, Jun Hyeok; Lee, Seung Wook

    2017-01-01

    The purpose of this study is to design an openable phantom that can replace the internal measurement bar used for contrast comparison in order to increase the efficiency of manufacturing imaging phantom used in the medical industry and to improve convenience using 3D printer. Phantom concept design, 3D printing, and Image reconstruction were defined as the scope of the thesis. Also, we study metal artifact reduction with openable phantom. We have designed a Openable phantom using 3D printing, and have investigated metal artifact reduction after inserting a metallic material inside the phantom. The openable phantom can be adjusted at any time to suit the user's experiment and can be easily replaced and useful.

  15. A preliminary design of mechanical device on industrial digital radiography equipment design

    International Nuclear Information System (INIS)

    Nur Khasan; Samuel Praptoyo

    2015-01-01

    A preliminary design of mechanical device on industrial digital radiography equipment has been done. this design is intended as a basis for the manufacture of complete facilities for the realization a prototype on industrial digital radiography equipment. the design and construction were carried out by paying attention to the general configuration of the basic design in which its mechanical design has several components with specific dimensions and heavy mass. this design consist of a main frame holder, flat panel detector support and hydraulic hand stacker for mounting the x-ray machine. this mechanical device design will then be fabricated to facilitate and assist work of digital radiographic retrieval. computer application programs sketch-up is used to draw this design and the analysis stress of autodesk inventor to analysis the strength construction design. the results of this design are the configuration drawing, sketch drawings of construction and the safety factor of construction design with a minimum value of 2.39 as well as a maximum value of 15 when to be simulated by the load 500 Kg which is 4 times of total workload. (author)

  16. The digital radiographic and computed tomography imaging of two types of explosive devices

    International Nuclear Information System (INIS)

    Galiano Riveros, Eduardo

    2002-01-01

    Two well-established medical imaging methods, digital radiography (DR) and computed tomography (CT), were employed to obtain images of two types of explosive devices, model rocket engines and shotgun shells. The images were evaluated from an airport security perspective. In terms of geometrical shape, the detection probability of the explosive devices appears to be higher with DR imaging, but in terms of the actual explosive compounds in the devices, CT appears to offer a higher detection probability. DR imaging offers a low detection probability for the explosive powder in the shotgun shells, but a rather significant detection probability for the explosive propellant in the model rocket engines

  17. An MR-compatible device for delivering smoked marijuana during functional imaging

    OpenAIRE

    Frederick, Blaise deB.; Lindsey, Kimberly P.; Nickerson, Lisa D.; Ryan, Elizabeth T.; Lukas, Scott E.

    2007-01-01

    Smoking is the preferred method of administration for two of the most frequently abused drugs, marijuana and nicotine. The high temporal and spatial resolution of functional magnetic resonance imaging (fMRI) make it a natural choice for studying the neurobiological effects of smoked drugs if the challenges of smoking in a magnetic resonance (MR) scanner can be overcome. We report on a design for an MR-compatible smoking device that can be used for smoking marijuana (or tobacco) during fMRI ex...

  18. Fiber bundle probes for interconnecting miniaturized medical imaging devices

    Science.gov (United States)

    Zamora, Vanessa; Hofmann, Jens; Marx, Sebastian; Herter, Jonas; Nguyen, Dennis; Arndt-Staufenbiel, Norbert; Schröder, Henning

    2017-02-01

    Miniaturization of medical imaging devices will significantly improve the workflow of physicians in hospitals. Photonic integrated circuit (PIC) technologies offer a high level of miniaturization. However, they need fiber optic interconnection solutions for their functional integration. As part of European funded project (InSPECT) we investigate fiber bundle probes (FBPs) to be used as multi-mode (MM) to single-mode (SM) interconnections for PIC modules. The FBP consists of a set of four or seven SM fibers hexagonally distributed and assembled into a holder that defines a multicore connection. Such a connection can be used to connect MM fibers, while each SM fiber is attached to the PIC module. The manufacturing of these probes is explored by using well-established fiber fusion, epoxy adhesive, innovative adhesive and polishing techniques in order to achieve reliable, low-cost and reproducible samples. An innovative hydrofluoric acid-free fiber etching technology has been recently investigated. The preliminary results show that the reduction of the fiber diameter shows a linear behavior as a function of etching time. Different etch rate values from 0.55 μm/min to 2.3 μm/min were found. Several FBPs with three different type of fibers have been optically interrogated at wavelengths of 630nm and 1550nm. Optical losses are found of approx. 35dB at 1550nm for FBPs composed by 80μm fibers. Although FBPs present moderate optical losses, they might be integrated using different optical fibers, covering a broad spectral range required for imaging applications. Finally, we show the use of FBPs as promising MM-to-SM interconnects for real-world interfacing to PIC's.

  19. Design of point-of-care (POC) microfluidic medical diagnostic devices

    Science.gov (United States)

    Leary, James F.

    2018-02-01

    Design of inexpensive and portable hand-held microfluidic flow/image cytometry devices for initial medical diagnostics at the point of initial patient contact by emergency medical personnel in the field requires careful design in terms of power/weight requirements to allow for realistic portability as a hand-held, point-of-care medical diagnostics device. True portability also requires small micro-pumps for high-throughput capability. Weight/power requirements dictate use of super-bright LEDs and very small silicon photodiodes or nanophotonic sensors that can be powered by batteries. Signal-to-noise characteristics can be greatly improved by appropriately pulsing the LED excitation sources and sampling and subtracting noise in between excitation pulses. The requirements for basic computing, imaging, GPS and basic telecommunications can be simultaneously met by use of smartphone technologies, which become part of the overall device. Software for a user-interface system, limited real-time computing, real-time imaging, and offline data analysis can be accomplished through multi-platform software development systems that are well-suited to a variety of currently available cellphone technologies which already contain all of these capabilities. Microfluidic cytometry requires judicious use of small sample volumes and appropriate statistical sampling by microfluidic cytometry or imaging for adequate statistical significance to permit real-time (typically medical decisions for patients at the physician's office or real-time decision making in the field. One or two drops of blood obtained by pin-prick should be able to provide statistically meaningful results for use in making real-time medical decisions without the need for blood fractionation, which is not realistic in the field.

  20. A delivery device for presentation of tactile stimuli during functional magnetic resonance imaging.

    Science.gov (United States)

    Dykes, Robert W; Miqueé, Aline; Xerri, Christian; Zennou-Azogui, Yoh'i; Rainville, Constant; Dumoulin, André; Marineau, Daniel

    2007-01-30

    We describe a novel stimulus delivery system designed to present tactile stimuli to a subject in the tunnel of a magnetic resonance imaging (MRI) system. Using energy from an air-driven piston to turn a wheel, the device advances a conveyor belt with a pre-determined sequence of stimuli that differ in their spatial features into the tunnel of the MRI. The positioning of one or several stimulus objects in a window near the subject's hand is controlled by a photoelectric device that detects periodic openings in the conveyor belt. Using this electric signal to position each presentation avoids cumulative positioning errors and provides a signal related to the progression of the experiment. We used a series of shapes that differed in their spatial features but the device could carry stimuli with a diversity of shapes and textures. This flexibility allows the experimenter to design a wide variety of psychophysical experiments in the haptic world and possibly to compare and contrast these stimuli with the cognitive treatment of similar stimuli delivered to the other senses. Appropriate experimental design allows separation of motor, sensory and memory storage phases of mental processes.

  1. The Device Design of a Rural Domestic Sewage Treatment Performance

    Science.gov (United States)

    Liu, Zuhan; Wang, Lili; Deng, Chengzhi

    2017-10-01

    A kind of device for removing pollutant from rural domestic sewage isstudied in this paper, which belongs to the field of sewage treatment technology. The device include anaerobic pool, aerobiotic pool and aerating apparatus. Specifically, the aerobiotic pool is a sealed rectangular body with a rectangular groove on its top cover. The fixed wall is established on one side of the rectangular groove, and the wall is located in the middle of the top cover. The anaerobic pool is opposite to the fixed wall. And there is a aerating apparatusbetween the anaerobic pool and fixed wall, and the apparatus is situated right above the rectangular groove. The design is simple in structure and low in manufacturing cost. The biochemical ratio to the sewage could be improved through the anaerobic pool, and then the sewage is sufficiently aerated by means of natural ventilation and height of water. Theaerated sewage enter into aerobiotic pool, and then the organic matter is degraded into Carbon Dioxide and water under the action of aerobic bacteria, of which function is that the ammonia nitrogen is oxidized into nitrate and nitrite. The water that is far from the aerating apparatus inside of the aerobiotic pool enters into oxygen-deficient environment, and the nitrate is converted into nitrogen. After the effluent is checked qualified, the water is discharged into the drainage ditch or utilized for irrigation.

  2. Overview of the Fusion Engineering Device (FED) design

    International Nuclear Information System (INIS)

    Steiner, D.; Flanagan, C.A.

    1981-01-01

    The device has a major radius of 5.0 m with a plasma minor radius of 1.3 m elongated by 1.6. Capability is provided for operating the toroidal field coils up to 10 T, but the bulk of the operations are designed for 8 T. At 8-T conditions the fusion power is approx. 180 MW (neutron wall loading approx. 0.4 MW/m 2 ) and a plasma Q of approx. 5 is expected. At 10-T conditions, which are expected to be limited to about 10% of the total operations, the fusion power is approx. 450 MW (approx. 1.0 MW/m 2 ) and ignition is expected

  3. Overview of the fusion engineering device (FED) design

    International Nuclear Information System (INIS)

    Steiner, D.; Flanagan, C.A.

    1981-10-01

    The device has a major radius of 5.0 m with a plasma minor radius of 1.3 m elongated by 1.6. Capability is provided for operating the toroidal field coils up to 10 T, but the bulk of the operations are designed for 8 T. At 8-T conditions, the fusion power is approx. 180 MW (neutron wall loading approx. 0.4 MW/m 2 ) and a plasma Q of approx. 5 is expected. At 10-T conditions, which are expected to be limited to about 10% of the total operations, the fusion power is approx. 450 MW (approx. 1.0 MW/m 2 ) and ignition is expected

  4. Fusion Engineering Device (FED) first wall/shield design

    International Nuclear Information System (INIS)

    Sager, P.H.; Fuller, G.; Cramer, B.; Davisson, J.; Haines, J.; Kirchner, J.

    1981-01-01

    The torus of the Fusion Engineering Device (FED) is comprised of the bulk shield and its associated spool lstructure and support system, the first wall water-cooled panel and armor systems, and the pumped limiter. The bulk shielding is provided by ten shield sectors that are installed in the spool structure in such a way as to permit extraction of the sectors through the openings between adjacent toroidal field coils with a direct radial movement. The first wall armor is installed on the inboard and top interior walls of these sectors, and the water-cooled panels are installed on the outboard interior walls and the pumped limiter in the bottom of the sectors. The overall design of the first wall and shield system is described in this paper

  5. Design and Testing of Electronic Devices for Harsh Environments

    CERN Document Server

    Nico, Costantino

    This thesis reports an overview and the main results of the research activity carried out within the PhD programme in Information Engineering of the University of Pisa (2010-2012). The research activity has been focused on different fields, including Automotive and High Energy Physics experiments, according to a common denominator: the development of electroni c devices and systems operating in harsh environments. There are many applications that forc e the adoption of design methodologies and strategies focused on this type of envir onments: military, biom edical, automotive, industrial and space. The development of solutions fulfilling specific operational requirements, therefore represents an interesting field of research. The first research activity has been framed within the ATHENIS project, funded by the CORDIS Commission of the European Community, and aiming at the development of a System-on-Chip, a r egulator for alternators employed on vehicles, presenting both configurability an d t...

  6. High-performance green semiconductor devices: materials, designs, and fabrication

    Science.gov (United States)

    Jung, Yei Hwan; Zhang, Huilong; Gong, Shaoqin; Ma, Zhenqiang

    2017-06-01

    From large industrial computers to non-portable home appliances and finally to light-weight portable gadgets, the rapid evolution of electronics has facilitated our daily pursuits and increased our life comforts. However, these rapid advances have led to a significant decrease in the lifetime of consumer electronics. The serious environmental threat that comes from electronic waste not only involves materials like plastics and heavy metals, but also includes toxic materials like mercury, cadmium, arsenic, and lead, which can leak into the ground and contaminate the water we drink, the food we eat, and the animals that live around us. Furthermore, most electronics are comprised of non-renewable, non-biodegradable, and potentially toxic materials. Difficulties in recycling the increasing amount of electronic waste could eventually lead to permanent environmental pollution. As such, discarded electronics that can naturally degrade over time would reduce recycling challenges and minimize their threat to the environment. This review provides a snapshot of the current developments and challenges of green electronics at the semiconductor device level. It looks at the developments that have been made in an effort to help reduce the accumulation of electronic waste by utilizing unconventional, biodegradable materials as components. While many semiconductors are classified as non-biodegradable, a few biodegradable semiconducting materials exist and are used as electrical components. This review begins with a discussion of biodegradable materials for electronics, followed by designs and processes for the manufacturing of green electronics using different techniques and designs. In the later sections of the review, various examples of biodegradable electrical components, such as sensors, circuits, and batteries, that together can form a functional electronic device, are discussed and new applications using green electronics are reviewed.

  7. A time-gated near-infrared spectroscopic imaging device for clinical applications.

    Science.gov (United States)

    Poulet, Patrick; Uhring, Wilfried; Hanselmann, Walter; Glazenborg, René; Nouizi, Farouk; Zint, Virginie; Hirschi, Werner

    2013-03-01

    A time-resolved, spectroscopic, diffuse optical tomography device was assembled for clinical applications like brain functional imaging. The entire instrument lies in a unique setup that includes a light source, an ultrafast time-gated intensified camera and all the electronic control units. The light source is composed of four near infrared laser diodes driven by a nanosecond electrical pulse generator working in a sequential mode at a repetition rate of 100 MHz. The light pulses are less than 80 ps FWHM. They are injected in a four-furcated optical fiber ended with a frontal light distributor to obtain a uniform illumination spot directed towards the head of the patient. Photons back-scattered by the subject are detected by the intensified CCD camera. There are resolved according to their time of flight inside the head. The photocathode is powered by an ultrafast generator producing 50 V pulses, at 100 MHz and a width corresponding to a 200 ps FWHM gate. The intensifier has been specially designed for this application. The whole instrument is controlled by an FPGA based module. All the acquisition parameters are configurable via software through an USB plug and the image data are transferred to a PC via an Ethernet link. The compactness of the device makes it a perfect device for bedside clinical applications. The instrument will be described and characterized. Preliminary data recorded on test samples will be presented.

  8. 77 FR 31875 - Certain Electronic Imaging Devices; Notice of Receipt of Complaint; Solicitation of Comments...

    Science.gov (United States)

    2012-05-30

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2898] Certain Electronic Imaging Devices; Notice of... Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Electronic Imaging Devices, DN 2898; the Commission is...

  9. 77 FR 32995 - Certain Electronic Imaging Devices Corrected: Notice of Receipt of Complaint; Solicitation of...

    Science.gov (United States)

    2012-06-04

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2898] Certain Electronic Imaging Devices Corrected.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Electronic Imaging Devices, DN 2898; the...

  10. Evaluation of image quality for various electronic portal imaging devices in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Son, Soon Yong; Choi, Kwan Woo [Dept. of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Kim, Jung Min [Dept. of College of Health Science, Radiologic Science, Korea University, Seoul (Korea, Republic of); and others

    2015-12-15

    In megavoltage (MV) radiotherapy, delivering the dose to the target volume is important while protecting the surrounding normal tissue. The purpose of this study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) using an edge block in megavoltage X-ray imaging (MVI). We used an edge block, which consists of tungsten with dimensions of 19 (thickness) × 10 (length) × 1 (width) cm3 and measured the pre-sampling MTF at 6 MV energy. Various radiation therapy (RT) devices such as TrueBeamTM (Varian), BEAMVIEWPLUS (Siemens), iViewGT (Elekta) and Clinac®iX (Varian) were used. As for MTF results, TrueBeamTM(Varian) flattening filter free(FFF) showed the highest values of 0.46 mm-1and1.40mm-1for MTF 0.5 and 0.1. In NPS, iViewGT (Elekta) showed the lowest noise distribution. In DQE, iViewGT (Elekta) showed the best efficiency at a peak DQE and 1 mm-1DQE of 0.0026 and 0.00014, respectively. This study could be used not only for traditional QA imaging but also for quantitative MTF, NPS, and DQE measurement for development of an electronic portal imaging device (EPID)

  11. Development of an IMRT quality assurance program using an amorphous silicon electronic portal imaging device

    International Nuclear Information System (INIS)

    Hunt, P.; Oliver, L.; Mallik, A.

    2000-01-01

    Full text: Quality Assurance (QA) for an intensity modulated radiotherapy (IMRT) megavoltage beam is a complex task. The positional accuracy of the MLC; its radiation leakage; the overall distribution of the dose delivered as compared to the treatment plan and; the accuracy of the calculated monitor units to deliver this dose, are all important parameters to clinically monitor. We are presently assessing the Varian version 6 software package with CadPlan, Helios with IMRT and inverse planning, VARiS Vision and the linear accelerator DMLC controller. Whilst conventional QA tools such as ionisation chamber and film measurements are used, these methods are inconvenient for directly monitoring an IMRT patient treatment. Varian Medical Systems has developed an improved electronic portal imaging device (EPID) with an amorphous silicon (a-Si) detector array. The A-Si has a sensitive area of 40x30cm and an improved image resolution of 512x384 pixels. Images are recorded at approximately 7-10 frames per second for an exposure rate of 100-600 MU/minute. Although the A-Si was designed as an EPID for a static treatment field, this new device could be a valuable IMRT QA tool for a range of different tests. Measurements taken on the RNSH and Varian prototype A-Si EPI devices showed a linear dose response for 6-18MeV X-ray energy. In addition to the Varian IAS2 internal software handlers, we have developed some image data handling programs to view and analyse these images in more detail. The software is primarily used to view the images; measure the reading in a region of interest or profile; or merge, overlay, add or subtract images during the analysis. The small pixel resolution provides a reliable, highly accurate means of measuring beam size, leaf position, MLC radiation leakage or profile intensity curves with a positional accuracy of 0.8mm. The images produced by an IMRT exposure is clearly discernible and appears consistent with the result expected. Step wedge images

  12. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    studied the effect of x-rays and γ-rays, on thin film chalcogenide glasses and applied them in conjunction with film incorporating a silver source in a new type of radiation sensor for which we have an US patent application [3]. In this report, we give data about our studies regarding our designed radiation sensor along with the testing and performance at various radiation doses. These studies have been preceded by materials characterization research related to the compositional and structural characteristics of the active materials used in the radiation sensor design. During the work on the project, we collected a large volume of material since every experiment was repeated many times to verify the results. We conducted a comprehensive material research, analysis and discussion with the aim to understand the nature of the occurring effects, design different structures to harness these effects, generated models to aid in the understanding the effects, built different device structures and collected data to quantify device performance. These various aspects of our investigation have been detailed in previous quarterly reports. In this report, we present our main results and emphasize on the results pertaining to the core project goals materials development, sensor design and testing and with an emphasis on classifying the appropriate material and design for the optimal application. The report has three main parts: (i) Presentation of the main data; (ii) Bulleted summary of the most important results; (iii) List of the patent, journal publications, conference proceedings and conferences participation, occurring as a result of working on the project.

  13. The design study of the JT-60SU device. No.8. Nuclear shielding and safety design

    Energy Technology Data Exchange (ETDEWEB)

    Miya, Naoyuki; Kikuchi, Mitsuru; Ushigusa, Kenkichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-03-01

    Results of nuclear shielding design study and safety analysis for the steady-state tokamak device JT-60SU are described. D-T operation (option) for two years is adopted in addition to ten years operation using deuterium. Design work has been done in accordance with general laws for radioisotopes handling in Japan as a guideline of safety evaluation, which is applied to the operation of present JT-60U device. Optimization of the shielding design for the device structure including vacuum vessel has been presented to meet with allowable limits of biological shielding determined in advance. It is shown that JT-60SU can be operated safely in the present JT-60 experimental building. It is planed to use 100g/year of tritium in D-T operation phase. A concept of multiple -barrier system is applied to the facility design to prevent propagation of tritium, in which the torus hall and the tritium removal room provide the tertiary confinement. From the design of atmosphere detritiation system for accidental tritium release, it is shown that tritium concentration level can be reduced to the allowable level after two weeks with reasonable compact size components. Safety assessment related to activation of coolant/air, and atmospheric tritium effluents are discussed. (author)

  14. Post-operative orbital imaging: a focus on implants and prosthetic devices

    International Nuclear Information System (INIS)

    Adams, Ashok; Mankad, Kshitij; Poitelea, Cornelia; Verity, David H.; Davagnanam, Indran

    2014-01-01

    Accurate interpretation of orbital imaging in the presence of either orbital implants requires a sound knowledge of both the surgical approach used and the imaging characteristics of the implanted devices themselves. In this article, the radiological appearance of the various devices used in ophthalmology, and their relationship to other orbital structures, is reviewed. In addition, the intended anatomical location, function of these devices, and clinical indications for their use are provided. (orig.)

  15. [Design and application of implantable medical device information management system].

    Science.gov (United States)

    Cao, Shaoping; Yin, Chunguang; Zhao, Zhenying

    2013-03-01

    Through the establishment of implantable medical device information management system, with the aid of the regional joint sharing of resources, we further enhance the implantable medical device traceability management level, strengthen quality management, control of medical risk.

  16. RF Device for Acquiring Images of the Human Body

    Science.gov (United States)

    Gaier, Todd C.; McGrath, William R.

    2010-01-01

    A safe, non-invasive method for forming images through clothing of large groups of people, in order to search for concealed weapons either made of metal or not, has been developed. A millimeter wavelength scanner designed in a unique, ring-shaped configuration can obtain a full 360 image of the body with a resolution of less than a millimeter in only a few seconds. Millimeter waves readily penetrate normal clothing, but are highly reflected by the human body and concealed objects. Millimeter wave signals are nonionizing and are harmless to human tissues when used at low power levels. The imager (see figure) consists of a thin base that supports a small-diameter vertical post about 7 ft (=2.13 m) tall. Attached to the post is a square-shaped ring 2 in. (=5 cm) wide and 3 ft (=91 cm) on a side. The ring is oriented horizontally, and is supported halfway along one side by a connection to a linear bearing on the vertical post. A planar RF circuit board is mounted to the inside of each side of the ring. Each circuit board contains an array of 30 receivers, one transmitter, and digitization electronics. Each array element has a printed-circuit patch antenna coupled to a pair of mixers by a 90 coupler. The mixers receive a reference local oscillator signal to a subharmonic of the transmitter frequency. A single local oscillator line feeds all 30 receivers on the board. The resulting MHz IF signals are amplified and carried to the edge of the board where they are demodulated and digitized. The transmitted signal is derived from the local oscillator at a frequency offset determined by a crystal oscillator. One antenna centrally located on each side of the square ring provides the source illumination power. The total transmitted power is less than 100 mW, resulting in an exposure level that is completely safe to humans. The output signals from all four circuit boards are fed via serial connection to a data processing computer. The computer processes the approximately 1-MB

  17. Designing a placebo device: involving service users in clinical trial design.

    Science.gov (United States)

    Gooberman-Hill, Rachael; Jinks, Clare; Bouças, Sofia Barbosa; Hislop, Kelly; Dziedzic, Krysia S; Rhodes, Carol; Burston, Amanda; Adams, Jo

    2013-12-01

    Service users are increasingly involved in the design of clinical trials and in product and device development. Service user involvement in placebo development is crucial to a credible and acceptable placebo for clinical trials, but such involvement has not yet been reported. To enhance the design of a future clinical trial of hand splints for thumb-base osteoarthritis (OA), service users were involved in splint selection and design of a placebo splint. This article describes and reflects on this process. Two fora of service users were convened in 2011. Service users who had been prescribed a thumb splint for thumb-base OA were approached about involvement by Occupational Therapy (OT) practitioners. A total of eight service users took part in the fora. Service users discussed their experience of OA and their own splints and then tried a variety of alternative splints. Through this they identified the active features of splints alongside acceptable and unacceptable design features. Service users focused on wearability and support with or without immobilization. Fora discussed whether a placebo group ('arm') was an acceptable feature of a future trial, and service users developed a potential design for a placebo splint. This is the first project that to involve service users in placebo design. Service users are increasingly involved in product and device design and are ideally placed to identify features to make a placebo credible yet lacking key active ingredients. The future trial will include research into its acceptability. © 2013 John Wiley & Sons Ltd.

  18. Study of the detective quantum efficiency for the kinestatic charge detector as a megavoltage imaging device

    Science.gov (United States)

    Samant, Sanjiv S.; Gopal, Arun; DiBianca, Frank A.

    2003-06-01

    Megavoltage x-ray imaging suffers from relatively poor contrast and spatial resolution compared to diagnostic kilovoltage x-ray imaging due to the dominant Compton scattering in the former. Recently available amorphous silicon/selenium based flat-panel imagers overcome many of the limitations of poor contrast and spatial resolution that affect conventional video based electronic portal imaging devices (EPIDs). An alternative technology is presented here: kinestatic charge detection (KCD). The KCD uses a slot photon beam, high-pressure gas (xenon, 100 atm) and a multi-ion rectangular chamber in scanning mode. An electric field is used to regulate the cation drift velocity. By matching the scanning speed with that of the cation drift, the cations remain static in the object frame of reference, allowing temporal integration of the signal. KCD imaging is characterized by reduced scatter and a high signal-to-noise ratio. Measurements and Monte Carlo simulations of modulation transfer function (MTF), noise power spectrum (NPS) and the detective quantum efficiency (DQE) of a prototype small field of view KCD detector (384 channels, 0.5 mm spacing) were carried out. Measurements yield DQE[0]=0.19 and DQE[0.5cy/mm]=0.01. KCD imaging is compared to film and commercial EPID systems using phantoms, with the KCD requiring an extremely low dose (0.1 cGy) per image. A proposed cylindrical chamber design with a higher ion-collection depth is expected to further improve image quality (DQE[0]>0.25).

  19. 78 FR 11207 - Clinical Study Designs for Surgical Ablation Devices for Treatment of Atrial Fibrillation...

    Science.gov (United States)

    2013-02-15

    ...] Clinical Study Designs for Surgical Ablation Devices for Treatment of Atrial Fibrillation; Guidance for... devices intended for the treatment of atrial fibrillation. DATES: Submit either electronic or written... Study Designs for Surgical Ablation Devices for Treatment of Atrial Fibrillation'' to the Division of...

  20. Design, implementation and control of a magnetic levitation device

    Science.gov (United States)

    Shameli, Ehsan

    Magnetic levitation technology has shown a great deal of promise for micromanipulation tasks. Due to the lack of mechanical contact, magnetic levitation systems are free of problems caused by friction, wear, sealing and lubrication. These advantages have made magnetic levitation systems a great candidate for clean room applications. In this thesis, a new large gap magnetic levitation system is designed, developed and successfully tested. The system is capable of levitating a 6.5(gr) permanent magnet in 3D space with an air gap of approximately 50(cm) with the traveling range of 20x20x30 mm3. The overall positioning accuracy of the system is 60mum. With the aid of finite elements method, an optimal geometry for the magnetic stator is proposed. Also, an energy optimization approach is utilized in the design of the electromagnets. In order to facilitate the design of various controllers for the system, a mathematical model of the magnetic force experienced by the levitated object is obtained. The dynamic magnetic force model is determined experimentally using frequency response system identification. The response of the system components including the power amplifiers, and position measurement system are also considered in the development of the force model. The force model is then employed in the controller design for the magnetic levitation device. Through a modular approach, the controller design for the 3D positioning system is started with the controller design for the vertical direction, i.e. z, and then followed by the controller design in the horizontal directions, i.e. x and y. For the vertical direction, several controllers such as PID, feed forward and feedback linearization are designed and their performances are compared. Also a control command conditioning method is introduced as a solution to increase the control performance and the results of the proposed controller are compared with the other designs. Experimental results showed that for the magnetic

  1. Determination of the size of an imaging data storage device at a full PACS hospital

    International Nuclear Information System (INIS)

    Cha, S. J.; Kim, Y. H.; Hur, G.

    2000-01-01

    To determine the appropriate size of a short and long-term storage device, bearing in mind the design factors involved and the installation costs. The number of radiologic studies quoted is the number of these undertaken during a one-year period at a university hospital with 650 beds, and reflects the actual number of each type of examination performed at a full PACS hospital. The average daily number of outpatients was 1586, while that of inpatients was 639.5. The numbers of radiologic studies performed were as follows : 378 among 189 outpatients, and 165 among 41 inpatients. The average daily number of examinations was 543, comprising 460 CR, 30 ultrasonograms, 25 CT, 8 MRI, 20 others. The total amount of digital images was 17.4 GB per day, while the amount of short-term data with lossless compression was 6.7 GB per day. During 14 days short-term storage, the amount of image data was 93.7 GB in disk array. The amount of data stored mid term (1 year), with lossy compression, was 369.1 GB. The amount of data stored in the form of long-term cache and educational images was 38.7 GB and 30 GB, respectively, The total size of disk array was 531.5 GB. A device suitable for the long-term storage of images, for at least five years, requires a capacity of 1845.5 GB. At a full PACS hospital with 600 beds, the minimum disk space required for the short-and mid-term storage of image data in disk array is 540 GB. The capacity required for long term storage (at least five years) is 1900 GB. (author)

  2. Left ventricular assist device (lvad design features: literature review

    Directory of Open Access Journals (Sweden)

    Yu. V. Bogdanova

    2014-01-01

    Full Text Available More than 8 million people in our country suffer from heart failure. About one million of these people die each year [1]. The problem of ventricular assist device creating - a mechanical device used for partial or complete replacement of heart function - is investigated for a long time (according to [2] just in our country since the 1970s. Today plenty of encouraging results are received. There is a number of VAD models which are successfully applied to patients with heart failure. After implantation, patients conduct a way of life that is normal in many respects: they are in the family, often they have an opportunity to work in their former specialty. Some of them live with the device about 8 years [3].According to [4] for 2010 the estimated total number of long-term devices implanted in the United States per year is over 1,700 (the population of the U.S. is 305 million, compared with over 430 per year in Europe (the population of Europe is 731 million. Unfortunately, people who need a heart transplant are much more.The principle of VAD is that being connected to the left ventricle with one cannula and to the ascending aorta with the other cannula the pump fully or partially replaces the function of the natural heart. This scheme allows the use of VAD in two ways: as a "bridge to transplantation" when the device is used temporarily until the donor heart is found, and a "bridge to recovery", when through the use of VAD the function of the heart muscle is recovered.VAD system can be divided into three subsystems: blood pump, power supply system and control system (Fig. 1.Each subsystem can be the subject of separate study. Special role in the development of VAD plays medical side of the issue. Successful research and development require interaction with qualified professionals in this field. The development of VAD is a multidisciplinary problem which demands fulfilment of a number of requirements.One of the most active programs in implantation of

  3. NOTE: A method for controlling image acquisition in electronic portal imaging devices

    Science.gov (United States)

    Glendinning, A. G.; Hunt, S. G.; Bonnett, D. E.

