WorldWideScience

Sample records for imaging cherenkov telescopes

  1. Volcanoes muon imaging using Cherenkov telescopes

    CERN Document Server

    Catalano, Osvaldo; Mineo, Teresa; Cusumano, Giancarlo; Maccarone, Maria Concetta; Pareschi, Giovanni

    2015-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energ...

  2. Muon imaging of volcanoes with Cherenkov telescopes

    Science.gov (United States)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    The quantitative understanding of the inner structure of a volcano is a key feature to model the processes leading to paroxysmal activity and, hence, to mitigate volcanic hazards. To pursue this aim, different geophysical techniques are utilized, that are sensitive to different properties of the rocks (elastic, electrical, density). In most cases, these techniques do not allow to achieve the spatial resolution needed to characterize the shallowest part of the plumbing system and may require dense measurements in active zones, implying a high level of risk. Volcano imaging through cosmic-ray muons is a promising technique that allows to overcome the above shortcomings. Muons constantly bombard the Earth's surface and can travel through large thicknesses of rock, with an energy loss depending on the amount of crossed matter. By measuring the absorption of muons through a solid body, one can deduce the density distribution inside the target. To date, muon imaging of volcanic structures has been mainly achieved with scintillation detectors. They are sensitive to noise sourced from (i) the accidental coincidence of vertical EM shower particles, (ii) the fake tracks initiated from horizontal high-energy electrons and low-energy muons (not crossing the target) and (iii) the flux of upward going muons. A possible alternative to scintillation detectors is given by Cherenkov telescopes. They exploit the Cherenkov light emitted when charged particles (like muons) travel through a dielectric medium, with velocity higher than the speed of light. Cherenkov detectors are not significantly affected by the above noise sources. Furthermore, contrarily to scintillator-based detectors, Cherenkov telescopes permit a measurement of the energy spectrum of the incident muon flux at the installation site, an issue that is indeed relevant for deducing the density distribution inside the target. In 2014, a prototype Cherenkov telescope was installed at the Astrophysical Observatory of Serra

  3. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  4. Volcanoes muon imaging using Cherenkov telescopes

    Science.gov (United States)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  5. GAW (Gamma Air Watch) a novel imaging Cherenkov telescope

    CERN Document Server

    Cusumano, G; Biondo, B; Catalano, O; Giarrusso, S; Gugliotta, G; La Fata, L; Maccarone, M C; Mangano, A; Mineo, T; Russo, F; Sacco, B

    2001-01-01

    GAW (Gamma Air Watch) is a new imaging Cherenkov telescope designed for observation of very high-energy gamma-ray sources. GAW will be equipped with a 3 meter diameter Fresnel lens as light collector and with an array of 300 multi-anode photomultipliers at the focal plane. The pixel size will be 4 arcmin wide for a total field of view of 10.5 degrees. Whith respect to the planned imaging Cherenkov telescopes (CANGAROO III, HESS, MAGIC, VERITAS) GAW follows a different approach for what concerns both the optical system and the detection working mode: the Cherenkov light collector is a single acrylic flat Fresnel lens (instead of mirrors) that allows to achieve wide field of view; the photomultipliers operate in single photoelectron counting mode (instead of charge integration). The single photoelectron counting mode allows to reach a low energy threshold of ~200 GeV, in spite of the relatively small dimension of the GAW optic system.

  6. Representations and image classification methods for Cherenkov telescopes

    CERN Document Server

    Malagón, C; Parcerisa, D S; Nieto, D

    2008-01-01

    The problem of identifying gamma ray events out of charged cosmic ray background (so called hadrons) in Cherenkov telescopes is one of the key problems in VHE gamma ray astronomy. In this contribution, we present a novel approach to this problem by implementing different classifiers relying on the information of each pixel of the camera of a Cherenkov telescope.

