WorldWideScience

Sample records for imaging development characterization

  1. New developments in image-based characterization of coated particle nuclear fuel

    Science.gov (United States)

    Price, Jeffery R.; Aykac, Deniz; Hunn, John D.; Kercher, Andrew K.; Morris, Robert N.

    2006-02-01

    We describe in this paper new developments in the characterization of coated particle nuclear fuel using optical microscopy and digital imaging. As in our previous work, we acquire optical imagery of the fuel pellets in two distinct manners that we refer to as shadow imaging and cross-sectional imaging. In shadow imaging, particles are collected in a single layer on an optically transparent dish and imaged using collimated back-lighting to measure outer surface characteristics only. In cross-sectional imaging, particles are mounted in acrylic epoxy and polished to near-center to reveal the inner coating layers for measurement. For shadow imaging, we describe a curvaturebased metric that is computed from the particle boundary points in the FFT domain using a low-frequency parametric representation. We also describe how missing boundary points are approximated using band-limited interpolation so that the FFT can be applied. For cross-section imaging, we describe a new Bayesian-motivated segmentation scheme as well as a new technique to correct layer measurements for the fact that we cannot observe the true mid-plane of the approximately spherical particles.

  2. Image-based characterization of foamed polymeric tissue scaffolds

    International Nuclear Information System (INIS)

    Mather, Melissa L; Morgan, Stephen P; Crowe, John A; White, Lisa J; Shakesheff, Kevin M; Tai, Hongyun; Howdle, Steven M; Kockenberger, Walter

    2008-01-01

    Tissue scaffolds are integral to many regenerative medicine therapies, providing suitable environments for tissue regeneration. In order to assess their suitability, methods to routinely and reproducibly characterize scaffolds are needed. Scaffold structures are typically complex, and thus their characterization is far from trivial. The work presented in this paper is centred on the application of the principles of scaffold characterization outlined in guidelines developed by ASTM International. Specifically, this work demonstrates the capabilities of different imaging modalities and analysis techniques used to characterize scaffolds fabricated from poly(lactic-co-glycolic acid) using supercritical carbon dioxide. Three structurally different scaffolds were used. The scaffolds were imaged using: scanning electron microscopy, micro x-ray computed tomography, magnetic resonance imaging and terahertz pulsed imaging. In each case two-dimensional images were obtained from which scaffold properties were determined using image processing. The findings of this work highlight how the chosen imaging modality and image-processing technique can influence the results of scaffold characterization. It is concluded that in order to obtain useful results from image-based scaffold characterization, an imaging methodology providing sufficient contrast and resolution must be used along with robust image segmentation methods to allow intercomparison of results

  3. Development and characterization of a handheld hyperspectral Raman imaging probe system for molecular characterization of tissue on mesoscopic scales.

    Science.gov (United States)

    St-Arnaud, Karl; Aubertin, Kelly; Strupler, Mathias; Madore, Wendy-Julie; Grosset, Andrée-Anne; Petrecca, Kevin; Trudel, Dominique; Leblond, Frédéric

    2018-01-01

    Raman spectroscopy is a promising cancer detection technique for surgical guidance applications. It can provide quantitative information relating to global tissue properties associated with structural, metabolic, immunological, and genetic biochemical phenomena in terms of molecular species including amino acids, lipids, proteins, and nucleic acid (DNA). To date in vivo Raman spectroscopy systems mostly included probes and biopsy needles typically limited to single-point tissue interrogation over a scale between 100 and 500 microns. The development of wider field handheld systems could improve tumor localization for a range of open surgery applications including brain, ovarian, and skin cancers. Here we present a novel Raman spectroscopy implementation using a coherent imaging bundle of fibers to create a probe capable of reconstructing molecular images over mesoscopic fields of view. Detection is performed using linear scanning with a rotation mirror and an imaging spectrometer. Different slits widths were tested at the entrance of the spectrometer to optimize spatial and spectral resolution while preserving sufficient signal-to-noise ratios to detect the principal Raman tissue features. The nonbiological samples, calcite and polytetrafluoroethylene (PTFE), were used to characterize the performance of the system. The new wide-field probe was tested on ex vivo samples of calf brain and swine tissue. Raman spectral content of both tissue types were validated with data from the literature and compared with data acquired with a single-point Raman spectroscopy probe. The single-point probe was used as the gold standard against which the new instrument was benchmarked as it has already been thoroughly validated for biological tissue characterization. We have developed and characterized a practical noncontact handheld Raman imager providing tissue information at a spatial resolution of 115 microns over a field of view >14 mm 2 and a spectral resolution of 6 cm -1 over

  4. Development of more efficacious Tc-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceutical mixtures

    International Nuclear Information System (INIS)

    Heineman, W.R.

    1992-01-01

    The long-range objective of this research program is the development of more efficacious technetium-99m radiopharmaceuticals for use as imaging agents in diagnostic nuclear medicine. We seek to isolate and develop distinct site imaging agents, each of which has properties optimized to provide diagnostic information concerning a given pathological condition. The specific objectives during the period (9/1/89 to 8/31/92) include: (1) Development of strategies for improving yields of specific Tc-diphosphonate complexes with optimum imaging properties; (2) Development of electrodes for rapid in situ electrochemical generation of skeletal imaging agents; (3) Development of electrochemical sensors for T c and Re imaging agents; (4) Characterization of stable T c - and Re-diphosphonate complexes obtainable in high yield by structural studies with techniques such as NMR, EXAFS, and Raman spectroscopy; (5) Development of improved separation techniques for the characterization of diphosphonate skeletal imaging agents; (6) Evaluation of the effect of the biological milieu on T c -diphosphonate complexes; and (7) Electrochemical studies of technetium and rhenium complexes synthesized by Professor Deutsch's research group for heart and brain imaging

  5. Microwave Breast Imaging System Prototype with Integrated Numerical Characterization

    Directory of Open Access Journals (Sweden)

    Mark Haynes

    2012-01-01

    Full Text Available The increasing number of experimental microwave breast imaging systems and the need to properly model them have motivated our development of an integrated numerical characterization technique. We use Ansoft HFSS and a formalism we developed previously to numerically characterize an S-parameter- based breast imaging system and link it to an inverse scattering algorithm. We show successful reconstructions of simple test objects using synthetic and experimental data. We demonstrate the sensitivity of image reconstructions to knowledge of the background dielectric properties and show the limits of the current model.

  6. The Digital Image Processing And Quantitative Analysis In Microscopic Image Characterization

    International Nuclear Information System (INIS)

    Ardisasmita, M. Syamsa

    2000-01-01

    Many electron microscopes although have produced digital images, but not all of them are equipped with a supporting unit to process and analyse image data quantitatively. Generally the analysis of image has to be made visually and the measurement is realized manually. The development of mathematical method for geometric analysis and pattern recognition, allows automatic microscopic image analysis with computer. Image processing program can be used for image texture and structure periodic analysis by the application of Fourier transform. Because the development of composite materials. Fourier analysis in frequency domain become important for measure the crystallography orientation. The periodic structure analysis and crystal orientation are the key to understand many material properties like mechanical strength. stress, heat conductivity, resistance, capacitance and other material electric and magnetic properties. In this paper will be shown the application of digital image processing in microscopic image characterization and analysis in microscopic image

  7. Data and image fusion for geometrical cloud characterization

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, L.R.; Buch, K.A.; Sun, Chen-Hui; Diegert, C.

    1997-04-01

    Clouds have a strong influence on the Earth`s climate and therefore on climate change. An important step in improving the accuracy of models that predict global climate change, general circulation models, is improving the parameterization of clouds and cloud-radiation interactions. Improvements in the next generation models will likely include the effect of cloud geometry on the cloud-radiation parameterizations. We have developed and report here methods for characterizing the geometrical features and three-dimensional properties of clouds that could be of significant value in developing these new parameterizations. We developed and report here a means of generating and imaging synthetic clouds which we used to test our characterization algorithms; a method for using Taylor`s hypotheses to infer spatial averages from temporal averages of cloud properties; a computer method for automatically classifying cloud types in an image; and a method for producing numerical three-dimensional renderings of cloud fields based on the fusion of ground-based and satellite images together with meteorological data.

  8. Development and characterization of a TES optical imaging array for astrophysics applications

    International Nuclear Information System (INIS)

    Burney, J.; Bay, T.J.; Brink, P.L.; Cabrera, B.; Castle, J.P.; Romani, R.W.; Tomada, A.; Nam, S.W.; Miller, A.J.; Martinis, J.; Wang, E.; Kenny, T.; Young, B.A.

    2004-01-01

    Our research group has successfully developed photon detectors capable of both time-stamping and energy-resolving individual photons at very high rates in a wide band from the near-IR through optical and into the near-UV. We have fabricated 32-pixel arrays of these Transition-Edge Sensor (TES) devices and have mounted them in an adiabatic demagnetization refrigerator equipped with windows for direct imaging. We have characterized single pixel behavior; we have also begun operating multiple pixels simultaneously, starting the scaling process towards use of the full array. We emphasize the development of a metalized mask for our array that blocks photons from hitting the inter-pixel areas and reflects them onto the TESs. We also present calibration data on detector resolution, electronics noise, and optical alignment

  9. Imaging systems and materials characterization

    International Nuclear Information System (INIS)

    Murr, L.E.

    2009-01-01

    This paper provides a broad background for the historical development and modern applications of light optical metallography, scanning and transmission electron microscopy, field-ion microscopy and several forms of scanning probe microscopes. Numerous case examples illustrating especially synergistic applications of these imaging systems are provided to demonstrate materials characterization especially in the context of structure-property-performance issues which define materials science and engineering

  10. Image characterization metrics for muon tomography

    Science.gov (United States)

    Luo, Weidong; Lehovich, Andre; Anashkin, Edward; Bai, Chuanyong; Kindem, Joel; Sossong, Michael; Steiger, Matt

    2014-05-01

    Muon tomography uses naturally occurring cosmic rays to detect nuclear threats in containers. Currently there are no systematic image characterization metrics for muon tomography. We propose a set of image characterization methods to quantify the imaging performance of muon tomography. These methods include tests of spatial resolution, uniformity, contrast, signal to noise ratio (SNR) and vertical smearing. Simulated phantom data and analysis methods were developed to evaluate metric applicability. Spatial resolution was determined as the FWHM of the point spread functions in X, Y and Z axis for 2.5cm tungsten cubes. Uniformity was measured by drawing a volume of interest (VOI) within a large water phantom and defined as the standard deviation of voxel values divided by the mean voxel value. Contrast was defined as the peak signals of a set of tungsten cubes divided by the mean voxel value of the water background. SNR was defined as the peak signals of cubes divided by the standard deviation (noise) of the water background. Vertical smearing, i.e. vertical thickness blurring along the zenith axis for a set of 2 cm thick tungsten plates, was defined as the FWHM of vertical spread function for the plate. These image metrics provided a useful tool to quantify the basic imaging properties for muon tomography.

  11. Development of a multi-scale and multi-modality imaging system to characterize tumours and their microenvironment in vivo

    Science.gov (United States)

    Rouffiac, Valérie; Ser-Leroux, Karine; Dugon, Emilie; Leguerney, Ingrid; Polrot, Mélanie; Robin, Sandra; Salomé-Desnoulez, Sophie; Ginefri, Jean-Christophe; Sebrié, Catherine; Laplace-Builhé, Corinne

    2015-03-01

    In vivo high-resolution imaging of tumor development is possible through dorsal skinfold chamber implantable on mice model. However, current intravital imaging systems are weakly tolerated along time by mice and do not allow multimodality imaging. Our project aims to develop a new chamber for: 1- long-term micro/macroscopic visualization of tumor (vascular and cellular compartments) and tissue microenvironment; and 2- multimodality imaging (photonic, MRI and sonography). Our new experimental device was patented in March 2014 and was primarily assessed on 75 mouse engrafted with 4T1-Luc tumor cell line, and validated in confocal and multiphoton imaging after staining the mice vasculature using Dextran 155KDa-TRITC or Dextran 2000kDa-FITC. Simultaneously, a universal stage was designed for optimal removal of respiratory and cardiac artifacts during microscopy assays. Experimental results from optical, ultrasound (Bmode and pulse subtraction mode) and MRI imaging (anatomic sequences) showed that our patented design, unlike commercial devices, improves longitudinal monitoring over several weeks (35 days on average against 12 for the commercial chamber) and allows for a better characterization of the early and late tissue alterations due to tumour development. We also demonstrated the compatibility for multimodality imaging and the increase of mice survival was by a factor of 2.9, with our new skinfold chamber. Current developments include: 1- defining new procedures for multi-labelling of cells and tissue (screening of fluorescent molecules and imaging protocols); 2- developing ultrasound and MRI imaging procedures with specific probes; 3- correlating optical/ultrasound/MRI data for a complete mapping of tumour development and microenvironment.

  12. Feasibility of digital imaging to characterize earth materials : part 1.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  13. Feasibility of digital imaging to characterize earth materials : part 4.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  14. Feasibility of digital imaging to characterize earth materials : part 5.

    Science.gov (United States)

    2012-05-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  15. Feasibility of digital imaging to characterize earth materials : part 3.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  16. Feasibility of digital imaging to characterize earth materials : part 2.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  17. Feasibility of digital imaging to characterize earth materials : part 6.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  18. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Shan, Liang; Chopra, Arvind; Leung, Kam; Eckelman, William C.; Menkens, Anne E.

    2012-01-01

    The development of molecular imaging agents is currently undergoing a dramatic expansion. As of October 2011, ∼4,800 newly developed agents have been synthesized and characterized in vitro and in animal models of human disease. Despite this rapid progress, the transfer of these agents to clinical practice is rather slow. To address this issue, the National Institutes of Health launched the Molecular Imaging and Contrast Agents Database (MICAD) in 2005 to provide freely accessible online information regarding molecular imaging probes and contrast agents for the imaging community. While compiling information regarding imaging agents published in peer-reviewed journals, the MICAD editors have observed that some important information regarding the characterization of a contrast agent is not consistently reported. This makes it difficult for investigators to evaluate and meta-analyze data generated from different studies of imaging agents, especially for the agents based on nanoparticles. This article is intended to serve as a guideline for new investigators for the characterization of preclinical studies performed with nanoparticle-based MRI contrast agents. The common characterization parameters are summarized into seven categories: contrast agent designation, physicochemical properties, magnetic properties, in vitro studies, animal studies, MRI studies, and toxicity. Although no single set of parameters is suitable to define the properties of the various types of contrast agents, it is essential to ensure that these agents meet certain quality control parameters at the preclinical stage, so that they can be used without delay for clinical studies.

  19. Developments in medical imaging techniques

    International Nuclear Information System (INIS)

    Kramer, Cornelis

    1979-01-01

    A review of the developments in medical imaging in the past 25 years shows a strong increase in the number of physical methods which have become available for obtaining images of diagnostic value. It is shown that despite this proliferation of methods the equipment used for obtaining the images can be based on a common structure. Also the resulting images can be characterized by a few relevant parameters which indicate their information content. On the basis of this common architecture a study is made of the potential capabilities of the large number of medical imaging techniques available now and in the future. Also the requirements and possibilities for handling the images obtained and for controlling the diagnostic systems are investigated [fr

  20. The spectral imaging facility: Setup characterization

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, Simone, E-mail: simone.deangelis@iaps.inaf.it; De Sanctis, Maria Cristina; Manzari, Paola Olga [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Ammannito, Eleonora [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, Los Angeles, California 90095-1567 (United States); Di Iorio, Tatiana [ENEA, UTMEA-TER, Rome (Italy); Liberati, Fabrizio [Opto Service SrL, Campagnano di Roma (RM) (Italy); Tarchi, Fabio; Dami, Michele; Olivieri, Monica; Pompei, Carlo [Selex ES, Campi Bisenzio (Italy); Mugnuolo, Raffaele [Italian Space Agency, ASI, Spatial Geodesy Center, Matera (Italy)

    2015-09-15

    The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratory in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated.

  1. Imaging and characterization of primary and secondary radiation in ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Opalka, Lukas [Institute of Experimental and Applied Physics, Czech Technical University in Prague (Czech Republic); Martisikova, Maria; Gwosch, Klaus [German Cancer Research Center, Heidelberg (Germany); Jakubek, Jan [Advacam, Prague (Czech Republic)

    2016-07-07

    Imaging in ion beam therapy is an essential and increasingly significant tool for treatment planning and radiation and dose deposition verification. Efforts aim at providing precise radiation field characterization and online monitoring of radiation dose distribution. A review is given of the research and methodology of quantum-imaging, composition, spectral and directional characterization of the mixed-radiation fields in proton and light ion beam therapy developed by the IEAP CTU Prague and HIT Heidelberg group. Results include non-invasive imaging of dose deposition and primary beam online monitoring.

  2. Imaging and characterization of primary and secondary radiation in ion beam therapy

    International Nuclear Information System (INIS)

    Granja, Carlos; Opalka, Lukas; Martisikova, Maria; Gwosch, Klaus; Jakubek, Jan

    2016-01-01

    Imaging in ion beam therapy is an essential and increasingly significant tool for treatment planning and radiation and dose deposition verification. Efforts aim at providing precise radiation field characterization and online monitoring of radiation dose distribution. A review is given of the research and methodology of quantum-imaging, composition, spectral and directional characterization of the mixed-radiation fields in proton and light ion beam therapy developed by the IEAP CTU Prague and HIT Heidelberg group. Results include non-invasive imaging of dose deposition and primary beam online monitoring.

  3. Development of HydroImage, A User Friendly Hydrogeophysical Characterization Software

    Energy Technology Data Exchange (ETDEWEB)

    Mok, Chin Man [GSI Environmental; Hubbard, Susan [Lawrence Berkeley National Laboratory; Chen, Jinsong [Lawrence Berkeley National Laboratory; Suribhatla, Raghu [AMEC E& I; Kaback, Dawn Samara [AMEC E& I

    2014-01-29

    HydroImage, user friendly software that utilizes high-resolution geophysical data for estimating hydrogeological parameters in subsurface strate, was developed under this grant. HydroImage runs on a personal computer platform to promote broad use by hydrogeologists to further understanding of subsurface processes that govern contaminant fate, transport, and remediation. The unique software provides estimates of hydrogeological properties over continuous volumes of the subsurface, whereas previous approaches only allow estimation of point locations. thus, this unique tool can be used to significantly enhance site conceptual models and improve design and operation of remediation systems. The HydroImage technical approach uses statistical models to integrate geophysical data with borehole geological data and hydrological measurements to produce hydrogeological parameter estimates as 2-D or 3-D images.

  4. Developments in mercuric iodide gamma ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E; Beyerle, A G; Dolin, R C; Ortale, C [EG and G Energy Measurements, Inc., Goleta, CA (USA). Santa Barbara Operations

    1989-11-01

    A mercuric iodide (HgI{sub 2}) gamma ray imaging array and camera system previously described have been characterized for spatial and energy resolution. Based on these data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criteria for the new camera will be presented. (orig.).

  5. Drusen Characterization with Multimodal Imaging

    Science.gov (United States)

    Spaide, Richard F.; Curcio, Christine A.

    2010-01-01

    Summary Multimodal imaging findings and histological demonstration of soft drusen, cuticular drusen, and subretinal drusenoid deposits provided information used to develop a model explaining their imaging characteristics. Purpose To characterize the known appearance of cuticular drusen, subretinal drusenoid deposits (reticular pseudodrusen), and soft drusen as revealed by multimodal fundus imaging; to create an explanatory model that accounts for these observations. Methods Reported color, fluorescein angiographic, autofluorescence, and spectral domain optical coherence tomography (SD-OCT) images of patients with cuticular drusen, soft drusen, and subretinal drusenoid deposits were reviewed, as were actual images from affected eyes. Representative histological sections were examined. The geometry, location, and imaging characteristics of these lesions were evaluated. A hypothesis based on the Beer-Lambert Law of light absorption was generated to fit these observations. Results Cuticular drusen appear as numerous uniform round yellow-white punctate accumulations under the retinal pigment epithelium (RPE). Soft drusen are larger yellow-white dome-shaped mounds of deposit under the RPE. Subretinal drusenoid deposits are polymorphous light-grey interconnected accumulations above the RPE. Based on the model, both cuticular and soft drusen appear yellow due to the removal of shorter wavelength light by a double pass through the RPE. Subretinal drusenoid deposits, which are located on the RPE, are not subjected to short wavelength attenuation and therefore are more prominent when viewed with blue light. The location and morphology of extracellular material in relationship to the RPE, and associated changes to RPE morphology and pigmentation, appeared to be primary determinants of druse appearance in different imaging modalities. Conclusion Although cuticular drusen, subretinal drusenoid deposits, and soft drusen are composed of common components, they are distinguishable

  6. Characterization of a neutron imaging setup at the INES facility

    Science.gov (United States)

    Durisi, E. A.; Visca, L.; Albertin, F.; Brancaccio, R.; Corsi, J.; Dughera, G.; Ferrarese, W.; Giovagnoli, A.; Grassi, N.; Grazzi, F.; Lo Giudice, A.; Mila, G.; Nervo, M.; Pastrone, N.; Prino, F.; Ramello, L.; Re, A.; Romero, A.; Sacchi, R.; Salvemini, F.; Scherillo, A.; Staiano, A.

    2013-10-01

    The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field.

  7. Laboratory Characterization of an Imaging Reflectometer System

    International Nuclear Information System (INIS)

    Munsat, T.; Mazzucato, E.; Park, H.; Domier, C.W.; Luhmann, N.C. Jr.; Donne, A.J.H.; Pol, M. van de

    2003-01-01

    While microwave reflectometry has proven to be a sensitive tool for measuring electron density fluctuations in many circumstances, it has also been shown to have limited viability for core measurements and/or conditions of strong turbulence. To this end, a new instrument based on 2-D imaging reflectometry has been developed to measure density fluctuations over an extended plasma region in the TEXTOR tokamak. Laboratory characterization of this instrument has been performed using corrugated reflecting targets as an approximation to plasma reflections including 2-D turbulent fluctuations of various magnitude and poloidal wavenumber. Within this approximation, the imaging reflectometer can recover the spectral and spatial characteristics of the reflection layer lost to or otherwise inaccessible to conventional techniques

  8. Application of UV Imaging in Formulation Development

    DEFF Research Database (Denmark)

    Sun, Yu; Østergaard, Jesper

    2017-01-01

    defining formulation behavior after exposure to the aqueous environments and pharmaceutical performance is critical in pharmaceutical development, manufacturing and quality control of drugs. UV imaging has been explored as a tool for qualitative and quantitative characterization of drug dissolution...... related to the structural properties of the drug substance or formulation can be monitored. UV imaging is a non-intrusive and simple-to-operate analytical technique which holds potential for providing a mechanistic foundation for formulation development. This review aims to cover applications of UV...

  9. Characterization of a neutron imaging setup at the INES facility

    Energy Technology Data Exchange (ETDEWEB)

    Durisi, E.A., E-mail: elisabettaalessandra.durisi@unito.it [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Visca, L. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Albertin, F.; Brancaccio, R. [Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Corsi, J. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Dughera, G. [Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Ferrarese, W. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Giovagnoli, A.; Grassi, N. [Fondazione Centro per la Conservazione ed il Restauro dei Beni Culturali “La Venaria Reale”, Piazza della Repubblica, 10078 Venaria Reale, Torino (Italy); Grazzi, F. [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Lo Giudice, A.; Mila, G. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); and others

    2013-10-21

    The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field. -- Highlights: A full characterization of the present INES imaging set-up was carried out. Two CCD cameras and two scintillators (ZnS/{sup 6}LiF) of different thicknesses were tested. Linearity, effective dynamic range and spatial resolution were determined. Radiographies of steep wedges were performed using the highest dynamic range setup. Tomography of a bronze cube was performed using the best spatial resolution setup.

  10. Characterization of a neutron imaging setup at the INES facility

    International Nuclear Information System (INIS)

    Durisi, E.A.; Visca, L.; Albertin, F.; Brancaccio, R.; Corsi, J.; Dughera, G.; Ferrarese, W.; Giovagnoli, A.; Grassi, N.; Grazzi, F.; Lo Giudice, A.; Mila, G.

    2013-01-01

    The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field. -- Highlights: A full characterization of the present INES imaging set-up was carried out. Two CCD cameras and two scintillators (ZnS/ 6 LiF) of different thicknesses were tested. Linearity, effective dynamic range and spatial resolution were determined. Radiographies of steep wedges were performed using the highest dynamic range setup. Tomography of a bronze cube was performed using the best spatial resolution setup

  11. Has molecular imaging delivered to drug development?

    Science.gov (United States)

    Murphy, Philip S.; Patel, Neel; McCarthy, Timothy J.

    2017-10-01

    Pharmaceutical research and development requires a systematic interrogation of a candidate molecule through clinical studies. To ensure resources are spent on only the most promising molecules, early clinical studies must understand fundamental attributes of the drug candidate, including exposure at the target site, target binding and pharmacological response in disease. Molecular imaging has the potential to quantitatively characterize these properties in small, efficient clinical studies. Specific benefits of molecular imaging in this setting (compared to blood and tissue sampling) include non-invasiveness and the ability to survey the whole body temporally. These methods have been adopted primarily for neuroscience drug development, catalysed by the inability to access the brain compartment by other means. If we believe molecular imaging is a technology platform able to underpin clinical drug development, why is it not adopted further to enable earlier decisions? This article considers current drug development needs, progress towards integration of molecular imaging into studies, current impediments and proposed models to broaden use and increase impact. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  12. Characterization of modulated time-of-flight range image sensors

    Science.gov (United States)

    Payne, Andrew D.; Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.

    2009-01-01

    A number of full field image sensors have been developed that are capable of simultaneously measuring intensity and distance (range) for every pixel in a given scene using an indirect time-of-flight measurement technique. A light source is intensity modulated at a frequency between 10-100 MHz, and an image sensor is modulated at the same frequency, synchronously sampling light reflected from objects in the scene (homodyne detection). The time of flight is manifested as a phase shift in the illumination modulation envelope, which can be determined from the sampled data simultaneously for each pixel in the scene. This paper presents a method of characterizing the high frequency modulation response of these image sensors, using a pico-second laser pulser. The characterization results allow the optimal operating parameters, such as the modulation frequency, to be identified in order to maximize the range measurement precision for a given sensor. A number of potential sources of error exist when using these sensors, including deficiencies in the modulation waveform shape, duty cycle, or phase, resulting in contamination of the resultant range data. From the characterization data these parameters can be identified and compensated for by modifying the sensor hardware or through post processing of the acquired range measurements.

  13. Statistical characterization and segmentation of drusen in fundus images.

    Science.gov (United States)

    Santos-Villalobos, H; Karnowski, T P; Aykac, D; Giancardo, L; Li, Y; Nichols, T; Tobin, K W; Chaum, E

    2011-01-01

    Age related Macular Degeneration (AMD) is a disease of the retina associated with aging. AMD progression in patients is characterized by drusen, pigmentation changes, and geographic atrophy, which can be seen using fundus imagery. The level of AMD is characterized by standard scaling methods, which can be somewhat subjective in practice. In this work we propose a statistical image processing approach to segment drusen with the ultimate goal of characterizing the AMD progression in a data set of longitudinal images. The method characterizes retinal structures with a statistical model of the colors in the retina image. When comparing the segmentation results of the method between longitudinal images with known AMD progression and those without, the method detects progression in our longitudinal data set with an area under the receiver operating characteristics curve of 0.99.

  14. Statistical Characterization and Segmentation of Drusen in Fundus Images

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Karnowski, Thomas Paul [ORNL; Aykac, Deniz [ORNL; Giancardo, Luca [ORNL; Li, Yaquin [University of Tennessee, Knoxville (UTK); Nichols, Trent L [ORNL; Tobin Jr, Kenneth William [ORNL; Chaum, Edward [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Age related Macular Degeneration (AMD) is a disease of the retina associated with aging. AMD progression in patients is characterized by drusen, pigmentation changes, and geographic atrophy, which can be seen using fundus imagery. The level of AMD is characterized by standard scaling methods, which can be somewhat subjective in practice. In this work we propose a statistical image processing approach to segment drusen with the ultimate goal of characterizing the AMD progression in a data set of longitudinal images. The method characterizes retinal structures with a statistical model of the colors in the retina image. When comparing the segmentation results of the method between longitudinal images with known AMD progression and those without, the method detects progression in our longitudinal data set with an area under the receiver operating characteristics curve of 0.99.

  15. Recent Developments in Computed Tomography for Urolithiasis: Diagnosis and Characterization

    Directory of Open Access Journals (Sweden)

    P. D. Mc Laughlin

    2012-01-01

    Full Text Available Objective. To critically evaluate the current literature in an effort to establish the current role of radiologic imaging, advances in computed tomography (CT and standard film radiography in the diagnosis, and characterization of urinary tract calculi. Conclusion. CT has a valuable role when utilized prudently during surveillance of patients following endourological therapy. In this paper, we outline the basic principles relating to the effects of exposure to ionizing radiation as a result of CT scanning. We discuss the current developments in low-dose CT technology, which have resulted in significant reductions in CT radiation doses (to approximately one-third of what they were a decade ago while preserving image quality. Finally, we will discuss an important recent development now commercially available on the latest generation of CT scanners, namely, dual energy imaging, which is showing promise in urinary tract imaging as a means of characterizing the composition of urinary tract calculi.

  16. Research, development and optimization of real time radioscopic characterization of remote handled waste and intermediate level waste, using X-ray imaging at MeV energies

    International Nuclear Information System (INIS)

    Halliwell, Stephen

    2007-01-01

    Available in abstract form only. Full text of publication follows: Real time radioscopy (RTR) using X-ray energies of up to 450 keV, is used extensively in the characterization of nuclear waste. The majority of LLW and some ILW in drums and boxes can be penetrated, for successful imaging, by X-rays with energies of up to 450 keV. However, the shielding of many waste packages, and the range of higher density waste matrices, require X-rays at MeV energies, for X-ray imaging to achieve the performance criteria. A broad imaging performance is required to enable the identification of a range of prohibited items, including the ability to see a moving liquid meniscus which indicates the presence of free liquid, in a high density or a waste matrix with substantial containment shielding. Enhanced, high energy X-ray imaging technology to meet the future characterization demands of the nuclear industry required the design and build of a high energy facility, and the implementation of a program of research and development. The initial phase of development has confirmed that digital images meeting the required performance criteria can be made using high energy X-rays. The evaluation of real time imaging and the optimization of imaging with high energy X-rays is currently in progress. (author)

  17. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.

    2013-07-23

    Interfacial delamination is a key reliability challenge in composites and micro-electronic systems due to (high-density) integration of dissimilar materials. Predictive finite element models are used to minimize delamination failures during design, but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical interface behavior from in-situ delamination experiments. Recently, a novel miniature delamination setup was presented that enables in-situ microscopic characterization of interface delamination while sensitively measuring global load-displacement curves for all mode mixities. Nevertheless, extraction of detailed mechanical interface behavior from measured images is challenging, because deformations are tiny and measurement noise large. Therefore, an advanced I-GDIC methodology is developed which correlates the image patterns by only deforming the images using kinematically-admissible \\'eigenmodes\\' that correspond to the few parameters controlling the interface tractions in an analytic description of the crack tip deformation field, thereby greatly enhancing accuracy and robustness. This method is validated on virtual delamination experiments, simulated using a recently developed self-adaptive cohesive zone (CZ) finite element framework. © The Society for Experimental Mechanics, Inc. 2014.

  18. Development of in vivo imaging modalities for experimental oncology

    International Nuclear Information System (INIS)

    Pesnel, S.

    2010-01-01

    Small animal imaging is more and more used in pharmacology to identify and to characterize the activities of new antitumor agents. The first part of my work consisted in the development of new tools to improve the quantitation in bioluminescence. A method, based on spectral characteristics of emitted photons, has been established to correct tissue absorption. The second, using methods of image restoration had for objective to correct tissue scattering to increase the resolution. In a second part, I developed in vivo models of bioluminescent tumors (intracranial glioblastoma, a large cell anaplastic lymphoma and a metastatic neuroblastoma) using the imaging methods described previously. These studies allowed the characterization of the activity of a new antitumor agent. The aim of the last part was to develop imaging probes. The first, a monoclonal antibody antiCD45 labeled with a fluoro chrome allowed the detection of human leukemic cells implanted in the mice using fluorescence imaging. The second was developed to predict the uptake of a antitumor agent, a spermine-podophyllotoxin conjugate, in tumor cells via the polyamine transport system. The synthesized probe is a spermine conjugated to a HYNIC group to bind a radioisotope: the Technetium-99m and to realize a scintigraphic examination. The results showed the feasibility of a preclinical use of this probe. So, at this end of this thesis, the developed methods of bioluminescent signal processing are available to improve the use of optical imaging in pharmacology. Of course, supplementary studies are necessary to define precisely in which context these corrections will be the most appropriate. (author)

  19. Are T2-weighted images necessary in renal mass characterization?

    International Nuclear Information System (INIS)

    Dann, Phoebe; Thakur, Ravi; Chin, Deanne; Krinsky, Glenn; Israel, Gary M.

    2006-01-01

    Objective: To determine what role T2-weighted images play in characterizing renal masses. Methods: Forty-four pathologically proven renal masses (34 renal cell carcinomas, 8 oncocytomas, 1 metanephric adenoma, 1 angiomyolipoma without macroscopic fat) and 38 simple renal cysts were evaluated with T1- and T2-weighted images at 1.5 T. Two independent and blinded readers initially characterized all masses using only the T1-weighed images (in- and opposed-phase chemical shift, unenhanced frequency-selective fat-suppressed, gadolinium-enhanced frequency-selective fat-suppressed and subtraction images) and placed each mass into one of three categories: nonsurgical, in need of follow-up, or surgical. The masses were then re-evaluated with the addition of the T2-weighted images. It was determined if the T2-weighted images changed the initial classification. Results: Forty-three of the 44 (98%) pathologically proven renal masses were characterized as a surgical mass using only the T1-weighted images. The remaining renal mass (a renal cell carcinoma) was characterized as a mass in which follow-up exams would be suggested. Thirty-eight of 38 (100%) simple renal cysts were correctly characterized using only the T1-weighted images. The T2-weighted images did not change the initial interpretation of the T1-weighted images in any of the cases. Conclusion: The results of this study suggest that T2-weighted images are not necessary in the evaluation of all renal masses and are specifically not necessary in the differentiation of solid and cystic renal neoplasms from simple renal cysts

  20. Development and characterization of superparamagnetic coatings

    Directory of Open Access Journals (Sweden)

    Kuschnerus I.

    2015-09-01

    Full Text Available Since 2005, Magnetic Particle Imaging (MPI is handled as a key technology with great potential in medical applications as an imaging method [1]. The superparamagnetic iron oxide nanoparticles (SPIONs which are already used as a tracer in MPI, combined with various polymers, are being investigated in order to enhance this potential. A combination of polymers such as polyethylene (PE and polyurethane (PU and SPIONs could be used as a coating for medical devices, or added to semi-rigid polyurethane for the production of surgical instruments [2]. This would be of great interest, since the method provides high sensitivity with simultaneous high spatial resolution and three-dimensional imaging in real time. Therefore various superparamagnetic coatings were developed, tested and characterized. Finally SPIONs and various polymers were combined directly and used for MPI-compatible models.

  1. Ultrasound Imaging Techniques for Spatiotemporal Characterization of Composition, Microstructure, and Mechanical Properties in Tissue Engineering.

    Science.gov (United States)

    Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P

    2016-08-01

    Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.

  2. Dental imaging characterization of micropigs

    International Nuclear Information System (INIS)

    Lee, H.Y.; Choi, M.H.; Chang, J.H.; Jung, J.H.; Kim, M.E.; Lee, N.S.; Kim, J.Y.; Choi, M.C.

    2010-01-01

    Recently the micropig has been developed as human disease model. The dental and orofacial region of micropig is similar to that of humans, so it has been used for testing implant materials and techniques. The purpose of this study is on dental image at each age using radiography and computed tomography. Total twenty-two male micropigs, two or three animals of each 1, 3, 5, 7, 9, 12, 18 and 24 months old, were given radiographic examinations. After general anesthesia, extra- and intra-oral radiographic technique and computed tomographic scans were performed to assess the dental characterization of micropigs. The total deciduous dental formula comprised 28 teeth and was depicted as Di 3/3, Dc 1/1, Dp 3/3. The total permanent dental formula comprised 44 teeth and was depicted as I 3/3, C 1/1, P 4/4, M 3/3. Hypodontia of the first premolars was common in the micropig. The permanent teeth erupted from 3 to 24 month after birth. The sequence of eruption of the permanent teeth was M1, P1, I3, C, M2, I1 + P3 + P4, P2, I2, M3. Dental imaging enables visualization of the unerupted teeth and gives more information about the development of the teeth. The growth pattern of the teeth obtained through radiographic and computed tomographic examination provides basic data in the micropig as animal model for dental research

  3. Ore minerals textural characterization by hyperspectral imaging

    Science.gov (United States)

    Bonifazi, Giuseppe; Picone, Nicoletta; Serranti, Silvia

    2013-02-01

    The utilization of hyperspectral detection devices, for natural resources mapping/exploitation through remote sensing techniques, dates back to the early 1970s. From the first devices utilizing a one-dimensional profile spectrometer, HyperSpectral Imaging (HSI) devices have been developed. Thus, from specific-customized devices, originally developed by Governmental Agencies (e.g. NASA, specialized research labs, etc.), a lot of HSI based equipment are today available at commercial level. Parallel to this huge increase of hyperspectral systems development/manufacturing, addressed to airborne application, a strong increase also occurred in developing HSI based devices for "ground" utilization that is sensing units able to play inside a laboratory, a processing plant and/or in an open field. Thanks to this diffusion more and more applications have been developed and tested in this last years also in the materials sectors. Such an approach, when successful, is quite challenging being usually reliable, robust and characterised by lower costs if compared with those usually associated to commonly applied analytical off- and/or on-line analytical approaches. In this paper such an approach is presented with reference to ore minerals characterization. According to the different phases and stages of ore minerals and products characterization, and starting from the analyses of the detected hyperspectral firms, it is possible to derive useful information about mineral flow stream properties and their physical-chemical attributes. This last aspect can be utilized to define innovative process mineralogy strategies and to implement on-line procedures at processing level. The present study discusses the effects related to the adoption of different hardware configurations, the utilization of different logics to perform the analysis and the selection of different algorithms according to the different characterization, inspection and quality control actions to apply.

  4. Advanced imaging as a novel approach to the characterization of membranes for microfiltration applications

    Science.gov (United States)

    Marroquin, Milagro

    The primary objectives of my dissertation were to design, develop and implement novel confocal microscopy imaging protocols for the characterization of membranes and highlight opportunities to obtain reliable and cutting-edge information of microfiltration membrane morphology and fouling processes. After a comprehensive introduction and review of confocal microscopy in membrane applications (Chapter 1), the first part of this dissertation (Chapter 2) details my work on membrane morphology characterization by confocal laser scanning microscopy (CLSM) and the implementation of my newly developed CLSM cross-sectional imaging protocol. Depth-of-penetration limits were identified to be approximately 24 microns and 7-8 microns for mixed cellulose ester and polyethersulfone membranes, respectively, making it impossible to image about 70% of the membrane bulk. The development and implementation of my cross-sectional CLSM method enabled the imaging of the entire membrane cross-section. Porosities of symmetric and asymmetric membranes with nominal pore sizes in the range 0.65-8.0 microns were quantified at different depths and yielded porosity values in the 50-60% range. It is my hope and expectation that the characterization strategy developed in this part of the work will enable future studies of different membrane materials and applications by confocal microscopy. After demonstrating how cross-sectional CLSM could be used to fully characterize membrane morphologies and porosities, I applied it to the characterization of fouling occurring in polyethersulfone microfiltration membranes during the processing of solutions containing proteins and polysaccharides (Chapter 3). Through CLSM imaging, it was determined where proteins and polysaccharides deposit throughout polymeric microfiltration membranes when a fluid containing these materials is filtered. CLSM enabled evaluation of the location and extent of fouling by individual components (protein: casein and polysaccharide

  5. Parametric imaging for characterizing focal liver lesions in contrast-enhanced ultrasound.

    Science.gov (United States)

    Rognin, Nicolas G; Arditi, Marcel; Mercier, Laurent; Frinking, Peter J A; Schneider, Michel; Perrenoud, Geneviève; Anaye, Anass; Meuwly, Jean-Yves; Tranquart, François

    2010-11-01

    The differentiation between benign and malignant focal liver lesions plays an important role in diagnosis of liver disease and therapeutic planning of local or general disease. This differentiation, based on characterization, relies on the observation of the dynamic vascular patterns (DVP) of lesions with respect to adjacent parenchyma, and may be assessed during contrast-enhanced ultrasound imaging after a bolus injection. For instance, hemangiomas (i.e., benign lesions) exhibit hyper-enhanced signatures over time, whereas metastases (i.e., malignant lesions) frequently present hyperenhanced foci during the arterial phase and always become hypo-enhanced afterwards. The objective of this work was to develop a new parametric imaging technique, aimed at mapping the DVP signatures into a single image called a DVP parametric image, conceived as a diagnostic aid tool for characterizing lesion types. The methodology consisted in processing a time sequence of images (DICOM video data) using four consecutive steps: (1) pre-processing combining image motion correction and linearization to derive an echo-power signal, in each pixel, proportional to local contrast agent concentration over time; (2) signal modeling, by means of a curve-fitting optimization, to compute a difference signal in each pixel, as the subtraction of adjacent parenchyma kinetic from the echopower signal; (3) classification of difference signals; and (4) parametric image rendering to represent classified pixels as a support for diagnosis. DVP parametric imaging was the object of a clinical assessment on a total of 146 lesions, imaged using different medical ultrasound systems. The resulting sensitivity and specificity were 97% and 91%, respectively, which compare favorably with scores of 81 to 95% and 80 to 95% reported in medical literature for sensitivity and specificity, respectively.

  6. Evolution of a Benthic Imaging System From a Towed Camera to an Automated Habitat Characterization System

    Science.gov (United States)

    2008-09-01

    automated processing of images for color correction, segmentation of foreground targets from sediment and classification of targets to taxonomic category...element in the development of HabCam as a tool for habitat characterization is the automated processing of images for color correction, segmentation of

  7. Quantitative CT characterization of pediatric lung development using routine clinical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Jill M.; Brody, Alan S.; Fleck, Robert J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Walkup, Laura L. [Cincinnati Children' s Hospital Medical Center, Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati, OH (United States); Woods, Jason C. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Cincinnati Children' s Hospital Medical Center, Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati, OH (United States)

    2016-12-15

    The use of quantitative CT analysis in children is limited by lack of normal values of lung parenchymal attenuation. These characteristics are important because normal lung development yields significant parenchymal attenuation changes as children age. To perform quantitative characterization of normal pediatric lung parenchymal X-ray CT attenuation under routine clinical conditions in order to establish a baseline comparison to that seen in pathological lung conditions. We conducted a retrospective query of normal CT chest examinations in children ages 0-7 years from 2004 to 2014 using standard clinical protocol. During these examinations semi-automated lung parenchymal segmentation was performed to measure lung volume and mean lung attenuation. We analyzed 42 CT examinations in 39 children, ages 3 days to 83 months (mean ± standard deviation [SD] = 42 ± 27 months). Lung volume ranged 0.10-1.72 liters (L). Mean lung attenuation was much higher in children younger than 12 months, with values as high as -380 Hounsfield units (HU) in neonates (lung volume 0.10 L). Lung volume decreased to approximately -650 HU by age 2 years (lung volume 0.47 L), with subsequently slower exponential decrease toward a relatively constant value of -860 HU as age and lung volume increased. Normal lung parenchymal X-ray CT attenuation decreases with increasing lung volume and age; lung attenuation decreases rapidly in the first 2 years of age and more slowly thereafter. This change in normal lung attenuation should be taken into account as quantitative CT methods are translated to pediatric pulmonary imaging. (orig.)

  8. Quantitative CT characterization of pediatric lung development using routine clinical imaging

    International Nuclear Information System (INIS)

    Stein, Jill M.; Brody, Alan S.; Fleck, Robert J.; Walkup, Laura L.; Woods, Jason C.

    2016-01-01

    The use of quantitative CT analysis in children is limited by lack of normal values of lung parenchymal attenuation. These characteristics are important because normal lung development yields significant parenchymal attenuation changes as children age. To perform quantitative characterization of normal pediatric lung parenchymal X-ray CT attenuation under routine clinical conditions in order to establish a baseline comparison to that seen in pathological lung conditions. We conducted a retrospective query of normal CT chest examinations in children ages 0-7 years from 2004 to 2014 using standard clinical protocol. During these examinations semi-automated lung parenchymal segmentation was performed to measure lung volume and mean lung attenuation. We analyzed 42 CT examinations in 39 children, ages 3 days to 83 months (mean ± standard deviation [SD] = 42 ± 27 months). Lung volume ranged 0.10-1.72 liters (L). Mean lung attenuation was much higher in children younger than 12 months, with values as high as -380 Hounsfield units (HU) in neonates (lung volume 0.10 L). Lung volume decreased to approximately -650 HU by age 2 years (lung volume 0.47 L), with subsequently slower exponential decrease toward a relatively constant value of -860 HU as age and lung volume increased. Normal lung parenchymal X-ray CT attenuation decreases with increasing lung volume and age; lung attenuation decreases rapidly in the first 2 years of age and more slowly thereafter. This change in normal lung attenuation should be taken into account as quantitative CT methods are translated to pediatric pulmonary imaging. (orig.)

  9. Metrological characterization of 3D imaging devices

    Science.gov (United States)

    Guidi, G.

    2013-04-01

    Manufacturers often express the performance of a 3D imaging device in various non-uniform ways for the lack of internationally recognized standard requirements for metrological parameters able to identify the capability of capturing a real scene. For this reason several national and international organizations in the last ten years have been developing protocols for verifying such performance. Ranging from VDI/VDE 2634, published by the Association of German Engineers and oriented to the world of mechanical 3D measurements (triangulation-based devices), to the ASTM technical committee E57, working also on laser systems based on direct range detection (TOF, Phase Shift, FM-CW, flash LADAR), this paper shows the state of the art about the characterization of active range devices, with special emphasis on measurement uncertainty, accuracy and resolution. Most of these protocols are based on special objects whose shape and size are certified with a known level of accuracy. By capturing the 3D shape of such objects with a range device, a comparison between the measured points and the theoretical shape they should represent is possible. The actual deviations can be directly analyzed or some derived parameters can be obtained (e.g. angles between planes, distances between barycenters of spheres rigidly connected, frequency domain parameters, etc.). This paper shows theoretical aspects and experimental results of some novel characterization methods applied to different categories of active 3D imaging devices based on both principles of triangulation and direct range detection.

  10. The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging

    Directory of Open Access Journals (Sweden)

    Ali Hariri

    2018-03-01

    Full Text Available Photoacoustic imaging (PAI is a non-invasive, high-resolution hybrid imaging modality that combines optical excitation and ultrasound detection. PAI can image endogenous chromophores (melanin, hemoglobin, etc. and exogenous contrast agents in different medical applications. However, most current equipment uses sophisticated and complicated OPO lasers with tuning and stability features inconsistent with broad clinical deployment. As the number of applications of PAI in medicine increases, there is an urgent need to make the imaging equipment more compact, portable, and affordable. Here, portable light emitting diode – based photoacoustic imaging (PLED-PAI was introduced and characterized in terms of system specifications, light source characterizations, photoacoustic spatial/temporal resolution, and penetration. The system uses two LED arrays attached to the sides of a conventional ultrasound transducer. The LED pulse repetition rate is tunable between 1 K Hz, 2 K Hz, 3 K Hz, and 4 K Hz. The axial resolution was 0.268 mm, and the lateral resolution was between 0.55 and 0.59 mm. The system could detect optical absorber (pencil lead at a depth of 3.2 cm and the detection limits of indocyanine green (ICG and methylene blue (MB were 9 μM and 0.78 mM. In vivo imaging of labeled human mesenchymal stem cells was achieved to confirm compatibility with small animal imaging. The characterization we report here may have value to other groups evaluating commercially available photoacoustic imaging equipment. Keywords: Portable photoacoustic imaging, LED, Optoacoustic imaging, Molecular imaging

  11. Characterization and simulation of noise in PET images reconstructed with OSEM: Development of a method for the generation of synthetic images.

    Science.gov (United States)

    Castro, P; Huerga, C; Chamorro, P; Garayoa, J; Roch, M; Pérez, L

    2018-04-17

    The goals of the study are to characterize imaging properties in 2D PET images reconstructed with the iterative algorithm ordered-subset expectation maximization (OSEM) and to propose a new method for the generation of synthetic images. The noise is analyzed in terms of its magnitude, spatial correlation, and spectral distribution through standard deviation, autocorrelation function, and noise power spectrum (NPS), respectively. Their variations with position and activity level are also analyzed. This noise analysis is based on phantom images acquired from 18 F uniform distributions. Experimental recovery coefficients of hot spheres in different backgrounds are employed to study the spatial resolution of the system through point spread function (PSF). The NPS and PSF functions provide the baseline for the proposed simulation method: convolution with PSF as kernel and noise addition from NPS. The noise spectral analysis shows that the main contribution is of random nature. It is also proven that attenuation correction does not alter noise texture but it modifies its magnitude. Finally, synthetic images of 2 phantoms, one of them an anatomical brain, are quantitatively compared with experimental images showing a good agreement in terms of pixel values and pixel correlations. Thus, the contrast to noise ratio for the biggest sphere in the NEMA IEC phantom is 10.7 for the synthetic image and 8.8 for the experimental image. The properties of the analyzed OSEM-PET images can be described by NPS and PSF functions. Synthetic images, even anatomical ones, are successfully generated by the proposed method based on the NPS and PSF. Copyright © 2018 Sociedad Española de Medicina Nuclear e Imagen Molecular. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Self characterization of a coded aperture array for neutron source imaging

    Energy Technology Data Exchange (ETDEWEB)

    Volegov, P. L., E-mail: volegov@lanl.gov; Danly, C. R.; Guler, N.; Merrill, F. E.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N. [Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-12-15

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF.

  13. X-ray imaging characterization of active edge silicon pixel sensors

    International Nuclear Information System (INIS)

    Ponchut, C; Ruat, M; Kalliopuska, J

    2014-01-01

    The aim of this work was the experimental characterization of edge effects in active-edge silicon pixel sensors, in the frame of X-ray pixel detectors developments for synchrotron experiments. We produced a set of active edge pixel sensors with 300 to 500 μm thickness, edge widths ranging from 100 μm to 150 μm, and n or p pixel contact types. The sensors with 256 × 256 pixels and 55 × 55 μm 2 pixel pitch were then bump-bonded to Timepix readout chips for X-ray imaging measurements. The reduced edge widths makes the edge pixels more sensitive to the electrical field distribution at the sensor boundaries. We characterized this effect by mapping the spatial response of the sensor edges with a finely focused X-ray synchrotron beam. One of the samples showed a distortion-free response on all four edges, whereas others showed variable degrees of distortions extending at maximum to 300 micron from the sensor edge. An application of active edge pixel sensors to coherent diffraction imaging with synchrotron beams is described

  14. Analytical robustness of quantitative NIR chemical imaging for Islamic paper characterization

    Science.gov (United States)

    Mahgoub, Hend; Gilchrist, John R.; Fearn, Thomas; Strlič, Matija

    2017-07-01

    Recently, spectral imaging techniques such as Multispectral (MSI) and Hyperspectral Imaging (HSI) have gained importance in the field of heritage conservation. This paper explores the analytical robustness of quantitative chemical imaging for Islamic paper characterization by focusing on the effect of different measurement and processing parameters, i.e. acquisition conditions and calibration on the accuracy of the collected spectral data. This will provide a better understanding of the technique that can provide a measure of change in collections through imaging. For the quantitative model, special calibration target was devised using 105 samples from a well-characterized reference Islamic paper collection. Two material properties were of interest: starch sizing and cellulose degree of polymerization (DP). Multivariate data analysis methods were used to develop discrimination and regression models which were used as an evaluation methodology for the metrology of quantitative NIR chemical imaging. Spectral data were collected using a pushbroom HSI scanner (Gilden Photonics Ltd) in the 1000-2500 nm range with a spectral resolution of 6.3 nm using a mirror scanning setup and halogen illumination. Data were acquired at different measurement conditions and acquisition parameters. Preliminary results showed the potential of the evaluation methodology to show that measurement parameters such as the use of different lenses and different scanning backgrounds may not have a great influence on the quantitative results. Moreover, the evaluation methodology allowed for the selection of the best pre-treatment method to be applied to the data.

  15. Relevant Scatterers Characterization in SAR Images

    Science.gov (United States)

    Chaabouni, Houda; Datcu, Mihai

    2006-11-01

    Recognizing scenes in a single look meter resolution Synthetic Aperture Radar (SAR) images, requires the capability to identify relevant signal signatures in condition of variable image acquisition geometry, arbitrary objects poses and configurations. Among the methods to detect relevant scatterers in SAR images, we can mention the internal coherence. The SAR spectrum splitted in azimuth generates a series of images which preserve high coherence only for particular object scattering. The detection of relevant scatterers can be done by correlation study or Independent Component Analysis (ICA) methods. The present article deals with the state of the art for SAR internal correlation analysis and proposes further extensions using elements of inference based on information theory applied to complex valued signals. The set of azimuth looks images is analyzed using mutual information measures and an equivalent channel capacity is derived. The localization of the "target" requires analysis in a small image window, thus resulting in imprecise estimation of the second order statistics of the signal. For a better precision, a Hausdorff measure is introduced. The method is applied to detect and characterize relevant objects in urban areas.

  16. The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging.

    Science.gov (United States)

    Hariri, Ali; Lemaster, Jeanne; Wang, Junxin; Jeevarathinam, AnanthaKrishnan S; Chao, Daniel L; Jokerst, Jesse V

    2018-03-01

    Photoacoustic imaging (PAI) is a non-invasive, high-resolution hybrid imaging modality that combines optical excitation and ultrasound detection. PAI can image endogenous chromophores (melanin, hemoglobin, etc.) and exogenous contrast agents in different medical applications. However, most current equipment uses sophisticated and complicated OPO lasers with tuning and stability features inconsistent with broad clinical deployment. As the number of applications of PAI in medicine increases, there is an urgent need to make the imaging equipment more compact, portable, and affordable. Here, portable light emitting diode - based photoacoustic imaging (PLED-PAI) was introduced and characterized in terms of system specifications, light source characterizations, photoacoustic spatial/temporal resolution, and penetration. The system uses two LED arrays attached to the sides of a conventional ultrasound transducer. The LED pulse repetition rate is tunable between 1 K Hz, 2 K Hz, 3 K Hz, and 4 K Hz. The axial resolution was 0.268 mm, and the lateral resolution was between 0.55 and 0.59 mm. The system could detect optical absorber (pencil lead) at a depth of 3.2 cm and the detection limits of indocyanine green (ICG) and methylene blue (MB) were 9 μM and 0.78 mM. In vivo imaging of labeled human mesenchymal stem cells was achieved to confirm compatibility with small animal imaging. The characterization we report here may have value to other groups evaluating commercially available photoacoustic imaging equipment.

  17. Three-dimensional cloud characterization from paired whole-sky imaging cameras

    International Nuclear Information System (INIS)

    Allmen, M.; Kegelmeyer, W.P. Jr.

    1994-01-01

    Three-dimensional (3-D) cloud characterization permits the derivation of important cloud geometry properties such as fractional cloudiness, mean cloud and clear length, aspect ratio, and the morphology of cloud cover. These properties are needed as input to the hierarchical diagnosis (HD) and instantaneous radiative transfer (IRF) models, to validate sub-models for cloud occurrence and formation, and to Central Site radiative flux calculations. A full 3-D characterization will eventually require the integration of disparate Cloud and Radiation Testbed (CART) data sources: whole-sky imagers (WSIs), radar, satellites, ceilometers, volume-imaging lidar, and other sensors. In this paper, we demonstrate how an initial 3-D cloud property, cloud base height, can be determined from fusing paired times series of images from two whole-sky imagers

  18. Raman characterization of high temperature materials using an imaging detector

    International Nuclear Information System (INIS)

    Rosenblatt, G.M.; Veirs, D.K.

    1989-03-01

    The characterization of materials by Raman spectroscopy has been advanced by recent technological developments in light detectors. Imaging photomultiplier-tube detectors are now available that impart position information in two dimensions while retaining photon-counting sensitivity, effectively greatly reducing noise. The combination of sensitivity and reduced noise allows smaller amounts of material to be analyzed. The ability to observe small amount of material when coupled with position information makes possible Raman characterization in which many spatial elements are analyzed simultaneously. Raman spectroscopy making use of these capabilities has been used, for instance, to analyze the phases present in carbon films and fibers and to map phase-transformed zones accompanying crack propagation in toughened zirconia ceramics. 16 refs., 6 figs., 2 tabs

  19. Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging.

    Science.gov (United States)

    Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K; Wells, Sam; Wikswo, John P; Zijlstra, Andries; Richmond, Ann

    2016-01-01

    We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment.

  20. Application of UV Imaging in Formulation Development.

    Science.gov (United States)

    Sun, Yu; Østergaard, Jesper

    2017-05-01

    Efficient drug delivery is dependent on the drug substance dissolving in the body fluids, being released from dosage forms and transported to the site of action. A fundamental understanding of the interplay between the physicochemical properties of the active compound and pharmaceutical excipients defining formulation behavior after exposure to the aqueous environments and pharmaceutical performance is critical in pharmaceutical development, manufacturing and quality control of drugs. UV imaging has been explored as a tool for qualitative and quantitative characterization of drug dissolution and release with the characteristic feature of providing real-time visualization of the solution phase drug transport in the vicinity of the formulation. Events occurring during drug dissolution and release, such as polymer swelling, drug precipitation/recrystallization, or solvent-mediated phase transitions related to the structural properties of the drug substance or formulation can be monitored. UV imaging is a non-intrusive and simple-to-operate analytical technique which holds potential for providing a mechanistic foundation for formulation development. This review aims to cover applications of UV imaging in the early and late phase pharmaceutical development with a special focus on the relation between structural properties and performance. Potential areas of future advancement and application are also discussed.

  1. Development of an imaging system for single droplet characterization using a droplet generator.

    Science.gov (United States)

    Minov, S Vulgarakis; Cointault, F; Vangeyte, J; Pieters, J G; Hijazi, B; Nuyttens, D

    2012-01-01

    The spray droplets generated by agricultural nozzles play an important role in the application accuracy and efficiency of plant protection products. The limitations of the non-imaging techniques and the recent improvements in digital image acquisition and processing increased the interest in using high speed imaging techniques in pesticide spray characterisation. The goal of this study was to develop an imaging technique to evaluate the characteristics of a single spray droplet using a piezoelectric single droplet generator and a high speed imaging technique. Tests were done with different camera settings, lenses, diffusers and light sources. The experiments have shown the necessity for having a good image acquisition and processing system. Image analysis results contributed in selecting the optimal set-up for measuring droplet size and velocity which consisted of a high speed camera with a 6 micros exposure time, a microscope lens at a working distance of 43 cm resulting in a field of view of 1.0 cm x 0.8 cm and a Xenon light source without diffuser used as a backlight. For measuring macro-spray characteristics as the droplet trajectory, the spray angle and the spray shape, a Macro Video Zoom lens at a working distance of 14.3 cm with a bigger field of view of 7.5 cm x 9.5 cm in combination with a halogen spotlight with a diffuser and the high speed camera can be used.

  2. Characterization of orthogonal transfer array CCDs for the WIYN one degree imager

    Science.gov (United States)

    Lesser, Michael; Ouellette, David; Boroson, Todd; Harbeck, Daniel; Martin, Pierre; Jacoby, George; Cavin, John; Sawyer, David; Boggs, Kasey; Bredthauer, Richard

    2012-03-01

    The WIYN One Degree Imager (ODI) will provide a one degree field of view for the WIYN 3.5 m telescope located on Kitt Peak near Tucson, Arizona. Its focal plane consists of an 8x8 grid of Orthogonal Transfer Array (OTA) CCD detectors. These detectors are the STA2200 OTA CCDs designed and fabricated by Semiconductor Technology Associates, Inc. and backside processed at the University of Arizona Imaging Technology Laboratory. Several lot runs of the STA2200 detectors have been fabricated. We have backside processed devices from these different lots and provide detector performance characterization, including noise, CTE, cosmetics, quantum efficiency, and some orthogonal transfer characteristics. We discuss the performance differences for the devices with different silicon thickness and resistivity. A fully buttable custom detector package has been developed for this project which allows hybridization of the silicon detectors directly onto an aluminum nitride substrate with an embedded pin grid array. This package is mounted on a silicon-aluminum alloy which provides a flat imaging surface of less than 20 microns peakvalley at the -100 C operating temperature. Characterization of the package performance, including low temperature profilometry, is described in this paper.

  3. Fractal characterization of brain lesions in CT images

    International Nuclear Information System (INIS)

    Jauhari, Rajnish K.; Trivedi, Rashmi; Munshi, Prabhat; Sahni, Kamal

    2005-01-01

    Fractal Dimension (FD) is a parameter used widely for classification, analysis, and pattern recognition of images. In this work we explore the quantification of CT (computed tomography) lesions of the brain by using fractal theory. Five brain lesions, which are portions of CT images of diseased brains, are used for the study. These lesions exhibit self-similarity over a chosen range of scales, and are broadly characterized by their fractal dimensions

  4. Development of a simplified simulation model for performance characterization of a pixellated CdZnTe multimodality imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, P; Santos, A [Departamento de IngenierIa Electronica, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Darambara, D G [Joint Department of Physics, Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Fulham Road, London SW3 6JJ (United Kingdom)], E-mail: pguerra@die.um.es

    2008-02-21

    Current requirements of molecular imaging lead to the complete integration of complementary modalities in a single hybrid imaging system to correlate function and structure. Among the various existing detector technologies, which can be implemented to integrate nuclear modalities (PET and/or single-photon emission computed tomography with x-rays (CT) and most probably with MR, pixellated wide bandgap room temperature semiconductor detectors, such as CdZnTe and/or CdTe, are promising candidates. This paper deals with the development of a simplified simulation model for pixellated semiconductor radiation detectors, as a first step towards the performance characterization of a multimodality imaging system based on CdZnTe. In particular, this work presents a simple computational model, based on a 1D approximate solution of the Schockley-Ramo theorem, and its integration into the Geant4 application for tomographic emission (GATE) platform in order to perform accurately and, therefore, improve the simulations of pixellated detectors in different configurations with a simultaneous cathode and anode pixel readout. The model presented here is successfully validated against an existing detailed finite element simulator, the multi-geometry simulation code, with respect to the charge induced at the anode, taking into consideration interpixel charge sharing and crosstalk, and to the detector charge induction efficiency. As a final point, the model provides estimated energy spectra and time resolution for {sup 57}Co and {sup 18}F sources obtained with the GATE code after the incorporation of the proposed model.

  5. Development of Nuclear Magnetic Resonance Imaging/spectroscopy for improved petroleum recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barrufet, M.A.; Flumerfelt, F.W.; Walsh, M.P.; Watson, A.T.

    1994-04-01

    The overall objectives of this program are to develop and apply Nuclear Magnetic Resonance Imaging (NMRI) and CT X-Ray Scanning methods for determining rock, fluid, and petrophysical properties and for fundamental studies of multiphase flow behavior in porous media. Specific objectives are divided into four subtasks: (1) development of NMRI and CT scanning for the determination of rock-fluid and petrophysical properties; (2) development of NMRI and CT scanning for characterizing conventional multiphase displacement processes; (3) development of NMR and CT scanning for characterizing dispersed phase processes; and (4) miscible displacement studies.

  6. Capacitive Imaging For Skin Characterization and Solvent Penetration

    OpenAIRE

    Xiao, P; Zhang, X; Bontozoglou, C

    2016-01-01

    Capacitive contact imaging has shown potential in measuring skin properties including hydration, micro relief analysis, as well as solvent penetration measurements . Through calibration we can also measure the absolute permittivity of the skin, and from absolute permittivity we then work out the absolute water content (or solvent content) in skin. In this paper, we present our latest study of capacitive contact imaging for skin characterization, i.e. skin hydration and skin damages etc. The r...

  7. Development of Fluorescence Spectral Imaging for Location of Uranium Deposited on Surfaces

    International Nuclear Information System (INIS)

    Monts, D.L.; Wang, G.; Su, Y.; Jang, P.R.; Waggoner, Ch.A.