    2001-02-01

    Certain types of camera-based electronic portal imaging devices (EPIDs) which initiate image acquisition based on sensing a change in video level have been observed to trigger unreliably at the beginning of dynamic multileaf collimation sequences. A simple, novel means of controlling image acquisition with an Elekta linear accelerator (Elekta Oncology Systems, Crawley, UK) is proposed which is based on illumination of a photodetector (ORP-12, Silonex Inc., Plattsburgh, NY, USA) by the electron gun of the accelerator. By incorporating a simple trigger circuit it is possible to derive a beam on/off status signal which changes at least 100 ms before any dose is measured by the accelerator. The status signal does not return to the beam-off state until all dose has been delivered and is suitable for accelerator pulse repetition frequencies of 50-400 Hz. The status signal is thus a reliable means of indicating the initiation and termination of radiation exposure, and thus controlling image acquisition of such EPIDs for this application.

  4. Optical design of multi-multiple expander structure of laser gas analysis and measurement device

    Science.gov (United States)

    Fu, Xiang; Wei, Biao

    2018-03-01

    The installation and debugging of optical circuit structure in the application of carbon monoxide distributed laser gas analysis and measurement, there are difficult key technical problems. Based on the three-component expansion theory, multi-multiple expander structure with expansion ratio of 4, 5, 6 and 7 is adopted in the absorption chamber to enhance the adaptability of the installation environment of the gas analysis and measurement device. According to the basic theory of aberration, the optimal design of multi-multiple beam expander structure is carried out. By using image quality evaluation method, the difference of image quality under different magnifications is analyzed. The results show that the optical quality of the optical system with the expanded beam structure is the best when the expansion ratio is 5-7.

  5. Potential Applications of Microtesla Magnetic Resonance Imaging Detected Using a Superconducting Quantum Interference Device

    International Nuclear Information System (INIS)

    Myers, Whittier R.

    2006-01-01

    This dissertation describes magnetic resonance imaging (MRI) of protons performed in a precession field of 132 (micro)T. In order to increase the signal-to-noise ratio (SNR), a pulsed 40-300 mT magnetic field prepolarizes the sample spins and an untuned second-order superconducting gradiometer coupled to a low transition temperature superconducting quantum interference device (SQUID) detects the subsequent 5.6-kHz spin precession. Imaging sequences including multiple echoes and partial Fourier reconstruction are developed. Calculating the SNR of prepolarized SQUID-detected MRI shows that three-dimensional Fourier imaging yields higher SNR than slice-selection imaging. An experimentally demonstrated field-cycling pulse sequence and post-processing algorithm mitigate image artifacts caused by concomitant gradients in low-field MRI. The magnetic field noise of SQUID untuned detection is compared to the noise of SQUID tuned detection, conventional Faraday detection, and the Nyquist noise generated by conducting biological samples. A second-generation microtesla MRI system employing a low-noise SQUID is constructed to increase SNR. A 2.4-m cubic, eddy-current shield with 6-mm thick aluminum walls encloses the experiment to attenuate external noise. The measured noise is 0.75 fT Hz -1/2 referred to the bottom gradiometer loop. Solenoids wound from 30-strand braided wire to decrease Nyquist noise and cooled by either liquid nitrogen or water polarize the spins. Copper wire coils wound on wooden supports produce the imaging magnetic fields and field gradients. Water phantom images with 0.8 x 0.8 x 10 mm 3 resolution have a SNR of 6. Three-dimensional 1.6 x 1.9 x 14 mm 3 images of bell peppers and 3 x 3 x 26 mm 3 in vivo images of the human arm are presented. Since contrast based on the transverse spin relaxation rate (T 1 ) is enhanced at low magnetic fields, microtesla MRI could potentially be used for tumor imaging. The measured T 1 of ex vivo normal and cancerous

  6. Potential Applications of Microtesla Magnetic Resonance ImagingDetected Using a Superconducting Quantum Interference Device

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Whittier Ryan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes magnetic resonance imaging (MRI) of protons performed in a precession field of 132 μT. In order to increase the signal-to-noise ratio (SNR), a pulsed 40-300 mT magnetic field prepolarizes the sample spins and an untuned second-order superconducting gradiometer coupled to a low transition temperature superconducting quantum interference device (SQUID) detects the subsequent 5.6-kHz spin precession. Imaging sequences including multiple echoes and partial Fourier reconstruction are developed. Calculating the SNR of prepolarized SQUID-detected MRI shows that three-dimensional Fourier imaging yields higher SNR than slice-selection imaging. An experimentally demonstrated field-cycling pulse sequence and post-processing algorithm mitigate image artifacts caused by concomitant gradients in low-field MRI. The magnetic field noise of SQUID untuned detection is compared to the noise of SQUID tuned detection, conventional Faraday detection, and the Nyquist noise generated by conducting biological samples. A second-generation microtesla MRI system employing a low-noise SQUID is constructed to increase SNR. A 2.4-m cubic, eddy-current shield with 6-mm thick aluminum walls encloses the experiment to attenuate external noise. The measured noise is 0.75 fT Hz-1/2 referred to the bottom gradiometer loop. Solenoids wound from 30-strand braided wire to decrease Nyquist noise and cooled by either liquid nitrogen or water polarize the spins. Copper wire coils wound on wooden supports produce the imaging magnetic fields and field gradients. Water phantom images with 0.8 x 0.8 x 10 mm3 resolution have a SNR of 6. Three-dimensional 1.6 x 1.9 x 14 mm3 images of bell peppers and 3 x 3 x 26 mm3 in vivo images of the human arm are presented. Since contrast based on the transverse spin relaxation rate (T1) is enhanced at low magnetic fields, microtesla MRI could potentially be used for tumor imaging. The

  7. Design of central control system for large helical device (LHD)

    International Nuclear Information System (INIS)

    Yamazaki, K.; Kaneko, H.; Yamaguchi, S.; Watanabe, K.Y.; Taniguchi, Y.; Motojima, O.

    1993-11-01

    The world largest superconducting fusion machine LHD (Large Helical Device) is under construction in Japan, aiming at steady state operations. Its basic control system consists of UNIX computers, FDDI/Ethernet LANs, VME multiprocessors and VxWorks real-time OS. For flexible and reliable operations of the LHD machine a cooperative distributed system with more than 30 experimental equipments is controlled by the central computer and the main timing system, and is supervised by the main protective interlock system. Intelligent control systems, such as applications of fuzzy logic and neural networks, are planed to be adopted for flexible feedback controls of plasma configurations besides the classical PID control scheme. Design studies of its control system and related R and D programs with coil-plasma simulation systems are now being performed. The construction of the LHD Control Building in a new site will begin in 1995 after finishing the construction of the LHD Experimental Building, and the hardware construction of the LHD central control equipments will be started in 1996. A first plasma production by means of this control system is expected in 1997. (author)

  8. Design and Qualitative Evaluation of Tactile Devices for Stroke Rehabilitation

    OpenAIRE

    Merrett, Geoff V; Metcalf, Cheryl D; Zheng, Deyi; Cunningham, Sarah; Barrow, Stuart; Demain, Sara H

    2011-01-01

    Rehabilitation environments combining virtual reality with everyday motor tasks can promote recovery from neurological illness, such as stroke. Tactile devices, providing physical stimulation to the skin, may improve motor retraining. While many tactile devices have been reported, there is a distinct paucity of studies evaluating how they are perceived. This multidisciplinary research has investigated three tactile devices (vibration motors, a motor-driven ‘squeezer’, and shape memory alloys)...

  9. Game Design Narrative for Learning: Appropriating Adventure Game Design Narrative Devices and Techniques for the Design of Interactive Learning Environments

    Science.gov (United States)

    Dickey, Michele D.

    2006-01-01

    The purpose of this conceptual analysis is to investigate how contemporary video and computer games might inform instructional design by looking at how narrative devices and techniques support problem solving within complex, multimodal environments. Specifically, this analysis presents a brief overview of game genres and the role of narrative in…

  10. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device.

    Science.gov (United States)

    Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan

    2016-07-01

    A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was

  11. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.edu [Department of Physics, East Carolina University, Greenville, North Carolina 27858 (United States); Kim, Jong Oh [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States); Yi, Byong Yong [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States); Yeo, Inhwan [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California 92354 (United States)

    2016-07-15

    Purpose: A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). Methods: (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as “reference” images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the

  12. Device for the track useful signal discrimination during the image scanning form bubble chambers

    International Nuclear Information System (INIS)

    Osipov, E.A.; Uvarov, V.A.

    1976-01-01

    A device for the image processing from the bubble chambers, developed to increase the reliability of the track useful signal discrimination at the image scanning from the background component is described. The device consists of a low-pass filter, repetition and memory circuit and subtraction circuit. Besides a delay line and extra channel consisting of a differentiating circuit in series with the selective shaping circuit are introduced into the device. The output signal of the selective shaping is the controlling signal of the repetition and memory circuit, at the output of which a signal corresponding the background component is formed. The functional diagram of the device operation is presented

  13. Low Power Design for Future Wearable and Implantable Devices

    DEFF Research Database (Denmark)

    Lundager, Katrine; Zeinali, Behzad; Tohidi, Mohammad

    2016-01-01

    limit, which is a critical limit for further miniaturization to develop smaller and smarter wearable/implantable devices (WIDs), especially for multi-task continuous computing purposes. Developing smaller and smarter devices with more functionality requires larger batteries, which are currently the main...

  14. Integration in design and manufacturing of polymer smart devices

    NARCIS (Netherlands)

    Bolt, P.J.; Zwart, R.M. de; Tacken, R.A.; Rendering, H.

    2009-01-01

    Integration of functions in single components is pursued in order to manufacture smaller and smarter polymer micro devices at less cost, through e.g. less assembly steps. It requires integration on both product and production side. This paper addresses the use of molded interconnect device (MID)

  15. Imaging system design and image interpolation based on CMOS image sensor

    Science.gov (United States)

    Li, Yu-feng; Liang, Fei; Guo, Rui

    2009-11-01

    An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The hardware and software design of the image acquisition and processing system is given. CMOS digital cameras use color filter arrays to sample different spectral components, such as red, green, and blue. At the location of each pixel only one color sample is taken, and the other colors must be interpolated from neighboring samples. We use the edge-oriented adaptive interpolation algorithm for the edge pixels and bilinear interpolation algorithm for the non-edge pixels to improve the visual quality of the interpolated images. This method can get high processing speed, decrease the computational complexity, and effectively preserve the image edges.

  16. Contribution to coherent atom optics - Design of multiple wave devices

    International Nuclear Information System (INIS)

    Impens, F.

    2008-03-01

    The theoretical work presented in this manuscript addresses two complementary issues in coherent atom optics. The first part addresses the perspectives offered by coherent atomic sources through the design of two experiment involving the levitation of a cold atomic sample in a periodic series of light pulses, and for which coherent atomic clouds are particularly well-suited. These systems appear as multiple wave atom interferometers. A striking feature of these experiments is that a unique system performs both the sample trapping and interrogation. To obtain a transverse confinement, a novel atomic lens is proposed, relying on the interaction between an atomic wave with a spherical light wave. The sensitivity of the sample trapping towards the gravitational acceleration and towards the pulse frequencies is exploited to perform the desired measurement. These devices constitute atomic wave resonators in momentum space, which is a novel concept in atom optics. A second part develops new theoretical tools - most of which inspired from optics - well-suited to describe the propagation of coherent atomic sources. A phase-space approach of the propagation, relying on the evolution of moments, is developed and applied to study the low-energy dynamics of Bose-Einstein condensates. The ABCD method of propagation for atomic waves is extended beyond the linear regime to account perturbatively for mean-field atomic interactions in the atom-optical aberration-less approximation. A treatment of the atom laser extraction enabling one to describe aberrations in the atomic beam, developed in collaboration with the Atom Optics group at the Institute of Optics, is exposed. Last, a quality factor suitable for the characterization of diluted matter waves in a general propagation regime has been proposed. (author)

  17. Development of a miniature multiple reference optical coherence tomography imaging device

    Science.gov (United States)

    McNamara, Paul M.; O'Riordan, Colm; Collins, Seán.; O'Brien, Peter; Wilson, Carol; Hogan, Josh; Leahy, Martin J.

    2016-03-01

    Multiple reference optical coherence tomography (MR-OCT) is a new technology ideally suited to low-cost, compact OCT imaging. This modality is an extension of time-domain OCT with the addition of a partial mirror in front of the reference mirror. This enables extended, simultaneous depth scanning with the relatively short sweep of a miniature voice coil motor on which the scanning mirror is mounted. Applications of this technology include biometric security, ophthalmology, personal health monitoring and non-destructive testing. This work details early-stage development of the first iteration of a miniature MR-OCT device. This device utilizes a fiber-coupled input from an off-board superluminescent diode (SLD). Typical dimensions of the module are 40 × 57 mm, but future designs are expected to be more compact. Off-the-shelf miniature optical components, voice coil motors and photodetectors are used, with the complexity of design depending on specific applications. The photonic module can be configured as either polarized or non-polarized and can include balanced detection. The photodetectors are directly connected to a printed circuit board under the module containing a transimpedance amplifier with complimentary outputs. The results shown in this work are from the non-polarized device. Assembly of the photonic modules requires extensive planning. In choosing the optical components, Zemax simulations are performed to model the beam characteristics. The physical layout is modeled using Solidworks and each component is placed and aligned via a well-designed alignment procedure involving an active-alignment pick-and-place assembly system.

  18. Designing Security-Hardened Microkernels For Field Devices

    Science.gov (United States)

    Hieb, Jeffrey; Graham, James

    Distributed control systems (DCSs) play an essential role in the operation of critical infrastructures. Perimeter field devices are important DCS components that measure physical process parameters and perform control actions. Modern field devices are vulnerable to cyber attacks due to their increased adoption of commodity technologies and that fact that control networks are no longer isolated. This paper describes an approach for creating security-hardened field devices using operating system microkernels that isolate vital field device operations from untrusted network-accessible applications. The approach, which is influenced by the MILS and Nizza architectures, is implemented in a prototype field device. Whereas, previous microkernel-based implementations have been plagued by poor inter-process communication (IPC) performance, the prototype exhibits an average IPC overhead for protected device calls of 64.59 μs. The overall performance of field devices is influenced by several factors; nevertheless, the observed IPC overhead is low enough to encourage the continued development of the prototype.

  19. Signal Normalization Reduces Image Appearance Disparity Among Multiple Optical Coherence Tomography Devices.

    Science.gov (United States)

    Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A; Kagemann, Larry; Schuman, Joel S

    2017-02-01

    To assess the effect of the previously reported optical coherence tomography (OCT) signal normalization method on reducing the discrepancies in image appearance among spectral-domain OCT (SD-OCT) devices. Healthy eyes and eyes with various retinal pathologies were scanned at the macular region using similar volumetric scan patterns with at least two out of three SD-OCT devices at the same visit (Cirrus HD-OCT, Zeiss, Dublin, CA; RTVue, Optovue, Fremont, CA; and Spectralis, Heidelberg Engineering, Heidelberg, Germany). All the images were processed with the signal normalization. A set of images formed a questionnaire with 24 pairs of cross-sectional images from each eye with any combination of the three SD-OCT devices either both pre- or postsignal normalization. Observers were asked to evaluate the similarity of the two displayed images based on the image appearance. The effects on reducing the differences in image appearance before and after processing were analyzed. Twenty-nine researchers familiar with OCT images participated in the survey. Image similarity was significantly improved after signal normalization for all three combinations ( P ≤ 0.009) as Cirrus and RTVue combination became the most similar pair, followed by Cirrus and Spectralis, and RTVue and Spectralis. The signal normalization successfully minimized the disparities in the image appearance among multiple SD-OCT devices, allowing clinical interpretation and comparison of OCT images regardless of the device differences. The signal normalization would enable direct OCT images comparisons without concerning about device differences and broaden OCT usage by enabling long-term follow-ups and data sharing.

  20. Human Centred Design Considerations for Connected Health Devices for the Older Adult

    Directory of Open Access Journals (Sweden)

    Richard P. Harte

    2014-06-01

    Full Text Available Connected health devices are generally designed for unsupervised use, by non-healthcare professionals, facilitating independent control of the individuals own healthcare. Older adults are major users of such devices and are a population significantly increasing in size. This group presents challenges due to the wide spectrum of capabilities and attitudes towards technology. The fit between capabilities of the user and demands of the device can be optimised in a process called Human Centred Design. Here we review examples of some connected health devices chosen by random selection, assess older adult known capabilities and attitudes and finally make analytical recommendations for design approaches and design specifications.

  1. Transport Imaging for the Study of Quantum Scattering Phenomena in Next Generation Semiconductor Devices

    National Research Council Canada - National Science Library

    Bradley, Frank M

    2005-01-01

    ...) and highly efficient solar cells. A novel technique has been developed utilizing direct imaging of electron/hole recombination via an optical microscope and a high sensitivity charge coupled device coupled to a scanning electron...

  2. Conceptual design report for a Fusion Engineering Device sector-handling machine and movable manipulator system

    International Nuclear Information System (INIS)

    Watts, K.D.; Masson, L.S.; McPherson, R.S.

    1982-10-01

    Design requirements, trade studies, design descriptions, conceptual designs, and cost estimates have been completed for the Fusion Engineering Device sector handling machine, movable manipulator system, subcomponent handling machine, and limiter blade handling machine. This information will be used by the Fusion Engineering Design Center to begin to determine the cost and magnitude of the effort required to perform remote maintenance on the Fusion Engineering Device. The designs presented are by no means optimum, and the costs estimates are rough-order-of-magnitude

  3. Hydraulic screw fastening devices - design, maintenance, operational experience

    International Nuclear Information System (INIS)

    Lachner.

    1976-01-01

    With hydraulic screw fastening devices, pretension values with a maximum deviation of +-2.5% from the rated value can be achieved. This high degree of pretension accuracy is of considerable importance with regard to the safety factor required for the screw connection between reactor vessel head and reactor vessel. The operating rhythm of a nuclear power station with its refuelling art regular intervals makes further demands on the screw fastening device, in particular in connection with the transport of screws and for nuts. The necessary installations extend the screw fastening device into a combination of a high-pressure hydraulic cylinder system with an electrical or pneumoelectrical driving unit and an electrical control unit. Maintenance work is complicated by the large number of identical, highly stressed structural elements in connection with an unfavourable relation operating time/outage time. The problems have been perpetually reduced by close cooperation between the manufacturers and users of screw fastening devices. (orig./AK) [de

  4. Design of practical alignment device in KSTAR Thomson diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H., E-mail: jhlee@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); University of Science and Technology (UST), Daejeon (Korea, Republic of); Lee, S. H. [National Fusion Research Institute, Daejeon (Korea, Republic of); Yamada, I. [National Institute for Fusion Science, Toki (Japan)

    2016-11-15

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak’s Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broad wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR’s Thomson scattering diagnostics.

  5. Experimental Device for Learning of Logical Circuit Design using Integrated Circuits

    OpenAIRE

    石橋, 孝昭

    2012-01-01

    This paper presents an experimental device for learning of logical circuit design using integrated circuits and breadboards. The experimental device can be made at a low cost and can be used for many subjects such as logical circuits, computer engineering, basic electricity, electrical circuits and electronic circuits. The proposed device is effective to learn the logical circuits than the usual lecture.

  6. Design of Spreading-Codes-Assisted Active Imaging System

    Directory of Open Access Journals (Sweden)

    Alexey Volkov

    2015-07-01

    Full Text Available This work discusses an innovative approach to imaging which can improve the robustness of existing active-range measurement methods and potentially enhance their use in a variety of outdoor applications. By merging a proven modulation technique from the domain of spread-spectrum communications with the bleeding-edge CMOS sensor technology, the prototype of the modulated range sensor is designed and evaluated. A suitable set of application-specific spreading codes is proposed, evaluated and tested on the prototype. Experimental results show that the introduced modulation technique significantly reduces the impacts of environmental factors such as sunlight and external light sources, as well as mutual interference of identical devices. The proposed approach can be considered as a promising basis for a new generation of robust and cost-efficient range-sensing solutions for automotive applications, autonomous vehicles or robots.

  7. Flexible energy-storage devices: design consideration and recent progress.

    Science.gov (United States)

    Wang, Xianfu; Lu, Xihong; Liu, Bin; Chen, Di; Tong, Yexiang; Shen, Guozhen

    2014-07-23

    Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Application range of micro focus radiographic devices associated to image processors

    International Nuclear Information System (INIS)

    Cappabianca, C.; Ferriani, S.; Verre, F.

    1987-01-01

    X-ray devices having a focus area less than 100 μ are called micro focus X-ray equipment. Here the range of application and the characteristics of these devices including the possibility of employing the coupling with real time image enhancement computers are defined

  9. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H Philip

    2017-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  10. Habitable exoplanet imager optical telescope concept design

    Science.gov (United States)

    Stahl, H. Philip

    2017-09-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sunlike stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirroranastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  11. Digital tomosynthesis with an on-board kilovoltage imaging device

    International Nuclear Information System (INIS)

    Godfrey, Devon J.; Yin, F.-F.; Oldham, Mark; Yoo, Sua; Willett, Christopher

    2006-01-01

    Purpose: To generate on-board digital tomosynthesis (DTS) and reference DTS images for three-dimensional image-guided radiation therapy (IGRT) as an alternative to conventional portal imaging or on-board cone-beam computed tomography (CBCT). Methods and Materials: Three clinical cases (prostate, head-and-neck, and liver) were selected to illustrate the capabilities of on-board DTS for IGRT. Corresponding reference DTS images were reconstructed from digitally reconstructed radiographs computed from planning CT image sets. The effect of scan angle on DTS slice thickness was examined by computing the mutual information between coincident CBCT and DTS images, as the DTS scan angle was varied from 0 o to 165 o . A breath-hold DTS acquisition strategy was implemented to remove respiratory motion artifacts. Results: Digital tomosynthesis slices appeared similar to coincident CBCT planes and yielded substantially more anatomic information than either kilovoltage or megavoltage radiographs. Breath-hold DTS acquisition improved soft-tissue visibility by suppressing respiratory motion. Conclusions: Improved bony and soft-tissue visibility in DTS images is likely to improve target localization compared with radiographic verification techniques and might allow for daily localization of a soft-tissue target. Breath-hold DTS is a potential alternative to on-board CBCT for sites prone to respiratory motion

  12. A Study of Residual Image in Charged-Coupled Device

    Directory of Open Access Journals (Sweden)

    Ho Jin

    2005-12-01

    Full Text Available For an image sensor CCD, electrons can be trapped at the front-side Si-SiO_2 surface interface in a case of exceeding the full well by bright source. Residual images can be made by the electrons remaining in the interface. These residual images are seen in the front-side-illuminated CCDs especially. It is not easy to find a quantitative analysis for this phenomenon in the domestic reports, although it is able to contaminate observation data. In this study, we find residual images in dark frames which were obtained from the front-side-illuminated CCD at Mt. Lemmon Optical Astronomy Observatory (LOAO, and analyze the effect to contaminated observation data by residual charges.

  13. Open-Source Medical Devices (OSMD) Design of a Small Animal Radiotherapy System

    Science.gov (United States)

    Prajapati, S.; Mackie, T. R.; Jeraj, R.

    2014-03-01

    Open-Source Medical Devices (OSMD) was initiated with the goal of facilitating medical research by developing medical technologies including both hardware and software on an open-source platform. Our first project was to develop an integrated imaging and radiotherapy device for small animals that includes computed tomography (CT), positron emission tomography (PET) and radiation therapy (RT) modalities for which technical specifications were defined in the first OSMD conference held in Madison, Wisconsin, USA in December 2011. This paper specifically focuses on the development of a small animal RT (micro-RT) system by designing a binary micro multileaf collimator (bmMLC) and a small animal treatment planning system (SATPS) to enable intensity modulated RT (IMRT). Both hardware and software projects are currently under development and their current progresses are described. After the development, both bmMLC and TPS will be validated and commissioned for a micro-RT system. Both hardware design and software development will be open-sourced after completion.

  14. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors

    Science.gov (United States)

    Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si

    2017-10-01

    With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and

  15. Design and development of a device management platform for EAST cryogenic system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhiwei, E-mail: zzw@ipp.ac.cn; Lu, Xiaofei, E-mail: xiaofeilu@ipp.ac.cn; Zhuang, Ming, E-mail: zhm@ipp.ac.cn; Hu, Liangbing, E-mail: huliangbing@ipp.ac.cn; Xia, Genhai, E-mail: xgh@ipp.ac.cn

    2014-05-15

    Highlights: • A device management platform for EAST cryogenic system based on DCS is designed. • This platform enhances the integrity and continuity of system device information. • It can help predictive maintenance and device management decision. - Abstract: EAST cryogenic system is one of the critical sub-systems of the EAST tokamak device. It is a large scale helium cryoplant, which adopts distributed control system to realize monitoring and control of the cryogenic process and devices. However, the maintenance and management of most field devices are still in the corrective maintenance or traditional preventive maintenance stage. Under maintained or over maintained problems widely exist, which could cause devices fault and increase operation costs. Therefore, a device management platform is proposed for a safe and steady operation as well as fault diagnosis and predictive maintenance of EAST cryogenic system. This paper presents the function design and architecture design of the cryogenic device management platform. This platform is developed based on DeltaV DCS and acquires monitoring data through OPC protocol. It consists of three pillars, namely device information management, device condition management, and device performance monitoring. The development and implementation of every pillar are illustrated in detail in this paper. Test results and discussions are presented in the end.

  16. Processes in construction of failure management expert systems from device design information

    Science.gov (United States)

    Malin, Jane T.; Lance, Nick

    1987-01-01

    This paper analyzes the tasks and problem solving methods used by an engineer in constructing a failure management expert system from design information about the device to te diagnosed. An expert test engineer developed a trouble-shooting expert system based on device design information and experience with similar devices, rather than on specific expert knowledge gained from operating the device or troubleshooting its failures. The construction of the expert system was intensively observed and analyzed. This paper characterizes the knowledge, tasks, methods, and design decisions involved in constructing this type of expert system, and makes recommendations concerning tools for aiding and automating construction of such systems.

  17. Design refinement of multilayer optical thin film devices with two optimization techniques

    International Nuclear Information System (INIS)

    Apparao, K.V.S.R.

    1992-01-01

    The design efficiency of two different optimization techniques of designing multilayer optical thin film devices is compared. Ten different devices of varying complexities are chosen as design examples for the comparison. The design refinement efficiency and the design parameter characteristics of all the sample designs obtained with the two techniques are compared. The results of the comparison demonstrate that the new method of design developed using damped least squares technique with indirect derivatives give superior and efficient designs compared to the method developed with direct derivatives. (author). 23 refs., 4 tabs., 14 figs

  18. Monitoring of biofilm formation on different material surfaces of medical devices using hyperspectral imaging method

    Science.gov (United States)

    Kim, Do-Hyun; Kim, Moon S.; Hwang, Jeeseong

    2012-03-01

    Contamination of the inner surface of indwelling (implanted) medical devices by microbial biofilm is a serious problem. Some microbial bacteria such as Escherichia coli form biofilms that lead to potentially lifethreatening infections. Other types of medical devices such as bronchoscopes and duodenoscopes account for the highest number of reported endoscopic infections where microbial biofilm is one of the major causes for these infections. We applied a hyperspectral imaging method to detect biofilm contamination on the surface of several common materials used for medical devices. Such materials include stainless steel, titanium, and stainless-steeltitanium alloy. Potential uses of hyperspectral imaging technique to monitor biofilm attachment to different material surfaces are discussed.

  19. Silicon analog components device design, process integration, characterization, and reliability

    CERN Document Server

    El-Kareh, Badih

    2015-01-01

    This book covers modern analog components, their characteristics, and interactions with process parameters. It serves as a comprehensive guide, addressing both the theoretical and practical aspects of modern silicon devices and the relationship between their electrical properties and processing conditions. Based on the authors’ extensive experience in the development of analog devices, this book is intended for engineers and scientists in semiconductor research, development and manufacturing. The problems at the end of each chapter and the numerous charts, figures and tables also make it appropriate for use as a text in graduate and advanced undergraduate courses in electrical engineering and materials science.