  7. The major atmospheric gamma-ray imaging Cherenkov telescope

    Science.gov (United States)

    Garczarczyk, Markus; MAGIC Collaboration

    2011-05-01

    MAGIC is a system of two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) for ground-based γ-ray astronomy. During many years, starting with the design phase of the first telescope in 2003, the upgrade of the second telescope in 2008 up to now, novel technologies have been developed, commissioned and continuously improved. Most components and subsystems represent nowadays state of the art techniques and are under consideration to be used in future detectors. The large reflector area, together with small diameter, high quantum efficiency (QE) photomultipliers (PMTs) in combination with an improved trigger and readout system permits an analysis threshold of 25 GeV, the lowest among current IACTs. MAGIC overlaps in energy with the upper end of current satellite experiments and gives the unique opportunity, for the first time, to cross-calibrate ground based versus satellite born detectors. Some selected techniques used in MAGIC, which are in context with this conference, are presented.

  8. Pattern recognition trigger electronics for an imaging atmospheric Cherenkov telescope

    CERN Document Server

    Bradbury, S M

    2002-01-01

    For imaging atmospheric Cherenkov telescopes, which aim to detect electromagnetic air showers with cameras consisting of several hundred photomultiplier pixels, the single pixel trigger rate is dominated by fluctuations in night sky brightness and by ion feedback in the photomultipliers. Pattern recognition trigger electronics may be used to reject night sky background images, thus reducing the data rate to a manageable level. The trigger system described here detects patterns of 2, 3 or 4 adjacent pixel signals within a 331 pixel camera and gives a positive trigger decision in 65 ns. The candidate pixel pattern is compared with the contents of a pre-programmed memory. With the trigger decision timing controlled by a fixed delay the time-jitter inherent in the use of programmable gate arrays is avoided. This system is now in routine operation at the Whipple 10 m Telescope.

  9. Upgraded cameras for the HESS imaging atmospheric Cherenkov telescopes

    Science.gov (United States)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gérard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-François; Gräber, Tobias; Hinton, James; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, François

    2016-08-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes, sensitive to cosmic gamma rays of energies between 30 GeV and several tens of TeV. Four of them started operations in 2003 and their photomultiplier tube (PMT) cameras are currently undergoing a major upgrade, with the goals of improving the overall performance of the array and reducing the failure rate of the ageing systems. With the exception of the 960 PMTs, all components inside the camera have been replaced: these include the readout and trigger electronics, the power, ventilation and pneumatic systems and the control and data acquisition software. New designs and technical solutions have been introduced: the readout makes use of the NECTAr analog memory chip, which samples and stores the PMT signals and was developed for the Cherenkov Telescope Array (CTA). The control of all hardware subsystems is carried out by an FPGA coupled to an embedded ARM computer, a modular design which has proven to be very fast and reliable. The new camera software is based on modern C++ libraries such as Apache Thrift, ØMQ and Protocol buffers, offering very good performance, robustness, flexibility and ease of development. The first camera was upgraded in 2015, the other three cameras are foreseen to follow in fall 2016. We describe the design, the performance, the results of the tests and the lessons learned from the first upgraded H.E.S.S. camera.

  10. A Topological Trigger System for Imaging Atmospheric-Cherenkov Telescopes

    CERN Document Server

    Schroedter, M; Byrum, K; Drake, G; Duke, C; Holder, J; Imran, A; Madhavan, A; Krennrich, F; Kreps, A; Smith, A

    2009-01-01

    A fast trigger system is being designed as a potential upgrade to VERITAS, or as the basis for a future array of imaging atmospheric-Cherenkov telescopes such as AGIS. The scientific goal is a reduction of the energy threshold by a factor of 2 over the current threshold of VERITAS of around 130 GeV. The trigger is being designed to suppress both accidentals from the night-sky background and cosmic rays. The trigger uses field-programmable gate arrays (FPGAs) so that it is adaptable to different observing modes and special physics triggers, e.g. pulsars. The trigger consists of three levels: The level 1 (L1.5) trigger operating on each telescope camera samples the discriminated pixels at a rate of 400 MHz and searches for nearest-neighbor coincidences. In L1.5, the received discriminated signals are delay-compensated with an accuracy of 0.078 ns, facilitating a short coincidence time-window between any nearest neighbor of 5 ns. The hit pixels are then sent to a second trigger level (L2) that parameterizes the ...