    2009-01-01

    Since the 1980's, depleted uranium (DU) has been the primary material used by the US military in armor-piercing rounds. Domestic firing ranges that have been used for DU munitions training purposes are located around the country and have varying extents of contamination by other types of projectiles. A project is underway to develop a set of sensors to locate expended DU rounds and to process soil and debris to recover the material. In the environment, metallic DU readily oxidizes to form uranium compounds that contain the uranyl (UO 2 +2 ) moiety. For more than a hundred and fifty years, it has been known that when illuminated with ultraviolet (UV) light, uranyl compounds exhibit characteristic fluorescence in the visible region (450 - 650 nm). We report our efforts to develop a transportable, quantitative Fluorescence Spectral Imaging (FSI) system to locate and quantify uranyl compounds dispersed in soils and on other surfaces on domestic firing ranges; this system can also be utilized to monitor excavation of DU munitions and separation of uranyl compounds from soils. FSI images are acquired by illuminating a surface with a UV light and using a narrow band pass filter on a camera, recording an image of the resulting fluorescence. FSI images provide both spatial and spectral information. The FSI system is described and its performance characterized in the field and also by using field samples. The development and characterization of an improved transportable FSI system is presented. The applicability of this system for detection of uranium compounds deposited on surfaces for Decontaminating and Decommissioning (D and D) activities is discussed. We have successfully demonstrated in situ a first-generation, transportable Fluorescence Spectral Imaging (FSI) system for locating uranyl compounds dispersed in soils and on other surfaces of a domestic firing range. FSI images provide both spatial and spectral information. FSI images are acquired by illuminating a

  8. Characterization of encapsulated quantum dots via electron channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deitz, Julia I.; McComb, David W. [Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Carnevale, Santino D. [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); De Graef, Marc [Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Grassman, Tyler J., E-mail: grassman.5@osu.edu [Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2016-08-08

    A method for characterization of encapsulated epitaxial quantum dots (QD) in plan-view geometry using electron channeling contrast imaging (ECCI) is presented. The efficacy of the method, which requires minimal sample preparation, is demonstrated with proof-of-concept data from encapsulated (sub-surface) epitaxial InAs QDs within a GaAs matrix. Imaging of the QDs under multiple diffraction conditions is presented, establishing that ECCI can provide effectively identical visualization capabilities as conventional two-beam transmission electron microscopy. This method facilitates rapid, non-destructive characterization of sub-surface QDs giving immediate access to valuable nanostructural information.

  9. Characterization of conductive nanobiomaterials derived from viral assemblies by low-voltage STEM imaging and Raman scattering

    International Nuclear Information System (INIS)

    Plascencia-Villa, Germán; Bahena, Daniel; José-Yacamán, Miguel; Carreño-Fuentes, Liliana; Palomares, Laura A; Ramírez, Octavio T

    2014-01-01

    New technologies require the development of novel nanomaterials that need to be fully characterized to achieve their potential. High-resolution low-voltage scanning transmission electron microscopy (STEM) has proven to be a very powerful technique in nanotechnology, but its use for the characterization of nanobiomaterials has been limited. Rotavirus VP6 self-assembles into nanotubular assemblies that possess an intrinsic affinity for Au ions. This property was exploited to produce hybrid nanobiomaterials by the in situ functionalization of recombinant VP6 nanotubes with gold nanoparticles. In this work, Raman spectroscopy and advanced analytical electron microscopy imaging with spherical aberration-corrected (Cs) STEM and nanodiffraction at low-voltage doses were employed to characterize nanobiomaterials. STEM imaging revealed the precise structure and arrangement of the protein templates, as well as the nanostructure and atomic arrangement of gold nanoparticles with high spatial sub-Angstrom resolution and avoided radiation damage. The imaging was coupled with backscattered electron imaging, ultra-high resolution scanning electron microscopy and x-ray spectroscopy. The hybrid nanobiomaterials that were obtained showed unique properties as bioelectronic conductive devices and showed enhanced Raman scattering by their precise arrangement into superlattices, displaying the utility of viral assemblies as functional integrative self-assembled nanomaterials for novel applications. (paper)

  10. Automation of aggregate characterization using laser profiling and digital image analysis

    Science.gov (United States)

    Kim, Hyoungkwan

    2002-08-01

    Particle morphological properties such as size, shape, angularity, and texture are key properties that are frequently used to characterize aggregates. The characteristics of aggregates are crucial to the strength, durability, and serviceability of the structure in which they are used. Thus, it is important to select aggregates that have proper characteristics for each specific application. Use of improper aggregate can cause rapid deterioration or even failure of the structure. The current standard aggregate test methods are generally labor-intensive, time-consuming, and subject to human errors. Moreover, important properties of aggregates may not be captured by the standard methods due to a lack of an objective way of quantifying critical aggregate properties. Increased quality expectations of products along with recent technological advances in information technology are motivating new developments to provide fast and accurate aggregate characterization. The resulting information can enable a real time quality control of aggregate production as well as lead to better design and construction methods of portland cement concrete and hot mix asphalt. This dissertation presents a system to measure various morphological characteristics of construction aggregates effectively. Automatic measurement of various particle properties is of great interest because it has the potential to solve such problems in manual measurements as subjectivity, labor intensity, and slow speed. The main efforts of this research are placed on three-dimensional (3D) laser profiling, particle segmentation algorithms, particle measurement algorithms, and generalized particle descriptors. First, true 3D data of aggregate particles obtained by laser profiling are transformed into digital images. Second, a segmentation algorithm and a particle measurement algorithm are developed to separate particles and process each particle data individually with the aid of various kinds of digital image

  11. Novel low-dose imaging technique for characterizing atomic structures through scanning transmission electron microscope

    Science.gov (United States)

    Su, Chia-Ping; Syu, Wei-Jhe; Hsiao, Chien-Nan; Lai, Ping-Shan; Chen, Chien-Chun

    2017-08-01

    To investigate dislocations or heterostructures across interfaces is now of great interest to condensed matter and materials scientists. With the advances in aberration-corrected electron optics, the scanning transmission electron microscope has demonstrated its excellent capability of characterizing atomic structures within nanomaterials, and well-resolved atomic-resolution images can be obtained through long-exposure data acquisition. However, the sample drifting, carbon contamination, and radiation damage hinder further analysis, such as deriving three-dimensional (3D) structures from a series of images. In this study, a method for obtaining atomic-resolution images with significantly reduced exposure time was developed, using which an original high-resolution image with approximately one tenth the electron dose can be obtained by combining a fast-scan high-magnification image and a slow-scan low-magnification image. The feasibility of obtaining 3D atomic structures using the proposed approach was demonstrated through multislice simulation. Finally, the feasibility and accuracy of image restoration were experimentally verified. This general method cannot only apply to electron microscopy but also benefit to image radiation-sensitive materials using various light sources.

  12. Development and Current Status of Skull-Image Superimposition - Methodology and Instrumentation.

    Science.gov (United States)

    Lan, Y

    1992-12-01

    This article presents a review of the literature and an evaluation on the development and application of skull-image superimposition technology - both instrumentation and methodology - contributed by a number of scholars since 1935. Along with a comparison of the methodologies involved in the two superimposition techniques - photographic and video - the author characterized the techniques in action and the recent advances in computer image superimposition processing technology. The major disadvantage of conventional approaches is its relying on subjective interpretation. Through painstaking comparison and analysis, computer image processing technology can make more conclusive identifications by direct testing and evaluating the various programmed indices. Copyright © 1992 Central Police University.

  13. Characterization of low-mass deformable mirrors and ASIC drivers for high-contrast imaging

    Science.gov (United States)

    Mejia Prada, Camilo; Yao, Li; Wu, Yuqian; Roberts, Lewis C.; Shelton, Chris; Wu, Xingtao

    2017-09-01

    The development of compact, high performance Deformable Mirrors (DMs) is one of the most important technological challenges for high-contrast imaging on space missions. Microscale Inc. has fabricated and characterized piezoelectric stack actuator deformable mirrors (PZT-DMs) and Application-Specific Integrated Circuit (ASIC) drivers for direct integration. The DM-ASIC system is designed to eliminate almost all cables, enabling a very compact optical system with low mass and low power consumption. We report on the optical tests used to evaluate the performance of the DM and ASIC units. We also compare the results to the requirements for space-based high-contrast imaging of exoplanets.

  14. Imaging Brain Development: Benefiting from Individual Variability

    Directory of Open Access Journals (Sweden)

    Megha Sharda

    2015-01-01

    Full Text Available Human brain development is a complex process that evolves from early childhood to young adulthood. Major advances in brain imaging are increasingly being used to characterize the developing brain. These advances have further helped to elucidate the dynamic maturational processes that lead to the emergence of complex cognitive abilities in both typical and atypical development. However, conventional approaches involve categorical group comparison models and tend to disregard the role of widespread interindividual variability in brain development. This review highlights how this variability can inform our understanding of developmental processes. The latest studies in the field of brain development are reviewed, with a particular focus on the role of individual variability and the consequent heterogeneity in brain structural and functional development. This review also highlights how such heterogeneity might be utilized to inform our understanding of complex neuropsychiatric disorders and recommends the use of more dimensional approaches to study brain development.

  15. Diffusion-Weighted Magnetic Resonance Imaging in Renal Lesion Characterization

    Directory of Open Access Journals (Sweden)

    Elif Karadeli

    2012-03-01

    Conclusion: The technique has the advantage that it is non-invasive without need for gadolinium administration, takes about 2 minute. This method provides qualitative and quantitative infomation on tissue characterization. DA-MRI and ADC values are important for characterization of renal lesions. Especially, utility of diffusion-weighted magnetic resonance imaging in the patients with risk for nephrogenic systemic fibrosis (NSF could be beneficial. [Cukurova Med J 2012; 37(1: 27-36

  16. Detection and characterization of exercise induced muscle damage (EIMD) via thermography and image processing

    DEFF Research Database (Denmark)

    Avdelidis, Nicolas; Kappatos, Vassilios; Georgoulas, George

    2017-01-01

    of commonly measurement tools and methods. Thermography has been used successfully as a research detection tool in medicine for the last 6 decades but very limited work has been reported on EIMD area. The main purpose of this research is to assess and characterize EIMD, using thermography and image processing...... techniques. The first step towards that goal is to develop a reliable segmentation technique to isolate the region of interest (ROI). A semi-automatic image processing software was designed and regions of the left and right leg based on superpixels were segmented. The image is segmented into a number...... of regions and the user is able to intervene providing the regions which belong to each of the two legs. In order to validate the image processing software, an extensive experimental investigation was carried out, acquiring thermographic images of the rectus femoris muscle before, immediately post and 24, 48...

  17. Surface topography characterization using 3D stereoscopic reconstruction of SEM images

    Science.gov (United States)

    Vedantha Krishna, Amogh; Flys, Olena; Reddy, Vijeth V.; Rosén, B. G.

    2018-06-01

    A major drawback of the optical microscope is its limitation to resolve finer details. Many microscopes have been developed to overcome the limitations set by the diffraction of visible light. The scanning electron microscope (SEM) is one such alternative: it uses electrons for imaging, which have much smaller wavelength than photons. As a result high magnification with superior image resolution can be achieved. However, SEM generates 2D images which provide limited data for surface measurements and analysis. Often many research areas require the knowledge of 3D structures as they contribute to a comprehensive understanding of microstructure by allowing effective measurements and qualitative visualization of the samples under study. For this reason, stereo photogrammetry technique is employed to convert SEM images into 3D measurable data. This paper aims to utilize a stereoscopic reconstruction technique as a reliable method for characterization of surface topography. Reconstructed results from SEM images are compared with coherence scanning interferometer (CSI) results obtained by measuring a roughness reference standard sample. This paper presents a method to select the most robust/consistent surface texture parameters that are insensitive to the uncertainties involved in the reconstruction technique itself. Results from the two-stereoscopic reconstruction algorithms are also documented in this paper.

  18. Research on imaging, sensing, and characterization of cells at Research Center for Applied Sciences (RCAS), Academia Sinica

    Science.gov (United States)

    Tsai, Hui-Chen; Chang, Chun-Fang; Chen, Bi-Chang; Cheng, Ji-Yen; Chu, Chih-Wei; Han, Hsieh-Cheng; Hatanaka, Koji; Hsieh, Tung-Han; Lee, Chau-Hwang; Lin, Jung-Hsin; Tung, Yi-Chung; Wei, Pei-Kuen; Yang, Fu-Liang; Tsai, Din Ping

    2015-12-01

    Development of imaging, sensing, and characterization of cells at Research Center for Applied Sciences (RCAS) of Academia Sinica in Taiwan is progressing rapidly. The research on advanced lattice light sheet microscopy for temporal visualization of cells in three dimensions at sub-cellular resolution shows novel imaging results. Label-free observation on filopodial dynamics provides a convenient assay on cancer cell motility. The newly-developed software enables us to track the movement of two types of particles through different channels and reconstruct the co-localized tracks. Surface plasmon resonance (SPR) for detecting urinary microRNA for diagnosis of acute kidney injury demonstrates excellent sensitivity. A fully automated and integrated portable reader was constructed as a home-based surveillance system for post-operation hepatocellular carcinoma. New microfluidic cell culture devices for fast and accurate characterizations prove various diagnosis capabilities.

  19. Characterization of the new neutron imaging and materials science facility IMAT

    Science.gov (United States)

    Minniti, Triestino; Watanabe, Kenichi; Burca, Genoveva; Pooley, Daniel E.; Kockelmann, Winfried

    2018-04-01

    IMAT is a new cold neutron imaging and diffraction instrument located at the second target station of the pulsed neutron spallation source ISIS, UK. A broad range of materials science and materials testing areas will be covered by IMAT. We present the characterization of the imaging part, including the energy-selective and energy-dispersive imaging options, and provide the basic parameters of the radiography and tomography instrument. In particular, detailed studies on mono and bi-dimensional neutron beam flux profiles, neutron flux as a function of the neutron wavelength, spatial and energy dependent neutron beam uniformities, guide artifacts, divergence and spatial resolution, and neutron pulse widths are provided. An accurate characterization of the neutron beam at the sample position, located 56 m from the source, is required to optimize collection of radiographic and tomographic data sets and for performing energy-dispersive neutron imaging via time-of-flight methods in particular.

  20. Calibration, characterization, and first results with the Ocean PHILLS hyperspectral imager

    Science.gov (United States)

    Davis, Curtiss O.; Kappus, Mary E.; Bowles, Jeffrey H.; Fisher, John; Antoniades, John A.; Carney, Megan

    1999-10-01

    The Ocean Portable Hyperspectral Imager for Low-Light spectroscopy (Ocean PHILLS), is a new hyperspectral imager specifically designed for imaging the coastal ocean. It uses a thinned, backside illuminated CCD for high sensitivity, and an all-reflective spectrograph with a convex grating in an Offner configuration to produce a distortion free image. Here we describe the instrument design and present the results of laboratory calibration and characterization and example results from a two week field experiment imaging the coastal waters off Lee Stocking, Island, Bahamas.

  1. Characterization of the Mucor circinelloides life cycle by on-line image analysis

    DEFF Research Database (Denmark)

    Lübbehüsen, Tina Louise; Nielsen, Jens; Mcintyre, Mhairi

    2003-01-01

    in and between the different morphological forms of the organism.Methods and Results: Mycelial growth and the transformation of hyphae into chains of arthrospores were characterized by image analysis techniques and described quantitatively. The influence of the nature (glucose and xylose) and concentration......-through cell, and combined with fluorescent microscopy which allowed new insights to bud formation. Additionally, numbers and distribution of nuclei in arthrospores, hyphae and yeasts were studied.Conclusions: The results give essential information on the morphological development of the organism...

  2. Diagnosis and Characterization of Patellofemoral Instability: Review of Available Imaging Modalities.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Thawait, Gaurav K; Tanaka, Miho J; Demehri, Shadpour

    2017-06-01

    Patellofemoral instability (PI) is defined as single or multiple episodes of patellar dislocation. Imaging modalities are useful for characterization of patellar malalignment, maltracking, underlying morphologic abnormalities, and stabilizing soft-tissue injuries. Using these findings, orthopedic surgeons can decide when to operate, determine the best operation, and measure degree of correction postoperatively in PI patients. Also, these methods assist with PI diagnosis in some suspicious cases. Magnetic resonance imaging is the preferred method especially in the setting of acute dislocations. Multidetector computed tomography allows a more accurate assessment for malalignment such as patellar tilt and lateral subluxation and secondary osteoarthritis. Dynamic magnetic resonance imaging and 4-dimensional computed tomography have been introduced for better kinematic assessment of the patellofemoral maltracking during extension-flexion motions. In this review article, we will discuss the currently available evidence regarding both the conventional and the novel imaging modalities that can be used for diagnosis and characterization of PI.

  3. Tissue Equivalent Phantom Design for Characterization of a Coherent Scatter X-ray Imaging System

    Science.gov (United States)

    Albanese, Kathryn Elizabeth

    Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung. The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future

  4. Development, characterization, and modeling of a tunable filter camera

    Science.gov (United States)

    Sartor, Mark Alan

    1999-10-01

    This paper describes the development, characterization, and modeling of a Tunable Filter Camera (TFC). The TFC is a new multispectral instrument with electronically tuned spectral filtering and low-light-level sensitivity. It represents a hybrid between hyperspectral and multispectral imaging spectrometers that incorporates advantages from each, addressing issues such as complexity, cost, lack of sensitivity, and adaptability. These capabilities allow the TFC to be applied to low- altitude video surveillance for real-time spectral and spatial target detection and image exploitation. Described herein are the theory and principles of operation for the TFC, which includes a liquid crystal tunable filter, an intensified CCD, and a custom apochromatic lens. The results of proof-of-concept testing, and characterization of two prototype cameras are included, along with a summary of the design analyses for the development of a multiple-channel system. A significant result of this effort was the creation of a system-level model, which was used to facilitate development and predict performance. It includes models for the liquid crystal tunable filter and intensified CCD. Such modeling was necessary in the design of the system and is useful for evaluation of the system in remote-sensing applications. Also presented are characterization data from component testing, which included quantitative results for linearity, signal to noise ratio (SNR), linearity, and radiometric response. These data were used to help refine and validate the model. For a pre-defined source, the spatial and spectral response, and the noise of the camera, system can now be predicted. The innovation that sets this development apart is the fact that this instrument has been designed for integrated, multi-channel operation for the express purpose of real-time detection/identification in low- light-level conditions. Many of the requirements for the TFC were derived from this mission. In order to provide

  5. Spatial characterization of nanotextured surfaces by visual color imaging

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Murthy, Swathi; Madsen, Morten H.

    2016-01-01

    We present a method using an ordinary color camera to characterize nanostructures from the visual color of the structures. The method provides a macroscale overview image from which micrometer-sized regions can be analyzed independently, hereby revealing long-range spatial variations...

  6. Image characterization of computed radiography

    International Nuclear Information System (INIS)

    Candeias, Janaina P.; Saddock, Aline; Oliveira, Davi F.; Lopes, Ricardo T.

    2007-01-01

    The digital radiographic image became a reality as of the 80's decade. Since then, several works have been developed with the aim of reducing the exposure time to ionizing radiation obtaining in this way an excellent image quality with a minimum exposure. In the Computerized Radiography, the conventional film is substituted for Image Plate (IP) which consists of a radiosensitive layer of phosphor crystals on a polyester backing plate. The unique design makes it reusable and easy to handle. When exposed, the IP accumulates and stores the irradiated radioactive energy. In order to qualify a computerized radiography system it is necessary to evaluate the Image Plate. In this work it was performed a series of experimental procedures with the aim of evaluating the responses characteristics for different plates. For this purpose it was used a computerized radiographic system CR Tower Scanner - GE, with three different types of IPs, all of them manufactured by GE, whose nomenclatures are IPC, IPX and IPS. It was used the Rhythm Acquire and Review programs for image acquisition and treatment, respectively. (author)

  7. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy

    Science.gov (United States)

    Laufer, Jan; Johnson, Peter; Zhang, Edward; Treeby, Bradley; Cox, Ben; Pedley, Barbara; Beard, Paul

    2012-05-01

    The use of a novel all-optical photoacoustic scanner for imaging the development of tumor vasculature and its response to a therapeutic vascular disrupting agent is described. The scanner employs a Fabry-Perot polymer film ultrasound sensor for mapping the photoacoustic waves and an image reconstruction algorithm based upon attenuation-compensated acoustic time reversal. The system was used to noninvasively image human colorectal tumor xenografts implanted subcutaneously in mice. Label-free three-dimensional in vivo images of whole tumors to depths of almost 10 mm with sub-100-micron spatial resolution were acquired in a longitudinal manner. This enabled the development of tumor-related vascular features, such as vessel tortuosity, feeding vessel recruitment, and necrosis to be visualized over time. The system was also used to study the temporal evolution of the response of the tumor vasculature following the administration of a therapeutic vascular disrupting agent (OXi4503). This revealed the well-known destruction and recovery phases associated with this agent. These studies illustrate the broader potential of this technology as an imaging tool for the preclinical and clinical study of tumors and other pathologies characterized by changes in the vasculature.

  8. Uncertainty quantification of cinematic imaging for development of predictive simulations of turbulent combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Matthew; Debusschere, Bert J.; Najm, Habib N.; Sargsyan, Khachik; Frank, Jonathan H.

    2010-09-01

    Recent advances in high frame rate complementary metal-oxide-semiconductor (CMOS) cameras coupled with high repetition rate lasers have enabled laser-based imaging measurements of the temporal evolution of turbulent reacting flows. This measurement capability provides new opportunities for understanding the dynamics of turbulence-chemistry interactions, which is necessary for developing predictive simulations of turbulent combustion. However, quantitative imaging measurements using high frame rate CMOS cameras require careful characterization of the their noise, non-linear response, and variations in this response from pixel to pixel. We develop a noise model and calibration tools to mitigate these problems and to enable quantitative use of CMOS cameras. We have demonstrated proof of principle for image de-noising using both wavelet methods and Bayesian inference. The results offer new approaches for quantitative interpretation of imaging measurements from noisy data acquired with non-linear detectors. These approaches are potentially useful in many areas of scientific research that rely on quantitative imaging measurements.

  9. Multichannel imager for littoral zone characterization

    Science.gov (United States)

    Podobna, Yuliya; Schoonmaker, Jon; Dirbas, Joe; Sofianos, James; Boucher, Cynthia; Gilbert, Gary

    2010-04-01

    This paper describes an approach to utilize a multi-channel, multi-spectral electro-optic (EO) system for littoral zone characterization. Advanced Coherent Technologies, LLC (ACT) presents their EO sensor systems for the surf zone environmental assessment and potential surf zone target detection. Specifically, an approach is presented to determine a Surf Zone Index (SZI) from the multi-spectral EO sensor system. SZI provides a single quantitative value of the surf zone conditions delivering an immediate understanding of the area and an assessment as to how well an airborne optical system might perform in a mine countermeasures (MCM) operation. Utilizing consecutive frames of SZI images, ACT is able to measure variability over time. A surf zone nomograph, which incorporates targets, sensor, and environmental data, including the SZI to determine the environmental impact on system performance, is reviewed in this work. ACT's electro-optical multi-channel, multi-spectral imaging system and test results are presented and discussed.

  10. Morphometric Characterization of Rat and Human Alveolar Macrophage Cell Models and their Response to Amiodarone using High Content Image Analysis.

    Science.gov (United States)

    Hoffman, Ewelina; Patel, Aateka; Ball, Doug; Klapwijk, Jan; Millar, Val; Kumar, Abhinav; Martin, Abigail; Mahendran, Rhamiya; Dailey, Lea Ann; Forbes, Ben; Hutter, Victoria

    2017-12-01

    Progress to the clinic may be delayed or prevented when vacuolated or "foamy" alveolar macrophages are observed during non-clinical inhalation toxicology assessment. The first step in developing methods to study this response in vitro is to characterize macrophage cell lines and their response to drug exposures. Human (U937) and rat (NR8383) cell lines and primary rat alveolar macrophages obtained by bronchoalveolar lavage were characterized using high content fluorescence imaging analysis quantification of cell viability, morphometry, and phospholipid and neutral lipid accumulation. Cell health, morphology and lipid content were comparable (p content. Responses to amiodarone, a known inducer of phospholipidosis, required analysis of shifts in cell population profiles (the proportion of cells with elevated vacuolation or lipid content) rather than average population data which was insensitive to the changes observed. A high content image analysis assay was developed and used to provide detailed morphological characterization of rat and human alveolar-like macrophages and their response to a phospholipidosis-inducing agent. This provides a basis for development of assays to predict or understand macrophage vacuolation following inhaled drug exposure.

  11. Application of image flow cytometry for the characterization of red blood cell morphology

    Science.gov (United States)

    Pinto, Ruben N.; Sebastian, Joseph A.; Parsons, Michael; Chang, Tim C.; Acker, Jason P.; Kolios, Michael C.

    2017-02-01

    Red blood cells (RBCs) stored in hypothermic environments for the purpose of transfusion have been documented to undergo structural and functional changes over time. One sign of the so-called RBC storage lesion is irreversible damage to the cell membrane. Consequently, RBCs undergo a morphological transformation from regular, deformable biconcave discocytes to rigid spheroechinocytes. The spherically shaped RBCs lack the deformability to efficiently enter microvasculature, thereby reducing the capacity of RBCs to oxygenate tissue. Blood banks currently rely on microscope techniques that include fixing, staining and cell counting in order to morphologically characterize RBC samples; these methods are labor intensive and highly subjective. This study presents a novel, high-throughput RBC morphology characterization technique using image flow cytometry (IFC). An image segmentation template was developed to process 100,000 images acquired from the IFC system and output the relative spheroechinocyte percentage. The technique was applied on samples extracted from two blood bags to monitor the morphological changes of the RBCs during in vitro hypothermic storage. The study found that, for a given sample of RBCs, the IFC method was twice as fast in data acquisition, and analyzed 250-350 times more RBCs than the conventional method. Over the lifespan of the blood bags, the mean spheroechinocyte population increased by 37%. Future work will focus on expanding the template to segregate RBC images into more subpopulations for the validation of the IFC method against conventional techniques; the expanded template will aid in establishing quantitative links between spheroechinocyte increase and other RBC storage lesion characteristics.

  12. Image processing developments and applications for water quality monitoring and trophic state determination

    International Nuclear Information System (INIS)

    Blackwell, R.J.

    1982-03-01

    Remote sensing data analysis of water quality monitoring is evaluated. Data anaysis and image processing techniques are applied to LANDSAT remote sensing data to produce an effective operational tool for lake water quality surveying and monitoring. Digital image processing and analysis techniques were designed, developed, tested, and applied to LANDSAT multispectral scanner (MSS) data and conventional surface acquired data. Utilization of these techniques facilitates the surveying and monitoring of large numbers of lakes in an operational manner. Supervised multispectral classification, when used in conjunction with surface acquired water quality indicators, is used to characterize water body trophic status. Unsupervised multispectral classification, when interpreted by lake scientists familiar with a specific water body, yields classifications of equal validity with supervised methods and in a more cost effective manner. Image data base technology is used to great advantage in characterizing other contributing effects to water quality. These effects include drainage basin configuration, terrain slope, soil, precipitation and land cover characteristics

  13. Fluvial particle characterization using artificial neural network and spectral image processing

    Science.gov (United States)

    Shrestha, Bim Prasad; Gautam, Bijaya; Nagata, Masateru

    2008-03-01

    Sand, chemical waste, microbes and other solid materials flowing with the water bodies are of great significance to us as they cause substantial impact to different sectors including drinking water management, hydropower generation, irrigation, aquatic life preservation and various other socio-ecological factors. Such particles can't completely be avoided due to the high cost of construction and maintenance of the waste-treatment methods. A detailed understanding of solid particles in surface water system can have benefit in effective, economic, environmental and social management of water resources. This paper describes an automated system of fluvial particle characterization based on spectral image processing that lead to the development of devices for monitoring flowing particles in river. Previous research in coherent field has shown that it is possible to automatically classify shapes and sizes of solid particles ranging from 300-400 μm using artificial neural networks (ANN) and image processing. Computer facilitated with hyper spectral and multi spectral images using ANN can further classify fluvial materials into organic, inorganic, biodegradable, bio non degradable and microbes. This makes the method attractive for real time monitoring of particles, sand and microorganism in water bodies at strategic locations. Continuous monitoring can be used to determine the effect of socio-economic activities in upstream rivers, or to monitor solid waste disposal from treatment plants and industries or to monitor erosive characteristic of sand and its contribution to degradation of efficiency of hydropower plant or to identify microorganism, calculate their population and study the impact of their presence. Such system can also be used to characterize fluvial particles for planning effective utilization of water resources in micro-mega hydropower plant, irrigation, aquatic life preservation etc.

  14. CHARACTERIZING LANDSCAPE SPATIAL HETEROGENEITY USING SEMIVARIOGRAM PARAMETERS DERIVED FROM NDVI IMAGES

    Directory of Open Access Journals (Sweden)

    Eduarda Martiniano de Oliveira Silveira

    2017-12-01

    Full Text Available Assuming a relationship between landscape heterogeneity and measures of spatial dependence by using remotely sensed data, the aim of this work was to evaluate the potential of semivariogram parameters, derived from satellite images with different spatial resolutions, to characterize landscape spatial heterogeneity of forested and human modified areas. The NDVI (Normalized Difference Vegetation Index was generated in an area of Brazilian amazon tropical forest (1,000 km².We selected samples (1 x 1 km from forested and human modified areas distributed throughout the study area, to generate the semivariogram and extract the sill (σ²-overall spatial variability of the surface property and range (φ-the length scale of the spatial structures of objects parameters. The analysis revealed that image spatial resolution influenced the sill and range parameters. The average sill and range values increase from forested to human modified areas and the greatest between-class variation was found for LANDSAT 8 imagery, indicating that this image spatial resolution is the most appropriate for deriving sill and range parameters with the intention of describing landscape spatial heterogeneity. By combining remote sensing and geostatistical techniques, we have shown that the sill and range parameters of semivariograms derived from NDVI images are a simple indicator of landscape heterogeneity and can be used to provide landscape heterogeneity maps to enable researchers to design appropriate sampling regimes. In the future, more applications combining remote sensing and geostatistical features should be further investigated and developed, such as change detection and image classification using object-based image analysis (OBIA approaches.

  15. Development of Pulse-Burst Laser Source and Digital Image Processing for Measurements of High-Speed, Time-Evolving Flow

    National Research Council Canada - National Science Library

    Miles, Richard

    2000-01-01

    ... Ti:Sapphire Laser and the demonstration of UV filtered Rayleigh scattering imaging in a supersonic jet, the fabrication/characterization of a narrow passband transmission filter, and the development of a new concept for a line imaging Raman spectrometer for flow field, combustion, and plasma diagnostics.

  16. Development of a body image scale for Brazilian women

    Directory of Open Access Journals (Sweden)

    Catiane Souza

    2017-12-01

    Full Text Available Body image is an important parameter of body satisfaction and needs to be evaluated with instruments developed and validated for a specific population. The aim of this study was to develop and validate a scale to assess body image in Brazilian women. A scale consisting of 11 silhouettes was prepared. Content validation was performed by seven experts from different health areas. To assess repeatability (two consecutive assessments and reproducibility (reassessment after one week, an intentional sample stratified into four groups according to the characterization of Brazilian women regarding nutritional status was selected. Participants were 125 women aged 18-55 years and body mass index (BMI between 18.5 and 38.6 kg/m2. The Kappa coefficient (k was used to assess repeatability and reproducibility, considering the isolated responses of the current body, ideal body and the difference between them, assumed as satisfactory when k≥0.6. For all trials, α=0.05. During the content validation phase, the instrument developed was changed following the evaluators’ suggestions and it was considered very suitable by six of seven evaluators. The Kappa coefficient was good in isolated issues and in the difference between them in both repeatability and reproducibility. The Body Image Scale was considered a valid content, with good repeatability and reproducibility. Considering the instrument as low cost and of rapid implementation/evaluation, it may be used to evaluate the body image of Brazilian women with BMI between 18.5 and 38.6 kg/m2, in different contexts.

  17. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies

    Science.gov (United States)

    Kokaly, R.F.; Asner, Gregory P.; Ollinger, S.V.; Martin, M.E.; Wessman, C.A.

    2009-01-01

    For two decades, remotely sensed data from imaging spectrometers have been used to estimate non-pigment biochemical constituents of vegetation, including water, nitrogen, cellulose, and lignin. This interest has been motivated by the important role that these substances play in physiological processes such as photosynthesis, their relationships with ecosystem processes such as litter decomposition and nutrient cycling, and their use in identifying key plant species and functional groups. This paper reviews three areas of research to improve the application of imaging spectrometers to quantify non-pigment biochemical constituents of plants. First, we examine recent empirical and modeling studies that have advanced our understanding of leaf and canopy reflectance spectra in relation to plant biochemistry. Next, we present recent examples of how spectroscopic remote sensing methods are applied to characterize vegetation canopies, communities and ecosystems. Third, we highlight the latest developments in using imaging spectrometer data to quantify net primary production (NPP) over large geographic areas. Finally, we discuss the major challenges in quantifying non-pigment biochemical constituents of plant canopies from remotely sensed spectra.

  18. Nuclear imaging drug development tools

    International Nuclear Information System (INIS)

    Buchanan, L.; Jurek, P.; Redshaw, R.

    2007-01-01

    This article describes the development of nuclear imaging as an enabling technology in the pharmaceutical industry. Molecular imaging is maturing into an important tool with expanding applications from validating that a drug reaches the intended target through to market launch of a new drug. Molecular imaging includes anatomical imaging of organs or tissues, computerized tomography (CT), magnetic resonance imaging (MRI) and ultrasound.

  19. High Definition Confocal Imaging Modalities for the Characterization of Tissue-Engineered Substitutes.

    Science.gov (United States)

    Mayrand, Dominique; Fradette, Julie

    2018-01-01

    Optimal imaging methods are necessary in order to perform a detailed characterization of thick tissue samples from either native or engineered tissues. Tissue-engineered substitutes are featuring increasing complexity including multiple cell types and capillary-like networks. Therefore, technical approaches allowing the visualization of the inner structural organization and cellular composition of tissues are needed. This chapter describes an optical clearing technique which facilitates the detailed characterization of whole-mount samples from skin and adipose tissues (ex vivo tissues and in vitro tissue-engineered substitutes) when combined with spectral confocal microscopy and quantitative analysis on image renderings.

  20. Collaborative Research and Development. Delivery Order 0006: Transmission Electron Microscope Image Modeling and Semiconductor Heterointerface Characterization

    National Research Council Canada - National Science Library

    Mahalingam, Krishnamurthy

    2006-01-01

    .... Transmission electron microscope (TEM) characterization studies were performed on a variety of novel III-V semiconductor heterostructures being developed for advanced optoelectronic device applications...

  1. Molecular imaging in drug development: Update and challenges for radiolabeled antibodies and nanotechnology.

    Science.gov (United States)

    Colombo, Ilaria; Overchuk, Marta; Chen, Juan; Reilly, Raymond M; Zheng, Gang; Lheureux, Stephanie

    2017-11-01

    Despite the significant advancement achieved in understanding the molecular mechanisms responsible for cancer transformation and aberrant proliferation, leading to novel targeted cancer therapies, significant effort is still needed to "personalize" cancer treatment. Molecular imaging is an emerging field that has shown the ability to characterize in vivo the molecular pathways present at the cancer cell level, enabling diagnosis and personalized treatment of malignancies. These technologies, particularly SPECT and PET also permit the development of novel radiotheranostic probes, which provide capabilities for diagnosis and treatment with the same agent. The small therapeutic index of most anticancer agents is a limitation in the drug development process. Incorporation of molecular imaging in clinical research may help in overcoming this limitation and favouring selection of patient populations most likely to achieve benefit from targeted therapy. This review will focus on two of the most advanced theranostic approaches with promising potential for application in the clinic: 1) therapeutic monoclonal antibodies which may be linked to a radionuclide for SPECT or PET imaging to guide cancer diagnosis, staging, molecular characterization, and assessment of the response to treatment and 2) multifunctional nanotechnology that allows image guided drug delivery through encapsulation of multiple therapeutic, targeting and imaging agents into a single nanoparticle. Porphysome, a liposome-like nanoparticle, is an example of a novel and promising application of nanotechnology for cancer diagnosis and treatment. These technologies have proven to be effective in preclinical models, warranting further clinical investigation to advance their application for the benefit of cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A Stochastic Imaging Technique for Spatio-Spectral Characterization of Special Nuclear Material

    Science.gov (United States)

    Hamel, Michael C.

    Radiation imaging is advantageous for detecting, locating and characterizing special nuclear material (SNM) in complex environments. A dual-particle imager (DPI) has been designed that is capable of detecting gamma-ray and neutron signatures from shielded SNM. The system combines liquid organic and NaI(Tl) scintillators to form a combined Compton and neutron scatter camera. Effective image reconstruction of detected particles is a crucial component for maximizing the performance of the system; however, a key deficiency exists in the widely used list-mode maximum-likelihood estimation-maximization (MLEM) image reconstruction technique. The steady-state solution produced by this iterative method will have poor quality compared to solutions produced with fewer iterations. A stopping condition is required to achieve a better solution but these conditions fail to achieve maximum image quality. Stochastic origin ensembles (SOE) imaging is a good candidate to address this problem as it uses Markov chain Monte Carlo to reach a stochastic steady-state solution that has image quality comparable to the best MLEM solution. The application of SOE to the DPI is presented in this work. SOE was originally applied in medical imaging applications with no mechanism to isolate spectral information based on location. This capability is critical for non-proliferation applications as complex radiation environments with multiple sources are often encountered. This dissertation extends the SOE algorithm to produce spatially dependent spectra and presents experimental result showing that the technique was effective for isolating a 4.1-kg mass of weapons grade plutonium (WGPu) when other neutron and gamma-ray sources were present. This work also demonstrates the DPI as an effective tool for localizing and characterizing highly enriched uranium (HEU). A series of experiments were performed with the DPI using a deuterium-deuterium (DD) and deuterium-tritium (DT) neutron generator, as well as

  3. CHARACTERIZATION OF DIESEL SPRAY IMAGES USING A SHAPE PROCESSING METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Cecile Petit

    2011-05-01

    Full Text Available In Diesel engines, a key element in achieving a clean and efficient combustion process is a proper fuel-air mixing, which is a consequence of the fuel spray development and fuel-air interaction inside the engine combustion chamber. The spray structure and behavior are classically described by the length (penetration and width (angle of the spray plume but these parameters do not give any clue on the geometrical injection center and on the spray symmetry. The purpose of this paper is to find out original tools to characterize the Diesel spray: the virtual spray origin is the geometrical injection center, which may (or may not coincide with the injector axis. Another interesting point is the description of the Diesel spray in terms of symmetry: the spray plume internal and external symmetry characterize the spray and the injector performance. Our approach is first to find out the virtual spray origin: after the image segmentation, the spray is coded with the Freeman code and with an original shape coding from which the moments are derived. The symmetry axes are then computed and the spray plumes are discarded (or not for the virtual spray origin computation, which is derived from a Voronoi diagram. The last step is the internal and external spray plume symmetry characterization thanks to correlation and mathematical distances.

  4. Effect of crumb cellular structure characterized by image analysis on cake softness.

    Science.gov (United States)

    Dewaest, Marine; Villemejane, Cindy; Berland, Sophie; Neron, Stéphane; Clement, Jérôme; Verel, Aliette; Michon, Camille

    2017-10-04

    Sponge cake is a cereal product characterized by an aerated crumb and appreciated for its softness. When formulating such product, it is interesting to be able to characterize the crumb structure using image analysis and to bring knowledge about the effects of the crumb cellular structure on its mechanical properties which contribute to softness. An image analysis method based on mathematical morphology was adapted from the one developed for bread crumb. In order to evaluate its ability to discriminate cellular structures, series of cakes were prepared using two rather similar emulsifiers but also using flours with different aging times before use. The mechanical properties of the crumbs of these different cakes were also characterized. It allowed a cell structure classification taking into account cell size and homogeneity, but also cell wall thickness and the number of holes in the walls. Interestingly, the cellular structure differences had a larger impact on the aerated crumb Young modulus than the wall firmness. Increasing the aging time of flour before use leads to the production of firmer crumbs due to coarser and inhomogeneous cellular structures. Changing the composition of the emulsifier may change the cellular structure and, depending on the type of the structural changes, have an impact on the firmness of the crumb. Cellular structure rather than cell wall firmness was found to impact cake crumb firmness. The new fast and automated tool for cake crumb structure analysis allows detecting quickly any change in cell size or homogeneity but also cell wall thickness and number of holes in the walls (openness degree). To obtain a softer crumb, it seems that options are to decrease the cell size and the cell wall thickness and/or to increase the openness degree. It is then possible to easily evaluate the effects of ingredients (flour composition, emulsifier …) or change in the process on the crumb structure and thus its softness. Moreover, this image

  5. Characterization of European sword blades through neutron imaging techniques

    Science.gov (United States)

    Salvemini, F.; Grazzi, F.; Peetermans, S.; Gener, M.; Lehmann, E. H.; Zoppi, M.

    2014-09-01

    In the present work, we have studied two European rapier blades, dating back to the period ranging from the Late Renaissance to the Early Modern Age (about 17th to 18th century). In order to determine variation in quality and differences in technology, a study was undertaken with the purpose to observe variations in the blade microstructure (and consequently in the construction processes). The samples, which in the present case were expendable, have been investigated, preliminarily, through standard metallography and then by means of white beam and energy-selective neutron imaging. The comparison of the results, using the two techniques, turned out to be satisfactory, with a substantial quantitative agreement of the results obtained with the two techniques, and show the complementarity of the two methods. Metallography has been considered up to now the method of choice for metal material characterization. The correspondence between the two methods, as well as the non-invasive character of the neutron-based techniques and its possibility to obtain 3D reconstruction, candidate neutron imaging as an important and quantitatively reliable technique for metal characterization.

  6. Characterization of a PET Camera Optimized for Prostate Imaging

    International Nuclear Information System (INIS)

    Huber, Jennifer S.; Choong, Woon-Seng; Moses, William W.; Qi, Jinyi; Hu, Jicun; Wang, G.C.; Wilson, David; Oh, Sang; Huesman, RonaldH.; Derenzo, Stephen E.

    2005-01-01

    We present the characterization of a positron emission tomograph for prostate imaging that centers a patient between a pair of external curved detector banks (ellipse: 45 cm minor, 70 cm major axis). The distance between detector banks adjusts to allow patient access and to position the detectors as closely as possible for maximum sensitivity with patients of various sizes. Each bank is composed of two axial rows of 20 HR+ block detectors for a total of 80 detectors in the camera. The individual detectors are angled in the transaxial plane to point towards the prostate to reduce resolution degradation in that region. The detectors are read out by modified HRRT data acquisition electronics. Compared to a standard whole-body PET camera, our dedicated-prostate camera has the same sensitivity and resolution, less background (less randoms and lower scatter fraction) and a lower cost. We have completed construction of the camera. Characterization data and reconstructed images of several phantoms are shown. Sensitivity of a point source in the center is 946 cps/mu Ci. Spatial resolution is 4 mm FWHM in the central region

  7. Characterization of liver metastases: the efficacy of biphasic magnetic resonance imaging with ferucarbotran-enhancement

    International Nuclear Information System (INIS)

    Hong, H.S.; Byun, J.H.; Won, H.J.; Kim, K.W.; Lee, S.S.; Lee, M.G.; Yun, S.C.

    2010-01-01

    Aim: To retrospectively evaluate the efficacy of biphasic magnetic resonance imaging (MRI) of the liver with ferucarbotran-enhancement for the characterization of hepatic metastases. Materials and methods: Thirty-six patients underwent MRI of the liver with separate acquisition of double-contrast enhancement consisting of gadolinium and ferucarbotran. A total of 106 focal hepatic lesions (51 metastases, 31 cysts, 23 haemangiomas, and one eosinophilic abscess) were included. Two sets of MRI were analysed: (1) ferucarbotran set: ferucarbotran-enhanced T1-weighted (T1W) dynamic imaging combined with ferucarbotran-enhanced T2*-weighted (T2*W) delayed imaging and (2) double set: gadolinium-enhanced T1W dynamic imaging combined with ferucarbotran-enhanced T2*W delayed imaging. The diagnostic accuracy of the two sets was evaluated using alternative free-response receiver operating characteristic curve analysis. Sensitivity and specificity were compared using the McNemar test. The enhancement pattern of focal hepatic lesions was analysed on gadolinium and ferucarbotran-enhanced T1W dynamic imaging. Results: There was no significant difference in the accuracy of characterizing hepatic metastases between the two sets. Sensitivity and specificity were not significantly different between the sets (p > 0.05). Peripheral rim enhancement was exhibited in 57% of metastatic lesions on ferucarbotran-enhanced T1W dynamic imaging. The majority (96%) of hepatic haemangiomas demonstrated typical peripheral nodular enhancement with progression on ferucarbotran-enhanced T1W dynamic imaging and were easily differentiated from metastases. Conclusion: Biphasic MRI of the liver with ferucarbotran-enhancement alone provided comparable diagnostic efficacy to double-contrast MRI for the characterization of hepatic metastases.

  8. Dynamic Characterizations of an 8-frame, Half-Strip, High-speed X-ray Microchannel Plate Imager

    International Nuclear Information System (INIS)

    Ken Moy; Ming Wu; Craig Kruschwitz; Aric Tibbits; Matt Griffin; Greg Rochau

    2008-01-01

    High-speed microchannel plate (MCP)-based imagers are critical detectors for x-ray diagnostics employed on Z-experiments at Sandia National Laboratories (SNL) to measure time-resolved x-ray spectra and to image dynamic hohlraums. A multiframe design using eight half strips in one imager permits recordings of radiation events in discrete temporal snapshots to yield a time-evolved movie. We present data using various facilities to characterize the performance of this design. These characterization studies include DC and pulsed-voltage biased measurements in both saturated and linear operational regimes using an intense, short-pulsed UV laser. Electrical probe measurements taken to characterize the shape of the HV pulse propagating across the strips help to corroborate the spatial gain dependence

  9. Characterization of Crystallographic Structures Using Bragg-Edge Neutron Imaging at the Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    Gian Song

    2017-12-01

    Full Text Available Over the past decade, wavelength-dependent neutron radiography, also known as Bragg-edge imaging, has been employed as a non-destructive bulk characterization method due to its sensitivity to coherent elastic neutron scattering that is associated with crystalline structures. Several analysis approaches have been developed to quantitatively determine crystalline orientation, lattice strain, and phase distribution. In this study, we report a systematic investigation of the crystal structures of metallic materials (such as selected textureless powder samples and additively manufactured (AM Inconel 718 samples, using Bragg-edge imaging at the Oak Ridge National Laboratory (ORNL Spallation Neutron Source (SNS. Firstly, we have implemented a phenomenological Gaussian-based fitting in a Python-based computer called iBeatles. Secondly, we have developed a model-based approach to analyze Bragg-edge transmission spectra, which allows quantitative determination of the crystallographic attributes. Moreover, neutron diffraction measurements were carried out to validate the Bragg-edge analytical methods. These results demonstrate that the microstructural complexity (in this case, texture plays a key role in determining the crystallographic parameters (lattice constant or interplanar spacing, which implies that the Bragg-edge image analysis methods must be carefully selected based on the material structures.

  10. Characterization of lens based photoacoustic imaging system

    Directory of Open Access Journals (Sweden)

    Kalloor Joseph Francis

    2017-12-01

    Full Text Available Some of the challenges in translating photoacoustic (PA imaging to clinical applications includes limited view of the target tissue, low signal to noise ratio and the high cost of developing real-time systems. Acoustic lens based PA imaging systems, also known as PA cameras are a potential alternative to conventional imaging systems in these scenarios. The 3D focusing action of lens enables real-time C-scan imaging with a 2D transducer array. In this paper, we model the underlying physics in a PA camera in the mathematical framework of an imaging system and derive a closed form expression for the point spread function (PSF. Experimental verification follows including the details on how to design and fabricate the lens inexpensively. The system PSF is evaluated over a 3D volume that can be imaged by this PA camera. Its utility is demonstrated by imaging phantom and an ex vivo human prostate tissue sample.

  11. Characterization of lens based photoacoustic imaging system.

    Science.gov (United States)

    Francis, Kalloor Joseph; Chinni, Bhargava; Channappayya, Sumohana S; Pachamuthu, Rajalakshmi; Dogra, Vikram S; Rao, Navalgund

    2017-12-01

    Some of the challenges in translating photoacoustic (PA) imaging to clinical applications includes limited view of the target tissue, low signal to noise ratio and the high cost of developing real-time systems. Acoustic lens based PA imaging systems, also known as PA cameras are a potential alternative to conventional imaging systems in these scenarios. The 3D focusing action of lens enables real-time C-scan imaging with a 2D transducer array. In this paper, we model the underlying physics in a PA camera in the mathematical framework of an imaging system and derive a closed form expression for the point spread function (PSF). Experimental verification follows including the details on how to design and fabricate the lens inexpensively. The system PSF is evaluated over a 3D volume that can be imaged by this PA camera. Its utility is demonstrated by imaging phantom and an ex vivo human prostate tissue sample.

  12. Development of multimodal imaging strategies for the pharmacology of anticancer agents

    International Nuclear Information System (INIS)

    Brulle, Laura

    2012-01-01

    Preclinical imaging in oncology is booming. It allows, using representative animal models of human cancers, to understand the mechanisms of development of pathologies and to assess the therapeutic efficiency of a new treatment. The main objective of this work was to develop two ortho-topic models of cancer (pancreas and colon) and to assess on them the reference treatments as well as a new therapeutic strategy by non-thermal plasma so called Plasma Gun. The two cancer models developed showed good representation in relation to human cancers, with the appearance of distant metastases and hypoxia. 5-fluorouracil for the HCT116-luc ortho-topic model of colorectal carcinoma and gemcitabine for the MIA PaCa2-luc pancreatic adenocarcinoma model, have induced discrete effects at low dose which can be detected thanks imaging modalities. After validation of our experimental steps, a new therapeutic strategy, Plasma Gun was evaluated and showed significant effects on tumor growth inhibition. The second objective was to carry out tools for the induction and the characterization of bone metastases and for high resolution imaging of the vasculature. On the one hand, bone metastases obtained by injection of PC3M-luc cells intracardially, was evaluated and quantified with different imaging modalities (bioluminescence, scintigraphy and Computed Tomography). And the other hand, the achievement of a high resolution imaging of vascularization, was possible by the casting method that restores the 3D structure of the vascular architecture following injection of a resin in the circulation. Developments makes during this thesis are new tools for preclinical evaluation of novel anticancer therapies. (author) [fr

  13. Preparation and characterization of alginate based-fluorescent magnetic nanoparticles for fluorescence/magnetic resonance multimodal imaging applications

    Science.gov (United States)

    Kwon, Yong-Su; Choi, Kee-Bong; Lim, Hyungjun; Lee, Sunghwi; Lee, Jae-Jong

    2018-06-01

    Simple and versatile methodologies have been reported that customize the surface of superparamagnetic iron oxide (SPIO) nanoparticles and impart additional fluorescence capabilities to these contrast agents. Herein, we present the rational design, synthesis, characterization, and biological applications of a new magnetic-based fluorescent probe. The dual modality imaging protocol was developed by labeling fluorophore with alginate natural polymers that have excellent biocompatibility and biodegradability, and using gelification method to form nanocomposites containing SPIO. The formation of alginate-based fluorescent magnetic (AFM) nanoparticles was observed in spherical and elliptical forms with a diameter of less than 500 nm by a transmission electron microscope (TEM). The fluorescent wavelength band in the range of 560 nm was also confirmed in the UV–visible spectrophotometer. In this study, we demonstrate that the multi-tasking design of AFM nanoparticles provides an ideal platform for building balanced dual-image probes of magnetic resonance imaging and optical imaging.

  14. Development and Characterization of Two-Dimensional Gratings for Single-Shot X-ray Phase-Contrast Imaging

    Directory of Open Access Journals (Sweden)

    Margarita Zakharova

    2018-03-01

    Full Text Available Single-shot grating-based phase-contrast imaging techniques offer additional contrast modalities based on the refraction and scattering of X-rays in a robust and versatile configuration. The utilization of a single optical element is possible in such methods, allowing the shortening of the acquisition time and increasing flux efficiency. One of the ways to upgrade single-shot imaging techniques is to utilize customized optical components, such as two-dimensional (2D X-ray gratings. In this contribution, we present the achievements in the development of 2D gratings with UV lithography and gold electroplating. Absorption gratings represented by periodic free-standing gold pillars with lateral structure sizes from 5 µm to 25 µm and heights from 5 µm to 28 µm have shown a high degree of periodicity and defect-free patterns. Grating performance was tested in a radiographic setup using a self-developed quality assessment algorithm based on the intensity distribution histograms. The algorithm allows the final user to estimate the suitability of a specific grating to be used in a particular setup.

  15. Characterization of nanowires by coherent X-ray diffractive imaging and ptychography

    Energy Technology Data Exchange (ETDEWEB)

    Dzhigaev, Dmitry

    2017-03-15

    Imaging techniques are of paramount importance for our understanding of the universe. From galaxies and stars explored by huge telescopes down to micro and nanostructures studied by microscopes, imaging systems provide invaluable scientific information. When an object under investigation has a size of about 100 nanometers, X-rays become a perfect probe for non-destructive imaging. The manufacturing process of image forming lenses for X-rays becomes much more complicated comparing to optical ones. Therefore, ''lensless'' techniques which rely on the coherent properties of radiation were developed. With third generation of synchrotron sources highly coherent and intense X-ray beams became widely accessible. They are used in new imaging methods such as coherent X-ray diffractive imaging (CXDI) and X-ray ptychography. Modern nanotechnology opens a wide spectrum of possible applications in different branches of physics, chemistry, biology and engineering. At the nanoscale, matter has different physical and chemical properties compared to the macroscale bulk material. The continuing trend of miniaturization of functional components in semiconductor industry brings new challenges both in growth and characterization methods. This Thesis is focused on application of coherent diffractive imaging methods to reveal the structure of single semiconductor nanowires (NWs). They have been attracting significant attention for a couple of decades due to their efficient strain relaxation properties. And since the strain plays a significant role in NW performance the projects carried out in this work are oriented on Bragg CXDI approaches. Three distinct projects were carried out during my research activity at DESY research center of the Helmholtz Association. Experimental work was performed at P06 and P10 beamlines at PETRA III synchrotron. The first part of this Thesis extends the application of the three-dimensional (3D) Bragg CXDI to strain field mapping in a

  16. Characterization of nanowires by coherent X-ray diffractive imaging and ptychography

    International Nuclear Information System (INIS)

    Dzhigaev, Dmitry

    2017-03-01

    Imaging techniques are of paramount importance for our understanding of the universe. From galaxies and stars explored by huge telescopes down to micro and nanostructures studied by microscopes, imaging systems provide invaluable scientific information. When an object under investigation has a size of about 100 nanometers, X-rays become a perfect probe for non-destructive imaging. The manufacturing process of image forming lenses for X-rays becomes much more complicated comparing to optical ones. Therefore, ''lensless'' techniques which rely on the coherent properties of radiation were developed. With third generation of synchrotron sources highly coherent and intense X-ray beams became widely accessible. They are used in new imaging methods such as coherent X-ray diffractive imaging (CXDI) and X-ray ptychography. Modern nanotechnology opens a wide spectrum of possible applications in different branches of physics, chemistry, biology and engineering. At the nanoscale, matter has different physical and chemical properties compared to the macroscale bulk material. The continuing trend of miniaturization of functional components in semiconductor industry brings new challenges both in growth and characterization methods. This Thesis is focused on application of coherent diffractive imaging methods to reveal the structure of single semiconductor nanowires (NWs). They have been attracting significant attention for a couple of decades due to their efficient strain relaxation properties. And since the strain plays a significant role in NW performance the projects carried out in this work are oriented on Bragg CXDI approaches. Three distinct projects were carried out during my research activity at DESY research center of the Helmholtz Association. Experimental work was performed at P06 and P10 beamlines at PETRA III synchrotron. The first part of this Thesis extends the application of the three-dimensional (3D) Bragg CXDI to strain field mapping in a single InP NW with a

  17. Development and characterization of a 99m Tc-tricarbonyl-labelled estradiol derivative obtained by "Click Chemistry" with potential application in estrogen receptors imaging.

    Science.gov (United States)

    Tejería, María Emilia; Giglio, Javier; Dematteis, Silvia; Rey, Ana

    2017-09-01

    Assessment of the presence of estrogen receptors in breast cancer is crucial for treatment planning. With the objective to develop a potential agent for estrogen receptors imaging, we present the development and characterization of a 99m Tc-tricarbonyl-labelled estradiol derivative. Using ethinylestradiol as starting material, an estradiol derivative bearing a 1,4-disubstituted 1,2,3-triazole-containing tridentate ligand system was synthesized by "Click Chemistry" and fully characterized. Labelling with high yield and radiochemical purity was achieved through the formation of a 99m Tc-tricarbonyl complex. The radiolabelled compound was stable, exhibited moderate binding to plasma protein (approximately 33%) and lipophilicity in the adequate range (logP 1.3 ± 0.1 at pH 7.4). Studies in MCF7 showed promising uptake values (approximately 2%). However, more than 50% of the activity is quickly released from the cell. Biodistribution experiments in normal rats confirmed the expected "in vivo" stability of the radiotracer but showed very high gastrointestinal and liver activity, which is inconvenient for in vivo applications. Taking into consideration the well-documented influence of the chelating system in the physicochemical and biological behaviour of technetium-labelled small biomolecules, research will be continued using the same pharmacophore but different complexation modalities of technetium. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Molecular Imaging: A Useful Tool for the Development of Natural Killer Cell-Based Immunotherapies

    Directory of Open Access Journals (Sweden)

    Prakash Gangadaran

    2017-09-01

    Full Text Available Molecular imaging is a relatively new discipline that allows visualization, characterization, and measurement of the biological processes in living subjects, including humans, at a cellular and molecular level. The interaction between cancer cells and natural killer (NK cells is complex and incompletely understood. Despite our limited knowledge, progress in the search for immune cell therapies against cancer could be significantly improved by dynamic and non-invasive visualization and tracking of immune cells and by visualization of the response of cancer cells to therapies in preclinical and clinical studies. Molecular imaging is an essential tool for these studies, and a multimodal molecular imaging approach can be applied to monitor immune cells in vivo, for instance, to visualize therapeutic effects. In this review, we discuss the usefulness of NK cells in cancer therapies and the preclinical and clinical usefulness of molecular imaging in NK cell-based therapies. Furthermore, we discuss different molecular imaging modalities for use with NK cell-based therapies, and their preclinical and clinical applications in animal and human subjects. Molecular imaging has contributed to the development of NK cell-based therapies against cancers in animal models and to the refinement of current cell-based cancer immunotherapies. Developing sensitive and reproducible non-invasive molecular imaging technologies for in vivo NK cell monitoring and for real-time assessment of therapeutic effects will accelerate the development of NK cell therapies.

  19. Application of radiological imaging methods to radioactive waste characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tessaro, Ana Paula Gimenes; Souza, Daiane Cristini B. de; Vicente, Roberto, E-mail: aptessaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radiological imaging technologies are most frequently used for medical diagnostic purposes but are also useful in materials characterization and other non-medical applications in research and industry. The characterization of radioactive waste packages or waste samples can also benefit from these techniques. In this paper, the application of some imaging methods is examined for the physical characterization of radioactive wastes constituted by spent ion-exchange resins and activated charcoal beds stored at the Radioactive Waste Management Department of IPEN. These wastes are generated when the filter media of the water polishing system of the IEA-R1 Nuclear Research Reactor is no longer able to maintain the required water quality and are replaced. The IEA-R1 is a 5MW pool-type reactor, moderated and cooled by light water, and fission and activation products released from the reactor core must be continuously removed to prevent activity buildup in the water. The replacement of the sorbents is carried out by pumping from the filter tanks into several 200 L drums, each drum getting a variable amount of water. Considering that the results of radioanalytical methods to determine the concentrations of radionuclides are usually expressed on dry basis,the amount of water must be known to calculate the total activity of each package. At first sight this is a trivial problem that demanded, however some effort to be solved. The findings on this subject are reported in this paper. (author)

  20. Development of Simultaneous Beta-and-Coincidence-Gamma Imager for Plant Imaging Research

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Yuan-Chuan [Washington Univ., St. Louis, MO (United States). School of Medicine

    2016-09-30

    The goal of this project is to develop a novel imaging system that can simultaneously acquire beta and coincidence gamma images of positron sources in thin objects such as leaves of plants. This hybrid imager can be used to measure carbon assimilation in plants quantitatively and in real-time after C-11 labeled carbon-dioxide is administered. A better understanding of carbon assimilation, particularly under the increasingly elevated atmospheric CO2 level, is extremely critical for plant scientists who study food crop and biofuel production. Phase 1 of this project is focused on the technology development with 3 specific aims: (1) develop a hybrid detector that can detect beta and gamma rays simultaneously; (2) develop an imaging system that can differentiate these two types of radiation and acquire beta and coincidence gamma images in real-time; (3) develop techniques to quantify radiotracer distribution using beta and gamma images. Phase 2 of this project is to apply technologies developed in phase 1 to study plants using positron-emitting radionuclide such as 11C to study carbon assimilation in biofuel plants.

  1. Characterization of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy system

    International Nuclear Information System (INIS)

    Hu, Yanle; Rankine, Leith; Green, Olga L.; Kashani, Rojano; Li, H. Harold; Li, Hua; Rodriguez, Vivian; Santanam, Lakshmi; Wooten, H. Omar; Mutic, Sasa; Nana, Roger; Shvartsman, Shmaryu; Victoria, James; Dempsey, James F.

    2015-01-01

    Purpose: To characterize the performance of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy (MR-IGRT) system. Methods: The imaging performance characterization included four components: ACR (the American College of Radiology) phantom test, spatial integrity, coil signal to noise ratio (SNR) and uniformity, and magnetic field homogeneity. The ACR phantom test was performed in accordance with the ACR phantom test guidance. The spatial integrity test was evaluated using a 40.8 × 40.8 × 40.8 cm 3 spatial integrity phantom. MR and computed tomography (CT) images of the phantom were acquired and coregistered. Objects were identified around the surfaces of 20 and 35 cm diameters of spherical volume (DSVs) on both the MR and CT images. Geometric distortion was quantified using deviation in object location between the MR and CT images. The coil SNR test was performed according to the national electrical manufacturers association (NEMA) standards MS-1 and MS-9. The magnetic field homogeneity test was measured using field camera and spectral peak methods. Results: For the ACR tests, the slice position error was less than 0.10 cm, the slice thickness error was less than 0.05 cm, the resolved high-contrast spatial resolution was 0.09 cm, the resolved low-contrast spokes were more than 25, the image intensity uniformity was above 93%, and the percentage ghosting was less than 0.22%. All were within the ACR recommended specifications. The maximum geometric distortions within the 20 and 35 cm DSVs were 0.10 and 0.18 cm for high spatial resolution three-dimensional images and 0.08 and 0.20 cm for high temporal resolution two dimensional cine images based on the distance-to-phantom-center method. The average SNR was 12.0 for the body coil, 42.9 for the combined torso coil, and 44.0 for the combined head and neck coil. Magnetic field homogeneities at gantry angles of 0°, 30°, 60°, 90°, and 120° were 23.55, 20.43, 18.76, 19

  2. Development of a shear-force scanning near-field cathodoluminescence microscope for characterization of nanostructures' optical properties.

    Science.gov (United States)

    Bercu, N B; Troyon, M; Molinari, M

    2016-09-01

    An original scanning near-field cathodoluminescence microscope for nanostructure characterization has been developed and successfully tested. By using a bimorph piezoelectric stack both as actuator and detector, the developed setup constitutes a real improvement compared to previously reported SEM-based solutions. The technique combines a scanning probe and a scanning electron microscope in order to simultaneously offer near-field cathodoluminescence and topographic images of the sample. Share-force topography and cathodoluminescence measurements on GaN, SiC and ZnO nanostructures using the developed setup are presented showing a nanometric resolution in both topography and cathodoluminescence images with increased sensitivity compared to classical luminescence techniques. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  3. Characterizing Cool Giant Planets in Reflected Light

    Science.gov (United States)

    Marley, Mark

    2016-01-01

    While the James Webb Space Telescope will detect and characterize extrasolar planets by transit and direct imaging, a new generation of telescopes will be required to detect and characterize extrasolar planets by reflected light imaging. NASA's WFIRST space telescope, now in development, will image dozens of cool giant planets at optical wavelengths and will obtain spectra for several of the best and brightest targets. This mission will pave the way for the detection and characterization of terrestrial planets by the planned LUVOIR or HabEx space telescopes. In my presentation I will discuss the challenges that arise in the interpretation of direct imaging data and present the results of our group's effort to develop methods for maximizing the science yield from these planned missions.

  4. Characterization of porcine eyes based on autofluorescence lifetime imaging

    Science.gov (United States)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2015-03-01

    Multiphoton microscopy is a non-invasive imaging technique with ideal characteristics for biological applications. In this study, we propose to characterize three major structures of the porcine eye, the cornea, crystalline lens, and retina using two-photon excitation fluorescence lifetime imaging microscopy (2PE-FLIM). Samples were imaged using a laser-scanning microscope, consisting of a broadband sub-15 femtosecond (fs) near-infrared laser. Signal detection was performed using a 16-channel photomultiplier tube (PMT) detector (PML-16PMT). Therefore, spectral analysis of the fluorescence lifetime data was possible. To ensure a correct spectral analysis of the autofluorescence lifetime data, the spectra of the individual endogenous fluorophores were acquired with the 16-channel PMT and with a spectrometer. All experiments were performed within 12h of the porcine eye enucleation. We were able to image the cornea, crystalline lens, and retina at multiple depths. Discrimination of each structure based on their autofluorescence intensity and lifetimes was possible. Furthermore, discrimination between different layers of the same structure was also possible. To the best of our knowledge, this was the first time that 2PE-FLIM was used for porcine lens imaging and layer discrimination. With this study we further demonstrated the feasibility of 2PE-FLIM to image and differentiate three of the main components of the eye and its potential as an ophthalmologic technique.