  20. Design Strategies for Efficient Access to Mobile Device Users via Amazon Mechanical Turk

    OpenAIRE

    Jacques, Jason; Kristensson, Per Ola

    2017-01-01

    It is often challenging to access a pool of mobile device users and instruct them to perform an interactive task. Yet such data is often vital to provide design insight at various stages of the design process of a mobile application, service or system. We propose accessing a pool of mobile device users via the microtask market Amazon Mechanical Turk (MTurk). While mobile device users are still a minority on MTurk, they provide unique opportunities for requesters. Not only does catering to mob...

  1. Image-based surveillance and security systems using personal computers for device aiming and digital image comparison

    International Nuclear Information System (INIS)

    Quiett, S.; Axtell, L.H.

    1987-01-01

    A detection-type security system using enhanced capability cameras or other imaging devices can aid in maintaining security from long distance and/or for large areas. To do so requires that the imaging device(s) be repeatedly and accurately positioned so that no areas are overlooked. Digital control using personal computers is the simplest method of achieving positional accuracy. The monitoring of large areas and/or a large number of areas also requires that a substantial quantity of visual information be catalogued and evaluated for potential security problems. While security personnel alone are typically used for such monitoring, as the quantity of visual information increases, the likelihood that potential security threats will be missed also increases. The ability of an image-based security system to detect potential security problems can be further increased with the use of selected image processing techniques. Utilizing personal computers for both imaging device position control as well as image processing, surveillance of large areas can be performed by a limited number of individuals with a high level of system confidence

  2. Evaluation of usefulness of portal image using Electronic Portal Imaging Device (EPID) in the patients who received pelvic radiation therapy

    International Nuclear Information System (INIS)

    Kim, Woo Chul; Kim, Heon Jong; Park, Seong Young; Cho, Young Kap; Loh, John J. K.; Park, Won; Suh, Chang Ok; Kim, Gwi Eon

    1998-01-01

    To evaluate the usefulness of electronic portal imaging device through objective compare of the images acquired using an EPID and a conventional port film. From Apr. to Oct. 1997, a total of 150 sets of images from 20 patients who received radiation therapy in the pelvis area were evaluated in the Inha University Hospital and Severance Hospital. A dual image recording technique was devised to obtain both electronic portal images and port film images simultaneously with one treatment course. We did not perform double exposure. Five to ten images were acquired from each patient. All images were acquired from posteroanterior (PA) view except images from two patients. A dose rate of 100-300 MU/min and a 10-MV X-ray beam were used and 2-10 MUs were required to produce a verification image during treatment. Kodak diagnostic film with metal/film imaging cassette which was located on the top of the EPID detector was used for the port film. The source to detector distance was 140 cm. Eight anatomical landmarks (pelvic brim, sacrum, acetabulum, iliopectineal line, symphysis, ischium, obturator foramen, sacroiliac joint) were assessed. Four radiation oncologist joined to evaluate each image. The individual landmarks in the port film or in the EPID were rated-very clear (1), clear (2), visible (3), notclear (4), not visible (5). Using an video camera based EPID system, there was no difference of image quality between no enhanced EPID images and port film images. However, when we provided some change with window level for the portal image, the visibility of the sacrum and obturator foramen was improved in the portal images than in the port film images. All anatomical landmarks were more visible in the portal images than in the port film when we applied the CLAHE mode enhancement. The images acquired using an matrix ion chamber type EPID were also improved image quality after window level adjustment. The quality of image acquired using an electronic portal imaging device was

  3. Preliminary results on tests of a Cerenkov ring imaging device employing a photoionizing PWC

    Energy Technology Data Exchange (ETDEWEB)

    Durkin, S.; Honma, A.; Leith, D.W.G.S.

    1978-08-01

    A brief description of techniques and problems of ring imaging Cerenkov detectors employing photoionizing PWC's is discussed. Preliminary results on a one dimensional ring imaging device tested at SLAC in May and June of 1978 are then presented. These results include rough measurements of the Cerenkov ring in nitrogen, argon, neon, and helium produced by a collimated positron beam.

  4. Three-dimensional electrokinetic tweezing: device design, modeling, and control algorithms

    International Nuclear Information System (INIS)

    Probst, Roland; Shapiro, Benjamin

    2011-01-01

    We show how to extend electrokinetic tweezing (which can manipulate any visible particles and has more favorable force scaling than optical actuation enabling manipulation of nanoscale objects to nanoscopic precision) from two-dimensional control to the third dimension (3D). A novel and practical multi-layer device is presented that can create both planar and vertical flow and electric field modes. Feedback control algorithms are developed and demonstrated in realistic simulations to show 3D manipulation of one and two particles independently. The design and control results presented here are the essential next step to go from current 2D manipulation capabilities to an experimental demonstration of nano-precise 3D electrokinetic tweezing in a microfluidic system. Doing so requires integration with vision-based nano-precise 3D particle imaging, a capability that has been shown in the literature and which we are now combining with the 3D actuation and control methods demonstrated here. (technical note)

  5. Design and reliability analysis of a novel laser acupuncture device

    Science.gov (United States)

    Pan, Boan; Zhong, Fulin; Zhao, Ke; Li, Ting

    2018-02-01

    Acupuncture has a long history of more than 2000 years in China. However, traditional acupuncture adopts metallic needles which may bring discomfort and pricking to patients. Laser acupuncture (LA) is a non-invasive and painless way to achieve some therapeutic effects. And compared to traditional acupuncture, LA is free from infection. Taking these advantages of LA into consideration, we innovatively developed a portable laser acupuncture device with therapy part and detection part together. Therapy part sends out laser at the wavelength of 650 nm onto special acupoints of patients. And detection part includes integrated light-emitting diode (LED, 735/805/850 nm) and photodiode (OPT101). The detection part is used for the data collection for calculation of hemodynamic parameters based on near-infrared spectroscopy (NIRS). In this work, we carried out current-power test for sensitivity of therapy part. And we also conducted liquid-model optical experiment and arm blocking test for the sensitivity and effectiveness of detection part. The final results demonstrated great potential and reliability of the novel laser acupuncture device. In the future, we will apply this device in clinical applications to verify the effectiveness of the device and improve the reliability for more treatment of diseases.

  6. Design of a novel USB crypto bridge device

    OpenAIRE

    ŞENGÜL, Orhan

    2015-01-01

    Information technologies have emerging use of portable drives. Hence, the readability and security of the content is at great risk in the event that it is lost or stolen. An effective solution to this issue is the use of removable disks in encrypted form. In this paper, a novel USB device that has cryptobridge capability is proposed.

  7. Design and construction of a solar energy tracking device | Ndinechi ...

    African Journals Online (AJOL)

    A solar tracking device using PIC16F873 microcontroller was developed to solve the problem of adjustment of solar panels for optimum solar reception. MPLAB software was used to develop sets of instructions in an assembly language. The choice of PIC16F873 microcontroller stemmed from its flexibility in producing a ...

  8. Designing Mixed Media Devices for support of healthcare professionals

    DEFF Research Database (Denmark)

    Kramp, Gunnar

    2008-01-01

    at tilføje en lokation til et fotografi. I denne afhandling betegnes denne type objekter som Mixed-Media-Devices på grund af deres heterogene natur.   For at Mixed-Media-Devices kan forbinde sig til hinanden, er det nødvendigt med en software arkitektur, som understøtter denne heterogenitet. Ydermere, må......”. Med andre ord, at udvikle den nødvendige software til at kunne orkestrere de fremspirende Mixed-Media-Devices i vores omgivelser. Arbejdet, der ligger til grund for denne afhandling er, blevet til indenfor Palcom projektets rammer.   Palcom projektet koordineres af Datalogi på Århus Universitet...... virkelighedens brugere har Palcom projektet arbejdet med en række indsatsområder som katastrofeindsats, graviditet og barsel, hånd-kirurgi og en neonatal afdeling. Sammen med brugerne fra disse områder er der udviklet en række Mixed-Media-Devices med henblik på at informere om og afprøve den udviklede software...

  9. Positron annihilation imaging device using multiple offset rings of detectors

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1982-01-01

    A means is provided for recording more than one tomographic image simultaneously through different cross-sections of a patient, using positron emission tomography. Separate rings of detectors are used to construct every odd-numbered slice, and coincident events that occur between adjacent rings of detectors provide a center or even-numbered slice. Detector rings are offset with respect to one another by half the angular separation of the detectors, allowing an image to be reconstructed from the central slice without the necessity of physically rotating the detector array while accumulating data

  10. Three-dimensional image acquisition and reconstruction system on a mobile device based on computer-generated integral imaging.

    Science.gov (United States)

    Erdenebat, Munkh-Uchral; Kim, Byeong-Jun; Piao, Yan-Ling; Park, Seo-Yeon; Kwon, Ki-Chul; Piao, Mei-Lan; Yoo, Kwan-Hee; Kim, Nam

    2017-10-01

    A mobile three-dimensional image acquisition and reconstruction system using a computer-generated integral imaging technique is proposed. A depth camera connected to the mobile device acquires the color and depth data of a real object simultaneously, and an elemental image array is generated based on the original three-dimensional information for the object, with lens array specifications input into the mobile device. The three-dimensional visualization of the real object is reconstructed on the mobile display through optical or digital reconstruction methods. The proposed system is implemented successfully and the experimental results certify that the system is an effective and interesting method of displaying real three-dimensional content on a mobile device.

  11. The design of a device for hearer and feeler differentiation, part A. [speech modulated hearing device

    Science.gov (United States)

    Creecy, R.

    1974-01-01

    A speech modulated white noise device is reported that gives the rhythmic characteristics of a speech signal for intelligible reception by deaf persons. The signal is composed of random amplitudes and frequencies as modulated by the speech envelope characteristics of rhythm and stress. Time intensity parameters of speech are conveyed through the vibro-tactile sensation stimuli.

  12. A simple device for the stereoscopic display of 3D CT images

    International Nuclear Information System (INIS)

    Haveri, M.; Suramo, I.; Laehde, S.; Karhula, V.; Junila, J.

    1997-01-01

    We describe a simple device for creating true 3D views of image pairs obtained at 3D CT reconstruction. The device presents the images in a slightly different angle of view for the left and the right eyes. This true 3D viewing technique was applied experimentally in the evaluation of complex acetabular fractures. Experiments were also made to determine the optimal angle between the images for each eye. The angle varied between 1 and 7 for different observers and also depended on the display field of view used. (orig.)

  13. An integral design strategy combining optical system and image processing to obtain high resolution images

    Science.gov (United States)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun

    2016-05-01

    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  14. Using an Elastic Band Device After a Severe Obstetric Pubic Symphyseal Separation: Clinical and Imaging Evaluation.

    Science.gov (United States)

    Lasbleiz, Jeremy; Sevestre, François-Xavier; Moquet, Pierre-Yves

    2017-09-01

    Severe separation of the pubic symphysis is a rare delivery complication. Facing this pathology, we decided to study a new elastic band device. To evaluate the elastic band device, clinical (pain-rated) and imaging (magnetic resonance imaging and radiography) evaluations with and without the device were performed. The elastic band device is a European Conformity-certified medical device, which is made of neoprene straps, that reduces the mobility of the pelvis and the use of the internal rotator muscles. Once the elastic band device was in place, on postpartum day 1, radiography showed a decrease of the pubic width from 41 to 12 mm. Furthermore, pain decreased from 10 of 10 to 2 of 10 in 2 days, allowing the patient to ambulate and avoid surgery. After 1 month, the pubic width (6 mm) and anatomy were recovered but minor pain was still present with hip rotatory movements. The elastic band device was worn 24 hours a day from postpartum days 1-90 and 12 hours a day from postpartum days 90 to 150; afterward, the patient returned to normal life without the elastic band device. Use of an elastic band device was associated with a reduction of the pubic width and pain associated after obstetric pubic symphysis separation.

  15. Features Speech Signature Image Recognition on Mobile Devices

    Directory of Open Access Journals (Sweden)

    Alexander Mikhailovich Alyushin

    2015-12-01

    Full Text Available The algorithms fordynamic spectrograms images recognition, processing and soundspeech signature (SS weredeveloped. The software for mobile phones, thatcan recognize speech signatureswas prepared. The investigation of the SS recognition speed on its boundarytypes was conducted. Recommendations on the boundary types choice in the optimal ratio of recognitionspeed and required space were given.

  16. ClearPEM: prototype PET device dedicated to breast imaging

    CERN Multimedia

    Joao Varela

    2009-01-01

    Clinical trials have begun in Portugal on a new breast imaging system (ClearPEM) using positron emission tomography (PET). The system, developed by a Portuguese consortium in collaboration with CERN and laboratories participating in the Crystal Clear collaboration, will detect even the smallest tumours and thus help avoid unnecessary biopsies.

  17. Raspberry Pi: a 35-dollar device for viewing DICOM images

    Directory of Open Access Journals (Sweden)

    Omir Antunes Paiva

    2014-04-01

    Full Text Available Raspberry Pi is a low-cost computer created with educational purposes. It uses Linux and, most of times, freeware applications, particularly a software for viewing DICOM images. With an external monitor, the supported resolution (1920 × 1200 pixels allows for the set up of simple viewing workstations at a reduced cost.

  18. Computer processing of image captured by the passive THz imaging device as an effective tool for its de-noising

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.; Zhang, Cun-lin; Deng, Chao; Zhao, Yuan-meng; Zhang, Xin

    2012-12-01

    As it is well-known, passive THz imaging devices have big potential for solution of the security problem. Nevertheless, one of the main problems, which take place on the way of using these devices, consists in the low image quality of developed passive THz camera. To change this situation, it is necessary to improve the engineering characteristics (resolution, sensitivity and so on) of the THz camera or to use computer processing of the image. In our opinion, the last issue is more preferable because it is more inexpensive. Below we illustrate possibility of suppression of the noise of the image captured by three THz passive camera developed in CNU (Beijing. China). After applying the computer processing of the image, its quality enhances many times. Achieved quality in many cases becomes enough for the detection of the object hidden under opaque clothes. We stress that the performance of developed computer code is enough high and does not restrict the performance of passive THz imaging device. The obtained results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem. Nevertheless, developing the new spatial filter for treatment of the THz image remains a modern problem at present time.

  19. Design of Passive Acoustic Wave Shaping Devices and Their Experimental Validation

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Sigmund, Ole; Fernandez Grande, Efren

    We discuss a topology optimization based approach for designing passive acoustic wave shaping devices and demonstrate its application to; directional sound emission [1], sound focusing and wave splitting. Optimized devices, numerical and experimental results are presented and benchmarked against...... other designs proposed in the literature. We focus on design problems where the size of the device is on the order of the wavelength, a problematic region for traditional design methods, such as ray tracing.The acoustic optimization problem is formulated in the frequency domain and modeled...

  20. Design and Optimization of Resorbable Silk Internal Fixation Devices

    Science.gov (United States)

    Haas, Dylan S.

    Limitations of current material options for internal fracture fixation devices have resulted in a large gap between user needs and hardware function. Metal systems offer robust mechanical strength and ease of implantation but require secondary surgery for removal and/or result in long-term complications (infection, palpability, sensitivity, etc.). Current resorbable devices eliminate the need for second surgery and long-term complications but are still associated with negative host response as well as limited functionality and more difficult implantation. There is a definitive need for orthopedic hardware that is mechanically capable of immediate fracture stabilization and fracture fixation during healing, can safely biodegrade while allowing complete bone remodeling, can be resterilized for reuse, and is easily implantable (self-tapping). Previous work investigated the use of silk protein to produce resorbable orthopedic hardware for non- load bearing fracture fixation. In this study, silk orthopedic hardware was further investigated and optimized in order to better understand the ability of silk as a fracture fixation system and more closely meet the unfulfilled market needs. Solvent-based and aqueous-based silk processing formulations were cross-linked with methanol to induce beta sheet structure, dried, autoclaved and then machined to the desired device/geometry. Silk hardware was evaluated for dry, hydrated and fatigued (cyclic) mechanical properties, in vitro degradation, resterilization, functionalization with osteoinductive molecules and implantation technique for fracture fixation. Mechanical strength showed minor improvements from previous results, but remains comparable to current resorbable fixation systems with the advantages of self-tapping ability for ease of implantation, full degradation in 10 months, ability to be resterilized and reused, and ability to release molecules for osteoinudction. In vivo assessment confirmed biocompatibility, showed

  1. Controlling Ionic Transport for Device Design in Synthetic Nanopores

    Science.gov (United States)

    Kalman, Eric Boyd

    Polymer nanopores present a number of behaviors not seen in microscale systems, such as ion current rectification, ionic selectivity, size exclusion and potential dependent ion concentrations in and near the pore. The existence of these effects stems from the small size of nanopores with respect to the characteristic length scales of surface interactions at the interface between the nanopore surface and the solution within it. The large surface-to-volume ratio due to the nanoscale geometry of a nanopore, as well as similarity in scale between geometry and interaction demands the solution interact with the nanopore walls. As surfaces in solution almost always carry residual charge, these surface forces are primarily the electrostatic interactions between the charge groups on the pore surface and the ions in solution. These interactions may be used by the experimentalist to control ionic transport through synthetic nanopores, and use them as a template for the construction of devices. In this research, we present our work on creating a number of ionic analogs to seminal electronic devices, specifically diodes, and transistors, by controlling ionic transport through the electrostatic interactions between a single synthetic nanopore and ions. Control is achieved by "doping" the effective charge carrier concentration in specific regions of the nanopore through manipulation of the pore's surface charge. This manipulation occurs through two mechanisms: chemical modification of the surface charge and electrostatic manipulation of the local internal nanopore potential using a gate electrode. Additionally, the innate selectivity of the charged nanopores walls allows for the separation of charges in solution. This well-known effect, which spawns measureable quantities, the streaming potential and current, has been used to create nanoscale water desalination membranes. We attempt to create a device using membranes with large nanopore densities for the desalination of water

  2. Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary

    International Nuclear Information System (INIS)

    Sun, Weiyuan; Liu, Zhiguo; Sun, Tianxi; Peng, Song; Ma, Yongzhong; Ding, Xunliang

    2014-01-01

    A new device using an ellipsoidal single-bounce monocapillary X-ray optics was numerically designed to realize in-line X-ray phase-contrast imaging by using conventional laboratory X-ray source with a large spot. Numerical simulation results validated the effectiveness of the proposed device and approach. The ellipsoidal single-bounce monocapillary X-ray optics had potential applications in the in-line phase contrast imaging with polychromatic X-rays

  3. Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Weiyuan; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-05-11

    A new device using an ellipsoidal single-bounce monocapillary X-ray optics was numerically designed to realize in-line X-ray phase-contrast imaging by using conventional laboratory X-ray source with a large spot. Numerical simulation results validated the effectiveness of the proposed device and approach. The ellipsoidal single-bounce monocapillary X-ray optics had potential applications in the in-line phase contrast imaging with polychromatic X-rays.

  4. Indoor Navigation Design Integrated with Smart Phones and Rfid Devices

    Science.gov (United States)

    Ortakci, Y.; Demiral, E.; Atila, U.; Karas, I. R.

    2015-10-01

    High rise, complex and huge buildings in the cities are almost like a small city with their tens of floors, hundreds of corridors and rooms and passages. Due to size and complexity of these buildings, people need guidance to find their way to the destination in these buildings. In this study, a mobile application is developed to visualize pedestrian's indoor position as 3D in their smartphone and RFID Technology is used to detect the position of pedestrian. While the pedestrian is walking on his/her way on the route, smartphone will guide the pedestrian by displaying the photos of indoor environment on the route. Along the tour, an RFID (Radio-Frequency Identification) device is integrated to the system. The pedestrian will carry the RFID device during his/her tour in the building. The RFID device will send the position data to the server directly in every two seconds periodically. On the other side, the pedestrian will just select the destination point in the mobile application on smartphone and sent the destination point to the server. The shortest path from the pedestrian position to the destination point is found out by the script on the server. This script also sends the environment photo of the first node on the acquired shortest path to the client as an indoor navigation module.

  5. Simplified human thermoregulatory model for designing wearable thermoelectric devices

    Science.gov (United States)

    Wijethunge, Dimuthu; Kim, Donggyu; Kim, Woochul

    2018-02-01

    Research on wearable and implantable devices have become popular with the strong need in market. A precise understanding of the thermal properties of human skin, which are not constant values but vary depending on ambient condition, is required for the development of such devices. In this paper, we present simplified human thermoregulatory model for accurately estimating the thermal properties of the skin without applying rigorous calculations. The proposed model considers a variable blood flow rate through the skin, evaporation functions, and a variable convection heat transfer from the skin surface. In addition, wearable thermoelectric generation (TEG) and refrigeration devices were simulated. We found that deviations of 10-60% can be resulted in estimating TEG performance without considering human thermoregulatory model owing to the fact that thermal resistance of human skin is adapted to ambient condition. Simplicity of the modeling procedure presented in this work could be beneficial for optimizing and predicting the performance of any applications that are directly coupled with skin thermal properties.

  6. Design and construction of engineering test device of a multi-purpose radwaste incineration system

    International Nuclear Information System (INIS)

    Wang Peiyi; Zhou Lianquan; Ma Mingxie; Qiu Mingcai; Yang Liguo; Li Xiaohai; Zhang Xiaobin; Lu Xiaowu; Dong Jingling; Wang Xujin; Li Chuanlian; Yang Baomin

    2002-01-01

    The author describes designs of main un-standard devices, monitoring system and safety system, as well as construction of the engineering system devices for a multi-purpose radwaste incineration system. Un-standard devices include waste crusher, pyrolysis furnace, incinerator furnace, cool stream dilution device and bag filter, etc. The monitoring system mainly includes industrial controlled computer, supported by conventional electrical equipment and instruments. Designs of system safety takes account of containment of radioactive materials fire-prevention, explosion prevention, anti-corrosion, redundance and reservation, emergency system, controlling and electric safety system, etc. Results show that main technological system remains good airtight with leakage ratio at 0.67%

  7. A Maturity Grid Assessment Tool for Environmentally Conscious Design in the Medical Device Industry

    DEFF Research Database (Denmark)

    Moultrie, James; Sutcliffe, Laura Francesca Rose; Maier, Anja

    2016-01-01

    . This intervention tool provides designers and product marketers with insights on how to improve the design of their medical devices and specifically allows consideration of the complex trade-offs between decisions that influence different life-cycle stages. Through the tool, actionable insight is created......The medical device industry is growing increasingly concerned about environmental impact of products. Whilst there are many tools aiming to support environmentally conscious design, they are typically complex to use, demand substantial data collection and are not tailored to the specific needs...... of the medical device sector. This paper reports on the development of a Maturity Grid to address this gap. This novel design tool was developed iteratively through application in five case studies. The tool captures principles of eco-design for medical devices in a simple form, designed to be used by a team...

  8. Device and Circuit Design Challenges in the Digital Subthreshold Region for Ultralow-Power Applications

    Directory of Open Access Journals (Sweden)

    Ramesh Vaddi

    2009-01-01

    Full Text Available In recent years, subthreshold operation has gained a lot of attention due to ultra low-power consumption in applications requiring low to medium performance. It has also been shown that by optimizing the device structure, power consumption of digital subthreshold logic can be further minimized while improving its performance. Therefore, subthreshold circuit design is very promising for future ultra low-energy sensor applications as well as high-performance parallel processing. This paper deals with various device and circuit design challenges associated with the state of the art in optimal digital subthreshold circuit design and reviews device design methodologies and circuit topologies for optimal digital subthreshold operation. This paper identifies the suitable candidates for subthreshold operation at device and circuit levels for optimal subthreshold circuit design and provides an effective roadmap for digital designers interested to work with ultra low-power applications.

  9. Tokamak building-design considerations for a large tokamak device

    International Nuclear Information System (INIS)

    Barrett, R.J.; Thomson, S.L.

    1981-01-01

    Design and construction of a satisfactory tokamak building to support FED appears feasible. Further, a pressure vessel building does not appear necessary to meet the plant safety requirements. Some of the building functions will require safety class systems to assure reliable and safe operation. A rectangular tokamak building has been selected for FED preconceptual design which will be part of the confinement system relying on ventilation and other design features to reduce the consequences and probability of radioactivity release

  10. A new automatic design method to develop multilayer thin film devices for high power laser applications

    International Nuclear Information System (INIS)

    Sahoo, N.K.; Apparao, K.V.S.R.

    1992-01-01

    Optical thin film devices play a major role in many areas of frontier technology like development of various laser systems to the designing of complex and precision optical systems. Design and development of these devices are really challenging when they are meant for high power laser applications. In these cases besides desired optical characteristics, the devices are expected to satisfy a whole range of different needs like high damage threshold, durability etc. In the present work a novel completely automatic design method based on Modified Complex Method has been developed for designing of high power thin film devices. Unlike most of the other methods it does not need any suitable starting design. A quarterwave design is sufficient to start with. If required, it is capable of generating its own starting design. The computer code of the method is very simple to implement. This report discusses this novel automatic design method and presents various practicable output designs generated by it. The relative efficiency of the method along with other powerful methods has been presented while designing a broadband IR antireflection coating. The method is also incorporated with 2D and 3D electric field analysis programmes to produce high damage threshold designs. Some experimental devices developed using such designs are also presented in the report. (author). 36 refs., 41 figs

  11. Improving image reviewing with a new system (Emoss, Memobank and Movicom devices)

    International Nuclear Information System (INIS)

    Wagner, G.; Otto, P.; Gourlez, P.; Taillade, B.

    1991-01-01

    The need is obvious for selecting the relevant images and/or items of information from among the overwhelming amount produced by C/S systems, mainly video cameras. Image reviewing in-field provides timeless while image reviewing at headquarters is used for confirming the validity of the conclusions drawn. There is also, in many cases, a need to improve the quality of the images. The Emoss and Memobank devices developed by Himatom could be the core of this new system, with its optimized digital storage which greatly improves image quality. These devices, which are compatible with existing systems such as MIVS and MUX, have the following advantages: comprehensive storage of scenes is comparable to the video tape recording; intelligent digital storage facilitates in-field reviewing; recoverable disc storage makes it possible to carry out the review at Headquarters; printing of the events helps reviewing. The Emoss and Memobank can be triggered by external information by other systems

  12. Defect engineering: design tools for solid state electrochemical devices

    International Nuclear Information System (INIS)

    Tuller, Harry L.

    2003-01-01

    The interest in solid state electrochemical devices including sensors, fuel cells, batteries, oxygen permeation membranes, etc. has grown rapidly in recent years. Many of the same figures of merit apply to these different applications, the key ones being ionic conduction in solid electrolytes, mixed ionic-electronic conduction (MIEC) in electrodes and permeation membranes, and gas-solid reaction kinetics in sensors and fuel cells. Optimization of device performance often relies on the careful understanding and control of both ionic and electronic defects in the materials that make up the key device components. To date, most materials in use have been discovered serendipitously. A key focus of this paper is on the tools available to scientists and engineers to practice 'defect engineering' for the purpose of optimizing the performance of such materials. Dopants, controlled structural disorder, and interfaces are examined in relation to increasing the conductivity of solid electrolytes. The creation of defect bands is demonstrated as a means for introducing high levels of electronic conductivity into a solid electrolyte for the purpose of creating a mixed conductor and thereby a monolithic fuel cell structure. Dopants are also examined as a means of reducing losses in a high temperature resonant sensor platform. The control of microstructure, down to the nano-scale, is shown capable of inverting the predominant ionic to an electronic charge carrier and thereby markedly modifying electrical properties. Electrochemical bias and light are also discussed in terms of creating defects locally thereby providing means for micromachining a broad range of materials with precise dimensional control, low residual stress and controlled etch rates

  13. Organic structures design applications in optical and electronic devices

    CERN Document Server

    Chow, Tahsin J

    2014-01-01

    ""Presenting an overview of the syntheses and properties of organic molecules and their applications in optical and electronic devices, this book covers aspects concerning theoretical modeling for electron transfer, solution-processed micro- and nanomaterials, donor-acceptor cyclophanes, molecular motors, organogels, polyazaacenes, fluorogenic sensors based on calix[4]arenes, and organic light-emitting diodes. The publication of this book is timely because these topics have become very popular nowadays. The book is definitely an excellent reference for scientists working in these a

  14. Design, fabrication, and evaluation of charge-coupled devices with aluminum-anodized-aluminum gates

    Science.gov (United States)

    Gassaway, J. D.; Causey, W. H., Jr.

    1977-01-01

    A 4-phase, 49 1/2 bit CCD shift register was designed and fabricated using two levels of aluminum metallization with anodic Al2O3 insulation separating the layers. Test circuitry was also designed and constructed. A numerical analysis of an MOS-RC transmission line was made and results are given to characterize performance for various conductivities. The electrical design of the CCD included a low-noise dual-gate input and a balanced floating diffusion output circuit. Metallization was accomplished both by low voltage DC sputtering and thermal evaporation. The audization was according to published procedures using a buffered tartaric acid bath. Approximately 20 wafers were processed with 50 complete chips per wafer. All devices failed by shorting between the metal levels at some point. Experimental procedures eliminated temperature effects from sintering and drying, anodic oxide thickness, edge effects, photoresist stripping procedures, and metallization techniques as the primary causes of failure. It was believed from a study of SEM images that protuberances (hillocks) grow up from the first level metal through the oxide either causing a direct short or producing a weak, highly stressed insulation point which fails at low voltage. The cause of these hillocks is unknown; however, they have been observed to grow during temperature excursions to 470 C.