  11. The Cherenkov Telescope Array

    Science.gov (United States)

    Connaughton, Valerie

    2014-03-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort dedicated to the design and operation of the next-generation ground-based very high-energy gamma-ray observatory. CTA will improve by about one order of magnitude the sensitivity with respect to the current major arrays (VERITAS, H.E.S.S., and MAGIC) in the core energy range of 100 GeV to 10 TeV, and will extend the viability of the imaging atmospheric Cherenkov technique (IACT) down to tens of GeV and above 100 TeV. In order to achieve such improved performance at both a northern and southern CTA site, four 23m diameter Large Size Telescopes (LST) optimized for low energy gamma rays will be deployed close to the centre of the array. A larger number of Medium Size Telescopes (MST) will be optimized for the core IACT energy range. The southern site will include 25 12m single-mirror MSTs and a US contribution of up to 24 novel dual-mirror design Schwarzschild-Couder (SC) type MSTs with a primary mirror of 9.5m diameter, and will also include an array of Small Size Telescopes (SST) to observe the highest-energy gamma rays from galactic sources. The SSTs can be smaller and more widely separated because more energetic gamma rays produce a larger Cherenkov light pool with many photons. The SSTs achieve a large collection area by covering a wide (10 sq km) footprint on the ground. The CTA project is finishing its preparatory phase, and the pre-production phase will start this year. I will review the status and the expected performance of CTA as well as the main scientific goals for the observatory.

  12. FACT: Towards Robotic Operation of an Imaging Air Cherenkov Telescope

    CERN Document Server

    Biland, A; Backes, M; Boccone, V; Braun, I; Bretz, T; Buss, J; Cadoux, F; Commichau, V; Djambazov, L; Dorner, D; Einecke, S; Eisenacher, D; Gendotti, A; Grimm, O; von Gunten, H; Haller, C; Hildebrand, D; Horisberger, U; Huber, B; Kim, K -S; Knoetig, M L; Koehne, J -H; Kraehenbuehl, T; Krumm, B; Lee, M; Lorenz, E; Lustermann, W; Lyard, E; Mannheim, K; Meharga, M; Meier, K; Montaruli, T; Neise, D; Nessi-Tedaldi, F; Overkemping, A -K; Paravac, A; Pauss, F; Renker, D; Rhode, W; Ribordy, M; Roeser, U; Stucki, J -P; Schneider, J; Steinbring, T; Temme, F; Thaele, J; Tobler, S; Viertel, G; Vogler, P; Walter, R; Warda, K; Weitzel, Q; Zaenglein, M

    2013-01-01

    The First G-APD Cherenkov Telescope (FACT) became operational at La Palma in October 2011. Since summer 2012, due to very smooth and stable operation, it is the first telescope of its kind that is routinely operated from remote, without the need for a data-taking crew on site. In addition, many standard tasks of operation are executed automatically without the need for manual interaction. Based on the experience gained so far, some alterations to improve the safety of the system are under development to allow robotic operation in the future. We present the setup and precautions used to implement remote operations and the experience gained so far, as well as the work towards robotic operation.

  13. The Cherenkov Telescope Array

    CERN Document Server

    Bigongiari, Ciro

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next generation ground based observatory for very high energy (VHE) gamma-ray astronomy. Gamma-rays provide a powerful insight into the non-thermal universe and hopefully a unique probe for new physics. Imaging Cherenkov telescopes have already discovered more than 170 VHE gamma-ray emitters providing plentiful of valuable data and clearly demonstrating the power of this technique. In spite of the impressive results there are indications that the known sources represent only the tip of the iceberg. A major step in sensitivity is needed to increase the number of detected sources, observe short time-scale variability and improve morphological studies of extended sources. An extended energy coverage is advisable to observe far-away extragalactic objects and improve spectral analysis. CTA aims to increase the sensitivity by an order of magnitude compared to current facilities, to extend the accessible gamma-ray energies from a few tens of GeV to a hundred o...