  5. Multispectral photoacoustic characterization of ICG and porcine blood using an LED-based photoacoustic imaging system

    Science.gov (United States)

    Shigeta, Yusuke; Sato, Naoto; Kuniyil Ajith Singh, Mithun; Agano, Toshitaka

    2018-02-01

    Photoacoustic imaging is a hybrid biomedical imaging modality that has emerged over the last decade. In photoacoustic imaging, pulsed-light absorbed by the target emits ultrasound that can be detected using a conventional ultrasound array. This ultrasound data can be used to reconstruct the location and spatial details of the intrinsic/extrinsic light absorbers in the tissue. Recently we reported on the development of a multi-wavelength high frame-rate LED-based photoacoustic/ultrasound imaging system (AcousticX). In this work, we photoacoustically characterize the absorption spectrum of ICG and porcine blood using LED arrays with multiple wavelengths (405, 420, 470, 520, 620, 660, 690, 750, 810, 850, 925, 980 nm). Measurements were performed in a simple reflection mode configuration in which LED arrays where fixed on both sides of the linear array ultrasound probe. Phantom used consisted of micro-test tubes filled with ICG and porcine blood, which were placed in a tank filled with water. The photoacoustic spectrum obtained from our measurements matches well with the reference absorption spectrum. These results demonstrate the potential capability of our system in performing clinical/pre-clinical multispectral photoacoustic imaging.

  6. AASERT: Development of Pulse-Burst Laser Source and Digital Image Processing for Measurements of High-Speed, Time-Evolving Flow

    National Research Council Canada - National Science Library

    Miles, Richard

    2000-01-01

    ... Ti:Sapphire Laser and the demonstration of UV filtered Rayleigh scattering imaging in a supersonic jet, the fabrication/ characterization of a narrow passband transmission filter, and the development...

  7. [Development of image quality assurance support system using image recognition technology in radiography in lacked images of chest and abdomen].

    Science.gov (United States)

    Shibuya, Toru; Kato, Kyouichi; Eshima, Hidekazu; Sumi, Shinichirou; Kubo, Tadashi; Ishida, Hideki; Nakazawa, Yasuo

    2012-01-01

    In order to provide a precise radiography for diagnosis, it is required that we avoid radiography with defects by having enough evaluation. Conventionally, evaluation was performed only by observation of a radiological technologist (RT). The evaluation support system was developed for providing a high quality assurance without depending on RT observation only. The evaluation support system, called as the Image Quality Assurance Support System (IQASS), is characterized in that "image recognition technology" for the purpose of diagnostic radiography of chest and abdomen areas. The technique of the system used in this study. Of the 259 samples of posterior-anterior (AP) chest, lateral chest, and upright abdominal x-rays, the sensitivity and specificity was 93.1% and 91.8% in the chest AP, 93.3% and 93.6% in the chest lateral, and 95.0% and 93.8% in the upright abdominal x-rays. In the light of these results, it is suggested that AIQAS could be applied to practical usage for the RT.

  8. Defect Characterization, Imaging, and Control in Wide-Bandgap Semiconductors and Devices

    Science.gov (United States)

    Brillson, L. J.; Foster, G. M.; Cox, J.; Ruane, W. T.; Jarjour, A. B.; Gao, H.; von Wenckstern, H.; Grundmann, M.; Wang, B.; Look, D. C.; Hyland, A.; Allen, M. W.

    2018-03-01

    Wide-bandgap semiconductors are now leading the way to new physical phenomena and device applications at nanoscale dimensions. The impact of defects on the electronic properties of these materials increases as their size decreases, motivating new techniques to characterize and begin to control these electronic states. Leading these advances have been the semiconductors ZnO, GaN, and related materials. This paper highlights the importance of native point defects in these semiconductors and describes how a complement of spatially localized surface science and spectroscopy techniques in three dimensions can characterize, image, and begin to control these electronic states at the nanoscale. A combination of characterization techniques including depth-resolved cathodoluminescence spectroscopy, surface photovoltage spectroscopy, and hyperspectral imaging can describe the nature and distribution of defects at interfaces at both bulk and nanoscale surfaces, their metal interfaces, and inside nanostructures themselves. These features as well as temperature and mechanical strain inside wide-bandgap device structures at the nanoscale can be measured even while these devices are operating. These advanced capabilities enable several new directions for describing defects at the nanoscale, showing how they contribute to device degradation, and guiding growth processes to control them.

  9. Preclinical In vivo Imaging for Fat Tissue Identification, Quantification, and Functional Characterization.

    Science.gov (United States)

    Marzola, Pasquina; Boschi, Federico; Moneta, Francesco; Sbarbati, Andrea; Zancanaro, Carlo

    2016-01-01

    Localization, differentiation, and quantitative assessment of fat tissues have always collected the interest of researchers. Nowadays, these topics are even more relevant as obesity (the excess of fat tissue) is considered a real pathology requiring in some cases pharmacological and surgical approaches. Several weight loss medications, acting either on the metabolism or on the central nervous system, are currently under preclinical or clinical investigation. Animal models of obesity have been developed and are widely used in pharmaceutical research. The assessment of candidate drugs in animal models requires non-invasive methods for longitudinal assessment of efficacy, the main outcome being the amount of body fat. Fat tissues can be either quantified in the entire animal or localized and measured in selected organs/regions of the body. Fat tissues are characterized by peculiar contrast in several imaging modalities as for example Magnetic Resonance Imaging (MRI) that can distinguish between fat and water protons thank to their different magnetic resonance properties. Since fat tissues have higher carbon/hydrogen content than other soft tissues and bones, they can be easily assessed by Computed Tomography (CT) as well. Interestingly, MRI also discriminates between white and brown adipose tissue (BAT); the latter has long been regarded as a potential target for anti-obesity drugs because of its ability to enhance energy consumption through increased thermogenesis. Positron Emission Tomography (PET) performed with 18 F-FDG as glucose analog radiotracer reflects well the metabolic rate in body tissues and consequently is the technique of choice for studies of BAT metabolism. This review will focus on the main, non-invasive imaging techniques (MRI, CT, and PET) that are fundamental for the assessment, quantification and functional characterization of fat deposits in small laboratory animals. The contribution of optical techniques, which are currently regarded with

  10. Preclinical in vivo imaging for fat tissue identification, quantification and functional characterization

    Directory of Open Access Journals (Sweden)

    Pasquina Marzola

    2016-09-01

    Full Text Available Localization, differentiation and quantitative assessment of fat tissues have always collected the interest of researchers. Nowadays, these topics are even more relevant as obesity (the excess of fat tissue is considered a real pathology requiring in some cases pharmacological and surgical approaches. Several weight loss medications, acting either on the metabolism or on the central nervous system, are currently under preclinical or clinical investigation. Animal models of obesity have been developed which are widely used in pharmaceutical research. The assessment of candidate drugs in animal models requires non-invasive methods for longitudinal assessment of efficacy, the main outcome being the amount of body fat. Fat tissues can be either quantified in the entire animal or localized and measured in selected organs/regions of the body. Fat tissues are characterized by peculiar contrast in several imaging modalities as for example Magnetic Resonance Imaging (MRI that can distinguish between fat and water protons thank to their different magnetic resonance properties. Since fat tissues have higher carbon/hydrogen content than other soft tissues and bones, they can be easily assessed by Computed Tomography (CT as well. Interestingly, MRI also discriminates between white and brown adipose tissue; the latter has long been regarded as a potential target for anti-obesity drugs because of its ability to enhance energy consumption through increased thermogenesis. Positron Emission Tomography (PET performed with 18F-FDG as glucose analogue radiotracer reflects well the metabolic rate in body tissues and consequently is the technique of choice for studies of BAT metabolism. This review will focus on the main, non-invasive imaging techniques (MRI, CT and PET that are fundamental for the assessment, quantification and functional characterization of fat deposits in small laboratory animals. The contribution of optical techniques, which are currently regarded

  11. Characterization of a sequential pipeline approach to automatic tissue segmentation from brain MR Images

    International Nuclear Information System (INIS)

    Hou, Zujun; Huang, Su

    2008-01-01

    Quantitative analysis of gray matter and white matter in brain magnetic resonance imaging (MRI) is valuable for neuroradiology and clinical practice. Submission of large collections of MRI scans to pipeline processing is increasingly important. We characterized this process and suggest several improvements. To investigate tissue segmentation from brain MR images through a sequential approach, a pipeline that consecutively executes denoising, skull/scalp removal, intensity inhomogeneity correction and intensity-based classification was developed. The denoising phase employs a 3D-extension of the Bayes-Shrink method. The inhomogeneity is corrected by an improvement of the Dawant et al.'s method with automatic generation of reference points. The N3 method has also been evaluated. Subsequently the brain tissue is segmented into cerebrospinal fluid, gray matter and white matter by a generalized Otsu thresholding technique. Intensive comparisons with other sequential or iterative methods have been carried out using simulated and real images. The sequential approach with judicious selection on the algorithm selection in each stage is not only advantageous in speed, but also can attain at least as accurate segmentation as iterative methods under a variety of noise or inhomogeneity levels. A sequential approach to tissue segmentation, which consecutively executes the wavelet shrinkage denoising, scalp/skull removal, inhomogeneity correction and intensity-based classification was developed to automatically segment the brain tissue into CSF, GM and WM from brain MR images. This approach is advantageous in several common applications, compared with other pipeline methods. (orig.)

  12. Polyp Detection, Characterization, and Management Using Narrow-Band Imaging with/without Magnification

    Directory of Open Access Journals (Sweden)

    Takahiro Utsumi

    2015-11-01

    Full Text Available Narrow-band imaging (NBI is a new imaging technology that was developed in 2006 and has since spread worldwide. Because of its convenience, NBI has been replacing the role of chromoendoscopy. Here we review the efficacy of NBI with/without magnification for detection, characterization, and management of colorectal polyps, and future perspectives for the technology, including education. Recent studies have shown that the next-generation NBI system can detect significantly more colonic polyps than white light imaging, suggesting that NBI may become the modality of choice from the beginning of screening. The capillary pattern revealed by NBI, and the NBI International Colorectal Endoscopic classification are helpful for prediction of histology and for estimating the depth of invasion of colorectal cancer. However, NBI with magnifying colonoscopy is not superior to magnifying chromoendoscopy for estimation of invasion depth. Currently, therefore, chromoendoscopy should also be performed additionally if deep submucosal invasive cancer is suspected. If endoscopists become able to accurately estimate colorectal polyp pathology using NBI, this will allow adenomatous polyps to be resected and discarded; thus, reducing both the risk of polypectomy and costs. In order to achieve this goal, a suitable system for education and training in in vivo diagnostics will be necessary.

  13. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging

    International Nuclear Information System (INIS)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia

    2014-01-01

    Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery

  14. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia, E-mail: silvia.serranti@uniroma1.it

    2014-11-15

    Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery.

  15. Segmentation of nanotomographic cortical bone images for quantitative characterization of the osteoctyte lacuno-canalicular network

    Energy Technology Data Exchange (ETDEWEB)

    Ciani, A.; Kewish, C. M. [Synchrotron Soleil, L’Orme des Merisiers, 91192 Saint-Aubin (France); Guizar-Sicairos, M.; Diaz, A.; Holler, M. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Pallu, S.; Achiou, Z.; Jennane, R.; Toumi, H.; Lespessailles, E. [Univ Orléans, I3MTO, Ea 4708, 45000 Orléans (France)

    2016-01-28

    A newly developed data processing method able to characterize the osteocytes lacuno-canalicular network (LCN) is presented. Osteocytes are the most abundant cells in the bone, living in spaces called lacunae embedded inside the bone matrix and connected to each other with an extensive network of canals that allows for the exchange of nutrients and for mechanotransduction functions. The geometrical three-dimensional (3D) architecture is increasingly thought to be related to the macroscopic strength or failure of the bone and it is becoming the focus for investigating widely spread diseases such as osteoporosis. To obtain 3D LCN images non-destructively has been out of reach until recently, since tens-of-nanometers scale resolution is required. Ptychographic tomography was validated for bone imaging in [1], showing clearly the LCN. The method presented here was applied to 3D ptychographic tomographic images in order to extract morphological and geometrical parameters of the lacuno-canalicular structures.

  16. A new myocardial imaging agent: Synthesis, characterization, and biodistribution of gallium-68-BAT-TECH

    International Nuclear Information System (INIS)

    Kung, H.F.; Liu, B.L.; Mankoff, D.; Kung, M.P.; Billings, J.J.; Francesconi, L.; Alavi, A.

    1990-01-01

    In order to develop a new myocardial perfusion agent for positron emission tomography (PET), a new lipid-soluble gallium complex was evaluated. Synthesis, radiolabeling, characterization, and biodistribution of a unique gallium complex, [ 67 Ga]BAT-TECH (bis-aminoethanethiol-tetraethyl-cyclohexyl), are described. The complex formation between Ga+3 and BAT-TECH ligand is simple, rapid, and of high yield (greater than or equal to 95%). This process is amenable to kit formulation. The complex has a net charge of +1 and a Ga/ligand ratio of 1:1. Biodistribution in rats shows high uptake in the heart as well as in the liver. When [ 68 Ga] BAT-TECH was injected into a monkey, the heart and liver are clearly delineated by PET imaging, suggesting that this complex may be a possible tracer for myocardial perfusion imaging

  17. Characterization of clinical-imaging characteristics of the binswanger's disease

    International Nuclear Information System (INIS)

    Rodriguez Mutuberria, Livan; Serra Valdes, Yusimi

    2002-01-01

    A review was made to go deep into the understanding of vascular dementias that behave as the second cause of dementia in practice. Binswanger's disease is one of the most important among them. Its detection has progressively increased with the continual improvement of the radiological diagnostic tools that allow to identify the ischemic damage of the hemispherical cerebral white matter and the presence of lacunar infarctions. It is a disease of chronic course and inexorably progressive that is characterized by the association of subcortical cognitive dysfunction, evidence of cerebrovascular disease, Parkinsonian rigidity and vesicle dysfunction with a characteristic imaging picture. The clinical picture and the main imaging characteristics are explained in this paper and the pathogens of the disease is briefly described

  18. Biofouling patterns in spacer filled channels: High resolution imaging for characterization of heterogeneous biofilms

    KAUST Repository

    Staal, Marc

    2017-08-15

    Biofilms develop in heterogeneous patterns at a µm scale up to a cm scale, and patterns become more pronounced when biofilms develop under complex hydrodynamic flow regimes. Spatially heterogeneous biofilms are especially known in spiral wound reverse osmosis (RO) and nanofiltration (NF) membrane filtration systems used for desalination and wastewater reuse to produce high quality (drinking) water. These spiral wound membrane modules contain mesh-like spacer structures used to create an intermembrane space and improve water mixing. Spacers create inhomogeneous water flow patterns resulting in zones favouring biofilm growth, possibly leading to biofouling thus hampering water production. Oxygen sensing planar optodes were used to visualize variations in oxygen decrease rates (ODR). ODR is an indication of biofilm activity. In this study, ODR images of multiple repetitive spacer areas in a membrane fouling simulator were averaged to produce high resolution, low noise ODR images. Averaging 40 individual spacer areas improved the ODR distribution image significantly and allowed comparison of biofilm patterning over a spacer structure at different positions in an RO filter. This method clearly showed that most active biofilm accumulated on and in direct vicinity of the spacer. The averaging method was also used to calculate the deviation of ODR patterning from individual spacer areas to the average ODR pattern, proposing a new approach to determine biofilm spatial heterogeneity. This study showed that the averaging method can be applied and that the improved, averaged ODR images can be used as an analytical, in-situ, non-destructive method to assess and quantify the effect of membrane installation operational parameters or different spacer geometries on biofilm development in spiral wound membrane systems characterized by complex hydrodynamic conditions.

  19. New perspectives for visual characterization of pharmaceutical solids

    DEFF Research Database (Denmark)

    Laitinen, Niklas; Antikainen, Osmo; Rantanen, Jukka

    2004-01-01

    The utilization of descriptive image information in pharmaceutical powder technology is rather limited. Consequently, the development of this discipline is a challenge within physical characterization of pharmaceutical solids. The aim of this study was to develop and evaluate an inventive visual...... in particle size analysis also enabling the evaluation of the further product quality in the end of the granulation process. The idea of characterization of bulk surface images opens new perspectives for characterization of pharmaceutical solids....

  20. Recent developments in multimodality fluorescence imaging probes

    Directory of Open Access Journals (Sweden)

    Jianhong Zhao

    2018-05-01

    Full Text Available Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of optical fluorescence imaging (OFI probe integration with other imaging modalities such as X-ray computed tomography (CT, magnetic resonance imaging (MRI, positron emission tomography (PET, single-photon emission computed tomography (SPECT, and photoacoustic imaging (PAI. The imaging technologies are briefly described in order to introduce the strengths and limitations of each techniques and the need for further multimodality optical imaging probe development. The emphasis of this account is placed on how design strategies are currently implemented to afford physicochemically and biologically compatible multimodality optical fluorescence imaging probes. We also present studies that overcame intrinsic disadvantages of each imaging technique by multimodality approach with improved detection sensitivity and accuracy. KEY WORDS: Optical imaging, Fluorescence, Multimodality, Near-infrared fluorescence, Nanoprobe, Computed tomography, Magnetic resonance imaging, Positron emission tomography, Single-photon emission computed tomography, Photoacoustic imaging

  1. Development of characterization methods applied to radioactive wastes and waste packages

    International Nuclear Information System (INIS)

    Guy, C.; Bienvenu, Ph.; Comte, J.; Excoffier, E.; Dodi, A.; Gal, O.; Gmar, M.; Jeanneau, F.; Poumarede, B.; Tola, F.; Moulin, V.; Jallu, F.; Lyoussi, A.; Ma, J.L.; Oriol, L.; Passard, Ch.; Perot, B.; Pettier, J.L.; Raoux, A.C.; Thierry, R.

    2004-01-01

    This document is a compilation of R and D studies carried out in the framework of the axis 3 of the December 1991 law about the conditioning and storage of high-level and long lived radioactive wastes and waste packages, and relative to the methods of characterization of these wastes. This R and D work has permitted to implement and qualify new methods (characterization of long-lived radioelements, high energy imaging..) and also to improve the existing methods by lowering detection limits and reducing uncertainties of measured data. This document is the result of the scientific production of several CEA laboratories that use complementary techniques: destructive methods and radiochemical analyses, photo-fission and active photonic interrogation, high energy imaging systems, neutron interrogation, gamma spectroscopy and active and passive imaging techniques. (J.S.)

  2. Characterization of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yanle, E-mail: Hu.Yanle@mayo.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 and Department of Radiation Oncology, Mayo Clinic in Arizona, Phoenix, Arizona 85054 (United States); Rankine, Leith; Green, Olga L.; Kashani, Rojano; Li, H. Harold; Li, Hua; Rodriguez, Vivian; Santanam, Lakshmi; Wooten, H. Omar; Mutic, Sasa [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States); Nana, Roger; Shvartsman, Shmaryu; Victoria, James; Dempsey, James F. [ViewRay, Inc., Oakwood Village, Ohio 44146 (United States)

    2015-10-15

    Purpose: To characterize the performance of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy (MR-IGRT) system. Methods: The imaging performance characterization included four components: ACR (the American College of Radiology) phantom test, spatial integrity, coil signal to noise ratio (SNR) and uniformity, and magnetic field homogeneity. The ACR phantom test was performed in accordance with the ACR phantom test guidance. The spatial integrity test was evaluated using a 40.8 × 40.8 × 40.8 cm{sup 3} spatial integrity phantom. MR and computed tomography (CT) images of the phantom were acquired and coregistered. Objects were identified around the surfaces of 20 and 35 cm diameters of spherical volume (DSVs) on both the MR and CT images. Geometric distortion was quantified using deviation in object location between the MR and CT images. The coil SNR test was performed according to the national electrical manufacturers association (NEMA) standards MS-1 and MS-9. The magnetic field homogeneity test was measured using field camera and spectral peak methods. Results: For the ACR tests, the slice position error was less than 0.10 cm, the slice thickness error was less than 0.05 cm, the resolved high-contrast spatial resolution was 0.09 cm, the resolved low-contrast spokes were more than 25, the image intensity uniformity was above 93%, and the percentage ghosting was less than 0.22%. All were within the ACR recommended specifications. The maximum geometric distortions within the 20 and 35 cm DSVs were 0.10 and 0.18 cm for high spatial resolution three-dimensional images and 0.08 and 0.20 cm for high temporal resolution two dimensional cine images based on the distance-to-phantom-center method. The average SNR was 12.0 for the body coil, 42.9 for the combined torso coil, and 44.0 for the combined head and neck coil. Magnetic field homogeneities at gantry angles of 0°, 30°, 60°, 90°, and 120° were 23.55, 20.43, 18.76, 19

  3. Coherent imaging at FLASH

    International Nuclear Information System (INIS)

    Chapman, H N; Bajt, S; Duesterer, S; Treusch, R; Barty, A; Benner, W H; Bogan, M J; Frank, M; Hau-Riege, S P; Woods, B W; Boutet, S; Cavalleri, A; Hajdu, J; Iwan, B; Seibert, M M; Timneanu, N; Marchesini, S; Sakdinawat, A; Sokolowski-Tinten, K

    2009-01-01

    We have carried out high-resolution single-pulse coherent diffractive imaging at the FLASH free-electron laser. The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of an object before that object turns into a plasma and explodes. In particular we are developing imaging of biological specimens beyond conventional radiation damage resolution limits, developing imaging of ultrafast processes, and testing methods to characterize and perform single-particle imaging.

  4. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Gazdzinski, Lisa M.; Cormier, Kyle; Lu, Fred G.; Lerch, Jason P.; Wong, C. Shun; Nieman, Brian J.

    2012-01-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  5. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gazdzinski, Lisa M.; Cormier, Kyle [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Lu, Fred G. [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Lerch, Jason P. [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Wong, C. Shun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Nieman, Brian J., E-mail: bjnieman@phenogenomics.ca [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

    2012-12-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  6. Characterization of platelet adhesion under flow using microscopic image sequence analysis.

    Science.gov (United States)

    Machin, M; Santomaso, A; Cozzi, M R; Battiston, M; Mazzuccato, M; De Marco, L; Canu, P

    2005-07-01

    A method for quantitative analysis of platelet deposition under flow is discussed here. The model system is based upon perfusion of blood platelets over an adhesive substrate immobilized on a glass coverslip acting as the lower surface of a rectangular flow chamber. The perfusion apparatus is mounted onto an inverted microscope equipped with epifluorescent illumination and intensified CCD video camera. Characterization is based on information obtained from a specific image analysis method applied to continuous sequences of microscopical images. Platelet recognition across the sequence of images is based on a time-dependent, bidimensional, gaussian-like pdf. Once a platelet is located,the variation of its position and shape as a function of time (i.e., the platelet history) can be determined. Analyzing the history we can establish if the platelet is moving on the surface, the frequency of this movement and the distance traveled before its resumes the velocity of a non-interacting cell. Therefore, we can determine how long the adhesion would last which is correlated to the resistance of the platelet-substrate bond. This algorithm enables the dynamic quantification of trajectories, as well as residence times, arrest and release frequencies for a high numbers of platelets at the same time. Statistically significant conclusions on platelet-surface interactions can then be obtained. An image analysis tool of this kind can dramatically help the investigation and characterization of the thrombogenic properties of artificial surfaces such as those used in artificial organs and biomedical devices.

  7. Development and characterization of a laser-based hard x-ray source

    International Nuclear Information System (INIS)

    Tillman, C.

    1996-11-01

    A laser-produced plasma was generated by focusing 100 fs laser pulses, with an energy of 150 mJ, onto metal targets. The laser intensity was expected to reach 10 17 W/cm -2 . Radiation was emitted from the created plasma, with photon energies up to the MeV region. The laser-based X-ray source was optimized, with the purpose of making it a realistic source of hard X-rays (>10 keV). Dedicated equipment was developed for efficient generation and utilization of the hard X-rays. The X-ray source was characterized with respect to its spatial extent and the X-ray yield. Measurements were made of the spectral distribution, by the use of single-photon-counting detectors in different geometries, crystal spectrometers and dose measurements in combination with absorption filters. Ablation of the target material in the laser produced plasma was investigated. Imaging applications have been demonstrated, including ultrafast (picosecond) X-ray imaging, magnification imaging of up to x80, differential imaging in the spectral domain, and imaging of various biological and technical objects. The biological response of ultra-intense X-ray pulses was assessed in cell-culture exposures. The results indicate that the biological response from ultra-intense X-ray exposures is similar to the response with conventional X-ray tubes. 82 refs., 14 figs

  8. Development and characterization of a laser-based hard x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Tillman, C.

    1996-11-01

    A laser-produced plasma was generated by focusing 100 fs laser pulses, with an energy of 150 mJ, onto metal targets. The laser intensity was expected to reach 10{sup 17} W/cm{sup -2}. Radiation was emitted from the created plasma, with photon energies up to the MeV region. The laser-based X-ray source was optimized, with the purpose of making it a realistic source of hard X-rays (>10 keV). Dedicated equipment was developed for efficient generation and utilization of the hard X-rays. The X-ray source was characterized with respect to its spatial extent and the X-ray yield. Measurements were made of the spectral distribution, by the use of single-photon-counting detectors in different geometries, crystal spectrometers and dose measurements in combination with absorption filters. Ablation of the target material in the laser produced plasma was investigated. Imaging applications have been demonstrated, including ultrafast (picosecond) X-ray imaging, magnification imaging of up to x80, differential imaging in the spectral domain, and imaging of various biological and technical objects. The biological response of ultra-intense X-ray pulses was assessed in cell-culture exposures. The results indicate that the biological response from ultra-intense X-ray exposures is similar to the response with conventional X-ray tubes. 82 refs., 14 figs.

  9. Development of technology for medical image fusion

    International Nuclear Information System (INIS)

    Yamaguchi, Takashi; Amano, Daizou

    2012-01-01

    With entry into a field of medical diagnosis in mind, we have developed positron emission tomography (PET) ''MIP-100'' system, of which spatial resolution is far higher than the conventional one, using semiconductor detectors for preclinical imaging for small animals. In response to the recently increasing market demand to fuse functional images by PET and anatomical ones by CT or MRI, we have been developing software to implement image fusion function that enhances marketability of the PET Camera. This paper describes the method of fusing with high accuracy the PET images and anatomical ones by CT system. It also explains that a computer simulation proved the image overlay accuracy to be ±0.3 mm as a result of the development, and that effectiveness of the developed software is confirmed in case of experiment to obtain measured data. Achieving such high accuracy as ±0.3 mm by the software allows us to present fusion images with high resolution (<0.6 mm) without degrading the spatial resolution (<0.5 mm) of the PET system using semiconductor detectors. (author)

  10. RootAnalyzer: A Cross-Section Image Analysis Tool for Automated Characterization of Root Cells and Tissues.

    Directory of Open Access Journals (Sweden)

    Joshua Chopin

    Full Text Available The morphology of plant root anatomical features is a key factor in effective water and nutrient uptake. Existing techniques for phenotyping root anatomical traits are often based on manual or semi-automatic segmentation and annotation of microscopic images of root cross sections. In this article, we propose a fully automated tool, hereinafter referred to as RootAnalyzer, for efficiently extracting and analyzing anatomical traits from root-cross section images. Using a range of image processing techniques such as local thresholding and nearest neighbor identification, RootAnalyzer segments the plant root from the image's background, classifies and characterizes the cortex, stele, endodermis and epidermis, and subsequently produces statistics about the morphological properties of the root cells and tissues. We use RootAnalyzer to analyze 15 images of wheat plants and one maize plant image and evaluate its performance against manually-obtained ground truth data. The comparison shows that RootAnalyzer can fully characterize most root tissue regions with over 90% accuracy.

  11. Activated sludge characterization through microscopy: A review on quantitative image analysis and chemometric techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Daniela P. [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Amaral, A. Luís [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra (Portugal); Ferreira, Eugénio C., E-mail: ecferreira@deb.uminho.pt [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2013-11-13

    Graphical abstract: -- Highlights: •Quantitative image analysis shows potential to monitor activated sludge systems. •Staining techniques increase the potential for detection of operational problems. •Chemometrics combined with quantitative image analysis is valuable for process monitoring. -- Abstract: In wastewater treatment processes, and particularly in activated sludge systems, efficiency is quite dependent on the operating conditions, and a number of problems may arise due to sludge structure and proliferation of specific microorganisms. In fact, bacterial communities and protozoa identification by microscopy inspection is already routinely employed in a considerable number of cases. Furthermore, quantitative image analysis techniques have been increasingly used throughout the years for the assessment of aggregates and filamentous bacteria properties. These procedures are able to provide an ever growing amount of data for wastewater treatment processes in which chemometric techniques can be a valuable tool. However, the determination of microbial communities’ properties remains a current challenge in spite of the great diversity of microscopy techniques applied. In this review, activated sludge characterization is discussed highlighting the aggregates structure and filamentous bacteria determination by image analysis on bright-field, phase-contrast, and fluorescence microscopy. An in-depth analysis is performed to summarize the many new findings that have been obtained, and future developments for these biological processes are further discussed.

  12. Comparison of machine learned approaches for thyroid nodule characterization from shear wave elastography images

    Science.gov (United States)

    Pereira, Carina; Dighe, Manjiri; Alessio, Adam M.

    2018-02-01

    Various Computer Aided Diagnosis (CAD) systems have been developed that characterize thyroid nodules using the features extracted from the B-mode ultrasound images and Shear Wave Elastography images (SWE). These features, however, are not perfect predictors of malignancy. In other domains, deep learning techniques such as Convolutional Neural Networks (CNNs) have outperformed conventional feature extraction based machine learning approaches. In general, fully trained CNNs require substantial volumes of data, motivating several efforts to use transfer learning with pre-trained CNNs. In this context, we sought to compare the performance of conventional feature extraction, fully trained CNNs, and transfer learning based, pre-trained CNNs for the detection of thyroid malignancy from ultrasound images. We compared these approaches applied to a data set of 964 B-mode and SWE images from 165 patients. The data were divided into 80% training/validation and 20% testing data. The highest accuracies achieved on the testing data for the conventional feature extraction, fully trained CNN, and pre-trained CNN were 0.80, 0.75, and 0.83 respectively. In this application, classification using a pre-trained network yielded the best performance, potentially due to the relatively limited sample size and sub-optimal architecture for the fully trained CNN.

  13. AFM tip characterization by using FFT filtered images of step structures

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yongda, E-mail: yanyongda@hit.edu.cn [Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Center For Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Xue, Bo [Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Center For Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Hu, Zhenjiang; Zhao, Xuesen [Center For Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China)

    2016-01-15

    The measurement resolution of an atomic force microscope (AFM) is largely dependent on the radius of the tip. Meanwhile, when using AFM to study nanoscale surface properties, the value of the tip radius is needed in calculations. As such, estimation of the tip radius is important for analyzing results taken using an AFM. In this study, a geometrical model created by scanning a step structure with an AFM tip was developed. The tip was assumed to have a hemispherical cone shape. Profiles simulated by tips with different scanning radii were calculated by fast Fourier transform (FFT). By analyzing the influence of tip radius variation on the spectra of simulated profiles, it was found that low-frequency harmonics were more susceptible, and that the relationship between the tip radius and the low-frequency harmonic amplitude of the step structure varied monotonically. Based on this regularity, we developed a new method to characterize the radius of the hemispherical tip. The tip radii estimated with this approach were comparable to the results obtained using scanning electron microscope imaging and blind reconstruction methods. - Highlights: • The AFM tips with different radii were simulated to scan a nano-step structure. • The spectra of the simulation scans under different radii were analyzed. • The functions of tip radius and harmonic amplitude were used for evaluating tip. • The proposed method has been validated by SEM imaging and blind reconstruction.

  14. Multiple-point statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies

    Science.gov (United States)

    Høyer, Anne-Sophie; Vignoli, Giulio; Mejer Hansen, Thomas; Thanh Vu, Le; Keefer, Donald A.; Jørgensen, Flemming

    2017-12-01

    Most studies on the application of geostatistical simulations based on multiple-point statistics (MPS) to hydrogeological modelling focus on relatively fine-scale models and concentrate on the estimation of facies-level structural uncertainty. Much less attention is paid to the use of input data and optimal construction of training images. For instance, even though the training image should capture a set of spatial geological characteristics to guide the simulations, the majority of the research still relies on 2-D or quasi-3-D training images. In the present study, we demonstrate a novel strategy for 3-D MPS modelling characterized by (i) realistic 3-D training images and (ii) an effective workflow for incorporating a diverse group of geological and geophysical data sets. The study covers an area of 2810 km2 in the southern part of Denmark. MPS simulations are performed on a subset of the geological succession (the lower to middle Miocene sediments) which is characterized by relatively uniform structures and dominated by sand and clay. The simulated domain is large and each of the geostatistical realizations contains approximately 45 million voxels with size 100 m × 100 m × 5 m. Data used for the modelling include water well logs, high-resolution seismic data, and a previously published 3-D geological model. We apply a series of different strategies for the simulations based on data quality, and develop a novel method to effectively create observed spatial trends. The training image is constructed as a relatively small 3-D voxel model covering an area of 90 km2. We use an iterative training image development strategy and find that even slight modifications in the training image create significant changes in simulations. Thus, this study shows how to include both the geological environment and the type and quality of input information in order to achieve optimal results from MPS modelling. We present a practical workflow to build the training image and

  15. Inverse method for effects characterization from ultrasonic b-scan images

    International Nuclear Information System (INIS)

    Faur, M.

    1999-02-01

    In service inspections of French nuclear pressure water reactor vessels are carried out automatically in complete immersion from the inside by means of ultrasonic focused probes working in the pulse echo mode. Concern has been expressed about the capabilities of performing non destructive evaluation of the Outer Surface Defects (OSD), i.e. defects located in the vicinity of the outer surface of the inspected components. OSD are insonified by both a direct field that passes through the inner surface (water/steel) of the component containing the defect and a secondary field reflected from the outer surface. Consequently, the Bscan images, containing the signatures of such defects, are complicated and their interpretation is a difficult task. This work deals with extraction of the maximum available information for characterizing OSD from ultrasonic Bscan images. Our main objectives are to obtain the type of OSD and their geometric parameters by means of two specific inverse methods. The first method is used for the identification of the geometrical parameters of the equivalent planar OSD from segmented Bscan images. Ultrasonic equivalent defect sizing model-based methods may be used to size a defect in a material by obtaining a best-fit simple equivalent shape that matches the ultrasonic observed data. We illustrate the application of such an equivalent sizing OSD method that is based on a simplified direct model. The major drawback of this identification method, as used to date, is that only a part of the useful information contained into original Bscan image, i.e. segmented Bscan image, is used for defect characterization. Moreover, it requires the availability of defect classification information (i.e. if the defect is volumetric or planer, e. g. a crack or a lack of fusion), which, generally, may be as difficult to obtain as the defect parameters themselves. Therefore, we propose a parameter estimation method for extracting complementary information on the defect

  16. Colorization and automated segmentation of human T2 MR brain images for characterization of soft tissues.

    Directory of Open Access Journals (Sweden)

    Muhammad Attique

    Full Text Available Characterization of tissues like brain by using magnetic resonance (MR images and colorization of the gray scale image has been reported in the literature, along with the advantages and drawbacks. Here, we present two independent methods; (i a novel colorization method to underscore the variability in brain MR images, indicative of the underlying physical density of bio tissue, (ii a segmentation method (both hard and soft segmentation to characterize gray brain MR images. The segmented images are then transformed into color using the above-mentioned colorization method, yielding promising results for manual tracing. Our color transformation incorporates the voxel classification by matching the luminance of voxels of the source MR image and provided color image by measuring the distance between them. The segmentation method is based on single-phase clustering for 2D and 3D image segmentation with a new auto centroid selection method, which divides the image into three distinct regions (gray matter (GM, white matter (WM, and cerebrospinal fluid (CSF using prior anatomical knowledge. Results have been successfully validated on human T2-weighted (T2 brain MR images. The proposed method can be potentially applied to gray-scale images from other imaging modalities, in bringing out additional diagnostic tissue information contained in the colorized image processing approach as described.

  17. Optical design and system characterization of an imaging microscope at 121.6 nm

    Science.gov (United States)

    Gao, Weichuan; Finan, Emily; Kim, Geon-Hee; Kim, Youngsik; Milster, Thomas D.

    2018-03-01

    We present the optical design and system characterization of an imaging microscope prototype at 121.6 nm. System engineering processes are demonstrated through the construction of a Schwarzschild microscope objective, including tolerance analysis, fabrication, alignment, and testing. Further improvements on the as-built system with a correction phase plate are proposed and analyzed. Finally, the microscope assembly and the imaging properties of the prototype are demonstrated.

  18. Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, C A; Moran, M J

    2007-08-21

    The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, annular and penumbral), their point spread functions, and a pixelated scintillator detector. The modeling results show that a useful downscattered image can be obtained by recording the primary peak and the downscattered images, and then subtracting a decayed version of the former from the latter. The difference images need to be deconvolved in order to obtain accurate source distributions. The images are processed using a frequency-space modified-regularization algorithm and low-pass filtering. The resolution and SNR of these sources are quantified by using two surrogate sources. The simulations show that all LOS

  19. Development and characterization of special ionization chambers for computed tomography beams

    International Nuclear Information System (INIS)

    Castro, Maysa Costa de

    2016-01-01

    The use of computed tomography (CT) for imaging procedures is growing due to advances in the CT equipment technology, because they allow the obtention of images with better resolution than through other techniques. Therefore, they are responsible for increasing the dose radiation of patients during the procedure. This fact led to a greater concern about the doses received by patients who undergo this type of examination. To perform the dosimetry in CT beams, the most widely used instrument is the pencil type ionization chamber, because this dosimeter has a uniform response to the incident radiation beam for all angles. The conventional ionization chamber, which is available on the market, has a sensitive volume length of 10 cm; however, some studies have shown that this dosimeter has underestimated the dose values. Therefore, in this study two ionization chambers with sensitive volume lengths of 10 cm and 30 cm, making use of low cost national materials, were developed at the Calibration Laboratory of Instruments (LCI-IPEN/CNEN). The characterization of these chambers was performed, and the results were obtained within the international recommended limits. As an application, the developed ionization chambers and a commercial chamber were tested in a clinical tomograph. The developed ionization chambers were analyzed in a complete way for their possible uses. (author)

  20. Development of a platform for co-registered ultrasound and MR contrast imaging in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Chandrana, Chaitanya; Bevan, Peter; Hudson, John; Pang, Ian; Burns, Peter; Plewes, Donald; Chopra, Rajiv, E-mail: rajiv.chopra@sri.utoronto.ca [Sunnybrook Health Sciences Centre, Imaging Research, Department of Medical Biophysics, University of Toronto, 2075 Bayview Ave., Toronto, ON, M4N 3M5 (Canada)

    2011-02-07

    Imaging of the microvasculature is often performed using contrast agents in combination with either ultrasound (US) or magnetic resonance (MR) imaging. Contrast agents are used to enhance medical imaging by highlighting microvascular properties and function. Dynamic signal changes arising from the passage of contrast agents through the microvasculature can be used to characterize different pathologies; however, comparisons across modalities are difficult due to differences in the interactions of contrast agents with the microvasculature. Better knowledge of the relationship of contrast enhancement patterns with both modalities could enable better characterization of tissue microvasculature. We developed a co-registration platform for multi-modal US and MR imaging using clinical imaging systems in order to study the relationship between US and MR contrast enhancement. A preliminary validation study was performed in phantoms to determine the registration accuracy of the platform. In phantoms, the in-plane registration accuracy was measured to be 0.2 {+-} 0.2 and 0.3 {+-} 0.2 mm, in the lateral and axial directions, respectively. The out-of-plane registration accuracy was estimated to be 0.5 mm {+-}0.1. Co-registered US and MR imaging was performed in a rabbit model to evaluate contrast kinetics in different tissue types after bolus injections of US and MR contrast agents. The arrival time of the contrast agent in the plane of imaging was relatively similar for both modalities. We studied three different tissue types: muscle, large vessels and fat. In US, the temporal kinetics of signal enhancement were not strongly dependent on tissue type. In MR, however, due to the different amounts of agent extravasation in each tissue type, tissue-specific contrast kinetics were observed. This study demonstrates the feasibility of performing in vivo co-registered contrast US and MR imaging to study the relationships of the enhancement patterns with each modality.

  1. Development of a platform for co-registered ultrasound and MR contrast imaging in vivo

    Science.gov (United States)

    Chandrana, Chaitanya; Bevan, Peter; Hudson, John; Pang, Ian; Burns, Peter; Plewes, Donald; Chopra, Rajiv

    2011-02-01

    Imaging of the microvasculature is often performed using contrast agents in combination with either ultrasound (US) or magnetic resonance (MR) imaging. Contrast agents are used to enhance medical imaging by highlighting microvascular properties and function. Dynamic signal changes arising from the passage of contrast agents through the microvasculature can be used to characterize different pathologies; however, comparisons across modalities are difficult due to differences in the interactions of contrast agents with the microvasculature. Better knowledge of the relationship of contrast enhancement patterns with both modalities could enable better characterization of tissue microvasculature. We developed a co-registration platform for multi-modal US and MR imaging using clinical imaging systems in order to study the relationship between US and MR contrast enhancement. A preliminary validation study was performed in phantoms to determine the registration accuracy of the platform. In phantoms, the in-plane registration accuracy was measured to be 0.2 ± 0.2 and 0.3 ± 0.2 mm, in the lateral and axial directions, respectively. The out-of-plane registration accuracy was estimated to be 0.5 mm ±0.1. Co-registered US and MR imaging was performed in a rabbit model to evaluate contrast kinetics in different tissue types after bolus injections of US and MR contrast agents. The arrival time of the contrast agent in the plane of imaging was relatively similar for both modalities. We studied three different tissue types: muscle, large vessels and fat. In US, the temporal kinetics of signal enhancement were not strongly dependent on tissue type. In MR, however, due to the different amounts of agent extravasation in each tissue type, tissue-specific contrast kinetics were observed. This study demonstrates the feasibility of performing in vivo co-registered contrast US and MR imaging to study the relationships of the enhancement patterns with each modality.

  2. Magnetic particle imaging: current developments and future directions

    Directory of Open Access Journals (Sweden)

    Panagiotopoulos N

    2015-04-01

    Full Text Available Nikolaos Panagiotopoulos,1 Robert L Duschka,1 Mandy Ahlborg,2 Gael Bringout,2 Christina Debbeler,2 Matthias Graeser,2 Christian Kaethner,2 Kerstin Lüdtke-Buzug,2 Hanne Medimagh,2 Jan Stelzner,2 Thorsten M Buzug,2 Jörg Barkhausen,1 Florian M Vogt,1 Julian Haegele1 1Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig Holstein, Campus Lübeck, 2Institute of Medical Engineering, University of Lübeck, Lübeck, Germany Abstract: Magnetic particle imaging (MPI is a novel imaging method that was first proposed by Gleich and Weizenecker in 2005. Applying static and dynamic magnetic fields, MPI exploits the unique characteristics of superparamagnetic iron oxide nanoparticles (SPIONs. The SPIONs’ response allows a three-dimensional visualization of their distribution in space with a superb contrast, a very high temporal and good spatial resolution. Essentially, it is the SPIONs’ superparamagnetic characteristics, the fact that they are magnetically saturable, and the harmonic composition of the SPIONs’ response that make MPI possible at all. As SPIONs are the essential element of MPI, the development of customized nanoparticles is pursued with the greatest effort by many groups. Their objective is the creation of a SPION or a conglomerate of particles that will feature a much higher MPI performance than nanoparticles currently available commercially. A particle’s MPI performance and suitability is characterized by parameters such as the strength of its MPI signal, its biocompatibility, or its pharmacokinetics. Some of the most important adjuster bolts to tune them are the particles’ iron core and hydrodynamic diameter, their anisotropy, the composition of the particles’ suspension, and their coating. As a three-dimensional, real-time imaging modality that is free of ionizing radiation, MPI appears ideally suited for applications such as vascular imaging and interventions as well as cellular and targeted imaging. A number

  3. Diffusion-weighted imaging in characterization of cystic pancreatic lesions

    Energy Technology Data Exchange (ETDEWEB)

    Sandrasegaran, K., E-mail: ksandras@iupui.edu [Department of Radiology, Indiana University School of Medicine, Indianapolis, IN (United States); Akisik, F.M.; Patel, A.A.; Rydberg, M. [Department of Radiology, Indiana University School of Medicine, Indianapolis, IN (United States); Cramer, H.M.; Agaram, N.P. [Department of Pathology, Indiana University School of Medicine, Indianapolis, IN (United States); Schmidt, C.M. [Department of Surgery, Indiana University School of Medicine, Indianapolis, IN (United States)

    2011-09-15

    Aim: To evaluate whether apparent diffusion coefficient (ADC) measurements from diffusion-weighted imaging (DWI) can characterize or predict the malignant potential of cystic pancreatic lesions. Materials and methods: Retrospective review of the magnetic resonance imaging (MRI) database over a 2-year period revealed 136 patients with cystic pancreatic lesions. Patients with DWI studies and histological confirmation of cystic mass were included. In patients with known pancreatitis, lesions with amylase content of >1000 IU/l that resolved on subsequent scans were included as pseudocysts. ADC of cystic lesions was measured by two independent reviewers. These values were then compared to categorize these lesions as benign or malignant using conventional MRI sequences. Results: Seventy lesions were analysed: adenocarcinoma (n = 4), intraductal papillary mucinous neoplasm (IPMN; n = 28), mucinous cystic neoplasm (MCN; n = 9), serous cystadenoma (n = 16), and pseudocysts (n = 13). There was no difference between ADC values of malignant and non-malignant lesions (p = 0.06), between mucinous and serous tumours (p = 0.12), or between IPMN and MCN (p = 0.42). ADC values for low-grade IPMN were significantly higher than those for high-grade or invasive IPMN (p = 0.03). Conclusion: ADC values may be helpful in deciding the malignant potential of IPMN. However, they are not useful in differentiating malignant from benign lesions or for characterizing cystic pancreatic lesions.

  4. Destination image: Origins, Developments and Implications

    Directory of Open Access Journals (Sweden)

    Sérgio Dominique Ferreira Lopes

    2011-04-01

    Full Text Available Over the last few decades, tourism has become one of the main sectors of the global economy, not only because of its contribution to the Gross Domestic Product (GDP of different countries, but also because of the employment it generates. Since 2009, however, the results of tourism have been severely affected by the economic and financial crisis and it is now essential to analyze the key elements of tourist consumer behavior. In this context, the image that a destination transmits to the market becomes one of the elements which influence tourists the most when choosing a tourist destination. The authors therefore aim to identify the main elements that characterize the image of a tourist destination, as well as their implications for the management of tourist destinations.

  5. Development of a Dual-Particle Imaging System for Nonproliferation Applications

    Science.gov (United States)

    Poitrasson-Riviere, Alexis Pierre Valere

    A rising concern in our society is preventing the proliferation of nuclear weapons and fissionable material. This prevention can be incorporated at multiple levels, from the use of nuclear safeguards in nuclear facilities to the detection of threat objects in the field. At any level, systems used for such tasks need to be specially designed for use with Special Nuclear Material (SNM) which is defined by the NRC as plutonium and uranium enriched in U-233 or U-235 isotopes. These radioactive materials have the particularity of emitting both fast neutrons and gamma rays; thus, systems able to detect both particles simultaneously are particularly desirable. In the field of nuclear nonproliferation and safeguards, detection systems capable of accurately imaging various sources of radiation can greatly simplify any monitoring or detection task. The localization of the radiation sources can allow users of the system to focus their efforts on the areas of interest, whether it be for radiation detection or radiation characterization. This thesis describes the development of a dual-particle imaging system at the University of Michigan to address these technical challenges. The imaging system relies on the use of organic liquid scintillators that can detect both fast neutrons and gamma rays, and inorganic NaI(Tl) scintillators that are not very sensitive to neutrons yet yield photoelectric absorptions from gamma rays. A prototype of the imaging system has been constructed and operated. The system will aid the remote monitoring of nuclear materials within facilities, and it has the scalability for standoff detection in the field. A software suite has been developed to analyze measured data in real time, in an effort to obtain a system as close to field-ready as possible. The system's performance has been tested with various materials of interest, such as MOX and plutonium metal, measured at the PERLA facility of the Joint Research Center in Ispra, Italy. The robust and

  6. Characterization and Applications of a CdZnTe-Based Gamma-Ray Imager

    Science.gov (United States)

    Galloway, Michelle Lee

    Detection of electromagnetic radiation in the form of gamma rays provides a means to discover the presence of nuclear sources and the occurrence of highly-energetic events that occur in our terrestrial and astrophysical environment. The highly penetrative nature of gamma rays allows for probing into objects and regions that are obscured at other wavelengths. The detection and imaging of gamma rays relies upon an understanding of the ways in which these high-energy photons interact with matter. The applications of gamma-ray detection and imaging are numerous. Astrophysical observation of gamma rays expands our understanding of the Universe in which we live. Terrestrial detection and imaging of gamma rays enable environmental monitoring of radioactivity. This allows for identification and localization of nuclear materials to prevent illicit trafficking and to ultimately protect against harmful acts. This dissertation focusses on the development and characterization of a gamma-ray detection and imaging instrument and explores its capabilities for the aforementioned applications. The High Efficiency Multimode Imager, HEMI, is a prototype instrument that is based on Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The detectors are arranged in a two-planar configuration to allow for both Compton and coded-aperture imaging. HEMI was initially developed as a prototype instrument to demonstrate its capabilities for nuclear threat detection, spectroscopy, and imaging. The 96-detector instrument was developed and fully characterized within the laboratory environment, yielding a system energy resolution of 2.4% FWHM at 662 keV, an angular resolution of 9.5 deg. FWHM at 662 keV in Compton mode, and a 10.6 deg. angular resolution in coded aperture mode. After event cuts, the effective area for Compton imaging of the 662 keV photopeak is 0.1 cm 22. Imaging of point sources in both Compton and coded aperture modes have been demonstrated. The minimum detectable activity of

  7. Development of in vivo imaging modalities for experimental oncology; Developpement de modalites d'imagerie in vivo pour l'oncologie experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Pesnel, S.

    2010-12-10

    Small animal imaging is more and more used in pharmacology to identify and to characterize the activities of new antitumor agents. The first part of my work consisted in the development of new tools to improve the quantitation in bioluminescence. A method, based on spectral characteristics of emitted photons, has been established to correct tissue absorption. The second, using methods of image restoration had for objective to correct tissue scattering to increase the resolution. In a second part, I developed in vivo models of bioluminescent tumors (intracranial glioblastoma, a large cell anaplastic lymphoma and a metastatic neuroblastoma) using the imaging methods described previously. These studies allowed the characterization of the activity of a new antitumor agent. The aim of the last part was to develop imaging probes. The first, a monoclonal antibody antiCD45 labeled with a fluoro chrome allowed the detection of human leukemic cells implanted in the mice using fluorescence imaging. The second was developed to predict the uptake of a antitumor agent, a spermine-podophyllotoxin conjugate, in tumor cells via the polyamine transport system. The synthesized probe is a spermine conjugated to a HYNIC group to bind a radioisotope: the Technetium-99m and to realize a scintigraphic examination. The results showed the feasibility of a preclinical use of this probe. So, at this end of this thesis, the developed methods of bioluminescent signal processing are available to improve the use of optical imaging in pharmacology. Of course, supplementary studies are necessary to define precisely in which context these corrections will be the most appropriate. (author)

  8. Two-pass dual-energy CT imaging for simultaneous detection, characterization, and volume measurement of urinary stones with excretory-phase CT urography alone. A phantom study

    International Nuclear Information System (INIS)

    Takahashi, Satoru; Niikawa, Hidekazu; Shikata, Atsushi; Murakami, Emi; Tsunoda, Hiroshi; Yoshioka, Toshiaki; Yamamoto, Hiroshi; Itoh, Toshihide; Tsujihata, Masao

    2013-01-01

    The purpose of this study was to evaluate if two-pass dual-energy CT imaging - id est (i.e.), simultaneous three-material and two-material decomposition analysis - can depict and characterize urinary stones in various concentrations of iodine solution in vitro. Twelve urinary stones were scanned with a dual-source CT scanner. First, each stone (in a saline-filled tube) underwent single- and dual-energy mode CT scans in order to measure the volume of the stone. Each stone was then placed in various concentrations of contrast medium and scanned in dual-energy mode to calculate its volume via three-material decomposition analysis. Two-pass dual-energy CT imaging analysis software for the Matlab environment, which was developed specifically to process simultaneous three-material and two-material decomposition, was applied to characterize and calculate the volume of each stone. Although the virtual non-contrast images from three-material decomposition analysis clearly visualized all of the stones in contrast medium with up to 80 mgI/mL, the volumes of the uric acid stones were overestimated. Two-pass dual-energy CT imaging was able to depict and characterize non-uric-acid stones in diluted contrast medium with up to 80 mgI/mL, whereas uric acid stones were correctly evaluated in diluted contrast medium with 40 mgI/mL or less. Two-pass dual-energy CT imaging is able to depict and characterize urinary stones in contrast medium. (author)

  9. Development of computational small animal models and their applications in preclinical imaging and therapy research.

    Science.gov (United States)

    Xie, Tianwu; Zaidi, Habib

    2016-01-01

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.

  10. Development of computational small animal models and their applications in preclinical imaging and therapy research

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Geneva Neuroscience Center, Geneva University, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB (Netherlands)

    2016-01-15

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.

  11. Development of computational small animal models and their applications in preclinical imaging and therapy research

    International Nuclear Information System (INIS)

    Xie, Tianwu; Zaidi, Habib

    2016-01-01

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future

  12. Advantages and Limitations of Current Imaging Techniques for Characterizing Liposome Morphology

    Directory of Open Access Journals (Sweden)

    Annie-Louise Robson

    2018-02-01

    Full Text Available There are currently a number of imaging techniques available for evaluating the morphology of liposomes and other nanoparticles, with each having its own advantages and disadvantages that should be considered when interpreting data. Controlling and validating the morphology of nanoparticles is of key importance for the effective clinical translation of liposomal formulations. There are a number of physical characteristics of liposomes that determine their in vivo behavior, including size, surface characteristics, lamellarity, and homogeneity. Despite the great importance of the morphology of nanoparticles, it is generally not well-characterized and is difficult to control. Appropriate imaging techniques provide important details regarding the morphological characteristics of nanoparticles, and should be used in conjunction with other methods to assess physicochemical parameters. In this review, we will discuss the advantages and limitations of available imaging techniques used to evaluate liposomal formulations.

  13. High Fidelity Raman Chemical Imaging of Materials

    Science.gov (United States)

    Bobba, Venkata Nagamalli Koteswara Rao

    The development of high fidelity Raman imaging systems is important for a number of application areas including material science, bio-imaging, bioscience and healthcare, pharmaceutical analysis, and semiconductor characterization. The use of Raman imaging as a characterization tool for detecting the amorphous and crystalline regions in the biopolymer poly-L-lactic acid (PLLA) is the precis of my thesis. In the first chapter, a brief insight about the basics of Raman spectroscopy, Raman chemical imaging, Raman mapping, and Raman imaging techniques has been provided. The second chapter contains details about the successful development of tailored sample of PLLA. Biodegradable polymers are used in areas of tissue engineering, agriculture, packaging, and in medical field for drug delivery, implant devices, and surgical sutures. Detailed information about the sample preparation and characterization of these cold-drawn PLLA polymer substrates has been provided. Wide-field Raman hyperspectral imaging using an acousto-optic tunable filter (AOTF) was demonstrated in the early 1990s. The AOTF contributed challenges such as image walk, distortion, and image blur. A wide-field AOTF Raman imaging system has been developed as part of my research and methods to overcome some of the challenges in performing AOTF wide-field Raman imaging are discussed in the third chapter. This imaging system has been used for studying the crystalline and amorphous regions on the cold-drawn sample of PLLA. Of all the different modalities that are available for performing Raman imaging, Raman point-mapping is the most extensively used method. The ease of obtaining the Raman hyperspectral cube dataset with a high spectral and spatial resolution is the main motive of performing this technique. As a part of my research, I have constructed a Raman point-mapping system and used it for obtaining Raman hyperspectral image data of various minerals, pharmaceuticals, and polymers. Chapter four offers

  14. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    Energy Technology Data Exchange (ETDEWEB)

    Dhillon, Shweta; Kant, Rama, E-mail: rkant@chemistry.du.ac.in

    2013-10-01

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  15. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    International Nuclear Information System (INIS)

    Dhillon, Shweta; Kant, Rama

    2013-01-01

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  16. Magnetic Resonance Perfusion Imaging in Malformations of Cortical Development

    International Nuclear Information System (INIS)

    Widjaja, ED.; Wilkinson, I.D.; Griffiths, P.D.

    2007-01-01

    Background: Malformations of cortical development vary in neuronal maturity and level of functioning. Purpose: To characterize regional relative cerebral blood volume (rCBV) and difference in first moment transit time (TTfm) in polymicrogyria and cortical tubers using magnetic resonance (MR) perfusion imaging. Material and Methods: MR imaging and dynamic T2*-weighted MR perfusion imaging were performed in 13 patients with tuberous sclerosis complex, 10 with polymicrogyria, and 18 controls with developmental delay but no macroscopic brain abnormality. Regions of interest were placed in cortical tubers or polymicrogyric cortex and in the contralateral normal-appearing side in patients with malformations. In 'control' subjects, regions of interest were placed in the frontal and parietal lobes in both hemispheres. The rCBV and TTfm of the tuber/contralateral side (rCBVRTSC and TTFMTSC) as well as those of the polymicrogyria/contralateral side (rCBVRPMG and TTFMPMG) were assessed. The right-to-left asymmetry of rCBV and TTfm in the control group was also assessed (rCBVRControls and TTFMControls). Results: There was no significant asymmetry between right and left rCBV or TTfm (P>0.05) in controls. There was significant reduction in rCBVRTSC compared to rCBVRControls (P 0.05). There were no significant differences between rCBVRPMG and rCBVRControls (P>0.05) or TTFMPMG and TTFMControls (P>0.05). Conclusion: Our findings imply that cerebral blood volume of polymicrogyria is similar to normal cortex, but there is reduced cerebral blood volume in cortical tubers. The lower rCBV ratio of cortical tubers may be related to known differences in pathogenetic timing of the underlying abnormalities during brain development or the presence of gliosis

  17. Three-Dimensional High-Frequency Ultrasonography for Early Detection and Characterization of Embryo Implantation Site Development in the Mouse.

    Directory of Open Access Journals (Sweden)

    Mary C Peavey

    Full Text Available Ultrasonography is a powerful tool to non-invasively monitor in real time the development of the human fetus in utero. Although genetically engineered mice have served as valuable in vivo models to study both embryo implantation and pregnancy progression, such studies usually require sacrifice of parous mice for subsequent phenotypic analysis. To address this issue, we used three-dimensional (3-D reconstruction in silico of high-frequency ultrasound (HFUS imaging data for early detection and characterization of murine embryo implantation sites and their development in utero. With HFUS imaging followed by 3-D reconstruction, we were able to precisely quantify embryo implantation site number and embryonic developmental progression in pregnant C57BL6J/129S mice from as early as 5.5 days post coitus (d.p.c. through to 9.5 d.p.c. using a VisualSonics Vevo 2100 (MS550S transducer. In addition to measurements of implantation site number, location, volume and spacing, embryo viability via cardiac activity monitoring was also achieved. A total of 12 dams were imaged with HFUS with approximately 100 embryos examined per embryonic day. For the post-implantation period (5.5 to 8.5 d.p.c., 3-D reconstruction of the gravid uterus in mesh or solid overlay format enabled visual representation in silico of implantation site location, number, spacing distances, and site volume within each uterine horn. Therefore, this short technical report describes the feasibility of using 3-D HFUS imaging for early detection and analysis of post-implantation events in the pregnant mouse with the ability to longitudinally monitor the development of these early pregnancy events in a non-invasive manner. As genetically engineered mice continue to be used to characterize female reproductive phenotypes, we believe this reliable and non-invasive method to detect, quantify, and characterize early implantation events will prove to be an invaluable investigative tool for the study of

  18. Image processing and analysis software development

    International Nuclear Information System (INIS)

    Shahnaz, R.

    1999-01-01

    The work presented in this project is aimed at developing a software 'IMAGE GALLERY' to investigate various image processing and analysis techniques. The work was divided into two parts namely the image processing techniques and pattern recognition, which further comprised of character and face recognition. Various image enhancement techniques including negative imaging, contrast stretching, compression of dynamic, neon, diffuse, emboss etc. have been studied. Segmentation techniques including point detection, line detection, edge detection have been studied. Also some of the smoothing and sharpening filters have been investigated. All these imaging techniques have been implemented in a window based computer program written in Visual Basic Neural network techniques based on Perception model have been applied for face and character recognition. (author)

  19. Molecular Imaging Probe Development using Microfluidics

    Science.gov (United States)

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  20. The application of vertical seismic profiling and cross-hole tomographic imaging for fracture characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Majer, E.L.; Peterson, J.E.; Tura, M.A.; McEvilly, T.V.

    1990-01-01

    In order to obtain the necessary characterization for the storage of nuclear waste, much higher resolution of the features likely to affect the transport of radionuclides will be required than is normally achieved in conventional surface seismic reflection used in the exploration and characterization of petroleum and geothermal resources. Because fractures represent a significant mechanical anomaly seismic methods using are being investigated as a means to image and characterize the subsurface. Because of inherent limitations in applying the seismic methods solely from the surface, state-of-the-art borehole methods are being investigated to provide high resolution definition within the repository block. Therefore, Vertical Seismic Profiling (VSP) and cross-hole methods are being developed to obtain maximum resolution of the features that will possible affect the transport of fluids. Presented here will be the methods being developed, the strategy being pursued, and the rational for using VSP and crosshole methods at Yucca Mountain. The approach is intended to be an integrated method involving improvements in data acquisition, processing, and interpretation as well as improvements in the fundamental understanding of seismic wave propagation in fractured rock. 33 refs., 4 figs

  1. Multiple-point statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies

    Directory of Open Access Journals (Sweden)

    A.-S. Høyer

    2017-12-01

    Full Text Available Most studies on the application of geostatistical simulations based on multiple-point statistics (MPS to hydrogeological modelling focus on relatively fine-scale models and concentrate on the estimation of facies-level structural uncertainty. Much less attention is paid to the use of input data and optimal construction of training images. For instance, even though the training image should capture a set of spatial geological characteristics to guide the simulations, the majority of the research still relies on 2-D or quasi-3-D training images. In the present study, we demonstrate a novel strategy for 3-D MPS modelling characterized by (i realistic 3-D training images and (ii an effective workflow for incorporating a diverse group of geological and geophysical data sets. The study covers an area of 2810 km2 in the southern part of Denmark. MPS simulations are performed on a subset of the geological succession (the lower to middle Miocene sediments which is characterized by relatively uniform structures and dominated by sand and clay. The simulated domain is large and each of the geostatistical realizations contains approximately 45 million voxels with size 100 m  ×  100 m  ×  5 m. Data used for the modelling include water well logs, high-resolution seismic data, and a previously published 3-D geological model. We apply a series of different strategies for the simulations based on data quality, and develop a novel method to effectively create observed spatial trends. The training image is constructed as a relatively small 3-D voxel model covering an area of 90 km2. We use an iterative training image development strategy and find that even slight modifications in the training image create significant changes in simulations. Thus, this study shows how to include both the geological environment and the type and quality of input information in order to achieve optimal results from MPS modelling. We present a practical

  2. X-ray Hybrid CMOS Detectors : Recent progress in development and characterization

    Science.gov (United States)

    Chattopadhyay, Tanmoy; Falcone, Abraham; Burrows, David N.

    2017-08-01

    PennState high energy astronomy laboratory has been working on the development and characterization of Hybrid CMOS Detectors (HCDs) for last few years in collaboration with Teledyne Imaging Sensors (TIS). HCDs are preferred over X-ray CCDs due to their higher and flexible read out rate, radiation hardness and low power which make them more suitable for next generation large area X-ray telescopic missions. An H2RG detector with 36 micron pixel pitch and 18 micron ROIC, has been selected for a sounding rocket flight in 2018. The H2RG detector provides ~2.5 % energy resolution at 5.9 keV and ~7 e- read noise when coupled to a cryo-SIDECAR. We could also detect a clear Oxygen line (~0.5 keV) from the detector implying a lower energy threshold of ~0.3 keV. Further improvement in the energy resolution and read noise is currently under progress. We have been working on the characterization of small pixel HCDs (12.5 micron pixel; smallest pixel HCDs developed so far) which is important for the development of next generation high resolution X-ray spectroscopic instrument based on HCDs. Event recognition in HCDs is another exciting prospect which have been successfully shown to work with a 64 X 64 pixel prototype SPEEDSTAR-EXD which use comparators at each pixel to read out only those pixels having detectable signal, thereby providing an order of magnitude improvement in the read out rate. Currently, we are working on the development of a large area SPEEDSTAR-EXD array for the development of a full fledged instrument. HCDs due to their fast read out, can also be explored as a large FOV instrument to study GRB afterglows and variability and spectroscopic study of other astrophysical transients. In this context, we are characterizing a Lobster-HCD system at multiple energies and multiple off-axis angles for future rocket or CubeSate experiments. In this presentation, I will briefly present these new developments and experiments with HCDs and the analysis techniques.

  3. Quantum imaging technologies

    International Nuclear Information System (INIS)

    Malik, M.; Boyd, R.W.