  15. Design of a Novel Servo-motorized Laser Device for Visual Pathways Diseases Therapy

    Directory of Open Access Journals (Sweden)

    Carlos Ignacio Sarmiento

    2015-12-01

    Full Text Available We discuss a novel servo-motorized laser device and a research protocol for visual pathways diseases therapies. The proposed servo-mechanized laser device can be used for potential rehabilitation of patients with hemianopia, quadrantanopia, scotoma, and some types of cortical damages. The device uses a semi spherical structure where the visual stimulus will be shown inside, according to a previous stimuli therapy designed by an ophthalmologist or neurologist. The device uses a pair of servomotors (with torque=1.5kg, which controls the laser stimuli position for the internal therapy and another pair for external therapy. Using electronic tools such as microcontrollers along with miscellaneous electronic materials, combined with LabVIEW based interface, a control mechanism is developed for the new device. The proposed device is well suited to run various visual stimuli therapies. We outline the major design principles including the physical dimensions, laser device’s kinematical analysis and the corresponding software development.

  16. Design of Hack-Resistant Diabetes Devices and Disclosure of Their Cyber Safety.

    Science.gov (United States)

    Sackner-Bernstein, Jonathan

    2017-03-01

    The focus of the medical device industry and regulatory bodies on cyber security parallels that in other industries, primarily on risk assessment and user education as well as the recognition and response to infiltration. However, transparency of the safety of marketed devices is lacking and developers are not embracing optimal design practices with new devices. Achieving cyber safe diabetes devices: To improve understanding of cyber safety by clinicians and patients, and inform decision making on use practices of medical devices requires disclosure by device manufacturers of the results of their cyber security testing. Furthermore, developers should immediately shift their design processes to deliver better cyber safety, exemplified by use of state of the art encryption, secure operating systems, and memory protections from malware.

  17. X-ray imaging device for one-dimensional and two-dimensional radioscopy

    International Nuclear Information System (INIS)

    1978-01-01

    The X-ray imaging device for the selectable one-dimensional or two-dimensional pictures of objects illuminated by X-rays, comprising an X-ray source, an X-ray screen, and an opto-electrical picture development device placed behind the screen, is characterized by an anamorphotic optical system, which is positioned with a one-dimensional illumination between the X-ray screen and the opto-electrical device and that a two-dimensional illumination will be developed, and that in view of the lens system which forms part of the opto-electrical device, there is placed an X-ray screen in a specified beam direction so that a magnified image may be formed by equalisation of the distance between the X-ray screen and the lens system. (G.C.)

  18. Design of a rotational three-dimensional nonimaging device by a compensated two-dimensional design process.

    Science.gov (United States)

    Yang, Yi; Qian, Ke-Yuan; Luo, Yi

    2006-07-20

    A compensation process has been developed to design rotational three-dimensional (3D) nonimaging devices. By compensating the desired light distribution during a two-dimensional (2D) design process for an extended Lambertian source using a compensation coefficient, the meridian plane of a 3D device with good performance can be obtained. This method is suitable in many cases with fast calculation speed. Solutions to two kinds of optical design problems have been proposed, and the limitation of this compensated 2D design method is discussed.

  19. Datacollection And Fault Tolerant Design Of Iot Devices Over A Distributed Network System

    Directory of Open Access Journals (Sweden)

    Bharadwaj Turlapati

    2017-10-01

    Full Text Available In a world where connecting and communicating with devices have never been more in need The Internet of Things thereby has a demanding need for a strategy of a design to ensure the communication between these devices is reliable maintainable and scalable. Having many permutations and combinations of possibilities of devices and solutions offered to world this paper addresses a solution with a working use case to design the system check for reliability throughput maintainability scalability and address the issues in the current system and how this design will help to overcome those issues.

  20. Efficient red organic electroluminescent devices based on trivalent europium complex obtained by designing the device structure with stepwise energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liang; Jiang, Yunlong; Cui, Rongzhen; Li, Yanan; Zhao, Xuesen; Deng, Ruiping; Zhang, Hongjie, E-mail: hongjie@ciac.ac.cn

    2016-02-15

    In this study, we aim to further enhance the electroluminescence (EL) performances of trivalent europium complex Eu(TTA){sub 3}phen (TTA=thenoyltrifluoroacetone and phen=1,10-phenanthroline) by designing the device structure with stepwise energy levels. The widely used bipolar material 2,6-bis(3-(9H-carbazol-9-yl)phenyl)pyridine (26DCzPPy) was chosen as host material, while the doping concentration of Eu(TTA){sub 3}phen was optimized to be 4%. To facilitate the injection and transport of holes, MoO{sub 3} anode modification layer and 4,4′,4′′-Tris(carbazole-9-yl)triphenylamine (TcTa) hole transport layer were inserted in sequence. Efficient pure red emission with suppressed efficiency roll-off was obtained attributed to the reduction of accumulation holes, the broadening of recombination zone, and the improved balance of holes and electrons on Eu(TTA){sub 3}phen molecules. Finally, the device with 3 nm MoO{sub 3} and 5 nm TcTa obtained the highest brightness of 3278 cd/m{sup 2}, current efficiency of 12.45 cd/A, power efficiency of 11.50 lm/W, and external quantum efficiency of 6.60%. Such a device design strategy helps to improve the EL performances of emitters with low-lying energy levels and provides a chance to simplify device fabrication processes. - Highlights: • Electroluminescent performances of europium complex were further improved. • Device structure with stepwise energy levels was designed. • Better carriers' balance was realized by improving the injection and transport of holes. • The selection of bipolar host caused the broadening of recombination zone.

  1. Implementation of synthetic aperture imaging on a hand-held device

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Kjeldsen, Thomas; Larsen, Lee

    2014-01-01

    -held devices all with different chipsets and a BK Medical UltraView 800 ultrasound scanner emulating a wireless probe. The wireless transmission is benchmarked using an imaging setup consisting of 269 scan lines x 1472 complex samples (1.58 MB pr. frame, 16 frames per second). The measured data throughput...... reached an average of 28.8 MB/s using a LG G2 mobile device, which is more than the required data throughput of 25.3 MB/s. Benchmarking the processing performance for B-mode imaging showed a total processing time of 18.9 ms (53 frames/s), which is less than the acquisition time (62.5 ms).......This paper presents several implementations of Syn- thetic Aperture Sequential Beamforming (SASB) on commer- cially available hand-held devices. The implementations include real-time wireless reception of ultrasound radio frequency sig- nals and GPU processing for B-mode imaging. The proposed...

  2. Role of thermo-physical properties on design and development of thermal plasma devices

    International Nuclear Information System (INIS)

    Ghorui, S.

    2014-01-01

    Thermal plasma devices find wide application in variety of technological areas like cutting, welding, spray coating, waste management, material processing, chemical reduction, nano-synthesis, novel material synthesis etc. Highly non-linear behavior of the plasma properties coupled with inherent instabilities, extremely high temperature, high gradients in thermal, and flow field, presence of thermal and chemical non-equilibrium make design and development of the plasma generating devices a challenging task as power levels of the devices increase

  3. Design and Functional Validation of a Complex Impedance Measurement Device for Characterization of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    De-Cock, Wouter; Cools, Jan; Leroux, Paul

    2013-06-01

    This paper presents the design and practical implementation of a complex impedance measurement device capable of characterization of ultrasonic transducers. The device works in the frequency range used by industrial ultrasonic transducers which is below the measurement range of modern high end network analyzers. The device uses the Goertzel algorithm instead of the more common FFT algorithm to calculate the magnitude and phase component of the impedance under test. A theoretical overview is given followed by a practical approach and measurement results. (authors)

  4. Improvement of design of a surgical interface using an eye tracking device.

    Science.gov (United States)

    Erol Barkana, Duygun; Açık, Alper; Duru, Dilek Goksel; Duru, Adil Deniz

    2014-05-07

    Surgical interfaces are used for helping surgeons in interpretation and quantification of the patient information, and for the presentation of an integrated workflow where all available data are combined to enable optimal treatments. Human factors research provides a systematic approach to design user interfaces with safety, accuracy, satisfaction and comfort. One of the human factors research called user-centered design approach is used to develop a surgical interface for kidney tumor cryoablation. An eye tracking device is used to obtain the best configuration of the developed surgical interface. Surgical interface for kidney tumor cryoablation has been developed considering the four phases of user-centered design approach, which are analysis, design, implementation and deployment. Possible configurations of the surgical interface, which comprise various combinations of menu-based command controls, visual display of multi-modal medical images, 2D and 3D models of the surgical environment, graphical or tabulated information, visual alerts, etc., has been developed. Experiments of a simulated cryoablation of a tumor task have been performed with surgeons to evaluate the proposed surgical interface. Fixation durations and number of fixations at informative regions of the surgical interface have been analyzed, and these data are used to modify the surgical interface. Eye movement data has shown that participants concentrated their attention on informative regions more when the number of displayed Computer Tomography (CT) images has been reduced. Additionally, the time required to complete the kidney tumor cryoablation task by the participants had been decreased with the reduced number of CT images. Furthermore, the fixation durations obtained after the revision of the surgical interface are very close to what is observed in visual search and natural scene perception studies suggesting more efficient and comfortable interaction with the surgical interface. The

  5. Multimodal nanoparticle imaging agents: design and applications

    Science.gov (United States)

    Burke, Benjamin P.; Cawthorne, Christopher; Archibald, Stephen J.

    2017-10-01

    Molecular imaging, where the location of molecules or nanoscale constructs can be tracked in the body to report on disease or biochemical processes, is rapidly expanding to include combined modality or multimodal imaging. No single imaging technique can offer the optimum combination of properties (e.g. resolution, sensitivity, cost, availability). The rapid technological advances in hardware to scan patients, and software to process and fuse images, are pushing the boundaries of novel medical imaging approaches, and hand-in-hand with this is the requirement for advanced and specific multimodal imaging agents. These agents can be detected using a selection from radioisotope, magnetic resonance and optical imaging, among others. Nanoparticles offer great scope in this area as they lend themselves, via facile modification procedures, to act as multifunctional constructs. They have relevance as therapeutics and drug delivery agents that can be tracked by molecular imaging techniques with the particular development of applications in optically guided surgery and as radiosensitizers. There has been a huge amount of research work to produce nanoconstructs for imaging, and the parameters for successful clinical translation and validation of therapeutic applications are now becoming much better understood. It is an exciting time of progress for these agents as their potential is closer to being realized with translation into the clinic. The coming 5-10 years will be critical, as we will see if the predicted improvement in clinical outcomes becomes a reality. Some of the latest advances in combination modality agents are selected and the progression pathway to clinical trials analysed. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  6. PopupCAD: a tool for automated design, fabrication, and analysis of laminate devices

    Science.gov (United States)

    Aukes, Daniel M.; Wood, Robert J.

    2015-05-01

    Recent advances in laminate manufacturing techniques have driven the development of new classes of millimeter-scale sensorized medical devices, robots capable of terrestrial locomotion and sustained flight, and new techniques for sensing and actuation. Recently, the analysis of laminate micro-devices has focused more manufacturability concerns and not on mechanics. Considering the nature of such devices, we draw from existing research in composites, origami kinematics, and finite element methods in order to identify issues related to sequential assembly and self-folding prior to fabrication as well as the stiffness of composite folded systems during operation. These techniques can be useful for understanding how such devices will bend and flex under normal operating conditions, and when added to new design tools like popupCAD, will give designers another means to develop better devices throughout the design process.

  7. Device for forming the image of a radiation source

    International Nuclear Information System (INIS)

    Tosswill, C.H.

    1980-01-01

    An improvement can be made to the space resolution of systems providing the image of a radiation source by means of a slit collimator. In order to do so, a lateral movement of the collimator (with its detectors) is superimposed on the movement of the collimator, in a transversal direction in relation to the transmission direction through the collimator as well as in relation to the walls defining the slits. The total amplitude of the lateral movement is at least equal to the distance between centres of a slit and the following one. In the near field operating system, the lateral movement is a rectilinear movement perpendicular to the walls of the slits. In the distance field operating systems, it is an angular movement about an axis perpendicular to the direction of transmission through the slits [fr

  8. Proof of Concept: Design and Initial Evaluation of a Device to Measure Gastrointestinal Transit Time.

    Science.gov (United States)

    Wagner, Robert H; Savir-Baruch, Bital; Halama, James R; Venu, Mukund; Gabriel, Medhat S; Bova, Davide

    2017-09-01

    Chronic constipation and gastrointestinal motility disorders constitute a large part of a gastroenterology practice and have a significant impact on a patient's quality of life and lifestyle. In most cases, medications are prescribed to alleviate symptoms without there being an objective measurement of response. Commonly used investigations of gastrointestinal transit times are currently limited to radiopaque markers or electronic capsules. Repeated use of these techniques is limited because of the radiation exposure and the significant cost of the devices. We present the proof of concept for a new device to measure gastrointestinal transit time using commonly available and inexpensive materials with only a small amount of radiotracer. Methods: We assembled gelatin capsules containing a 67 Ga-citrate-radiolabeled grain of rice embedded in paraffin for use as a point-source transit device. It was tested for stability in vitro and subsequently was given orally to 4 healthy volunteers and 10 patients with constipation or diarrhea. Imaging was performed at regular intervals until the device was excreted. Results: The device remained intact and visible as a point source in all subjects until excretion. When used along with a diary of bowel movement times and dates, the device could determine the total transit time. The device could be visualized either alone or in combination with a barium small-bowel follow-through study or a gastric emptying study. Conclusion: The use of a point-source transit device for the determination of gastrointestinal transit time is a feasible alternative to other methods. The device is inexpensive and easy to assemble, requires only a small amount of radiotracer, and remains inert throughout the gastrointestinal tract, allowing for accurate determination of gastrointestinal transit time. Further investigation of the device is required to establish optimum imaging parameters and reference values. Measurements of gastrointestinal transit time

  9. Comparative study of low and high aspect ratio devices for ITER design options

    International Nuclear Information System (INIS)

    Sugihara, Masayoshi; Tada, Eisuke; Shimomura, Yasuo; Tsunematsu, Toshihide; Nishio, Satoshi; Nakazato, Toshiko; Murakami, Yoshiki; Koizumi, Koichi

    1992-09-01

    Comparative study on the plasma performance and the engineering characteristics of low and high aspect ratio devices for ITER (International Thermonuclear Experimental Reactor) design option is done to examine quantitatively the expected merit and demerit of high aspect ratio device on steady state operation. Device parameters of aspect ratio A=3 and 4 are chosen based on ITER-power scaling law. Improvement of steady state operation with A=4 is found only moderate. Reduction of stability margin in vertical instability is about 20% and plasma elongation must be decreased from 2 down to about 1.8 to recover this reduction of stability margin with A=4. If such lower elongation is employed, single null divertor configuration should be employed to reduce the capacity of poloidal field system. Detailed 2D divertor code calculation shows that peak heat load per unit area of A=4 device with SN configuration increases compared with A=3 device with DN configuration, contrary to the predictions so far made. Preliminary engineering studies indicate that A=4 device would have less space for handling the in-vessel components and doubled toroidal field magnet weight and winding length, and hence is less desirable when compared with the present ITER design (A=3). Based on these examinations, it is concluded that high aspect ratio device does not have remarkable advantage than low aspect ratio device, and the latter device has similar capability for the prospect of future commercial reactor to the former device. (J.P.N.)

  10. Design principles for HgTe based topological insulator devices

    Science.gov (United States)

    Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Povolotskyi, Michael; Klimeck, Gerhard

    2013-07-01

    The topological insulator properties of CdTe/HgTe/CdTe quantum wells are theoretically studied. The CdTe/HgTe/CdTe quantum well behaves as a topological insulator beyond a critical well width dimension. It is shown that if the barrier (CdTe) and well-region (HgTe) are altered by replacing them with the alloy CdxHg1-xTe of various stoichiometries, the critical width can be changed. The critical quantum well width is shown to depend on temperature, applied stress, growth directions, and external electric fields. Based on these results, a novel device concept is proposed that allows to switch between a normal semiconducting and topological insulator state through application of moderate external electric fields.

  11. The design briefing process matters: a case study on telehealthcare device providers in the UK.

    Science.gov (United States)

    Yang, Fan; Renda, Gianni

    2018-01-23

    The telehealthcare sector has been expanding steadily in the UK. However, confusing, complex and unwieldy designs of telehealthcare devices are at best, less effective than they could be, at worst, they are potentially dangerous to the users. This study investigated the factors within the new product development process that hindered satisfactory product design outcomes, through working collaboratively with a leading provider based in the UK. This study identified that there are too many costly late-stage design changes; a critical and persistent problem area ripe for improvement. The findings from analyzing 30 recent devices, interviewing key stakeholders and observing on-going projects further revealed that one major cause of the issue was poor practice in defining and communicating the product design criteria and requirements. Addressing the characteristics of the telehealthcare industry, such as multiple design commissioners and frequent deployment of design subcontracts, this paper argues that undertaking a robust process of creating the product design brief is the key to improving the outcomes of telehealthcare device design, particularly for the small and medium-sized enterprises dominating the sector. Implications for rehabilitation Product design criteria and requirements are frequently ill-defined and ineffectively communicated to the designers within the processes of developing new telehealthcare devices. The absence of a (robust) process of creating the design brief is the root cause of the identified issues in defining and communicating the design task. Deploying a formal process of creating the product design brief is particularly important for the telehealthcare sector.

  12. SPECIAL ASPECTS OF INITIAL OPTICAL SCHEME SELECTION FOR DESIGN OF NON-IMAGING OPTICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    R. V. Anitropov

    2016-01-01

    system for surgical room was obtained, consisting of three identical domes. The illuminator designed with the use of the proposed methodology showed high energy efficiency (92.3%. Practical Relevance. The results can find application in optical design of non-imaging systems having various functionality, for example, illuminators, concentrators, etc. and can provide import substitution of similar foreign devices. The results can be useful by engineers specializing in the design and/or operation of non-imaging optical systems.

  13. The image acquisition system design of floor grinder

    Science.gov (United States)

    Wang, Yang-jiang; Liu, Wei; Liu, Hui-qin

    2018-01-01

    Based on linear CCD, high resolution image real-time acquisition system serves as designing a set of image acquisition system for floor grinder through the calculation of optical imaging system. The entire image acquisition system can collect images of ground before and after the work of the floor grinder, and the data is transmitted through the Bluetooth system to the computer and compared to realize real-time monitoring of its working condition. The system provides technical support for the design of unmanned ground grinders.

  14. Design and Test of Portable Hyperspectral Imaging Spectrometer

    Directory of Open Access Journals (Sweden)

    Chunbo Zou

    2017-01-01

    Full Text Available We design and implement a portable hyperspectral imaging spectrometer, which has high spectral resolution, high spatial resolution, small volume, and low weight. The flight test has been conducted, and the hyperspectral images are acquired successfully. To achieve high performance, small volume, and regular appearance, an improved Dyson structure is designed and used in the hyperspectral imaging spectrometer. The hyperspectral imaging spectrometer is suitable for the small platform such as CubeSat and UAV (unmanned aerial vehicle, and it is also convenient to use for hyperspectral imaging acquiring in the laboratory and the field.

  15. Pneumatic strength assessment device: design and isometric measurement.

    Science.gov (United States)

    Paulus, David C; Reiser, Raoul F; Troxell, Wade O

    2004-01-01

    In order to load a muscle optimally during resistance exercise, it should be heavily taxed throughout the entire range of motion for that exercise. However, traditional constant resistance squats only tax the lower-extremity muscles to their limits at the "sticking region" or a critical joint configuration of the exercise cycle. Therefore, a linear motion (Smith) exercise machine was modified with pneumatics and appropriate computer control so that it could be capable of adjusting force to control velocity within a repetition of the squat exercise or other exercise performed with the device. Prior to application of this device in a dynamic squat setting, the maximum voluntary isometric force (MVIF) produced over a spectrum of knee angles is needed. This would reveal the sticking region and overall variation in strength capacity. Five incremental knee angles (90, 110, 130, 150, and 170 degrees, where 180 degrees defined full extension) were examined. After obtaining university-approved informed consent, 12 men and 12 women participated in the study. The knee angle was set, and the pneumatic cylinder was pressurized such that the subject could move the barbell slightly but no more than two-centimeters. The peak pressure exerted over a five-second maximum effort interval was recorded at each knee angle in random order and then repeated. The average of both efforts was then utilized for further analysis. The sticking region occurred consistently at a 90 degrees knee angle, however, the maximum force produced varied between 110 degrees and 170 degrees with the greatest frequency at 150 degrees for both men and women. The percent difference between the maximum and minimum MVIF was 46% for men and 57% for women.

  16. The Pitfalls of Mobile Devices in Learning: A Different View and Implications for Pedagogical Design

    Science.gov (United States)

    Ting, Yu-Liang

    2012-01-01

    Studies have been devoted to the design, implementation, and evaluation of mobile learning in practice. A common issue among students' responses toward this type of learning concerns the pitfalls of mobile devices, including small screen, limited input options, and low computational power. As a result, mobile devices are not always perceived by…

  17. Characterization of a direct detection device imaging camera for transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Milazzo, Anna-Clare, E-mail: amilazzo@ncmir.ucsd.edu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Moldovan, Grigore [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lanman, Jason [Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037 (United States); Jin, Liang; Bouwer, James C. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Klienfelder, Stuart [University of California at Irvine, Irvine, CA 92697 (United States); Peltier, Steven T.; Ellisman, Mark H. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Xuong, Nguyen-Huu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States)

    2010-06-15

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  18. Characterization of a direct detection device imaging camera for transmission electron microscopy

    International Nuclear Information System (INIS)

    Milazzo, Anna-Clare; Moldovan, Grigore; Lanman, Jason; Jin, Liang; Bouwer, James C.; Klienfelder, Stuart; Peltier, Steven T.; Ellisman, Mark H.; Kirkland, Angus I.; Xuong, Nguyen-Huu

    2010-01-01

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  19. Design of a SIP device cooperation system on OSGi service platforms

    Science.gov (United States)

    Takayama, Youji; Koita, Takahiro; Sato, Kenya

    2007-12-01

    Home networks feature such various technologies as protocols, specifications, and middleware, including HTTP, UPnP, and Jini. A service platform is required to handle such technologies to enable them to cooperate with different devices. The OSGi service platform, which meets the requirements based on service-oriented architecture, is designed and standardized by OSGi Alliance and consists of two parts: one OSGi Framework and bundles. On the OSGi service platform, APIs are defined as services that can handle these technologies and are implemented in the bundle. By using the OSGi Framework with bundles, various technologies can cooperate with each other. On the other hand, in IP networks, Session Initiation Protocol (SIP) is often used in device cooperation services to resolve an IP address, control a session between two or more devices, and easily exchange the statuses of devices. However, since many existing devices do not correspond to SIP, it cannot be used for device cooperation services. A device that does not correspond to SIP is called an unSIP device. This paper proposes and implements a prototype system that enables unSIP devices to correspond to SIP. For unSIP devices, the proposed system provides device cooperation services with SIP.

  20. Architectural design and analysis of a programmable image processor

    International Nuclear Information System (INIS)

    Siyal, M.Y.; Chowdhry, B.S.; Rajput, A.Q.K.

    2003-01-01

    In this paper we present an architectural design and analysis of a programmable image processor, nicknamed Snake. The processor was designed with a high degree of parallelism to speed up a range of image processing operations. Data parallelism found in array processors has been included into the architecture of the proposed processor. The implementation of commonly used image processing algorithms and their performance evaluation are also discussed. The performance of Snake is also compared with other types of processor architectures. (author)

  1. Magnetic resonance imaging of implantable cardiac rhythm devices at 3.0 tesla.

    Science.gov (United States)

    Gimbel, J Rod

    2008-07-01

    A relaxation of the prohibition of scanning cardiac rhythm device patients is underway, largely because of the growing experience of safe scanning events at 1.5T. Magnetic resonance imaging (MRI) at 3T is becoming more common and may pose a different risk profile and outcome of MRI of cardiac device patients. No restrictions were placed on pacemaker dependency, region scanned, device type, or manufacturer. Sixteen scans at 3T were performed with an electrophysiologist present on 14 patients with a variety of devices from various manufacturers. An "MRI-S" strategy was used. Multimodal monitoring was required. Device interrogation was performed prior to, immediately after, and 1-3 months after the MRI. For nonpacemaker-dependent device patients, attempts were made to turn all device features off (with OOO programming the goal) conceptually rendering the device "invisible." In pacemaker-dependent patients, the device was programmed to asynchronous mode at highest output for the duration of the scan with the goal of rendering the device conceptually "invulnerable" to MRI effects. The specific absorption rate (SAR) was limited to 2W/kg. All patients were successfully scanned. No arrhythmias were noted. No significant change in the programmed parameters, pacing thresholds, sensing, impedance, or battery parameters was noted. The insertable loop recorder (ILR) recorded prolonged artifactual asystole during MRI. One patient noted chest burning during the scan. Device patients may undergo carefully tailored 3T MRI scans when pre-MRI reprogramming of the device occurs in conjunction with extensive monitoring, supervision, and follow-up.

  2. 75 FR 47819 - Workshop on Optimizing Clinical Trial Design for the Development of Pediatric Cardiovascular Devices

    Science.gov (United States)

    2010-08-09

    ... unmet need. The marketing approval of more cardiovascular devices specifically designed and/or labeled... particular patient population. After each section there will be an audience question and answer session and...

  3. Integration of human factors and ergonomics during medical device design and development: it's all about communication.

    Science.gov (United States)

    Vincent, Christopher James; Li, Yunqiu; Blandford, Ann

    2014-05-01

    Manufacturers of interactive medical devices, such as infusion pumps, need to ensure that devices minimise the risk of unintended harm during use. However, development teams face challenges in incorporating Human Factors. The aim of the research reported here was to better understand the constraints under which medical device design and development take place. We report the results of a qualitative study based on 19 semi-structured interviews with professionals involved in the design, development and deployment of interactive medical devices. A thematic analysis was conducted. Multiple barriers to designing for safety and usability were identified. In particular, we identified barriers to communication both between the development organisation and the intended users and between different teams within the development organisation. We propose the use of mediating representations. Artefacts such as personas and scenarios, known to provide integration across multiple perspectives, are an essential component of designing for safety and usability. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Design and Development of a Portable WiFi enabled BIA device

    International Nuclear Information System (INIS)

    Kriz'aj, D; Baloh, M; Zagar, T; Brajkovic, R

    2013-01-01

    A bioimpedance device (BIA) for evaluation of sarcopenia – age related muscle mass loss – is designed, developed and evaluated. The requirements were based on lightweight design, flexible and user enabled incorporation of measurement protocols and WiFi protocol for remote device control, full internet integration and fast development and usage of measurement protocols. The current design is based on usage of a microcontroller with integrated AD/DA converters. The prototype system was assembled and the operation and connectivity to different handheld devices and laptop computers was successfully tested. The designed BIA device can be accessed using TCP sockets and once the connection is established the data transfer runs successfully at the specified speed. The accuracy of currently developed prototype is about 5% for the impedance modulus and 5 deg. for the phase for the frequencies below 20 kHz with an unfiltered excitation signal and no additional amplifiers employed.

  5. Sub Tenth Micron CMOS Devices - A Demonstration of the Virtual Factory Approach to New Structure Design

    National Research Council Canada - National Science Library

    Plummer, James L

    1995-01-01

    ...'. This project is exploring the use of advanced TCAD simulation tools to design a candidate 21st century MOS device - a fully-depleted surrounding gate vertical MOSFET with self-aligned drain contact...

  6. PHASAR-based WDM-devices: principles, design and applications

    NARCIS (Netherlands)

    Smit, M.K.; Dam, van C.

    1996-01-01

    Wavelength multiplexers, demultiplexers and routers based on optical phased arrays play a key role in multiwavelength telecommunication links and networks. In this paper, a detailed description of phased-array operation and design is presented and an overview is given of the most important

  7. Design, fabrication and SNOM investigation of plasmonic devices

    DEFF Research Database (Denmark)

    Malureanu, Radu; Zenin, Vladimir A.; Andryieuski, Andrei

    2016-01-01

    Surface plasmon-polaritons are a possible solution for on-chip transportation and manipulation of information. Although there are several possibilities for designing the plasmonic waveguides, the two major caveats for all of them are the coupling to/from external sources and the losses they exhib...

  8. Mechanical design optimization of bioabsorbable fixation devices for bone fractures.

    Science.gov (United States)

    Lovald, Scott T; Khraishi, Tariq; Wagner, Jon; Baack, Bret

    2009-03-01

    Bioabsorbable bone plates can eliminate the necessity for a permanent implant when used to fixate fractures of the human mandible. They are currently not in widespread use because of the low strength of the materials and the requisite large volume of the resulting bone plate. The aim of the current study was to discover a minimally invasive bioabsorbable bone plate design that can provide the same mechanical stability as a standard titanium bone plate. A finite element model of a mandible with a fracture in the body region is subjected to bite loads that are common to patients postsurgery. The model is used first to determine benchmark stress and strain values for a titanium plate. These values are then set as the limits within which the bioabsorbable bone plate must comply. The model is then modified to consider a bone plate made of the polymer poly-L/DL-lactide 70/30. An optimization routine is run to determine the smallest volume of bioabsorbable bone plate that can perform and a titanium bone plate when fixating fractures of this considered type. Two design parameters are varied for the bone plate design during the optimization analysis. The analysis determined that a strut style poly-L-lactide-co-DL-lactide plate of 690 mm2 can provide as much mechanical stability as a similar titanium design structure of 172 mm2. The model has determined a bioabsorbable bone plate design that is as strong as a titanium plate when fixating fractures of the load-bearing mandible. This is an intriguing outcome, considering that the polymer material has only 6% of the stiffness of titanium.