  14. A G-APD based Camera for Imaging Atmospheric Cherenkov Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anderhub, H. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Backes, M. [Technische Universitaet Dortmund, 44221 Dortmund (Germany); Biland, A.; Boller, A.; Braun, I. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Bretz, T. [Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Commichau, S.; Commichau, V.; Dorner, D.; Gendotti, A. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Grimm, O., E-mail: oliver.grimm@phys.ethz.c [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Gunten, H. von; Hildebrand, D.; Horisberger, U. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Koehne, J.-H. [Technische Universitaet Dortmund, 44221 Dortmund (Germany); Kraehenbuehl, T.; Kranich, D.; Lorenz, E.; Lustermann, W. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Mannheim, K. [Universitaet Wuerzburg, 97074 Wuerzburg (Germany)

    2011-02-01

    Imaging Atmospheric Cherenkov Telescopes (IACT) for Gamma-ray astronomy are presently using photomultiplier tubes as photo sensors. Geiger-mode avalanche photodiodes (G-APD) promise an improvement in sensitivity and, important for this application, ease of construction, operation and ruggedness. G-APDs have proven many of their features in the laboratory, but a qualified assessment of their performance in an IACT camera is best undertaken with a prototype. This paper describes the design and construction of a full-scale camera based on G-APDs realized within the FACT project (First G-APD Cherenkov Telescope).

  15. The image camera of the 17 m diameter air Cherenkov telescope MAGIC

    CERN Document Server

    Ostankov, A P

    2001-01-01

    The image camera of the 17 m diameter MAGIC telescope, an air Cherenkov telescope currently under construction to be installed at the Canary island La Palma, is described. The main goal of the experiment is to cover the unexplored energy window from approx 10 to approx 300 GeV in gamma-ray astrophysics. In its first phase with a classical PMT camera the MAGIC telescope is expected to reach an energy threshold of approx 30 GeV. The operational conditions, the special characteristics of the developed PMTs and their use with light concentrators, the fast signal transfer scheme using analog optical links, the trigger and DAQ organization as well as image reconstruction strategy are described. The different paths being explored towards future camera improvements, in particular the constraints in using silicon avalanche photodiodes and GaAsP hybrid photodetectors in air Cherenkov telescopes are discussed.

  16. The optical reflector system for the CANGAROO-II imaging atmospheric Cherenkov telescope

    CERN Document Server

    Kawachi, A; Jimbo, J; Kamei, S; Kifune, T; Kubo, H; Kushida, J; Le Bohec, S; Miyawaki, K; Mori, M; Nishijima, K; Patterson, J R; Suzuki, R; Tanimori, T; Yanagita, S; Yoshikoshi, T; Yuki, A

    2001-01-01

    A new imaging atmospheric Cherenkov telescope (CANGAROO-II) with a light-weight reflector has been constructed. Light, robust, and durable mirror facets of containing CFRP (Carbon Fiber Reinforced Plastic) laminates were developed for the telescope. The attitude of each facet can be adjusted by stepping motors. In this paper, we describe the design, manufacturing, alignment procedure, and the performance of the CANGAROO-II optical reflector system.

  17. A new analysis method for very high definition Imaging Atmospheric Cherenkov Telescopes as applied to the CAT telescope

    CERN Document Server

    Le Bohec, S; Punch, M; Barrau, A; Bazer-Bachi, R; Cabot, H; Chounet, L M; Debiais, G; Dezalay, J P; Djannati-Ataï, A; Dumora, D; Espigat, P; Fabre, B; Fleury, P; Fontaine, G; George, R; Ghesquière, C; Goret, P; Gouiffes, C; Grenier, I A; Iacoucci, L; Malet, I; Meynadier, C; Munz, F; Palfrey, T A; Paré, E; Pons, Y; Québert, J; Ragan, K; Renault, C; Rivoal, M; Rob, L; Schovanek, P; Smith, D; Tavernet, J P; Vrana, J

    1998-01-01

    A new method of shower-image analysis is presented which appears very powerful as applied to those Cherenkov Imaging Telescopes with very high definition imaging capability. It provides hadron rejection on the basis of a single cut on the image shape, and simultaneously determines the energy of the electromagnetic shower and the position of the shower axis with respect to the detector. The source location is also reconstructed for each individual gamma-ray shower, even with one single telescope, so for a point source the hadron rejection can be further improved. As an example, this new method is applied to data from the CAT (Cherenkov Array at Themis) imaging telescope, which has been operational since Autumn, 1996.