    2014-01-01

    Over the past three decades, quantum mechanics has allowed the development of technologies that provide unconditionally secure communication. In parallel, the quantum nature of the transverse electromagnetic field has spawned the field of quantum imaging that encompasses technologies such as quantum lithography, quantum ghost imaging, and high-dimensional quantum key distribution (QKD). The emergence of such quantum technologies also highlights the need for the development of accurate and efficient methods of measuring and characterizing the elusive quantum state itself. In this paper, we describe new technologies that use the quantum properties of light for security. The first of these is a technique that extends the principles behind QKD to the field of imaging and optical ranging. By applying the polarization-based BB84 protocol to individual photons in an active imaging system, we obtained images that are secure against any interceptresend jamming attacks. The second technology presented in this article is based on an extension of quantum ghost imaging, a technique that uses position-momentum entangled photons to create an image of an object without directly obtaining any spatial information from it. We used a holographic filtering technique to build a quantum ghost image identification system that uses a few pairs of photons to identify an object from a set of known objects. The third technology addressed in this document is a high-dimensional QKD system that uses orbital-angular-momentum (OAM) modes of light for encoding. Moving to a high-dimensional state space in QKD allows one to impress more information on each photon, as well as introduce higher levels of security. We discuss the development of two OAM-QKD protocols based on the BB84 and Ekert protocols of QKD. The fourth and final technology presented in this article is a relatively new technique called direct measurement that uses sequential weak and strong measurements to characterize a quantum state

  4. Development of on-chip multi-imaging flow cytometry for identification of imaging biomarkers of clustered circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Hyonchol Kim

    Full Text Available An on-chip multi-imaging flow cytometry system has been developed to obtain morphometric parameters of cell clusters such as cell number, perimeter, total cross-sectional area, number of nuclei and size of clusters as "imaging biomarkers", with simultaneous acquisition and analysis of both bright-field (BF and fluorescent (FL images at 200 frames per second (fps; by using this system, we examined the effectiveness of using imaging biomarkers for the identification of clustered circulating tumor cells (CTCs. Sample blood of rats in which a prostate cancer cell line (MAT-LyLu had been pre-implanted was applied to a microchannel on a disposable microchip after staining the nuclei using fluorescent dye for their visualization, and the acquired images were measured and compared with those of healthy rats. In terms of the results, clustered cells having (1 cell area larger than 200 µm2 and (2 nucleus area larger than 90 µm2 were specifically observed in cancer cell-implanted blood, but were not observed in healthy rats. In addition, (3 clusters having more than 3 nuclei were specific for cancer-implanted blood and (4 a ratio between the actual perimeter and the perimeter calculated from the obtained area, which reflects a shape distorted from ideal roundness, of less than 0.90 was specific for all clusters having more than 3 nuclei and was also specific for cancer-implanted blood. The collected clusters larger than 300 µm2 were examined by quantitative gene copy number assay, and were identified as being CTCs. These results indicate the usefulness of the imaging biomarkers for characterizing clusters, and all of the four examined imaging biomarkers-cluster area, nuclei area, nuclei number, and ratio of perimeter-can identify clustered CTCs in blood with the same level of preciseness using multi-imaging cytometry.

  5. FTIR spectro-imaging of collagen scaffold formation during glioma tumor development.

    Science.gov (United States)

    Noreen, Razia; Chien, Chia-Chi; Chen, Hsiang-Hsin; Bobroff, Vladimir; Moenner, Michel; Javerzat, Sophie; Hwu, Yeukuang; Petibois, Cyril

    2013-11-01

    Evidence has recently emerged that solid and diffuse tumors produce a specific extracellular matrix (ECM) for division and diffusion, also developing a specific interface with microvasculature. This ECM is mainly composed of collagens and their scaffolding appears to drive tumor growth. Although collagens are not easily analyzable by UV-fluorescence means, FTIR imaging has appeared as a valuable tool to characterize collagen contents in tissues, specially the brain, where ECM is normally devoid of collagen proteins. Here, we used FTIR imaging to characterize collagen content changes in growing glioma tumors. We could determine that C6-derived solid tumors presented high content of triple helix after 8-11 days of growth (typical of collagen fibrils formation; 8/8 tumor samples; 91 % of total variance), and further turned to larger α-helix (days 12-15; 9/10 of tumors; 94 % of variance) and β-turns (day 18-21; 7/8 tumors; 97 % of variance) contents, which suggest the incorporation of non-fibrillar collagen types in ECM, a sign of more and more organized collagen scaffold along tumor progression. The growth of tumors was also associated to the level of collagen produced (P < 0.05). This study thus confirms that collagen scaffolding is a major event accompanying the angiogenic shift and faster tumor growth in solid glioma phenotypes.

  6. Recent developments of MR imaging system and future trends

    International Nuclear Information System (INIS)

    Fujieda, Kunimi

    1996-01-01

    Because MR imaging technique has no limitation of slice direction, uses none of mechanically moving components and can employ electronic scanning method for data acquisition, the most advanced electronics and CPU techniques have been applied to develop MR imaging systems. Along with pursuance of better equipment performance as clinical diagnostic equipment, cost reduction, improvement of operability and safety, easy siting, comfortable examination and economical operation cost by remarkable reduction of running cost have become important factors in development of MR imaging system. From this viewpoint, MR imaging systems incorporating an open gantry with a relatively low field strength and of vertical field system have been developed recently and they are being accepted as clinically useful equipment. The vertical field, open gantry system has an optimum structure capable of performing interventional imaging, thus clinical application of the system have been actively attempted. Thanks to recent development of various MRI techniques, image quality quite acceptable for routine clinical diagnosis can now be obtained by using the systems with permanent magnet and resistive magnet. Thus, it is considered that evaluation of not only equipment performance but also the total performances of the MR imaging system as described above will become important. The MR imaging technique has a possibility to substitute itself for other conventional imaging modalities because the technique can visualize physiological and metabolic functions in addition to morphological imaging. It is expected that application of MR imaging modality will be further expanded by continuous investigation of applicable clinical fields and development of imaging technologies. (J.P.N.)

  7. Mammographic quantitative image analysis and biologic image composition for breast lesion characterization and classification

    Energy Technology Data Exchange (ETDEWEB)

    Drukker, Karen, E-mail: kdrukker@uchicago.edu; Giger, Maryellen L.; Li, Hui [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Duewer, Fred; Malkov, Serghei; Joe, Bonnie; Kerlikowske, Karla; Shepherd, John A. [Radiology Department, University of California, San Francisco, California 94143 (United States); Flowers, Chris I. [Department of Radiology, University of South Florida, Tampa, Florida 33612 (United States); Drukteinis, Jennifer S. [Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 (United States)

    2014-03-15

    Purpose: To investigate whether biologic image composition of mammographic lesions can improve upon existing mammographic quantitative image analysis (QIA) in estimating the probability of malignancy. Methods: The study population consisted of 45 breast lesions imaged with dual-energy mammography prior to breast biopsy with final diagnosis resulting in 10 invasive ductal carcinomas, 5 ductal carcinomain situ, 11 fibroadenomas, and 19 other benign diagnoses. Analysis was threefold: (1) The raw low-energy mammographic images were analyzed with an established in-house QIA method, “QIA alone,” (2) the three-compartment breast (3CB) composition measure—derived from the dual-energy mammography—of water, lipid, and protein thickness were assessed, “3CB alone”, and (3) information from QIA and 3CB was combined, “QIA + 3CB.” Analysis was initiated from radiologist-indicated lesion centers and was otherwise fully automated. Steps of the QIA and 3CB methods were lesion segmentation, characterization, and subsequent classification for malignancy in leave-one-case-out cross-validation. Performance assessment included box plots, Bland–Altman plots, and Receiver Operating Characteristic (ROC) analysis. Results: The area under the ROC curve (AUC) for distinguishing between benign and malignant lesions (invasive and DCIS) was 0.81 (standard error 0.07) for the “QIA alone” method, 0.72 (0.07) for “3CB alone” method, and 0.86 (0.04) for “QIA+3CB” combined. The difference in AUC was 0.043 between “QIA + 3CB” and “QIA alone” but failed to reach statistical significance (95% confidence interval [–0.17 to + 0.26]). Conclusions: In this pilot study analyzing the new 3CB imaging modality, knowledge of the composition of breast lesions and their periphery appeared additive in combination with existing mammographic QIA methods for the distinction between different benign and malignant lesion types.

  8. Raman Spectroscopic Imaging of the Whole Ciona intestinalis Embryo during Development

    Science.gov (United States)

    Nakamura, Mitsuru J.; Hotta, Kohji; Oka, Kotaro

    2013-01-01

    Intracellular composition and the distribution of bio-molecules play central roles in the specification of cell fates and morphogenesis during embryogenesis. Consequently, investigation of changes in the expression and distribution of bio-molecules, especially mRNAs and proteins, is an important challenge in developmental biology. Raman spectroscopic imaging, a non-invasive and label-free technique, allows simultaneous imaging of the intracellular composition and distribution of multiple bio-molecules. In this study, we explored the application of Raman spectroscopic imaging in the whole Ciona intestinalis embryo during development. Analysis of Raman spectra scattered from C. intestinalis embryos revealed a number of localized patterns of high Raman intensity within the embryo. Based on the observed distribution of bio-molecules, we succeeded in identifying the location and structure of differentiated muscle and endoderm within the whole embryo, up to the tailbud stage, in a label-free manner. Furthermore, during cell differentiation, we detected significant differences in cell state between muscle/endoderm daughter cells and daughter cells with other fates that had divided from the same mother cells; this was achieved by focusing on the Raman intensity of single Raman bands at 1002 or 1526 cm−1, respectively. This study reports the first application of Raman spectroscopic imaging to the study of identifying and characterizing differentiating tissues in a whole chordate embryo. Our results suggest that Raman spectroscopic imaging is a feasible label-free technique for investigating the developmental process of the whole embryo of C. intestinalis. PMID:23977129

  9. CHARACTERIZATION AND AUTOMATIC COUNTING OF F.I.S.H. SIGNALS IN 3-D TISSUE IMAGES

    Directory of Open Access Journals (Sweden)

    Umesh PS Adiga

    2011-05-01

    Full Text Available The evaluation of malignancy-related features often helps to determine the prognoses for patients with carcinomas. One technique, which is becoming increasingly important for assessing such prognostic features is that of Fluorescence in situ Hybridization (FISH. By counting the number of FISH signals in a stack of 2- D images of a tumor (which together constitute the 3-D image volume, it is possible to determine whether there has been any loss or gain of the target DNA sequences and thereby evaluate the stage of the disease. However, visual counting of the FISH signals in this way is a tedious, fatiguing and time-consuming task. Therefore, we have developed an automated system for the quantitative evaluation of FISH signals. We present and discuss the implementation of an image processing module that segments, characterizes and counts the FISH signals in 3-D images of thick prostate tumor tissue specimens. Possible errors in the automatic counting of signals are listed and ways to circumvent these errors are described. We define a feature vector for a FISH signal and describe how we have used the weighted feature vector to segment specific signals from noise artifacts. In addition, we present a method, which allows overlapping FISH signals to be distinguished by fitting a local Gaussian model around the intensity profile and studying the feature vector of each model. Our complete image processing module overcomes the problems of manual counting of FISH signals in 3-D images of tumor specimens, thereby providing improved diagnostic and prognostic capability in qualitative diagnostic pathology.

  10. Introduction to digital image processing

    CERN Document Server

    Pratt, William K

    2013-01-01

    CONTINUOUS IMAGE CHARACTERIZATION Continuous Image Mathematical Characterization Image RepresentationTwo-Dimensional SystemsTwo-Dimensional Fourier TransformImage Stochastic CharacterizationPsychophysical Vision Properties Light PerceptionEye PhysiologyVisual PhenomenaMonochrome Vision ModelColor Vision ModelPhotometry and ColorimetryPhotometryColor MatchingColorimetry ConceptsColor SpacesDIGITAL IMAGE CHARACTERIZATION Image Sampling and Reconstruction Image Sampling and Reconstruction ConceptsMonochrome Image Sampling SystemsMonochrome Image Reconstruction SystemsColor Image Sampling SystemsImage QuantizationScalar QuantizationProcessing Quantized VariablesMonochrome and Color Image QuantizationDISCRETE TWO-DIMENSIONAL LINEAR PROCESSING Discrete Image Mathematical Characterization Vector-Space Image RepresentationGeneralized Two-Dimensional Linear OperatorImage Statistical CharacterizationImage Probability Density ModelsLinear Operator Statistical RepresentationSuperposition and ConvolutionFinite-Area Superp...

  11. Tomosynthesis Breast Imaging Early Detection and Characterization of Breast Cancer

    National Research Council Canada - National Science Library

    Hamberg, Leena

    2000-01-01

    A digital tomosynthesis mammography method was developed with which to obtain tomographic images of the breast by acquiring a series of low radiation dose images as the x-ray tube moves in an arc above the breast...

  12. Dual contrast enhanced magnetic resonance imaging of the liver with superparamagnetic iron oxide followed by gadolinium for lesion detection and characterization

    International Nuclear Information System (INIS)

    Kubaska, Samantha; Sahani, Dushyant V.; Saini, Sanjay; Hahn, Peter F.; Halpern, Elkan

    2001-01-01

    AIM: Iron oxide contrast agents are useful for lesion detection, and extracellular gadolinium chelates are advocated for lesion characterization. We undertook a study to determine if dual contrast enhanced liver imaging with sequential use of ferumoxides particles and gadolinium (Gd)-DTPA can be performed in the same imaging protocol. MATERIALS AND METHODS: Sixteen patients underwent dual contrast magnetic resonance imaging (MRI) of the liver for evaluation of known/suspected focal lesions which included, metastases (n = 5), hepatocellular carcinoma (HCC;n = 3), cholangiocharcinoma(n = 1) and focal nodular hyperplasia (FNH;n = 3). Pre- and post-iron oxide T1-weighted gradient recalled echo (GRE) and T2-weighted fast spin echo (FSE) sequences were obtained, followed by post-Gd-DTPA (0.1 mmol/kg) multi-phase dynamic T1-weighted out-of-phase GRE imaging. Images were analysed in a blinded fashion by three experts using a three-point scoring system for lesion conspicuity on pre- and post-iron oxide T1 images as well as for reader's confidence in characterizing liver lesions on post Gd-DTPA T1 images. RESULTS: No statistically significant difference in lesion conspicuity was observed on pre- and post-iron oxide T1-GRE images in this small study cohort. The presence of iron oxide did not appreciably diminish image quality of post-gadolinium sequences and did not prevent characterization of liver lesions. CONCLUSION: Our results suggest that characterization of focal liver lesion with Gd-enhanced liver MRI is still possible following iron oxide enhanced imaging. Kubaska, S. et al. (2001)

  13. Prognostic aspects of imaging method development

    International Nuclear Information System (INIS)

    Steinhart, L.

    1987-01-01

    A survey is presented of X-ray diagnostic methods and techniques and possibilities of their further development. Promising methods include direct imaging using digital radiography. In connection with computer technology these methods achieve higher resolution. The storage of obtained images in the computer memory will allow automated processing and evaluation and the use of expert systems. Development is expected to take place especially in computerized tomography using magnetic resonance, and positron computed tomography and other non-radioactive diagnostic methods. (J.B.). 5 figs., 1 tab., 1 ref

  14. Characterization of snow, ice and neve by image processing

    International Nuclear Information System (INIS)

    Gay, Michel

    1999-01-01

    It is now recognized that human activities, by the extent they have achieved since the industrial era, are likely to alter the Earth's climate (IPCC, 1996). Paleo climate and the climate change models show that the polar caps are particularly sensitive to global climate change. They are more likely to play an important role but unknown on the sea level. The positive term of mass balance of polar ice sheets is the accumulation of snow, whereas the negative term is formed by the flow of ice into the oceans. The size of the polar ice caps and their hostile environment limit the amount of available field data. Only satellite remote sensing is able to provide information on geographical scales as large as Antarctica or the Arctic and allows regular monitoring over time. But to be easily interpreted, in order to deduce the snowpack characteristics observed from space (size, shape of grains, surface roughness... ), satellite data should be validated and inverted using simplified parameters. Prior to the establishment of these relations, it is necessary to develop a snow reflectance model (thesis C. Leroux 1996) taking into account the physical and optical characteristics of the snow, and a microwave emissivity model (thesis Surdyck S. 1993) that provide volume information on the morphology of the snowpack. The snowpack is characterized by several physical parameters that depend on the depth: temperature, density, size and shape of grains mainly. It is therefore essential to establish a robust and simple parameterization of the size and shape of snow grains from their observation. Image processing allows to establish these relationships and allows automatic processing of a large number of data independent of the observer. Another glaciological problem of firn is the interpretation of data obtained from the analysis of trapped air bubbles in the gas. This study implies, in particular, the dating of the ice in the firn at the close off, is necessary to determine the age of

  15. Parametric methods for characterizing myocardial tissue by magnetic resonance imaging (part 2): T2 mapping.

    Science.gov (United States)

    Perea Palazón, R J; Solé Arqués, M; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Ortiz Pérez, J T

    2015-01-01

    Cardiac magnetic resonance imaging is considered the reference technique for characterizing myocardial tissue; for example, T2-weighted sequences make it possible to evaluate areas of edema or myocardial inflammation. However, traditional sequences have many limitations and provide only qualitative information. Moreover, traditional sequences depend on the reference to remote myocardium or skeletal muscle, which limits their ability to detect and quantify diffuse myocardial damage. Recently developed magnetic resonance myocardial mapping techniques enable quantitative assessment of parameters indicative of edema. These techniques have proven better than traditional sequences both in acute cardiomyopathy and in acute ischemic heart disease. This article synthesizes current developments in T2 mapping as well as their clinical applications and limitations. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  16. Digital color imaging

    CERN Document Server

    Fernandez-Maloigne, Christine; Macaire, Ludovic

    2013-01-01

    This collective work identifies the latest developments in the field of the automatic processing and analysis of digital color images.For researchers and students, it represents a critical state of the art on the scientific issues raised by the various steps constituting the chain of color image processing.It covers a wide range of topics related to computational color imaging, including color filtering and segmentation, color texture characterization, color invariant for object recognition, color and motion analysis, as well as color image and video indexing and retrieval. <

  17. Development of computed tomography system and image reconstruction algorithm

    International Nuclear Information System (INIS)

    Khairiah Yazid; Mohd Ashhar Khalid; Azaman Ahmad; Khairul Anuar Mohd Salleh; Ab Razak Hamzah

    2006-01-01

    Computed tomography is one of the most advanced and powerful nondestructive inspection techniques, which is currently used in many different industries. In several CT systems, detection has been by combination of an X-ray image intensifier and charge -coupled device (CCD) camera or by using line array detector. The recent development of X-ray flat panel detector has made fast CT imaging feasible and practical. Therefore this paper explained the arrangement of a new detection system which is using the existing high resolution (127 μm pixel size) flat panel detector in MINT and the image reconstruction technique developed. The aim of the project is to develop a prototype flat panel detector based CT imaging system for NDE. The prototype consisted of an X-ray tube, a flat panel detector system, a rotation table and a computer system to control the sample motion and image acquisition. Hence this project is divided to two major tasks, firstly to develop image reconstruction algorithm and secondly to integrate X-ray imaging components into one CT system. The image reconstruction algorithm using filtered back-projection method is developed and compared to other techniques. The MATLAB program is the tools used for the simulations and computations for this project. (Author)

  18. Experimental development of a liquid xenon Compton telescope for functional medical imaging

    International Nuclear Information System (INIS)

    Oger, Tugdual

    2012-01-01

    imaging is a new nuclear medical imaging technique which has been suggested by Subatech laboratory. This technique involves locating three-dimensional position of the decay of an innovative radioisotope (β + ,γ) emitter, the 44 Sc. The principle consist in the detection of two photons of 511 keV gamma rays from the decay of the positron, provided by a PET ring detector, associated to the detection of the third photon by a Liquid xenon Compton telescope. The energy deposited in the interaction between the photon and xenon and its position are identified by measuring the ionization signal with a Micromegas chamber (Micro-Mesh Gaseous Structure), while the trigger and time measurement of the interaction are provided by the detection of the scintillation signal. The principle of the TPC is thus used to Compton imaging. In order to demonstrate experimentally the feasibility of imaging 3γ, a small prototype, XEMIS (Xenon Medical Imaging System) was developed. This thesis is an important step towards the proof of feasibility. In this work are exposed the characterization of the detector response for a beam of 511 keV gamma rays and the analysis of data derived from it. The measurement of energy and time resolutions will be presented, as well as the purity of the liquid xenon. (author) [fr

  19. High-speed infrared imaging for material characterization in experimental mechanics experiments

    Science.gov (United States)

    Gagnon, Marc-André; Marcotte, Frédérick; Lagueux, Philippe; Farley, Vincent; Guyot, Éric; Morton, Vince

    2017-10-01

    Heat transfers are involved in many phenomena such as friction, tensile stress, shear stress and material rupture. Among the challenges encountered during the characterization of such thermal patterns is the need for both high spatial and temporal resolution. Infrared imaging provides information about surface temperature that can be attributed to the stress response of the material and breaking of chemical bounds. In order to illustrate this concept, tensile and shear tests were carried out on steel, aluminum and carbon fiber composite materials and monitored using high-speed (Telops FASTM2K) and high-definition (Telops HD-IR) infrared imaging. Results from split-Hopkinson experiments carried out on a polymer material at high strain-rate are also presented. The results illustrate how high-speed and high-definition infrared imaging in the midwave infrared (MWIR, 3 - 5 μm) spectral range can provide detailed information about the thermal properties of materials undergoing mechanical testing.

  20. Electromagnetic characterization of white spruce at different moisture contents using synthetic aperture radar imaging

    Science.gov (United States)

    Ingemi, Christopher M.; Owusu Twumasi, Jones; Yu, Tzuyang

    2018-03-01

    Detection and quantification of moisture content inside wood (timber) is key to ensuring safety and reliability of timber structures. Moisture inside wood attracts insects and fosters the development of fungi to attack the timber, causing significant damages and reducing the load bearing capacity during their design life. The use of non-destructive evaluation (NDE) techniques (e.g., microwave/radar, ultrasonic, stress wave, and X-ray) for condition assessment of timber structures is a good choice. NDE techniques provide information about the level of deterioration and material properties of timber structures without obstructing their functionality. In this study, microwave/radar NDE technique was selected for the characterization of wood at different moisture contents. A 12 in-by-3.5 in-by-1.5 in. white spruce specimen (picea glauca) was imaged at different moisture contents using a 10 GHz synthetic aperture radar (SAR) sensor inside an anechoic chamber. The presence of moisture was found to increase the SAR image amplitude as expected. Additionally, integrated SAR amplitude was found beneficial in modeling the moisture content inside the wood specimen.

  1. Development of a 750x750 pixels CMOS imager sensor for tracking applications

    Science.gov (United States)

    Larnaudie, Franck; Guardiola, Nicolas; Saint-Pé, Olivier; Vignon, Bruno; Tulet, Michel; Davancens, Robert; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Estribeau, Magali

    2017-11-01

    Solid-state optical sensors are now commonly used in space applications (navigation cameras, astronomy imagers, tracking sensors...). Although the charge-coupled devices are still widely used, the CMOS image sensor (CIS), which performances are continuously improving, is a strong challenger for Guidance, Navigation and Control (GNC) systems. This paper describes a 750x750 pixels CMOS image sensor that has been specially designed and developed for star tracker and tracking sensor applications. Such detector, that is featuring smart architecture enabling very simple and powerful operations, is built using the AMIS 0.5μm CMOS technology. It contains 750x750 rectangular pixels with 20μm pitch. The geometry of the pixel sensitive zone is optimized for applications based on centroiding measurements. The main feature of this device is the on-chip control and timing function that makes the device operation easier by drastically reducing the number of clocks to be applied. This powerful function allows the user to operate the sensor with high flexibility: measurement of dark level from masked lines, direct access to the windows of interest… A temperature probe is also integrated within the CMOS chip allowing a very precise measurement through the video stream. A complete electro-optical characterization of the sensor has been performed. The major parameters have been evaluated: dark current and its uniformity, read-out noise, conversion gain, Fixed Pattern Noise, Photo Response Non Uniformity, quantum efficiency, Modulation Transfer Function, intra-pixel scanning. The characterization tests are detailed in the paper. Co60 and protons irradiation tests have been also carried out on the image sensor and the results are presented. The specific features of the 750x750 image sensor such as low power CMOS design (3.3V, power consumption<100mW), natural windowing (that allows efficient and robust tracking algorithms), simple proximity electronics (because of the on

  2. Magnetic Resonance Perfusion Imaging in Malformations of Cortical Development

    Energy Technology Data Exchange (ETDEWEB)

    Widjaja, ED.; Wilkinson, I.D.; Griffiths, P.D. [Academic Section of Radiolog y, Univ. of Sheffield, Sheffield (United Kingdom)

    2007-10-15

    Background: Malformations of cortical development vary in neuronal maturity and level of functioning. Purpose: To characterize regional relative cerebral blood volume (rCBV) and difference in first moment transit time (TTfm) in polymicrogyria and cortical tubers using magnetic resonance (MR) perfusion imaging. Material and Methods: MR imaging and dynamic T2*-weighted MR perfusion imaging were performed in 13 patients with tuberous sclerosis complex, 10 with polymicrogyria, and 18 controls with developmental delay but no macroscopic brain abnormality. Regions of interest were placed in cortical tubers or polymicrogyric cortex and in the contralateral normal-appearing side in patients with malformations. In 'control' subjects, regions of interest were placed in the frontal and parietal lobes in both hemispheres. The rCBV and TTfm of the tuber/contralateral side (rCBVRTSC and TTFMTSC) as well as those of the polymicrogyria/contralateral side (rCBVRPMG and TTFMPMG) were assessed. The right-to-left asymmetry of rCBV and TTfm in the control group was also assessed (rCBVRControls and TTFMControls). Results: There was no significant asymmetry between right and left rCBV or TTfm (P>0.05) in controls. There was significant reduction in rCBVRTSC compared to rCBVRControls (P<0.05), but no significant difference in TTFMTSC compared to TTFMControls (P>0.05). There were no significant differences between rCBVRPMG and rCBVRControls (P>0.05) or TTFMPMG and TTFMControls (P>0.05). Conclusion: Our findings imply that cerebral blood volume of polymicrogyria is similar to normal cortex, but there is reduced cerebral blood volume in cortical tubers. The lower rCBV ratio of cortical tubers may be related to known differences in pathogenetic timing of the underlying abnormalities during brain development or the presence of gliosis.

  3. Benchmarking the x-ray phase contrast imaging for ICF DT ice characterization using roughened surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, E; Kozioziemski, B; Moody, J; Koch, J; Mapoles, E; Montesanti, R; Youngblood, K; Letts, S; Nikroo, A; Sater, J; Atherton, J

    2008-06-26

    We use x-ray phase contrast imaging to characterize the inner surface roughness of DT ice layers in capsules planned for future ignition experiments. It is therefore important to quantify how well the x-ray data correlates with the actual ice roughness. We benchmarked the accuracy of our system using surrogates with fabricated roughness characterized with high precision standard techniques. Cylindrical artifacts with azimuthally uniform sinusoidal perturbations with 100 um period and 1 um amplitude demonstrated 0.02 um accuracy limited by the resolution of the imager and the source size of our phase contrast system. Spherical surrogates with random roughness close to that required for the DT ice for a successful ignition experiment were used to correlate the actual surface roughness to that obtained from the x-ray measurements. When comparing average power spectra of individual measurements, the accuracy mode number limits of the x-ray phase contrast system benchmarked against surface characterization performed by Atomic Force Microscopy are 60 and 90 for surrogates smoother and rougher than the required roughness for the ice. These agreement mode number limits are >100 when comparing matching individual measurements. We will discuss the implications for interpreting DT ice roughness data derived from phase-contrast x-ray imaging.

  4. Study of adolescents’ multifactorial self-image components based on their own self-characterizations

    Directory of Open Access Journals (Sweden)

    Horvath, Zsofia Iren

    2012-12-01

    Full Text Available The most important questions of human existence and development – Who am I? What am I like? – concerned every thinking human in all cultural-historical ages. These questions remain timely even in our rapidly changing postmodern society.The goal of our research is the examination of adolescents’ self-characterization, the outlining of the self-image components age characteristics, the establishment of differences resulting from their environment. Our examination is part of the 2005/2006 school year evaluation (Pletl, 2011 regarding Transylvanian students’ composition skills. In the present research we have analyzed a total of 1602 self-characterization of Transylvanian Hungarian students. Results show that fifth grade students have dichotomous thinking that becomes more sophisticated by the time they get into the eighth grade. Eighth grade students referred significantly more often to the categories Emotions, Satisfaction, Social attitudes, School achievement, Special interests and mentioned more personality traits. In the comparison by location, more similarities and fewer differences were outlined. However, urban students referred significantly more often to emotions and satisfaction, while rural students mentioned more frequently characteristics like good-hearted and diligent. The study also outlined two major deficiencies. No significant difference was found between the two grades in naming abilities, and referring to Science and Language. We strongly believe that school should be more than simply a place for traditional teaching; effective education and personal development should spread to new areas like the development of self-reflective thinking, the shaping of personal competence and the operation of Career and Vocational Counseling.

  5. A method to characterize structure and symmetry in low-resolution images of colloidal thin films

    International Nuclear Information System (INIS)

    McDonald, Matthew J; Yethiraj, Anand; Beaulieu, L Y

    2012-01-01

    A method is presented for characterizing particle centres, particle size and crystal symmetries with sub-pixel resolution from 8-bit digital images of colloidal thin films taken with a scanning electron microscope (SEM). Digital images are converted to xyz data points by converting colour contrast to a numerical intensity. The data are then passed through a modified form of a Savitzky–Golay filter which allows particle centres to be determined. A subsequent routine is presented that, by analysing the weighted standard deviation and average intensity of the pixels along shifting rings, improves the accuracy of the detected particle centres and provides the radius of each particle. Obtaining the particle centres allows the symmetry of each particle (with respect to its neighbours) along with the mean crystal orientation to be obtained, all in one cohesive package. A key advantage of the method presented here is that it is very robust and works with both low- and high-resolution images—enabling, for example, routine quantitative analysis of SEM images. Because of the low level of user input, the method can be used to process a batch of images in order to characterize the evolution of samples. (paper)

  6. MR imaging methods for assessing fetal brain development.

    Science.gov (United States)

    Rutherford, Mary; Jiang, Shuzhou; Allsop, Joanna; Perkins, Lucinda; Srinivasan, Latha; Hayat, Tayyib; Kumar, Sailesh; Hajnal, Jo

    2008-05-01

    Fetal magnetic resonance imaging provides an ideal tool for investigating growth and development of the brain in vivo. Current imaging methods have been hampered by fetal motion but recent advances in image acquisition can produce high signal to noise, high resolution 3-dimensional datasets suitable for objective quantification by state of the art post acquisition computer programs. Continuing development of imaging techniques will allow a unique insight into the developing brain, more specifically process of cell migration, axonal pathway formation, and cortical maturation. Accurate quantification of these developmental processes in the normal fetus will allow us to identify subtle deviations from normal during the second and third trimester of pregnancy either in the compromised fetus or in infants born prematurely.

  7. Characterization of LiF-based soft X-ray imaging detectors by confocal fluorescence microscopy

    International Nuclear Information System (INIS)

    Bonfigli, F; Gaudio, P; Lupelli, I; Nichelatti, E; Richetta, M; Vincenti, M A; Montereali, R M

    2010-01-01

    X-ray microscopy represents a powerful tool to obtain images of samples with very high spatial resolution. The main limitation of this technique is represented by the poor spatial resolution of standard imaging detectors. We proposed an innovative high-performance X-ray imaging detector based on the visible photoluminescence of colour centres in lithium fluoride. In this work, a confocal microscope in fluorescence mode was used to characterize LiF-based imaging detectors measuring CC integrated visible fluorescence signals of LiF crystals and films (grown on several kinds of substrates) irradiated by soft X-rays produced by a laser plasma source in different exposure conditions. The results are compared with the CC photoluminescence spectra measured on the same samples and discussed.

  8. State of development and development trends of X-ray image intensifier television systems

    International Nuclear Information System (INIS)

    Pfeiler, M.; Haendle, J.

    1975-01-01

    Following a survey on the development of X-ray image intensifier television systems up to now, their further development is critically discussed with regard to the better image quality to be expected. The introduction of the high-resolving X-ray image intensifier already meant an improvement in image quality even though the television system remained the same. In the image intensifier television system, the distinguishability of small details suffers from noise effects. Therefore, a better image quality is especially advantageous in those ranges of application which allow a higher picture dose. 'Electronic' radiography, intermittent screening, co-storage of the spotfilm radiographs, videometry, video area kymography, and cardiac stroboscopy are examples some of which have already been tested in clinical practice. (orig./AK) [de

  9. History of the development of magnetic resonance imaging

    International Nuclear Information System (INIS)

    Murase, Kenya

    2007-01-01

    Nuclear magnetic resonance (NMR) has been a common tool for physicists and chemists to probe molecular structures since the phenomenon of NMR was discovered in 1946. The development of X-ray CT in 1973 played an important role in stimulating interest in NMR as an imaging tool, resulting in the birth of magnetic resonance imaging (MRI). Since its invention in the early 1970s, the development of MRI has been among the most active and exciting areas in science, technology, and medicine. Over the past twenty years, MRI has become one of the most important imaging modalities available to clinical medicine. In addition to its role as a routine imaging technique with a growing range of clinical applications, the pace of development in MRI methodology remains rapid, and new ideas with significant potential emerge on a regular basis. This article presents a brief history of the development of MRI. (author)

  10. Characterization of Mechanical Properties of Tissue Scaffolds by Phase Contrast Imaging and Finite Element Modeling.

    Science.gov (United States)

    Bawolin, Nahshon K; Dolovich, Allan T; Chen, Daniel X B; Zhang, Chris W J

    2015-08-01

    In tissue engineering, the cell and scaffold approach has shown promise as a treatment to regenerate diseased and/or damaged tissue. In this treatment, an artificial construct (scaffold) is seeded with cells, which organize and proliferate into new tissue. The scaffold itself biodegrades with time, leaving behind only newly formed tissue. The degradation qualities of the scaffold are critical during the treatment period, since the change in the mechanical properties of the scaffold with time can influence cell behavior. To observe in time the scaffold's mechanical properties, a straightforward method is to deform the scaffold and then characterize scaffold deflection accordingly. However, experimentally observing the scaffold deflection is challenging. This paper presents a novel study on characterization of mechanical properties of scaffolds by phase contrast imaging and finite element modeling, which specifically includes scaffold fabrication, scaffold imaging, image analysis, and finite elements (FEs) modeling of the scaffold mechanical properties. The innovation of the work rests on the use of in-line phase contrast X-ray imaging at 20 KeV to characterize tissue scaffold deformation caused by ultrasound radiation forces and the use of the Fourier transform to identify movement. Once deformation has been determined experimentally, it is then compared with the predictions given by the forward solution of a finite element model. A consideration of the number of separate loading conditions necessary to uniquely identify the material properties of transversely isotropic and fully orthotropic scaffolds is also presented, along with the use of an FE as a form of regularization.

  11. Characterization, prediction, and correction of geometric distortion in 3 T MR images

    International Nuclear Information System (INIS)

    Baldwin, Lesley N.; Wachowicz, Keith; Thomas, Steven D.; Rivest, Ryan; Gino Fallone, B.

    2007-01-01

    The work presented herein describes our methods and results for predicting, measuring and correcting geometric distortions in a 3 T clinical magnetic resonance (MR) scanner for the purpose of image guidance in radiation treatment planning. Geometric inaccuracies due to both inhomogeneities in the background field and nonlinearities in the applied gradients were easily visualized on the MR images of a regularly structured three-dimensional (3D) grid phantom. From a computed tomography scan, the locations of just under 10 000 control points within the phantom were accurately determined in three dimensions using a MATLAB-based computer program. MR distortion was then determined by measuring the corresponding locations of the control points when the phantom was imaged using the MR scanner. Using a reversed gradient method, distortions due to gradient nonlinearities were separated from distortions due to inhomogeneities in the background B 0 field. Because the various sources of machine-related distortions can be individually characterized, distortions present in other imaging sequences (for which 3D distortion cannot accurately be measured using phantom methods) can be predicted negating the need for individual distortion calculation for a variety of other imaging sequences. Distortions were found to be primarily caused by gradient nonlinearities and maximum image distortions were reported to be less than those previously found by other researchers at 1.5 T. Finally, the image slices were corrected for distortion in order to provide geometrically accurate phantom images

  12. Characterization of a novel EPID designed for simultaneous imaging and dose verification in radiotherapy

    International Nuclear Information System (INIS)

    Blake, Samuel J.; McNamara, Aimee L.; Deshpande, Shrikant; Holloway, Lois; Greer, Peter B.; Kuncic, Zdenka; Vial, Philip

    2013-01-01

    Purpose: Standard amorphous silicon electronic portal imaging devices (a-Si EPIDs) are x-ray imagers used frequently in radiotherapy that indirectly detect incident x-rays using a metal plate and phosphor screen. These detectors may also be used as two-dimensional dosimeters; however, they have a well-characterized nonwater-equivalent dosimetric response. Plastic scintillating (PS) fibers, on the other hand, have been shown to respond in a water-equivalent manner to x-rays in the energy range typically encountered during radiotherapy. In this study, the authors report on the first experimental measurements taken with a novel prototype PS a-Si EPID developed for the purpose of performing simultaneous imaging and dosimetry in radiotherapy. This prototype employs an array of PS fibers in place of the standard metal plate and phosphor screen. The imaging performance and dosimetric response of the prototype EPID were evaluated experimentally and compared to that of the standard EPID.Methods: Clinical 6 MV photon beams were used to first measure the detector sensitivity, linearity of dose response, and pixel noise characteristics of the prototype and standard EPIDs. Second, the dosimetric response of each EPID was evaluated relative to a reference water-equivalent dosimeter by measuring the off-axis and field size response in a nontransit configuration, along with the off-axis, field size, and transmission response in a transit configuration using solid water blocks. Finally, the imaging performance of the prototype and standard EPIDs was evaluated quantitatively by using an image quality phantom to measure the contrast to noise ratio (CNR) and spatial resolution of images acquired with each detector, and qualitatively by using an anthropomorphic phantom to acquire images representative of human anatomy.Results: The prototype EPID's sensitivity was 0.37 times that of the standard EPID. Both EPIDs exhibited responses that were linear with delivered dose over a range of 1

  13. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization.

    Science.gov (United States)

    Zhao, Chumin; Kanicki, Jerzy; Konstantinidis, Anastasios C; Patel, Tushita

    2015-11-01

    Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50-300 e-) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). In this study, imaging performance of a large area (29×23 cm2) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165-400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. The LFW mode shows better DQE at low air kerma (Ka<10 μGy) and should be used for DBT. At current DBT applications, air kerma (Ka∼10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165-400 μm in size can be resolved using a MGD range of 0.3-1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at MGD of 2.5 mGy), an increased CNR (by ∼10) for

  14. Developing stereo image based robot control system

    Energy Technology Data Exchange (ETDEWEB)

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W. [Department of Physics, FMIPA, InstitutTeknologi Bandung Jl. Ganesha No. 10. Bandung 40132, Indonesia supri@fi.itb.ac.id (Indonesia)

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  15. Development of nuclear imaging instrument and software

    International Nuclear Information System (INIS)

    Kim, Jang Hee; Chung Jae Myung; Nam, Sang Won; Chang, Hyung Uk

    1999-03-01

    In the medical diagnosis, the nuclear medical instrument using the radioactive isotope are commonly utilized. In the foreign countries, the medical application and development of the most advanced nuclear medical instrument such as Single Photon Emission Computer Tomography (SPECT) and position emission tomograph (PET), have been extensively carried out. However, in Korea, such highly expensive instruments have been all, imported, paying foreign currency. Since 1997, much efforts, the development of the radio nuclide medical instrument, the drive of the domestic production, etc. have been made to establish our own technologies and to balance the international payments under the support of the Ministry of Science and Technology. At present time, 180 nuclear imaging instruments are now in operation and 60 of them are analog camera. In analog camera, the vector X-Y monitor is need for are image display. Since the analog camera, signal can not be process in the digital form, we have difficulties to transfer and store the image data. The image displayed at the monitor must be stored in the form of polaroid or X ray film. In order to discard these disadvantages, if we developed the computer interface system, the performance analog camera will be comparable with that of the digital camera. The final objective of the research is that using the interface system developed in this research, we reconstruct the image data transmitted to the personal computer in the form of the generalized data file

  16. Developments of optical fast-gated imaging systems

    International Nuclear Information System (INIS)

    Koehler, H.A.; Kotecki, D.

    1984-08-01

    Several fast-gated imaging systems to measure ultra-fast single-transient data have been developed for time-resolved imaging of pulsed radiation sources. These systems were designed to achieve image recording times of 1 to 3 ms and dynamic ranges of >200:1 to produce large two-dimensional images (greater than or equal to 10 4 spatial points) of 1 to 2 ns exposure and small two-dimensional images (less than or equal to 200 spatial points) of less than or equal to 0.5 ns exposure. Both MCP intensified solid-state two-dimensional framing cameras and streak camera/solid-state camera systems were used; the framing camera system provides snap shots with high spatial resolution whereas the streak camera system provides for limited spatial points each with high temporal resolution. Applications of these systems include electron-beam, x-ray, gamma-ray, and neutron diagnostics. This report reviews the characteristics of the major components of fast-gated imaging systems developed at Lawrence Livermore National Laboratory. System performances are described in view of major experiments, and the diagnostic requirements of new experiments in atomic physics (x-ray lasers) and nuclear physics (fusion) are indicated

  17. Characterization of mammographic masses based on level set segmentation with new image features and patient information

    International Nuclear Information System (INIS)

    Shi Jiazheng; Sahiner, Berkman; Chan Heangping; Ge Jun; Hadjiiski, Lubomir; Helvie, Mark A.; Nees, Alexis; Wu Yita; Wei Jun; Zhou Chuan; Zhang Yiheng; Cui Jing

    2008-01-01

    Computer-aided diagnosis (CAD) for characterization of mammographic masses as malignant or benign has the potential to assist radiologists in reducing the biopsy rate without increasing false negatives. The purpose of this study was to develop an automated method for mammographic mass segmentation and explore new image based features in combination with patient information in order to improve the performance of mass characterization. The authors' previous CAD system, which used the active contour segmentation, and morphological, textural, and spiculation features, has achieved promising results in mass characterization. The new CAD system is based on the level set method and includes two new types of image features related to the presence of microcalcifications with the mass and abruptness of the mass margin, and patient age. A linear discriminant analysis (LDA) classifier with stepwise feature selection was used to merge the extracted features into a classification score. The classification accuracy was evaluated using the area under the receiver operating characteristic curve. The authors' primary data set consisted of 427 biopsy-proven masses (200 malignant and 227 benign) in 909 regions of interest (ROIs) (451 malignant and 458 benign) from multiple mammographic views. Leave-one-case-out resampling was used for training and testing. The new CAD system based on the level set segmentation and the new mammographic feature space achieved a view-based A z value of 0.83±0.01. The improvement compared to the previous CAD system was statistically significant (p=0.02). When patient age was included in the new CAD system, view-based and case-based A z values were 0.85±0.01 and 0.87±0.02, respectively. The study also demonstrated the consistency of the newly developed CAD system by evaluating the statistics of the weights of the LDA classifiers in leave-one-case-out classification. Finally, an independent test on the publicly available digital database for screening

  18. The development of magnetic resonance imaging in obstetrics.

    Science.gov (United States)

    Duncan, K R

    Following recent developments in imaging techniques which overcome the problem of fetal motion, magnetic resonance imaging (MRI) has the potential to improve non-invasive fetomaternal assessment. This article catalogues the development of MRI and the potential that exists for its use in obstetrics in the future.

  19. Development of beam diagnostic devices for characterizing electron guns

    International Nuclear Information System (INIS)

    Bhattacharjee, D.; Tiwari, R.; Jayaprakash, D.; Mishra, R.L.; Sarukte, H.; Waghmare, A.; Thakur, N.; Dixit, K.P.

    2015-01-01

    The electron guns for the DC accelerators and RF Linacs are designed and developed at EBC/APPD/BARC, Kharghar. These electron guns need to be characterized for its design and performance. Two test benches were developed for characterizing the electron guns. Various beam diagnostic devices for measuring beam currents and beam sizes were developed. Conical faraday cup, segmented faraday cup, slit scanning bellows movement arrangement, multi-plate beam size measurement setup, multi- wire beam size measurement setup, Aluminum foil puncture assembly etc. were developed and used. The paper presents the in-house development of various beam diagnostics for characterizing electron guns and their use. (author)

  20. The Characterization of Laser Ablation Patterns and a New Definition of Resolution in Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS).

    Science.gov (United States)

    O'Rourke, Matthew B; Raymond, Benjamin B A; Padula, Matthew P

    2017-05-01

    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) is a technique that has seen a sharp rise in both use and development. Despite this rapid adoption, there have been few thorough investigations into the actual physical mechanisms that underlie the acquisition of IMS images. We therefore set out to characterize the effect of IMS laser ablation patterns on the surface of a sample. We also concluded that the governing factors that control spatial resolution have not been correctly defined and therefore propose a new definition of resolution. Graphical Abstract ᅟ.

  1. Development and Feasibility Testing of Image-Guided Minimally Invasive Tissue for Diagnosis Treatment of Benign and Malignant Breast Disease

    Science.gov (United States)

    Jeffrey, Stefanie S.

    1999-01-01

    Dr. Robert Mah and Dr. Stefanie Jeffrey worked on the development of the NASA Smart Probe in its application as a device to measure and interpret physiologic and image-based parameters of breast tissue. To date the following has been achieved: 1 . Choice of candidate sensors to be tested in breast tissue. 2. Preliminary designs for probe tip, specifically use of different tip shapes, cutting edges, and sensor configuration. 3. Design of sonographic guidance system. 4. Design of data extraction and analysis tool using scanned information of images of the breast tissue to provide a higher dimension of information for breast tissue characterization and interpretation. 5. Initial ex-vivo (fruit and tofu) and in-vivo (rodent) testing to confirm unique substance and tissue characterization by the Smart Probe software.

  2. Use of high-resolution satellite images for characterization of geothermal reservoirs in the Tarapaca Region, Chile

    Science.gov (United States)

    Arellano-Baeza, A. A.; Montenegro A., C.

    2010-12-01

    The use of renewable and clean sources of energy is becoming crucial for sustainable development of all countries, including Chile. Chilean Government plays special attention to the exploration and exploitation of geothermal energy, total electrical power capacity of which could reach 16.000 MW. In Chile the main geothermal fields are located in the Central Andean Volcanic Chain in the North, between the Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the Lansat satellite have been used to characterize the geothermal field in the region of the Puchuldiza geysers, Colchane, Region of Tarapaca, North of Chile, located at the altitude of 4000 m. Structure of lineaments associated to the geothermal field have been extracted from the images using the lineament detection technique developed by authors. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament analysis is a power tool for the detection of faults and joint zones associated to the geothermal fields.

  3. MORPHOMETRIC CHARACTERIZATION OF THE SAND FRACTION IN A SAND GRAIN IMAGE CAPTURE SYSTEM1

    Directory of Open Access Journals (Sweden)

    Lucimar Arruda Viana

    Full Text Available ABSTRACT Morphology studies assume significant importance in analysis of phenomena of granular systems packaging, in particular with a view to the use of the technique of soil stabilization named particle size correction in forest roads. In this context, this study aimed to develop and operationalize a Sand Grain Image Capture System and, hereby, determine the morphological indices of the sand fractions of two sandy soils called João Pinheiro (JP and Cachoeira da Prata (CP. Soil samples, air-dried, were sieved (2.0 mm nominal mesh size for removal of gravels. The materials that passed through the sieve were subjected to dispersion, washing in 0.053 mm nominal mesh size sieve, removal of organic matter and iron oxides to obtain the clean sand fractions. Subsequently, each soil sample was sieved for separation into twelve classes, between the diameters of 0.149 mm and 1.190 mm, using a Rotap shaker. Next, tests were carried out to characterize the morphometric attributes of the twelve classes of sand fractions of the soils studied. For validation of the performance of the Sand Grain Image Capture System, the results were compared to those obtained using a standard procedure for image analysis. The analysis of the results led to the following conclusions: (i the sand fraction of the JP soil presented higher values for the morphometric indices roundness, elongation and compactness compared to sand fraction of the CP soil; and (ii the Sand Grain Image Capture System worked properly, with practicality.

  4. Development of ultrasound transducer diffractive field theory for nonlinear propagation-based imaging

    Science.gov (United States)

    Kharin, Nikolay A.

    2000-04-01

    In nonlinear ultrasound imaging the images are formed using the second harmonic energy generated due to the nonlinear nature of finite amplitude propagation. This propagation can be modeled using the KZK wave equation. This paper presents further development of nonlinear diffractive field theory based on the KZK equation and its solution by means of the slowly changing profile method for moderate nonlinearity. The analytical expression for amplitudes and phases of sum frequency wave are obtained in addition to the second harmonic wave. Also, the analytical expression for the relative curvature of the wave fronts of fundamental and second harmonic signals are derived. The media with different nonlinear properties and absorption coefficients were investigated to characterize the diffractive field of the transducer at medical frequencies. All expressions demonstrate good agreement with experimental results. The expressions are novel and provide an easy way for prediction of amplitude and phase structure of nonlinearly distorted field of a transducer. The sum frequency signal technique could be implemented as well as second harmonic technique to improve the quality of biomedical images. The results obtained are of importance for medical diagnostic ultrasound equipment design.

  5. Development of a liquid xenon Compton telescope dedicated to functional medical imaging

    International Nuclear Information System (INIS)

    Grignon, C.

    2007-12-01

    Functional imaging is a technique used to locate in three dimensions the position of a radiotracer previously injected in a patient. The two main modalities used for a clinical application to detect tumors, the SPECT and the PET, use solid scintillators as a detection medium. The objective of this thesis was to investigate the possibility of using liquid xenon in order to benefit from the intrinsic properties of this medium in functional imaging. The feasibility study of such a device has been performed by taking into account the technical difficulties specific to the liquid xenon. First of all, simulations of a liquid xenon PET has been performed using Monte-Carlo methods. The results obtained with a large liquid xenon volume are promising : we can expect a reduction of the injected activity of radiotracer, an improvement of the spatial resolution of the image and a parallax free camera. The second part of the thesis was focused on the development of a new concept of medical imaging, the three gamma imaging, based on the use of a new emitter: the 44 scandium. Associated to a classical PET camera, the Compton telescope is used to infer the incoming direction of the third gamma ray by triangulation. Therefore, it is possible to reconstruct the position of each emitter in three dimensions. This work convinced the scientific community to support the construction and characterization of a liquid xenon Compton telescope. The first camera dedicated to small animal imaging should then be operational in 2009. (author)

  6. X-Ray, Digital Imaging with Volumetric Density Measurement and Profiling, Applied to the Characterization of Waste Drums

    International Nuclear Information System (INIS)

    Huhtiniemi, I.; Gupta, N.; Halliwell, S.

    2006-01-01

    The European Commission's Joint Research Centre Ispra Site (JRC-Ispra) has initiated a decommissioning and waste management program that will span about two decades. The program includes a requirement to characterize the contents of about 6,500 radioactive, 220 litre waste drums whose documented history is incomplete. To render the characterization process more efficient, the drums will be initially divided into homogeneous groups, an activity that will be based on existing documentation and non-destructive examination (NDE) by X-ray digital imaging. This paper describes the X-ray imaging techniques chosen, and the planned performance validation of the equipment. (authors)

  7. Development of a human body RMN imaging device

    International Nuclear Information System (INIS)

    Saint-Jalmes, H.

    1984-03-01

    Imaging device for human body is studied in this thesis. The section images presented are got by a projection-reconstruction method associated to a section plane selection by an oscillating gradient application. Different stages of the machine development are presented: - design and calculation of a resistive magnet for very homogeneous field imaging - design of gradient coils for imaging magnets - realization of control and acquisition interfaces - realization of imaging software in real time [fr

  8. Development of a THz spectroscopic imaging system

    International Nuclear Information System (INIS)

    Usami, M; Iwamoto, T; Fukasawa, R; Tani, M; Watanabe, M; Sakai, K

    2002-01-01

    We have developed a real-time THz imaging system based on the two-dimensional (2D) electro-optic (EO) sampling technique. Employing the 2D EO-sampling technique, we can obtain THz images using a CCD camera at a video rate of up to 30 frames per second. A spatial resolution of 1.4 mm was achieved. This resolution was reasonably close to the theoretical limit determined by diffraction. We observed not only static objects but also moving ones. To acquire spectroscopic information, time-domain images were collected. By processing these images on a computer, we can obtain spectroscopic images. Spectroscopy for silicon wafers was demonstrated

  9. Development of novel imaging probe for optical/acoustic radiation imaging (OARI).

    Science.gov (United States)

    Ejofodomi, O'tega A; Zderic, Vesna; Zara, Jason M

    2013-11-01

    Optical/acoustic radiation imaging (OARI) is a novel imaging modality being developed to interrogate the optical and mechanical properties of soft tissues. OARI uses acoustic radiation force to generate displacement in soft tissue. Optical images before and after the application of the force are used to generate displacement maps that provide information about the mechanical properties of the tissue under interrogation. Since the images are optical images, they also represent the optical properties of the tissue as well. In this paper, the authors present the first imaging probe that uses acoustic radiation force in conjunction with optical coherence tomography (OCT) to provide information about the optical and mechanical properties of tissues to assist in the diagnosis and staging of epithelial cancers, and in particular bladder cancer. The OARI prototype probe consisted of an OCT probe encased in a plastic sheath, a miniaturized transducer glued to a plastic holder, both of which were encased in a 10 cm stainless steel tube with an inner diameter of 10 mm. The transducer delivered an acoustic intensity of 18 W/cm(2) and the OCT probe had a spatial resolution of approximately 10-20 μm. The tube was filled with deionized water for acoustic coupling and covered by a low density polyethylene cap. The OARI probe was characterized and tested on bladder wall phantoms. The phantoms possessed Young's moduli ranging from 10.2 to 12 kPa, mass density of 1.05 g/cm(3), acoustic attenuation coefficient of 0.66 dB/cm MHz, speed of sound of 1591 m/s, and optical scattering coefficient of 1.80 mm(-1). Finite element model (FEM) theoretical simulations were performed to assess the performance of the OARI probe. The authors obtained displacements of 9.4, 8.7, and 3.4 μm for the 3%, 4%, and 5% bladder wall phantoms, respectively. This shows that the probe is capable of generating optical images, and also has the ability to generate and track displacements in tissue. This will

  10. Characterization of Fluorescent Proteins for Three- and Four-Color Live-Cell Imaging in S. cerevisiae.

    Science.gov (United States)

    Higuchi-Sanabria, Ryo; Garcia, Enrique J; Tomoiaga, Delia; Munteanu, Emilia L; Feinstein, Paul; Pon, Liza A

    2016-01-01

    Saccharomyces cerevisiae are widely used for imaging fluorescently tagged protein fusions. Fluorescent proteins can easily be inserted into yeast genes at their chromosomal locus, by homologous recombination, for expression of tagged proteins at endogenous levels. This is especially useful for incorporation of multiple fluorescent protein fusions into a single strain, which can be challenging in organisms where genetic manipulation is more complex. However, the availability of optimal fluorescent protein combinations for 3-color imaging is limited. Here, we have characterized a combination of fluorescent proteins, mTFP1/mCitrine/mCherry for multicolor live cell imaging in S. cerevisiae. This combination can be used with conventional blue dyes, such as DAPI, for potential four-color live cell imaging.

  11. Probabilistic Logical Characterization

    DEFF Research Database (Denmark)

    Hermanns, Holger; Parma, Augusto; Segala, Roberto

    2011-01-01

    Probabilistic automata exhibit both probabilistic and non-deterministic choice. They are therefore a powerful semantic foundation for modeling concurrent systems with random phenomena arising in many applications ranging from artificial intelligence, security, systems biology to performance...... modeling. Several variations of bisimulation and simulation relations have proved to be useful as means to abstract and compare different automata. This paper develops a taxonomy of logical characterizations of these relations on image-finite and image-infinite probabilistic automata....

  12. Acousto-Optic Tunable Filter Hyperspectral Microscope Imaging Method for Characterizing Spectra from Foodborne Pathogens.

    Science.gov (United States)

    Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...

  13. Development of Image Analysis Software of MAXI

    Science.gov (United States)

    Eguchi, S.; Ueda, Y.; Hiroi, K.; Isobe, N.; Sugizaki, M.; Suzuki, M.; Tomida, H.; Maxi Team

    2010-12-01

    Monitor of All-sky X-ray Image (MAXI) is an X-ray all-sky monitor, attached to the Japanese experiment module Kibo on the International Space Station. The main scientific goals of the MAXI mission include the discovery of X-ray novae followed by prompt alerts to the community (Negoro et al., in this conference), and production of X-ray all-sky maps and new source catalogs with unprecedented sensitivities. To extract the best capabilities of the MAXI mission, we are working on the development of detailed image analysis tools. We utilize maximum likelihood fitting to a projected sky image, where we take account of the complicated detector responses, such as the background and point spread functions (PSFs). The modeling of PSFs, which strongly depend on the orbit and attitude of MAXI, is a key element in the image analysis. In this paper, we present the status of our software development.

  14. Quantitative imaging methods in osteoporosis.

    Science.gov (United States)

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  15. Synthesis And Characterization Of Mebrofenin For Hepatobiliary Imaging

    International Nuclear Information System (INIS)

    Purwoko; Tamat, Swasono R.; Yunita, Fitri; Kristanti, Eti

    2003-01-01

    Mebrofenin labeled with Technetium-99m is a new radiopharmaceutical having superior and ideal characteristic as a hepatobiliary-imaging agent. The synthesis and characterization of Mebrofenin (3-Bromo-2,4,6-trimethyl acetanilido iminodiacetic acid) as IDA derivative has been carried out involving three steps of reaction i.e. : acetyllization of 2,4,6-Trimethyl aniline to get 2,4,6-trimethyl chloro acetanilide which upon bromination gives the intermediate bromotrimethyl derivative and [mally by nucleophilic substitution this intermediate product with iminodiacetic acid (IDA) gives mebrofenin. The acetylation and bromination reactions were carried out in acetic acid condition while the substitution was carried out by reflux for 5 hours in ethanol and water adjusted at pH 11. The ethanol was then removed under low pressure, and the unreacted compound was removed by filtration. The filtrate was adjusted to pH 2 - 2.5, and the resulting mebrofenin was isolated by filtration and recrystallized 3 times in ethanol. Characterization of the mebrofenin product was performed by observing its melting point (197-l99 o C), ultra violet and infra red spectra as well as mass spectrometric and high performance liquid chromatographic analysis. The results showed that the product was highly pure and the yield was around 20%

  16. Characterization of Vocal Fold Vibration in Sulcus Vocalis Using High-Speed Digital Imaging

    Science.gov (United States)

    Yamauchi, Akihito; Yokonishi, Hisayuki; Imagawa, Hiroshi; Sakakibara, Ken-Ichi; Nito, Takaharu; Tayama, Niro; Yamasoba, Tatsuya

    2017-01-01

    Purpose: The aim of the present study was to qualitatively and quantitatively characterize vocal fold vibrations in sulcus vocalis by high-speed digital imaging (HSDI) and to clarify the correlations between HSDI-derived parameters and traditional vocal parameters. Method: HSDI was performed in 20 vocally healthy subjects (8 men and 12 women) and…

  17. Eddy current imaging for electrical characterization of silicon solar cells and TCO layers

    Science.gov (United States)

    Hwang, Byungguk; Hillmann, Susanne; Schulze, Martin; Klein, Marcus; Heuer, Henning

    2015-03-01

    Eddy Current Testing has been mainly used to determine defects of conductive materials and wall thicknesses in heavy industries such as construction or aerospace. Recently, high frequency Eddy Current imaging technology was developed. This enables the acquirement of information of different depth level in conductive thin-film structures by realizing proper standard penetration depth. In this paper, we summarize the state of the art applications focusing on PV industry and extend the analysis implementing achievements by applying spatially resolved Eddy Current Testing. The specific state of frequency and complex phase angle rotation demonstrates diverse defects from front to back side of silicon solar cells and characterizes homogeneity of sheet resistance in Transparent Conductive Oxide (TCO) layers. In order to verify technical feasibility, measurement results from the Multi Parameter Eddy Current Scanner, MPECS are compared to the results from Electroluminescence.

  18. Characterizing structures on borehole images and logging data of the Nankai trough accretionary prism: new insights

    Science.gov (United States)

    Jurado, Maria Jose

    2016-04-01

    IODP has extensively used the D/V Chikyu to drill the Kumano portion of the Nankai Trough, including two well sites within the Kumano Basin. IODP Expeditions 338 and 348 drilled deep into the inner accretionary prism south of the Kii Peninsula collecting a suite of LWD data, including natural gamma ray, electrical resistivity logs and borehole images, suitable to characterize structures (fractures and faults) inside the accretionary prism. Structural interpretation and analysis of logging-while-drilling data in the deep inner prism revealed intense deformation of a generally homogenous lithology characterized by bedding that dips steeply (60-90°) to the NW, intersected by faults and fractures. Multiple phases of deformation are characterized. IODP Expedition borehole images and LWD data acquired in the last decade in previous and results of NantroSEIZE IODP Expeditions (314, 319) were also analyzed to investigate the internal geometries and structures of the Nankai Trough accretionary prism. This study focused mainly on the characterization of the different types of structures and their specific position within the accretionary prism structures. New structural constraints and methodologies as well as a new approach to the characterization of study of active structures inside the prism will be presented.

  19. An Adaptive Method For Texture Characterization In Medical Images Implemented on a Parallel Virtual Machine

    Directory of Open Access Journals (Sweden)

    Socrates A. Mylonas

    2003-06-01

    Full Text Available This paper describes the application of a new texture characterization algorithm for the segmentation of medical ultrasound images. The morphology of these images poses significant problems for the application of traditional image processing techniques and their analysis has been the subject of research for several years. The basis of the algorithm is an optimum signal modelling algorithm (Least Mean Squares-based, which estimates a set of parameters from small image regions. The algorithm has been converted to a structure suitable for implementation on a Parallel Virtual Machine (PVM consisting of a Network of Workstations (NoW, to improve processing speed. Tests were initially carried out on standard textured images. This paper describes preliminary results of the application of the algorithm in texture discrimination and segmentation of medical ultrasound images. The images examined are primarily used in the diagnosis of carotid plaques, which are linked to the risk of stroke.

  20. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Science.gov (United States)

    Ziv, Omer; Zaritsky, Assaf; Yaffe, Yakey; Mutukula, Naresh; Edri, Reuven; Elkabetz, Yechiel

    2015-10-01

    Neural stem cells (NSCs) are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture) and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM)--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII) reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  1. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Directory of Open Access Journals (Sweden)

    Omer Ziv

    2015-10-01

    Full Text Available Neural stem cells (NSCs are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  2. Characterization of the Distance Relationship Between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue.

    Science.gov (United States)

    Jacak, Jaroslaw; Schaller, Susanne; Borgmann, Daniela; Winkler, Stephan M

    2015-08-01

    We here present two new methods for the characterization of fluorescent localization microscopy images obtained from immunostained brain tissue sections. Direct stochastic optical reconstruction microscopy images of 5-HT1A serotonin receptors and glial fibrillary acidic proteins in healthy cryopreserved brain tissues are analyzed. In detail, we here present two image processing methods for characterizing differences in receptor distribution on glial cells and their distribution on neural cells: One variant relies on skeleton extraction and adaptive thresholding, the other on k-means based discrete layer segmentation. Experimental results show that both methods can be applied for distinguishing classes of images with respect to serotonin receptor distribution. Quantification of nanoscopic changes in relative protein expression on particular cell types can be used to analyze degeneration in tissues caused by diseases or medical treatment.

  3. Computational methods for molecular imaging

    CERN Document Server

    Shi, Kuangyu; Li, Shuo

    2015-01-01

    This volume contains original submissions on the development and application of molecular imaging computing. The editors invited authors to submit high-quality contributions on a wide range of topics including, but not limited to: • Image Synthesis & Reconstruction of Emission Tomography (PET, SPECT) and other Molecular Imaging Modalities • Molecular Imaging Enhancement • Data Analysis of Clinical & Pre-clinical Molecular Imaging • Multi-Modal Image Processing (PET/CT, PET/MR, SPECT/CT, etc.) • Machine Learning and Data Mining in Molecular Imaging. Molecular imaging is an evolving clinical and research discipline enabling the visualization, characterization and quantification of biological processes taking place at the cellular and subcellular levels within intact living subjects. Computational methods play an important role in the development of molecular imaging, from image synthesis to data analysis and from clinical diagnosis to therapy individualization. This work will bring readers fro...