  9. Design and test of 4πβ-γ coincidence measurement device based on DSP technology

    International Nuclear Information System (INIS)

    Zeng Herong; Feng Qijie; Leng Jun; Qian Dazhi; Bai Lixin; Zhang Yiyun

    2012-01-01

    The paper illustrates the hardware and software of the 4πβ-γ coincidence measurement device based on DSP technology in detail. In such device, the single-channel analyzer, gate generator, coincidence circuit and scalar in the traditional coincidence measurement device are replaced by the digital coincidence acquirer which is researched and manufactured by ourselves. Doing so, the measurement efficiency will be respectively improved, and the hardware cost will be lowered. The comparison experiment shows that the design of such device is a success. (authors)

  10. Application of Devices and Systems Designed for Power Quality Monitoring and Assessment

    Directory of Open Access Journals (Sweden)

    Wiesław Gil

    2014-03-01

    Full Text Available The paper presents the problems associated with increasing demands on the equipment and systems for power quality assessment (PQ, installed at power substations. Difficulties are signaled due to current lack of standards defining the test methodology of measuring devices. The necessary device properties and the structure of a large system operated in real time and designed to assess the PQ are discussed. The usefulness of multi-channel analyzers featuring the identification and registration of transients is pointed out. The desirability of synchrophasor assessment implementation and device integration by standard PN-EN 61850 with other SAS devices is also justified.

  11. Optimization of flexible substrate by gradient elastic modulus design for performance improvement of flexible electronic devices

    Science.gov (United States)

    Xia, Minggang; Liang, Chunping; Hu, Ruixue; Cheng, Zhaofang; Liu, Shiru; Zhang, Shengli

    2018-05-01

    It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.

  12. Estimation of four-dimensional dose distribution using electronic portal imaging device in radiation therapy

    International Nuclear Information System (INIS)

    Mizoguchi, Asumi; Arimura, Hidetaka; Shioyama, Yoshiyuki

    2013-01-01

    We are developing a method to evaluate four-dimensional radiation dose distribution in a patient body based upon the animated image of EPID (electronic portal imaging device) which is an image of beam-direction at the irradiation. In the first place, we have obtained the image of the dose which is emitted from patient body at therapy planning using therapy planning CT image and dose evaluation algorism. In the second place, we have estimated the emission dose image at the irradiation using EPID animated image which is obtained at the irradiation. In the third place, we have got an affine transformation matrix including respiratory movement in the body by performing linear registration on the emission dose image at therapy planning to get the one at the irradiation. In the fourth place, we have applied the affine transformation matrix on the therapy planning CT image and estimated the CT image 'at irradiation'. Finally we have evaluated four-dimensional dose distribution by calculating dose distribution in the CT image 'at irradiation' which has been estimated for each frame of the EPID animated-image. This scheme may be useful for evaluating therapy results and risk management. (author)

  13. Features and limitations of mobile tablet devices for viewing radiological images.

    Science.gov (United States)

    Grunert, J H

    2015-03-01

    Mobile radiological image display systems are becoming increasingly common, necessitating a comparison of the features of these systems, specifically the operating system employed, connection to stationary PACS, data security and rang of image display and image analysis functions. In the fall of 2013, a total of 17 PACS suppliers were surveyed regarding the technical features of 18 mobile radiological image display systems using a standardized questionnaire. The study also examined to what extent the technical specifications of the mobile image display systems satisfy the provisions of the Germany Medical Devices Act as well as the provisions of the German X-ray ordinance (RöV). There are clear differences in terms of how the mobile systems connected to the stationary PACS. Web-based solutions allow the mobile image display systems to function independently of their operating systems. The examined systems differed very little in terms of image display and image analysis functions. Mobile image display systems complement stationary PACS and can be used to view images. The impacts of the new quality assurance guidelines (QS-RL) as well as the upcoming new standard DIN 6868 - 157 on the acceptance testing of mobile image display units for the purpose of image evaluation are discussed. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Evaluation of set-of errors in pelvic irradiation with electronic portal imaging device

    International Nuclear Information System (INIS)

    Wu Xiaoying; Zhang Zhen; Wang Wenchao; Ren Jun; Guo Xiaomei; Lu Huizhong

    2007-01-01

    Objective: Evaluate the systematic and random set-up error in the pelvic irradiation u- sing electronic portal imaging device(EPID) to provide institution-specific margin for PTV design in pelvic cancer treatment planning with 3D conformal therapy and/or IMRT. Methods: From May to August 2005, twelve patients who received pelvic irradiation, were involved in this study. CT simulations were performed and DRRs were generated as the reference images. Ant-post and lateral portal images were taken daily, and total of 244 sets of EPID images were collected for the whole group. The translational shifts along right-left, superior-inferior and anterior-posterior directions were calculated with aligning the pelvic bony structures on the DRRs and electronic portal images. The systematic and random setup errors were evaluated based on the 244 sets of data. PTV margin was assessed assuming target rotation was negligible. Results: In the right- left (R-L), superior-inferior (S-I) and anterior-posterior (A-P) directions, the maximum shifts were 9.9, 14.0 and 21.1 mm and the systematic setup errors were 0.5, 0.2 and 2.3 mm respectively. For all 244 sets of data in this study, the frequency of the shift larger than 10 mm were 0% (R-L), 1% (S-I) and 3% (A -P); and in R-L and S-I direction, 92% and 91% of the times the shift was smaller than 5 mm. However, only 79% of the times the A-P shift was less than 5 mm. Conclusions: It is suggested in this study that in order to achieve a target coverage of better than 95% of the times throughout the pelvic irradiation in our institution, a 5 mm PTV margin in right-left and superior-inferior directions is required, however, the anterior-posterior margin needs to be increased to at least 10 mm. One needs to be cautious though when applying the PTV margin derived from small sample of patient population to individual patient. (authors)

  15. Design and testing of an innovative solar radiation measurement device

    International Nuclear Information System (INIS)

    Badran, Omar; Al-Salaymeh, Ahmed; El-Tous, Yousif; Abdala, Wasfi

    2010-01-01

    After review of studies conducted on the solar radiation measuring systems, a new innovative instrument that would help in measuring the accurate solar radiation on horizontal surfaces has been designed and tested. An advanced instrument with ease of use and high precision that would enable the user to take the readings in terms of solar intensity (W/m 2 ) has been tested. Also, the innovative instrument can record instantaneous readings of the solar intensities as well as the averages value of the solar radiation flux during certain periods of time. The instrument based in its design on being programmed by programmable interfacing controller (PIC). Furthermore, the power supply circuit is fed by the solar energy cells and does not need an external power source.

  16. Design and fabrication of an energy-harvesting device using vibration absorber

    Science.gov (United States)

    Heidari, Hamidreza; Afifi, Arash

    2017-05-01

    Energy-harvesting devices collect energy that is being wasted and convert to the electrical energy. For this reason, this type of devices is considered as a convenient alternative to traditional batteries. In this paper, experimental examinations were performed to investigate the application of harvesting device for the reduction of the vibration amplitude in a vibration system and also increase the efficiency of energy-harvesting device. This study focuses on the energy-harvesting device as both producing electrical device and a vibration disabled absorber. In this regard, a motion-based energy-harvesting device is designed to produce electrical energy and also eliminate vibrations of a two joint-end beam which is located under the harmonic excitation force. Then, the governing equations of the forced motion on the main beam are derived and energy-harvesting system are simulated. In addition, the system designed by MATLAB simulation is explained and its results are expressed. Finally, a prototype of the system was made and the ability of the energy-harvesting device to absorb the original system vibrations, as well as parameters impact on the efficiency of energy harvesting is investigated. Experimental results show that the energy-harvesting device, in addition to producing electric current with a maximum value of 1.5V, reduces 94% of the original system vibrations.

  17. Design and Integration of Wearable Devices in Textiles

    Directory of Open Access Journals (Sweden)

    Isabel G. TRINDADE

    2014-12-01

    Full Text Available In this article, the design, production method, integration and characterization of textile sensors for the continuous monitoring of cardiac and respiration vital signals are presented. Textile electrodes, capacitive and piezoresistive sensors and respective interconnect plate were developed and integrated in elastic and adjustable chest bands, using a 6-needle digital embroidery machine and electrically conductive commercial threads. The signal's waveforms were recorded via PC with a data acquisition module and a LabView program. The signal to noise ratio of textile electrodes, having distinctive surface morphologies, that were either textured or smooth accordingly with the embroidery pattern used, were analyzed with Matlab. The quantitative method indicated differences between the two types of textile electrodes but performances comparable to standard Ag/AgCl gel electrodes. The sensors and interconnect plate were fully realized with the embroidery stitching method with textile fabrics and threads, and have a compact design, are lightweight and washable. The method offers great versatility for custom demand, in terms of sensor design and materials.

  18. Ignitor electrode system design for the pulses electron irradiators device

    International Nuclear Information System (INIS)

    Lely Susita RM; Ihwanul Aziz

    2016-01-01

    The designed ignitor electrode system is a system used to initiate the plasma discharge. It consists of two pieces which are placed on both side of the plasma vessel. Each of the ignitor electrode system consists of a cathode, an anode and insulator between the cathode and the anode. The best cathode material for ignitor electrode system is Mg due to its lowest ion erosion rate (γi =11.7 μg/C) and its low cohesive energy (1.51 eV). The specifications of ignitor electrode system designed for the pulse electron irradiators is as follow: Mg cathode materials in the form of rod having a diameter of 6.35 mm and length of 76.75 mm. Anode material are made of non magnetic of SS 304 cylinder shaped with an outer diameter of 88.53 mm, an inner diameter of 81.53 mm and a thickness of 3.50 mm. Insulating material between the cathode and the anode is made of teflon cylinder shaped, outer diameter of 9.50 mm, an inner diameter of 6.35 mm and a length of 30 mm. Based on the ignitor electrode system design, the next step is construction and function test of the ignitor electrode system. (author)

  19. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    Science.gov (United States)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  20. Double Image Design in Newspaper Production

    Directory of Open Access Journals (Sweden)

    Mario Barišić

    2010-01-01

    Full Text Available In the high circulation production of daily newspapers, a double image, double information is set under the rules of Infraredesign theory (Pap et al, 2010. The management of visible and near infrared is posted with process colors for color setting configured for conventional newspaper print. The place of imprint that has delimited information in vs (Visible Spectrum and nir (Near InfraRed is called “a print with an infrared effect,” or conditionally “a print with infrared colors.” Daily newspapers, as massive carriers of information made by printing technique, are receiving a new form of presentation: printed image with a built-in invisible image.

  1. Medical chilling device designed for hypothermic hydration graft storage system: Design, thermohydrodynamic modeling, and preliminary testing

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung Hwan [Hongik University, Seoul (Korea, Republic of)

    2015-02-15

    Hypothermic hydration graft storage is essential to reduce the metabolic demand of cells in vitro. The alleviated metabolic demands reduce the emergence rate of anaerobic metabolism generating adenosine triphosphate (ATP) energy that creates free radicals. The cessive free radicals can damage cells and tissues due to their highly oxidative power with molecules. Current cooling systems such as a conventional air cooling system and an ice pack system are inappropriate for chilling cell tissues in vitro because of inconvenience in use and inconsistent temperature sustainability caused by large size and progressive melting, respectively. Here, we develop a medical chilling device (MCD) for hypothermic hydration graft storage based on thermo-hydrodynamic modeling and thermal electric cooling technology. Our analysis of obtained hydrodynamic thermal behavior of the MCD revealed that the hypothermic condition of 4 .deg. C was continuously maintained, which increased the survival rates of cells in vitro test by reduced free radicals. The validated performance of the MCD promises future development of an optimal hypothermic hydration graft storage system designed for clinical use.

  2. Cervical external immobilization devices: evaluation of magnetic resonance imaging issues at 3.0 Tesla.

    Science.gov (United States)

    Diaz, Francis L; Tweardy, Lisa; Shellock, Frank G

    2010-02-15

    Laboratory investigation, ex vivo. Currently, no studies have addressed the magnetic resonance imaging (MRI) issues for cervical external immobilization devices at 3-Tesla. Under certain conditions significant heating may occur, resulting in patient burns. Furthermore, artifacts can be substantial and prevent the diagnostic use of MRI. Therefore, the objective of this investigation was to evaluate MRI issues for 4 different cervical external immobilization devices at 3-Tesla. Excessive heating and substantial artifacts are 2 potential complications associated with performing MRI at 3-Tesla in patients with cervical external immobilization devices. Using ex vivo testing techniques, MRI-related heating and artifacts were evaluated for 4 different cervical devices during MRI at 3-Tesla. Four cervical external immobilization devices (Generation 80, Resolve Ring and Superstructure, Resolve Ring and Jerome Vest/Jerome Superstructure, and the V1 Halo System; Ossur Americas, Aliso Viejo, CA) underwent MRI testing at 3-Tesla. All devices were made from nonmetallic or nonmagnetic materials. Heating was determined using a gelled-saline-filled skull phantom with fluoroptic thermometry probes attached to the skull pins. MRI was performed at 3-Tesla, using a high level of RF energy. Artifacts were assessed at 3-Tesla, using standard cervical imaging techniques. The Generation 80 and V1 Halo devices exhibited substantial temperature rises (11.6 degrees C and 8.5 degrees C, respectively), with "sparking" evident for the Generation 80 during the MRI procedure. Artifacts were problematic for these devices, as well. By comparison, the 2 Resolve Ring-based cervical external immobilization devices showed little or no heating (Tesla.

  3. Design of a terahertz CW photomixer based on PIN and superlattice PIN devices

    DEFF Research Database (Denmark)

    Krozer, Viktor; Eichhorn, Finn

    2006-01-01

    We present the design of a photomixer LO based on standard and superlattice PIN diodes, operating at 1 THz. The design is based on a direct integration of a double slot antenna with the PIN device and a suitable matching circuit. The antenna has been designed together with a dielectric lens using...... Ansoft HFSS EM simulation. The large-signal PIN diode model employed in the work has been improved compared to our previously developed model presented earlier in a 3 THz design. We demonstrate that the antenna characteristic changes drastically with the device in place....

  4. Microstructure devices for process intensification: Influence of manufacturing tolerances and design

    International Nuclear Information System (INIS)

    Brandner, Juergen J.

    2013-01-01

    Process intensification by miniaturization is a common task for several fields of technology. Starting from manufacturing of electronic devices, miniaturization with the accompanying opportunities and problems gained also interest in chemistry and chemical process engineering. While the integration of enhanced functions, e.g. integrated sensors and actuators, is still under consideration, miniaturization itself has been realized in all material classes, namely metals, ceramics and polymers. First devices have been manufactured by scaling down macro-scale devices. However, manufacturing tolerances, material properties and design show much larger influence to the process than in macro scale. Many of the devices generated alike the macro ones work properly, but possibly could be optimized to a certain extend by adjusting the design and manufacturing tolerances to the special demands of miniaturization. Thus, some considerations on the design and production of devices for micro process engineering should be made to provide devices which show reproducible and controllable process behavior. The aim of the following publication is to show the importance of considerations in manufacturing tolerances and dimensions as well as design of microstructures to avoid negative influences and optimize the process characteristics of miniaturized devices. Some examples will be shown to explain the considerations presented here

  5. Design and application of a small size SAFT imaging system for concrete structure

    Science.gov (United States)

    Shao, Zhixue; Shi, Lihua; Shao, Zhe; Cai, Jian

    2011-07-01

    A method of ultrasonic imaging detection is presented for quick non-destructive testing (NDT) of concrete structures using synthesized aperture focusing technology (SAFT). A low cost ultrasonic sensor array consisting of 12 market available low frequency ultrasonic transducers is designed and manufactured. A channel compensation method is proposed to improve the consistency of different transducers. The controlling devices for array scan as well as the virtual instrument for SAFT imaging are designed. In the coarse scan mode with the scan step of 50 mm, the system can quickly give an image display of a cross section of 600 mm (L) × 300 mm (D) by one measurement. In the refined scan model, the system can reduce the scan step and give an image display of the same cross section by moving the sensor array several times. Experiments on staircase specimen, concrete slab with embedded target, and building floor with underground pipe line all verify the efficiency of the proposed method.

  6. Magnetic circuit design of magnetically driving gliding arc discharge device

    International Nuclear Information System (INIS)

    Jiang Zhonghe; Liu Minghai; Gu Chenglin; Pan Yuan

    2002-01-01

    A gliding arc discharge driven by magnetic field at atmospheric pressure can generate non-equilibrium plasma with good confinement property, and has extensive application in the areas of microelectronic fabrication, environmental engineering, etc. The magnetic circuit of the generator is designed with the permeance method, and analytic expression is obtained on the magnetic induction, the permeant magnetic material thickness and length of air gap. The results have been compared with those of the finite element method, the difference is 3.1%. But the permeance method is more concise and convenient and more universal and economical. So the permeance method is a more credible and useful engineering arithmetic

  7. A Novel Automatic Phase Selection Device: Design and Optimization

    Science.gov (United States)

    Zhang, Feng; Li, Haitao; Li, Na; Zhang, Nan; Lv, Wei; Cui, Xiaojiang

    2018-01-01

    At present, AICD completion is an effective way to slow down the bottom water cone. Effective extension of the period without water production. According on the basis of investigating the AICD both at home and abroad, this paper designed a new type of AICD, and with the help of fluid numerical simulation software, the internal flow field was analysed, and its structure is optimized. The simulation results show that the tool can restrict the flow of water well, and the flow of oil is less.

  8. Possible way for increasing the quality of imaging from THz passive device

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Deng, Chao; Zhao, Yuan-meng; Zhang, Cun-lin; Zhang, Xin

    2011-11-01

    Using the passive THz imaging system developed by the CNU-THz laboratory, we capture the passive THz image of human body with forbidden objects hidden under opaque clothes. We demonstrate the possibility of significant improving the quality of the image. Our approach bases on the application of spatial filters, developed by us for computer treatment of passive THz imaging. The THz imaging system is constructed with accordance to well known passive THz imaging principles and to the THz quasi-optical theory. It contains a scanning mechanism, which has a detector approximately with 1200μm central wavelength, a data acquisition card and a microcomputer. To get a clear imaging of object we apply a sequence of the spatial filters to the image and spectral transforms of the image. The treatment of imaging from the passive THz device is made by computer code. The performance time of treatment of the image, containing about 5000 pixels, is less than 0.1 second. To illustrate the efficiency of developed approach we detect the liquid explosive, knife, pistol and metal plate hidden under opaque clothes. The results obtained demonstrate the high efficiency of our approach for the detection and recognition of the hidden objects and are very promising for the real security application.

  9. Guide-09-1998. Quality control of darkrooms and image display devices

    International Nuclear Information System (INIS)

    2015-01-01

    This guide is applicable to process darkrooms relieved and receiving devices and image displays. A number of methods which require the appointed instrumentation described, some of which can be implemented in own radiology services in the country given the low complexity of themselves and others that require specific equipment and can be performed by specialized groups external to these units.

  10. Detection of fecal contamination on beef meat surfaces using handheld fluorescence imaging device (HFID)

    Science.gov (United States)

    Oh, Mirae; Lee, Hoonsoo; Cho, Hyunjeong; Moon, Sang-Ho; Kim, Eun-Kyung; Kim, Moon S.

    2016-05-01

    Current meat inspection in slaughter plants, for food safety and quality attributes including potential fecal contamination, is conducted through by visual examination human inspectors. A handheld fluorescence-based imaging device (HFID) was developed to be an assistive tool for human inspectors by highlighting contaminated food and food contact surfaces on a display monitor. It can be used under ambient lighting conditions in food processing plants. Critical components of the imaging device includes four 405-nm 10-W LEDs for fluorescence excitation, a charge-coupled device (CCD) camera, optical filter (670 nm used for this study), and Wi-Fi transmitter for broadcasting real-time video/images to monitoring devices such as smartphone and tablet. This study aimed to investigate the effectiveness of HFID in enhancing visual detection of fecal contamination on red meat, fat, and bone surfaces of beef under varying ambient luminous intensities (0, 10, 30, 50 and 70 foot-candles). Overall, diluted feces on fat, red meat and bone areas of beef surfaces were detectable in the 670-nm single-band fluorescence images when using the HFID under 0 to 50 foot-candle ambient lighting.

  11. 77 FR 11588 - Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof

    Science.gov (United States)

    2012-02-27

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-831] Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof AGENCY: U.S. International Trade Commission... Trade Commission on January 10, 2012, under section 337 of the Tariff Act of 1930, as amended, 19 U.S.C...

  12. 75 FR 39971 - In the Matter of Certain Electronic Imaging Devices; Notice of Investigation

    Science.gov (United States)

    2010-07-13

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-726] In the Matter of Certain Electronic Imaging Devices; Notice of Investigation AGENCY: U.S. International Trade Commission. ACTION: Institution of....S. International Trade Commission on May 13, 2010, under section 337 of the Tariff Act of 1930, as...

  13. Detection of fecal contamination on beef meat surfaces using handheld fluorescence imaging device (HFID)

    Science.gov (United States)

    Current meat inspection in slaughter plants, for food safety and quality attributes including potential fecal contamination, is conducted through by visual examination human inspectors. A handheld fluorescence-based imaging device (HFID) was developed to be an assistive tool for human inspectors by ...

  14. Endovascular Device Testing with Particle Image Velocimetry Enhances Undergraduate Biomedical Engineering Education

    Science.gov (United States)

    Nair, Priya; Ankeny, Casey J.; Ryan, Justin; Okcay, Murat; Frakes, David H.

    2016-01-01

    We investigated the use of a new system, HemoFlow™, which utilizes state of the art technologies such as particle image velocimetry to test endovascular devices as part of an undergraduate biomedical engineering curriculum. Students deployed an endovascular stent into an anatomical model of a cerebral aneurysm and measured intra-aneurysmal flow…

  15. Image processing system design for microcantilever-based optical readout infrared arrays

    Science.gov (United States)

    Tong, Qiang; Dong, Liquan; Zhao, Yuejin; Gong, Cheng; Liu, Xiaohua; Yu, Xiaomei; Yang, Lei; Liu, Weiyu

    2012-12-01

    Compared with the traditional infrared imaging technology, the new type of optical-readout uncooled infrared imaging technology based on MEMS has many advantages, such as low cost, small size, producing simple. In addition, the theory proves that the technology's high thermal detection sensitivity. So it has a very broad application prospects in the field of high performance infrared detection. The paper mainly focuses on an image capturing and processing system in the new type of optical-readout uncooled infrared imaging technology based on MEMS. The image capturing and processing system consists of software and hardware. We build our image processing core hardware platform based on TI's high performance DSP chip which is the TMS320DM642, and then design our image capturing board based on the MT9P031. MT9P031 is Micron's company high frame rate, low power consumption CMOS chip. Last we use Intel's company network transceiver devices-LXT971A to design the network output board. The software system is built on the real-time operating system DSP/BIOS. We design our video capture driver program based on TI's class-mini driver and network output program based on the NDK kit for image capturing and processing and transmitting. The experiment shows that the system has the advantages of high capturing resolution and fast processing speed. The speed of the network transmission is up to 100Mbps.

  16. A service protocol for post-processing of medical images on the mobile device

    Science.gov (United States)

    He, Longjun; Ming, Xing; Xu, Lang; Liu, Qian

    2014-03-01

    With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. It is uneasy and time-consuming for transferring medical images with large data size from picture archiving and communication system to mobile client, since the wireless network is unstable and limited by bandwidth. Besides, limited by computing capability, memory and power endurance, it is hard to provide a satisfactory quality of experience for radiologists to handle some complex post-processing of medical images on the mobile device, such as real-time direct interactive three-dimensional visualization. In this work, remote rendering technology is employed to implement the post-processing of medical images instead of local rendering, and a service protocol is developed to standardize the communication between the render server and mobile client. In order to make mobile devices with different platforms be able to access post-processing of medical images, the Extensible Markup Language is taken to describe this protocol, which contains four main parts: user authentication, medical image query/ retrieval, 2D post-processing (e.g. window leveling, pixel values obtained) and 3D post-processing (e.g. maximum intensity projection, multi-planar reconstruction, curved planar reformation and direct volume rendering). And then an instance is implemented to verify the protocol. This instance can support the mobile device access post-processing of medical image services on the render server via a client application or on the web page.

  17. Design, fabrication, and testing of stellar coronagraphs for exoplanet imaging

    Science.gov (United States)

    Knight, Justin M.; Brewer, John; Hamilton, Ryan; Ward, Karen; Milster, Tom D.; Guyon, Olivier

    2017-09-01

    Complex-mask coronagraphs destructively interfere unwanted starlight with itself to enable direct imaging of exoplanets. This is accomplished using a focal plane mask (FPM); a FPM can be a simple occulter mask, or in the case of a complex-mask, is a multi-zoned device designed to phase-shift starlight over multiple wavelengths to create a deep achromatic null in the stellar point spread function. Creating these masks requires microfabrication techniques, yet many such methods remain largely unexplored in this context. We explore methods of fabrication of complex FPMs for a Phased-Induced Amplitude Apodization Complex-Mask Coronagraph (PIAACMC). Previous FPM fabrication efforts for PIAACMC have concentrated on mask manufacturability while modeling science yield, as well as assessing broadband wavelength operation. Moreover current fabrication efforts are concentrated on assessing coronagraph performance given a single approach. We present FPMs fabricated using several process paths, including deep reactive ion etching and focused ion beam etching using a silicon substrate. The characteristic size of the mask features is 5μm with depths ranging over 1μm. The masks are characterized for manufacturing quality using an optical interferometer and a scanning electron microscope. Initial testing is performed at the Subaru Extreme Adaptive Optics testbed, providing a baseline for future experiments to determine and improve coronagraph performance within fabrication tolerances.

  18. Fast mega pixels video imaging of a toroidal plasma in KT5D device

    International Nuclear Information System (INIS)

    Xu Min; Wang Zhijiang; Lu Ronghua; Sun Xiang; Wen Yizhi; Yu Changxuan; Wan Shude; Liu Wandong; Wang Jun; Xiao Delong; Yu Yi; Zhu Zhenghua; Hu Linyin

    2005-01-01

    A direct imaging system, viewing visible light emission from plasmas tangentially or perpendicularly, has been set up on the KT5D toroidal device to monitor the real two-dimensional profiles of purely ECR generated plasmas. This system has a typical spatial resolution of 0.2 mm (1280x1024 pixels) when imaging the whole cross section. Interesting features of ECR plasmas have been found. Different from what classical theories have expected, a resonance layer with two or three bright spots, rather than an even vertical band, has been observed. In addition, images also indicate an intermittent splitting and drifting character of the plasmas

  19. Optics design for J-TEXT ECE imaging with field curvature adjustment lens

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y.; Zhao, Z.; Liu, W. D.; Xie, J., E-mail: jlxie@ustc.edu.cn [School of Physics, University of Science and Technology of China, Anhui 230026 (China); Hu, X.; Muscatello, C. M.; Domier, C. W.; Luhmann, N. C.; Chen, M.; Ren, X. [University of California at Davis, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Zhuang, G.; Yang, Z. [College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-11-15

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas. Of particular importance has been microwave electron cyclotron emission imaging (ECEI) for imaging T{sub e} fluctuations. Key to the success of ECEI is a large Gaussian optics system constituting a major portion of the focusing of the microwave radiation from the plasma to the detector array. Both the spatial resolution and observation range are dependent upon the imaging optics system performance. In particular, it is critical that the field curvature on the image plane is reduced to decrease crosstalk between vertical channels. The receiver optics systems for two ECEI on the J-TEXT device have been designed to ameliorate these problems and provide good performance with additional field curvature adjustment lenses with a meniscus shape to correct the aberrations from several spherical surfaces.

  20. Design of acousto-optical devices by topology optimization

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    2009-01-01

    the piezoelectric model is used in the optimization and the objective function is the squared absolute value of the strain in the vertical direction in the waveguide. The objective function is maximized by distributing air and solid material in an area below the waveguide. The optical model is solved...... by means of topology optimization is presented. The surface acoustic waves are generated by interdigital transducers in a 2D piezoelectric model, which is coupled to an optical model where the optical mode in the waveguide is found by solving the time-harmonic wave equation for the magnetic field. Only...... with the squared applied electric power. It is here shown that the acousto-optical interaction can be increased almost 10 times by redistribution of solid material and air in the design domain....

  1. Predictive modeling for corrective maintenance of imaging devices from machine logs.

    Science.gov (United States)

    Patil, Ravindra B; Patil, Meru A; Ravi, Vidya; Naik, Sarif

    2017-07-01

    In the cost sensitive healthcare industry, an unplanned downtime of diagnostic and therapy imaging devices can be a burden on the financials of both the hospitals as well as the original equipment manufacturers (OEMs). In the current era of connectivity, it is easier to get these devices connected to a standard monitoring station. Once the system is connected, OEMs can monitor the health of these devices remotely and take corrective actions by providing preventive maintenance thereby avoiding major unplanned downtime. In this article, we present an overall methodology of predicting failure of these devices well before customer experiences it. We use data-driven approach based on machine learning to predict failures in turn resulting in reduced machine downtime, improved customer satisfaction and cost savings for the OEMs. One of the use-case of predicting component failure of PHILIPS iXR system is explained in this article.

  2. High-resolution imaging of magnetic fields using scanning superconducting quantum interference device (SQUID) microscopy

    Science.gov (United States)

    Fong de Los Santos, Luis E.

    Development of a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with sub-millimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensor is mounted in the tip of a sapphire rod and thermally anchored to the cryostat helium reservoir. A 25 mum sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows adjusting the sample-to-sensor spacing from the top of the Dewar. I have achieved a sensor-to-sample spacing of 100 mum, which could be maintained for periods of up to 4 weeks. Different SQUID sensor configurations are necessary to achieve the best combination of spatial resolution and field sensitivity for a given magnetic source. For imaging thin sections of geological samples, I used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80 mum, and achieved a field sensitivity of 1.5 pT/Hz1/2 and a magnetic moment sensitivity of 5.4 x 10-18 Am2/Hz1/2 at a sensor-to-sample spacing of 100 mum in the white noise region for frequencies above 100 Hz. Imaging action currents in cardiac tissue requires higher field sensitivity, which can only be achieved by compromising spatial resolution. I developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250 mum to 1 mm, and achieved sensitivities of 480 - 180 fT/Hz1/2 in the white noise region for frequencies above 100 Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of

  3. OC ToGo: bed site image integration into OpenClinica with mobile devices

    Science.gov (United States)

    Haak, Daniel; Gehlen, Johan; Jonas, Stephan; Deserno, Thomas M.