  18. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    CERN Document Server

    Giomi, Matteo; Maier, Gernot

    2016-01-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the...

  19. The upgraded MAGIC Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Tescaro, D., E-mail: dtescaro@iac.es [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Universidad de La Laguna (ULL), Dept. Astrofísica, E-38206 La Laguna, Tenerife (Spain)

    2014-12-01

    The MAGIC Cherenkov telescopes underwent a major upgrade in 2011 and 2012. A new 1039-pixel camera and a larger area digital trigger system were installed in MAGIC-I, making it essentially identical to the newer MAGIC-II telescope. The readout systems of both telescopes were also upgraded, with fully programmable receiver boards and DRS4-chip-based digitization systems. The upgrade eased the operation and maintenance of the telescopes and also improved significantly their performance. The system has now an integral sensitivity as good as 0.6% of the Crab Nebula flux (for E>400GeV), with an effective analysis threshold at 70 GeV. This allows MAGIC to secure one of the leading roles among the current major ground-based Imaging Atmospheric Cherenkov telescopes for the next 5–10 years. - Highlights: • In 2011 and 2012 the MAGIC telescopes underwent a two-stage major upgrade. • The new camera of MAGIC-I allows us to exploit a 1.4 larger trigger area. • The novel DRS4-based readout systems allow a cost-effective ultra-fast digitization. • The upgrade greatly improved the maintainability of the system. • MAGIC has now an optimal integral sensitivity of 0.6% of the Crab Nebula flux.

  20. The optical reflector system for the CANGAROO-II imaging atmospheric Cherenkov telescope

    Science.gov (United States)

    Kawachi, A.; Hayami, Y.; Jimbo, J.; Kamei, S.; Kifune, T.; Kubo, H.; Kushida, J.; LeBohec, S.; Miyawaki, K.; Mori, M.; Nishijima, K.; Patterson, J. R.; Suzuki, R.; Tanimori, T.; Yanagita, S.; Yoshikoshi, T.; Yuki, A.

    2001-01-01

    A new imaging atmospheric Cherenkov telescope with a light-weight reflector has been constructed. Light, robust, and durable mirror facets of containing carbon fiber reinforced plastic laminates were developed for the telescope. The reflector has a parabolic shape ( f/1.1) with a 30 m 2 surface area, which consists of 60 spherical mirror facets. The image size of each mirror facet is 0°.08 (FWHM) on average. The attitude of each facet can be adjusted by stepping motors. After the first in situ adjustment, a point image of about 0°.14 (FWHM) over 3° field of view was obtained. The effect of gravitational load on the optical system was confirmed to be negligible at the focal plane. The telescope has been in operation with an energy threshold for γ-rays of ≲300 GeV since May 1999.

  1. The Topo-trigger: a new concept of stereo trigger system for imaging atmospheric Cherenkov telescopes

    CERN Document Server

    López-Coto, Rubén; Paoletti, Riccardo; Bigas, Oscar Blanch; Cortina, Juan

    2016-01-01

    Imaging atmospheric Cherenkov telescopes (IACTs) such as the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes endeavor to reach the lowest possible energy threshold. In doing so the trigger system is a key element. Reducing the trigger threshold is hampered by the rapid increase of accidental triggers generated by ambient light, the so-called Night Sky Background (NSB). In this paper we present a topological trigger, dubbed Topo-trigger, which rejects events on the basis of their relative orientation in the telescope cameras. We have simulated and tested the trigger selection algorithm in the MAGIC telescopes. The algorithm was tested using MonteCarlo simulations and shows a rejection of 85% of the accidental stereo triggers while preserving 99 % of the gamma rays. A full implementation of this trigger system would achieve an increase in collection area between 10 and 20% at the energy threshold. The analysis energy threshold of the instrument is expected to decrease by ?8 %. The selection alg...