  4. EDITORIAL: Optical mammography: Imaging and characterization of breast lesions by pulsed near-infrared laser light (OPTIMAMM)

    Science.gov (United States)

    Hebden, Jeremy C.; Rinneberg, Herbert

    2005-06-01

    The Commission of the European Union (EU) conceived its Fifth Framework Programme (FP5) to identify the priorities for the European Union's research, technological development and demonstration activities for the period 1998-2002. By encouraging collaborative research between groups in different member countries, FP5 was intended to help solve problems the EU is facing and respond to major socio-economic challenges. The programme focused on a number of objectives and areas combining technological, industrial, economic, social and cultural aspects. A specific call was made, under its `Quality of Life and Management of Living Resources' section, for proposals which aim to explore improvements in non-invasive methods of imaging for early diagnosis and clinical evaluation of disease. Among the projects successfully funded under the FP5 programme was one entitled `Optical mammography: Imaging and characterization of breast lesions by pulsed near-infrared laser light', known by its acronym OPTIMAMM. The project involved a consortium of nine partners, comprising ten applied science and clinical research groups based in six EU countries, with overall administration and management provided by the Physikalisch-Technische Bundesanstalt, Berlin, Germany. The broad aim of the OPTIMAMM project was to combine multi-disciplinary basic (physics, engineering, mathematics, computer science) and clinical (oncology, histology) research to assess the diagnostic potential of time-domain optical and photoacoustic mammography as novel, non-invasive imaging modalities for the detection and clinical evaluation of breast lesions. Funding for the project, at a total cost of about 1.67 MEuro, began in December 2000 for a period of three years, although a zero-cost extension was granted to enable the ongoing project activities to continue until the end of May 2004. The importance of developing new tools for the detection and diagnosis of breast disease is evident from the very high incidence and

  5. Development and characterization of sugar palm starch and poly(lactic acid) bilayer films.

    Science.gov (United States)

    Sanyang, M L; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J

    2016-08-01

    The development and characterization of environmentally friendly bilayer films from sugar palm starch (SPS) and poly(lactic acid) (PLA) were conducted in this study. The SPS-PLA bilayer films and their individual components were characterized for their physical, mechanical, thermal and water barrier properties. Addition of 50% PLA layer onto 50% SPS layer (SPS50-PLA50) increased the tensile strength of neat SPS film from 7.74 to 13.65MPa but reduced their elongation at break from 46.66 to 15.53%. The incorporation of PLA layer significantly reduced the water vapor permeability as well as the water uptake and solubility of bilayer films which was attributed to the hydrophobic characteristic of the PLA layer. Furthermore, scanning electron microscopy (SEM) image of SPS50-PLA50 revealed lack of strong interfacial adhesion between the SPS and PLA. Overall, the incorporation of PLA layer onto SPS films enhances the suitability of SPS based films for food packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Characterization of extrusion flow using particle image velocimetry

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available The aim of this study was the characterization of polymer flows within an extrusion die using particle image velocimetry (PIV in very constraining conditions (high temperature, pressure and velocity. Measurements were realized on semi-industrial equipments in order to have test conditions close to the industrial ones. Simple flows as well as disrupted ones were studied in order to determine the capabilities and the limits of the method. The analysis of the velocity profiles pointed out significant wall slip, which was confirmed by rheological measurements based on Mooney's method. Numerical simulations were used to connect the two sets of measurements and to simulate complex velocity profiles for comparison to the experimental ones. A good agreement was found between simulations and experiments providing wall slip is taken into account in the simulation.

  7. Effects of spatial and spectral frequencies on wide-field functional imaging (wifi) characterization of preclinical breast cancer models

    Science.gov (United States)

    Moy, Austin; Kim, Jae G.; Lee, Eva Y. H. P.; Choi, Bernard

    2010-02-01

    A common strategy to study breast cancer is the use of the preclinical model. These models provide a physiologically relevant and controlled environment in which to study both response to novel treatments and the biology of the cancer. Preclinical models, including the spontaneous tumor model and mammary window chamber model, are very amenable to optical imaging and to this end, we have developed a wide-field functional imaging (WiFI) instrument that is perfectly suited to studying tumor metabolism in preclinical models. WiFI combines two optical imaging modalities, spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI). Our current WiFI imaging protocol consists of multispectral imaging in the near infrared (650-980 nm) spectrum, over a wide (7 cm x 5 cm) field of view. Using SFDI, the spatially-resolved reflectance of sinusoidal patterns projected onto the tissue is assessed, and optical properties of the tissue are determined, which are then used to extract tissue chromophore concentrations in the form of oxy-, deoxy-, and total hemoglobin concentrations, and percentage of lipid and water. In the current study, we employ Monte Carlo simulations of SFDI light propagation in order to characterize the penetration depth of light in both the spontaneous tumor model and mammary window chamber model. Preliminary results suggest that different spatial frequency and wavelength combinations have different penetration depths, suggesting the potential depth sectioning capability of the SFDI component of WiFI.

  8. Performance characterization of megavoltage computed tomography imaging on a helical tomotherapy unit

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Harmon, Joseph F. Jr.; Langen, Katja M.; Willoughby, Twyla R.; Wagner, Thomas H.; Kupelian, Patrick A.

    2005-01-01

    Helical tomotherapy is an innovative means of delivering IGRT and IMRT using a device that combines features of a linear accelerator and a helical computed tomography (CT) scanner. The HI-ART II can generate CT images from the same megavoltage x-ray beam it uses for treatment. These megavoltage CT (MVCT) images offer verification of the patient position prior to and potentially during radiation therapy. Since the unit uses the actual treatment beam as the x-ray source for image acquisition, no surrogate telemetry systems are required to register image space to treatment space. The disadvantage to using the treatment beam for imaging, however, is that the physics of radiation interactions in the megavoltage energy range may force compromises between the dose delivered and the image quality in comparison to diagnostic CT scanners. The performance of the system is therefore characterized in terms of objective measures of noise, uniformity, contrast, and spatial resolution as a function of the dose delivered by the MVCT beam. The uniformity and spatial resolutions of MVCT images generated by the HI-ART II are comparable to that of diagnostic CT images. Furthermore, the MVCT scan contrast is linear with respect to the electron density of material imaged. MVCT images do not have the same performance characteristics as state-of-the art diagnostic CT scanners when one objectively examines noise and low-contrast resolution. These inferior results may be explained, at least partially, by the low doses delivered by our unit; the dose is 1.1 cGy in a 20 cm diameter cylindrical phantom. In spite of the poorer low-contrast resolution, these relatively low-dose MVCT scans provide sufficient contrast to delineate many soft-tissue structures. Hence, these images are useful not only for verifying the patient's position at the time of therapy, but they are also sufficient for delineating many anatomic structures. In conjunction with the ability to recalculate radiotherapy doses on

  9. The Automation and Exoplanet Orbital Characterization from the Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Jinfei Wang, Jason; Graham, James; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry; Kalas, Paul; arriaga, Pauline; Chilcote, Jeffrey K.; De Rosa, Robert J.; Ruffio, Jean-Baptiste; Sivaramakrishnan, Anand; Gemini Planet Imager Exoplanet Survey Collaboration

    2018-01-01

    The Gemini Planet Imager (GPI) Exoplanet Survey (GPIES) is a multi-year 600-star survey to discover and characterize young Jovian exoplanets and their planet forming environments. For large surveys like GPIES, it is critical to have a uniform dataset processed with the latest techniques and calibrations. I will describe the GPI Data Cruncher, an automated data processing framework that is able to generate fully reduced data minutes after the data are taken and can also reprocess the entire campaign in a single day on a supercomputer. The Data Cruncher integrates into a larger automated data processing infrastructure which syncs, logs, and displays the data. I will discuss the benefits of the GPIES data infrastructure, including optimizing observing strategies, finding planets, characterizing instrument performance, and constraining giant planet occurrence. I will also discuss my work in characterizing the exoplanets we have imaged in GPIES through monitoring their orbits. Using advanced data processing algorithms and GPI's precise astrometric calibration, I will show that GPI can achieve one milliarcsecond astrometry on the extensively-studied planet Beta Pic b. With GPI, we can confidently rule out a possible transit of Beta Pic b, but have precise timings on a Hill sphere transit, and I will discuss efforts to search for transiting circumplanetary material this year. I will also discuss the orbital monitoring of other exoplanets as part of GPIES.

  10. In-Situ Characterization of Tissue Blood Flow, Blood Content, and Water State Using New Techniques in Magnetic Resonance Imaging.

    Science.gov (United States)

    Conturo, Thomas Edward

    Tissue blood flow, blood content, and water state have been characterized in-situ with new nuclear magnetic resonance imaging techniques. The sensitivities of standard techniques to the physiologic tissue parameters spin density (N_{rm r}) and relaxation times (T_1 and T_2 ) are mathematically defined. A new driven inversion method is developed so that tissue T_1 and T_2 changes produce cooperative intensity changes, yielding high contrast, high signal to noise, and sensitivity to a wider range of tissue parameters. The actual tissue parameters were imaged by automated collection of multiple-echo data having multiple T _1 dependence. Data are simultaneously fit by three-parameters to a closed-form expression, producing lower inter-parameter correlation and parameter noise than in separate T_1 or T_2 methods or pre-averaged methods. Accurate parameters are obtained at different field strengths. Parametric images of pathology demonstrate high sensitivity to tissue heterogeneity, and water content is determined in many tissues. Erythrocytes were paramagnetically labeled to study blood content and relaxation mechanisms. Liver and spleen relaxation were enhanced following 10% exchange of animal blood volumes. Rapid water exchange between intracellular and extracellular compartments was validated. Erythrocytes occupied 12.5% of renal cortex volume, and blood content was uniform in the liver, spleen and kidney. The magnitude and direction of flow velocity was then imaged. To eliminate directional artifacts, a bipolar gradient technique sensitized to flow in different directions was developed. Phase angle was reconstructed instead of intensity since the former has a 2pi -fold higher dynamic range. Images of flow through curves demonstrated secondary flow with a centrifugally-biased laminar profile and stationary velocity peaks along the curvature. Portal vein flow velocities were diminished or reversed in cirrhosis. Image artifacts have been characterized and removed. The

  11. Development of monoclonal-antibody-based products for medical research and diagnostic imaging. Technical report, 28 January 1987-31 December 1988 (Final)

    International Nuclear Information System (INIS)

    Rhodes, B.A.; Pant, K.D.; Chauhan, N.; Buckelew, J.; Budd, P.

    1989-04-01

    Two major areas of application of monoclonal antibodies were examined: the development of products to support the 'Antibody Delivery System', a parent-specific and variable antibody formula drug system for use in imaging and treatment of cancer, and the development of an antibody-based radiopharmaceutical for imaging occult abscesses and other conditions involving high concentrations of white blood cells. In development of the Antibody Delivery System components, methods for characterization and purification of monoclonal antibodies were developed and validated; a dot immunoassay test, under the name RhoDot (TM) Immunoassay, was developed for matching antibodies to putative tumor specimen: a radioimmunoassay, under the name PhoChek (TM) Quality Control Test Kit for Radiolabeled Antibodies, was developed and commercialized for measuring the immunoreactive fraction of radiolabeled antibodies specific to colorecal cancer; and a patient-specific quality control test was developed. In development of the antibody-based radiopharmaceutical for imaging occult abscesses, a candidate antibody was identified and produced under U.S. Food and Drug Administration standards preparatory to human clinical trials

  12. Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology

    International Nuclear Information System (INIS)

    Doi, Kunio

    2006-01-01

    Over the last 50 years, diagnostic imaging has grown from a state of infancy to a high level of maturity. Many new imaging modalities have been developed. However, modern medical imaging includes not only image production but also image processing, computer-aided diagnosis (CAD), image recording and storage, and image transmission, most of which are included in a picture archiving and communication system (PACS). The content of this paper includes a short review of research and development in medical imaging science and technology, which covers (a) diagnostic imaging in the 1950s, (b) the importance of image quality and diagnostic performance, (c) MTF, Wiener spectrum, NEQ and DQE, (d) ROC analysis, (e) analogue imaging systems, (f) digital imaging systems, (g) image processing, (h) computer-aided diagnosis, (i) PACS, (j) 3D imaging and (k) future directions. Although some of the modalities are already very sophisticated, further improvements will be made in image quality for MRI, ultrasound and molecular imaging. The infrastructure of PACS is likely to be improved further in terms of its reliability, speed and capacity. However, CAD is currently still in its infancy, and is likely to be a subject of research for a long time. (review)

  13. Interlaced photoacoustic and ultrasound imaging system with real-time coregistration for ovarian tissue characterization

    Science.gov (United States)

    Alqasemi, Umar; Li, Hai; Yuan, Guangqian; Kumavor, Patrick; Zanganeh, Saeid; Zhu, Quing

    2014-07-01

    Coregistered ultrasound (US) and photoacoustic imaging are emerging techniques for mapping the echogenic anatomical structure of tissue and its corresponding optical absorption. We report a 128-channel imaging system with real-time coregistration of the two modalities, which provides up to 15 coregistered frames per second limited by the laser pulse repetition rate. In addition, the system integrates a compact transvaginal imaging probe with a custom-designed fiber optic assembly for in vivo detection and characterization of human ovarian tissue. We present the coregistered US and photoacoustic imaging system structure, the optimal design of the PC interfacing software, and the reconfigurable field programmable gate array operation and optimization. Phantom experiments of system lateral resolution and axial sensitivity evaluation, examples of the real-time scanning of a tumor-bearing mouse, and ex vivo human ovaries studies are demonstrated.

  14. Imaging enabled platforms for development of therapeutics

    Science.gov (United States)

    Celli, Jonathan; Rizvi, Imran; Blanden, Adam R.; Evans, Conor L.; Abu-Yousif, Adnan O.; Spring, Bryan Q.; Muzikansky, Alona; Pogue, Brian W.; Finkelstein, Dianne M.; Hasan, Tayyaba

    2011-03-01

    Advances in imaging and spectroscopic technologies have enabled the optimization of many therapeutic modalities in cancer and noncancer pathologies either by earlier disease detection or by allowing therapy monitoring. Amongst the therapeutic options benefiting from developments in imaging technologies, photodynamic therapy (PDT) is exceptional. PDT is a photochemistry-based therapeutic approach where a light-sensitive molecule (photosensitizer) is activated with light of appropriate energy (wavelength) to produce reactive molecular species such as free radicals and singlet oxygen. These molecular entities then react with biological targets such as DNA, membranes and other cellular components to impair their function and lead to eventual cell and tissue death. Development of PDT-based imaging also provides a platform for rapid screening of new therapeutics in novel in vitro models prior to expensive and labor-intensive animal studies. In this study we demonstrate how an imaging platform can be used for strategizing a novel combination treatment strategy for multifocal ovarian cancer. Using an in vitro 3D model for micrometastatic ovarian cancer in conjunction with quantitative imaging we examine dose and scheduling strategies for PDT in combination with carboplatin, a chemotherapeutic agent presently in clinical use for management of this deadly form of cancer.

  15. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu [Solid-State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Konstantinidis, Anastasios C. [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom and Diagnostic Radiology and Radiation Protection, Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX (United Kingdom); Patel, Tushita [Department of Physics, University of Virginia, Charlottesville, Virginia 22908 (United States)

    2015-11-15

    Purpose: Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50–300 e{sup −}) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). Methods: In this study, imaging performance of a large area (29 × 23 cm{sup 2}) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165–400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. Results: The LFW mode shows better DQE at low air kerma (K{sub a} < 10 μGy) and should be used for DBT. At current DBT applications, air kerma (K{sub a} ∼ 10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165–400 μm in size can be resolved using a MGD range of 0.3–1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at

  16. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization

    International Nuclear Information System (INIS)

    Zhao, Chumin; Kanicki, Jerzy; Konstantinidis, Anastasios C.; Patel, Tushita

    2015-01-01

    Purpose: Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50–300 e − ) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). Methods: In this study, imaging performance of a large area (29 × 23 cm 2 ) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165–400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. Results: The LFW mode shows better DQE at low air kerma (K a < 10 μGy) and should be used for DBT. At current DBT applications, air kerma (K a ∼ 10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165–400 μm in size can be resolved using a MGD range of 0.3–1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at MGD of 2.5 m

  17. Towards factor analysis exploration applied to positron emission tomography functional imaging for breast cancer characterization

    International Nuclear Information System (INIS)

    Rekik, W.; Ketata, I.; Sellami, L.; Ben slima, M.; Ben Hamida, A.; Chtourou, K.; Ruan, S.

    2011-01-01

    This paper aims to explore the factor analysis when applied to a dynamic sequence of medical images obtained using nuclear imaging modality, Positron Emission Tomography (PET). This latter modality allows obtaining information on physiological phenomena, through the examination of radiotracer evolution during time. Factor analysis of dynamic medical images sequence (FADMIS) estimates the underlying fundamental spatial distributions by factor images and the associated so-called fundamental functions (describing the signal variations) by factors. This method is based on an orthogonal analysis followed by an oblique analysis. The results of the FADMIS are physiological curves showing the evolution during time of radiotracer within homogeneous tissues distributions. This functional analysis of dynamic nuclear medical images is considered to be very efficient for cancer diagnostics. In fact, it could be applied for cancer characterization, vascularization as well as possible evaluation of response to therapy.

  18. Imaging and development of medicines

    International Nuclear Information System (INIS)

    Syrota, A.

    2000-01-01

    The last developments in medical imaging allow visualization of medicines in organism. Today, these techniques: positron emission tomography (PET) and single photon emission computed tomography (SPECT) play an essential role in the production and the development of new medicines. The medicinal substances labelled with radioisotopes permit to improve the understanding of medicines' action mode. The spectacular advances were observed in the field of medicines acting on the brain (F.M.)

  19. The Airborne Visible / Infrared Imaging Spectrometer AVIS: Design, Characterization and Calibration

    Directory of Open Access Journals (Sweden)

    Wolfram Mauser

    2007-09-01

    Full Text Available The Airborne Visible / Infrared imaging Spectrometer AVIS is a hyperspectralimager designed for environmental monitoring purposes. The sensor, which wasconstructed entirely from commercially available components, has been successfullydeployed during several experiments between 1999 and 2007. We describe the instrumentdesign and present the results of laboratory characterization and calibration of the system’ssecond generation, AVIS-2, which is currently being operated. The processing of the datais described and examples of remote sensing reflectance data are presented.

  20. Next-Generation Theranostic Agents Based on Polyelectrolyte Microcapsules Encoded with Semiconductor Nanocrystals: Development and Functional Characterization

    Science.gov (United States)

    Nifontova, Galina; Zvaigzne, Maria; Baryshnikova, Maria; Korostylev, Evgeny; Ramos-Gomes, Fernanda; Alves, Frauke; Nabiev, Igor; Sukhanova, Alyona

    2018-01-01

    Fabrication of polyelectrolyte microcapsules and their use as carriers of drugs, fluorescent labels, and metal nanoparticles is a promising approach to designing theranostic agents. Semiconductor quantum dots (QDs) are characterized by extremely high brightness and photostability that make them attractive fluorescent labels for visualization of intracellular penetration and delivery of such microcapsules. Here, we describe an approach to design, fabricate, and characterize physico-chemical and functional properties of polyelectrolyte microcapsules encoded with water-solubilized and stabilized with three-functional polyethylene glycol derivatives core/shell QDs. Developed microcapsules were characterized by dynamic light scattering, electrophoretic mobility, scanning electronic microscopy, and fluorescence and confocal microscopy approaches, providing exact data on their size distribution, surface charge, morphological, and optical characteristics. The fluorescence lifetimes of the QD-encoded microcapsules were also measured, and their dependence on time after preparation of the microcapsules was evaluated. The optimal content of QDs used for encoding procedure providing the optimal fluorescence properties of the encoded microcapsules was determined. Finally, the intracellular microcapsule uptake by murine macrophages was demonstrated, thus confirming the possibility of efficient use of developed system for live cell imaging and visualization of microcapsule transportation and delivery within the living cells.

  1. Characterization of continuous and pulsed emission modes of a hybrid micro focus x-ray source for medical imaging applications

    International Nuclear Information System (INIS)

    Ghani, Muhammad U.; Wong, Molly D.; Ren, Liqiang; Wu, Di; Zheng, Bin; Rong, John X.; Wu, Xizeng; Liu, Hong

    2017-01-01

    The aim of this study was to quantitatively characterize a micro focus x-ray tube that can operate in both continuous and pulsed emission modes. The micro focus x-ray source (Model L9181-06, Hamamatsu Photonics, Japan) has a varying focal spot size ranging from 16 µm to 50 µm as the source output power changes from 10 to 39 W. We measured the source output, beam quality, focal spot sizes, kV accuracy, spectra shapes and spatial resolution. Source output was measured using an ionization chamber for various tube voltages (kVs) with varying current (µA) and distances. The beam quality was measured in terms of half value layer (HVL), kV accuracy was measured with a non-invasive kV meter, and the spectra was measured using a compact integrated spectrometer system. The focal spot sizes were measured using a slit method with a CCD detector with a pixel pitch of 22 µm. The spatial resolution was quantitatively measured using the slit method with a CMOS flat panel detector with a 50 µm pixel pitch, and compared to the qualitative results obtained by imaging a contrast bar pattern. The focal spot sizes in the vertical direction were smaller than that of the horizontal direction, the impact of which was visible when comparing the spatial resolution values. Our analyses revealed that both emission modes yield comparable imaging performances in terms of beam quality, spectra shape and spatial resolution effects. There were no significantly large differences, thus providing the motivation for future studies to design and develop stable and robust cone beam imaging systems for various diagnostic applications. - Highlights: • A micro focus x-ray source that operates in both continuous and pulse emission modes was quantitatively characterized. • The source output, beam quality, focal spot measurements, kV accuracy, spectra analyses and spatial resolution were measured. • Our analyses revealed that both emission modes yield comparable imaging performances in terms of beam

  2. Characterization of continuous and pulsed emission modes of a hybrid micro focus x-ray source for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Muhammad U.; Wong, Molly D.; Ren, Liqiang; Wu, Di; Zheng, Bin [Center for Biomedical Engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States); Rong, John X. [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Wu, Xizeng [Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States); Liu, Hong, E-mail: liu@ou.edu [Center for Biomedical Engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2017-05-01

    The aim of this study was to quantitatively characterize a micro focus x-ray tube that can operate in both continuous and pulsed emission modes. The micro focus x-ray source (Model L9181-06, Hamamatsu Photonics, Japan) has a varying focal spot size ranging from 16 µm to 50 µm as the source output power changes from 10 to 39 W. We measured the source output, beam quality, focal spot sizes, kV accuracy, spectra shapes and spatial resolution. Source output was measured using an ionization chamber for various tube voltages (kVs) with varying current (µA) and distances. The beam quality was measured in terms of half value layer (HVL), kV accuracy was measured with a non-invasive kV meter, and the spectra was measured using a compact integrated spectrometer system. The focal spot sizes were measured using a slit method with a CCD detector with a pixel pitch of 22 µm. The spatial resolution was quantitatively measured using the slit method with a CMOS flat panel detector with a 50 µm pixel pitch, and compared to the qualitative results obtained by imaging a contrast bar pattern. The focal spot sizes in the vertical direction were smaller than that of the horizontal direction, the impact of which was visible when comparing the spatial resolution values. Our analyses revealed that both emission modes yield comparable imaging performances in terms of beam quality, spectra shape and spatial resolution effects. There were no significantly large differences, thus providing the motivation for future studies to design and develop stable and robust cone beam imaging systems for various diagnostic applications. - Highlights: • A micro focus x-ray source that operates in both continuous and pulse emission modes was quantitatively characterized. • The source output, beam quality, focal spot measurements, kV accuracy, spectra analyses and spatial resolution were measured. • Our analyses revealed that both emission modes yield comparable imaging performances in terms of beam

  3. Photoacoustic imaging of teeth for dentine imaging and enamel characterization

    Science.gov (United States)

    Periyasamy, Vijitha; Rangaraj, Mani; Pramanik, Manojit

    2018-02-01

    Early detection of dental caries, cracks and lesions is needed to prevent complicated root canal treatment and tooth extraction procedures. Resolution of clinically used x-ray imaging is low, hence optical imaging techniques such as optical coherence tomography, fluorescence imaging, and Raman imaging are widely experimented for imaging dental structures. Photoacoustic effect is used in photon induced photoacoustic streaming technique to debride the root canal. In this study, the extracted teeth were imaged using photoacoustic tomography system at 1064 nm. The degradation of enamel and dentine is an indicator of onset of dental caries. Photoacoustic microscopy (PAM) was used to study the tooth enamel. Images were acquired using acoustic resolution PAM system. This was done to identify microscopic cracks and dental lesion at different anatomical sites (crown and cementum). The PAM tooth profile is an indicator of calcium distribution which is essential for demineralization studies.

  4. Development and Validation of a Classification System to Identify High-Grade Dysplasia and Esophageal Adenocarcinoma in Barrett's Esophagus Using Narrow-Band Imaging

    NARCIS (Netherlands)

    Sharma, Prateek; Bergman, Jacques J. G. H. M.; Goda, Kenichi; Kato, Mototsugu; Messmann, Helmut; Alsop, Benjamin R.; Gupta, Neil; Vennalaganti, Prashanth; Hall, Matt; Konda, Vani; Koons, Ann; Penner, Olga; Goldblum, John R.; Waxman, Irving

    2016-01-01

    Although several classification systems have been proposed for characterization of Barrett's esophagus (BE) surface patterns based on narrow-band imaging (NBI), none have been widely accepted. The Barrett's International NBI Group (BING) aimed to develop and validate an NBI classification system for

  5. Methodological NMR imaging developments to measure cerebral perfusion

    International Nuclear Information System (INIS)

    Pannetier, N.

    2010-12-01

    This work focuses on acquisition techniques and physiological models that allow characterization of cerebral perfusion by MRI. The arterial input function (AIF), on which many models are based, is measured by a technique of optical imaging at the carotid artery in rats. The reproducibility and repeatability of the AIF are discussed and a model function is proposed. Then we compare two techniques for measuring the vessel size index (VSI) in rats bearing a glioma. The reference technique, using a USPIO contrast agent (CA), faces the dynamic approach that estimates this parameter during the passage of a bolus of Gd. This last technique has the advantage of being used clinically. The results obtained at 4.7 T by both approaches are similar and use of VSI in clinical protocols is strongly encouraged at high field. The mechanisms involved (R1 and R2* relaxivities) were then studied using a multi gradient -echoes approach. A multi-echoes spiral sequence is developed and a method that allows the refocusing between each echo is presented. This sequence is used to characterize the impact of R1 effects during the passage of two successive injections of Gd. Finally, we developed a tool for simulating the NMR signal on a 2D geometry taking into account the permeability of the BBB and the CA diffusion in the interstitial space. At short TE, the effect of diffusion on the signal is negligible. In contrast, the effects of diffusion and permeability may be separated at long echo time. Finally we show that during the extravasation of the CA, the local magnetic field homogenization due to the decrease of the magnetic susceptibility difference at vascular interfaces is quickly balanced by the perturbations induced by the increase of the magnetic susceptibility difference at the cellular interfaces in the extravascular compartment. (author)

  6. Image Reconstruction and Evaluation: Applications on Micro-Surfaces and Lenna Image Representation

    Directory of Open Access Journals (Sweden)

    Mohammad Mayyas

    2016-09-01

    Full Text Available This article develops algorithms for the characterization and the visualization of micro-scale features using a small number of sample points, with the goal of mitigating the measurement shortcomings, which are often destructive or time consuming. The popular measurement techniques that are used in imaging of micro-surfaces include the 3D stylus or interferometric profilometry and Scanning Electron Microscopy (SEM, where both could represent the micro-surface characteristics in terms of 3D dimensional topology and greyscale image, respectively. Such images could be highly dense; therefore, traditional image processing techniques might be computationally expensive. We implement the algorithms in several case studies to rapidly examine the microscopic features of micro-surface of Microelectromechanical System (MEMS, and then we validate the results using a popular greyscale image; i.e., “Lenna” image. The contributions of this research include: First, development of local and global algorithm based on modified Thin Plate Spline (TPS model to reconstruct high resolution images of the micro-surface’s topography, and its derivatives using low resolution images. Second, development of a bending energy algorithm from our modified TPS model for filtering out image defects. Finally, development of a computationally efficient technique, referred to as Windowing, which combines TPS and Linear Sequential Estimation (LSE methods, to enhance the visualization of images. The Windowing technique allows rapid image reconstruction based on the reduction of inverse problem.

  7. Characterizing Young Giant Planets with the Gemini Planet Imager: An Iterative Approach to Planet Characterization

    Science.gov (United States)

    Marley, Mark

    2015-01-01

    After discovery, the first task of exoplanet science is characterization. However experience has shown that the limited spectral range and resolution of most directly imaged exoplanet data requires an iterative approach to spectral modeling. Simple, brown dwarf-like models, must first be tested to ascertain if they are both adequate to reproduce the available data and consistent with additional constraints, including the age of the system and available limits on the planet's mass and luminosity, if any. When agreement is lacking, progressively more complex solutions must be considered, including non-solar composition, partial cloudiness, and disequilibrium chemistry. Such additional complexity must be balanced against an understanding of the limitations of the atmospheric models themselves. For example while great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the spectral shape of Y and J spectral bands. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. I will present examples of the iterative process of directly imaged exoplanet characterization as applied to both known and potentially newly discovered exoplanets with a focus on constraints provided by GPI spectra. If a new GPI planet is lacking, as a case study I will discuss HR 8799 c and d will explain why some solutions, such as spatially inhomogeneous cloudiness, introduce their own additional layers of complexity. If spectra of new planets from GPI are available I will explain the modeling process in the context of understanding these new worlds.

  8. Micro-structural characterization of materials using synchrotron hard X-ray imaging techniques

    International Nuclear Information System (INIS)

    Agrawal, Ashish; Singh, Balwant; Kashyap, Yogesh; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2015-01-01

    X-ray imaging has been an important tool to study the materials microstructure with the laboratory based sources however the advent of third generation synchrotron sources has introduced new concepts in X-ray imaging such as phase contrast imaging, micro-tomography, fluorescence imaging and diffraction enhance imaging. These techniques are being used to provide information of materials about their density distribution, porosity, geometrical and morphological characteristics at sub-micron scalewith improved contrast. This paper discusses the development of various imaging techniques at synchrotron based imaging beamline Indus-2 and few recent experiments carried out at this facility

  9. Developing students’ ideas about lens imaging: teaching experiments with an image-based approach

    Science.gov (United States)

    Grusche, Sascha

    2017-07-01

    Lens imaging is a classic topic in physics education. To guide students from their holistic viewpoint to the scientists’ analytic viewpoint, an image-based approach to lens imaging has recently been proposed. To study the effect of the image-based approach on undergraduate students’ ideas, teaching experiments are performed and evaluated using qualitative content analysis. Some of the students’ ideas have not been reported before, namely those related to blurry lens images, and those developed by the proposed teaching approach. To describe learning pathways systematically, a conception-versus-time coordinate system is introduced, specifying how teaching actions help students advance toward a scientific understanding.

  10. Design and development of a content-based medical image retrieval system for spine vertebrae irregularity.

    Science.gov (United States)

    Mustapha, Aouache; Hussain, Aini; Samad, Salina Abdul; Zulkifley, Mohd Asyraf; Diyana Wan Zaki, Wan Mimi; Hamid, Hamzaini Abdul

    2015-01-16

    Content-based medical image retrieval (CBMIR) system enables medical practitioners to perform fast diagnosis through quantitative assessment of the visual information of various modalities. In this paper, a more robust CBMIR system that deals with both cervical and lumbar vertebrae irregularity is afforded. It comprises three main phases, namely modelling, indexing and retrieval of the vertebrae image. The main tasks in the modelling phase are to improve and enhance the visibility of the x-ray image for better segmentation results using active shape model (ASM). The segmented vertebral fractures are then characterized in the indexing phase using region-based fracture characterization (RB-FC) and contour-based fracture characterization (CB-FC). Upon a query, the characterized features are compared to the query image. Effectiveness of the retrieval phase is determined by its retrieval, thus, we propose an integration of the predictor model based cross validation neural network (PMCVNN) and similarity matching (SM) in this stage. The PMCVNN task is to identify the correct vertebral irregularity class through classification allowing the SM process to be more efficient. Retrieval performance between the proposed and the standard retrieval architectures are then compared using retrieval precision (Pr@M) and average group score (AGS) measures. Experimental results show that the new integrated retrieval architecture performs better than those of the standard CBMIR architecture with retrieval results of cervical (AGS > 87%) and lumbar (AGS > 82%) datasets. The proposed CBMIR architecture shows encouraging results with high Pr@M accuracy. As a result, images from the same visualization class are returned for further used by the medical personnel.

  11. Characterization of the Annular Core Research Reactor (ACRR Neutron Radiography System Imaging Plane

    Directory of Open Access Journals (Sweden)

    Kaiser Krista

    2016-01-01

    Full Text Available The Annular Core Research Reactor (ACRR at Sandia National Laboratories (SNL is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1 available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  12. Development of a PET/Cerenkov-light hybrid imaging system

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Hamamura, Fuka; Kato, Katsuhiko; Ogata, Yoshimune; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun; Watabe, Hiroshi

    2014-01-01

    Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light. The dual-head PET system employed a 1.2 × 1.2 × 10 mm 3 GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a 22 Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that 18 F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid imaging

  13. Characterization of beam dynamics in the APS injector rings using time-resolved imaging techniques

    International Nuclear Information System (INIS)

    Yang, B.X.; Lumpkin, A.H.; Borland, M.

    1997-01-01

    Images taken with streak cameras and gated intensified cameras with both time (longitudinal) and spatial (transverse) resolution reveal a wealth of information about circular accelerators. The authors illustrate a novel technique by a sequence of dual-sweep streak camera images taken at a high dispersion location in the booster synchrotron, where the horizontal coordinate is strongly correlated with the particle energy and the open-quotes top-viewclose quotes of the beam gives a good approximation to the particle density distribution in the longitudinal phase space. A sequence of top-view images taken fight after injection clearly shows the beam dynamics in the phase space. We report another example from the positron accumulator ring for the characterization of its beam compression bunching with the 12th harmonic rf

  14. Image analysis and modeling in medical image computing. Recent developments and advances.

    Science.gov (United States)

    Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T

    2012-01-01

    Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body

  15. Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Pia C. Lansåker

    2014-10-01

    Full Text Available Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness dg—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM combined with image analysis as well as by atomic force microscopy (AFM. The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for dg were obtained by SEM with image analysis and by AFM.

  16. Study, development and clinical evaluation of a per-operative γ imager

    International Nuclear Information System (INIS)

    Menard, Laurent

    1999-01-01

    The precise localization and complete surgical ablation of tumors are one of the most important procedures in cancer treatment. In that context, the use, in operating room, of light hand-held detectors associated to radiopharmaceutical compounds for tumor labelling, plays a significant role in assisting surgeons in real-time detection of lesion. The POCI gamma imaging probe (Per-Operative Compact Imager), which is presented here, is precisely dedicated to improve the radio-guided operative cancer surgery efficiency by bringing a new tool discriminating between healthy and pathological tissues. To match the specifications of intra-operative detection, we chose to build our camera around an intensified position sensitive diode which appeared to be particularly suitable to achieve a high resolution small size imager. The optimal geometry of two gamma detection head modules, composed of parallel hole collimators and scintillation crystals, was then investigated by numerical simulations. From these technological solutions, a first prototype of POCI with a 24 mm diameter field of view has been developed. Its characterization has put forward a millimeter spatial resolution and a detection efficiency comparable to that of clinical gamma cameras and in agreement with the numerical predictions. Finally, in collaboration with Gustave Roussy, a first clinical evaluation of the POCI camera has been performed for sentinel ganglion pre-operative localization in patients afflicted by malignant melanomas or breast cancers. The preliminary results have already shown that the performances of POCI are compatible with intraoperative imaging purposes and suggest how this camera can boost the success rate of tumor removal surgeries for other cancerous diseases. (author)

  17. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.; Blaysat, Benoî t; Lubineau, Gilles; Geers, Marc G D

    2013-01-01

    , but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical

  18. Confocal Imaging of porous media

    Science.gov (United States)

    Shah, S.; Crawshaw, D.; Boek, D.

    2012-12-01

    Carbonate rocks, which hold approximately 50% of the world's oil and gas reserves, have a very complicated and heterogeneous structure in comparison with sandstone reservoir rock. We present advances with different techniques to image, reconstruct, and characterize statistically the micro-geometry of carbonate pores. The main goal here is to develop a technique to obtain two dimensional and three dimensional images using Confocal Laser Scanning Microscopy. CLSM is used in epi-fluorescent imaging mode, allowing for the very high optical resolution of features well below 1μm size. Images of pore structures were captured using CLSM imaging where spaces in the carbonate samples were impregnated with a fluorescent, dyed epoxy-resin, and scanned in the x-y plane by a laser probe. We discuss the sample preparation in detail for Confocal Imaging to obtain sub-micron resolution images of heterogeneous carbonate rocks. We also discuss the technical and practical aspects of this imaging technique, including its advantages and limitation. We present several examples of this application, including studying pore geometry in carbonates, characterizing sub-resolution porosity in two dimensional images. We then describe approaches to extract statistical information about porosity using image processing and spatial correlation function. We have managed to obtain very low depth information in z -axis (~ 50μm) to develop three dimensional images of carbonate rocks with the current capabilities and limitation of CLSM technique. Hence, we have planned a novel technique to obtain higher depth information to obtain high three dimensional images with sub-micron resolution possible in the lateral and axial planes.

  19. Using Multispectral False Color Imaging to Characterize Tropical Cyclone Structure and Environment

    Science.gov (United States)

    Cossuth, J.; Bankert, R.; Richardson, K.; Surratt, M. L.

    2016-12-01

    The Naval Research Laboratory's (NRL) tropical cyclone (TC) web page (http://www.nrlmry.navy.mil/TC.html) has provided nearly two decades of near real-time access to TC-centric images and products by TC forecasters and enthusiasts around the world. Particularly, microwave imager and sounder information that is featured on this site provides crucial internal storm structure information by allowing users to perceive hydrometeor structure, providing key details beyond cloud top information provided by visible and infrared channels. Towards improving TC analysis techniques and helping advance the utility of the NRL TC webpage resource, new research efforts are presented. This work demonstrates results as well as the methodology used to develop new automated, objective satellite-based TC structure and intensity guidance and enhanced data fusion imagery products that aim to bolster and streamline TC forecast operations. This presentation focuses on the creation and interpretation of false color RGB composite imagery that leverages the different emissive and scattering properties of atmospheric ice, liquid, and vapor water as well as ocean surface roughness as seen by microwave radiometers. Specifically, a combination of near-realtime data and a standardized digital database of global TCs in microwave imagery from 1987-2012 is employed as a climatology of TC structures. The broad range of TC structures, from pinhole eyes through multiple eyewall configurations, is characterized as resolved by passive microwave sensors. The extraction of these characteristic features from historical data also lends itself to statistical analysis. For example, histograms of brightness temperature distributions allows a rigorous examination of how structural features are conveyed in image products, allowing a better representation of colors and breakpoints as they relate to physical features. Such climatological work also suggests steps to better inform the near-real time application of

  20. Characterization and Diagnostics for Photovoltaic Modules and Arrays

    DEFF Research Database (Denmark)

    Spataru, Sergiu

    part of this work were developed based on two well-known module characterization techniques, namely current-voltage (I-V) characterization, and electroluminescence imaging. he I-V based module diagnostic methods were developed by combining the strengths of light I-V and dark I-V characterization......, characterization and diagnostic methods are increasingly important in identifying and understanding the failures and degradation modes affecting PV modules and arrays, as well as developing relevant tools and tests for assessing the reliability and lifetime of PV modules. This thesis investigates diagnostic...... methods for characterizing and detecting degradation modes in crystalline silicon photovoltaic modules and arrays, and is structured into two parts. The first part of this work is focused on developing PV module characterization and diagnostic methods for use in module diagnostics and failure...

  1. Modeling and characterization of a SPECT system with pinhole collimation for the imaging of small animals

    International Nuclear Information System (INIS)

    Auer, Benjamin

    2017-01-01

    My thesis work focuses on the development of several quantitative reconstruction methods dedicated to small animal Single Photon Emission Computed Tomography (SPECT). The latter is based on modeling the acquisition process of the 4-heads pinhole SPECT system available at Institut Pluridisciplinaire Hubert Curien (IPHC) and fully integrated to the AMISSA platform using Monte Carlo simulations. The system matrix approach, combined with the OS-EM iterative reconstruction algorithm, enabled to characterize the system performances and to compare it to the state of the art. Sensitivity of about 0,027% in the center of the field of view associated to a tomographic spatial resolution of 0, 875 ± 0, 025 mm were obtained. The major drawbacks of Monte Carlo methods led us to develop an efficient and simplified modeling of the physical effects occurring in the subject. My approach based on a system matrix decomposition, associated to a scatter pre-calculated database method, demonstrated an acceptable time for a daily imaging subject follow-up (∼ 1 h), leading to a personalized imaging reconstruction (article accepted). The inherent approximations of the scatter pre-calculated approach (first order scattering modeling and segmented emission) have a moderate impact on the recovery coefficients results, nevertheless a correction of about 10% was achieved. (author) [fr

  2. An image analysis system for near-infrared (NIR) fluorescence lymph imaging

    Science.gov (United States)

    Zhang, Jingdan; Zhou, Shaohua Kevin; Xiang, Xiaoyan; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2011-03-01

    Quantitative analysis of lymphatic function is crucial for understanding the lymphatic system and diagnosing the associated diseases. Recently, a near-infrared (NIR) fluorescence imaging system is developed for real-time imaging lymphatic propulsion by intradermal injection of microdose of a NIR fluorophore distal to the lymphatics of interest. However, the previous analysis software3, 4 is underdeveloped, requiring extensive time and effort to analyze a NIR image sequence. In this paper, we develop a number of image processing techniques to automate the data analysis workflow, including an object tracking algorithm to stabilize the subject and remove the motion artifacts, an image representation named flow map to characterize lymphatic flow more reliably, and an automatic algorithm to compute lymph velocity and frequency of propulsion. By integrating all these techniques to a system, the analysis workflow significantly reduces the amount of required user interaction and improves the reliability of the measurement.

  3. Development of Traceable Phantoms for Improved Image Quantification in Positron Emission Tomography

    Science.gov (United States)

    Zimmerman, Brian

    2014-03-01

    back to primary standards for radioactivity. This talk will describe the methods used to construct, calibrate, and characterize the phantoms, focusing on the preservation of the traceability link to the primary standards of the radionuclides used. The on-going development of specialized traceable phantoms for specific organ dosimetry applications and imaging physics studies will also be discussed.

  4. Development and applications of coherent imaging with improved temporal and spatial resolution

    International Nuclear Information System (INIS)

    Mokso, Rajmund

    2006-01-01

    This work has 2 purposes: the improvement of both temporal and spatial resolution of X-ray tomography. The first part is devoted to the technical aspects of the tomographic technique, particularly at the ESRF (European Synchrotron Radiation Facility) beamline ID19, and the application of the new acquisition scheme to the imaging of liquid foams. We have improved the temporal resolution and field of view of the setup, which allowed to obtain for the first time experimental data with good statistics on three dimensional liquid foams. In the second part of the thesis we have described the Kirkpatrick-Baez focusing system and its first applications. In terms of stability and image quality the developments presented in this part of the thesis provide valuable evidence for the feasibility of phase contrast tomography in magnifying geometry. Since the ultimate goal of this research is to improve the spatial resolution in tomography for applications, four different contributions are important for the characterization of the imaging system: 1) the thermal stability and mechanical imperfections, 2) effects of distortion induced by mirror imperfections, 3) effects of refraction on sample borders, and 4) phase propagation effects with the influence of the magnification. Each of these factors has been studied

  5. Imaging mass spectrometry in drug development and toxicology.

    Science.gov (United States)

    Karlsson, Oskar; Hanrieder, Jörg

    2017-06-01

    During the last decades, imaging mass spectrometry has gained significant relevance in biomedical research. Recent advances in imaging mass spectrometry have paved the way for in situ studies on drug development, metabolism and toxicology. In contrast to whole-body autoradiography that images the localization of radiolabeled compounds, imaging mass spectrometry provides the possibility to simultaneously determine the discrete tissue distribution of the parent compound and its metabolites. In addition, imaging mass spectrometry features high molecular specificity and allows comprehensive, multiplexed detection and localization of hundreds of proteins, peptides and lipids directly in tissues. Toxicologists traditionally screen for adverse findings by histopathological examination. However, studies of the molecular and cellular processes underpinning toxicological and pathologic findings induced by candidate drugs or toxins are important to reach a mechanistic understanding and an effective risk assessment strategy. One of IMS strengths is the ability to directly overlay the molecular information from the mass spectrometric analysis with the tissue section and allow correlative comparisons of molecular and histologic information. Imaging mass spectrometry could therefore be a powerful tool for omics profiling of pharmacological/toxicological effects of drug candidates and toxicants in discrete tissue regions. The aim of the present review is to provide an overview of imaging mass spectrometry, with particular focus on MALDI imaging mass spectrometry, and its use in drug development and toxicology in general.

  6. Thickness-Independent Ultrasonic Imaging Applied to Abrasive Cut-Off Wheels: An Advanced Aerospace Materials Characterization Method for the Abrasives Industry. A NASA Lewis Research Center Technology Transfer Case History

    Science.gov (United States)

    Roth, Don J.; Farmer, Donald A.

    1998-01-01

    Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.

  7. The development of nuclear medicine molecular imaging: An era of multiparametric imaging

    International Nuclear Information System (INIS)

    Zhu Yuyuan; Huang Gang

    2010-01-01

    Nuclear medical molecular imaging is developing toward a multimodality and multitracer future. Abundant complementary data generated from different tracers in different modalities are successfully serving the biological research and clinical treatment. Among the others, PER-MRI has the greatest potential and will be a research of interest in the near future. This article focused on the evolution history on nuclear medicine from single modality to multimodality, single tracer to multitracer. It also gave a brief summary to the identifications, differences, pros and consofmultimodality, multitracer, multiparametric molecular imaging. Issues, problems and challenges concerned with her development and recognition are also discussed. (authors)

  8. Role of diffusion-weighted MR imaging in characterization of cervical lesions

    International Nuclear Information System (INIS)

    Salik, E.; Islim, F.; Ciftci, G.; Bayramoglu, S.; Sever, N.

    2012-01-01

    Full text: Introduction: Characterization of neck lesions is usually not possible without histopathological examination. Objective: To evaluate whether adhesion diffusion coefficient (ADC) values calculated from diffusion weighted magnetic resonance imaging can be used to characterize neck lesions. Material and methods: Diffusion-weighted echo planar MR imaging with b factors of 0, 500 and 1000 sec/mm 2 was prospectively performed with a 1.5 T MR unit in 119 neck lesions in 119 patients. ADC values were measured by 2 radiologists independently on an independent workstation console. Intraclass correlation coefficients were calculated. The mean ADC values were compared using Mann-whitney u test. Results: There was a statistically significant difference between the mean ADC values of benign and malign solid lesions (1.13±0.62 x 10 -3 mm 2 /s and 0.82±0.21 x 10 -3 mm 2 /s respectively). There was no malign lesion with an ADC value more than 1.15 x 10 -3 mm 2 /s. The mean ADC value of malignant lymphomas (0.61±0.14 x 10 -3 ) was significantly smaller than the mean ADC values of other cervical lymphadenopathies. But there was no statistically significant difference between the mean ADC values of reactive, granulomatous and metastatic lymph nodes. Conclusion: ADC values cannot totally distinguish the histopathological subgroups of the neck lesions but shows significant differences between malign and benign lesions.

  9. Integrated automated nanomanipulation and real-time cellular surface imaging for mechanical properties characterization

    Science.gov (United States)

    Eslami, Sohrab; Zareian, Ramin; Jalili, Nader

    2012-10-01

    Surface microscopy of individual biological cells is essential for determining the patterns of cell migration to study the tumor formation or metastasis. This paper presents a correlated and effective theoretical and experimental technique to automatically address the biophysical and mechanical properties and acquire live images of biological cells which are of interest in studying cancer. In the theoretical part, a distributed-parameters model as the comprehensive representation of the microcantilever is presented along with a model of the contact force as a function of the indentation depth and mechanical properties of the biological sample. Analysis of the transfer function of the whole system in the frequency domain is carried out to characterize the stiffness and damping coefficients of the sample. In the experimental section, unlike the conventional atomic force microscope techniques basically using the laser for determining the deflection of microcantilever's tip, a piezoresistive microcantilever serving as a force sensor is implemented to produce the appropriate voltage and measure the deflection of the microcantilever. A micromanipulator robotic system is integrated with the MATLAB® and programmed in such a way to automatically control the microcantilever mounted on the tip of the micromanipulator to achieve the topography of biological samples including the human corneal cells. For this purpose, the human primary corneal fibroblasts are extracted and adhered on a sterilized culture dish and prepared to attain their topographical image. The proposed methodology herein allows an approach to obtain 2D quality images of cells being comparatively cost effective and extendable to obtain 3D images of individual cells. The characterized mechanical properties of the human corneal cell are furthermore established by comparing and validating the phase shift of the theoretical and experimental results of the frequency response.

  10. In vivo photoacoustic imaging of mouse embryos

    Science.gov (United States)

    Laufer, Jan; Norris, Francesca; Cleary, Jon; Zhang, Edward; Treeby, Bradley; Cox, Ben; Johnson, Peter; Scambler, Pete; Lythgoe, Mark; Beard, Paul

    2012-06-01

    The ability to noninvasively image embryonic vascular anatomy in mouse models is an important requirement for characterizing the development of the normal cardiovascular system and malformations in the heart and vascular supply. Photoacoustic imaging, which can provide high resolution non invasive images of the vasculature based upon optical absorption by endogenous hemoglobin, is well suited to this application. In this study, photoacoustic images of mouse embryos were obtained ex vivo and in vivo. The images show intricate details of the embryonic vascular system to depths of up to 10 mm, which allowed whole embryos to be imaged in situ. To achieve this, an all-optical photoacoustic scanner and a novel time reversal image reconstruction algorithm, which provide deep tissue imaging capability while maintaining high spatial resolution and contrast were employed. This technology may find application as an imaging tool for preclinical embryo studies in developmental biology as well as more generally in preclinical and clinical medicine for studying pathologies characterized by changes in the vasculature.

  11. Development and improvement of synthetic imaging methods for non-destructive ultrasonic testing of complex industrial components

    International Nuclear Information System (INIS)

    Bannouf, S.

    2013-01-01

    The goal of this thesis was, initially, to evaluate phased array methods for ultrasonic Non Destructive Testing (NDT) in order to propose optimizations, or to develop new alternative methods. In particular, this works deals with the detection of defects in complex geometries and/or materials parts. The TFM (Total Focusing Method) algorithm provides high resolution images and several representations of a same defect thanks to different reconstruction modes. These properties have been exploited judiciously in order to propose an adaptive imaging method in immersion configuration. We showed that TFM imaging can be used to characterize more precisely the defects. However, this method presents two major drawbacks: the large amount of data to be processed and a low signal-to-noise ratio (SNR), especially in noisy materials. We developed solutions to these two problems. To overcome the limitation caused by the large number of signals to be processed, we propose an algorithm that defines the sparse array to activate. As for the low SNR, it can be now improved by use of virtual sources and a new filtering method based on the DORT method (Decomposition of the Time Reversal Operator). (author) [fr

  12. Benchtop-magnetic resonance imaging (BT-MRI) characterization of push-pull osmotic controlled release systems.

    Science.gov (United States)

    Malaterre, Vincent; Metz, Hendrik; Ogorka, Joerg; Gurny, Robert; Loggia, Nicoletta; Mäder, Karsten

    2009-01-05

    The mechanism of drug release from push-pull osmotic systems (PPOS) has been investigated by Magnetic Resonance Imaging (MRI) using a new benchtop apparatus. The signal intensity profiles of both PPOS layers were monitored non-invasively over time to characterize the hydration and swelling kinetics. The drug release performance was well-correlated to the hydration kinetics. The results show that (i) hydration and swelling critically depend on the tablet core composition, (ii) high osmotic pressure developed by the push layer may lead to bypassing the drug layer and incomplete drug release and (iii) the hydration of both the drug and the push layers needs to be properly balanced to efficiently deliver the drug. MRI is therefore a powerful tool to get insights on the drug delivery mechanism of push-pull osmotic systems, which enable a more efficient optimization of such formulations.

  13. Characterization and MCNP simulation of neutron energy spectrum shift after transmission through strong absorbing materials and its impact on tomography reconstructed image.

    Science.gov (United States)

    Hachouf, N; Kharfi, F; Boucenna, A

    2012-10-01

    An ideal neutron radiograph, for quantification and 3D tomographic image reconstruction, should be a transmission image which exactly obeys to the exponential attenuation law of a monochromatic neutron beam. There are many reasons for which this assumption does not hold for high neutron absorbing materials. The main deviations from the ideal are due essentially to neutron beam hardening effect. The main challenges of this work are the characterization of neutron transmission through boron enriched steel materials and the observation of beam hardening. Then, in our work, the influence of beam hardening effect on neutron tomographic image, for samples based on these materials, is studied. MCNP and FBP simulation are performed to adjust linear attenuation coefficients data and to perform 2D tomographic image reconstruction with and without beam hardening corrections. A beam hardening correction procedure is developed and applied based on qualitative and quantitative analyses of the projections data. Results from original and corrected 2D reconstructed images obtained shows the efficiency of the proposed correction procedure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Development and characterization of new phosphorus based flame ...

    Indian Academy of Sciences (India)

    A study was made in the present investigation on the development and characterization of triphenyl phosphine oxide based phosphorus tetraglycidyl epoxy nanocomposites denoted as 'C' and to find out its suitability for use in high performance applications. The synthesized resin was characterized by Fourier transform ...

  15. Incompletely characterized incidental renal masses: emerging data support conservative management.

    Science.gov (United States)

    Silverman, Stuart G; Israel, Gary M; Trinh, Quoc-Dien

    2015-04-01

    With imaging, most incidental renal masses can be diagnosed promptly and with confidence as being either benign or malignant. For those that cannot, management recommendations can be devised on the basis of a thorough evaluation of imaging features. However, most renal masses are either too small to characterize completely or are detected initially in imaging examinations that are not designed for full evaluation of them. These masses constitute a group of masses that are considered incompletely characterized. On the basis of current published guidelines, many masses warrant additional imaging. However, while the diagnosis of renal cancer at a curable stage remains the first priority, there is the additional need to reduce unnecessary healthcare costs and radiation exposure. As such, emerging data now support foregoing additional imaging for many incompletely characterized renal masses. These data include the low risk of progression to metastases or death for small renal masses that have undergone active surveillance (including biopsy-proven cancers) and a better understanding of how specific imaging features can be used to diagnose their origins. These developments support (a) avoidance of imaging entirely for those incompletely characterized renal masses that are highly likely to be benign cysts and (b) delay of further imaging of small solid masses in selected patients. Although more evidence-based data are needed and comprehensive management algorithms have yet to be defined, these recommendations are medically appropriate and practical, while limiting the imaging of many incompletely characterized incidental renal masses.

  16. Synthesis and characterization of CdO/GrO nanolayer for in vivo imaging

    Directory of Open Access Journals (Sweden)

    Abbas Pardakhty

    2017-07-01

    Full Text Available Objective(s: Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity. Nanoparticles have enabled significant advances in pre-clinical cancer research as drug delivery vectors. Inorganic nanoparticles such as CdO/GrO nanoparticles have novel optical properties that can be used to optimize the signal-to-background ratio. This paper reports on a novel processing route for preparation of CdO/GrO nanolayer and investigation of its optical properties for application in in vivo targeting and imaging.Materials and Methods: Nanostructures were synthesized by reacting cadmium acetate and graphene powder. The effects ofdifferent parameters such as power and time of irradiation were also studied. Finally, the efficiency of CdO/GrO nanostructures as an optical composite was investigated using photoluminescence spectrum irradiation. CdO/GrO nanostructures were characterized by means of X-ray diffraction (XRD, atomic force microscopy (AFM, scanning electron microscopy (SEM, Fourier transform infrared (FT-IR and photoluminescence (PL spectroscopy.Results: According to SEM images, it was found that sublimation temperature had significant effect on morphology and layers. The spectrum shows an emission peak at 523 nm, indicating that CdO/GrO nanolayer can be used for in vivo imaging.Conclusion: The estimated optical band gap energy is an accepted value for application in in vivo imaging using a QD–CdO/GrO nanolayer.

  17. Fuzzy logic algorithm for quantitative tissue characterization of diffuse liver diseases from ultrasound images.

    Science.gov (United States)

    Badawi, A M; Derbala, A S; Youssef, A M

    1999-08-01

    Computerized ultrasound tissue characterization has become an objective means for diagnosis of liver diseases. It is difficult to differentiate diffuse liver diseases, namely cirrhotic and fatty liver by visual inspection from the ultrasound images. The visual criteria for differentiating diffused diseases are rather confusing and highly dependent upon the sonographer's experience. This often causes a bias effects in the diagnostic procedure and limits its objectivity and reproducibility. Computerized tissue characterization to assist quantitatively the sonographer for the accurate differentiation and to minimize the degree of risk is thus justified. Fuzzy logic has emerged as one of the most active area in classification. In this paper, we present an approach that employs Fuzzy reasoning techniques to automatically differentiate diffuse liver diseases using numerical quantitative features measured from the ultrasound images. Fuzzy rules were generated from over 140 cases consisting of normal, fatty, and cirrhotic livers. The input to the fuzzy system is an eight dimensional vector of feature values: the mean gray level (MGL), the percentile 10%, the contrast (CON), the angular second moment (ASM), the entropy (ENT), the correlation (COR), the attenuation (ATTEN) and the speckle separation. The output of the fuzzy system is one of the three categories: cirrhosis, fatty or normal. The steps done for differentiating the pathologies are data acquisition and feature extraction, dividing the input spaces of the measured quantitative data into fuzzy sets. Based on the expert knowledge, the fuzzy rules are generated and applied using the fuzzy inference procedures to determine the pathology. Different membership functions are developed for the input spaces. This approach has resulted in very good sensitivities and specificity for classifying diffused liver pathologies. This classification technique can be used in the diagnostic process, together with the history

  18. Image-Based Three-Dimensional Analysis to Characterize the Texture of Porous Scaffolds

    Directory of Open Access Journals (Sweden)

    Diana Massai

    2014-01-01

    Full Text Available The aim of the present study is to characterize the microstructure of composite scaffolds for bone tissue regeneration containing different ratios of chitosan/gelatin blend and bioactive glasses. Starting from realistic 3D models of the scaffolds reconstructed from micro-CT images, the level of heterogeneity of scaffold architecture is evaluated performing a lacunarity analysis. The results demonstrate that the presence of the bioactive glass component affects not only macroscopic features such as porosity, but mainly scaffold microarchitecture giving rise to structural heterogeneity, which could have an impact on the local cell-scaffold interaction and scaffold performances. The adopted approach allows to investigate the scale-dependent pore distribution within the scaffold and the related structural heterogeneity features, providing a comprehensive characterization of the scaffold texture.

  19. Screen film vs full-field digital mammography: image quality, detectability and characterization of lesions

    International Nuclear Information System (INIS)

    Obenauer, S.; Luftner-Nagel, S.; Heyden, D. von; Baum, F.; Grabbe, E.; Munzel, U.

    2002-01-01

    The objective of this study was to compare screen-film mammography (SFM) to full-field digital mammography (FFDM) regarding image quality as well as detectability and characterization of lesions using equivalent images of the same patient acquired with both systems. Two mammography units were used, one with a screen-film system (Senographe DMR) and the other with a digital detector (Senographe 2000D, both GEMS). Screen-film and digital mammograms were performed on 55 patients with cytologically or histologically proven tumors on the same day. Together with these, 75 digital mammograms of patients without tumor and the corresponding previous screen-film mammograms not older than 1.5 years were reviewed by three observers in a random order. Contrast, exposure, and the presence of artifacts were evaluated. Different details, such as the skin, the retromamillary region, and the parenchymal structures, were judged according to a three-point ranking scale. Finally, the detectability of microcalcifications and lesions were compared and correlated to histology. Image contrast was judged to be good in 76%, satisfactory in 20%, and unsatisfactory in 4% of screen-film mammograms. Digital mammograms were judged to be good in 99% and unsatisfactory in 1% of cases. Improper exposure of screen-film system occurred in 18% (10% overexposed and 8% underexposed). Digital mammograms were improperly exposed in 4% of all cases but were of acceptable quality after post-processing. Artifacts, most of them of no significance, were found in 78% of screen-film and in none of the digital mammograms. Different anatomical regions, such as the skin, the retromamillary region, and dense parenchymal areas, were better visualized in digital than in screen-film mammography. All malignant tumors were seen by the three radiologists; however, digital mammograms allowed a better characterization of these lesions to the Breast Imaging Reporting and Data System (BI-RADSZZZ;) categories (FFDM better than

  20. Characterization of impact damage in metallic/nonmetallic composites using x-ray computed tomography imaging

    International Nuclear Information System (INIS)

    Green, William H.; Wells, Joseph M.

    1999-01-01

    Characterizing internal impact damage in composites can be difficult, especially in structurally complex composites or those consisting of many materials. Many methods for nondestructive inspection/nondestructive testing (NDI/NDT) of materials have been known and in use for many years, including x-ray film, real-time, and digital radiographic techniques, and ultrasonic techniques. However, these techniques are generally not capable of three-dimensional (3D) mapping of complex damage patterns, which is necessary to visualize and understand damage cracking modes. Conventional x-ray radiography suffers from the loss of 3D information. Structural complexity and signal dispersion in materials with many interfaces significantly effect ultrasonic inspection techniques. This makes inspection scan interpretation difficult, especially in composites containing a number of different materials (i.e., polymer, ceramic, and metallic). X-ray computed tomography (CT) is broadly applicable to any material or test object through which a beam of penetrating radiation may be passed and detected, including metals, plastics, ceramics, metallic/nonmetallic composites, and assemblies. The principal advantage of CT is that it provides densitometric (that is, radiological density and geometry) images of thin cross sections through an object. Because of the absence of structural superposition, images are much easier to interpret than conventional radiological images. The user can quickly learn to read CT data because images correspond more closely to the way the human mind visualizes 3D structures than projection radiology (that is, film radiography, real-time radiography (RTR), and digital radiography (DR)). Any number of CT images, or slices, from scanning an object can be volumetrically reconstructed to produce a 3D attenuation map of the object. The 3D attenuation data can be rendered using multiplanar or 3D solid visualization. In multiplanar visualization there are four planes of view

  1. The imaging performance of flash memory masks characterized with AIMS

    Science.gov (United States)

    van Setten, Eelco; Wismans, Onno; Grim, Kees; Finders, Jo; Dusa, Mircea; Birkner, Robert; Richter, Rigo; Scherübl, Thomas

    2009-04-01

    Flash memory is an important driver of the lithography roadmap, with its dramatic acceleration in dimensional shrink, pushing for ever smaller feature sizes. The introduction of hyper-NA immersion lithography has brought the 45nm node and below within reach for memory makers using single exposure. At these feature sizes mask topology and the material properties of the film stack on the mask play an important role on imaging performance. Furthermore, the break up of the array pitch regularity in the NAND-type flash memory cell by two thick wordlines and a central space, leads to feature-center placement (overlay) errors, that are inherent to the design. An integral optimization approach is needed to mitigate these effects and to control both the CD and placement errors tightly. In this paper we will show that aerial image measurements at mask-level are useful for characterizing the gate layer of a NAND-Flash design before exposure. The aerial image measurements are performed with the AIMSTM 45-193i. and compared to CD measurements on the wafer obtained with an XT:1900Gi hyper-NA immersion system. An excellent correlation is demonstrated for feature-center placement errors and CD variations across the mask (see Figure 1) for several features in the gate layer down to 40nm half pitch. This shows the potential to use aerial image measurements at mask-level in combination with correction techniques on the photomask, like the CDC200 tool in combination with exposure tool correction techniques, such as DoseMapperTM, to improve both across field and across wafer CD uniformity of critical layers.

  2. Molecular imaging II

    International Nuclear Information System (INIS)

    Semmler, Wolfhard; Schwaiger, Markus

    2008-01-01

    The aim of this textbook of molecular imaging is to provide an up to date review of this rapidly growing field and to discuss basic methodological aspects necessary for the interpretation of experimental and clinical results. Emphasis is placed on the interplay of imaging technology and probe development, since the physical properties of the imaging approach need to be closely linked with the biologic application of the probe (i.e. nanoparticles and microbubbles). Various chemical strategies are discussed and related to the biologic applications. Reporter-gene imaging is being addressed not only in experimental protocols, but also first clinical applications are discussed. Finally, strategies of imaging to characterize apoptosis and angiogenesis are described and discussed in the context of possible clinical translation. (orig.)

  3. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Biri, Sándor; Rácz, Richárd; Pálinkás, József [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/c, H-4026 Debrecen (Hungary); Caliri, Claudia [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università degli Studi di Catania, Dip.to di Fisica e Astronomia, via Santa Sofia 64, 95123 Catania (Italy); Romano, Francesco Paolo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy); Torrisi, Giuseppe [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, DIIES, Via Graziella, I-89100 Reggio Calabria (Italy)

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  4. Multi-Scale Characterization of the PEPCK-Cmus Mouse through 3D Cryo-Imaging

    Directory of Open Access Journals (Sweden)

    Debashish Roy

    2010-01-01

    Full Text Available We have developed, for the Case 3D Cryo-imaging system, a specialized, multiscale visualization scheme which provides color-rich volume rendering and multiplanar reformatting enabling one to visualize an entire mouse and zoom in to organ, tissue, and microscopic scales. With this system, we have anatomically characterized, in 3D, from whole animal to tissue level, a transgenic mouse and compared it with its control. The transgenic mouse overexpresses the cytosolic form of phosphoenolpyruvate carboxykinase (PEPCK-C in its skeletal muscle and is capable of greatly enhanced physical endurance and has a longer life-span and reproductive life as compared to control animals. We semiautomatically analyzed selected organs such as kidney, heart, adrenal gland, spleen, and ovaries and found comparatively enlarged heart, much less visceral, subcutaneous, and pericardial adipose tissue, and higher tibia-to-femur ratio in the transgenic animal. Microscopically, individual skeletal muscle fibers, fine mesenteric blood vessels, and intestinal villi, among others, were clearly seen.