    2014-03-01

    Imaging and image-based measurements nowadays play an essential role in controlled clinical trials, but electronic data capture (EDC) systems insufficiently support integration of captured images by mobile devices (e.g. smartphones and tablets). The web application OpenClinica has established as one of the world's leading EDC systems and is used to collect, manage and store data of clinical trials in electronic case report forms (eCRFs). In this paper, we present a mobile application for instantaneous integration of images into OpenClinica directly during examination on patient's bed site. The communication between the Android application and OpenClinica is based on the simple object access protocol (SOAP) and representational state transfer (REST) web services for metadata, and secure file transfer protocol (SFTP) for image transfer, respectively. OpenClinica's web services are used to query context information (e.g. existing studies, events and subjects) and to import data into the eCRF, as well as export of eCRF metadata and structural information. A stable image transfer is ensured and progress information (e.g. remaining time) visualized to the user. The workflow is demonstrated for a European multi-center registry, where patients with calciphylaxis disease are included. Our approach improves the EDC workflow, saves time, and reduces costs. Furthermore, data privacy is enhanced, since storage of private health data on the imaging devices becomes obsolete.

  4. Imaging Freeform Optical Systems Designed with NURBS Surfaces

    Science.gov (United States)

    2015-12-01

    reflective, anastigmat 1 Introduction The imaging freeform optical systems described here are designed using non-uniform rational basis-spline (NURBS...code, but to succeed in designing NURBS freeform optical systems an optimization code is required. The motivation for developing the optical design

  5. The imaging pin detector - a simple and effective new imaging device for soft x-rays and soft beta emissions

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1984-01-01

    The development of a new bidimensional imaging detector system for soft X and beta radiations is reported. Based on the detection of the differential induction signals on pickup electrodes placed around a point anode in a gas avalanche detector, the system described has achieved a spatial resolution of better than 1mm fwhm over a field of 30mm diameter while preserving excellent pulse height resolution. The present device offers considerable potential as a cheap and robust imaging system for applications in X-ray diffraction and autoradiography. (author)

  6. Pediatric medical device development by surgeons via capstone engineering design programs.

    Science.gov (United States)

    Sack, Bryan S; Elizondo, Rodolfo A; Huang, Gene O; Janzen, Nicolette; Espinoza, Jimmy; Sanz-Cortes, Magdalena; Dietrich, Jennifer E; Hakim, Julie; Richardson, Eric S; Oden, Maria; Hanks, John; Haridas, Balakrishna; Hury, James F; Koh, Chester J

    2018-03-01

    There is a need for pediatric medical devices that accommodate the unique physiology and anatomy of pediatric patients that is increasingly receiving more attention. However, there is limited literature on the programs within children's hospitals and academia that can support pediatric device development. We describe our experience with pediatric device design utilizing collaborations between a children's hospital and two engineering schools. Utilizing the academic year as a timeline, unmet pediatric device needs were identified by surgical faculty and matched with an engineering mentor and a team of students within the Capstone Engineering Design programs at two universities. The final prototypes were showcased at the end of the academic year and if appropriate, provisional patent applications were filed. All twelve teams successfully developed device prototypes, and five teams obtained provisional patents. The prototypes that obtained provisional patents included a non-operative ureteral stent removal system, an evacuation device for small kidney stone fragments, a mechanical leech, an anchoring system of the chorio-amniotic membranes during fetal surgery, and a fetal oxygenation monitor during fetoscopic procedures. Capstone Engineering Design programs in partnership with surgical faculty at children's hospitals can play an effective role in the prototype development of novel pediatric medical devices. N/A - No clinical subjects or human testing was performed. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Considerations for designing robotic upper limb rehabilitation devices

    Science.gov (United States)

    Nadas, I.; Vaida, C.; Gherman, B.; Pisla, D.; Carbone, G.

    2017-12-01

    The present study highlights the advantages of robotic systems for post-stroke rehabilitation of the upper limb. The latest demographic studies illustrate a continuous increase of the average life span, which leads to a continuous increase of stroke incidents and patients requiring rehabilitation. Some studies estimate that by 2030 the number of physical therapists will be insufficient for the patients requiring physical rehabilitation, imposing a shift in the current methodologies. A viable option is the implementation of robotic systems that assist the patient in performing rehabilitation exercises, the physical therapist role being to establish the therapeutic program for each patient and monitor their individual progress. Using a set of clinical measurements for the upper limb motions, the analysis of rehabilitation robotic systems provides a comparative study between the motions required by clinicians and the ones that robotic systems perform for different therapeutic exercises. A critical analysis of existing robots is performed using several classifications: mechanical design, assistance type, actuation and power transmission, control systems and human robot interaction (HRI) strategies. This classification will determine a set of pre-requirements for the definition of new concepts and efficient solutions for robotic assisted rehabilitation therapy.

  8. Low energy nanoemulsification to design veterinary controlled drug delivery devices

    Directory of Open Access Journals (Sweden)

    Thierry F Vandamme

    2010-10-01

    Full Text Available Thierry F Vandamme, Nicolas Anton, University of Strasbourg, Faculty of Pharmacy, Illkirch Cedex, France; UMR CNRS 7199, Laboratoire de Conception et Application de Molécules Bioactives, équipe de Pharmacie Biogalénique, Illkirch Cedex, France,  This work is selected as Controlled Release Society Outstanding Veterinary Paper Award 2010Abstract: The unique properties of nanomaterials related to structural stability and quantum-scale reactive properties open up a world of possibilities that could be exploited to design and to target drug delivery or create truly microscale biological sensors for veterinary applications. We developed cost-saving and solvent-free nanoemulsions. Formulated with a low-energy method, these nanoemulsions can find application in the delivery of controlled amounts of drugs into the beverage of breeding animals (such as poultry, cattle, pigs or be used for the controlled release of injectable poorly water-soluble drugs.Keywords: nanoemulsion, nanomedicine, low-energy emulsification, veterinary, ketoprofen, sulfamethazine

  9. Display device combining ambient light with magnified virtual images generated in the eye path of the observer

    NARCIS (Netherlands)

    2005-01-01

    A display device positions an observer's eye (or eyes) to look in a particular direction (eye path). An electronically controlled image generating element in the eye path generates artificial images which are magnified to create a virtual image for the eye. The image generating element is

  10. A high-speed scintillation-based electronic portal imaging device to quantitatively characterize IMRT delivery.

    Science.gov (United States)

    Ranade, Manisha K; Lynch, Bart D; Li, Jonathan G; Dempsey, James F

    2006-01-01

    We have developed an electronic portal imaging device (EPID) employing a fast scintillator and a high-speed camera. The device is designed to accurately and independently characterize the fluence delivered by a linear accelerator during intensity modulated radiation therapy (IMRT) with either step-and-shoot or dynamic multileaf collimator (MLC) delivery. Our aim is to accurately obtain the beam shape and fluence of all segments delivered during IMRT, in order to study the nature of discrepancies between the plan and the delivered doses. A commercial high-speed camera was combined with a terbium-doped gadolinium-oxy-sulfide (Gd2O2S:Tb) scintillator to form an EPID for the unaliased capture of two-dimensional fluence distributions of each beam in an IMRT delivery. The high speed EPID was synchronized to the accelerator pulse-forming network and gated to capture every possible pulse emitted from the accelerator, with an approximate frame rate of 360 frames-per-second (fps). A 62-segment beam from a head-and-neck IMRT treatment plan requiring 68 s to deliver was recorded with our high speed EPID producing approximately 6 Gbytes of imaging data. The EPID data were compared with the MLC instruction files and the MLC controller log files. The frames were binned to provide a frame rate of 72 fps with a signal-to-noise ratio that was sufficient to resolve leaf positions and segment fluence. The fractional fluence from the log files and EPID data agreed well. An ambiguity in the motion of the MLC during beam on was resolved. The log files reported leaf motions at the end of 33 of the 42 segments, while the EPID observed leaf motions in only 7 of the 42 segments. The static IMRT segment shapes observed by the high speed EPID were in good agreement with the shapes reported in the log files. The leaf motions observed during beam-on for step-and-shoot delivery were not temporally resolved by the log files.

  11. A high-speed scintillation-based electronic portal imaging device to quantitatively characterize IMRT delivery

    International Nuclear Information System (INIS)

    Ranade, Manisha K.; Lynch, Bart D.; Li, Jonathan G.; Dempsey, James F.

    2006-01-01

    We have developed an electronic portal imaging device (EPID) employing a fast scintillator and a high-speed camera. The device is designed to accurately and independently characterize the fluence delivered by a linear accelerator during intensity modulated radiation therapy (IMRT) with either step-and-shoot or dynamic multileaf collimator (MLC) delivery. Our aim is to accurately obtain the beam shape and fluence of all segments delivered during IMRT, in order to study the nature of discrepancies between the plan and the delivered doses. A commercial high-speed camera was combined with a terbium-doped gadolinium-oxy-sulfide (Gd 2 O 2 S:Tb) scintillator to form an EPID for the unaliased capture of two-dimensional fluence distributions of each beam in an IMRT delivery. The high speed EPID was synchronized to the accelerator pulse-forming network and gated to capture every possible pulse emitted from the accelerator, with an approximate frame rate of 360 frames-per-second (fps). A 62-segment beam from a head-and-neck IMRT treatment plan requiring 68 s to deliver was recorded with our high speed EPID producing approximately 6 Gbytes of imaging data. The EPID data were compared with the MLC instruction files and the MLC controller log files. The frames were binned to provide a frame rate of 72 fps with a signal-to-noise ratio that was sufficient to resolve leaf positions and segment fluence. The fractional fluence from the log files and EPID data agreed well. An ambiguity in the motion of the MLC during beam on was resolved. The log files reported leaf motions at the end of 33 of the 42 segments, while the EPID observed leaf motions in only 7 of the 42 segments. The static IMRT segment shapes observed by the high speed EPID were in good agreement with the shapes reported in the log files. The leaf motions observed during beam-on for step-and-shoot delivery were not temporally resolved by the log files

  12. Demistifying design thinking : Images of a design thinker within an organizational context

    NARCIS (Netherlands)

    Kleinsmann, M.S.; Valkenburg, R.; Sluijs, J.

    2012-01-01

    53 people with various backgrounds in different industries. What they had in common was that they all used a designerly approach during their work. finally could cluster into six images. Describe the areas in which design thinking is used.

  13. Analysis of Contemporary Methods for Designing Rotary Type Ventricular Assist Devices

    Directory of Open Access Journals (Sweden)

    E. P. Banin

    2015-01-01

    Full Text Available The research object is inlet apparatus of ventricular assist device, namely inlet cannula and straightener.The purpose of the study is to reveal features of blood flow in inlet apparatus of ventricular assist device. The mathematical modeling is carried out by computational fluid dynamics analysis in a stationary setting.The first part of study concerns the analysis of existing approaches to the numerical and experimental studies in designing the ventricular assist devices of rotary type. It reveals the features of each approach for their further application in practice. The article presents an original design of developed hydraulic test bench to verify the results of mathematical modeling. Analysis of foreign authors’ studies showed that there is no enough attention paid to design of the adjacent pump assemblies of ventricular assist device. The second part of study considers direct mathematical modeling of input apparatus of ventricular assist device. The study examined straightener with three or four blades. Mathematical modeling has revealed the presence of potentially dangerous stagnation zones and essential asymmetry of the outlet flow from the input unit. The found features must be taken in consideration in designing the ventricular assist device pumps. In the future we plan to use obtained data to create a parametric model of the rotor and the diffuser considering the abovementioned features.

  14. Convolutional neural network-based classification system design with compressed wireless sensor network images.

    Science.gov (United States)

    Ahn, Jungmo; Park, JaeYeon; Park, Donghwan; Paek, Jeongyeup; Ko, JeongGil

    2018-01-01

    With the introduction of various advanced deep learning algorithms, initiatives for image classification systems have transitioned over from traditional machine learning algorithms (e.g., SVM) to Convolutional Neural Networks (CNNs) using deep learning software tools. A prerequisite in applying CNN to real world applications is a system that collects meaningful and useful data. For such purposes, Wireless Image Sensor Networks (WISNs), that are capable of monitoring natural environment phenomena using tiny and low-power cameras on resource-limited embedded devices, can be considered as an effective means of data collection. However, with limited battery resources, sending high-resolution raw images to the backend server is a burdensome task that has direct impact on network lifetime. To address this problem, we propose an energy-efficient pre- and post- processing mechanism using image resizing and color quantization that can significantly reduce the amount of data transferred while maintaining the classification accuracy in the CNN at the backend server. We show that, if well designed, an image in its highly compressed form can be well-classified with a CNN model trained in advance using adequately compressed data. Our evaluation using a real image dataset shows that an embedded device can reduce the amount of transmitted data by ∼71% while maintaining a classification accuracy of ∼98%. Under the same conditions, this process naturally reduces energy consumption by ∼71% compared to a WISN that sends the original uncompressed images.

  15. Design of area array CCD image acquisition and display system based on FPGA

    Science.gov (United States)

    Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming

    2014-09-01

    With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.

  16. Design of CMOS imaging system based on FPGA

    Science.gov (United States)

    Hu, Bo; Chen, Xiaolai

    2017-10-01

    In order to meet the needs of engineering applications for high dynamic range CMOS camera under the rolling shutter mode, a complete imaging system is designed based on the CMOS imaging sensor NSC1105. The paper decides CMOS+ADC+FPGA+Camera Link as processing architecture and introduces the design and implementation of the hardware system. As for camera software system, which consists of CMOS timing drive module, image acquisition module and transmission control module, the paper designs in Verilog language and drives it to work properly based on Xilinx FPGA. The ISE 14.6 emulator ISim is used in the simulation of signals. The imaging experimental results show that the system exhibits a 1280*1024 pixel resolution, has a frame frequency of 25 fps and a dynamic range more than 120dB. The imaging quality of the system satisfies the requirement of the index.

  17. Design Project on Controlled-Release Drug Delivery Devices: Implementation, Management, and Learning Experiences

    Science.gov (United States)

    Xu, Qingxing; Liang, Youyun; Tong, Yen Wah; Wang, Chi-Hwa

    2010-01-01

    A design project that focuses on the subject of controlled-release drug delivery devices is presented for use in an undergraduate course on mass transfer. The purpose of the project is to introduce students to the various technologies used in the fabrication of drug delivery systems and provide a practical design exercise for understanding the…

  18. Design of the device of auto-measuring radon continuously based on FPGA

    International Nuclear Information System (INIS)

    Wang Yan; Shen Zhengqin; Chen Qiong

    2004-01-01

    This paper introduces the design of the device of auto-measuring radon continuously. The core of the system is the design of controlling system by FPGA, which consists of preset module, electrical calendar module and driving module. The system can automatically measure the consistence of the radon and the separating out rate of it. The information data is displayed by LCD. The high speed micro printer is used to print the measuring result. It adopts FPGA to design the measuring system of the device, which can improve the precision and stability of the system. (authors)

  19. Use of a design challenge to develop postural support devices for intermediate wheelchair users

    Directory of Open Access Journals (Sweden)

    Brenda N. Onguti

    2017-09-01

    Full Text Available The provision of an appropriate wheelchair, one that provides proper fit and postural support, promotes wheelchair users’ physical health and quality of life. Many wheelchair users have postural difficulties, requiring supplemental postural support devices for added trunk support. However, in many low- and middle-income settings, postural support devices are inaccessible, inappropriate or unaffordable. This article describes the use of the design challenge model, informed by a design thinking approach, to catalyse the development of an affordable, simple and robust postural support device for low- and middle-income countries. The article also illustrates how not-for-profit organisations can utilise design thinking and, in particular, the design challenge model to successfully support the development of innovative solutions to product or process challenges.

  20. A newly developed removable dental device for fused 3-D MRI/Meg imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kuboki, Takuo [Okayama Univ. (Japan). Dental School; Clark, G T; Akhtari, M; Sutherling, W W

    1999-06-01

    Recently 3-D imaging techniques have been used to shed light on the role of abnormal brain functions in such conditions as nocturnal bruxism and orofacial pain. In order to achieve precise 3-D image fusion between magnetic resonance images (MRI) and magnetoencephalography (MEG) data, we developed a removable dental device which attaches rigidly to the teeth. Using this device, correlation of MEG and MRI data points was achieved by the co-registration of 3 or more fiducial points. Using a Polhemus 3-space digitizer the locations of the points were registered on MEG and then a small amount of high-water-content material was placed at each point for registering these same points on MRI. The mean reproducibility of interpoint distances, determined for 2 subjects, was between 0.59 and 0.82 mm. Using a Monte Carlo statistical analysis we determined that the accuracy of a posterior projection from the fiducial points to any point within the strata of the brain is {+-}3.3 mm. The value of this device is that it permits reasonably precise and repeatable co-registration of these points and yet it is easily removed and replaced by the patient. Obviously such a device could also be adapted for use in diagnosis and analysis of brain functions related with other various sensory and motor functions (e.g., taste, pain, clenching) in maxillofacial region using MRI and MEG. (author)

  1. A newly developed removable dental device for fused 3-D MRI/Meg imaging

    International Nuclear Information System (INIS)

    Kuboki, Takuo; Clark, G.T.; Akhtari, M.; Sutherling, W.W.

    1999-01-01

    Recently 3-D imaging techniques have been used to shed light on the role of abnormal brain functions in such conditions as nocturnal bruxism and orofacial pain. In order to achieve precise 3-D image fusion between magnetic resonance images (MRI) and magnetoencephalography (MEG) data, we developed a removable dental device which attaches rigidly to the teeth. Using this device, correlation of MEG and MRI data points was achieved by the co-registration of 3 or more fiducial points. Using a Polhemus 3-space digitizer the locations of the points were registered on MEG and then a small amount of high-water-content material was placed at each point for registering these same points on MRI. The mean reproducibility of interpoint distances, determined for 2 subjects, was between 0.59 and 0.82 mm. Using a Monte Carlo statistical analysis we determined that the accuracy of a posterior projection from the fiducial points to any point within the strata of the brain is ±3.3 mm. The value of this device is that it permits reasonably precise and repeatable co-registration of these points and yet it is easily removed and replaced by the patient. Obviously such a device could also be adapted for use in diagnosis and analysis of brain functions related with other various sensory and motor functions (e.g., taste, pain, clenching) in maxillofacial region using MRI and MEG. (author)

  2. Design and implementation of typical target image database system

    International Nuclear Information System (INIS)

    Qin Kai; Zhao Yingjun

    2010-01-01

    It is necessary to provide essential background data and thematic data timely in image processing and application. In fact, application is an integrating and analyzing procedure with different kinds of data. In this paper, the authors describe an image database system which classifies, stores, manages and analyzes database of different types, such as image database, vector database, spatial database, spatial target characteristics database, its design and structure. (authors)

  3. Design and Application of Automatic Falling Device for Different Brands of Goods

    Science.gov (United States)

    Yang, Xudong; Ge, Qingkuan; Zuo, Ping; Peng, Tao; Dong, Weifu

    2017-12-01

    The Goods-Falling device is an important device in the intelligent sorting goods sorting system, which is responsible for the temporary storage and counting of the goods, and the function of putting the goods on the conveyor belt according to certain precision requirements. According to the present situation analysis and actual demand of the domestic goods sorting equipment, a vertical type Goods - Falling Device is designed and the simulation model of the device is established. The dynamic characteristics such as the angular error of the opening and closing mechanism are carried out by ADAMS software. The simulation results show that the maximum angular error is 0.016rad. Through the test of the device, the goods falling speed is 7031/hour, the good of the falling position error within 2mm, meet the crawl accuracy requirements of the palletizing robot.

  4. Design and applications of Computed Industrial Tomographic Imaging System (CITIS)

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishna, G S; Kumar, Umesh; Datta, S S [Bhabha Atomic Research Centre, Bombay (India). Isotope Div.

    1994-12-31

    This paper highlights the design and development of a prototype Computed Tomographic (CT) imaging system and its software for image reconstruction, simulation and display. It also describes results obtained with several test specimens including Dhruva reactor uranium fuel assembly and possibility of using neutrons as well as high energy x-rays in computed tomography. 5 refs., 4 figs.

  5. New design on air-core resistive NMR imaging magnet

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Mingwu, Fan; Yixin, Miao

    1984-08-01

    A new type of NMR imaging air-core resistive magnet is designed. Based on the BIM Magnetostatic calculation the resultant four equiradial coils structure with optimized shapes of cross section possesses a larger spherical working volume obviously, comparing with the common four-coils imaging magnet. The manufacturing tolerance is also calculated.

  6. Automated hotspot analysis with aerial image CD metrology for advanced logic devices

    Science.gov (United States)

    Buttgereit, Ute; Trautzsch, Thomas; Kim, Min-ho; Seo, Jung-Uk; Yoon, Young-Keun; Han, Hak-Seung; Chung, Dong Hoon; Jeon, Chan-Uk; Meyers, Gary

    2014-09-01

    Continuously shrinking designs by further extension of 193nm technology lead to a much higher probability of hotspots especially for the manufacturing of advanced logic devices. The CD of these potential hotspots needs to be precisely controlled and measured on the mask. On top of that, the feature complexity increases due to high OPC load in the logic mask design which is an additional challenge for CD metrology. Therefore the hotspot measurements have been performed on WLCD from ZEISS, which provides the benefit of reduced complexity by measuring the CD in the aerial image and qualifying the printing relevant CD. This is especially of advantage for complex 2D feature measurements. Additionally, the data preparation for CD measurement becomes more critical due to the larger amount of CD measurements and the increasing feature diversity. For the data preparation this means to identify these hotspots and mark them automatically with the correct marker required to make the feature specific CD measurement successful. Currently available methods can address generic pattern but cannot deal with the pattern diversity of the hotspots. The paper will explore a method how to overcome those limitations and to enhance the time-to-result in the marking process dramatically. For the marking process the Synopsys WLCD Output Module was utilized, which is an interface between the CATS mask data prep software and the WLCD metrology tool. It translates the CATS marking directly into an executable WLCD measurement job including CD analysis. The paper will describe the utilized method and flow for the hotspot measurement. Additionally, the achieved results on hotspot measurements utilizing this method will be presented.

  7. Seismic analysis, support design and stress calculation of HTR-PM transport and conversion devices

    International Nuclear Information System (INIS)

    Zhang Zheyu; Yuan Chaolong; Zhang Haiquan; Nie Junfeng

    2012-01-01

    Background: The transport and conversion devices are important guarantees for normal operation of HTR-PM fuel handling system in normal and fault conditions. Purpose: A conflict of devices' support design needs to be solved. The flexibility of supports is required because of pipe thermal expansion displacement, while the stiffness is also required because of large devices quality and eccentric distance. Methods: In this paper, the numerical simulation was employed to analyze the seismic characteristics and optimize the support program, Under the chosen support program, the stress calculation of platen support bracket was designed by solidworks software. Results: The supports solved the conflict between the flexibility and stiffness requirements. Conclusions: Therefore, it can ensure the safety of transport and conversion devices and the supports in seismic conditions. (authors)

  8. A distributed design for monitoring, logging, and replaying device readings at LAMPF

    International Nuclear Information System (INIS)

    Burns, M.

    1992-01-01

    As control of the Los Alamos Meson Physics linear accelerator and Proton Storage Ring moves to a more distributed system, it has been necessary to redesign the software which monitors, logs, and replays device readings throughout the facility. The new design allows devices to be monitored and their readings logged locally on a network of computers. Control of the monitoring and logging process is available throughout the network from user interfaces which communicate via remote procedure calls with server processes running on each node which monitors and records device readings. Similarly, the logged data can be replayed from anywhere on the network. Two major requirements influencing the final design were the need to reduce the load on the CPU of the control machines, and the need for much faster replay of the logged device readings. (author)

  9. Research and design of module supporting and rotary device in hot cell

    International Nuclear Information System (INIS)

    Wu Wenguang; Song Changfei; Chen Mingchi

    2013-01-01

    Background: This paper introduced a device for tandem accelerator project, designed for the radioactive target source module maintaining and testing. Purpose: The module is required to be lifting, rotary and precise orientation in technology. Methods: We designed the structure of rotary drum, supporting drum and screw lifting device to achieve the function. In circumference, we adopt the project with electro-motion cursory locate, hand-motion precise locate, sensor location detect and cylinder locate pin, the measure is safe and trustiness. Results: Via experimentation, all technology targets are fulfilled, and the rationality and reliability of the device has been validated. Conclusions: The successful development of this device provides a good direction and reference for radioactive areas such as accelerator, hot cell, reactor etc., and can be adapted to its capability of long-distance shield operating, maintaining or testing. (authors)

  10. A distributed design for monitoring, logging, and replaying device readings at LAMPF

    International Nuclear Information System (INIS)

    Burns, M.

    1991-01-01

    As control of the Los Alamos Meson Physics linear accelerator and Proton Storage Ring moves to a more distributed system, it has been necessary to redesign the software which monitors, logs, and replays device readings throughout the facility. The new design allows devices to be monitored and their readings logged locally on a network of computers. Control of the monitoring and logging process is available throughout the network from user interfaces which communicate via remote procedure calls with server processes running on each node which monitors and records device readings. Similarly, the logged data can be replayed from anywhere on the network. Two major requirements influencing the final design were the need to reduce the load on the CPU of the control machines, and the need for much faster replay of the logged device readings. 1 ref., 2 figs

  11. Spin-dependent transport and functional design in organic ferromagnetic devices

    Directory of Open Access Journals (Sweden)

    Guichao Hu

    2017-09-01

    Full Text Available Organic ferromagnets are intriguing materials in that they combine ferromagnetic and organic properties. Although challenges in their synthesis still remain, the development of organic spintronics has triggered strong interest in high-performance organic ferromagnetic devices. This review first introduces our theory for spin-dependent electron transport through organic ferromagnetic devices, which combines an extended Su–Schrieffer–Heeger model with the Green’s function method. The effects of the intrinsic interactions in the organic ferromagnets, including strong electron–lattice interaction and spin–spin correlation between π-electrons and radicals, are highlighted. Several interesting functional designs of organic ferromagnetic devices are discussed, specifically the concepts of a spin filter, multi-state magnetoresistance, and spin-current rectification. The mechanism of each phenomenon is explained by transmission and orbital analysis. These works show that organic ferromagnets are promising components for spintronic devices that deserve to be designed and examined in future experiments.

  12. Design of an SolidWorks-based household substrate cultivation device

    Science.gov (United States)

    Yi, Guo; Yueying, Wang

    2018-03-01

    Rapid urbanization has caused increasingly severe environmental problems and smaller tillable land area. Even worse, negative reports on vegetable production are repeatedly found. In this case, home gardening has become an inexorable trend. To meet demand for vegetable cultivation in the home environment, an SolidWorks-based household substrate cultivation device has been designed. This device is composed of the cultivation tank, upright post, base, irrigation system, supplemental lighting system and control system. The household substrate cultivation device manufactured based on the design results has shown in practice that this device features an esthetic appearance, low cost, automatic irrigation and lighting supplementation, good vegetable growing conditions, full of ornamental value and practicability and thus is suitable for vegetable growing in the home environment. Hence it has a higher promotion value in the home gardening field.

  13. The simulation of an imaging gamma-ray Compton backscattering device using GEANT4

    International Nuclear Information System (INIS)

    Flechas, D.; Cristancho, F.; Sarmiento, L.G.; Fajardo, E.

    2014-01-01

    A gamma-backscattering imaging device dubbed Compton Camera, developed at GSI (Darmstadt, Germany) and modified and studied at the Nuclear Physics Group of the National University of Colombia in Bogota, uses the back-to-back emission of two gamma rays in the positron annihilation to construct a bidimensional image that represents the distribution of matter in the field-of-view of the camera. This imaging capability can be used in a host of different situations, for example, to identify and study deposition and structural defects, and to help locating concealed objects, to name just two cases. In order to increase the understanding of the response of the Compton Camera and, in particular, its image formation process, and to assist in the data analysis, a simulation of the camera was developed using the GEANT4 simulation toolkit. In this work, the images resulting from different experimental conditions are shown. The simulated images and their comparison with the experimental ones already suggest methods to improve the present experimental device. (author)

  14. Door and window image-based measurement using a mobile device

    Science.gov (United States)

    Ma, Guangyao; Janakaraj, Manishankar; Agam, Gady

    2015-03-01

    We present a system for door and window image-based measurement using an Android mobile device. In this system a user takes an image of a door or window that needs to be measured and using interaction measures specific dimensions of the object. The existing object is removed from the image and a 3D model of a replacement is rendered onto the image. The visualization provides a 3D model with which the user can interact. When tested on a mobile Android platform with an 8MP camera we obtain an average measurement error of roughly 0.5%. This error rate is stable across a range of view angles, distances from the object, and image resolutions. The main advantages of our mobile device application for image measurement include measuring objects for which physical access is not readily available, documenting in a precise manner the locations in the scene where the measurements were taken, and visualizing a new object with custom selections inside the original view.

  15. Review of high fidelity imaging spectrometer design for remote sensing

    Science.gov (United States)

    Mouroulis, Pantazis; Green, Robert O.

    2018-04-01

    We review the design and assessment techniques that underlie a number of successfully deployed space and airborne imaging spectrometers that have been demonstrated to achieve demanding specifications in terms of throughput and response uniformity. The principles are illustrated with telescope designs as well as spectrometer examples from the Offner and Dyson families. We also show how the design space can be extended with the use of freeform surfaces and provide additional design examples with grating as well as prism dispersive elements.