  2. GAW - A very large field-of-view Imaging Atmospheric Cherenkov Telescope

    CERN Document Server

    Arruda, Luisa

    2010-01-01

    GAW (Gamma Air Watch) is a pathfinder experiment in the TeV range to test the feasibility of a new generation of Imaging Atmospheric Cherenkov Telescopes (IACT). It combines high flux sensitivity with large field-of-view (FoV=24deg x 24deg) using Fresnel lenses, stereoscopic observational approach and single-photon counting mode. This particular counting mode, in comparison with the usual charge integration one, allows the triggering of events with a smaller number of collected Cherenkov photons keeping a good signal/background separation. GAW is conceived as an array of three identical imaging telescopes with 2.13 m diameter placed at the vertices of an equilateral triangle of 80 m side. The telescope will be built at the Calar Alto Observatory site (Sierra de Los Filabres - Almeria Spain, 2168 m a.s.l.) and is a joint effort of research institutes in Italy, Portugal and Spain. The main characteristics of the experiment will be reported.

  3. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    Science.gov (United States)

    Giomi, Matteo; Gerard, Lucie; Maier, Gernot

    2016-07-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.

  4. GAW - An Imaging Atmospheric Cherenkov Telescope with Large Field of View

    CERN Document Server

    Cusumano, G; Alberdi, A; Alvarez, M; Assis, P; Biondo, B; Bocchino, F; Brogueira, P; Caballero, J A; Carvajal, M; Castro-Tirado, A J; Catalano, O; Celi, F; Delgado, C; Di Cocco, G; Dominguez, A; Navas, J M Espino; Santo, M C Espirito; Gallardo, M I; García, J E; Giarrusso, S; Gómez, M; Gómez, J L; Gonçalves, P; Guerriero, M; La Barbera, A; La Rosa, G; Lozano, M; Maccarone, M C; Mangano, A; Martel, I; Massaro, E; Mineo, T; Moles, M; Pérez-Bernal, F; Peres-Torres, M A; Pimenta, M; Pina, A; Prada, F; Quesada, J M; Quintana, J M; Quintero, J R; Rodríguez, J; Russo, F; Sacco, B; Sanchez-Conde, M A; Segreto, A; Tome', B; Postigo, A de Ugarte; Vallania, P

    2007-01-01

    GAW, acronym for Gamma Air Watch, is a Research and Development experiment in the TeV range, whose main goal is to explore the feasibility of large field of view Imaging Atmospheric Cherenkov Telescopes. GAW is an array of three relatively small telescopes (2.13 m diameter) which differs from the existing and presently planned projects in two main features: the adoption of a refractive optics system as light collector and the use of single photoelectron counting as detector working mode. The optics system allows to achieve a large field of view (24x24 squared degrees) suitable for surveys of large sky regions. The single photoelectron counting mode in comparison with the charge integration mode improves the sensitivity by permitting also the reconstruction of events with a small number of collected Cherenkov photons. GAW, which is a collaboration effort of Research Institutes in Italy, Portugal and Spain, will be erected in the Calar Alto Observatory (Sierra de Los Filabres - Andalucia, Spain), at 2150 m a.s....

  5. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.T., E-mail: chenytao@ynu.edu.cn [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Yunnan University, 650091 Kunming (China); La Taille, C. de [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Suomijärvi, T. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Cao, Z. [Institute of High Energy Physics, 100049 Beijing (China); Deligny, O. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Dulucq, F. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Ge, M.M. [Yunnan University, 650091 Kunming (China); Lhenry-Yvon, I. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Martin-Chassard, G. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Nguyen Trung, T.; Wanlin, E. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Xiao, G.; Yin, L.Q. [Institute of High Energy Physics, 100049 Beijing (China); Yun Ky, B. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Zhang, L. [Yunnan University, 650091 Kunming (China); Zhang, H.Y. [Tsinghua University, 100084 Beijing (China); Zhang, S.S.; Zhu, Z. [Institute of High Energy Physics, 100049 Beijing (China)

    2015-09-21

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs.