  5. Fabrication and characterization of silica aerogel as synthetic tissues for medical imaging phantoms

    Science.gov (United States)

    In, Eunji; Naguib, Hani

    2015-05-01

    Medical imaging plays an important role in the field of healthcare industry both in clinical settings and in research and development. It is used in prevention, early detection of disease, in choosing the optimal treatment, during surgical interventions and monitoring of the treatment effects. Despite much advancement in the last few decades, rapid change on its technology development and variety of imaging parameters that differ with the manufacturer restrict its further development. Imaging phantom is a calibrating medium that is scanned or imaged in the field of medical imaging to evaluate, analyze and tune the performance of various imaging devices. A phantom used to evaluate an imaging device should respond in a similar manner to how human tissue and organs would act in that specific imaging modality. There has been many research on the phantom materials; however, there has been no attempt to study on the material that mimics the structure of lung or fibrous tissue. So with the need for development of gel with such structure, we tried to mimic this structure with aerogel. Silica aerogels have unique properties that include low density (0.003g/cm) and mesoporosity (pore size 2-50nm), with a high thermal insulation value (0.005W/mK) and high surface area (500-1200m-2/g).] In this study, we cross-linked with di-isocyanate, which is a group in polyurethane to covalently bond the polymer to the surface of silica aerogel to enhance the mechanical properties. By formation of covalent bonds, the structure can be reinforced by widening the interparticle necks while minimally reducing porosity.

  6. Multi-scale Multi-dimensional Imaging and Characterization of Oil Shale Pyrolysis

    Science.gov (United States)

    Gao, Y.; Saif, T.; Lin, Q.; Al-Khulaifi, Y.; Blunt, M. J.; Bijeljic, B.

    2017-12-01

    The microstructural evaluation of fine grained rocks is challenging which demands the use of several complementary methods. Oil shale, a fine-grained organic-rich sedimentary rock, represents a large and mostly untapped unconventional hydrocarbon resource with global reserves estimated at 4.8 trillion barrels. The largest known deposit is the Eocene Green River Formation in Western Colorado, Eastern Utah, and Southern Wyoming. An improved insight into the mineralogy, organic matter distribution and pore network structure before, during and after oil shale pyrolysis is critical to understanding hydrocarbon flow behaviour and improving recovery. In this study, we image Mahogany zone oil shale samples in two dimensions (2-D) using scanning electron microscopy (SEM), and in three dimensions (3-D) using focused ion beam scanning electron microscopy (FIB-SEM), laboratory-based X-ray micro-tomography (µCT) and synchrotron X-ray µCT to reveal a complex and variable fine grained microstructure dominated by organic-rich parallel laminations which are tightly bound in a highly calcareous and heterogeneous mineral matrix. We report the results of a detailed µCT study of the Mahogany oil shale with increasing pyrolysis temperature. The physical transformation of the internal microstructure and evolution of pore space during the thermal conversion of kerogen in oil shale to produce hydrocarbon products was characterized. The 3-D volumes of pyrolyzed oil shale were reconstructed and image processed to visualize and quantify the volume and connectivity of the pore space. The results show a significant increase in anisotropic porosity associated with pyrolysis between 300-500°C with the formation of micron-scale connected pore channels developing principally along the kerogen-rich lamellar structures.

  7. Image-Based 3-Dimensional Characterization of Laryngotracheal Stenosis in Children

    Directory of Open Access Journals (Sweden)

    Lee S. McDaniel PhD

    2018-01-01

    Full Text Available Objectives Describe a technique for the description and classification of laryngotracheal stenosis in children using 3-dimensional reconstructions of the airway from computed tomography (CT scans. Study Design Cross-sectional. Setting Academic tertiary care children’s hospital. Subjects and Methods Three-dimensional models of the subglottic airway lumen were created using CT scans from 54 children undergoing imaging for indications other than airway disease. The base lumen models were deformed in software to simulate subglottic airway segments with 0%, 25%, 50%, and 75% stenoses for each subject. Statistical analysis of the airway geometry was performed using metrics extracted from the lumen centerlines. The centerline analysis was used to develop a system for subglottic stenosis assessment and classification from patient-specific airway imaging. Results The scaled hydraulic diameter gradient metric derived from intersectional changes in the lumen can be used to accurately classify and quantitate subglottic stenosis in the airway based on CT scan imaging. Classification is most accurate in the clinically relevant 25% to 75% range of stenosis. Conclusions Laryngotracheal stenosis is a complex diagnosis requiring an understanding of the airway lumen configuration, anatomical distortions of the airway framework, and alterations of respiratory aerodynamics. Using image-based airway models, we have developed a metric that accurately captures subglottis patency. While not intended to replace endoscopic evaluation and existing staging systems for laryngotracheal stenosis, further development of these techniques will facilitate future studies of upper airway computational fluid dynamics and the clinical evaluation of airway disease.

  8. Using In-vivo Fluorescence Imaging in Personalized Cancer Diagnostics and Therapy, an Image and Treat Paradigm

    Science.gov (United States)

    Ardeshirpour, Yasaman; Chernomordik, Victor; Capala, Jacek; Hassan, Moinuddin; Zielinsky, Rafal; Griffiths, Gary; Achilefu, Samuel; Smith, Paul; Gandjbakhckhe, Amir

    2013-01-01

    The major goal in developing drugs targeting specific tumor receptors, such as Monoclonal AntiBodies (MAB), is to make a drug compound that targets selectively the cancer-causing biomarkers, inhibits their functionality, and/or delivers the toxin specifically to the malignant cells. Recent advances in MABs show that their efficacy depends strongly on characterization of tumor biomarkers. Therefore, one of the main tasks in cancer diagnostics and treatment is to develop non-invasive in-vivo imaging techniques for detection of cancer biomarkers and monitoring their down regulation during the treatment. Such methods can potentially result in a new imaging and treatment paradigm for cancer therapy. In this article we have reviewed fluorescence imaging approaches, including those developed in our group, to detect and monitor Human Epidermal Growth Factor 2 (HER2) receptors before and during therapy. Transition of these techniques from the bench to bedside is the ultimate goal of our project. Similar approaches can be used potentially for characterization of other cancer related cell biomarkers. PMID:22066595

  9. Automated characterization of glass microspheres used for laser fusion experiments

    International Nuclear Information System (INIS)

    Tajima, Tsuyoshi; Norimatsu, Takayoshi; Izawa, Yasukazu; Yamanaka, Chiyoe.

    1985-01-01

    In laser fusion experiments glass microspheres of 100 to 1000 μm in diameter and 1 to 20 μm in wall thickness are most commonly used as fuel containers. The glass microspheres should be characterized precisely to meet stringent experimental requirements. Much time is consumed to characterize and select good quality spheres among thousands of spheres. We have developed an automated system to characterize and select glass microspheres. The system consists of charger, quadrupole rail, image processing and X-Y stage control with micro-computer. Total processing time primarily depends on the time required for image analysis, which should be compromised with the accuracy of characterization. The time for simple characterization requires about 10 sec. at present. (author)

  10. Development of Omnidirectional Gamma-imager with Stacked Scintillators

    International Nuclear Information System (INIS)

    Takahashi, Tone; Kawarabayashi, Jun; Tomita, Hideki; Iguchi, Tetsuo; Takada, Eiji

    2013-06-01

    In the severe accident at nuclear power plant, a rapid measurement of radioactive fallout is required. So we have developed a Compton imager with high efficiency and omni-directional sensitivity. Three dimensional position resolutions were evaluated about several kinds of scintillators. The all-directional imaging was demonstrated by the simulation of detection of 137 Cs point source. Imaging quality with angle resolution of 28 deg. and detection efficiency of 1.1% was estimated. (authors)

  11. Characterization of cytochrome c as marker for retinal cell degeneration by uv/vis spectroscopic imaging

    Science.gov (United States)

    Hollmach, Julia; Schweizer, Julia; Steiner, Gerald; Knels, Lilla; Funk, Richard H. W.; Thalheim, Silko; Koch, Edmund

    2011-07-01

    Retinal diseases like age-related macular degeneration have become an important cause of visual loss depending on increasing life expectancy and lifestyle habits. Due to the fact that no satisfying treatment exists, early diagnosis and prevention are the only possibilities to stop the degeneration. The protein cytochrome c (cyt c) is a suitable marker for degeneration processes and apoptosis because it is a part of the respiratory chain and involved in the apoptotic pathway. The determination of the local distribution and oxidative state of cyt c in living cells allows the characterization of cell degeneration processes. Since cyt c exhibits characteristic absorption bands between 400 and 650 nm wavelength, uv/vis in situ spectroscopic imaging was used for its characterization in retinal ganglion cells. The large amount of data, consisting of spatial and spectral information, was processed by multivariate data analysis. The challenge consists in the identification of the molecular information of cyt c. Baseline correction, principle component analysis (PCA) and cluster analysis (CA) were performed in order to identify cyt c within the spectral dataset. The combination of PCA and CA reveals cyt c and its oxidative state. The results demonstrate that uv/vis spectroscopic imaging in conjunction with sophisticated multivariate methods is a suitable tool to characterize cyt c under in situ conditions.

  12. Curiosity’s robotic arm-mounted Mars Hand Lens Imager (MAHLI): Characterization and calibration status

    Science.gov (United States)

    Edgett, Kenneth S.; Caplinger, Michael A.; Maki, Justin N.; Ravine, Michael A.; Ghaemi, F. Tony; McNair, Sean; Herkenhoff, Kenneth E.; Duston, Brian M.; Wilson, Reg G.; Yingst, R. Aileen; Kennedy, Megan R.; Minitti, Michelle E.; Sengstacken, Aaron J.; Supulver, Kimberley D.; Lipkaman, Leslie J.; Krezoski, Gillian M.; McBride, Marie J.; Jones, Tessa L.; Nixon, Brian E.; Van Beek, Jason K.; Krysak, Daniel J.; Kirk, Randolph L.

    2015-01-01

    MAHLI (Mars Hand Lens Imager) is a 2-megapixel, Bayer pattern color CCD camera with a macro lens mounted on a rotatable turret at the end of the 2-meters-long robotic arm aboard the Mars Science Laboratory rover, Curiosity. The camera includes white and longwave ultraviolet LEDs to illuminate targets at night. Onboard data processing services include focus stack merging and data compression. Here we report on the results and status of MAHLI characterization and calibration, covering the pre-launch period from August 2008 through the early months of the extended surface mission through February 2015. Since landing in Gale crater in August 2012, MAHLI has been used for a wide range of science and engineering applications, including distinction among a variety of mafic, siliciclastic sedimentary rocks; investigation of grain-scale rock, regolith, and eolian sediment textures and structures; imaging of the landscape; inspection and monitoring of rover and science instrument hardware concerns; and supporting geologic sample selection, extraction, analysis, delivery, and documentation. The camera has a dust cover and focus mechanism actuated by a single stepper motor. The transparent cover was coated with a thin film of dust during landing, thus MAHLI is usually operated with the cover open. The camera focuses over a range from a working distance of 2.04 cm to infinity; the highest resolution images are at 13.9 µm per pixel; images acquired from 6.9 cm show features at the same scale as the Mars Exploration Rover Microscopic Imagers at 31 µm/pixel; and 100 µm/pixel is achieved at a working distance of ~26.5 cm. The very highest resolution images returned from Mars permit distinction of high contrast silt grains in the 30–40 µm size range. MAHLI has performed well; the images need no calibration in order to achieve most of the investigation’s science and engineering goals. The positioning and repeatability of robotic arm placement of the MAHLI camera head have

  13. Development and characterization of multifunctional nanoparticles for drug delivery to cancer cells

    Science.gov (United States)

    Nahire, Rahul Rajaram

    Lipid and polymeric nanoparticles, although proven to be effective drug delivery systems compared to free drugs, have shown considerable limitations pertaining to their uptake and release at tumor sites. Spatial and temporal control over the delivery of anticancer drugs has always been challenge to drug delivery scientists. Here, we have developed and characterized multifunctional nanoparticles (liposomes and polymersomes) which are targeted specifically to cancer cells, and release their contents with tumor specific internal triggers. To enable these nanoparticles to be tracked in blood circulation, we have imparted them with echogenic characteristic. Echogenicity of nanoparticles is evaluated using ultrasound scattering and imaging experiments. Nanoparticles demonstrated effective release with internal triggers such as elevated levels of MMP-9 enzyme found in the extracellular matrix of tumor cells, decreased pH of lysosome, and differential concentration of reducing agents in cytosol of cancer cells. We have also successfully demonstrated the sensitivity of these particles towards ultrasound to further enhance the release with internal triggers. To ensure the selective uptake by folate receptor- overexpressing cancer cells, we decorated these nanoparticles with folic acid on their surface. Fluorescence microscopic images showed significantly higher uptake of folate-targeted nanoparticles by MCF-7 (breast cancer) and PANC-1 (pancreatic cancer) cells compared to particles without any targeting ligand on their surface. To demonstrate the effectiveness of these nanoparticles to carry the drugs inside and kill cancer cells, we encapsulated doxorubicin and/or gemcitabine employing the pH gradient method. Drug loaded nanoparticles showed significantly higher killing of the cancer cells compared to their non-targeted counterparts and free drugs. With further development, these nanoparticles certainly have potential to be used as a multifunctional nanocarriers for image

  14. Development of Optically Active Nanostructures for Potential Applications in Sensing, Therapeutics and Imaging

    Science.gov (United States)

    Joshi, Padmanabh

    Materials at nanoscale are finding manifold applications in the various fields like sensing, plasmonics, therapeutics, to mention a few. Large amount of development has taken place regarding synthesis and exploring the novel applications of the various types of nanomaterials like organic, inorganic and hybrid of both. Yet, it is believed that the full potential of different nanomaterials is yet to be fully established stimulating researchers to explore more in the field of nanotechnology. Building on the same premise, in the following studies we have developed the nanomaterials in the class of optically active nanoparticles. First part of the study we have successfully designed, synthesized, and characterized Ag-Fe3O4 nanocomposite substrate for potential applications in quantitative Surface Enhanced Raman Scattering (SERS) measurements. Quantitative SERS-based detection of dopamine was performed successfully. In subsequent study, facile, single-step synthesis of polyethyleneimine (PEI) coated lanthanide based NaYF4 (Yb, Er) nanoparticles was developed and their application as potential photodynamic therapy agent was studied using excitations by light in near infra-red and visible region. In the following and last study, synthesis and characterization of the conjugated polymer nanoparticles was attempted successfully. Functionalization of the conjugated nanoparticles, which is a bottleneck for their potential applications, was successfully performed by encapsulating them in the silica nanoparticles, surface of which was then functionalized by amine group. Three types of optically active nanoparticles were developed for potential applications in sensing, therapeutics and imaging.

  15. Detection and characterization with short TI inversion recovery MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Komata, Kaori (Nippon Medical School, Tokyo (Japan))

    1994-10-01

    Short TI inversion recovery magnetic resonance imaging (STIR-MRI) with spin echo (SE) T1- and T2-weighted images of the pelvis was investigated to evaluate its usefulness in detecting and characterizing endometriosis. Thirty-one women suspected of having the disease were studied in detail. MR findings with and without STIR-MRI were correlated with the results of laparotomy (27 women) and laparoscopy (4 women). Surgery revealed endometriosis in 29 women (17 ovarian chocolate cysts, 22 intestinal adhesions, 14 cul-de-sac obliterations and 12 adenomyosis). The other two women did not have endometriosis (uterine prolapse in one and submucosal leiomyoma in one). An ovarian chocolate cyst was diagnosed when a T1-elongated lesion showed shading, loculus or a low intensity rim on SE MR images, and a low intensity rim on STIR-MRI. Only 12 of the 17 chocolate cysts and neither of the two hemorrhagic corpus lutein cysts were correctly diagnosed on SE MR images, whereas 18 of these 19 cysts were correctly diagnosed because of the low intensity rim on STIR-MRI. In the pathological analysis, the rim was found to be a fibrous capsule and there were many macrophages which phagocytized hemosiderin. For the assessment of ovarian chocolate cysts, accuracy improved from 63.2% to 94.7%. As for the adhesion between the intestine and the uterus, specificity improved from 61.9% to 90.5% and accuracy improved from 67.7% to 93.5% when STRI-MRI was used. For the assessment of the cul-de-sac obliteration, accuracy improved from 67.7% to 83.8% although [chi][sup 2] analysis showed no significance. The major factors for the improved accuracy with STIR-MRI are the decrease of the motion artifact owing to the suppression of the fat signal, decreased chemical shift artifact and accurate differentiation of fat from hemorrhagic component. Therefore, STIR-MRI is a useful and reliable procedure and should be used together with SE T1-, T2-weighted images for the assessment of endometriosis. (author).

  16. Detection and characterization with short TI inversion recovery MR imaging

    International Nuclear Information System (INIS)

    Komata, Kaori

    1994-01-01

    Short TI inversion recovery magnetic resonance imaging (STIR-MRI) with spin echo (SE) T1- and T2-weighted images of the pelvis was investigated to evaluate its usefulness in detecting and characterizing endometriosis. Thirty-one women suspected of having the disease were studied in detail. MR findings with and without STIR-MRI were correlated with the results of laparotomy (27 women) and laparoscopy (4 women). Surgery revealed endometriosis in 29 women (17 ovarian chocolate cysts, 22 intestinal adhesions, 14 cul-de-sac obliterations and 12 adenomyosis). The other two women did not have endometriosis (uterine prolapse in one and submucosal leiomyoma in one). An ovarian chocolate cyst was diagnosed when a T1-elongated lesion showed shading, loculus or a low intensity rim on SE MR images, and a low intensity rim on STIR-MRI. Only 12 of the 17 chocolate cysts and neither of the two hemorrhagic corpus lutein cysts were correctly diagnosed on SE MR images, whereas 18 of these 19 cysts were correctly diagnosed because of the low intensity rim on STIR-MRI. In the pathological analysis, the rim was found to be a fibrous capsule and there were many macrophages which phagocytized hemosiderin. For the assessment of ovarian chocolate cysts, accuracy improved from 63.2% to 94.7%. As for the adhesion between the intestine and the uterus, specificity improved from 61.9% to 90.5% and accuracy improved from 67.7% to 93.5% when STRI-MRI was used. For the assessment of the cul-de-sac obliteration, accuracy improved from 67.7% to 83.8% although χ 2 analysis showed no significance. The major factors for the improved accuracy with STIR-MRI are the decrease of the motion artifact owing to the suppression of the fat signal, decreased chemical shift artifact and accurate differentiation of fat from hemorrhagic component. Therefore, STIR-MRI is a useful and reliable procedure and should be used together with SE T1-, T2-weighted images for the assessment of endometriosis. (author)

  17. Characterization of a dielectric phantom for high-field magnetic resonance imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Qi, E-mail: Qi.Duan@nih.gov; Duyn, Jeff H.; Gudino, Natalia; Zwart, Jacco A. de; Gelderen, Peter van [Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 (United States); Sodickson, Daniel K.; Brown, Ryan [The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016 (United States)

    2014-10-15

    Purpose: In this work, a generic recipe for an inexpensive and nontoxic phantom was developed within a range of biologically relevant dielectric properties from 150 MHz to 4.5 GHz. Methods: The recipe includes deionized water as the solvent, NaCl to primarily control conductivity, sucrose to primarily control permittivity, agar–agar to gel the solution and reduce heat diffusivity, and benzoic acid to preserve the gel. Two hundred and seventeen samples were prepared to cover the feasible range of NaCl and sucrose concentrations. Their dielectric properties were measured using a commercial dielectric probe and were fitted to a 3D polynomial to generate a recipe describing the properties as a function of NaCl concentration, sucrose concentration, and frequency. Results: Results indicated that the intuitive linear and independent relationships between NaCl and conductivity and between sucrose and permittivity are not valid. A generic polynomial recipe was developed to characterize the complex relationship between the solutes and the resulting dielectric values and has been made publicly available as a web application. In representative mixtures developed to mimic brain and muscle tissue, less than 2% difference was observed between the predicted and measured conductivity and permittivity values. Conclusions: It is expected that the recipe will be useful for generating dielectric phantoms for general magnetic resonance imaging (MRI) coil development at high magnetic field strength, including coil safety evaluation as well as pulse sequence evaluation (including B{sub 1}{sup +} mapping, B{sub 1}{sup +} shimming, and selective excitation pulse design), and other non-MRI applications which require biologically equivalent dielectric properties.

  18. Imaging for cancer therapy

    International Nuclear Information System (INIS)

    Schlegel, W.

    2005-01-01

    During the last three decades, 3D imaging with X-ray computerized tomography (CT) and magnetic resonance imaging (MRI) were introduced to characterize tumour morphology for improved delineation of target volumes. At present, the time has come to also start the assessment and correction of the temporal alterations of the target volume. This is leading to 'image guided radiotherapy' (IGRT), which is characterized by the integration of 2D and 3D imaging modalities into the radiotherapy workflow. The vision is to detect deformations and motion between radiotherapy fractions (inter-fractional IGRT) and during beam delivery (intra fractional IGRT). Considering these changes and correcting for them either by gating or tracking of the irradiation beam is leading a step further to 'time adapted radiotherapy' (ART). Many institutions are currently addressing this technical challenge, with the goal of implementing IGRT and ART into radiotherapy as a faster, safer and more efficient treatment technique. Another innovation, which is currently coming up is 'biological adaptive radiotherapy'. The background for this approach is the fact, that the old hypothesis of radiotherapy assuming that the tumor consists of homogenous tissue and therefore a homogeneous dose distribution has to be delivered to the target can no longer be sustained. It is known today, that a tumor may consist of various subvolumes with different radiobiological properties. New methods are currently being developed to characterize these properties more appropriately, e.g. by functional and molecular imaging using new tracers for Positron Emission Tomography (PET) and by functional magnetic resonance imaging (fMRI). The challenge in radiotherapy is to develop concepts to include and integrate this information into radiotherapy planning and beam delivery, first by extending the morphological image content towards a biological planning target volume including subvolumes of different radiosensitivity, and second by

  19. Automatic Microaneurysm Detection and Characterization Through Digital Color Fundus Images

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Charles; Veras, Rodrigo; Ramalho, Geraldo; Medeiros, Fatima; Ushizima, Daniela

    2008-08-29

    Ocular fundus images can provide information about retinal, ophthalmic, and even systemic diseases such as diabetes. Microaneurysms (MAs) are the earliest sign of Diabetic Retinopathy, a frequently observed complication in both type 1 and type 2 diabetes. Robust detection of MAs in digital color fundus images is critical in the development of automated screening systems for this kind of disease. Automatic grading of these images is being considered by health boards so that the human grading task is reduced. In this paper we describe segmentation and the feature extraction methods for candidate MAs detection.We show that the candidate MAs detected with the methodology have been successfully classified by a MLP neural network (correct classification of 84percent).

  20. Lipid-based nanoparticles for magnetic resonance molecular imaging : design, characterization, and application

    NARCIS (Netherlands)

    Mulder, W.J.M.

    2006-01-01

    In this thesis research is described which was aimed to develop lipidic nanoparticles for the investigation and visualization of atherosclerosis and angiogenesis with both magnetic resonance molecular imaging and optical techniques. The underlying rationale for this is that conventional MR imaging

  1. Tomosynthesis Breast Imaging: Early Detection and Characterization of Breast Cancer

    National Research Council Canada - National Science Library

    Hamberg, Leena

    1999-01-01

    Our aim for the second year of this grant was to investigate the tomosynthetic image quality by performing experimental studies using the specially developed phantoms and to quantitate tomosynthesis...

  2. Stereoscopic Integrated Imaging Goggles for Multimodal Intraoperative Image Guidance.

    Directory of Open Access Journals (Sweden)

    Christopher A Mela

    Full Text Available We have developed novel stereoscopic wearable multimodal intraoperative imaging and display systems entitled Integrated Imaging Goggles for guiding surgeries. The prototype systems offer real time stereoscopic fluorescence imaging and color reflectance imaging capacity, along with in vivo handheld microscopy and ultrasound imaging. With the Integrated Imaging Goggle, both wide-field fluorescence imaging and in vivo microscopy are provided. The real time ultrasound images can also be presented in the goggle display. Furthermore, real time goggle-to-goggle stereoscopic video sharing is demonstrated, which can greatly facilitate telemedicine. In this paper, the prototype systems are described, characterized and tested in surgeries in biological tissues ex vivo. We have found that the system can detect fluorescent targets with as low as 60 nM indocyanine green and can resolve structures down to 0.25 mm with large FOV stereoscopic imaging. The system has successfully guided simulated cancer surgeries in chicken. The Integrated Imaging Goggle is novel in 4 aspects: it is (a the first wearable stereoscopic wide-field intraoperative fluorescence imaging and display system, (b the first wearable system offering both large FOV and microscopic imaging simultaneously,

  3. Establishing an international reference image database for research and development in medical image processing

    NARCIS (Netherlands)

    Horsch, A.D.; Prinz, M.; Schneider, S.; Sipilä, O; Spinnler, K.; Vallée, J-P; Verdonck-de Leeuw, I; Vogl, R.; Wittenberg, T.; Zahlmann, G.

    2004-01-01

    INTRODUCTION: The lack of comparability of evaluation results is one of the major obstacles of research and development in Medical Image Processing (MIP). The main reason for that is the usage of different image datasets with different quality, size and Gold standard. OBJECTIVES: Therefore, one of

  4. COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    Dominique Lafon

    2011-05-01

    Full Text Available The goal of this article is to present specific capabilities and limitations of the use of color digital images in a characterization process. The whole process is investigated, from the acquisition of digital color images to the analysis of the information relevant to various applications in the field of material characterization. A digital color image can be considered as a matrix of pixels with values expressed in a vector-space (commonly 3 dimensional space whose specificity, compared to grey-scale images, is to ensure a coding and a representation of the output image (visualisation printing that fits the human visual reality. In a characterization process, it is interesting to regard color image attnbutes as a set of visual aspect measurements on a material surface. Color measurement systems (spectrocolorimeters, colorimeters and radiometers and cameras use the same type of light detectors: most of them use Charge Coupled Devices sensors. The difference between the two types of color data acquisition systems is that color measurement systems provide a global information of the observed surface (average aspect of the surface: the color texture is not taken into account. Thus, it seems interesting to use imaging systems as measuring instruments for the quantitative characterization of the color texture.

  5. Spectral imaging based in vivo model system for characterization of tumor microvessel response to vascular targeting agents

    Science.gov (United States)

    Wankhede, Mamta

    Functional vasculature is vital for tumor growth, proliferation, and metastasis. Many tumor-specific vascular targeting agents (VTAs) aim to destroy this essential tumor vasculature to induce indirect tumor cell death via oxygen and nutrition deprivation. The tumor angiogenesis-inhibiting anti-angiogenics (AIs) and the established tumor vessel targeting vascular disrupting agents (VDAs) are the two major players in the vascular targeting field. Combination of VTAs with conventional therapies or with each other, have been shown to have additive or supra-additive effects on tumor control and treatment. Pathophysiological changes post-VTA treatment in terms of structural and vessel function changes are important parameters to characterize the treatment efficacy. Despite the abundance of information regarding these parameters acquired using various techniques, there remains a need for a quantitative, real-time, and direct observation of these phenomenon in live animals. Through this research we aspired to develop a spectral imaging based mouse tumor system for real-time in vivo microvessel structure and functional measurements for VTA characterization. A model tumor system for window chamber studies was identified, and then combinatorial effects of VDA and AI were characterized in model tumor system. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  6. Beam Characterization at the Neutron Radiography Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  7. SPICES: Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems - From Planetary Disks To Nearby Super Earths

    Science.gov (United States)

    Boccaletti, Anthony; Schneider, Jean; Traub, Wes; Lagage, Pierre-Olivier; Stam, Daphne; Gratton, Raffaele; Trauger, John; Cahoy, Kerri; Snik, Frans; Baudoz, Pierre; hide

    2012-01-01

    SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems) is a five-year M-class mission proposed to ESA Cosmic Vision. Its purpose is to image and characterize long-period extrasolar planets and circumstellar disks in the visible (450-900 nm) at a spectral resolution of about 40 using both spectroscopy and polarimetry. By 2020/2022, present and near-term instruments will have found several tens of planets that SPICES will be able to observe and study in detail. Equipped with a 1.5 m telescope, SPICES can preferentially access exoplanets located at several AUs (0.5-10 AU) from nearby stars (less than 25 pc) with masses ranging from a few Jupiter masses to Super Earths (approximately 2 Earth radii, approximately 10 mass compared to Earth) as well as circumstellar disks as faint as a few times the zodiacal light in the Solar System.

  8. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    Science.gov (United States)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  9. Characterizing the behavior of scattered radiation in multi-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sossin, Artur, E-mail: artur.sossin@gmail.com [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Rebuffel, V.; Tabary, J. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Létang, J.M.; Freud, N. [Univ Lyon, INSA-Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Centre Léon Bérard, CREATIS UMR 5220 U1206, F-69373 Lyon (France); Verger, L. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France)

    2017-04-01

    Scattered radiation results in various undesirable effects in medical diagnostics, non-destructive testing (NDT) and security x-ray imaging. Despite numerous studies characterizing this phenomenon and its effects, the knowledge of its behavior in the energy domain remains limited. The present study aims at summarizing some key insights on scattered radiation originating from the inspected object. In addition, various simulations and experiments with limited collimation on both simplified and realistic phantoms were conducted in order to study scatter behavior in multi-energy x-ray imaging. Results showed that the spectrum shape of the scatter component can be considered preserved in the first approximation across the image plane for various acquisition geometries and phantoms. The variations exhibited by the scatter spectrum were below 10% for most examined cases. Furthermore, the corresponding spectrum shape proved to be also relatively invariant for different experimental angular projections of one of the examined phantoms. The observed property of scattered radiation can potentially lead to the decoupling of spatial and energy scatter components, which can in turn enable speed ups in scatter simulations and reduce the complexity of scatter correction.

  10. Postoperative magnetic resonance imaging characterization of slings for female stress urinary incontinence.

    LENUS (Irish Health Repository)

    Giri, Subhasis K

    2012-01-31

    PURPOSE: The aim was to characterize different types of slings such as autologous rectus fascia (ARF), porcine dermis (PD) and tension-free vaginal tape (TVT) in the early postoperative period with regard to its visibility and location by using magnetic resonance imaging (MRI). MATERIALS AND METHODS: Between October 2003 and June 2007, total of 60 patients underwent MRI after a sling procedure. Thirty-six patients had ARF slings. Twelve patients had a PD sling and 12 had a TVT. All patients had pelvic MRI 6-8 hr postoperatively. Six patients in the ARF sling group had both preoperative and postoperative images at 6 hr and 3 months. MRI images were analyzed with regard to visibility and location. All data were collected prospectively. RESULTS: ARF slings were clearly visible in both T1W and T2W images. ARF appeared as low signal intensity area with surrounding high signal intensity due to fat attached to the rectus fascia in the MRI images obtained 6 hr after the procedure. Although the fatty component of the sling was diminished but was still visible on MRI scan 3 months postoperatively. On the other hand PD and TVT sling materials were not visible by MRI. Most of the ARF slings were located just below the bladder neck. CONCLUSIONS: The ARF sling is easily identifiable on MRI in the early postoperative period primarily because of the fat attached to the autologous rectus fascia. However, depiction of the PD and TVT slings in the early postoperative period is very poor.

  11. Quantitative data analysis methods for 3D microstructure characterization of Solid Oxide Cells

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley

    through percolating networks and reaction rates at the triple phase boundaries. Quantitative analysis of microstructure is thus important both in research and development of optimal microstructure design and fabrication. Three dimensional microstructure characterization in particular holds great promise...... for gaining further fundamental understanding of how microstructure affects performance. In this work, methods for automatic 3D characterization of microstructure are studied: from the acquisition of 3D image data by focused ion beam tomography to the extraction of quantitative measures that characterize...... the microstructure. The methods are exemplied by the analysis of Ni-YSZ and LSC-CGO electrode samples. Automatic methods for preprocessing the raw 3D image data are developed. The preprocessing steps correct for errors introduced by the image acquisition by the focused ion beam serial sectioning. Alignment...

  12. Web based tools for visualizing imaging data and development of XNATView, a zero footprint image viewer.

    Science.gov (United States)

    Gutman, David A; Dunn, William D; Cobb, Jake; Stoner, Richard M; Kalpathy-Cramer, Jayashree; Erickson, Bradley

    2014-01-01

    Advances in web technologies now allow direct visualization of imaging data sets without necessitating the download of large file sets or the installation of software. This allows centralization of file storage and facilitates image review and analysis. XNATView is a light framework recently developed in our lab to visualize DICOM images stored in The Extensible Neuroimaging Archive Toolkit (XNAT). It consists of a PyXNAT-based framework to wrap around the REST application programming interface (API) and query the data in XNAT. XNATView was developed to simplify quality assurance, help organize imaging data, and facilitate data sharing for intra- and inter-laboratory collaborations. Its zero-footprint design allows the user to connect to XNAT from a web browser, navigate through projects, experiments, and subjects, and view DICOM images with accompanying metadata all within a single viewing instance.

  13. Multiphoton microscopy imaging of developing tooth germs

    Directory of Open Access Journals (Sweden)

    Pei-Yu Pan

    2014-01-01

    Conclusion: In this study, a novel multiphoton microscopy database of images from developing tooth germs in mice was set up. We confirmed that multiphoton laser microscopy is a powerful tool for investigating the development of tooth germ and is worthy for further application in the study of tooth regeneration.

  14. Analysis of the development of missile-borne IR imaging detecting technologies

    Science.gov (United States)

    Fan, Jinxiang; Wang, Feng

    2017-10-01

    Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key

  15. Corner-point criterion for assessing nonlinear image processing imagers

    Science.gov (United States)

    Landeau, Stéphane; Pigois, Laurent; Foing, Jean-Paul; Deshors, Gilles; Swiathy, Greggory

    2017-10-01

    Range performance modeling of optronics imagers attempts to characterize the ability to resolve details in the image. Today, digital image processing is systematically used in conjunction with the optoelectronic system to correct its defects or to exploit tiny detection signals to increase performance. In order to characterize these processing having adaptive and non-linear properties, it becomes necessary to stimulate the imagers with test patterns whose properties are similar to the actual scene image ones, in terms of dynamic range, contours, texture and singular points. This paper presents an approach based on a Corner-Point (CP) resolution criterion, derived from the Probability of Correct Resolution (PCR) of binary fractal patterns. The fundamental principle lies in the respectful perception of the CP direction of one pixel minority value among the majority value of a 2×2 pixels block. The evaluation procedure considers the actual image as its multi-resolution CP transformation, taking the role of Ground Truth (GT). After a spatial registration between the degraded image and the original one, the degradation is statistically measured by comparing the GT with the degraded image CP transformation, in terms of localized PCR at the region of interest. The paper defines this CP criterion and presents the developed evaluation techniques, such as the measurement of the number of CP resolved on the target, the transformation CP and its inverse transform that make it possible to reconstruct an image of the perceived CPs. Then, this criterion is compared with the standard Johnson criterion, in the case of a linear blur and noise degradation. The evaluation of an imaging system integrating an image display and a visual perception is considered, by proposing an analysis scheme combining two methods: a CP measurement for the highly non-linear part (imaging) with real signature test target and conventional methods for the more linear part (displaying). The application to

  16. Quantitative shear wave imaging optical coherence tomography for noncontact mechanical characterization of myocardium

    Science.gov (United States)

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2015-03-01

    Optical coherence elastography (OCE) is an emerging low-coherence imaging technique that provides noninvasive assessment of tissue biomechanics with high spatial resolution. Among various OCE methods, the capability of quantitative measurement of tissue elasticity is of great importance for tissue characterization and pathology detection across different samples. Here we report a quantitative OCE technique, termed quantitative shear wave imaging optical coherence tomography (Q-SWI-OCT), which enables noncontact measurement of tissue Young's modulus based on the ultra-fast imaging of the shear wave propagation inside the sample. A focused air-puff device is used to interrogate the tissue with a low-pressure short-duration air stream that stimulates a localized displacement with the scale at micron level. The propagation of this tissue deformation in the form of shear wave is captured by a phase-sensitive OCT system running with the scan of the M-mode imaging over the path of the wave propagation. The temporal characteristics of the shear wave is quantified based on the cross-correlation of the tissue deformation profiles at all the measurement locations, and linear regression is utilized to fit the data plotted in the domain of time delay versus wave propagation distance. The wave group velocity is thus calculated, which results in the quantitative measurement of the Young's modulus. As the feasibility demonstration, experiments are performed on tissuemimicking phantoms with different agar concentrations and the quantified elasticity values with Q-SWI-OCT agree well with the uniaxial compression tests. For functional characterization of myocardium with this OCE technique, we perform our pilot experiments on ex vivo mouse cardiac muscle tissues with two studies, including 1) elasticity difference of cardiac muscle under relaxation and contract conditions and 2) mechanical heterogeneity of the heart introduced by the muscle fiber orientation. Our results suggest the

  17. Natural and Synthetic Biohydrogels Design, Characterization, Network Structure Imaging and Modeling

    Science.gov (United States)

    Marmorat, Clement

    Biocompatible hydrogels can be derived from materials that are naturally obtained, such as proteins or polysaccharides, or synthetic, such as poloxamers. In order to be classified as biocompatible, these water-swollen networks can not trigger a toxic response once introduced into a biological or physiological environment and, therefore, must be immunoneutral. Hyaluronic acid hydrogels can be great candidates for tissue engineering applications as long as the cross-linking chemistry and process does not affect the biocompatibility of the natural protein matrix. Thermoreversible hydrogels have the advantage of undergoing a sol/gel phase transition at specific temperatures. Thus, they are excellent candidates for biomedical applications such as drug delivery systems, wound healing coatings or cellular scaffolds. Although these hydrogels can be used in their natural form without further modification or chemical alteration, the original protein or polymer matrix is often strengthened by the use of a crosslinking agent to achieve a specific set of properties. In the case of gelatin fibril formation at low temperatures or the micellization of triblock copolymers in solution with temperature increase, the natural phase transition is modified when crosslinkers are introduced to alter the biohydrogels properties and, ultimately, disturb the system's equilibrium. By using spectroscopy techniques, rheology and cryo-imaging we investigated several biocompatible polymeric networks in their natural form as well as their engineered structures to better understand the mechanisms of gelation and artificial internal re-organization of the networks. Natural and synthetic biohydrogels were designed and their mechanical properties were characterized before imaging. Models that better describe the relationship between network configuration and resulting mechanical properties showed great agreement with experimental mesh size observations. Finally, a novel set of hybrid gels was developed

  18. Optoelectronic Computer Architecture Development for Image Reconstruction

    National Research Council Canada - National Science Library

    Forber, Richard

    1996-01-01

    .... Specifically, we collaborated with UCSD and ERIM on the development of an optically augmented electronic computer for high speed inverse transform calculations to enable real time image reconstruction...

  19. Advanced seismic imaging for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Honjas, Bill [Optim

    2016-08-01

    J. N. Louie, Pullammanappallil, S., and Honjas, W., 2011, Advanced seismic imaging for geothermal development: Proceedings of the New Zealand Geothermal Workshop 2011, Nov. 21-23, Auckland, paper 32, 7 pp. Preprint available at http://crack.seismo.unr.edu/geothermal/Louie-NZGW11.pdf

  20. Accreditation of diagnostic imaging services in developing countries.

    Science.gov (United States)

    Jiménez, Pablo; Borrás, Cari; Fleitas, Ileana

    2006-01-01

    In recent decades, medical imaging has experienced a technological revolution. After conducting several surveys to assess the quality and safety of diagnostic imaging services in Latin America and the Caribbean, the Pan American Health Organization (PAHO) developed a basic accreditation program that can be implemented by the ministry of health of any developing country. Patterned after the American College of Radiology's accreditation program, the PAHO program relies on a national accreditation committee to establish and maintain accreditation standards. The process involves a peer review evaluation of: (1) imaging and processing equipment, (2) physician and technologist staff qualifications, (3) quality control and quality assurance programs, and (4) image quality and, where applicable, radiation dose. Public and private conventional radiography/fluoroscopy, mammography, and ultrasound services may request accreditation. The radiography/fluoroscopy accreditation program has three modules from which to choose: chest radiography, general radiography, and fluoroscopy. The national accreditation committee verifies compliance with the standards. On behalf of the ministry of health, the accreditation committee also issues a three-year accreditation certificate. As needed, the accreditation committee consults with foreign technical and clinical experts.

  1. Quantitative ultrasound tissue characterization in shoulder and thigh muscles – a new approach

    Directory of Open Access Journals (Sweden)

    Jørgensen Kurt

    2006-01-01

    Full Text Available Abstract Background The echogenicity patterns of ultrasound scans contain information of tissue composition in muscles. The aim was: (1 to develop a quantitative ultrasound image analysis to characterize tissue composition in terms of intensity and structure of the ultrasound images, and (2 to use the method for characterization of ultrasound images of the supraspinatus muscle, and the vastus lateralis muscle. Methods Computerized texture analyses employing first-order and higher-order grey-scale statistics were developed to objectively characterize ultrasound images of m. supraspinatus and m. vastus lateralis from 9 healthy participants. Results The mean grey-scale intensity was higher in the vastus lateralis muscle (p -2 and for m. supraspinatus: 0.016 mm-2. Conclusion The higher intensity and the higher number of blobs in the vastus lateralis muscle indicates that the thigh muscle contained more non-contractile components than the supraspinatus muscle, and that the muscle was coarser. The image analyses supplemented each other and gave a more complete description of the tissue composition in the muscle than the mean grey-scale value alone.

  2. Recent developments in X-ray imaging detectors

    CERN Document Server

    Moy, J P

    2000-01-01

    The replacement of the radiographic film in medical imaging has been the driving force in X-ray imaging developments. It requires a approx 40 cm wide detector to cover all examinations, an equivalent noise level of 1-5 X-ray quanta per pixel, and spatial resolution in the range 100-150 mu m. The need for entirely electronic imaging equipments has fostered the development of many X-ray detectors, most of them based on an array of amorphous silicon pixels, which is the only technology capable to achieve such large areas. Essentially, two concepts have been implemented: - intermediate conversion of X-rays to light by a scintillator, detected by an array of light sensitive pixels, comprising a photodiode and a switching device, either a TFT or a diode. - conversion into electron-hole pairs in a photoconductor, collected by an array of electrodes and switches. In both cases, charge amplifiers read the generated charges line by line. Scintillator and photoconductor-based systems are now close to production. They ac...

  3. Research Note Development and characterization of microsatellite ...

    Indian Academy of Sciences (India)

    Srirama R

    2School of Biosciences and Technology, VIT University, Vellore 632014, India. 7. 8 ... microsatellite markers developed can be used for studying the population ... characterized by diverse growth forms, including shrubs, trees, and annual or ...

  4. MINER - A Mobile Imager of Neutrons for Emergency Responders

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, John E. M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brennan, James S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerling, Mark D [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kiff, Scott D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mascarenhas, Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van De Vreugde, James L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    We have developed a mobile fast neutron imaging platform to enhance the capabilities of emergency responders in the localization and characterization of special nuclear material. This mobile imager of neutrons for emergency responders (MINER) is based on the Neutron Scatter Camera, a large segmented imaging system that was optimized for large-area search applications. Due to the reduced size and power requirements of a man-portable system, MINER has been engineered to fit a much smaller form factor, and to be operated from either a battery or AC power. We chose a design that enabled omnidirectional (4π) imaging, with only a ~twofold decrease in sensitivity compared to the much larger neutron scatter cameras. The system was designed to optimize its performance for neutron imaging and spectroscopy, but it does also function as a Compton camera for gamma imaging. This document outlines the project activities, broadly characterized as system development, laboratory measurements, and deployments, and presents sample results in these areas. Additional information can be found in the documents that reside in WebPMIS.

  5. Continuous Dimensionality Characterization of Image Structures

    DEFF Research Database (Denmark)

    Felsberg, Michael; Kalkan, Sinan; Krüger, Norbert

    2009-01-01

    gradient field. By making use of a cone structure and barycentric co-ordinates, we can associate three confidences to the three different ideal cases of intrinsic dimensions corresponding to homogeneous image patches, edge-like structures and junctions. The main novelty of our approach......Intrinsic dimensionality is a concept introduced by statistics and later used in image processing to measure the dimensionality of a data set. In this paper, we introduce a continuous representation of the intrinsic dimension of an image patch in terms of its local spectrum or, equivalently, its...... is the representation of confidences as prior probabilities which can be used within a probabilistic framework. To show the potential of our continuous representation, we highlight applications in various contexts such as image structure classification, feature detection and localisation, visual scene statistics...

  6. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Sea Ice Characterization (SIC) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an Environmental Data Record (EDR) of Sea Ice Characterization (SIC) from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument...

  7. Design and development of the associated-particle three-dimensional imaging technique

    International Nuclear Information System (INIS)

    Ussery, L.E.; Hollas, C.L.

    1994-10-01

    The authors describe the development of the ''associated-particle'' imaging technique for producing low-resolution three-dimensional images of objects. Based on the t(d,n) 4 He reaction, the method requires access to only one side of the object being imaged and allows for the imaging of individual chemical elements in the material under observation. Studies were performed to (1) select the appropriate components of the system, including detectors, data-acquisition electronics, and neutron source, and (2) optimize experimental methods for collection and presentation of data. This report describes some of the development steps involved and provides a description of the complete final system that was developed

  8. Fertilizer application and root development analyzed by neutron imaging

    International Nuclear Information System (INIS)

    Nihei, Naoto; Tanoi, Keitaro; Nakanishi, Tomoko M.

    2013-01-01

    We studied the development of the soybean root system under different application of fertilizer applying neutron imaging technique. When neutron beam was irradiated, the root image as well as fertilizer imbedded in a thin aluminum container was clearly projected, since water amount in roots are higher than that in soil. Through image analysis, the development of root system was studied under different application of the fertilizer. The development of a main root with lateral roots was observed without applying fertilizer. When the fertilizer was homogeneously supplied to the soil, the morphological development of the root showed the similar pattern to that grown without fertilizer, in different to the amount of the fertilizer. In the case of local application of the fertilizer, lateral position or downward to the main root, the inhibition of the root growth was observed, suggesting that the localization of the fertilizer is responsible for reduction of the soybean yield. (author)

  9. Characterization of lipidic markers of chondrogenic differentiation using mass spectrometry imaging.

    Science.gov (United States)

    Rocha, Beatriz; Cillero-Pastor, Berta; Eijkel, Gert; Bruinen, Anne L; Ruiz-Romero, Cristina; Heeren, Ron M A; Blanco, Francisco J

    2015-02-01

    Mesenchymal stem cells (MSC) are an interesting alternative for cell-based therapy of cartilage defects attributable to their capacity to differentiate toward chondrocytes in the process termed chondrogenesis. The metabolism of lipids has recently been associated with the modulation of chondrogenesis and also with the development of pathologies related to cartilage degeneration. Information about the distribution and modulation of lipids during chondrogenesis could provide a panel of putative chondrogenic markers. Thus, the discovery of new lipid chondrogenic markers could be highly valuable for improving MSC-based cartilage therapies. In this work, MS imaging was used to characterize the spatial distribution of lipids in human bone marrow MSCs during the first steps of chondrogenic differentiation. The analysis of MSC micromasses at days 2 and 14 of chondrogenesis by MALDI-MSI led to the identification of 20 different lipid species, including fatty acids, sphingolipids, and phospholipids. Phosphocholine, several sphingomyelins, and phosphatidylcholines were found to increase during the undifferentiated chondrogenic stage. A particularly detected lipid profile was verified by TOF secondary ion MS. Using this technology, a higher intensity of phosphocholine-related ions was observed in the peripheral region of the micromasses collected at day 14. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Trends and Technological Developments in Medical X-ray Imaging

    International Nuclear Information System (INIS)

    Iacobovici, E.; Ben-Shlomo, A.

    2004-01-01

    Since the very beginning of X-rays discovery, about one hundred years ago, there has been an ongoing development of technological means, focusing on image quality and imaging capabilities improvement, as well as on awareness and radiation dosage reduction

  11. Electrical characterization of bolus material as phantom for use in electrical impedance and computed tomography fusion imaging

    Directory of Open Access Journals (Sweden)

    Parvind Kaur Grewal

    2014-04-01

    Full Text Available Phantoms are widely used in medical imaging to predict image quality prior to clinical imaging. This paper discusses the possible use of bolus material, as a conductivity phantom, for validation and interpretation of electrical impedance tomography (EIT images. Bolus is commonly used in radiation therapy to mimic tissue. When irradiated, it has radiological characteristics similar to tissue. With increased research interest in CT/EIT fusion imaging there is a need to find a material which has both the absorption coefficient and electrical conductivity similar to biological tissues. In the present study the electrical properties, specifically resistivity, of various commercially available bolus materials were characterized by comparing their frequency response with that of in-vivo connective adipose tissue. It was determined that the resistivity of Gelatin Bolus is similar to in-vivo tissue in the frequency range 10 kHz to 1MHz and therefore has potential to be used in EIT/CT fusion imaging studies.

  12. Development of a new electronic neutron imaging system

    CERN Document Server

    Brenizer, J S; Gibbs, K M; Mengers, P; Stebbings, C T; Polansky, D; Rogerson, D J

    1999-01-01

    An electronic neutron imaging camera system was developed for use with thermal, epithermal, and fast neutrons in applications that include nondestructive inspection of explosives, corrosion, turbine blades, electronics, low Z components, etc. The neutron images are expected to provide information to supplement that available from X-ray tests. The primary camera image area was a 30x30 cm field-of-view with a spatial resolution approaching 1.6 line pairs/mm (lp/mm). The camera had a remotely changeable second lens to limit the field-of-view to 7.6x7.6 cm for high spatial resolution (at least 4 lp/mm) thermal neutron imaging, but neutron and light scatter will limit resolution for fast neutrons to about 0.5 lp/mm. Remote focus capability enhanced camera set-up for optimum operation. The 75 dB dynamic range camera system included sup 6 Li-based screens for imaging of thermal and epithermal neutrons and ZnS(Ag)-based screens for fast neutron imaging. The fast optics was input to a Super S-25 Gen II image intensifi...

  13. Development of robotics technology for remote characterization and remediationof buried waste

    International Nuclear Information System (INIS)

    Noakes, M.W.; Richardson, B.S.; Burks, B.L.; Sandness, G.R.

    1992-01-01

    Detection, characterization, and excavation of buried objects and materials are important steps in the restoration of subsurface disposal sites. The US Department of Energy (DOE), through its Buried Waste Robotics Program, is developing a Remote Characterization System (RCS) to address the needs of remote subsurface characterization and, in a joint program with the US Army, is developing a teleoperated excavator. Development of the RCS is based on recent DOE remote characterization testing and demonstrations performed at Oak Ridge National Laboratory and Idaho National Engineering Laboratory. The RCS, which will be developed and refined over a two- to three-year period, is designed to (1) increase safety by removing on-site personnel from hazardous areas, (2) remotely acquire real-time data from multiple sensors, (3) increase cost-effectiveness and productivity by partial automation of the data collection process and by gathering and evaluating data from multiple sensors in real time, and (4) reduce costs for other waste-related development programs through joint development efforts and reusable standardized subsystems. For retrieval of characterized waste, the Small Emplacement Excavator, an existing US Army backhoe that is being converted to teleoperated control, will be used to demonstrate the feasibility of retrofitting commercial equipment for high-performance remote operations

  14. System Characterizations and Optimized Reconstruction Methods for Novel X-ray Imaging Modalities

    Science.gov (United States)

    Guan, Huifeng

    In the past decade there have been many new emerging X-ray based imaging technologies developed for different diagnostic purposes or imaging tasks. However, there exist one or more specific problems that prevent them from being effectively or efficiently employed. In this dissertation, four different novel X-ray based imaging technologies are discussed, including propagation-based phase-contrast (PB-XPC) tomosynthesis, differential X-ray phase-contrast tomography (D-XPCT), projection-based dual-energy computed radiography (DECR), and tetrahedron beam computed tomography (TBCT). System characteristics are analyzed or optimized reconstruction methods are proposed for these imaging modalities. In the first part, we investigated the unique properties of propagation-based phase-contrast imaging technique when combined with the X-ray tomosynthesis. Fourier slice theorem implies that the high frequency components collected in the tomosynthesis data can be more reliably reconstructed. It is observed that the fringes or boundary enhancement introduced by the phase-contrast effects can serve as an accurate indicator of the true depth position in the tomosynthesis in-plane image. In the second part, we derived a sub-space framework to reconstruct images from few-view D-XPCT data set. By introducing a proper mask, the high frequency contents of the image can be theoretically preserved in a certain region of interest. A two-step reconstruction strategy is developed to mitigate the risk of subtle structures being oversmoothed when the commonly used total-variation regularization is employed in the conventional iterative framework. In the thirt part, we proposed a practical method to improve the quantitative accuracy of the projection-based dual-energy material decomposition. It is demonstrated that applying a total-projection-length constraint along with the dual-energy measurements can achieve a stabilized numerical solution of the decomposition problem, thus overcoming the

  15. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Murphy, W.A.

    1988-01-01

    After only a few years, MR imaging has proved to be an important method for imaging disorders of the musculoskeletal tissues. The images are characterized by great inherent contrast, excellent spatial resolution, and exquisite anatomic display - major reasons why MR imaging compares favorably with other imaging methods, such as radionuclide bone scanning and CT. MR imaging is particularly sensitive to bone marrow alterations and is very effective for detection and characterization of a wide variety of soft tissue conditions. Advances in surface coil technology will increase the usefulness of MR imaging in the evaluation of articular disease. In addition, chemical shift imaging and spectroscopy will add physiologic information to the anatomic features demonstrated by proton imaging

  16. Spray Droplet Characterization from a Single Nozzle by High Speed Image Analysis Using an In-Focus Droplet Criterion.

    Science.gov (United States)

    Minov, Sofija Vulgarakis; Cointault, Frédéric; Vangeyte, Jürgen; Pieters, Jan G; Nuyttens, David

    2016-02-06

    Accurate spray characterization helps to better understand the pesticide spray application process. The goal of this research was to present the proof of principle of a droplet size and velocity measuring technique for different types of hydraulic spray nozzles using a high speed backlight image acquisition and analysis system. As only part of the drops of an agricultural spray can be in focus at any given moment, an in-focus criterion based on the gray level gradient was proposed to decide whether a given droplet is in focus or not. In a first experiment, differently sized droplets were generated with a piezoelectric generator and studied to establish the relationship between size and in-focus characteristics. In a second experiment, it was demonstrated that droplet sizes and velocities from a real sprayer could be measured reliably in a non-intrusive way using the newly developed image acquisition set-up and image processing. Measured droplet sizes ranged from 24 μm to 543 μm, depending on the nozzle type and size. Droplet velocities ranged from around 0.5 m/s to 12 m/s. The droplet size and velocity results were compared and related well with the results obtained with a Phase Doppler Particle Analyzer (PDPA).

  17. Development of an electronic medical report delivery system to 3G GSM mobile (cellular) phones for a medical imaging department.

    Science.gov (United States)

    Lim, Eugene Y; Lee, Chiang; Cai, Weidong; Feng, Dagan; Fulham, Michael

    2007-01-01

    Medical practice is characterized by a high degree of heterogeneity in collaborative and cooperative patient care. Fast and effective communication between medical practitioners can improve patient care. In medical imaging, the fast delivery of medical reports to referring medical practitioners is a major component of cooperative patient care. Recently, mobile phones have been actively deployed in telemedicine applications. The mobile phone is an ideal medium to achieve faster delivery of reports to the referring medical practitioners. In this study, we developed an electronic medical report delivery system from a medical imaging department to the mobile phones of the referring doctors. The system extracts a text summary of medical report and a screen capture of diagnostic medical image in JPEG format, which are transmitted to 3G GSM mobile phones.

  18. Application of image processing technology in yarn hairiness detection

    Directory of Open Access Journals (Sweden)

    Guohong ZHANG

    2016-02-01

    Full Text Available Digital image processing technology is one of the new methods for yarn detection, which can realize the digital characterization and objective evaluation of yarn appearance. This paper overviews the current status of development and application of digital image processing technology used for yarn hairiness evaluation, and analyzes and compares the traditional detection methods and this new developed method. Compared with the traditional methods, the image processing technology based method is more objective, fast and accurate, which is the vital development trend of the yarn appearance evaluation.

  19. Development of a high-performance image server using ATM technology

    Science.gov (United States)

    Do Van, Minh; Humphrey, Louis M.; Ravin, Carl E.

    1996-05-01

    The ability to display digital radiographs to a radiologist in a reasonable time has long been the goal of many PACS. Intelligent routing, or pre-fetching images, has become a solution whereby a system uses a set of rules to route the images to a pre-determined destination. Images would then be stored locally on a workstation for faster display times. Some PACS use a large, centralized storage approach and workstations retrieve images over high bandwidth connections. Another approach to image management is to provide a high performance, clustered storage system. This has the advantage of eliminating the complexity of pre-fetching and allows for rapid image display from anywhere within the hospital. We discuss the development of such a storage device, which provides extremely fast access to images across a local area network. Among the requirements for development of the image server were high performance, DICOM 3.0 compliance, and the use of industry standard components. The completed image server provides performance more than sufficient for use in clinical practice. Setting up modalities to send images to the image server is simple due to the adherence to the DICOM 3.0 specification. Using only off-the-shelf components allows us to keep the cost of the server relatively inexpensive and allows for easy upgrades as technology becomes more advanced. These factors make the image server ideal for use as a clustered storage system in a radiology department.

  20. Characterization of structures of the Nankai Trough accretionary prism from integrated analyses of LWD log response, resistivity images and clay mineralogy of cuttings: Expedition 338 Site C0002

    Science.gov (United States)

    Jurado, Maria Jose; Schleicher, Anja

    2014-05-01

    The objective of our research is a detailed characterization of structures on the basis of LWD oriented images and logs,and clay mineralogy of cuttings from Hole C0002F of the Nankai Trough accretionary prism. Our results show an integrated interpretation of structures derived from borehole images, petrophysical characterization on LWD logs and cuttings mineralogy. The geometry of the structure intersected at Hole C0002F has been characterized by the interpretation of oriented borehole resistivity images acquired during IODP Expedition 338. The characterization of structural features, faults and fracture zones is based on a detailed post-cruise interpretation of bedding and fractures on borehole images and also on the analysis of Logging While Drilling (LWD) log response (gamma radioactivity, resistivity and sonic logs). The interpretation and complete characterization of structures (fractures, fracture zones, fault zones, folds) was achieved after detailed shorebased reprocessing of resistivity images, which allowed to enhance bedding and fracture's imaging for geometry and orientation interpretation. In order to characterize distinctive petrophysical properties based on LWD log response, it could be compared with compositional changes derived from cuttings analyses. Cuttings analyses were used to calibrate and to characterize log response and to verify interpretations in terms of changes in composition and texture at fractures and fault zones defined on borehole images. Cuttings were taken routinely every 5 m during Expedition 338, indicating a clay-dominated lithology of silty claystone with interbeds of weakly consolidated, fine sandstones. The main mineralogical components are clay minerals, quartz, feldspar and calcite. Selected cuttings were taken from areas of interest as defined on LWD logs and images. The clay mineralogy was investigated on the LWD) data allowed us to characterize structural, petrophysical and mineralogical properties at fracture and

  1. Radiation dose reduction and new image modalities development for interventional C-arm imaging system

    Science.gov (United States)

    Niu, Kai

    Cardiovascular disease and stroke are the leading health problems and causes of death in the US. Due to the minimally invasive nature of the evolution of image guided techniques, interventional radiological procedures are becoming more common and are preferred in treating many cardiovascular diseases and strokes. In addition, with the recent advances in hardware and device technology, the speed and efficacy of interventional treatment has significantly improved. This implies that more image modalities can be developed based on the current C-arm system and patients treated in interventional suites can potentially experience better health outcomes. However, during the treatment patients are irradiated with substantial amounts of ionizing radiation with a high dose rate (digital subtraction angiography (DSA) with 3muGy/frame and 3D cone beam CT image with 0.36muGy/frame for a Siemens Artis Zee biplane system) and/or a long irradiation time (a roadmapping image sequence can be as long as one hour during aneurysm embolization). As a result, the patient entrance dose is extremely high. Despite the fact that the radiation dose is already substantial, image quality is not always satisfactory. By default a temporal average is used in roadmapping images to overcome poor image quality, but this technique can result in motion blurred images. Therefore, reducing radiation dose while maintaining or even improving the image quality is an important area for continued research. This thesis is focused on improving the clinical applications of C-arm cone beam CT systems in two ways: (1) Improve the performance of current image modalities on the C-arm system. (2) Develop new image modalities based on the current system. To be more specific, the objectives are to reduce radiation dose for current modalities (e.g., DSA, fluoroscopy, roadmapping, and cone beam CT) and enable cone beam CT perfusion and time resolved cone beam CT angiography that can be used to diagnose and triage acute

  2. Development of a 3-dimensional CT using an image intensifier

    International Nuclear Information System (INIS)

    Toyofuku, Fukai

    1992-01-01

    A prototype of three-dimensional CT (Fluoroscopic CT) has been developed using an image intensifier as a two-dimensional X-ray detector. A patient on a rotating table is projected onto an image intensifier by a cone beam of X-ray from the X-ray tube. A total of 390 projection images covering 180 degrees are acquired in a single scan (13 sec) and stored on a digital frame recorder (512 x 256 x 8-bit x 480). The transverse axial images are reconstructed by using the usual CT reconstruction algorithm, while longitudinal section images such as sagittal, coronal, oblique, and panoramic images are obtained by directly back-projecting the filtered projection image onto the sections. The radiation exposure was measured with an ionization chamber, and the exposure of the present fluoroscopic CT is about 10 to 20 times less than that of conventional X-ray CT. A similar monochromatic X-ray CT system has also been developed using synchrotron radiation. Large area parallel X-rays are obtained from a wiggler beam using a silicon crystal with [311] asymmetric reflection. By taking two images above and below iodine K-absorption edge (33.17 keV), iodine image is obtained. (author)

  3. Characterization of Noise Signatures of Involuntary Head Motion in the Autism Brain Imaging Data Exchange Repository

    Science.gov (United States)

    Caballero, Carla; Mistry, Sejal; Vero, Joe; Torres, Elizabeth B

    2018-01-01

    The variability inherently present in biophysical data is partly contributed by disparate sampling resolutions across instrumentations. This poses a potential problem for statistical inference using pooled data in open access repositories. Such repositories combine data collected from multiple research sites using variable sampling resolutions. One example is the Autism Brain Imaging Data Exchange repository containing thousands of imaging and demographic records from participants in the spectrum of autism and age-matched neurotypical controls. Further, statistical analyses of groups from different diagnoses and demographics may be challenging, owing to the disparate number of participants across different clinical subgroups. In this paper, we examine the noise signatures of head motion data extracted from resting state fMRI data harnessed under different sampling resolutions. We characterize the quality of the noise in the variability of the raw linear and angular speeds for different clinical phenotypes in relation to age-matched controls. Further, we use bootstrapping methods to ensure compatible group sizes for statistical comparison and report the ranges of physical involuntary head excursions of these groups. We conclude that different sampling rates do affect the quality of noise in the variability of head motion data and, consequently, the type of random process appropriate to characterize the time series data. Further, given a qualitative range of noise, from pink to brown noise, it is possible to characterize different clinical subtypes and distinguish them in relation to ranges of neurotypical controls. These results may be of relevance to the pre-processing stages of the pipeline of analyses of resting state fMRI data, whereby head motion enters the criteria to clean imaging data from motion artifacts. PMID:29556179

  4. Characterization of Noise Signatures of Involuntary Head Motion in the Autism Brain Imaging Data Exchange Repository

    Directory of Open Access Journals (Sweden)

    Carla Caballero

    2018-03-01

    Full Text Available The variability inherently present in biophysical data is partly contributed by disparate sampling resolutions across instrumentations. This poses a potential problem for statistical inference using pooled data in open access repositories. Such repositories combine data collected from multiple research sites using variable sampling resolutions. One example is the Autism Brain Imaging Data Exchange repository containing thousands of imaging and demographic records from participants in the spectrum of autism and age-matched neurotypical controls. Further, statistical analyses of groups from different diagnoses and demographics may be challenging, owing to the disparate number of participants across different clinical subgroups. In this paper, we examine the noise signatures of head motion data extracted from resting state fMRI data harnessed under different sampling resolutions. We characterize the quality of the noise in the variability of the raw linear and angular speeds for different clinical phenotypes in relation to age-matched controls. Further, we use bootstrapping methods to ensure compatible group sizes for statistical comparison and report the ranges of physical involuntary head excursions of these groups. We conclude that different sampling rates do affect the quality of noise in the variability of head motion data and, consequently, the type of random process appropriate to characterize the time series data. Further, given a qualitative range of noise, from pink to brown noise, it is possible to characterize different clinical subtypes and distinguish them in relation to ranges of neurotypical controls. These results may be of relevance to the pre-processing stages of the pipeline of analyses of resting state fMRI data, whereby head motion enters the criteria to clean imaging data from motion artifacts.

  5. Starshades for Exoplanet Imaging and Characterization

    Science.gov (United States)

    Kasdin, N. J.; Vanderbei, R. J.; Shaklan, S.; Lisman, D.; Thomson, M.; Cady, E.; Macintosh, B.; Sirbu, D.; Lo, A.