  16. Fast imaging diagnostics on the C-2U advanced beam-driven field-reversed configuration device

    Energy Technology Data Exchange (ETDEWEB)

    Granstedt, E. M., E-mail: egranstedt@trialphaenergy.com; Petrov, P.; Knapp, K.; Cordero, M.; Patel, V. [Tri Alpha Energy, P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    The C-2U device employed neutral beam injection, end-biasing, and various particle fueling techniques to sustain a Field-Reversed Configuration (FRC) plasma. As part of the diagnostic suite, two fast imaging instruments with radial and nearly axial plasma views were developed using a common camera platform. To achieve the necessary viewing geometry, imaging lenses were mounted behind re-entrant viewports attached to welded bellows. During gettering, the vacuum optics were retracted and isolated behind a gate valve permitting their removal if cleaning was necessary. The axial view incorporated a stainless-steel mirror in a protective cap assembly attached to the vacuum-side of the viewport. For each system, a custom lens-based, high-throughput optical periscope was designed to relay the plasma image about half a meter to a high-speed camera. Each instrument also contained a remote-controlled filter wheel, set between shots to isolate a particular hydrogen or impurity emission line. The design of the camera platform, imaging performance, and sample data for each view is presented.

  17. Designing a stable feedback control system for blind image deconvolution.

    Science.gov (United States)

    Cheng, Shichao; Liu, Risheng; Fan, Xin; Luo, Zhongxuan

    2018-05-01

    Blind image deconvolution is one of the main low-level vision problems with wide applications. Many previous works manually design regularization to simultaneously estimate the latent sharp image and the blur kernel under maximum a posterior framework. However, it has been demonstrated that such joint estimation strategies may lead to the undesired trivial solution. In this paper, we present a novel perspective, using a stable feedback control system, to simulate the latent sharp image propagation. The controller of our system consists of regularization and guidance, which decide the sparsity and sharp features of latent image, respectively. Furthermore, the formational model of blind image is introduced into the feedback process to avoid the image restoration deviating from the stable point. The stability analysis of the system indicates the latent image propagation in blind deconvolution task can be efficiently estimated and controlled by cues and priors. Thus the kernel estimation used for image restoration becomes more precision. Experimental results show that our system is effective on image propagation, and can perform favorably against the state-of-the-art blind image deconvolution methods on different benchmark image sets and special blurred images. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Mobile Web for Pervasive environments - design webexperiences for multiple mobile devices

    DEFF Research Database (Denmark)

    Hansen, Thomas Riisgaard

    2008-01-01

    In this paper we present an architecture for designing web pages that uses multiple mobile and stationary devices to present web content. The architecture extends standard web technology with a number of functions for expressing how web content might migrate and use multiple displays....... The architecture is developed to support desktop applications, but in this paper we describe how the architecture can be extended to mobile devices by using AJAX technology. The paper also presents an implementation and presents a number of applications for mobile devices developed with this framework....

  19. A Time of Flight Fast Neutron Imaging System Design Study

    Science.gov (United States)

    Canion, Bonnie; Glenn, Andrew; Sheets, Steven; Wurtz, Ron; Nakae, Les; Hausladen, Paul; McConchie, Seth; Blackston, Matthew; Fabris, Lorenzo; Newby, Jason

    2017-09-01

    LLNL and ORNL are designing an active/passive fast neutron imaging system that is flexible to non-ideal detector positioning. It is often not possible to move an inspection object in fieldable imager applications such as safeguards, arms control treaty verification, and emergency response. Particularly, we are interested in scenarios which inspectors do not have access to all sides of an inspection object, due to interfering objects or walls. This paper will present the results of a simulation-based design parameter study, that will determine the optimum system design parameters for a fieldable system to perform time-of-flight based imaging analysis. The imaging analysis is based on the use of an associated particle imaging deuterium-tritium (API DT) neutron generator to get the time-of-flight of radiation induced within an inspection object. This design study will investigate the optimum design parameters for such a system (e.g. detector size, ideal placement, etc.), as well as the upper and lower feasible design parameters that the system can expect to provide results within a reasonable amount of time (e.g. minimum/maximum detector efficiency, detector standoff, etc.). Ideally the final prototype from this project will be capable of using full-access techniques, such as transmission imaging, when the measurement circumstances allow, but with the additional capability of producing results at reduced accessibility.

  20. Design and fabrication of a sleep apnea device using computer-aided design/additive manufacture technologies.

    Science.gov (United States)

    Al Mortadi, Noor; Eggbeer, Dominic; Lewis, Jeffrey; Williams, Robert J

    2013-04-01

    The aim of this study was to analyze the latest innovations in additive manufacture techniques and uniquely apply them to dentistry, to build a sleep apnea device requiring rotating hinges. Laser scanning was used to capture the three-dimensional topography of an upper and lower dental cast. The data sets were imported into an appropriate computer-aided design software environment, which was used to design a sleep apnea device. This design was then exported as a stereolithography file and transferred for three-dimensional printing by an additive manufacture machine. The results not only revealed that the novel computer-based technique presented provides new design opportunities but also highlighted limitations that must be addressed before the techniques can become clinically viable.

  1. On the Properties and Design of Organic Light-Emitting Devices

    Science.gov (United States)

    Erickson, Nicholas C.

    Organic light-emitting devices (OLEDs) are attractive for use in next-generation display and lighting technologies. In display applications, OLEDs offer a wide emission color gamut, compatibility with flexible substrates, and high power efficiencies. In lighting applications, OLEDs offer attractive features such as broadband emission, high-performance, and potential compatibility with low-cost manufacturing methods. Despite recent demonstrations of near unity internal quantum efficiencies (photons out per electron in), OLED adoption lags conventional technologies, particularly in large-area displays and general lighting applications. This thesis seeks to understand the optical and electronic properties of OLED materials and device architectures which lead to not only high peak efficiency, but also reduced device complexity, high efficiency under high excitation, and optimal white-light emission. This is accomplished through the careful manipulation of organic thin film compositions fabricated via vacuum thermal evaporation, and the introduction of a novel device architecture, the graded-emissive layer (G-EML). This device architecture offers a unique platform to study the electronic properties of varying compositions of organic semiconductors and the resulting device performance. This thesis also introduces an experimental technique to measure the spatial overlap of electrons and holes within an OLED's emissive layer. This overlap is an important parameter which is affected by the choice of materials and device design, and greatly impacts the operation of the OLED at high excitation densities. Using the G-EML device architecture, OLEDs with improved efficiency characteristics are demonstrated, achieving simultaneously high brightness and high efficiency.

  2. The use of the general image quality equation in the design and evaluation of imaging systems

    Science.gov (United States)

    Cota, Steve A.; Florio, Christopher J.; Duvall, David J.; Leon, Michael A.

    2009-08-01

    The design of any modern imaging system is the end result of many trade studies, each seeking to optimize image quality within real world constraints such as cost, schedule and overall risk. The National Imagery Interpretability Rating Scale (NIIRS) is a useful measure of image quality, because, by characterizing the overall interpretability of an image, it combines into one metric those contributors to image quality to which a human interpreter is most sensitive. The main drawback to using a NIIRS rating as a measure of image quality in engineering trade studies is the fact that it is tied to the human observer and cannot be predicted from physical principles and engineering parameters alone. The General Image Quality Equation (GIQE) of Leachtenauer et al. 1997 [Appl. Opt. 36, 8322-8328 (1997)] is a regression of actual image analyst NIIRS ratings vs. readily calculable engineering metrics, and provides a mechanism for using the expected NIIRS rating of an imaging system in the design and evaluation process. In this paper, we will discuss how we use the GIQE in conjunction with The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) to evaluate imager designs, taking a hypothetical high resolution commercial imaging system as an example.

  3. Novel material and structural design for large-scale marine protective devices

    International Nuclear Information System (INIS)

    Qiu, Ang; Lin, Wei; Ma, Yong; Zhao, Chengbi; Tang, Youhong

    2015-01-01

    Highlights: • Large-scale protective devices with different structural designs have been optimized. • Large-scale protective devices with novel material designs have been optimized. • Protective devices constructed of sandwich panels have the best anti-collision performance. • Protective devices with novel material design can reduce weight and construction cost. - Abstract: Large-scale protective devices must endure the impact of severe forces, large structural deformation, the increased stress and strain rate effects, and multiple coupling effects. In evaluation of the safety of conceptual design through simulation, several key parameters considered in this research are maximum impact force, energy dissipated by the impactor (e.g. a ship) and energy absorbed by the device and the impactor stroke. During impact, the main function of the ring beam structure is to resist and buffer the impact force between ship and bridge pile caps, which could guarantee that the magnitude of impact force meets the corresponding requirements. The means of improving anti-collision performance can be to increase the strength of the beam section or to exchange the steel material with novel fiber reinforced polymer laminates. The main function of the buoyancy tank is to absorb and transfer the ship’s kinetic energy through large plastic deformation, damage, or friction occurring within itself. The energy absorption effect can be improved by structure optimization or by the use of new sandwich panels. Structural and material optimization schemes are proposed on the basis of conceptual design in this research, and protective devices constructed of sandwich panels prove to have the best anti-collision performance

  4. Engineering design of plasma generation devices using Elmer finite element simulation methods

    Directory of Open Access Journals (Sweden)

    Daniel Bondarenko

    2017-02-01

    Full Text Available Plasma generation devices are important technology for many engineering disciplines. The process for acquiring experience for designing plasma devices requires practice, time, and the right tools. The practice and time depend on the individual and the access to the right tools can be a limiting factor to achieve experience and to get an idea on the possible risks. The use of Elmer finite element method (FEM software for verifying plasma engineering design is presented as an accessible tool that can help modeling multi-physics and verifying plasma generation devices. Furthermore, Elmer FEM will be suitable for experienced engineer and can be used for determining the risks in a design or a process that use plasma. A physical experiment was conducted to demonstrate new features of plasma generation technology where results are compared with plasma simulation using Elmer FEM.

  5. Image reconstruction design of industrial CT instrument for teaching

    International Nuclear Information System (INIS)

    Zou Yongning; Cai Yufang

    2009-01-01

    Industrial CT instrument for teaching is applied to teaching and study in field of physics and radiology major, image reconstruction is an important part of software on CT instrument. The paper expatiate on CT physical theory and first generation CT reconstruction algorithm, describe scan process of industrial CT instrument for teaching; analyze image artifact as result of displacement of rotation center, implement method of center displacement correcting, design and complete image reconstruction software, application shows that reconstructed image is very clear and qualitatively high. (authors)

  6. Ultra-fast quantitative imaging using ptychographic iterative engine based digital micro-mirror device

    Science.gov (United States)

    Sun, Aihui; Tian, Xiaolin; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2018-01-01

    As a lensfree imaging technique, ptychographic iterative engine (PIE) method can provide both quantitative sample amplitude and phase distributions avoiding aberration. However, it requires field of view (FoV) scanning often relying on mechanical translation, which not only slows down measuring speed, but also introduces mechanical errors decreasing both resolution and accuracy in retrieved information. In order to achieve high-accurate quantitative imaging with fast speed, digital micromirror device (DMD) is adopted in PIE for large FoV scanning controlled by on/off state coding by DMD. Measurements were implemented using biological samples as well as USAF resolution target, proving high resolution in quantitative imaging using the proposed system. Considering its fast and accurate imaging capability, it is believed the DMD based PIE technique provides a potential solution for medical observation and measurements.

  7. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    Science.gov (United States)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  8. Design, manufacture and in-vitro evaluation of a new microvascular anastomotic device.

    Science.gov (United States)

    Huang, Shao-Fu; Wang, Tien-Hsiang; Wang, Hsuan-Wen; Huang, Shu-Wei; Lin, Chun-Li; Kuo, Hsien-Nan; Yu, Tsung-Chih

    2013-01-01

    Many microvascular anastomoses have been proposed for use with physical assisted methods, such as cuff, ring-pin, stapler, clip to the anastomose blood vessel. The ring-pin type anastomotic device (e.g., 3M Microvascular Anastomotic System) is the most commonly used worldwide because the anastomotic procedure can be conducted more rapidly and with fewer traumas than using sutures. However, problems including vessel leakage, ring slippage, high cost and high surgical skill demand need to be resolved. The aim of this study is to design and manufacture a new anastomotic device for microvascular anastomosis surgery and validate the device functions with in-vitro testing. The new device includes one pair of pinned rings and a set of semi-automatic flap apparatus designed and made using computer-aided design / computer-aided manufacture program. A pair of pinned rings was used to impale vessel walls and establish fluid communication with rings joined. The semi-automatic flap apparatus was used to assist the surgeon to invert the vessel walls and impale onto each ring pin, then turning the apparatus knob to bring the rings together. The device was revised until it became acceptable for clinical requires. An in-vitro test was performed using a custom-made seepage micro-fluid system to detect the leakage of the anastomotic rings. The variation between input and output flow for microvascular anastomoses was evaluated. The new microvascular anastomotic device was convenient and easy to use. It requires less time than sutures to invert and impale vessel walls onto the pinned rings using the semi-automatic flap apparatus. The in-vitro test data showed that there were no tears from the joined rings seam during the procedures. The new anastomotic devices are effective even with some limitations still remaining. This device can be helpful to simplify the anastomosis procedure and reduce the surgery time.

  9. Dose patient verification during treatment using an amorphous silicon electronic portal imaging device in radiotherapy

    International Nuclear Information System (INIS)

    Berger, Lucie

    2006-01-01

    Today, amorphous silicon electronic portal imaging devices (aSi EPID) are currently used to check the accuracy of patient positioning. However, they are not use for dose reconstruction yet and more investigations are required to allow the use of an aSi EPID for routine dosimetric verification. The aim of this work is first to study the dosimetric characteristics of the EPID available at the Institut Curie and then, to check patient dose during treatment using these EPID. First, performance optimization of the Varian aS500 EPID system is studied. Then, a quality assurance system is set up in order to certify the image quality on a daily basis. An additional study on the dosimetric performance of the aS500 EPID is monitored to assess operational stability for dosimetry applications. Electronic portal imaging device is also a useful tool to improve IMRT quality control. The validation and the quality assurance of a portal dose image prediction system for IMRT pre-treatment quality control are performed. All dynamic IMRT fields are verified in clinical routine with the new method based on portal dosimetry. Finally, a new formalism for in vivo dosimetry using transit dose measured with EPID is developed and validated. The absolute dose measurement issue using aSi EPID is described and the midplane dose determination using in vivo dose measurements in combination with portal imaging is used with 3D-conformal-radiation therapy. (author) [fr

  10. Software for X-Ray Images Calculation of Hydrogen Compression Device in Megabar Pressure Range

    Science.gov (United States)

    Egorov, Nikolay; Bykov, Alexander; Pavlov, Valery

    2007-06-01

    Software for x-ray images simulation is described. The software is a part of x-ray method used for investigation of an equation of state of hydrogen in a megabar pressure range. A graphical interface that clearly and simply allows users to input data for x-ray image calculation: properties of the studied device, parameters of the x-ray radiation source, parameters of the x-ray radiation recorder, the experiment geometry; to represent the calculation results and efficiently transmit them to other software for processing. The calculation time is minimized. This makes it possible to perform calculations in a dialogue regime. The software is written in ``MATLAB'' system.

  11. Experimental device, corresponding forward model and processing of the experimental data using wavelet analysis for tomographic image reconstruction applied to eddy current nondestructive evaluation

    International Nuclear Information System (INIS)

    Joubert, P.Y.; Madaoui, N.

    1999-01-01

    In the context of eddy current non destructive evaluation using a tomographic image reconstruction process, the success of the reconstruction depends not only on the choice of the forward model and of the inversion algorithms, but also on the ability to extract the pertinent data from the raw signal provided by the sensor. We present in this paper, an experimental device designed for imaging purposes, the corresponding forward model, and a pre-processing of the experimental data using wavelet analysis. These three steps implemented with an inversion algorithm, will allow in the future to perform image reconstruction of 3-D flaws. (authors)

  12. The design and investigation of hybrid ferromagnetic/silicon spin electronic devices

    International Nuclear Information System (INIS)

    Pugh, D.I.

    2001-01-01

    The focus of this study concerns the design and investigation of ferromagnetic/silicon hybrid spin electronic devices as part of a wider project to design a novel spin valve transistor. The key issue to obtain a room temperature spin electronic device is the electrical injection of a spin polarised current from a ferromagnetic contact into a semiconductor. Despite many attempts concentrating on GaAs and InAs only small (< 1%) effects have been observed, making it difficult to confirm spin injection. Lateral devices were designed and fabricated using standard device fabrication procedures to produce arrays of Co/Si/So junctions. Subsequent designs aimed to reduce the number of junctions and improve device isolation. Evidence for spin dependent MR of up to 0.56% was observed in Co/p-Si/Co junctions with silicon gaps up to 16 μm in length. The maximum MR was observed when the first Co/Si Schottky barrier was reverse biased forming a high resistance interface. Vertical devices were designed in an attempt to eliminate any alternative current paths by using a well defined, 1 μm thick silicon membrane. Despite attempts to include oxide barriers, no spin dependent MR was observed in these devices. However, a novel vertical silicon based design has been made which should facilitate further advanced studies of spin injection and transport. The spin diffusion length in n-type silicon has been calculated as a function of doping concentration and temperature by considering the spin relaxation mechanisms in the semiconductor. Discussion has been made concerning p-type silicon and comparisons made with GaAs, indicating that n-Si should show longer spin diffusion lengths. The key design criteria for designing room temperature spin electronic devices have been highlighted. These include the use of a high leakage Schottky barrier or tunnel barrier between the ferromagnet and p-Si and a contact to the silicon to enable appropriate biasing to each FM/Si interface. (author)

  13. Discrete Event Simulation Model of the Polaris 2.1 Gamma Ray Imaging Radiation Detection Device

    Science.gov (United States)

    2016-06-01

    release; distribution is unlimited DISCRETE EVENT SIMULATION MODEL OF THE POLARIS 2.1 GAMMA RAY IMAGING RADIATION DETECTION DEVICE by Andres T...ONLY (Leave blank) 2. REPORT DATE June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE DISCRETE EVENT SIMULATION MODEL...modeled. The platform, Simkit, was utilized to create a discrete event simulation (DES) model of the Polaris. After carefully constructing the DES

  14. A device for identification of respective images in orthogonal localization roentgenograms

    International Nuclear Information System (INIS)

    Ganchev, M.

    1977-01-01

    Some problems which might be solved with the device, originally intended for localization of implanted radioactive wires, include: conjugation check-up of orthogonal localization roentgenograms; localization of partially screened radioactive sources in the patient body; localization of Fletcher's trapezium points in the pelvis; identification of the respective images of contrast filled lymph nodes and localization of some bone hallmarks, visible only on one of two localization roentgenograms. (author)

  15. Reliability of measuring pelvic floor elevation with a diagnostic ultrasonic imaging device

    OpenAIRE

    Ubukata, Hitomi; Maruyama, Hitoshi; Huo, Ming

    2015-01-01

    [Purpose] The purpose of this study was to investigate the reliability of measuring the amount of pelvic floor elevation during pelvic and abdominal muscle contraction with a diagnostic ultrasonic imaging device. [Subjects] The study group comprised 11 healthy women without urinary incontinence or previous birth experience. [Methods] We measured the displacement elevation of the bladder base during contraction of the abdominal and pelvic floor muscles was measured using a diagnostic ultrasoni...

  16. Dual-modality imaging with a ultrasound-gamma device for oncology

    Science.gov (United States)

    Polito, C.; Pellegrini, R.; Cinti, M. N.; De Vincentis, G.; Lo Meo, S.; Fabbri, A.; Bennati, P.; Cencelli, V. Orsolini; Pani, R.

    2018-06-01

    Recently, dual-modality systems have been developed, aimed to correlate anatomical and functional information, improving disease localization and helping oncological or surgical treatments. Moreover, due to the growing interest in handheld detectors for preclinical trials or small animal imaging, in this work a new dual modality integrated device, based on a Ultrasounds probe and a small Field of View Single Photon Emission gamma camera, is proposed.

  17. Defect Characterization, Imaging, and Control in Wide-Bandgap Semiconductors and Devices

    Science.gov (United States)

    Brillson, L. J.; Foster, G. M.; Cox, J.; Ruane, W. T.; Jarjour, A. B.; Gao, H.; von Wenckstern, H.; Grundmann, M.; Wang, B.; Look, D. C.; Hyland, A.; Allen, M. W.

    2018-03-01

    Wide-bandgap semiconductors are now leading the way to new physical phenomena and device applications at nanoscale dimensions. The impact of defects on the electronic properties of these materials increases as their size decreases, motivating new techniques to characterize and begin to control these electronic states. Leading these advances have been the semiconductors ZnO, GaN, and related materials. This paper highlights the importance of native point defects in these semiconductors and describes how a complement of spatially localized surface science and spectroscopy techniques in three dimensions can characterize, image, and begin to control these electronic states at the nanoscale. A combination of characterization techniques including depth-resolved cathodoluminescence spectroscopy, surface photovoltage spectroscopy, and hyperspectral imaging can describe the nature and distribution of defects at interfaces at both bulk and nanoscale surfaces, their metal interfaces, and inside nanostructures themselves. These features as well as temperature and mechanical strain inside wide-bandgap device structures at the nanoscale can be measured even while these devices are operating. These advanced capabilities enable several new directions for describing defects at the nanoscale, showing how they contribute to device degradation, and guiding growth processes to control them.

  18. Design of Infusion Schemes for Neuroreceptor Imaging

    DEFF Research Database (Denmark)

    Feng, Ling; Svarer, Claus; Madsen, Karine

    2016-01-01

    for bolus infusion (BI) or programmed infusion (PI) experiments. Steady-state quantitative measurements can be made with one short scan and venous blood samples. The GABAA receptor ligand [(11)C]Flumazenil (FMZ) was chosen for this purpose, as it lacks a suitable reference region. Methods. Five bolus [(11)C...... state was attained within 40 min, which was 8 min earlier than the optimal BI (B/I ratio = 55 min). Conclusions. The system can design both BI and PI schemes to attain steady state rapidly. For example, subjects can be [(11)C]FMZ-PET scanned after 40 min of tracer infusion for 40 min with venous...

  19. Topological Magnonics: A Paradigm for Spin-Wave Manipulation and Device Design

    Science.gov (United States)

    Wang, X. S.; Zhang, H. W.; Wang, X. R.

    2018-02-01

    Conventional magnonic devices use magnetostatic waves whose properties are sensitive to device geometry and the details of magnetization structure, so the design and the scalability of the device or circuitry are difficult. We propose topological magnonics, in which topological exchange spin waves are used as information carriers, that do not suffer from conventional problems of magnonic devices with additional nice features of nanoscale wavelength and high frequency. We show that a perpendicularly magnetized ferromagnet on a honeycomb lattice is generically a topological magnetic material in the sense that topologically protected chiral edge spin waves exist in the band gap as long as a spin-orbit-induced nearest-neighbor pseudodipolar interaction (and/or a next-nearest-neighbor Dzyaloshinskii-Moriya interaction) is present. The edge spin waves propagate unidirectionally along sample edges and domain walls regardless of the system geometry and defects. As a proof of concept, spin-wave diodes, spin-wave beam splitters, and spin-wave interferometers are designed by using sample edges and domain walls to manipulate the propagation of topologically protected chiral spin waves. Since magnetic domain walls can be controlled by magnetic fields or electric current or fields, one can essentially draw, erase, and redraw different spin-wave devices and circuitry on the same magnetic plate so that the proposed devices are reconfigurable and tunable. The topological magnonics opens up an alternative direction towards a robust, reconfigurable and scalable spin-wave circuitry.

  20. Fabrication of paper-based analytical devices optimized by central composite design.

    Science.gov (United States)

    Hamedpour, Vahid; Leardi, Riccardo; Suzuki, Koji; Citterio, Daniel

    2018-04-30

    In this work, an application of a design of experiments approach for the optimization of an isoniazid assay on a single-area inkjet-printed paper-based analytical device (PAD) is described. For this purpose, a central composite design was used for evaluation of the effect of device geometry and amount of assay reagents on the efficiency of the proposed device. The factors of interest were printed length, width, and sampling volume as factors related to device geometry, and amounts of the assay reagents polyvinyl alcohol (PVA), NH4OH, and AgNO3. Deposition of the assay reagents was performed by a thermal inkjet printer. The colorimetric assay mechanism of this device is based on the chemical interaction of isoniazid, ammonium hydroxide, and PVA with silver ions to induce the formation of yellow silver nanoparticles (AgNPs). The in situ-formed AgNPs can be easily detected by the naked eye or with a simple flat-bed scanner. Under optimal conditions, the calibration curve was linear in the isoniazid concentration range 0.03-10 mmol L-1 with a relative standard deviation of 3.4% (n = 5 for determination of 1.0 mmol L-1). Finally, the application of the proposed device for isoniazid determination in pharmaceutical preparations produced satisfactory results.

  1. Mapping the Salinity Gradient in a Microfluidic Device with Schlieren Imaging

    Directory of Open Access Journals (Sweden)

    Chen-li Sun

    2015-05-01

    Full Text Available This work presents the use of the schlieren imaging to quantify the salinity gradients in a microfluidic device. By partially blocking the back focal plane of the objective lens, the schlieren microscope produces an image with patterns that correspond to spatial derivative of refractive index in the specimen. Since salinity variation leads to change in refractive index, the fluid mixing of an aqueous salt solution of a known concentration and water in a T-microchannel is used to establish the relation between salinity gradients and grayscale readouts. This relation is then employed to map the salinity gradients in the target microfluidic device from the grayscale readouts of the corresponding micro-schlieren image. For saline solution with salinity close to that of the seawater, the grayscale readouts vary linearly with the salinity gradient, and the regression line is independent of the flow condition and the salinity of the injected solution. It is shown that the schlieren technique is well suited to quantify the salinity gradients in microfluidic devices, for it provides a spatially resolved, non-invasive, full-field measurement.

  2. Trial making of a positive drawing phantom and its application to whole-body imaging devices

    International Nuclear Information System (INIS)

    Saegusa, Kenji; Arimizu, Noboru; Nakata, Tsuneo; Toyama, Haruo; Shiina, Isamu.

    1980-01-01

    In whole-body RI imaging, there are more instances of the positive pictures detecting the radioisotopes accumulating in morbid positions, such as Tc-99m bone scanning. The phantoms used to mutually compare RI imaging devices and to test their performance employ negative drawing targets embedded rather than positive ones. A simple positive drawing phantom has been made for trial, and applying this to whole-body scanning devices, the performance and the target drawing ability under different scanning conditions were comparatively examined. Though similar to Rollo's phantom, the phantom made for positive drawing uses acryl plate for its outer structure and target portions. The positive targets are cylindrical, and the diameters are 2, 4, 6, 8, 10, and 20 mm, and the subject contrasts are 5, 2, 1, 0.5 and 0.2. The aqueous solution of Tc-99m of about 2 mCi was injected into the phantom, and this was scanned with a whole-body camera and a multi-detector type whole-body scanner. With the phantom pictures close to actual clinical condition, the positive drawing phantom is conveniently capable of comparing the respective imaging devices for intended purposes. (J.P.N.)

  3. Characterizing the Utility and Limitations of Repurposing an Open-Field Optical Imaging Device for Fluorescence-Guided Surgery in Head and Neck Cancer Patients.

    Science.gov (United States)

    Moore, Lindsay S; Rosenthal, Eben L; Chung, Thomas K; de Boer, Esther; Patel, Neel; Prince, Andrew C; Korb, Melissa L; Walsh, Erika M; Young, E Scott; Stevens, Todd M; Withrow, Kirk P; Morlandt, Anthony B; Richman, Joshua S; Carroll, William R; Zinn, Kurt R; Warram, Jason M

    2017-02-01

    The purpose of this study was to assess the potential of U.S. Food and Drug Administration-cleared devices designed for indocyanine green-based perfusion imaging to identify cancer-specific bioconjugates with overlapping excitation and emission wavelengths. Recent clinical trials have demonstrated potential for fluorescence-guided surgery, but the time and cost of the approval process may impede clinical translation. To expedite this translation, we explored the feasibility of repurposing existing optical imaging devices for fluorescence-guided surgery. Consenting patients (n = 15) scheduled for curative resection were enrolled in a clinical trial evaluating the safety and specificity of cetuximab-IRDye800 (NCT01987375). Open-field fluorescence imaging was performed preoperatively and during the surgical resection. Fluorescence intensity was quantified using integrated instrument software, and the tumor-to-background ratio characterized fluorescence contrast. In the preoperative clinic, the open-field device demonstrated potential to guide preoperative mapping of tumor borders, optimize the day of surgery, and identify occult lesions. Intraoperatively, the device demonstrated robust potential to guide surgical resections, as all peak tumor-to-background ratios were greater than 2 (range, 2.2-14.1). Postresection wound bed fluorescence was significantly less than preresection tumor fluorescence (P open-field imaging device was successfully repurposed to distinguish cancer from normal tissue in the preoperative clinic and throughout surgical resection. This study illuminated the potential for existing open-field optical imaging devices with overlapping excitation and emission spectra to be used for fluorescence-guided surgery. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  4. Triangular SPECT system for 3-D total organ volume imaging: Design concept and preliminary imaging results

    International Nuclear Information System (INIS)

    Lim, C.B.; Anderson, J.; Covic, J.