    2014-01-01

    An external occulter is a satellite employing a large screen, or starshade, that flies in formation with a spaceborne telescope to provide the starlight suppression needed for detecting and characterizing exoplanets. Among the advantages of using an occulter are the broadband allowed for characterization and the removal of light before entering the observatory, greatly relaxing the requirements on the telescope and instrument. In this presentation I will explain how star shades achieve high contrast through precise design and control of their shape and how we develop an error budget to establish requirements on the manufacturing and control. Raising the technology readiness level of starshades requires a sequence of activities to verify approaches to manufacturing, deployment, test, and analysis. The SAT-TDEM program has been instrumental in raising the readiness level of the most critical technology. In particular, I will show the results of our first TDEM in 2010-2012 that verified a full scale petal could be built and measured to the needed accuracy for 10 orders of magnitude of contrast. Our second TDEM in 2012-2014 verified that a starshade could be deployed and the petals could be placed to the required position to better than 1 mm. Finally, laboratory experiments have verified the optical modeling used to predict starshade performance to better than 1e-10.

  6. A complete characterization of the (m,n-cubes and combinatorial applications in imaging, vision and discrete geometry

    Directory of Open Access Journals (Sweden)

    Daniel Khoshnoudirad

    2015-11-01

    Full Text Available The aim of this work is to provide a complete characterization of a (m,n-cube. The latter are the pieces of discrete planes appearing in Theoretical Computer Science, Discrete Geometry and Combinatorics. This characterization in three dimensions is the exact equivalent of the preimage for a discrete segment as it has been introduced by McIlroy. Further this characterization, which avoids the redundancies, reduces the combinatorial problem of determining the cardinality of the (m,n-cubes to a new combinatorial problem consisting of determining the volumic regions formed by the crossing of planes. This work can find applications in Imaging, Vision, and pattern recognition for instance.

  7. Development of molecular imaging in the European radiological community

    International Nuclear Information System (INIS)

    Grenier, Nicolas; Sardanelli, Francesco; Becker, Christoph D.; Walecki, Jerzy; Sebag, Guy; Lomas, David John; Krestin, Gabriel P.

    2009-01-01

    The recent and concomitant advances in molecular biology and imaging for diagnosis and therapy will place in vivo imaging techniques at the centre of their clinical transfer. Before that, a wide range of multidisciplinary preclinical research is already taking place. The involvement of radiologists in this new field of imaging sciences is therefore absolutely mandatory during these two phases of development. Achievement of such objectives requires the refinement of strategy within the European radiological community and the European Society of Radiology (ESR) will have to drive a number of actions to stimulate the younger generation of radiologists and to facilitate their access to knowledge. For that purpose, a molecular imaging (MI) subcommittee of the ESR Research Committee based on a group of involved radiologists will be constituted to develop contacts with other constitutive committees and associated societies to provide proposals to our community. (orig.)

  8. Development of a contrast phantom for active millimeter-wave imaging systems

    Science.gov (United States)

    Barber, Jeffrey; Weatherall, James C.; Brauer, Carolyn S.; Smith, Barry T.

    2011-06-01

    As the development of active millimeter wave imaging systems continues, it is necessary to validate materials that simulate the expected response of explosives. While physics-based models have been used to develop simulants, it is desirable to image both the explosive and simulant together in a controlled fashion in order to demonstrate success. To this end, a millimeter wave contrast phantom has been created to calibrate image grayscale while controlling the configuration of the explosive and simulant such that direct comparison of their respective returns can be performed. The physics of the phantom are described, with millimeter wave images presented to show successful development of the phantom and simulant validation at GHz frequencies.

  9. Development of motion image prediction method using principal component analysis

    International Nuclear Information System (INIS)

    Chhatkuli, Ritu Bhusal; Demachi, Kazuyuki; Kawai, Masaki; Sakakibara, Hiroshi; Kamiaka, Kazuma

    2012-01-01

    Respiratory motion can induce the limit in the accuracy of area irradiated during lung cancer radiation therapy. Many methods have been introduced to minimize the impact of healthy tissue irradiation due to the lung tumor motion. The purpose of this research is to develop an algorithm for the improvement of image guided radiation therapy by the prediction of motion images. We predict the motion images by using principal component analysis (PCA) and multi-channel singular spectral analysis (MSSA) method. The images/movies were successfully predicted and verified using the developed algorithm. With the proposed prediction method it is possible to forecast the tumor images over the next breathing period. The implementation of this method in real time is believed to be significant for higher level of tumor tracking including the detection of sudden abdominal changes during radiation therapy. (author)

  10. Development of an image intensifier-TV digital imaging system with a multiple-slit scanning x-ray beam

    International Nuclear Information System (INIS)

    Kume, Y.; Doi, K.

    1986-01-01

    The authors are developing a new digital x-ray imaging system employing a multiple-slit assembly (MSA) and an image intensifier (II)-TV digital system. The final image consisting of primary radiation is digitally reconstructed from multiple slit images obtained with the MSA. This system can significantly reduce the scattered radiation from an object and the veiling glare from II-TV system. The quality of the reconstructed image is related to many parameters, such as slit width, the number of image frames, and the image reconstruction algorithm. They present the effect of these various parameters on basic imaging properties and the practicability of the method in comparison with conventional wide beam imaging

  11. Development of educational image databases and e-books for medical physics training.

    Science.gov (United States)

    Tabakov, S; Roberts, V C; Jonsson, B-A; Ljungberg, M; Lewis, C A; Wirestam, R; Strand, S-E; Lamm, I-L; Milano, F; Simmons, A; Deane, C; Goss, D; Aitken, V; Noel, A; Giraud, J-Y; Sherriff, S; Smith, P; Clarke, G; Almqvist, M; Jansson, T

    2005-09-01

    Medical physics education and training requires the use of extensive imaging material and specific explanations. These requirements provide an excellent background for application of e-Learning. The EU projects Consortia EMERALD and EMIT developed five volumes of such materials, now used in 65 countries. EMERALD developed e-Learning materials in three areas of medical physics (X-ray diagnostic radiology, nuclear medicine and radiotherapy). EMIT developed e-Learning materials in two further areas: ultrasound and magnetic resonance imaging. This paper describes the development of these e-Learning materials (consisting of e-books and educational image databases). The e-books include tasks helping studying of various equipment and methods. The text of these PDF e-books is hyperlinked with respective images. The e-books are used through the readers' own Internet browser. Each Image Database (IDB) includes a browser, which displays hundreds of images of equipment, block diagrams and graphs, image quality examples, artefacts, etc. Both the e-books and IDB are engraved on five separate CD-ROMs. Demo of these materials can be taken from www.emerald2.net.

  12. [HRCT imaging characterized of congenital abnormalities of the inner ear in 45 cases].

    Science.gov (United States)

    Wang, Jinling; Meng, Meijuan; Huan, Yi; Zhang, Jinsong

    2003-10-01

    To explore the high resolution CT (HRCT) image characterized of congenital abnormalities of the inner ear(CAIE), and its value in the diagnosis and treatment of CAIE. The clinic data and axial HRCT scans of CAIE in 45 cases were analyzed. In 45 CAIE patients, most of them were frequently associated with slowly progressive sensorineural hearing loss in childhood, 15 ears were fluctuating hearing loss. Seventeen ears were unilateral semicircular canal paralysis. HRCT showed that Michel type 3 cases(4 ears), Mondini type 25 cases(39 ears). Large vestibular aqueduct malformation not associated with anomalies of inner ears 13 cases(23 ears), anomalies of internal auditory canal 4 cases (5 ears). Thirteen ears were associated with outer and middle ear malformation. HRCT image has the important value in the diagnosis and treatment of CAIE, especially for the excerpt of indication of cochlear implantation.

  13. Imaging noradrenergic influence on amyloid pathology in mouse models of Alzheimer's disease

    International Nuclear Information System (INIS)

    Winkeler, A.; Waerzeggers, Y.; Klose, A.; Monfared, P.; Thomas, A.V.; Jacobs, A.H.; Schubert, M.; Heneka, M.T.

    2008-01-01

    Molecular imaging aims towards the non-invasive characterization of disease-specific molecular alterations in the living organism in vivo. In that, molecular imaging opens a new dimension in our understanding of disease pathogenesis, as it allows the non-invasive determination of the dynamics of changes on the molecular level. The imaging technology being employed includes magnetic resonance imaging (MRI) and nuclear imaging as well as optical-based imaging technologies. These imaging modalities are employed together or alone for disease phenotyping, development of imaging-guided therapeutic strategies and in basic and translational research. In this study, we review recent investigations employing positron emission tomography and MRI for phenotyping mouse models of Alzheimers' disease by imaging. We demonstrate that imaging has an important role in the characterization of mouse models of neurodegenerative diseases. (orig.)

  14. Parametric techniques for characterizing myocardial tissue by magnetic resonance imaging (part 1): T1 mapping.

    Science.gov (United States)

    Perea Palazón, R J; Ortiz Pérez, J T; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Solé Arqués, M

    2016-01-01

    The development of myocardial fibrosis is a common process in the appearance of ventricular dysfunction in many heart diseases. Magnetic resonance imaging makes it possible to accurately evaluate the structure and function of the heart, and its role in the macroscopic characterization of myocardial fibrosis by late enhancement techniques has been widely validated clinically. Recent studies have demonstrated that T1-mapping techniques can quantify diffuse myocardial fibrosis and the expansion of the myocardial extracellular space in absolute terms. However, further studies are necessary to validate the usefulness of this technique in the early detection of tissue remodeling at a time when implementing early treatment would improve a patient's prognosis. This article reviews the state of the art for T1 mapping of the myocardium, its clinical applications, and its limitations. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  15. Characterization of Medipix3 with the MARS readout and software

    CERN Document Server

    Ronaldson, J P; van Leeuwen, D; Doesburg, R M N; Ballabriga, R; Butler, A P H; Donaldson, J; Walsh, M; Nik, S J; Clyne, M N

    2011-01-01

    The Medipix3 x-ray imaging detector has been characterized using the MARS camera. This x-ray camera comprises custom built readout electronics and software libraries designed for the Medipix family of detectors. The performance of the Medipix3 and MARS camera system is being studied prior to use in real-world applications such as the recently developed MARS-CT3 spectroscopic micro-CT scanner. We present the results of characterization measurements, describe methods for optimizing performance and give examples of spectroscopic images acquired with Medipix3 and the MARS camera system. A limited number of operating modes of the Medipix3 chip have been characterized and single-pixel mode has been found to give acceptable performance in terms of energy response, image quality and stability over time. Spectroscopic performance is significantly better in charge-summing mode than single-pixel mode however image quality and stability over time are compromised. There are more modes of operation to be tested and further...

  16. Inverted light-sheet microscope for imaging mouse pre-implantation development.

    Science.gov (United States)

    Strnad, Petr; Gunther, Stefan; Reichmann, Judith; Krzic, Uros; Balazs, Balint; de Medeiros, Gustavo; Norlin, Nils; Hiiragi, Takashi; Hufnagel, Lars; Ellenberg, Jan

    2016-02-01

    Despite its importance for understanding human infertility and congenital diseases, early mammalian development has remained inaccessible to in toto imaging. We developed an inverted light-sheet microscope that enabled us to image mouse embryos from zygote to blastocyst, computationally track all cells and reconstruct a complete lineage tree of mouse pre-implantation development. We used this unique data set to show that the first cell fate specification occurs at the 16-cell stage.

  17. DEVELOPING AN IMAGE PROCESSING APPLICATION THAT SUPPORTS NEW FEATURES OF JPEG2000 STANDARD

    Directory of Open Access Journals (Sweden)

    Evgin GÖÇERİ

    2007-03-01

    Full Text Available In recent years, developing technologies in multimedia brought the importance of image processing and compression. Images that are reduced in size using lossless and lossy compression techniques without degrading the quality of the image to an unacceptable level take up much less space in memory. This enables them to be sent and received over the Internet or mobile devices in much shorter time. The wavelet-based image compression standard JPEG2000 has been created by the Joint Photographic Experts Group (JPEG committee to superseding the former JPEG standard. Works on various additions to this standard are still under development. In this study, an Application has been developed in Visual C# 2005 which implies important image processing techniques such as edge detection and noise reduction. The important feature of this Application is to support JPEG2000 standard as well as supporting other image types, and the implementation does not only apply to two-dimensional images, but also to multi-dimensional images. Modern software development platforms that support image processing have also been compared and several features of the developed software have been identified.

  18. A Versatile Mounting Method for Long Term Imaging of Zebrafish Development.

    Science.gov (United States)

    Hirsinger, Estelle; Steventon, Ben

    2017-01-26

    Zebrafish embryos offer an ideal experimental system to study complex morphogenetic processes due to their ease of accessibility and optical transparency. In particular, posterior body elongation is an essential process in embryonic development by which multiple tissue deformations act together to direct the formation of a large part of the body axis. In order to observe this process by long-term time-lapse imaging it is necessary to utilize a mounting technique that allows sufficient support to maintain samples in the correct orientation during transfer to the microscope and acquisition. In addition, the mounting must also provide sufficient freedom of movement for the outgrowth of the posterior body region without affecting its normal development. Finally, there must be a certain degree in versatility of the mounting method to allow imaging on diverse imaging set-ups. Here, we present a mounting technique for imaging the development of posterior body elongation in the zebrafish D. rerio. This technique involves mounting embryos such that the head and yolk sac regions are almost entirely included in agarose, while leaving out the posterior body region to elongate and develop normally. We will show how this can be adapted for upright, inverted and vertical light-sheet microscopy set-ups. While this protocol focuses on mounting embryos for imaging for the posterior body, it could easily be adapted for the live imaging of multiple aspects of zebrafish development.

  19. A diagnostic imaging approach for online characterization of multi-impact in aircraft composite structures based on a scanning spatial-wavenumber filter of guided wave

    Science.gov (United States)

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Su, Zhongqing

    2017-06-01

    Monitoring of impact and multi-impact in particular in aircraft composite structures has been an intensive research topic in the field of guided-wave-based structural health monitoring (SHM). Compared with the majority of existing methods such as those using signal features in the time-, frequency- or joint time-frequency domain, the approach based on spatial-wavenumber filter of guided wave shows superb advantage in effectively distinguishing particular wave modes and identifying their propagation direction relative to the sensor array. However, there exist two major issues when conducting online characterization of multi-impact event. Firstly, the spatial-wavenumber filter should be realized in the situation that the wavenumber of high spatial resolution of the complicated multi-impact signal cannot be measured or modeled. Secondly, it's difficult to identify the multiple impacts and realize multi-impact localization due to the overlapping of wavenumbers. To address these issues, a scanning spatial-wavenumber filter based diagnostic imaging method for online characterization of multi-impact event is proposed to conduct multi-impact imaging and localization in this paper. The principle of the scanning filter for multi-impact is developed first to conduct spatial-wavenumber filtering and to achieve wavenumber-time imaging of the multiple impacts. Then, a feature identification method of multi-impact based on eigenvalue decomposition and wavenumber searching is presented to estimate the number of impacts and calculate the wavenumber of the multi-impact signal, and an image mapping method is proposed as well to convert the wavenumber-time image to an angle-distance image to distinguish and locate the multiple impacts. A series of multi-impact events are applied to a carbon fiber laminate plate to validate the proposed methods. The validation results show that the localization of the multiple impacts are well achieved.

  20. Rapid development of medical imaging tools with open-source libraries.

    Science.gov (United States)

    Caban, Jesus J; Joshi, Alark; Nagy, Paul

    2007-11-01

    Rapid prototyping is an important element in researching new imaging analysis techniques and developing custom medical applications. In the last ten years, the open source community and the number of open source libraries and freely available frameworks for biomedical research have grown significantly. What they offer are now considered standards in medical image analysis, computer-aided diagnosis, and medical visualization. A cursory review of the peer-reviewed literature in imaging informatics (indeed, in almost any information technology-dependent scientific discipline) indicates the current reliance on open source libraries to accelerate development and validation of processes and techniques. In this survey paper, we review and compare a few of the most successful open source libraries and frameworks for medical application development. Our dual intentions are to provide evidence that these approaches already constitute a vital and essential part of medical image analysis, diagnosis, and visualization and to motivate the reader to use open source libraries and software for rapid prototyping of medical applications and tools.

  1. Recent developments in NMR imaging of lung

    International Nuclear Information System (INIS)

    Ailion, D.C.

    1989-01-01

    This presentation describes the phenomenon of tissue-induced inhomogeneous broadening due to the air/water interfaces in lung and includes a description of its physical basis, imaging and nonimaging techniques for its observation, recent theoretical development of the present stage of understanding of the mechanisms underlying the relaxation times T 1 and T 2 will also be given. Finally, a description of the rapid line scan (RLS) technique for obtaining rapid, artifactfree images of moving objects, such as the lungs of spontaneously breathing animals, is presented. (author). 19 refs.; 13 figs

  2. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ru-Shan Wu; Xiao-Bi Xie

    2008-06-08

    Our proposed work on high resolution/high fidelity seismic imaging focused on three general areas: (1) development of new, more efficient, wave-equation-based propagators and imaging conditions, (2) developments towards amplitude-preserving imaging in the local angle domain, in particular, imaging methods that allow us to estimate the reflection as a function of angle at a layer boundary, and (3) studies of wave inversion for local parameter estimation. In this report we summarize the results and progress we made during the project period. The report is divided into three parts, totaling 10 chapters. The first part is on resolution analysis and its relation to directional illumination analysis. The second part, which is composed of 6 chapters, is on the main theme of our work, the true-reflection imaging. True-reflection imaging is an advanced imaging technology which aims at keeping the image amplitude proportional to the reflection strength of the local reflectors or to obtain the reflection coefficient as function of reflection-angle. There are many factors which may influence the image amplitude, such as geometrical spreading, transmission loss, path absorption, acquisition aperture effect, etc. However, we can group these into two categories: one is the propagator effect (geometric spreading, path losses); the other is the acquisition-aperture effect. We have made significant progress in both categories. We studied the effects of different terms in the true-amplitude one-way propagators, especially the terms including lateral velocity variation of the medium. We also demonstrate the improvements by optimizing the expansion coefficients in different terms. Our research also includes directional illumination analysis for both the one-way propagators and full-wave propagators. We developed the fast acquisition-aperture correction method in the local angle-domain, which is an important element in the true-reflection imaging. Other developments include the super

  3. Performance evaluation of image denoising developed using convolutional denoising autoencoders in chest radiography

    Science.gov (United States)

    Lee, Donghoon; Choi, Sunghoon; Kim, Hee-Joung

    2018-03-01

    When processing medical images, image denoising is an important pre-processing step. Various image denoising algorithms have been developed in the past few decades. Recently, image denoising using the deep learning method has shown excellent performance compared to conventional image denoising algorithms. In this study, we introduce an image denoising technique based on a convolutional denoising autoencoder (CDAE) and evaluate clinical applications by comparing existing image denoising algorithms. We train the proposed CDAE model using 3000 chest radiograms training data. To evaluate the performance of the developed CDAE model, we compare it with conventional denoising algorithms including median filter, total variation (TV) minimization, and non-local mean (NLM) algorithms. Furthermore, to verify the clinical effectiveness of the developed denoising model with CDAE, we investigate the performance of the developed denoising algorithm on chest radiograms acquired from real patients. The results demonstrate that the proposed denoising algorithm developed using CDAE achieves a superior noise-reduction effect in chest radiograms compared to TV minimization and NLM algorithms, which are state-of-the-art algorithms for image noise reduction. For example, the peak signal-to-noise ratio and structure similarity index measure of CDAE were at least 10% higher compared to conventional denoising algorithms. In conclusion, the image denoising algorithm developed using CDAE effectively eliminated noise without loss of information on anatomical structures in chest radiograms. It is expected that the proposed denoising algorithm developed using CDAE will be effective for medical images with microscopic anatomical structures, such as terminal bronchioles.

  4. Egypt satellite images for land surface characterization

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    images used for mapping the vegetation cover types and other land cover types in Egypt. The mapping ranges from 1 km resolution to 30 m resolution. The aim is to provide satellite image mapping with land surface characteristics relevant for roughness mapping.......Satellite images provide information on the land surface properties. From optical remote sensing images in the blue, green, red and near-infrared part of the electromagnetic spectrum it is possible to identify a large number of surface features. The report briefly describes different satellite...

  5. Synthesis and Development of Diagnostic Tools for Medical Imaging

    DEFF Research Database (Denmark)

    Schaarup-Jensen, Henrik

    was the synthesis of different materials. The first project introduces the development of injectable fiducial markers within the field of image-guided radiotherapy. Fiducial markers for computed tomography (CT)-imaging are today needed in order to correlate the positioning of the tumor to provide a more precise...... loading of liposomes. Long circulating contrast agents for blood pool imaging by CT-imaging are of interest due to the current limitations of short retention times and the considerable amounts needed to achieve a proper contrast. A small library of contrast agents designed for remote loading of liposomes...

  6. Developing 3D Imaging Programmes-Workflow and Quality Control

    OpenAIRE

    Hess, M.; Robson, S.; Serpico, M.; Amati, G.; Pridden, I.; Nelson, T.

    2016-01-01

    This article reports on a successful project for 3D imaging research, digital applications, and use of new technologies in the museum. The article will focus on the development and implementation of a viable workflow for the production of high-quality 3D models of museum objects, based on the 3D laser scanning and photogrammetry of selected ancient Egyptian artefacts. The development of a robust protocol for the complete process chain for imaging cultural heritage artefacts, from the acquisit...

  7. Investigation of Metastatic Breast Tumor Heterogeneity and Progression Using Dual Optical/SPECT Imaging

    National Research Council Canada - National Science Library

    Antich, Peter P; Constantinescu, Anca; Lewis, Matthew; Mason, Ralph; Richer, Edmond

    2005-01-01

    The goal of our project is to image tumor growth, metastatic development and vascular changes, both to characterize tumor dynamics during growth for application in diagnostic and prognostic imaging...

  8. Characterization of a direct detection device imaging camera for transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Milazzo, Anna-Clare, E-mail: amilazzo@ncmir.ucsd.edu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Moldovan, Grigore [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lanman, Jason [Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037 (United States); Jin, Liang; Bouwer, James C. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Klienfelder, Stuart [University of California at Irvine, Irvine, CA 92697 (United States); Peltier, Steven T.; Ellisman, Mark H. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Xuong, Nguyen-Huu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States)

    2010-06-15

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  9. Characterization of a direct detection device imaging camera for transmission electron microscopy

    International Nuclear Information System (INIS)

    Milazzo, Anna-Clare; Moldovan, Grigore; Lanman, Jason; Jin, Liang; Bouwer, James C.; Klienfelder, Stuart; Peltier, Steven T.; Ellisman, Mark H.; Kirkland, Angus I.; Xuong, Nguyen-Huu

    2010-01-01

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  10. The present state and future development of X-ray imaging technology

    International Nuclear Information System (INIS)

    Gou Liang; Wang Xuben; Cao Hui

    2002-01-01

    Medical imaging has long been the hot topic of clinical medical sciences, the X-ray imaging equipment is a popular device of current medical imaging, and the digital imaging technology has become a challenge to the conventional plane imaging. The author first discusses that the key of X-ray-based imaging is the generator and detector of X-ray and the improvement of imaging software, and then points out that the future development of medical imaging will aim at the capability of reducing radiation and handling more efficient and accurate data capacity

  11. Clinical software for MR imaging system, 4

    International Nuclear Information System (INIS)

    Shimizu, Koji; Kasai, Akira; Okamura, Shoichi

    1992-01-01

    Magnetic resonance imaging continues to elicit new application software through the recent technological advances of MR equipment. This paper describes several applications of our newly developed clinical software. The fast SE sequence (RISE) has proved to reduce routine examination time and to improve image quality, and ultra-fast FE sequence (SMASH) was found to extend the diagnostic capabilities in the field of cardiac study. Diffusion/perfusion imaging achieved in our MR system showed significant promise for providing novel information regarding tissue characterization. Furthermore, Image quality and practicalities of MR angiography have been improved by advanced imaging sequences and sophisticated post-processing software. (author)

  12. A geophysical toolbox for imaging and characterization of a landfill

    NARCIS (Netherlands)

    Konstantaki, L.A.; Ghose, R.; Draganov, D.S.; Heimovaara, T.J.

    2015-01-01

    Leachate and gas are a product of biochemical reactions occurring inside the landfill. Treatment technologies (e.g., recirculation of leachate) are developed to reduce the production of leachate. Imaging the location of the wet and gas pockets inside the landfill can help improve the treatment

  13. Quantitative imaging biomarkers: the application of advanced image processing and analysis to clinical and preclinical decision making.

    Science.gov (United States)

    Prescott, Jeffrey William

    2013-02-01

    The importance of medical imaging for clinical decision making has been steadily increasing over the last four decades. Recently, there has also been an emphasis on medical imaging for preclinical decision making, i.e., for use in pharamaceutical and medical device development. There is also a drive towards quantification of imaging findings by using quantitative imaging biomarkers, which can improve sensitivity, specificity, accuracy and reproducibility of imaged characteristics used for diagnostic and therapeutic decisions. An important component of the discovery, characterization, validation and application of quantitative imaging biomarkers is the extraction of information and meaning from images through image processing and subsequent analysis. However, many advanced image processing and analysis methods are not applied directly to questions of clinical interest, i.e., for diagnostic and therapeutic decision making, which is a consideration that should be closely linked to the development of such algorithms. This article is meant to address these concerns. First, quantitative imaging biomarkers are introduced by providing definitions and concepts. Then, potential applications of advanced image processing and analysis to areas of quantitative imaging biomarker research are described; specifically, research into osteoarthritis (OA), Alzheimer's disease (AD) and cancer is presented. Then, challenges in quantitative imaging biomarker research are discussed. Finally, a conceptual framework for integrating clinical and preclinical considerations into the development of quantitative imaging biomarkers and their computer-assisted methods of extraction is presented.

  14. Controlling Images, Media, and Women's Development: A Review of the Literature

    Science.gov (United States)

    Hammer, Tonya R.

    2009-01-01

    Myths, stereotypes, and controlling images are embedded in the cultural textbook of cinema. Women are disempowered and marginalized by these images, and it is important to explore the existence and prevalence of these images in order to examine their effects on women's development. A review of the literature concerning controlling images and the…

  15. Integration of image exposure time into a modified laser speckle imaging method

    Energy Technology Data Exchange (ETDEWEB)

    RamIrez-San-Juan, J C; Salazar-Hermenegildo, N; Ramos-Garcia, R; Munoz-Lopez, J [Optics Department, INAOE, Puebla (Mexico); Huang, Y C [Department of Electrical Engineering and Computer Science, University of California, Irvine, CA (United States); Choi, B, E-mail: jcram@inaoep.m [Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA (United States)

    2010-11-21

    Speckle-based methods have been developed to characterize tissue blood flow and perfusion. One such method, called modified laser speckle imaging (mLSI), enables computation of blood flow maps with relatively high spatial resolution. Although it is known that the sensitivity and noise in LSI measurements depend on image exposure time, a fundamental disadvantage of mLSI is that it does not take into account this parameter. In this work, we integrate the exposure time into the mLSI method and provide experimental support of our approach with measurements from an in vitro flow phantom.

  16. Integration of image exposure time into a modified laser speckle imaging method

    International Nuclear Information System (INIS)

    RamIrez-San-Juan, J C; Salazar-Hermenegildo, N; Ramos-Garcia, R; Munoz-Lopez, J; Huang, Y C; Choi, B

    2010-01-01

    Speckle-based methods have been developed to characterize tissue blood flow and perfusion. One such method, called modified laser speckle imaging (mLSI), enables computation of blood flow maps with relatively high spatial resolution. Although it is known that the sensitivity and noise in LSI measurements depend on image exposure time, a fundamental disadvantage of mLSI is that it does not take into account this parameter. In this work, we integrate the exposure time into the mLSI method and provide experimental support of our approach with measurements from an in vitro flow phantom.

  17. Synchrotron Bragg diffraction imaging characterization of synthetic diamond crystals for optical and electronic power device applications.

    Science.gov (United States)

    Tran Thi, Thu Nhi; Morse, J; Caliste, D; Fernandez, B; Eon, D; Härtwig, J; Barbay, C; Mer-Calfati, C; Tranchant, N; Arnault, J C; Lafford, T A; Baruchel, J

    2017-04-01

    Bragg diffraction imaging enables the quality of synthetic single-crystal diamond substrates and their overgrown, mostly doped, diamond layers to be characterized. This is very important for improving diamond-based devices produced for X-ray optics and power electronics applications. The usual first step for this characterization is white-beam X-ray diffraction topography, which is a simple and fast method to identify the extended defects (dislocations, growth sectors, boundaries, stacking faults, overall curvature etc. ) within the crystal. This allows easy and quick comparison of the crystal quality of diamond plates available from various commercial suppliers. When needed, rocking curve imaging (RCI) is also employed, which is the quantitative counterpart of monochromatic Bragg diffraction imaging. RCI enables the local determination of both the effective misorientation, which results from lattice parameter variation and the local lattice tilt, and the local Bragg position. Maps derived from these parameters are used to measure the magnitude of the distortions associated with polishing damage and the depth of this damage within the volume of the crystal. For overgrown layers, these maps also reveal the distortion induced by the incorporation of impurities such as boron, or the lattice parameter variations associated with the presence of growth-incorporated nitrogen. These techniques are described, and their capabilities for studying the quality of diamond substrates and overgrown layers, and the surface damage caused by mechanical polishing, are illustrated by examples.

  18. Development of multi-dimensional body image scale for malaysian female adolescents.

    Science.gov (United States)

    Chin, Yit Siew; Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin

    2008-01-01

    The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965). The 152 items from selected multiple measures of body image were examined through factor analysis and for internal consistency. Correlations between Multi-dimensional Body Image Scale and body mass index (BMI), risk of eating disorders and self-esteem were assessed for construct validity. A seven factor model of a 62-item Multi-dimensional Body Image Scale for Malaysian female adolescents with construct validity and good internal consistency was developed. The scale encompasses 1) preoccupation with thinness and dieting behavior, 2) appearance and body satisfaction, 3) body importance, 4) muscle increasing behavior, 5) extreme dieting behavior, 6) appearance importance, and 7) perception of size and shape dimensions. Besides, a multidimensional body image composite score was proposed to screen negative body image risk in female adolescents. The result found body image was correlated with BMI, risk of eating disorders and self-esteem in female adolescents. In short, the present study supports a multi-dimensional concept for body image and provides a new insight into its multi-dimensionality in Malaysian female adolescents with preliminary validity and reliability of the scale. The Multi-dimensional Body Image Scale can be used to identify female adolescents who are potentially at risk of developing body image disturbance through future intervention programs.

  19. Development of imaging biomarkers and generation of big data.

    Science.gov (United States)

    Alberich-Bayarri, Ángel; Hernández-Navarro, Rafael; Ruiz-Martínez, Enrique; García-Castro, Fabio; García-Juan, David; Martí-Bonmatí, Luis

    2017-06-01

    Several image processing algorithms have emerged to cover unmet clinical needs but their application to radiological routine with a clear clinical impact is still not straightforward. Moving from local to big infrastructures, such as Medical Imaging Biobanks (millions of studies), or even more, Federations of Medical Imaging Biobanks (in some cases totaling to hundreds of millions of studies) require the integration of automated pipelines for fast analysis of pooled data to extract clinically relevant conclusions, not uniquely linked to medical imaging, but in combination to other information such as genetic profiling. A general strategy for the development of imaging biomarkers and their integration in the cloud for the quantitative management and exploitation in large databases is herein presented. The proposed platform has been successfully launched and is being validated nowadays among the early adopters' community of radiologists, clinicians, and medical imaging researchers.

  20. High Contrast Imaging of Exoplanets and Exoplanetary Systems with JWST

    Science.gov (United States)

    Hinkley, Sasha; Skemer, Andrew; Biller, Beth; Baraffe, I.; Bonnefoy, M.; Bowler, B.; Carter, A.; Chen, C.; Choquet, E.; Currie, T.; Danielski, C.; Fortney, J.; Grady, C.; Greenbaum, A.; Hines, D.; Janson, M.; Kalas, P.; Kennedy, G.; Kraus, A.; Lagrange, A.; Liu, M.; Marley, M.; Marois, C.; Matthews, B.; Mawet, D.; Metchev, S.; Meyer, M.; Millar-Blanchaer, M.; Perrin, M.; Pueyo, L.; Quanz, S.; Rameau, J.; Rodigas, T.; Sallum, S.; Sargent, B.; Schlieder, J.; Schneider, G.; Stapelfeldt, K.; Tremblin, P.; Vigan, A.; Ygouf, M.

    2017-11-01

    JWST will transform our ability to characterize directly imaged planets and circumstellar debris disks, including the first spectroscopic characterization of directly imaged exoplanets at wavelengths beyond 5 microns, providing a powerful diagnostic of cloud particle properties, atmospheric structure, and composition. To lay the groundwork for these science goals, we propose a 39-hour ERS program to rapidly establish optimal strategies for JWST high contrast imaging. We will acquire: a) coronagraphic imaging of a newly discovered exoplanet companion, and a well-studied circumstellar debris disk with NIRCam & MIRI; b) spectroscopy of a wide separation planetary mass companion with NIRSPEC & MIRI; and c) deep aperture masking interferometry with NIRISS. Our primary goals are to: 1) generate representative datasets in modes to be commonly used by the exoplanet and disk imaging communities; 2) deliver science enabling products to empower a broad user base to develop successful future investigations; and 3) carry out breakthrough science by characterizing exoplanets for the first time over their full spectral range from 2-28 microns, and debris disk spectrophotometry out to 15 microns sampling the 3 micron water ice feature. Our team represents the majority of the community dedicated to exoplanet and disk imaging and has decades of experience with high contrast imaging algorithms and pipelines. We have developed a collaboration management plan and several organized working groups to ensure we can rapidly and effectively deliver high quality Science Enabling Products to the community.

  1. Methodological development of topographic correction in 2D/3D ToF-SIMS images using AFM images

    Science.gov (United States)

    Jung, Seokwon; Lee, Nodo; Choi, Myungshin; Lee, Jungmin; Cho, Eunkyunng; Joo, Minho

    2018-02-01

    Time-of-flight secondary-ion mass spectrometry (ToF-SIMS) is an emerging technique that provides chemical information directly from the surface of electronic materials, e.g. OLED and solar cell. It is very versatile and highly sensitive mass spectrometric technique that provides surface molecular information with their lateral distribution as a two-dimensional (2D) molecular image. Extending the usefulness of ToF-SIMS, a 3D molecular image can be generated by acquiring multiple 2D images in a stack. These imaging techniques by ToF-SIMS provide an insight into understanding the complex structures of unknown composition in electronic material. However, one drawback in ToF-SIMS is not able to represent topographical information in 2D and 3D mapping images. To overcome this technical limitation, topographic information by ex-situ technique such as atomic force microscopy (AFM) has been combined with chemical information from SIMS that provides both chemical and physical information in one image. The key to combine two different images obtained from ToF-SIMS and AFM techniques is to develop the image processing algorithm, which performs resize and alignment by comparing the specific pixel information of each image. In this work, we present methodological development of the semiautomatic alignment and the 3D structure interpolation system for the combination of 2D/3D images obtained by ToF-SIMS and AFM measurements, which allows providing useful analytical information in a single representation.

  2. Development of flexible eddy current probes: applications to the characterization of the electromagnetic properties of materials and the detection of flaws by static imaging

    International Nuclear Information System (INIS)

    Delabre, Benjamin

    2016-01-01

    The work of this thesis focuses on the development and the optimization of probes for non-destructive testing (NDT) by Eddy Currents (EC). The manuscript presents several achievements of flexible EC probes engraved on Kapton film. The first part describes the evaluation of the electromagnetic parameters (electrical conductivity σ and magnetic permeability μ) of materials typically encountered in NDT by EC. Conventional methods to estimate σ and μ have been investigated and implemented: it is the four-point probe and the permeameter. However, these methods present practical difficulties relating to the surface condition (paint, corrosion,...) and the sample geometry. Two probes have therefore been designed: the first is composed of a transmitting and a receiving coil in order to evaluate the conductivity of purely conductive materials, and the second is composed of a transmitter coil and a GMR for evaluate the magnetic permeability. Design patterns and experimental results are presented in the manuscript. The second part describes the development of a flexible static EC imager. The imager is a multielement probe composed of 576 receivers arranged in a matrix allowing to inspect the surface of a structure under test without moving the probe relative to the sample surface. The inspection by the static imager provides a pixelated image of the surface under the probe. The imager has been optimized to detect a surface defect of at least 1 mm long of given orientation regardless of its location relative to the receiver coils. The design of the probe and its experimental evaluation are given in the manuscript. (author) [fr

  3. Texture-based classification for characterizing regions on remote sensing images

    Science.gov (United States)

    Borne, Frédéric; Viennois, Gaëlle

    2017-07-01

    Remote sensing classification methods mostly use only the physical properties of pixels or complex texture indexes but do not lead to recommendation for practical applications. Our objective was to design a texture-based method, called the Paysages A PRIori method (PAPRI), which works both at pixel and neighborhood level and which can handle different spatial scales of analysis. The aim was to stay close to the logic of a human expert and to deal with co-occurrences in a more efficient way than other methods. The PAPRI method is pixelwise and based on a comparison of statistical and spatial reference properties provided by the expert with local properties computed in varying size windows centered on the pixel. A specific distance is computed for different windows around the pixel and a local minimum leads to choosing the class in which the pixel is to be placed. The PAPRI method brings a significant improvement in classification quality for different kinds of images, including aerial, lidar, high-resolution satellite images as well as texture images from the Brodatz and Vistex databases. This work shows the importance of texture analysis in understanding remote sensing images and for future developments.

  4. Synthesis and characterization of bioresorbable calcium phosphosilicate nanocomposite particles for fluorescence imaging and biomedical applications

    Science.gov (United States)

    Morgan, Thomas T.

    Organically doped calcium phosphosilicate nanoparticles (CPSNPs) were developed and characterized, driven by the need for non-toxic vectors for drug delivery and fluorescence biological imaging applications. In particular, advancement in drug delivery for the chemotherapeutic treatment of cancers is required to increase drug efficacy and improve patient quality of life. Additionally, brighter and more photostable fluorophores are needed to meet demands for improved sensitivity and experimental diversity, which may lead to improvements in early detection of solid tumors and advancement in understanding of biological processes. A literature survey on the state of the field for nanoparticle based biological fluorescence imaging and drug delivery is presented in Chapter 1. Chapter 2 focuses on the characterization techniques used in this work. The development and optical characterization of 20-40 nm diameter, citrate functionalized Cy3 amidite doped calcium phosphosilicate nanoparticles (Cy3 CPSNPs) for in vitro fluorescence imaging is outlined in Chapters 3 and 4, respectively. In particular, sodium citrate was used to functionalize the surface and provide electrosteric dispersion of these particles. CPSNPs stabilized with sodium citrate routinely exhibited highly negative zeta potentials greater than -25 mV in magnitude. Furthermore, the fluorescence quantum yield of the encapsulated fluorophore was improved by more than 4.5-fold when compared to the unencapsulated dye. The bioimaging and drug delivery capability of CPSNPs was explored. Cy3 CPSNPs dissolved quickly in the acidic environment experienced during endocytosis, releasing the encapsulated fluorophore. This is consistent with solution phase experiments that show the particles are dissolved at pH 5. CPSNPs loaded with fluorescein and a hydrophobic growth inhibitor, ceramide C6, proved the ability to simultaneously image and delivery of the hydrophobic drug to cells in vitro. Chapter 5 examined the colloidal

  5. GEOMETRIC AND REFLECTANCE SIGNATURE CHARACTERIZATION OF COMPLEX CANOPIES USING HYPERSPECTRAL STEREOSCOPIC IMAGES FROM UAV AND TERRESTRIAL PLATFORMS

    Directory of Open Access Journals (Sweden)

    E. Honkavaara

    2016-06-01

    Full Text Available Light-weight hyperspectral frame cameras represent novel developments in remote sensing technology. With frame camera technology, when capturing images with stereoscopic overlaps, it is possible to derive 3D hyperspectral reflectance information and 3D geometric data of targets of interest, which enables detailed geometric and radiometric characterization of the object. These technologies are expected to provide efficient tools in various environmental remote sensing applications, such as canopy classification, canopy stress analysis, precision agriculture, and urban material classification. Furthermore, these data sets enable advanced quantitative, physical based retrieval of biophysical and biochemical parameters by model inversion technologies. Objective of this investigation was to study the aspects of capturing hyperspectral reflectance data from unmanned airborne vehicle (UAV and terrestrial platform with novel hyperspectral frame cameras in complex, forested environment.

  6. Through-the-wall high-resolution imaging of a human and experimental characterization of the transmission of wall materials

    Science.gov (United States)

    Nilsson, S.; Jänis, A.; Gustafsson, M.; Kjellgren, J.; Sume, Ain

    2008-10-01

    This paper describes the research efforts made at the Swedish Defence Research Agency (FOI) concerning through-the-wall imaging radar, as well as fundamental characterization of various wall materials. These activities are a part of two FOI-projects concerning security sensors in the aspects of Military Operations in Urban Terrain (MOUT) and Homeland Defence. Through-the-wall high resolution imaging of a human between 28-40 GHz has been performed at FOI. The UWB radar that was used is normally a member of the instrumentation of the FOI outdoor RCS test range Lilla Gåra. The armed test person was standing behind different kinds of walls. The radar images were generated by stepping the turntable in azimuth and elevation. The angular resolution in the near-field was improved by refocusing the parabolic antennas, which in combination with the large bandwidth (12 GHz) gave extremely high resolution radar images. A 3D visualization of the person even exposed the handgun tucked into one hip pocket. A qualitative comparison between the experimental results and simulation results (physical optics-based method) will also be presented. The second part of this paper describes results from activities at FOI concerning material characterization in the 2-110 GHz region. The transmission of building, packing and clothing materials has been experimentally determined. The wide-band measurements in free space were carried out with a scalar network analyzer. In this paper results from these characterizations will be presented. Furthermore, an experimental investigation will be reported of how the transmission properties for some moisted materials change as a function of water content and frequency. We will also show experimental results of how the transmission properties of a pine panel are affected when the surface is coated with a thin surface layer of water.

  7. Development of an integrated filing system for endoscopic images.

    Science.gov (United States)

    Fujino, M A; Ikeda, M; Yamamoto, Y; Kinose, T; Tachikawa, H; Morozumi, A; Sano, S; Kojima, Y; Nakamura, T; Kawai, T

    1991-01-01

    A new integrated filing system for endoscopic images has been developed, comprising a main image filing system and subsystems located at different stations. A hybrid filing system made up of both digital and analog filing devices was introduced to construct this system that combines the merits of the two filing methods. Each subsystem provided with a video processor, is equipped with a digital filing device, and routine images were recorded in the analog image filing device of the main system. The use of a multi-input adapter enabled simultaneous input of analog images from up to 8 video processors. Recorded magneto-optical disks make it possible to recall the digital images at any station in the hospital; the disks are copied without image degradation and also utilised for image processing. This system promises reliable storage and integrated, efficient management of endoscopic information. It also costs less to install than the so-called PACS (picture archiving and communication system), which connects all the stations of the hospital using optical fiber cables.

  8. Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging

    International Nuclear Information System (INIS)

    Kotlarchyk, M A; Botvinick, E L; Putnam, A J

    2010-01-01

    Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused on linking substrate mechanical properties to cell function using standard methodologies to characterize the bulk mechanical properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Here we have utilized a laser tracking system, based on passive optical microrheology instrumentation, to characterize the microstructure of viscoelastic fibrin clots. Trajectories and mean square displacements were observed as bioinert PEGylated (PEG: polyethylene glycol) microspheres (1, 2 or 4.7 μm in diameter) diffused within confined pores created by the protein phase of fibrin hydrogels. Complementary confocal reflection imaging revealed microstructures comprised of a highly heterogeneous fibrin network with a wide range of pore sizes. As the protein concentration of fibrin gels was increased, our quantitative laser tracking measurements showed a corresponding decrease in particle mean square displacements with greater resolution and sensitivity than conventional imaging techniques. This platform-independent method will enable a more complete understanding of how changes in substrate mechanical properties simultaneously influence other microenvironmental parameters in 3D cultures.

  9. Classification of micro-CT images using 3D characterization of bone canal patterns in human osteogenesis imperfecta

    Science.gov (United States)

    Abidin, Anas Z.; Jameson, John; Molthen, Robert; Wismüller, Axel

    2017-03-01

    Few studies have analyzed the microstructural properties of bone in cases of Osteogenenis Imperfecta (OI), or `brittle bone disease'. Current approaches mainly focus on bone mineral density measurements as an indirect indicator of bone strength and quality. It has been shown that bone strength would depend not only on composition but also structural organization. This study aims to characterize 3D structure of the cortical bone in high-resolution micro CT images. A total of 40 bone fragments from 28 subjects (13 with OI and 15 healthy controls) were imaged using micro tomography using a synchrotron light source (SRµCT). Minkowski functionals - volume, surface, curvature, and Euler characteristics - describing the topological organization of the bone were computed from the images. The features were used in a machine learning task to classify between healthy and OI bone. The best classification performance (mean AUC - 0.96) was achieved with a combined 4-dimensional feature of all Minkowski functionals. Individually, the best feature performance was seen using curvature (mean AUC - 0.85), which characterizes the edges within a binary object. These results show that quantitative analysis of cortical bone microstructure, in a computer-aided diagnostics framework, can be used to distinguish between healthy and OI bone with high accuracy.

  10. Spatial Mapping of Structural and Connectional Imaging Data for the Developing Human Brain with Diffusion Tensor Imaging

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M.; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S.; Huang, Hao

    2014-01-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. PMID:25448302

  11. Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging.

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S; Huang, Hao

    2015-02-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Development of a personalized training system using the Lung Image Database Consortium and Image Database resource Initiative Database.

    Science.gov (United States)

    Lin, Hongli; Wang, Weisheng; Luo, Jiawei; Yang, Xuedong

    2014-12-01

    The aim of this study was to develop a personalized training system using the Lung Image Database Consortium (LIDC) and Image Database resource Initiative (IDRI) Database, because collecting, annotating, and marking a large number of appropriate computed tomography (CT) scans, and providing the capability of dynamically selecting suitable training cases based on the performance levels of trainees and the characteristics of cases are critical for developing a efficient training system. A novel approach is proposed to develop a personalized radiology training system for the interpretation of lung nodules in CT scans using the Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) database, which provides a Content-Boosted Collaborative Filtering (CBCF) algorithm for predicting the difficulty level of each case of each trainee when selecting suitable cases to meet individual needs, and a diagnostic simulation tool to enable trainees to analyze and diagnose lung nodules with the help of an image processing tool and a nodule retrieval tool. Preliminary evaluation of the system shows that developing a personalized training system for interpretation of lung nodules is needed and useful to enhance the professional skills of trainees. The approach of developing personalized training systems using the LIDC/IDRL database is a feasible solution to the challenges of constructing specific training program in terms of cost and training efficiency. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  13. Development of CMOS Imager Block for Capsule Endoscope

    International Nuclear Information System (INIS)

    Shafie, S; Fodzi, F A M; Tung, L Q; Lioe, D X; Halin, I A; Hasan, W Z W; Jaafar, H

    2014-01-01

    This paper presents the development of imager block to be associated in a capsule endoscopy system. Since the capsule endoscope is used to diagnose gastrointestinal diseases, the imager block must be in small size which is comfortable for the patients to swallow. In this project, a small size 1.5 V button battery is used as the power supply while the voltage supply requirements for other components such as microcontroller and CMOS image sensor are higher. Therefore, a voltage booster circuit is proposed to boost up the voltage supply from 1.5 V to 3.3 V. A low power microcontroller is used to generate control pulses for the CMOS image sensor and to convert the 8-bits parallel data output to serial data to be transmitted to the display panel. The results show that the voltage booster circuit was able to boost the voltage supply from 1.5 V to 3.3 V. The microcontroller precisely controls the CMOS image sensor to produce parallel data which is then serialized again by the microcontroller. The serial data is then successfully translated to 2fps image and displayed on computer.

  14. MR imaging in following follicular and endometrial development during the menstrual cycle

    International Nuclear Information System (INIS)

    Janus, C.L.; Gendal, E.S.; Wiczyk, H.; Rabinowitz, J.G.; Laufer, N.

    1987-01-01

    The authors assessed the usefulness of MR imaging in monitoring follicular and endometrial development during the menstrual cycle. MR images, sonograms, and hormonal levels of estradiol (E2) and progesterone (P) obtained from five ovulatory volunteers were evaluated in approximately days 4, 8, 12, 16, 20, and 24 of the cycle. MR imaging surpassed US in demonstrating endometrial and myometrial changes. Follicular growth and development seen on MR images correlated well with US appearance and hormonal levels, with MR imaging demonstrating more secondary smaller follicles than US. Information about the normal cycle obtained with MR imaging is described and may have practical implications for women in infertility programs undergoing stimulated cycles and in vitro fertilization

  15. New amorphous-silicon image sensor for x-ray diagnostic medical imaging applications

    Science.gov (United States)

    Weisfield, Richard L.; Hartney, Mark A.; Street, Robert A.; Apte, Raj B.

    1998-07-01

    This paper introduces new high-resolution amorphous Silicon (a-Si) image sensors specifically configured for demonstrating film-quality medical x-ray imaging capabilities. The devices utilizes an x-ray phosphor screen coupled to an array of a-Si photodiodes for detecting visible light, and a-Si thin-film transistors (TFTs) for connecting the photodiodes to external readout electronics. We have developed imagers based on a pixel size of 127 micrometer X 127 micrometer with an approximately page-size imaging area of 244 mm X 195 mm, and array size of 1,536 data lines by 1,920 gate lines, for a total of 2.95 million pixels. More recently, we have developed a much larger imager based on the same pixel pattern, which covers an area of approximately 406 mm X 293 mm, with 2,304 data lines by 3,200 gate lines, for a total of nearly 7.4 million pixels. This is very likely to be the largest image sensor array and highest pixel count detector fabricated on a single substrate. Both imagers connect to a standard PC and are capable of taking an image in a few seconds. Through design rule optimization we have achieved a light sensitive area of 57% and optimized quantum efficiency for x-ray phosphor output in the green part of the spectrum, yielding an average quantum efficiency between 500 and 600 nm of approximately 70%. At the same time, we have managed to reduce extraneous leakage currents on these devices to a few fA per pixel, which allows for very high dynamic range to be achieved. We have characterized leakage currents as a function of photodiode bias, time and temperature to demonstrate high stability over these large sized arrays. At the electronics level, we have adopted a new generation of low noise, charge- sensitive amplifiers coupled to 12-bit A/D converters. Considerable attention was given to reducing electronic noise in order to demonstrate a large dynamic range (over 4,000:1) for medical imaging applications. Through a combination of low data lines capacitance

  16. Effects of manual threshold setting on image analysis results of a sandstone sample structural characterization by X-ray microtomography

    International Nuclear Information System (INIS)

    Moreira, Anderson C.; Fernandes, Celso P.; Fernandes, Jaquiel S.; Marques, Leonardo C.; Appoloni, Carlos R.; Nagata, Rodrigo

    2009-01-01

    X-ray microtomography is a nondestructive nuclear technique widely applied for samples structural characterization. This methodology permits the investigation of materials porous phase, without special sample preparation, generating bidimensional images of the irradiated sample. The images are generated by the linear attenuation coefficient mapping of the sample. In order to do a quantitative characterization, the images have to be binarized, separating porous phase from the material matrix. The choice of the correct threshold in the grey level histogram is an important and discerning procedure for the binary images creation. Slight variations of the threshold level led to substantial variations in physical parameters determination, like porosity and pore size distribution values. The aim of this work is to evaluate these variations based on some manual threshold setting. Employing Imago image analysis software, four operators determined the porosity and pore size distribution of a sandstone sample by image analysis. The microtomography measurements were accomplished with the following scan conditions: 60 kV, 165 μA, 1 mm Al filter, 0.45 deg step size and 180.0 deg total rotation angle with and 3.8 μm and 11 μm spatial resolution. The global average porosity values, determined by the operators, range from 27.8 to 32.4 % for 3.8 μm spatial resolution and 12.3 to 28.3 % for 11 μm spatial resolution. Percentage differences among the pore size distributions were also found. For the same pore size range, 5.5 % and 17.1 %, for 3.8 μm and 11 μm spatial resolutions respectively, were noted. (author)

  17. Development of flow velocity measurement techniques in visible images. Improvement of particle image velocimetry techniques on image process

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Nishimura, Motohiko; Kamide, Hideki; Hishida, Koichi

    1999-10-01

    Noise reduction system was developed to improve applicability of Particle Image Velocimetry (PIV) to complicated configure bounded flows. For fast reactor safety and thermal hydraulic studies, experiments are performed in scale models which usually have rather complicated geometry and structures such as fuel subassemblies, heat exchangers, etc. The structures and stuck dusts on the view window of the models obscure the particle image. Thus the image except the moving particles can be regarded as a noise. In the present study, two noise reduction techniques are proposed. The one is the Time-averaged Light Intensity Subtraction method (TIS) which subtracts the time-averaged light intensity of each pixel in the sequential images from the each corresponding pixel. The other one is the Minimum Light Intensity Subtraction method (MIS) which subtracts the minimum light intensity of each pixel in the sequential images from the each corresponding pixel. Both methods are examined on their capabilities of noise reduction. As for the original 'bench mark' image, the image made from Large Eddy Simulation was used. To the bench mark image, noises are added which are referred as sample images. Both methods reduce the rate of vector with the error of more than one pixel from 90% to less than 5%. Also, more than 50% of the vectors have the error of less than 0.2 pixel. The analysis of uncertainty shows that these methods enhances the accuracy of vector measurement 3 ∼ 12 times if the image with noise were processed, and the MIS method has 1.1 ∼ 2.1 times accuracy compared to the TIS. Thus the present noise reduction methods are quite efficient to enhance the accuracy of flow velocity fields measured with particle images including structures and deposits on the view window. (author)

  18. Assessment of COTS IR image simulation tools for ATR development

    Science.gov (United States)

    Seidel, Heiko; Stahl, Christoph; Bjerkeli, Frode; Skaaren-Fystro, Paal

    2005-05-01

    Following the tendency of increased use of imaging sensors in military aircraft, future fighter pilots will need onboard artificial intelligence e.g. ATR for aiding them in image interpretation and target designation. The European Aeronautic Defence and Space Company (EADS) in Germany has developed an advanced method for automatic target recognition (ATR) which is based on adaptive neural networks. This ATR method can assist the crew of military aircraft like the Eurofighter in sensor image monitoring and thereby reduce the workload in the cockpit and increase the mission efficiency. The EADS ATR approach can be adapted for imagery of visual, infrared and SAR sensors because of the training-based classifiers of the ATR method. For the optimal adaptation of these classifiers they have to be trained with appropriate and sufficient image data. The training images must show the target objects from different aspect angles, ranges, environmental conditions, etc. Incomplete training sets lead to a degradation of classifier performance. Additionally, ground truth information i.e. scenario conditions like class type and position of targets is necessary for the optimal adaptation of the ATR method. In Summer 2003, EADS started a cooperation with Kongsberg Defence & Aerospace (KDA) from Norway. The EADS/KDA approach is to provide additional image data sets for training-based ATR through IR image simulation. The joint study aims to investigate the benefits of enhancing incomplete training sets for classifier adaptation by simulated synthetic imagery. EADS/KDA identified the requirements of a commercial-off-the-shelf IR simulation tool capable of delivering appropriate synthetic imagery for ATR development. A market study of available IR simulation tools and suppliers was performed. After that the most promising tool was benchmarked according to several criteria e.g. thermal emission model, sensor model, targets model, non-radiometric image features etc., resulting in a

  19. Developing standard transmission system for radiology reporting including key images

    International Nuclear Information System (INIS)

    Kim, Seon Chil

    2007-01-01

    Development of hospital information system and Picture Archiving Communication System is not new in the medical field, and the development of internet and information technology are also universal. In the course of such development, however, it is hard to share medical information without a refined standard format. Especially in the department of radiology, the role of PACS has become very important in interchanging information with other disparate hospital information systems. A specific system needs to be developed that radiological reports are archived into a database efficiently. This includes sharing of medical images. A model is suggested in this study in which an internal system is developed where radiologists store necessary images and transmit them is the standard international clinical format, Clinical Document Architecture, and share the information with hospitals. CDA document generator was made to generate a new file format and separate the existing storage system from the new system. This was to ensure the access to required data in XML documents. The model presented in this study added a process where crucial images in reading are inserted in the CDA radiological report generator. Therefore, this study suggests a storage and transmission model for CDA documents, which is different from the existing DICOM SR. Radiological reports could be better shared, when the application function for inserting images and the analysis of standard clinical terms are completed

  20. Development and application of efficient portal imaging solutions

    International Nuclear Information System (INIS)

    Boer, J.C.J. de

    2003-01-01

    This thesis describes the theoretical derivation and clinical application of methods to measure and improve patient setup in radiotherapy by means of electronic portal imaging devices (EPIDs). The focus is on methods that (1) are simple to implement and (2) add minimal workload. First, the relation between setup errors and treatment planning margins is quantified in a population-statistics approach. A major result is that systematic errors (recurring each treatment fraction) require about three times larger margins than random errors (fluctuating from fraction to fraction). Therefore, the emphasis is on reduction of systematic setup errors using off-line correction protocols. The new no action level (NAL) protocol, aimed at significant reduction of systematic errors using a small number of imaged fractions, is proposed and investigated in detail. It is demonstrated that the NAL protocol provides final distributions of residue systematic errors at least as good as the most widely applied comparable protocol, the shrinking action level (SAL) protocol, but uses only 3 imaged fractions per patient instead of the 8-10 required by SAL. The efficacy of NAL is demonstrated retrospectively on a database of measured setup errors involving 600 patients with weekly set-up measurements and prospectively in a group of 30 patients. The general properties of NAL are investigated using both analytical and Monte Carlo calculations. As an add-on to NAL, a correction verification (COVER) protocol has been developed using computer simulations combined with a risk analysis. With COVER, a single additional imaged fraction per patient is sufficient to reduce the detrimental effect of possible systematic mistakes in the execution of setup corrections to negligible levels. The high accuracy achieved with off-line setup corrections (yielding SDs of systematic errors ∼1 mm) is demonstrated in clinical studies involving 60 lung cancer patients and 31 head-and-neck patients. Furthermore

  1. Transportable, Low-Dose Active Fast-Neutron Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, John T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wright, Michael C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McConchie, Seth M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Archer, Daniel E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Palles, Blake A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This document contains a description of the method of transportable, low-dose active fast-neutron imaging as developed by ORNL. The discussion begins with the technique and instrumentation and continues with the image reconstruction and analysis. The analysis discussion includes an example of how a gap smaller than the neutron production spot size and detector size can be detected and characterized depending upon the measurement time.

  2. Ultrasound-guided image fusion with computed tomography and magnetic resonance imaging. Clinical utility for imaging and interventional diagnostics of hepatic lesions

    International Nuclear Information System (INIS)

    Clevert, D.A.; Helck, A.; Paprottka, P.M.; Trumm, C.; Reiser, M.F.; Zengel, P.

    2012-01-01

    Abdominal ultrasound is often the first-line imaging modality for assessing focal liver lesions. Due to various new ultrasound techniques, such as image fusion, global positioning system (GPS) tracking and needle tracking guided biopsy, abdominal ultrasound now has great potential regarding detection, characterization and treatment of focal liver lesions. Furthermore, these new techniques will help to improve the clinical management of patients before and during interventional procedures. This article presents the principle and clinical impact of recently developed techniques in the field of ultrasound, e.g. image fusion, GPS tracking and needle tracking guided biopsy and discusses the results based on a feasibility study on 20 patients with focal hepatic lesions. (orig.) [de

  3. Characterization of system-related geometric distortions in MR images employed in Gamma Knife radiosurgery applications

    Science.gov (United States)

    Pappas, E. P.; Seimenis, I.; Moutsatsos, A.; Georgiou, E.; Nomikos, P.; Karaiskos, P.

    2016-10-01

    This work provides characterization of system-related geometric distortions present in MRIs used in Gamma Knife (GK) stereotactic radiosurgery (SRS) treatment planning. A custom-made phantom, compatible with the Leksell stereotactic frame model G and encompassing 947 control points (CPs), was utilized. MR images were obtained with and without the frame, thus allowing discrimination of frame-induced distortions. In the absence of the frame and following compensation for field inhomogeneities, measured average CP disposition owing to gradient nonlinearities was 0.53 mm. In presence of the frame, contrarily, detected distortion was greatly increased (up to about 5 mm) in the vicinity of the frame base due to eddy currents induced in the closed loop of its aluminum material. Frame-related distortion was obliterated at approximately 90 mm from the frame base. Although the region with the maximum observed distortion may not lie within the GK treatable volume, the presence of the frame results in distortion of the order of 1.5 mm at a 7 cm distance from the center of the Leksell space. Additionally, severe distortions observed outside the treatable volume could possibly impinge on the delivery accuracy mainly by adversely affecting the registration process (e.g. the position of the lower part of the N-shaped fiducials used to define the stereotactic space may be miss-registered). Images acquired with a modified version of the frame developed by replacing its front side with an acrylic bar, thus interrupting the closed aluminum loop and reducing the induced eddy currents, were shown to benefit from relatively reduced distortion. System-related distortion was also identified in patient MR images. Using corresponding CT angiography images as a reference, an offset of 1.1 mm was detected for two vessels lying in close proximity to the frame base, while excellent spatial agreement was observed for a vessel far apart from the frame base.

  4. Predictors of Knowledge and Image Interpretation Skill Development in Radiology Residents.

    Science.gov (United States)

    Ravesloot, Cécile J; van der Schaaf, Marieke F; Kruitwagen, Cas L J J; van der Gijp, Anouk; Rutgers, Dirk R; Haaring, Cees; Ten Cate, Olle; van Schaik, Jan P J

    2017-09-01

    Purpose To investigate knowledge and image interpretation skill development in residency by studying scores on knowledge and image questions on radiology tests, mediated by the training environment. Materials and Methods Ethical approval for the study was obtained from the ethical review board of the Netherlands Association for Medical Education. Longitudinal test data of 577 of 2884 radiology residents who took semiannual progress tests during 5 years were retrospectively analyzed by using a nonlinear mixed-effects model taking training length as input variable. Tests included nonimage and image questions that assessed knowledge and image interpretation skill. Hypothesized predictors were hospital type (academic or nonacademic), training hospital, enrollment age, sex, and test date. Results Scores showed a curvilinear growth during residency. Image scores increased faster during the first 3 years of residency and reached a higher maximum than knowledge scores (55.8% vs 45.1%). The slope of image score development versus knowledge question scores of 1st-year residents was 16.8% versus 12.4%, respectively. Training hospital environment appeared to be an important predictor in both knowledge and image interpretation skill development (maximum score difference between training hospitals was 23.2%; P radiology residency and leveled off in the 3rd and 4th training year. The shape of the curve was mainly influenced by the specific training hospital. © RSNA, 2017 Online supplemental material is available for this article.

  5. Radiopharmaceuticals as probes to characterize tumour tissue

    International Nuclear Information System (INIS)

    Alam, Israt S.; Arshad, Mubarik A.; Nguyen, Quang-De; Aboagye, Eric O.

    2015-01-01

    Tumour cells exhibit several properties that allow them to grow and divide. A number of these properties are detectable by nuclear imaging methods. We discuss crucial tumour properties that can be described by current radioprobe technologies, further discuss areas of emerging radioprobe development, and finally articulate need areas that our field should aspire to develop. The review focuses largely on positron emission tomography and draws upon the seminal 'Hallmarks of Cancer' review article by Hanahan and Weinberg in 2011 placing into context the present and future roles of radiotracer imaging in characterizing tumours. (orig.)

  6. Characterization of lipid films by an angle-interrogation surface plasmon resonance imaging device.

    Science.gov (United States)

    Liu, Linlin; Wang, Qiong; Yang, Zhong; Wang, Wangang; Hu, Ning; Luo, Hongyan; Liao, Yanjian; Zheng, Xiaolin; Yang, Jun

    2015-04-01

    Surface topographies of lipid films have an important significance in the analysis of the preparation of giant unilamellar vesicles (GUVs). In order to achieve accurately high-throughput and rapidly analysis of surface topographies of lipid films, a homemade SPR imaging device is constructed based on the classical Kretschmann configuration and an angle interrogation manner. A mathematical model is developed to accurately describe the shift including the light path in different conditions and the change of the illumination point on the CCD camera, and thus a SPR curve for each sampling point can also be achieved, based on this calculation method. The experiment results show that the topographies of lipid films formed in distinct experimental conditions can be accurately characterized, and the measuring resolution of the thickness lipid film may reach 0.05 nm. Compared with existing SPRi devices, which realize detection by monitoring the change of the reflective-light intensity, this new SPRi system can achieve the change of the resonance angle on the entire sensing surface. Thus, it has higher detection accuracy as the traditional angle-interrogation SPR sensor, with much wider detectable range of refractive index. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Quantitative phase imaging characterization of tumor-associated blood vessel formation on a chip

    Science.gov (United States)

    Guo, Peng; Huang, Jing; Moses, Marsha A.

    2018-02-01

    Angiogenesis, the formation of new blood vessels from existing ones, is a biological process that has an essential role in solid tumor growth, development, and progression. Recent advances in Lab-on-a-Chip technology has created an opportunity for scientists to observe endothelial cell (EC) behaviors during the dynamic process of angiogenesis using a simple and economical in vitro platform that recapitulates in vivo blood vessel formation. Here, we use quantitative phase imaging (QPI) microscopy to continuously and non-invasively characterize the dynamic process of tumor cell-induced angiogenic sprout formation on a microfluidic chip. The live tumor cell-induced angiogenic sprouts are generated by multicellular endothelial sprouting into 3 dimensional (3D) Matrigel using human umbilical vein endothelial cells (HUVECs). By using QPI, we quantitatively measure a panel of cellular morphological and behavioral parameters of each individual EC participating in this sprouting. In this proof-of-principle study, we demonstrate that QPI is a powerful tool that can provide real-time quantitative analysis of biological processes in in vitro 3D biomimetic devices, which, in turn, can improve our understanding of the biology underlying functional tissue engineering.

  8. Establishment study of the in vivo imaging analysis with small animal imaging modalities for bio-durg development

    International Nuclear Information System (INIS)

    Jang, Beomsu; Park, Sanghyeon; Choi, Dae Seong; Park, Jeonghoon; Jung, Uhee; Lee, Yun Jong

    2012-01-01

    In this study, we established the image modalities (micro-PET, SPECT/CT) using the experimental animal (mouse) for the development of imaging assessment method for the bio-durg and extramural collaboration proposal. We examined the micro-SPECT/CT, PET imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and micro-PET with 99m Tc tricarbonyl bifunctional chelators and 18 F-clotrimazole derivative. SPECT imaging studies were performed with 99m Tc tricarbonyl BFCs. PET imaging study was performed with 18 F-clotrimazole derivatives. We performed the PET image study of 18 F-clotrimazole derivatives using U87MG tumor bearing mice. Also we tested the intramural and extramural collaboration using small animal imaging modalities and prepared the draft of extramural R and D operation manual for small animal imaging modalities and the experimental animal imaging facility. These research results can be utilized as a basic image study protocols and data for the image assessment of drugs including biological drug

  9. Diagnostic Accuracy of Dynamic Contrast Enhanced Magnetic Resonance Imaging in Characterizing Lung Masses

    Science.gov (United States)

    Inan, Nagihan; Arslan, Arzu; Donmez, Muhammed; Sarisoy, Hasan Tahsin

    2016-01-01

    Background Imaging plays a critical role not only in the detection, but also in the characterization of lung masses as benign or malignant. Objectives To determine the diagnostic accuracy of dynamic magnetic resonance imaging (MRI) in the differential diagnosis of benign and malignant lung masses. Patients and Methods Ninety-four masses were included in this prospective study. Five dynamic series of T1-weighted spoiled gradient echo (FFE) images were obtained, followed by a T1-weighted FFE sequence in the late phase (5th minutes). Contrast enhancement patterns in the early (25th second) and late (5th minute) phase images were evaluated. For the quantitative evaluation, signal intensity (SI)-time curves were obtained and the maximum relative enhancement, wash-in rate, and time-to-peak enhancement of masses in both groups were calculated. Results The early phase contrast enhancement patterns were homogeneous in 78.2% of the benign masses, while heterogeneous in 74.4% of the malignant tumors. On the late phase images, 70.8% of the benign masses showed homogeneous enhancement, while most of the malignant masses showed heterogeneous enhancement (82.4%). During the first pass, the maximum relative enhancement and wash-in rate values of malignant masses were significantly higher than those of the benign masses (P = 0.03 and 0.04, respectively). The cutoff value at 15% yielded a sensitivity of 85.4%, specificity of 61.2%, and positive predictive value of 68.7% for the maximum relative enhancement. Conclusion Contrast enhancement patterns and SI-time curve analysis of MRI are helpful in the differential diagnosis of benign and malignant lung masses. PMID:27703654

  10. Characterization of human breast disease using phosphorus magnetic resonance spectroscopy and proton magnetic resonance imaging

    International Nuclear Information System (INIS)

    Merchant, T.E.

    1992-01-01

    This thesis provides the fundamental characterization and differentiation of breast tissues using in vivo and ex vivo MR techniques in the hope that these techniques and experimental findings will be used on a larger scale and in a predictive manner in order to improve the specificity of diagnosis and treatment of breast cancer. In this dissertation, clinical studies were performed using proton magnetic resonance imaging and phosphorus magnetic resonance spectro-scopy ( 31 P MRS) to characterize and differentiate malignant breast tumors, benign breast tumors and normal breast tissues in vivo. These studies were carried out following the methodical characterization of chemical extracts of malignant breast tumor, benign breast tumor and normal breast parenchymal surgical tissue specimens using high resolution 31 P MRS. Alterations in breast tissue metabolism, as a result of pathological processes, were postulated to be responsible for measurable differences between malignant breast tumors, benign breast tumors and normal breast tissues using magnetic resonance techniques. (author). 365 refs.; 37 figs.; 25 tabs

  11. Application of image cytometry to characterize heterologous lipid flippases in yeast

    DEFF Research Database (Denmark)

    Jensen, Maria Stumph; Costa, Sara; Theorin, Lisa

    2016-01-01

    Lipid flippases are integral membrane proteins that play a central role in moving lipids across cellular membranes. Some of these transporters are ATPases that couple lipid translocation to ATP hydrolysis, whereas others function without any discernible metabolic energy input. A growing number...... is typically monitored by flow cytometry, a costly and maintenance-intensive method. Here, we have optimized a protocol to use an automated image-based cell counter to accurately measure lipid uptake by heterologous lipid flippases expressed in yeast. The method was validated by comparison with the classical...... for characterization of lipid flippase activity, and should be readily adaptable to analyze a variety of other transport systems in yeast, parasites, and mammalian cells. © 2016 International Society for Advancement of Cytometry....

  12. Development of an optimized algorithm for the characterization of microflow using speckle patterns present in optical coherence tomography signal

    International Nuclear Information System (INIS)

    Pretto, Lucas Ramos de

    2015-01-01

    This work discusses the Optical Coherence Tomography system (OCT) and its application to the microfluidics area. To this end, physical characterization of microfluidic circuits were performed using 3D (three-dimensional) models constructed from OCT images of such circuits. The technique was thus evaluated as a potential tool to aid in the inspection of microchannels. Going further, this work paper studies and develops analytical techniques for microfluidic flow, in particular techniques based on speckle pattern. In the first instance, existing methods were studied and improved, such as Speckle Variance - OCT, where a gain of 31% was obtained in processing time. Other methods, such as LASCA (Laser Speckle Contrast Analysis), based on speckle autocorrelation, are adapted to OCT images. Derived from LASCA, the developed analysis technique based on intensity autocorrelation motivated the development of a custom OCT system as well as an optimized acquisition software, with a sampling rate of 8 kHz. The proposed method was, then, able to distinguish different flow rates, and limits of detection were tested, proving its feasibility for implementation on Brownian motion analysis and flow rates below 10 μl/min. (author)

  13. Specific developed phantoms and software to assess radiological equipment image quality

    International Nuclear Information System (INIS)

    Verdu, G.; Rodenas, F.

    2011-01-01

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be automatized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques, etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (mAs). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (author)

  14. Specific developed phantoms and software to assess radiological equipment image quality

    Energy Technology Data Exchange (ETDEWEB)

    Verdu, G., E-mail: gverdu@iqn.upv.es [Universidad Politecnica de Valencia (Spain). Dept. de Ingenieria Quimica y Nuclear; Mayo, P., E-mail: p.mayo@titaniast.com [TITANIA Servicios Teconologicos, Valencia (Spain); Rodenas, F., E-mail: frodenas@mat.upv.es [Universidad Politecnica de Valencia (Spain). Dept. de Matematica Aplicada; Campayo, J.M., E-mail: j.campayo@lainsa.com [Logistica y Acondicionamientos Industriales S.A.U (LAINSA), Valencia (Spain)

    2011-07-01

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be automatized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques, etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (mAs). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (author)

  15. Inorganic Nanoparticles for Multimodal Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Magdalena Swierczewska

    2011-01-01

    Full Text Available Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.

  16. Development of Fluorescence Imaging Lidar for Boat-Based Coral Observation

    Directory of Open Access Journals (Sweden)

    Sasano Masahiko

    2016-01-01

    Full Text Available A fluorescence imaging lidar system installed in a boat-towable buoy has been developed for the observation of reef-building corals. Long-range fluorescent images of the sea bed can be recorded in the daytime with this system. The viability of corals is clear in these fluorescent images because of the innate fluorescent proteins. In this study, the specifications and performance of the system are shown.

  17. Prognostic aspects on the development of imaging techniques

    International Nuclear Information System (INIS)

    Biehl, H.

    1985-01-01

    The development of imaging techniques designed for medical diagnostics and their application within the health service system are forecast up to the year 2000. The changes in the structure of the imaging methods that are to be expected in the GDR are outlined. Considering the users' needs and demands to be met by the manufacturers, in the long-term forecast it is dealt with more specifically with X-ray techniques, computer tomography, ultrasonic diagnostics, video endoscopy and the use of expert systems. (author)

  18. In vivo characterization of a new abdominal aortic aneurysm mouse model with conventional and molecular magnetic resonance imaging

    NARCIS (Netherlands)

    Klink, Ahmed; Heynens, Joeri; Herranz, Beatriz; Lobatto, Mark E.; Arias, Teresa; Sanders, Honorius M. H. F.; Strijkers, Gustav J.; Merkx, Maarten; Nicolay, Klaas; Fuster, Valentin; Tedgui, Alain; Mallat, Ziad; Mulder, Willem J. M.; Fayad, Zahi A.

    2011-01-01

    The goal of this study was to use noninvasive conventional and molecular magnetic resonance imaging (MRI) to detect and characterize abdominal aortic aneurysms (AAAs) in vivo. Collagen is an essential constituent of aneurysms. Noninvasive MRI of collagen may represent an opportunity to help detect

  19. Characterizing water fingering phenomena in soils using magnetic resonance imaging and multifractal theory

    Directory of Open Access Journals (Sweden)

    A. Posadas

    2009-02-01

    Full Text Available The study of water movement in soils is of fundamental importance in hydrologic science. It is generally accepted that in most soils, water and solutes flow through unsaturated zones via preferential paths or fingers. This paper combines magnetic resonance imaging (MRI with both fractal and multifractal theory to characterize preferential flow in three dimensions. A cubic double-layer column filled with fine and coarse textured sand was placed into a 500 gauss MRI system. Water infiltration through the column (0.15×0.15×0.15 m3 was recorded in steady state conditions. Twelve sections with a voxel volume of 0.1×0.1×10 mm3 each were obtained and characterized using fractal and multifractal theory. The MRI system provided a detailed description of the preferential flow under steady state conditions and was also useful in understanding the dynamics of the formation of the fingers. The f(α multifractal spectrum was very sensitive to the variation encountered at each horizontally-oriented slice of the column and provided a suitable characterization of the dynamics of the process identifying four spatial domains. In conclusion, MRI and fractal and multifractal analysis were able to characterize and describe the preferential flow process in soils. Used together, the two methods provide a good alternative to study flow transport phenomena in soils and in porous media.

  20. Semi-automated camera trap image processing for the detection of ungulate fence crossing events.

    Science.gov (United States)

    Janzen, Michael; Visser, Kaitlyn; Visscher, Darcy; MacLeod, Ian; Vujnovic, Dragomir; Vujnovic, Ksenija

    2017-09-27

    Remote cameras are an increasingly important tool for ecological research. While remote camera traps collect field data with minimal human attention, the images they collect require post-processing and characterization before it can be ecologically and statistically analyzed, requiring the input of substantial time and money from researchers. The need for post-processing is due, in part, to a high incidence of non-target images. We developed a stand-alone semi-automated computer program to aid in image processing, categorization, and data reduction by employing background subtraction and histogram rules. Unlike previous work that uses video as input, our program uses still camera trap images. The program was developed for an ungulate fence crossing project and tested against an image dataset which had been previously processed by a human operator. Our program placed images into categories representing the confidence of a particular sequence of images containing a fence crossing event. This resulted in a reduction of 54.8% of images that required further human operator characterization while retaining 72.6% of the known fence crossing events. This program can provide researchers using remote camera data the ability to reduce the time and cost required for image post-processing and characterization. Further, we discuss how this procedure might be generalized to situations not specifically related to animal use of linear features.

  1. Characterizing the energy output generated by a standard electric detonator using shadowgraph imaging

    Science.gov (United States)

    Petr, V.; Lozano, E.

    2017-09-01

    This paper overviews a complete method for the characterization of the explosive energy output from a standard detonator. Measurements of the output of explosives are commonly based upon the detonation parameters of the chemical energy content of the explosive. These quantities provide a correct understanding of the energy stored in an explosive, but they do not provide a direct measure of the different modes in which the energy is released. This optically based technique combines high-speed and ultra-high-speed imaging to characterize the casing fragmentation and the detonator-driven shock load. The procedure presented here could be used as an alternative to current indirect methods—such as the Trauzl lead block test—because of its simplicity, high data accuracy, and minimum demand for test repetition. This technique was applied to experimentally measure air shock expansion versus time and calculating the blast wave energy from the detonation of the high explosive charge inside the detonator. Direct measurements of the shock front geometry provide insight into the physics of the initiation buildup. Because of their geometry, standard detonators show an initial ellipsoidal shock expansion that degenerates into a final spherical wave. This non-uniform shape creates variable blast parameters along the primary blast wave. Additionally, optical measurements are validated using piezoelectric pressure transducers. The energy fraction spent in the acceleration of the metal shell is experimentally measured and correlated with the Gurney model, as well as to several empirical formulations for blasts from fragmenting munitions. The fragment area distribution is also studied using digital particle imaging analysis and correlated with the Mott distribution. Understanding the fragmentation distribution plays a critical role when performing hazard evaluation from these types of devices. In general, this technique allows for characterization of the detonator within 6-8% error

  2. Assessment and Development of Microwave Imaging for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard

    At the Technical University of Denmark (DTU), a 3D tomographic microwave imaging system is currently being developed with the aim of using nonlinear microwave imaging for breast-cancer detection. The imaging algorithm used in the system is based on an iterative Newton-type scheme. In this algorithm...... used in the microwave tomographic imaging system is presented. Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels....... This implies that special care must be taken when the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might...

  3. Diffusion Tensor Imaging: Application to the Study of the Developing Brain

    Science.gov (United States)

    Cascio, Carissa J.; Gerig, Guido; Piven, Joseph

    2007-01-01

    Objective: To provide an overview of diffusion tensor imaging (DTI) and its application to the study of white matter in the developing brain in both healthy and clinical samples. Method: The development of DTI and its application to brain imaging of white matter tracts is discussed. Forty-eight studies using DTI to examine diffusion properties of…

  4. The TRICLOBS Dynamic Multi-Band Image Data Set for the Development and Evaluation of Image Fusion Methods.

    Directory of Open Access Journals (Sweden)

    Alexander Toet

    Full Text Available The fusion and enhancement of multiband nighttime imagery for surveillance and navigation has been the subject of extensive research for over two decades. Despite the ongoing efforts in this area there is still only a small number of static multiband test images available for the development and evaluation of new image fusion and enhancement methods. Moreover, dynamic multiband imagery is also currently lacking. To fill this gap we present the TRICLOBS dynamic multi-band image data set containing sixteen registered visual (0.4-0.7μm, near-infrared (NIR, 0.7-1.0μm and long-wave infrared (LWIR, 8-14μm motion sequences. They represent different military and civilian surveillance scenarios registered in three different scenes. Scenes include (military and civilian people that are stationary, walking or running, or carrying various objects. Vehicles, foliage, and buildings or other man-made structures are also included in the scenes. This data set is primarily intended for the development and evaluation of image fusion, enhancement and color mapping algorithms for short-range surveillance applications. The imagery was collected during several field trials with our newly developed TRICLOBS (TRI-band Color Low-light OBServation all-day all-weather surveillance system. This system registers a scene in the Visual, NIR and LWIR part of the electromagnetic spectrum using three optically aligned sensors (two digital image intensifiers and an uncooled long-wave infrared microbolometer. The three sensor signals are mapped to three individual RGB color channels, digitized, and stored as uncompressed RGB (false color frames. The TRICLOBS data set enables the development and evaluation of (both static and dynamic image fusion, enhancement and color mapping algorithms. To allow the development of realistic color remapping procedures, the data set also contains color photographs of each of the three scenes. The color statistics derived from these photographs

  5. Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions

    Science.gov (United States)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of

  6. Development of a magnetic nanoparticle susceptibility magnitude imaging array

    International Nuclear Information System (INIS)

    Ficko, Bradley W; Nadar, Priyanka M; Hoopes, P Jack; Diamond, Solomon G

    2014-01-01

    There are several emerging diagnostic and therapeutic applications of magnetic nanoparticles (mNPs) in medicine. This study examines the potential for developing an mNP imager that meets these emerging clinical needs with a low cost imaging solution that uses arrays of digitally controlled drive coils in a multiple-frequency, continuous-wave operating mode and compensated fluxgate magnetometers. The design approach is described and a mathematical model is developed to support measurement and imaging. A prototype is used to demonstrate active compensation of up to 185 times the primary applied magnetic field, depth sensitivity up to 2.5 cm (p < 0.01), and linearity over five dilutions (R 2  > 0.98, p < 0.001). System frequency responses show distinguishable readouts for iron oxide mNPs with single magnetic domain core diameters of 10 and 40 nm, and multi-domain mNPs with a hydrodynamic diameter of 100 nm. Tomographic images show a contrast-to-noise ratio of 23 for 0.5 ml of 12.5 mg Fe ml −1  mNPs at 1 cm depth. A demonstration involving the injection of mNPs into pork sausage shows the potential for use in biological systems. These results indicate that the proposed mNP imaging approach can potentially be extended to a larger array system with higher-resolution. (paper)

  7. Development and Characterization of a Brain Endothelial Cell Phenotype using Human Induced Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Goldeman, Charlotte; Saaby, Lasse; Holst, Bjørn

    for experiments the following day. The model was monitored by measuring the trans-endothelial electrical resistance (TEER). RA had an inductive effect on the model, shown by an elevation in barrier tightness which correlated with the presence of tight junction proteins, shown by confocal microscopy images which...... be used to investigate drug transport in vitro, and screen candidates for permeation properties. One recent approach is to develop in vitro models of the BBB using human induced pluripotent stem cells (hIPSCs) as described by Stebbins et al. (2015).The aim of the present study was to investigate whether...... the published protocols were generically applicable and thus to develop and characterize in vitro models of the BBB using hIPSCs from different sources. Two stem cell lines, Bioni010-C and WTSli024-A, were seeded and maintained on Matrigel in mTesR1 media. Cells were then seeded as single cells at different...

  8. Contribution of multi-temporal remote sensing images to characterize landslide slip surface ‒ Application to the La Clapière landslide (France

    Directory of Open Access Journals (Sweden)

    B. Casson

    2005-01-01

    Full Text Available Landslide activity is partly controlled by the geometry of the slip surface. This activity is traduced at the surface by displacements and topographic variations. Consequently, multi-temporal remote sensing images can be used in order to characterize the geometry of landslide slip surface and its spatial and temporal evolution. Differential Digital Elevation Models (DEMs are obtained by subtracting two DEMs of different years. A method of multi-temporal images correlation allows to generate displacement maps that can be interpreted in terms of velocity and direction of movements. These data are then used to characterize qualitatively the geometry of the slip surface of the la Clapière landslide (French Southern Alps. Distribution of displacement vectors and of topographic variations are in accordance with a curved slip surface, characterizing a preferential rotational behaviour of this landslide. On the other hand, a spatial and temporal evolution of the geometry of the slip surface is pointed out. Indeed, a propagation of the slip surface under the Iglière bar, in the W part of the landslide, is suspected and can be linked to the acceleration of the landslide in 1987. This study shows the high potential of multi-temporal remote sensing images for slip surface characterization. Although this method could not replace in situ investigations, it can really help to well distribute geophysical profiles or boreholes on unstable areas.

  9. Challenges in clinical studies with multiple imaging probes

    International Nuclear Information System (INIS)

    Krohn, Kenneth A.; O'Sullivan, Finbarr; Crowley, John; Eary, Janet F.; Linden, Hannah M.; Link, Jeanne M.; Mankoff, David A.; Muzi, Mark; Rajendran, Joseph G.; Spence, Alexander M.; Swanson, Kristin R.

    2007-01-01

    This article addresses two related issues: (a) When a new imaging agent is proposed, how does the imager integrate it with other biomarkers, either sampled or imaged? (b) When we have multiple imaging agents, is the information additive or duplicative and how is this objectively determined? Molecular biology is leading to new treatment options with reduced normal tissue toxicity, and imaging should have a role in objectively evaluating new treatments. There are two roles for molecular characterization of disease. Molecular imaging measurements before therapy help predict the aggressiveness of disease and identify therapeutic targets and, therefore, help choose the optimal therapy for an individual. Measurements of specific biochemical processes made during or after therapy should be sensitive measures of tumor response. The rules of evidence are not fully developed for the prognostic role of imaging biomarkers, but the potential of molecular imaging provides compelling motivation to push forward with convincing validation studies. New imaging procedures need to be characterized for their effectiveness under realistic clinical conditions to improve the management of patients and achieve a better outcome. The purpose of this article is to promote a critical discussion within the molecular imaging community because our future value to the overall biomedical community will be in supporting better treatment outcomes rather than in detection

  10. Characterization of dynamic changes of current source localization based on spatiotemporal fMRI constrained EEG source imaging

    Science.gov (United States)

    Nguyen, Thinh; Potter, Thomas; Grossman, Robert; Zhang, Yingchun

    2018-06-01

    Objective. Neuroimaging has been employed as a promising approach to advance our understanding of brain networks in both basic and clinical neuroscience. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) represent two neuroimaging modalities with complementary features; EEG has high temporal resolution and low spatial resolution while fMRI has high spatial resolution and low temporal resolution. Multimodal EEG inverse methods have attempted to capitalize on these properties but have been subjected to localization error. The dynamic brain transition network (DBTN) approach, a spatiotemporal fMRI constrained EEG source imaging method, has recently been developed to address these issues by solving the EEG inverse problem in a Bayesian framework, utilizing fMRI priors in a spatial and temporal variant manner. This paper presents a computer simulation study to provide a detailed characterization of the spatial and temporal accuracy of the DBTN method. Approach. Synthetic EEG data were generated in a series of computer simulations, designed to represent realistic and complex brain activity at superficial and deep sources with highly dynamical activity time-courses. The source reconstruction performance of the DBTN method was tested against the fMRI-constrained minimum norm estimates algorithm (fMRIMNE). The performances of the two inverse methods were evaluated both in terms of spatial and temporal accuracy. Main results. In comparison with the commonly used fMRIMNE method, results showed that the DBTN method produces results with increased spatial and temporal accuracy. The DBTN method also demonstrated the capability to reduce crosstalk in the reconstructed cortical time-course(s) induced by neighboring regions, mitigate depth bias and improve overall localization accuracy. Significance. The improved spatiotemporal accuracy of the reconstruction allows for an improved characterization of complex neural activity. This improvement can be

  11. New Developments In Particle Image Velocimetry (PIV) For The Study Of Complex Plasmas

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Fisher, Ross; Shaw, Joseph; Jefferson, Robert; Cianciosa, Mark; Williams, Jeremiah

    2011-01-01

    Particle Image Velocimetry (PIV) is a fluid measurement technique in which the average displacement of small groups of particles is made by comparing a pair of images that are separated in time by an interval Δt. For over a decade, a several variations of the PIV technique, e.g., two-dimensional, stereoscopic, and tomographic PIV, have been used to characterize particle transport, instabilities, and the thermal properties of complex plasmas. This paper describes the basic principles involved in the PIV analysis technique and discusses potential future applications of PIV to the study of complex plasmas.

  12. Development of fuel number reader by ultrasonic imaging techniques

    International Nuclear Information System (INIS)

    Omote, T.; Yoshida, T.

    1991-01-01

    This paper reports on a spent fuel ID number reader using ultrasonic imaging techniques that has been developed to realize efficient and automatic verification of fuel numbers, thereby to reduce mental load and radiation exposure for operators engaged in the verification task. The ultrasonic imaging techniques for automatic fuel number recognition are described. High-speed and high reliability imaging of the spent fuel ID number are obtained by using linear array type ultrasonic probe. The ultrasonic wave is scanned by switching array probe in vertical direction, and scanned mechanically in horizontal direction. Time for imaging of spent fuel ID number on assembly was confirmed less than three seconds by these techniques. And it can recognize spent fuel ID number even if spent fuel ID number can not be visualized by an optical method because of depositing fuel number regions by soft card. In order to recognize spent fuel ID number more rapidly and more reliably, coded fuel number expressed by plural separate recesses form is developed. Every coded fuel number consists of six small holes (about 1 mm dia.) and can be marked adjacent to the existing fuel number expressed by letters and numbers

  13. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

    Science.gov (United States)

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-01-01

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. DOI: http://dx.doi.org/10.7554/eLife.07597.001 PMID:26287479

  14. Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo

    Science.gov (United States)

    Zhao, Huangxuan; Wang, Guangsong; Lin, Riqiang; Gong, Xiaojing; Song, Liang; Li, Tan; Wang, Wenjia; Zhang, Kunya; Qian, Xiuqing; Zhang, Haixia; Li, Lin; Liu, Zhicheng; Liu, Chengbo

    2018-04-01

    For the diagnosis and evaluation of ophthalmic diseases, imaging and quantitative characterization of vasculature in the iris are very important. The recently developed photoacoustic imaging, which is ultrasensitive in imaging endogenous hemoglobin molecules, provides a highly efficient label-free method for imaging blood vasculature in the iris. However, the development of advanced vascular quantification algorithms is still needed to enable accurate characterization of the underlying vasculature. We have developed a vascular information quantification algorithm by adopting a three-dimensional (3-D) Hessian matrix and applied for processing iris vasculature images obtained with a custom-built optical-resolution photoacoustic imaging system (OR-PAM). For the first time, we demonstrate in vivo 3-D vascular structures of a rat iris with a the label-free imaging method and also accurately extract quantitative vascular information, such as vessel diameter, vascular density, and vascular tortuosity. Our results indicate that the developed algorithm is capable of quantifying the vasculature in the 3-D photoacoustic images of the iris in-vivo, thus enhancing the diagnostic capability of the OR-PAM system for vascular-related ophthalmic diseases in vivo.

  15. Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging.

    Science.gov (United States)

    Theek, Benjamin; Gremse, Felix; Kunjachan, Sijumon; Fokong, Stanley; Pola, Robert; Pechar, Michal; Deckers, Roel; Storm, Gert; Ehling, Josef; Kiessling, Fabian; Lammers, Twan

    2014-05-28

    The Enhanced Permeability and Retention (EPR) effect is extensively used in drug delivery research. Taking into account that EPR is a highly variable phenomenon, we have here set out to evaluate if contrast-enhanced functional ultrasound (ceUS) imaging can be employed to characterize EPR-mediated passive drug targeting to tumors. Using standard fluorescence molecular tomography (FMT) and two different protocols for hybrid computed tomography-fluorescence molecular tomography (CT-FMT), the tumor accumulation of a ~10 nm-sized near-infrared-fluorophore-labeled polymeric drug carrier (pHPMA-Dy750) was evaluated in CT26 tumor-bearing mice. In the same set of animals, two different ceUS techniques (2D MIOT and 3D B-mode imaging) were employed to assess tumor vascularization. Subsequently, the degree of tumor vascularization was correlated with the degree of EPR-mediated drug targeting. Depending on the optical imaging protocol used, the tumor accumulation of the polymeric drug carrier ranged from 5 to 12% of the injected dose. The degree of tumor vascularization, determined using ceUS, varied from 4 to 11%. For both hybrid CT-FMT protocols, a good correlation between the degree of tumor vascularization and the degree of tumor accumulation was observed, within the case of reconstructed CT-FMT, correlation coefficients of ~0.8 and p-values of EPR, and potentially also to pre-select patients likely to respond to passively tumor-targeted nanomedicine treatments. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Quantitative ultrasound tissue characterization in shoulder and thigh muscles – a new approach

    DEFF Research Database (Denmark)

    Nielsen, P.K.; Jensen, B.R.; Darvann, Tron Andre

    2006-01-01

    Background: The echogenicity patterns of ultrasound scans contain information of tissue composition in muscles. The aim was: ( 1) to develop a quantitative ultrasound image analysis to characterize tissue composition in terms of intensity and structure of the ultrasound images, and ( 2) to use th...

  17. Molecular imaging agents for SPECT (and SPECT/CT)

    International Nuclear Information System (INIS)

    Gnanasegaran, Gopinath; Ballinger, James R.

    2014-01-01

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  18. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  19. Angular-resolution and material-characterization measurements for a dual-particle imaging system with mixed-oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Poitrasson-Rivière, Alexis, E-mail: alexispr@umich.edu [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Polack, J. Kyle; Hamel, Michael C.; Klemm, Dietrich D.; Ito, Kai; McSpaden, Alexander T.; Flaska, Marek; Clarke, Shaun D.; Pozzi, Sara A. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Tomanin, Alice [Lainsa-Italia S.R.L., Via E. Fermi 2749, 21027 Ispra, VA (Italy); Peerani, Paolo [European Commission, Joint Research Centre, Institute for Transuranium Elements, 21027 Ispra, VA (Italy)

    2015-10-11

    A dual-particle imaging (DPI) system, capable of simultaneously imaging fast neutrons and gamma rays, has been operated in the presence of mixed-oxide (MOX) fuel to assess the system's angular resolution and material-characterization capabilities. The detection principle is based on the scattering physics of neutrons (elastic scattering) and gamma rays (Compton scattering) in organic and inorganic scintillators. The detection system is designed as a combination of a two-plane Compton camera and a neutron-scatter camera. The front plane consists of EJ-309 liquid scintillators and the back plane consists of interleaved EJ-309 and NaI(Tl) scintillators. MCNPX-PoliMi was used to optimize the geometry of the system and the resulting prototype was built and tested using a Cf-252 source as an SNM surrogate. A software package was developed to acquire and process data in real time. The software was used for a measurement campaign to assess the angular resolution of the imaging system with MOX samples. Measurements of two MOX canisters of similar isotopics and intensity were performed for 6 different canister separations (from 5° to 30°, corresponding to distances of 21 cm and 131 cm, respectively). The measurements yielded a minimum separation of 20° at 2.5 m (86-cm separation) required to see 2 separate hot spots. Additionally, the results displayed good agreement with MCNPX-PoliMi simulations. These results indicate an angular resolution between 15° and 20°, given the 5° step. Coupled with its large field of view, and its capability to differentiate between spontaneous fission and (α,n) sources, the DPI system shows its potential for nuclear-nonproliferation applications.

  20. Time-lapse imaging of neural development: zebrafish lead the way into the fourth dimension.

    Science.gov (United States)

    Rieger, Sandra; Wang, Fang; Sagasti, Alvaro

    2011-07-01

    Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults. Copyright © 2011 Wiley-Liss, Inc.

  1. Nuclear magnetic resonance imaging in orthopedics

    International Nuclear Information System (INIS)

    Peters, P.E.; Matthiass, H.H.; Reiser, M.

    1990-01-01

    NMR imaging (MR tomography) allows the non-invasive diagnostic evaluation of cartilage, ligaments, tendons and muscles of the limbs, joints and the vertebral spine. The images are characterized by a good spatial resolution, and in contrast to the X-ray CT, sectional images can be done in all planes, as well as three-dimensional image reconstructions. The book reviews the current state of the art and foreseeable developments of NMR imaging of the supporting and connective tissue, also discussing the application of paramagnetic contrast media, and the novel NMR spectroscopy as a method pointing into the future. All contributions discussing the clinical aspects have been written jointly by experts in orthopedics and radiology. (orig.) With 153 figs., 8 tabs [de

  2. The development of application technology for image processing in nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Kim, Woog Ki; Sohn, Surg Won; Kim, Seung Ho; Hwang, Suk Yeoung; Kim, Byung Soo

    1991-01-01

    The object of this project is to develop application technology of image processing in nuclear facilities where image signal are used for reliability and safety enhancement of operation, radiation exposure reduce of operator, and automation of operation processing. We has studied such application technology for image processing in nuclear facilities as non-tactile measurement, remote and automatic inspection, remote control, and enhanced analysis of visual information. On these bases, automation system and real-time image processing system are developed. Nuclear power consists in over 50% share of electic power supply of our country nowdays. So, it is required of technological support for top-notch technology in nuclear industry and its related fields. Especially, it is indispensable for image processing technology to enhance the reliabilty and safety of operation, to automate the process in a place like a nuclear power plant and radioactive envionment. It is important that image processing technology is linked to a nuclear engineering, and enhance the reliability abd safety of nuclear operation, as well as decrease the dose rate. (Author)

  3. Non-contact respiration monitoring for in-vivo murine micro computed tomography: characterization and imaging applications

    International Nuclear Information System (INIS)

    Burk, Laurel M; Lee, Yueh Z; Wait, J Matthew; Lu Jianping; Zhou, Otto Z

    2012-01-01

    A cone beam micro-CT has previously been utilized along with a pressure-tracking respiration sensor to acquire prospectively gated images of both wild-type mice and various adult murine disease models. While the pressure applied to the abdomen of the subject by this sensor is small and is generally without physiological effect, certain disease models of interest, as well as very young animals, are prone to atelectasis with added pressure, or they generate too weak a respiration signal with this method to achieve optimal prospective gating. In this work we present a new fibre-optic displacement sensor which monitors respiratory motion of a subject without requiring physical contact. The sensor outputs an analogue signal which can be used for prospective respiration gating in micro-CT imaging. The device was characterized and compared against a pneumatic air chamber pressure sensor for the imaging of adult wild-type mice. The resulting images were found to be of similar quality with respect to physiological motion blur; the quality of the respiration signal trace obtained using the non-contact sensor was comparable to that of the pressure sensor and was superior for gating purposes due to its better signal-to-noise ratio. The non-contact sensor was then used to acquire in-vivo micro-CT images of a murine model for congenital diaphragmatic hernia and of 11-day-old mouse pups. In both cases, quality CT images were successfully acquired using this new respiration sensor. Despite the presence of beam hardening artefacts arising from the presence of a fibre-optic cable in the imaging field, we believe this new technique for respiration monitoring and gating presents an opportunity for in-vivo imaging of disease models which were previously considered too delicate for established animal handling methods. (paper)

  4. Characterization and handling solutions through development and adaptation of available technologies

    International Nuclear Information System (INIS)

    Michel, W.S.; Frazee, C.

    1998-01-01

    The Department of Energy (DOE) faces unique challenges in characterizing and handling its mixed wastes. Mixed waste is low-level or transuranic (TRU) contaminated wastes containing Resource Conservation and Recovery Act (RCRA) hazardous materials. Characterization and material handling technologies will be required to solve pretreatment and disposal needs, and to meet transportation requirements. The Mixed Waste Focus Area (MWFA) will fund the development and demonstration of characterization and material handling technologies to ensure the availability to support the DOE mixed waste needs. The MWFA will be evaluating commercially available and laboratory developed technologies for applicability in meeting these needs. Improved systems will be developed, on the commercial or laboratory side, as needed to address unmet needs. Studies/demonstrations are taking place this year to evaluate the capabilities of existing systems and identify technology gaps. Calls for proposals will be made to both industry and laboratory to identify work to address those gaps. Prioritization of applicable proposals will take place and activities funded appropriately to address characterization and material handling needs

  5. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    Science.gov (United States)

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.

  6. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease

    Energy Technology Data Exchange (ETDEWEB)

    Noerenberg, Dominik [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); University of Munich - Grosshadern, Department of Clinical Radiology, Munich (Germany); Ebersberger, Hans U. [Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany); Diederichs, Gerd; Hamm, Bernd [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); Botnar, Rene M. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Makowski, Marcus R. [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2016-03-15

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. (orig.)

  7. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease

    International Nuclear Information System (INIS)

    Noerenberg, Dominik; Ebersberger, Hans U.; Diederichs, Gerd; Hamm, Bernd; Botnar, Rene M.; Makowski, Marcus R.

    2016-01-01

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. (orig.)

  8. New Antifouling Platform Characterized by Single-Molecule Imaging

    Science.gov (United States)

    2015-01-01

    Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm2 which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm2 adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm2). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others. PMID:24503420

  9. New antifouling platform characterized by single-molecule imaging.

    Science.gov (United States)

    Ryu, Ji Young; Song, In Taek; Lau, K H Aaron; Messersmith, Phillip B; Yoon, Tae-Young; Lee, Haeshin

    2014-03-12

    Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm(2) which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm(2) adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm(2)). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others.

  10. The role of place image dimensions in residents' support for tourism development

    OpenAIRE

    Stylidis, Dimitrios

    2016-01-01

    Understanding residents' perceptions of tourism impacts and their level of support for its development is considered vital for the sustainable development of tourism. Despite the plethora of factors examined as determinants of residents' attitudes toward tourism, the role of residents' place image has been under-examined. This study developed a model examining the relationships between residents' place image dimensions, perceived tourism impacts and support for development. Findings suggest t...

  11. Statistical characterization of speckle noise in coherent imaging systems

    Science.gov (United States)

    Yaroslavsky, Leonid; Shefler, A.

    2003-05-01

    Speckle noise imposes fundamental limitation on image quality in coherent radiation based imaging and optical metrology systems. Speckle noise phenomena are associated with properties of objects to diffusely scatter irradiation and with the fact that in recording the wave field, a number of signal distortions inevitably occur due to technical limitations inherent to hologram sensors. The statistical theory of speckle noise was developed with regard to only limited resolving power of coherent imaging devices. It is valid only asymptotically as much as the central limit theorem of the probability theory can be applied. In applications this assumption is not always applicable. Moreover, in treating speckle noise problem one should also consider other sources of the hologram deterioration. In the paper, statistical properties of speckle due to the limitation of hologram size, dynamic range and hologram signal quantization are studied by Monte-Carlo simulation for holograms recorded in near and far diffraction zones. The simulation experiments have shown that, for limited resolving power of the imaging system, widely accepted opinion that speckle contrast is equal to one holds only for rather severe level of the hologram size limitation. For moderate limitations, speckle contrast changes gradually from zero for no limitation to one for limitation to less than about 20% of hologram size. The results obtained for the limitation of the hologram sensor"s dynamic range and hologram signal quantization reveal that speckle noise due to these hologram signal distortions is not multiplicative and is directly associated with the severity of the limitation and quantization. On the base of the simulation results, analytical models are suggested.

  12. Cerenkov ring imaging detector development at SLAC

    International Nuclear Information System (INIS)

    Williams, S.H.

    1984-06-01

    The imaging of Cerenkov light on to photosensitive detectors promises to be a powerful technique for identifying particles in colliding beam spectrometers. Toward this end two and three dimensional imaging photon detectors are being developed at SLAC. The present techniques involve photon conversion using easily ionized exotic chemicals like tetrakisdimethyl-amino-ethylene (TMAE) in a drift and amplifying gas mixture of methane and isobutane. Single photoelectrons from Cerenkov light are currently being drifted 20 cm and a new device under study will be used to study drifting up to 80 cm along a magnetic field. A short description of a large device currently being designed for the SLD spectrometer at the Stanford Linear Collider will be given

  13. Development of a new electronic neutron imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Brenizer, J.S. [Department of Mechanical, Aerospace and Nuclear Engineering, Thornton Hall, University of Virginia, Charlottesville, VA 22903-2442 (United States); Berger, H. [Industrial Quality, Inc., Gaithersburg, MD (United States); Gibbs, K.M. [Industrial Quality, Inc., Gaithersburg, MD (United States); Mengers, P. [Paultek Systems, Inc., Nevada City, CA (United States); Stebbings, C.T. [Department of Mechanical, Aerospace and Nuclear Engineering, Thornton Hall, University of Virginia, Charlottesville, VA 22903-2442 (United States); Polansky, D. [Industrial Quality, Inc., Gaithersburg, MD (United States); Rogerson, D.J. [Naval Air Warfare Center, China Lake, CA (United States)

    1999-11-03

    An electronic neutron imaging camera system was developed for use with thermal, epithermal, and fast neutrons in applications that include nondestructive inspection of explosives, corrosion, turbine blades, electronics, low Z components, etc. The neutron images are expected to provide information to supplement that available from X-ray tests. The primary camera image area was a 30x30 cm field-of-view with a spatial resolution approaching 1.6 line pairs/mm (lp/mm). The camera had a remotely changeable second lens to limit the field-of-view to 7.6x7.6 cm for high spatial resolution (at least 4 lp/mm) thermal neutron imaging, but neutron and light scatter will limit resolution for fast neutrons to about 0.5 lp/mm. Remote focus capability enhanced camera set-up for optimum operation. The 75 dB dynamic range camera system included {sup 6}Li-based screens for imaging of thermal and epithermal neutrons and ZnS(Ag)-based screens for fast neutron imaging. The fast optics was input to a Super S-25 Gen II image intensifier, fiber optically coupled to a 1134 (h)x486 (v) frame transfer CCD camera. The camera system was designed to be compatible with a Navy-sponsored accelerator neutron source. The planned neutron source is an RF quadrupole accelerator that will provide a fast neutron flux of 10{sup 7} n/cm{sup 2}-s (at a source distance of 1 m) at an energy of about 2.2 MeV and a thermal neutron flux of 10{sup 6} n/cm{sup 2}-s at a source L/D ratio of 30. The electronic camera produced good quality real-time images at these neutron levels. On-chip integration could be used to improve image quality for low flux situations. The camera and accelerator combination provided a useful non-reactor neutron inspection system.

  14. Development of sub-nanosecond, high gain structures for time-of-flight ring imaging in large area detectors

    International Nuclear Information System (INIS)

    Wetstein, Matthew

    2011-01-01

    Microchannel plate photomultiplier tubes (MCPs) are compact, imaging detectors, capable of micron-level spatial imaging and timing measurements with resolutions below 10 ps. Conventional fabrication methods are too expensive for making MCPs in the quantities and sizes necessary for typical HEP applications, such as time-of-flight ring-imaging Cherenkov detectors (TOF-RICH) or water Cherenkov-based neutrino experiments. The Large Area Picosecond Photodetector Collaboration (LAPPD) is developing new, commercializable methods to fabricate 20 cm 2 thin planar MCPs at costs comparable to those of traditional photo-multiplier tubes. Transmission-line readout with waveform sampling on both ends of each line allows the efficient coverage of large areas while maintaining excellent time and space resolution. Rather than fabricating channel plates from active, high secondary electron emission materials, we produce plates from passive substrates, and coat them using atomic layer deposition (ALD), a well established industrial batch process. In addition to possible reductions in cost and conditioning time, this allows greater control to optimize the composition of active materials for performance. We present details of the MCP fabrication method, preliminary results from testing and characterization facilities, and possible HEP applications.

  15. Design and development of an airborne multispectral imaging system

    Science.gov (United States)

    Kulkarni, Rahul R.; Bachnak, Rafic; Lyle, Stacey; Steidley, Carl W.

    2002-08-01

    Advances in imaging technology and sensors have made airborne remote sensing systems viable for many applications that require reasonably good resolution at low cost. Digital cameras are making their mark on the market by providing high resolution at very high rates. This paper describes an aircraft-mounted imaging system (AMIS) that is being designed and developed at Texas A&M University-Corpus Christi (A&M-CC) with the support of a grant from NASA. The approach is to first develop and test a one-camera system that will be upgraded into a five-camera system that offers multi-spectral capabilities. AMIS will be low cost, rugged, portable and has its own battery power source. Its immediate use will be to acquire images of the Coastal area in the Gulf of Mexico for a variety of studies covering vast spectra from near ultraviolet region to near infrared region. This paper describes AMIS and its characteristics, discusses the process for selecting the major components, and presents the progress.

  16. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  17. The development of nanobody probes for molecular imaging

    International Nuclear Information System (INIS)

    Ding Zhiling; Lan Xiaoli; Zhang Yongxue

    2014-01-01

    The nanobody is a novel antibody fragment, which has beneficial biophysical and pharmacokinetic properties, such as the small molecular weight, high affinity and specificity for antigen. Nanobody is ideally suitable for molecular imaging as a targeting probe that could label antigen at nmol level in vitro. In animal models of xenografted tumor, atherosclerotic plaques and brain disorders, the target tissues were specifically and clearly detected and the high tumor-to-blood (T/B) ratios were obtained. Structural or chemical modified nanobodies will have higher affinity and retention to target tissues, and be convenient for the application of molecular imaging. With the development of the related research, nanobody-based molecular imaging will be gradually transformed into the clinical applications, and play an important role in early diagnosis and therapeutic assessment. (authors)

  18. Characterization of statistical prior image constrained compressed sensing (PICCS): II. Application to dose reduction

    International Nuclear Information System (INIS)

    Lauzier, Pascal Thériault; Chen Guanghong

    2013-01-01

    Purpose: The ionizing radiation imparted to patients during computed tomography exams is raising concerns. This paper studies the performance of a scheme called dose reduction using prior image constrained compressed sensing (DR-PICCS). The purpose of this study is to characterize the effects of a statistical model of x-ray detection in the DR-PICCS framework and its impact on spatial resolution. Methods: Both numerical simulations with known ground truth and in vivo animal dataset were used in this study. In numerical simulations, a phantom was simulated with Poisson noise and with varying levels of eccentricity. Both the conventional filtered backprojection (FBP) and the PICCS algorithms were used to reconstruct images. In PICCS reconstructions, the prior image was generated using two different denoising methods: a simple Gaussian blur and a more advanced diffusion filter. Due to the lack of shift-invariance in nonlinear image reconstruction such as the one studied in this paper, the concept of local spatial resolution was used to study the sharpness of a reconstructed image. Specifically, a directional metric of image sharpness, the so-called pseudopoint spread function (pseudo-PSF), was employed to investigate local spatial resolution. Results: In the numerical studies, the pseudo-PSF was reduced from twice the voxel width in the prior image down to less than 1.1 times the voxel width in DR-PICCS reconstructions when the statistical model was not included. At the same noise level, when statistical weighting was used, the pseudo-PSF width in DR-PICCS reconstructed images varied between 1.5 and 0.75 times the voxel width depending on the direction along which it was measured. However, this anisotropy was largely eliminated when the prior image was generated using diffusion filtering; the pseudo-PSF width was reduced to below one voxel width in that case. In the in vivo study, a fourfold improvement in CNR was achieved while qualitatively maintaining sharpness

  19. MR imaging of the developing brain

    International Nuclear Information System (INIS)

    Chi, T.L.; Oh, C.H.; Medina, L.R.; Bello, J.A.; Khandji, A.G.; Hilal, S.K.; Paviakis, S.G.

    1987-01-01

    MR imaging is an excellent modality for the study of normal developments as well as pathologic derangements of cerebrospinal fluid flow and myelin formation. The authors studied children less than 3 years old using a single-echo technique at 1.5 T. T1 and T2 values for the gray and white matter were measured. The signal intensity and the measured T2 values of the white matter were higher than those of the gray matter at term until 8 or 9 months of age. In patients with hydrocephalus, the gray/white matter contrast on the T2-weighted images was not altered, but he measured T2 values were prolonged, probably reflecting diffuse brain edema. The T2 values are presented graphically showing the normal range of variations. In children whose values fall outside the range, alterations of brain water content or a dysmyelination process should be suspected

  20. New developments in paediatric cardiac functional ultrasound imaging.

    Science.gov (United States)

    de Korte, Chris L; Nillesen, Maartje M; Saris, Anne E C M; Lopata, Richard G P; Thijssen, Johan M; Kapusta, Livia

    2014-07-01

    Ultrasound imaging can be used to estimate the morphology as well as the motion and deformation of tissues. If the interrogated tissue is actively deforming, this deformation is directly related to its function and quantification of this deformation is normally referred as 'strain imaging'. Tissue can also be deformed by applying an internal or external force and the resulting, induced deformation is a function of the mechanical tissue characteristics. In combination with the load applied, these strain maps can be used to estimate or reconstruct the mechanical properties of tissue. This technique was named 'elastography' by Ophir et al. in 1991. Elastography can be used for atherosclerotic plaque characterisation, while the contractility of the heart or skeletal muscles can be assessed with strain imaging. Rather than using the conventional video format (DICOM) image information, radio frequency (RF)-based ultrasound methods enable estimation of the deformation at higher resolution and with higher precision than commercial methods using Doppler (tissue Doppler imaging) or video image data (2D speckle tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the ultrasound beam direction, so it has to be considered a 1D technique. Recently, this method has been extended to multiple directions and precision further improved by using spatial compounding of data acquired at multiple beam steered angles. Using similar techniques, the blood velocity and flow can be determined. RF-based techniques are also beneficial for automated segmentation of the ventricular cavities. In this paper, new developments in different techniques of quantifying cardiac function by strain imaging, automated segmentation, and methods of performing blood flow imaging are reviewed and their application in paediatric cardiology is discussed.

  1. Development of the SIOPE DIPG network, registry and imaging repository

    DEFF Research Database (Denmark)

    Veldhuijzen van Zanten, Sophie E M; Baugh, Joshua; Chaney, Brooklyn

    2017-01-01

    was developed, The SIOPE DIPG Registry and Imaging Repository, to centrally collect data of DIPG patients. As for April 2016, clinical data as well as MR-scans of 694 patients have been entered into the SIOPE DIPG Registry/Imaging Repository. The median progression free survival is 6.0 months (95% Confidence...

  2. Development of a SiPM-based PET imaging system for small animals

    International Nuclear Information System (INIS)

    Lu, Yanye; Yang, Kun; Zhou, Kedi; Zhang, Qiushi; Pang, Bo; Ren, Qiushi

    2014-01-01

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development

  3. Development of a SiPM-based PET imaging system for small animals

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanye [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Yang, Kun, E-mail: yangkun9999@hotmail.com [Department of Control Technology and Instrumentation, College of Quality and Technical Supervision, Hebei University, Baoding, 071000 (China); Zhou, Kedi; Zhang, Qiushi; Pang, Bo [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Ren, Qiushi, E-mail: renqsh@coe.pku.edu.cn [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2014-04-11

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development.

  4. Development of an imaging VUV monochromator in normal incidence region

    Energy Technology Data Exchange (ETDEWEB)

    Koog, Joong-San

    1996-07-01

    This paper describes a development of the two-dimensional imaging monochromator system. A commercial normal incidence monochromator working on off-Rowland circle mounting is used for this purpose. The imaging is achieved with utilizing the pinhole camera effect created by an entrance slit of limited height. The astigmatism in the normal incidence mounting is small compared with a grazing incidence mount, but has a finite value. The point is that for near normal incidence, the vertical focusing with a concave grating is produced at outside across the exit slit. Therefore, by putting a 2-D detector at the position away from the exit slit ({approx}30 cm), a one-to-one correspondence between the position of a point on the detector and where it originated in the source is accomplished. This paper consists of (1) the principle and development of the imaging monochromator using the off-Rowland mounting, including the 2-D detector system, (2) a computer simulation by ray tracing for investigations of the imaging properties of imaging system, and aberration from the spherical concave grating on the exit slit, (3) the plasma light source (TPD-S) for the test experiments, (4) Performances of the imaging monochromator system on the spatial resolution and sensitivity, and (5) the use of this system for diagnostic studies on the JIPP T-IIU tokamak. (J.P.N.)

  5. Development of an imaging VUV monochromator in normal incidence region

    International Nuclear Information System (INIS)

    Koog, Joong-San.

    1996-07-01

    This paper describes a development of the two-dimensional imaging monochromator system. A commercial normal incidence monochromator working on off-Rowland circle mounting is used for this purpose. The imaging is achieved with utilizing the pinhole camera effect created by an entrance slit of limited height. The astigmatism in the normal incidence mounting is small compared with a grazing incidence mount, but has a finite value. The point is that for near normal incidence, the vertical focusing with a concave grating is produced at outside across the exit slit. Therefore, by putting a 2-D detector at the position away from the exit slit (∼30 cm), a one-to-one correspondence between the position of a point on the detector and where it originated in the source is accomplished. This paper consists of 1) the principle and development of the imaging monochromator using the off-Rowland mounting, including the 2-D detector system, 2) a computer simulation by ray tracing for investigations of the imaging properties of imaging system, and aberration from the spherical concave grating on the exit slit, 3) the plasma light source (TPD-S) for the test experiments, 4) Performances of the imaging monochromator system on the spatial resolution and sensitivity, and 5) the use of this system for diagnostic studies on the JIPP T-IIU tokamak. (J.P.N.)

  6. CT Image Reconstruction in a Low Dimensional Manifold

    OpenAIRE

    Cong, Wenxiang; Wang, Ge; Yang, Qingsong; Hsieh, Jiang; Li, Jia; Lai, Rongjie

    2017-01-01

    Regularization methods are commonly used in X-ray CT image reconstruction. Different regularization methods reflect the characterization of different prior knowledge of images. In a recent work, a new regularization method called a low-dimensional manifold model (LDMM) is investigated to characterize the low-dimensional patch manifold structure of natural images, where the manifold dimensionality characterizes structural information of an image. In this paper, we propose a CT image reconstruc...

  7. A combined use of multispectral and SAR images for ship detection and characterization through object based image analysis

    Science.gov (United States)

    Aiello, Martina; Gianinetto, Marco

    2017-10-01

    Marine routes represent a huge portion of commercial and human trades, therefore surveillance, security and environmental protection themes are gaining increasing importance. Being able to overcome the limits imposed by terrestrial means of monitoring, ship detection from satellite has recently prompted a renewed interest for a continuous monitoring of illegal activities. This paper describes an automatic Object Based Image Analysis (OBIA) approach to detect vessels made of different materials in various sea environments. The combined use of multispectral and SAR images allows for a regular observation unrestricted by lighting and atmospheric conditions and complementarity in terms of geographic coverage and geometric detail. The method developed adopts a region growing algorithm to segment the image in homogeneous objects, which are then classified through a decision tree algorithm based on spectral and geometrical properties. Then, a spatial analysis retrieves the vessels' position, length and heading parameters and a speed range is associated. Optimization of the image processing chain is performed by selecting image tiles through a statistical index. Vessel candidates are detected over amplitude SAR images using an adaptive threshold Constant False Alarm Rate (CFAR) algorithm prior the object based analysis. Validation is carried out by comparing the retrieved parameters with the information provided by the Automatic Identification System (AIS), when available, or with manual measurement when AIS data are not available. The estimation of length shows R2=0.85 and estimation of heading R2=0.92, computed as the average of R2 values obtained for both optical and radar images.

  8. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rakesh, E-mail: rs05h@fsu.ed [Departments of Chemical Engineering and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310 (United States)

    2010-07-21

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  9. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    International Nuclear Information System (INIS)

    Sharma, Rakesh

    2010-01-01

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  10. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F.L.; Van Vliet, L.J.; Hartman Kok, P.J.A.; Vromans, H.; Frijlink, H.W.; Van der Voort Maarschalk, K.

    2008-01-01

    Purpose This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. Methods The method applies the MATLAB image processing toolbox to images of coated

  11. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F L; Van Vliet, L J; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K

    This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. The method applies the MATLAB image processing toolbox to images of coated particles taken

  12. Lateral resolution testing of a novel developed confocal microscopic imaging system

    Science.gov (United States)

    Zhang, Xin; Zhang, Yunhai; Chang, Jian; Huang, Wei; Xue, Xiaojun; Xiao, Yun

    2015-10-01

    Laser scanning confocal microscope has been widely used in biology, medicine and material science owing to its advantages of high resolution and tomographic imaging. Based on a set of confirmatory experiments and system design, a novel confocal microscopic imaging system is developed. The system is composed of a conventional fluorescence microscope and a confocal scanning unit. In the scanning unit a laser beam coupling module provides four different wavelengths 405nm 488nm 561nm and 638nm which can excite a variety of dyes. The system works in spot-to-spot scanning mode with a two-dimensional galvanometer. A 50 microns pinhole is used to guarantee that stray light is blocked and only the fluorescence signal from the focal point can be received . The three-channel spectral splitter is used to perform fluorescence imaging at three different working wavelengths simultaneously. The rat kidney tissue slice is imaged using the developed confocal microscopic imaging system. Nucleues labeled by DAPI and kidney spherule curved pipe labeled by Alexa Fluor 488 can be imaged clearly and respectively, realizing the distinction between the different components of mouse kidney tissue. The three-dimensional tomographic imaging of mouse kidney tissue is reconstructed by several two-dimensional images obtained in different depths. At last the resolution of the confocal microscopic imaging system is tested quantitatively. The experimental result shows that the system can achieve lateral resolution priority to 230nm.

  13. AMISS - Active and passive MIcrowaves for Security and Subsurface imaging

    Science.gov (United States)

    Soldovieri, Francesco; Slob, Evert; Turk, Ahmet Serdar; Crocco, Lorenzo; Catapano, Ilaria; Di Matteo, Francesca

    2013-04-01

    The FP7-IRSES project AMISS - Active and passive MIcrowaves for Security and Subsurface imaging is based on a well-combined network among research institutions of EU, Associate and Third Countries (National Research Council of Italy - Italy, Technische Universiteit Delft - The Netherlands, Yildiz Technical University - Turkey, Bauman Moscow State Technical University - Russia, Usikov Institute for Radio-physics and Electronics and State Research Centre of Superconductive Radioelectronics "Iceberg" - Ukraine and University of Sao Paulo - Brazil) with the aims of achieving scientific advances in the framework of microwave and millimeter imaging systems and techniques for security and safety social issues. In particular, the involved partners are leaders in the scientific areas of passive and active imaging and are sharing their complementary knowledge to address two main research lines. The first one regards the design, characterization and performance evaluation of new passive and active microwave devices, sensors and measurement set-ups able to mitigate clutter and increase information content. The second line faces the requirements to make State-of-the-Art processing tools compliant with the instrumentations developed in the first line, suitable to work in electromagnetically complex scenarios and able to exploit the unexplored possibilities offered by new instrumentations. The main goals of the project are: 1) Development/improvement and characterization of new sensors and systems for active and passive microwave imaging; 2) Set up, analysis and validation of state of art/novel data processing approach for GPR in critical infrastructure and subsurface imaging; 3) Integration of state of art and novel imaging hardware and characterization approaches to tackle realistic situations in security, safety and subsurface prospecting applications; 4) Development and feasibility study of bio-radar technology (system and data processing) for vital signs detection and

  14. Engendering Creative City Image by Using Information Communication Technology in Developing Countries

    Directory of Open Access Journals (Sweden)

    Dillip Kumar Das

    2016-09-01

    Full Text Available Creativity has been a major key word in the city planning and urban marketing policies all over the world. Arguably, it ensures an image that can ensue marketable branding of a city. Thus, a creative city has major socio-economic implications. However, the question remains how a creative environment in a city can be engendered and an attractive image can be built. In the contemporary age, Information Communication Technology (ICT apparently has increasingly been influencing every sphere of the city functions, and it is hypothesized that it will assist in building a creative image of a city. Therefore, the objectives of the paper are (1 to map the theoretical insights on the concepts of creativity, city image building and branding; and (2 to explore the influence of ICT on developing image of a creative city. The investigation was conducted by using both qualitative and quantitative research methods. A stimulating mix of literature review and case study analyses were done to develop the concept of a creative city and image building. Besides, using a survey research method and by considering two cities (Bloemfontein from South Africa and Bhubaneswar from India two case studies were performed to examine how ICT can engender a creative image of a city in developing countries. Findings suggest that although urban creativity is not a revolutionary approach towards urban policies, and there are criticisms against such concept, economic variables, such as, business environment, entrepreneurship and innovation, availability of knowledge workers and ICT activities; socio-cultural variables, such as, art, culture, receptive attitude, safety and tolerance; and environmental variables, such as, cleanliness, greenery, quality public spaces and tourism enforce distinct images of cities. It is also revealed that ICT can play a catalytic role in the creative image building as it contributes extensively in the form of enabling better business environment

  15. Characterizing the inflammatory tissue response to acute myocardial infarction by clinical multimodality noninvasive imaging.

    Science.gov (United States)

    Wollenweber, Tim; Roentgen, Philipp; Schäfer, Andreas; Schatka, Imke; Zwadlo, Caroline; Brunkhorst, Thomas; Berding, Georg; Bauersachs, Johann; Bengel, Frank M

    2014-09-01

    Myocardial infarction (MI) triggers a systemic inflammatory response which determines subsequent healing. Experimentally, cardiac positron emission tomography and magnetic resonance imaging have been used successfully to obtain mechanistic insights. We explored the translational potential in patients early after MI. Positron emission tomography/computed tomography and cardiac magnetic resonance were performed in 15 patients sources of inflammatory cells. Positron emission tomography and cardiac magnetic resonance multimodality characterization of the acutely infarcted, inflamed myocardium may provide multiparametric end points for clinical studies aiming at support of infarct healing. © 2014 American Heart Association, Inc.

  16. Challenges and Strategies to Develop a Positive Image of the Library

    Directory of Open Access Journals (Sweden)

    Anisa Sri Restanti

    2018-01-01

    Full Text Available Information technology has been used in the management of the library. There are several libraries have been integrated with the internet to provide services. But the library still image as an institution or an old building that contains the bookshelves and librarian profession under other professions. This article is presented to determine some of the challenges and strategies that can be done in fostering a positive image of the library. Based on the literature study and observation, it’s known, that the challenges are differences in educational background librarians, foster a positive image has not been planned, the development of information technology, the implementation of the code of ethics of librarians is not maximal. In the face of the challenges in creating a positive image, there are strategies that can be done that in terms of internal and external libraries. Thus, it can be concluded that, to foster a positive image of the library is needed strategies and synergies as well as the responsibility of all aspects of the library. Recommendation for librarians are important to develop personal branding. Furthermore, for the library after successfully building a positive image should be able to maintain and restore the image when a crisis.

  17. Challenges and Strategies to Develop a Positive Image of the Library

    Directory of Open Access Journals (Sweden)

    Anisa Sri Restanti

    2017-01-01

    Full Text Available Information technology has been used in the management of the library. There are several libraries have been integrated with the internet to provide services. But the library still image as an institution or an old building that contains the bookshelves and librarian profession under other professions. This article is presented to determine some of the challenges and strategies that can be done in fostering a positive image of the library. Based on the literature study and observation, its known, that the challenges are differences in educational background librarians, foster a positive image has not been planned, the development of information technology, the implementation of the code of ethics of librarians is not maximal. In the face of the challenges in creating a positive image, there are strategies that can be done that in terms of internal and external libraries. Thus, it can be concluded that, to foster a positive image of the library is needed strategies and synergies as well as the responsibility of all aspects of the library. Recommendation for librarians are important to develop personal branding. Furthermore, for the library after successfully building a positive image should be able to maintain and restore the image when a crisis.

  18. Gender and racial/ethnic differences in body image development among college students.

    Science.gov (United States)

    Gillen, Meghan M; Lefkowitz, Eva S

    2012-01-01

    In the present study we used longitudinal methods to examine body image development during the early part of college. Students (N=390; 54% female) who identified as African American (32%), Latino/a American (27%), and European American (41%) completed surveys during their first, second, and third semesters at college. There were overall gender and racial/ethnic differences in all three aspects of body image, and both stability and change in body image development. Female students' appearance evaluation became more positive, whereas male students' appearance evaluation showed no significant change. Individuals' body areas satisfaction increased over time, but remained stable when controlling for BMI. Appearance orientation did not change, and there were no racial/ethnic differences in body image development. Experiences in the college environment may play a role in these trends. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Characterization of a 512x512-pixel 8-output full-frame CCD for high-speed imaging

    Science.gov (United States)

    Graeve, Thorsten; Dereniak, Eustace L.

    1993-01-01

    The characterization of a 512 by 512 pixel, eight-output full frame CCD manufactured by English Electric Valve under part number CCD13 is discussed. This device is a high- resolution Silicon-based array designed for visible imaging applications at readout periods as low as two milliseconds. The characterization of the device includes mean-variance analysis to determine read noise and dynamic range, as well as charge transfer efficiency, MTF, and quantum efficiency measurements. Dark current and non-uniformity issues on a pixel-to-pixel basis and between individual outputs are also examined. The characterization of the device is restricted by hardware limitations to a one MHz pixel rate, corresponding to a 40 ms readout time. However, subsections of the device have been operated at up to an equivalent 100 frames per second. To maximize the frame rate, the CCD is illuminated by a synchronized strobe flash in between frame readouts. The effects of the strobe illumination on the imagery obtained from the device is discussed.

  20. Development of breast phantom for quality assessment of mammographic images

    International Nuclear Information System (INIS)

    Arvelos, Jeniffer Miranda; Flores, Mabel Bustos; Amaral, Fernando; Rio, Margarita Chevalier del; Mourao, Arnaldo Prata; Universidade Federal de Minas Gerais; Universidad Complutense de Madrid

    2017-01-01

    Diagnosis of breast cancer in young women may be impaired by the tissue composition of breast in this age group, as fibroglandular tissue is present in greater amount in young women and it has higher density than fibrous and fatty tissues which predominate in women older than 40 years old. The higher density of breast tissue makes it difficult to identify nodules in two-dimensional techniques, due to the overlapping of dense layers. Breast phantoms are used in evaluation and quality control of clinical images, and therefore, it is important to develop non-homogeneous phantoms that may better simulate a real breast. Grouped microcalcifications are often the earliest changes associated with malignant neoplasm of breast. In this work, a phantom was developed in the form of a compressed breast using acrylic resin blend. The resin blend used to fulfill the interior of the phantom has similar mammographic density to the one in fibroglandular tissue, representing a dense breast. The lesions were made of acrylic resin blend and calcium compounds that might simulate breast abnormalities, representing nodules, macrocalcifications and microcalcifications of different dimensions and densities. They were distributed into the ma-terial representing fibroglandular tissue. The developed phantom has a thickness of 1 cm, and it may be matched with other plates to represent a dense breast of thickness between 5 and 6 cm. The main goal of the project is to evaluate the sensitivity of detection of these calcifications in relation to their density and location in the breast in two-dimensional images generated in mammography equipment. Mammographic images allow the visualization of the changes implemented in the phantom. The developed phantom may be used in evaluation of diagnostic images generated through two-dimensional and three-dimensional images. (author)