    1985-01-01

    SPECT systems based on 2-D detectors for projection data collection and filtered back-projection image reconstruction have the potential for true 3-D imaging, providing contiguous slice images in any orientation. Anger camera-based SPECT systems have the natural advantage supporting planar imaging clinical procedures. However, current systems suffer from two drawbacks; poor utilization of emitted photons, and inadequate system design for SPECT. A SPECT system consisting of three rectangular cameras with radial translation would offer the variable cylindrical FOV of 25 cm to 40 cm diameter allowing close detector access to the object. This system would provide optimized imaging for both brain and body organs in terms of sensitivity and resolution. For brain imaging a tight detector triangle with fan beam collimation, matching detector UFOV to the head, allows full 2 π utilization of emitted photons, resulting in >4 times sensitivity increase over the single detector system. Minification of intrinsic detector resolution in fan beam collimation further improves system resolution. For body organ imaging the three detectors with parallel hole collimators, rotating in non-circular orbit, provide both improved resolution and three-fold sensitivity increase. Practical challenges lie in ensuring perfect image overlap from three detectors without resolution degradation and artifact generation in order to benefit from the above improvements. An experimental system has been developed to test the above imaging concept and we have successfully demonstrated the superior image quality of the overlapped images. Design concept will be presented with preliminary imaging results

  5. Device reliability challenges for modern semiconductor circuit design – a review

    Directory of Open Access Journals (Sweden)

    C. Schlünder

    2009-05-01

    Full Text Available Product development based on highly integrated semiconductor circuits faces various challenges. To ensure the function of circuits the electrical parameters of every device must be in a specific window. This window is restricted by competing mechanisms like process variations and device degradation (Fig. 1. Degradation mechanisms like Negative Bias Temperature Instability (NBTI or Hot Carrier Injection (HCI lead to parameter drifts during operation adding on top of the process variations.

    The safety margin between real lifetime of MOSFETs and product lifetime requirements decreases at advanced technologies. The assignment of tasks to ensure the product lifetime has to be changed for the future. Up to now technology development has the main responsibility to adjust the technology processes to achieve the required lifetime. In future, reliability can no longer be the task of technology development only. Device degradation becomes a collective challenge for semiconductor technologist, reliability experts and circuit designers. Reliability issues have to be considered in design as well to achieve reliable and competitive products. For this work, designers require support by smart software tools with built-in reliability know how. Design for reliability will be one of the key requirements for modern product designs.

    An overview will be given of the physical device damage mechanisms, the operation conditions within circuits leading to stress and the impact of the corresponding device parameter degradation on the function of the circuit. Based on this understanding various approaches for Design for Reliability (DfR will be described. The function of aging simulators will be explained and the flow of circuit-simulation will be described. Furthermore, the difference between full custom and semi custom design and therefore, the different required approaches will be discussed.

  6. Smart home design for electronic devices monitoring based wireless gateway network using cisco packet tracer

    Science.gov (United States)

    Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut

    2018-04-01

    In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.

  7. New ideas for the design of optical devices with applications in solar energy collection

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Julio; Pereira, Manuel Collares

    2001-07-01

    New ideas for the design of optical devices and some applications to solar energy collection are presented. These are mainly solar concentrators resulting from the combination of known anidoloc (nonimaging) optics devices and known curves such as parabolic, elliptical, hyperbolic, circular arcs or flat mirrors. Other tailored curves are also used in some cases. Two possible applications are in compact high concentration devices for solar energy and ideal concentrators having a gap between the optics and the receiver. Only two dimensional solutions are explored in these cases. Due to the high number of internal reflections, the use of high reflectivity mirrors is mandatory or, alternatively, the use of total internal reflection. Combinations of 3D CPCs and torus are also presented. The obtained devices allow tracking of the sun without the need to move the receiver. An application to solar cooking is presented.

  8. Design, Fabrication, and Characterization of Carbon Nanotube Field Emission Devices for Advanced Applications

    Science.gov (United States)

    Radauscher, Erich Justin

    Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications. The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications. Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing

  9. The application of image processing software: Photoshop in environmental design

    Science.gov (United States)

    Dong, Baohua; Zhang, Chunmi; Zhuo, Chen

    2011-02-01

    In the process of environmental design and creation, the design sketch holds a very important position in that it not only illuminates the design's idea and concept but also shows the design's visual effects to the client. In the field of environmental design, computer aided design has made significant improvement. Many types of specialized design software for environmental performance of the drawings and post artistic processing have been implemented. Additionally, with the use of this software, working efficiency has greatly increased and drawings have become more specific and more specialized. By analyzing the application of photoshop image processing software in environmental design and comparing and contrasting traditional hand drawing and drawing with modern technology, this essay will further explore the way for computer technology to play a bigger role in environmental design.

  10. A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices

    International Nuclear Information System (INIS)

    Khoroshiltseva, Marina; Slanzi, Debora; Poli, Irene

    2016-01-01

    Highlights: • We present a multi-objective optimization algorithm for shading design. • We combine Harmony search and Pareto-based procedures. • Thermal and daylighting performances of external shading were considered. • We applied the optimization process to a residential social housing in Madrid. - Abstract: In this paper we address the problem of designing new energy-efficient static daylight devices that will surround the external windows of a residential building in Madrid. Shading devices can in fact largely influence solar gains in a building and improve thermal and lighting comforts by selectively intercepting the solar radiation and by reducing the undesirable glare. A proper shading device can therefore significantly increase the thermal performance of a building by reducing its energy demand in different climate conditions. In order to identify the set of optimal shading devices that allow a low energy consumption of the dwelling while maintaining high levels of thermal and lighting comfort for the inhabitants we derive a multi-objective optimization methodology based on Harmony Search and Pareto front approaches. The results show that the multi-objective approach here proposed is an effective procedure in designing energy efficient shading devices when a large set of conflicting objectives characterizes the performance of the proposed solutions.

  11. Non-contact detection of cardiac rate based on visible light imaging device

    Science.gov (United States)

    Zhu, Huishi; Zhao, Yuejin; Dong, Liquan

    2012-10-01

    We have developed a non-contact method to detect human cardiac rate at a distance. This detection is based on the general lighting condition. Using the video signal of human face region captured by webcam, we acquire the cardiac rate based on the PhotoPlethysmoGraphy theory. In this paper, the cardiac rate detecting method is mainly in view of the blood's different absorptivities of the lights various wavelengths. Firstly, we discompose the video signal into RGB three color signal channels and choose the face region as region of interest to take average gray value. Then, we draw three gray-mean curves on each color channel with time as variable. When the imaging device has good fidelity of color, the green channel signal shows the PhotoPlethysmoGraphy information most clearly. But the red and blue channel signals can provide more other physiological information on the account of their light absorptive characteristics of blood. We divide red channel signal by green channel signal to acquire the pulse wave. With the passband from 0.67Hz to 3Hz as a filter of the pulse wave signal and the frequency spectrum superimposed algorithm, we design frequency extracted algorithm to achieve the cardiac rate. Finally, we experiment with 30 volunteers, containing different genders and different ages. The results of the experiments are all relatively agreeable. The difference is about 2bmp. Through the experiment, we deduce that the PhotoPlethysmoGraphy theory based on visible light can also be used to detect other physiological information.

  12. Deployable and Conformal Planar Micro-Devices: Design and Model Validation

    Directory of Open Access Journals (Sweden)

    Jinda Zhuang

    2014-08-01

    Full Text Available We report a design concept for a deployable planar microdevice and the modeling and experimental validation of its mechanical behavior. The device consists of foldable membranes that are suspended between flexible stems and actuated by push-pull wires. Such a deployable device can be introduced into a region of interest in its compact “collapsed” state and then deployed to conformally cover a large two-dimensional surface area for minimally invasive biomedical operations and other engineering applications. We develop and experimentally validate theoretical models based on the energy minimization approach to examine the conformality and figures of merit of the device. The experimental results obtained using model contact surfaces agree well with the prediction and quantitatively highlight the importance of the membrane bending modulus in controlling surface conformality. The present study establishes an early foundation for the mechanical design of this and related deployable planar microdevice concepts.

  13. Design and Development of a Bilateral Therapeutic Hand Device for Stroke Rehabilitation

    Directory of Open Access Journals (Sweden)

    Akhlaquor Rahman

    2013-12-01

    Full Text Available The major cause of disability is stroke. It is the second highest cause of death after coronary heart disease in Australia. In this paper, a post stroke therapeutic device has been designed and developed for hand motor function rehabilitation that a stroke survivor can use for bilateral movement practice. A prototype of the device was fabricated that can fully flex and extend metacarpophalangeal (MCP, proximal interphalangeal (PIP and distal interphalangeal (DIP joints of the fingers, and interphalangeal (IP, metacarpophalangeal (MCP and trapeziometacarpal (IM joints of the thumb of the left hand (impaired hand, based on movements of the right hand's (healthy hand fingers. Out of 21 degrees of freedom (DOFs of hand fingers, the prototype of the hand exoskeleton allowed fifteen degrees of freedom (DOFs, with three degrees of freedom (DOFs for each finger and three degrees of freedom (DOFs for the thumb. In addition, testing of the device on a healthy subject was conducted to validate the design requirements.

  14. Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

    Science.gov (United States)

    Leege, Brian J.

    The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.

  15. The design of the optical components and gas control systems of the CERN Omega Ring Imaging Cerenkov Detector

    International Nuclear Information System (INIS)

    Apsimon, R.J.; Cowell, J.; Flower, P.S.

    1985-06-01

    A large Ring Imaging Cerenkov Detector (RICH) has been commissioned for use at the CERN Omega Spectrometer. The general design of the device is discussed, and the dependence of the attainable spatial resolution and range of particle identification on its optical parameters is illustrated. The construction and performance of the major optical components and gas systems of the detector are also described. (author)

  16. Design Program in Graphic User Interface Environment for Automobile ER Devices

    Science.gov (United States)

    Lim, S. C.; Park, J. S.; Sohn, J. W.; Choi, S. B.

    This work presents a design and analysis program for vehicle devices utilizing an electrorheological (ER) fluid. The program is operated in graphic user interface (GUI) environment and the initial window is consisted of four subprogram modules which are related to ER shock absorber, ER seat damper, ER engine mount, and ER anti-lock brake system (ABS), respectively. In order to execute each module, both material properties and design parameters are to be chosen by the user. Then, the output display window shows the field-dependent performance characteristics to be considered as design criteria. In addition, control performances of the vehicle system equipped with ER devices are displayed in time and frequency domain. In order to demonstrate the effectiveness of the proposed program, ER shock absorber and ER ABS are designed and manufactured and their performance characteristics are evaluated.

  17. Event-driven charge-coupled device design and applications therefor

    Science.gov (United States)

    Doty, John P. (Inventor); Ricker, Jr., George R. (Inventor); Burke, Barry E. (Inventor); Prigozhin, Gregory Y. (Inventor)

    2005-01-01

    An event-driven X-ray CCD imager device uses a floating-gate amplifier or other non-destructive readout device to non-destructively sense a charge level in a charge packet associated with a pixel. The output of the floating-gate amplifier is used to identify each pixel that has a charge level above a predetermined threshold. If the charge level is above a predetermined threshold the charge in the triggering charge packet and in the charge packets from neighboring pixels need to be measured accurately. A charge delay register is included in the event-driven X-ray CCD imager device to enable recovery of the charge packets from neighboring pixels for accurate measurement. When a charge packet reaches the end of the charge delay register, control logic either dumps the charge packet, or steers the charge packet to a charge FIFO to preserve it if the charge packet is determined to be a packet that needs accurate measurement. A floating-diffusion amplifier or other low-noise output stage device, which converts charge level to a voltage level with high precision, provides final measurement of the charge packets. The voltage level is eventually digitized by a high linearity ADC.

  18. Study on the dose response characteristics of a scanning liquid ion-chamber electronic portal imaging device

    CERN Document Server

    Ma Shao Gang; Song Yi Xin

    2002-01-01

    Objective: To study the dose response characteristics and the influence factors such as gantry angle, field size and acquisition mode on the dosimetric response curves, when using a scanning liquid ion-chamber electronic portal imaging device (EPID) for dose verification. Methods: All experiments were carried out on a Varian 600 C/D accelerator (6 MV X-ray) equipped with a Varian PortalVision sup T sup M MK2 type EPID. To obtain the dose response curve, the relationship between the incident radiation intensity to the detector and the pixel value output from the EPID were established. Firstly, the different dose rates of 6 MV X-rays were obtained by varying SSD. Secondly, three digital portal images were acquired for each dose rate using the EPID and averaged to avoid the influence of the dose rate fluctuations of the accelerator. The pixel values of all images were read using self-designed image analysis software, and and average for a region consisting of 11 x 11 pixels around the center was taken as the res...

  19. A data-driven design evaluation tool for handheld device soft keyboards.

    Directory of Open Access Journals (Sweden)

    Matthieu B Trudeau

    Full Text Available Thumb interaction is a primary technique used to operate small handheld devices such as smartphones. Despite the different techniques involved in operating a handheld device compared to a personal computer, the keyboard layouts for both devices are similar. A handheld device keyboard that considers the physical capabilities of the thumb may improve user experience. We developed and applied a design evaluation tool for different geometries of the QWERTY keyboard using a performance evaluation model. The model utilizes previously collected data on thumb motor performance and posture for different tap locations and thumb movement directions. We calculated a performance index (PITOT, 0 is worst and 2 is best for 663 designs consisting in different combinations of three variables: the keyboard's radius of curvature (R (mm, orientation (O (°, and vertical location on the screen (L. The current standard keyboard performed poorly (PITOT = 0.28 compared to other designs considered. Keyboard location (L contributed to the greatest variability in performance out of the three design variables, suggesting that designers should modify this variable first. Performance was greatest for designs in the middle keyboard location. In addition, having a slightly upward curve (R = -20 mm and orientated perpendicular to the thumb's long axis (O = -20° improved performance to PITOT = 1.97. Poorest performances were associated with placement of the keyboard's spacebar in the bottom right corner of the screen (e.g., the worst was for R = 20 mm, O = 40°, L =  Bottom (PITOT = 0.09. While this evaluation tool can be used in the design process as an ergonomic reference to promote user motor performance, other design variables such as visual access and usability still remain unexplored.

  20. Design of General-purpose Industrial signal acquisition system in a large scientific device

    Science.gov (United States)

    Ren, Bin; Yang, Lei

    2018-02-01

    In order to measure the industrial signal of a large scientific device experiment, a set of industrial data general-purpose acquisition system has been designed. It can collect 4~20mA current signal and 0~10V voltage signal. Through the practical experiments, it shows that the system is flexible, reliable, convenient and economical, and the system has characters of high definition and strong anti-interference ability. Thus, the system fully meets the design requirements..

  1. Basic design of the beam diagnostic device and proposal of a new electrostatic optical element

    Energy Technology Data Exchange (ETDEWEB)

    Hanashima, Susumu [Japan Atomic Energy Research Inst., Tokyo (Japan)

    2001-02-01

    The basic design completed of a beam diagnostic device, which indicates, among others, the phase space regions acceptable by the beams, and density distributions in the phase space as well. The measurement is made using two deflectors and two apertures. (M. Tanaka)

  2. 75 FR 33169 - Dental Devices: Classification of Dental Amalgam, Reclassification of Dental Mercury, Designation...

    Science.gov (United States)

    2010-06-11

    .... FDA-2008-N-0163] (formerly Docket No. 2001N-0067) RIN 0910-AG21 Dental Devices: Classification of Dental Amalgam, Reclassification of Dental Mercury, Designation of Special Controls for Dental Amalgam... the Federal Register of August 4, 2009 (74 FR 38686) which classified dental amalgam as a class II...

  3. Design and fabrication of equipment and devices for a Radiotherapy department

    International Nuclear Information System (INIS)

    Picon, C.L.; Zaharia B, M.

    1998-01-01

    The objective of this work is to present the possibility to design and construct utilizing local technology, a series of equipment and devices necessaries for a routine in a Radiotherapy Department with typical budget in the Latin-American hospitals. (Author)

  4. Waveform measurement in mocrowave device characterization: impact on power amplifiers design

    Directory of Open Access Journals (Sweden)

    Roberto Quaglia

    2016-07-01

    Full Text Available This paper describes an example of a measurement setup enabling waveform measurements during the load-pull characterization of a microwave power device. The significance of this measurement feature is highlighted showing how waveform engineering can be exploited to design high efficiency microwave power amplifiers.

  5. Design and Evaluation of a Smart Device Science Lesson to Improve Students’ Inquiry Skills

    NARCIS (Netherlands)

    Siiman, Leo A.; Pedaste, Margus; Mäeots, Mario; Leijen, Äli; Rannikmäe, Miia; Zacharia, Zacharias C.; de Jong, Anthonius J.M.; Xie, Haoran; Popescu, Elvira; Hancke, Gerhard; Fernández Manjón, Baltasar

    The prevalence of smart devices among young people is undeniably large, but concerns that they distract learning may be limiting their use in schools. In this study we demonstrate how tablet computers can be used effectively for teaching science. A digital biology lesson was designed in the Go-Lab

  6. Design for redundancy in a participatory action that helps user calibrating hearing devices

    DEFF Research Database (Denmark)

    Simeone, Luca

    2018-01-01

    and hearing aid simulator) and (b) adopting these technologies to create videogames that can be used by people with hearing aids to fine-tune their hearing devices. The high number of stakeholders involved in the project and their differences (in terms of needs, wants and agendas) motivated a design approach...

  7. Design of device driver program for PCI data acquisition adapters based on WDM of windows 2000

    International Nuclear Information System (INIS)

    Yuan Weihua; Qiao Weimin; Jing Lan; Zhu Haijun

    2003-01-01

    The paper describes the design of device driver program for PCI data acquisition adapters based on WDM of Windows 2000. Give an actual example of PCI6208. Now, several data acquisition adapters based in this method are using in national big science engineer HIRFL-CSR. (authors)

  8. Spherical gradient-index lenses as perfect imaging and maximum power transfer devices.

    Science.gov (United States)

    Gordon, J M

    2000-08-01

    Gradient-index lenses can be viewed from the perspectives of both imaging and nonimaging optics, that is, in terms of both image fidelity and achievable flux concentration. The simple class of gradient-index lenses with spherical symmetry, often referred to as modified Luneburg lenses, is revisited. An alternative derivation for established solutions is offered; the method of Fermat's strings and the principle of skewness conservation are invoked. Then these nominally perfect imaging devices are examined from the additional vantage point of power transfer, and the degree to which they realize the thermodynamic limit to flux concentration is determined. Finally, the spherical gradient-index lens of the fish eye is considered as a modified Luneburg lens optimized subject to material constraints.

  9. Device model for pixelless infrared image up-converters based on polycrystalline graphene heterostructures

    Science.gov (United States)

    Ryzhii, V.; Shur, M. S.; Ryzhii, M.; Karasik, V. E.; Otsuji, T.

    2018-01-01

    We developed a device model for pixelless converters of far/mid-infrared radiation (FIR/MIR) images into near-infrared/visible (NIR/VIR) images. These converters use polycrystalline graphene layers (PGLs) immersed in the van der Waals materials integrated with a light emitting diode (LED). The PGL serves as an element of the PGL infrared photodetector (PGLIP) sensitive to the incoming FIR/MIR due to the interband absorption. The spatially non-uniform photocurrent generated in the PGLIP repeats (mimics) the non-uniform distribution (image) created by the incident FIR/MIR. The injection of the nonuniform photocurrent into the LED active layer results in the nonuniform NIR/VIR image reproducing the FIR/MIR image. The PGL and the entire layer structure are not deliberately partitioned into pixels. We analyze the characteristics of such pixelless PGLIP-LED up-converters and show that their image contrast transfer function and the up-conversion efficiency depend on the PGL lateral resistivity. The up-converter exhibits high photoconductive gain and conversion efficiency when the lateral resistivity is sufficiently high. Several teams have successfully demonstrated the large area PGLs with the resistivities varying in a wide range. Such layers can be used in the pixelless PGLIP-LED image up-converters. The PGLIP-LED image up-converters can substantially surpass the image up-converters based on the quantum-well infrared photodetector integrated with the LED. These advantages are due to the use of the interband FIR/NIR absorption and a high photoconductive gain in the GLIPs.

  10. Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera

    Directory of Open Access Journals (Sweden)

    Wei Feng

    2016-03-01

    Full Text Available High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device or CMOS (complementary metal oxide semiconductor camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second gain in temporal resolution by using a 25 fps camera.

  11. An image compression method for space multispectral time delay and integration charge coupled device camera

    International Nuclear Information System (INIS)

    Li Jin; Jin Long-Xu; Zhang Ran-Feng

    2013-01-01

    Multispectral time delay and integration charge coupled device (TDICCD) image compression requires a low-complexity encoder because it is usually completed on board where the energy and memory are limited. The Consultative Committee for Space Data Systems (CCSDS) has proposed an image data compression (CCSDS-IDC) algorithm which is so far most widely implemented in hardware. However, it cannot reduce spectral redundancy in multispectral images. In this paper, we propose a low-complexity improved CCSDS-IDC (ICCSDS-IDC)-based distributed source coding (DSC) scheme for multispectral TDICCD image consisting of a few bands. Our scheme is based on an ICCSDS-IDC approach that uses a bit plane extractor to parse the differences in the original image and its wavelet transformed coefficient. The output of bit plane extractor will be encoded by a first order entropy coder. Low-density parity-check-based Slepian—Wolf (SW) coder is adopted to implement the DSC strategy. Experimental results on space multispectral TDICCD images show that the proposed scheme significantly outperforms the CCSDS-IDC-based coder in each band

  12. An adaptive optics imaging system designed for clinical use

    Science.gov (United States)

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R.; Rossi, Ethan A.

    2015-01-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2–3 arc minutes, (arcmin) 2) ~0.5–0.8 arcmin and, 3) ~0.05–0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3–5 arcmin, 2) ~0.7–1.1 arcmin and 3) ~0.07–0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing. PMID:26114033

  13. Intelligent Design of Nano-Scale Molecular Imaging Agents

    Directory of Open Access Journals (Sweden)

    Takeaki Ozawa

    2012-12-01

    Full Text Available Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs, biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  14. Design and analysis on sorting blade for automated size-based sorting device

    Science.gov (United States)

    Razali, Zol Bahri; Kader, Mohamed Mydin M. Abdul; Samsudin, Yasser Suhaimi; Daud, Mohd Hisam

    2017-09-01

    Nowadays rubbish separating or recycling is a main problem of nation, where peoples dumped their rubbish into dumpsite without caring the value of the rubbish if it can be recycled and reused. Thus the author proposed an automated segregating device, purposely to teach people to separate their rubbish and value the rubbish that can be reused. The automated size-based mechanical segregating device provides significant improvements in terms of efficiency and consistency in this segregating process. This device is designed to make recycling easier, user friendly, in the hope that more people will take responsibility if it is less of an expense of time and effort. This paper discussed about redesign a blade for the sorting device which is to develop an efficient automated mechanical sorting device for the similar material but in different size. The machine is able to identify the size of waste and it depends to the coil inside the container to separate it out. The detail design and methodology is described in detail in this paper.

  15. Type synthesis and preliminary design of devices supporting lower limb's rehabilitation.

    Science.gov (United States)

    Olinski, Michał; Lewandowski, Bogusz; Gronowicz, Antoni

    2015-01-01

    Based on the analysis of existing solutions, biomechanics of human lower limbs and anticipated applications, results of con- siderations concerning the necessary number of degrees of freedom for the designed device supporting rehabilitation of lower extremities are presented. An analysis was carried out in order to determine the innovative kinematic structure of the device, ensuring sufficient mobility and functionality while minimizing the number of degrees of freedom. With the aid of appropriate formalised meth- ods, for instance, type synthesis, a complete variety of solutions for leg joints were obtained in the form of basic and kinematic schemes, having the potential to find application in devices supporting lower limb rehabilitation. A 3D model of ankle joint module was built in Autodesk Inventor System, then imported to Adams and assembled into a moving numerical model of a mechanism. Several conducted simulations resulted in finding the required maximum stroke of the cylinders. A comparison of the angular ranges of ankle joint and similar devices with the ones achieved by the designed device indicated a sufficient reserve allowing not only movements typical of gait, but approximately achieving the passive range of motion for the ankle joint.

  16. Design of airborne imaging spectrometer based on curved prism

    Science.gov (United States)

    Nie, Yunfeng; Xiangli, Bin; Zhou, Jinsong; Wei, Xiaoxiao

    2011-11-01

    A novel moderate-resolution imaging spectrometer spreading from visible wavelength to near infrared wavelength range with a spectral resolution of 10 nm, which combines curved prisms with the Offner configuration, is introduced. Compared to conventional imaging spectrometers based on dispersive prism or diffractive grating, this design possesses characteristics of small size, compact structure, low mass as well as little spectral line curve (smile) and spectral band curve (keystone or frown). Besides, the usage of compound curved prisms with two or more different materials can greatly reduce the nonlinearity inevitably brought by prismatic dispersion. The utilization ratio of light radiation is much higher than imaging spectrometer of the same type based on combination of diffractive grating and concentric optics. In this paper, the Seidel aberration theory of curved prism and the optical principles of Offner configuration are illuminated firstly. Then the optical design layout of the spectrometer is presented, and the performance evaluation of this design, including spot diagram and MTF, is analyzed. To step further, several types of telescope matching this system are provided. This work provides an innovational perspective upon optical system design of airborne spectral imagers; therefore, it can offer theoretic guide for imaging spectrometer of the same kind.

  17. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.

    Science.gov (United States)

    Sugar, Thomas G; He, Jiping; Koeneman, Edward J; Koeneman, James B; Herman, Richard; Huang, H; Schultz, Robert S; Herring, D E; Wanberg, J; Balasubramanian, Sivakumar; Swenson, Pete; Ward, Jeffrey A

    2007-09-01

    The structural design, control system, and integrated biofeedback for a wearable exoskeletal robot for upper extremity stroke rehabilitation are presented. Assisted with clinical evaluation, designers, engineers, and scientists have built a device for robotic assisted upper extremity repetitive therapy (RUPERT). Intense, repetitive physical rehabilitation has been shown to be beneficial overcoming upper extremity deficits, but the therapy is labor intensive and expensive and difficult to evaluate quantitatively and objectively. The RUPERT is developed to provide a low cost, safe and easy-to-use, robotic-device to assist the patient and therapist to achieve more systematic therapy at home or in the clinic. The RUPERT has four actuated degrees-of-freedom driven by compliant and safe pneumatic muscles (PMs) on the shoulder, elbow, and wrist. They are programmed to actuate the device to extend the arm and move the arm in 3-D space. It is very important to note that gravity is not compensated and the daily tasks are practiced in a natural setting. Because the device is wearable and lightweight to increase portability, it can be worn standing or sitting providing therapy tasks that better mimic activities of daily living. The sensors feed back position and force information for quantitative evaluation of task performance. The device can also provide real-time, objective assessment of functional improvement. We have tested the device on stroke survivors performing two critical activities of daily living (ADL): reaching out and self feeding. The future improvement of the device involves increased degrees-of-freedom and interactive control to adapt to a user's physical conditions.

  18. Fluorescence guided lymph node biopsy in large animals using direct image projection device

    Science.gov (United States)

    Ringhausen, Elizabeth; Wang, Tylon; Pitts, Jonathan; Akers, Walter J.

    2016-03-01

    The use of fluorescence imaging for aiding oncologic surgery is a fast growing field in biomedical imaging, revolutionizing open and minimally invasive surgery practices. We have designed, constructed, and tested a system for fluorescence image acquisition and direct display on the surgical field for fluorescence guided surgery. The system uses a near-infrared sensitive CMOS camera for image acquisition, a near-infra LED light source for excitation, and DLP digital projector for projection of fluorescence image data onto the operating field in real time. Instrument control was implemented in Matlab for image capture, processing of acquired data and alignment of image parameters with the projected pattern. Accuracy of alignment was evaluated statistically to demonstrate sensitivity to small objects and alignment throughout the imaging field. After verification of accurate alignment, feasibility for clinical application was demonstrated in large animal models of sentinel lymph node biopsy. Indocyanine green was injected subcutaneously in Yorkshire pigs at various locations to model sentinel lymph node biopsy in gynecologic cancers, head and neck cancer, and melanoma. Fluorescence was detected by the camera system during operations and projected onto the imaging field, accurately identifying tissues containing the fluorescent tracer at up to 15 frames per second. Fluorescence information was projected as binary green regions after thresholding and denoising raw intensity data. Promising results with this initial clinical scale prototype provided encouraging results for the feasibility of optical projection of acquired luminescence during open oncologic surgeries.

  19. Design of a volume-imaging positron emission tomograph

    International Nuclear Information System (INIS)

    Harrop, R.; Rogers, J.G.; Coombes, G.H.; Wilkinson, N.A.; Pate, B.D.; Morrison, K.S.; Stazyk, M.; Dykstra, C.J.; Barney, J.S.; Atkins, M.S.; Doherty, P.W.; Saylor, D.P.

    1988-11-01

    Progress is reported in several areas of design of a positron volume imaging tomograph. As a means of increasing the volume imaged and the detector packing fraction, a lens system of detector light coupling is considered. A prototype layered scintillator detector demonstrates improved spatial resolution due to a unique Compton rejection capability. The conceptual design of a new mechanism for measuring scattered radiation during emission scans has been tested by Monte Carlo simulation. The problem of how to use effectively the resulting sampled scattered radiation projections is presented and discussed

  20. Habitable Exoplanet Imager Optical-Mechanical Design and Analysis

    Science.gov (United States)

    Gaskins, Jonathan; Stahl, H. Philip

    2017-01-01

    The Habitable Exoplanet Imager (HabEx) is a space telescope currently in development whose mission includes finding and spectroscopically characterizing exoplanets. Effective high-contrast imaging requires tight stability requirements of the mirrors to prevent issues such as line of sight and wavefront errors. PATRAN and NASTRAN were used to model updates in the design of the HabEx telescope and find how those updates affected stability. Most of the structural modifications increased first mode frequencies and improved line of sight errors. These studies will be used to help define the baseline HabEx telescope design.