  6. The drive system of the Major Atmospheric Gamma-ray Imaging Cherenkov Telescope

    CERN Document Server

    Bretz, T; Wagner, R M; Sawallisch, P

    2008-01-01

    The MAGIC telescope is an imaging atmospheric Cherenkov telescope, designed to observe very high energy gamma-rays while achieving a low energy threshold. One of the key science goals is fast follow-up of the enigmatic and short lived gamma-ray bursts. The drive system for the telescope has to meet two basic demands: (1) During normal observations, the 72-ton telescope has to be positioned accurately, and has to track a given sky position with high precision at a typical rotational speed in the order of one revolution per day. (2) For successfully observing GRB prompt emission and afterglows, it has to be powerful enough to position to an arbitrary point on the sky within a few ten seconds and commence normal tracking immediately thereafter. To meet these requirements, the implementation and realization of the drive system relies strongly on standard industry components to ensure robustness and reliability. In this paper, we describe the mechanical setup, the drive control and the calibration of the pointing,...

  7. Feasibility of VHE gamma ray detection by an array of imaging atmospheric Cherenkov telescopes using the fluorescence technique

    CERN Document Server

    Contreras, J L; Arqueros, F; López, M; Barrio, J A; Nievas, M

    2015-01-01

    The last 20 years have seen the development of new techniques in Astroparticle Physics providing access to the highest end of the electromagnetic spectrum. It has been shown that some sources emit photons up to energies close to 100 TeV. Yet the fluxes of these photons are incredibly low and new detection techniques are needed to go higher in energy. A new technique that would use the new generation of Cherenkov Telescopes, i.e., the Cherenkov Telescope Array (CTA), is proposed to push further the energy frontier. It is based on the detection of the fluorescence radiation emitted in extensive air showers, a successful method used in ultra-high-energy cosmic ray experiments, like the Pierre Auger Observatory. It would complement the standard imaging atmospheric Cherenkov technique with only minor modifications of the hardware currently being developed for the CTA and would not imply significant extra costs during its planned operation.

  8. The structure of an Imaging Atmospheric Cherenkov Telescope with novel photon detectors for ground-based gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Koehne, Jan-Hendrik [TU, Dortmund (Germany); Collaboration: FACT-Collaboration

    2011-07-01

    Very high energy gamma-ray astronomy is a rapidly expanding field of research. Observations are nearly all carried out with so-called Imaging Atmospheric Cherenkov Telescopes all using Photomultipliers as light sensors up to now. A test telescope using Geiger-mode avalanche photodiodes (G-APD) for the first time is under construction. The former HEGRA CT3 telescope mount on the Canary island La Palma is being refurbished for the First G-APD Cherenkov Telescope (FACT). Here, we describe the mirror system, its detailed construction, focal length distribution, spectral reflectivity and point spread function for all hexagonal aluminum facets. In October 2010, the mirrors were pre-aligned on site using a laser alignment setup, and first tracking tests of the new drive system were conducted.

  9. The Technical Performance of the HEGRA System of Imaging Air Cherenkov Telescopes

    CERN Document Server

    Pühlhofer, G; Götting, N; Heusler, A; Horns, D; Kohnle, A; Lampeitl, H; Panter, M; Tluczykont, M; Aharonian, F A; Akhperjanian, A G; Beilicke, M; Bernlöhr, K; Borst, H G; Bojahr, H; Coarasa, T; Contreras, J L; Cortina, J; Denninghoff, S; Fonseca, M V; Girma, M; Heinzelmann, G; Hermann, G; Hofmann, W; Jung, I; Kankanyan, R; Kestel, M; Konopelko, A; Kornmeyer, H; Kranich, D; López, M; Lorenz, E; Lucarelli, F; Mang, O; Meyer, H; Mirzoyan, R; Moralejo, A; Oña-Wilhelmi, E; Plyasheshnikov, A V; De los Reyes, R; Rhode, W; Ripken, J; Rowell, G; Sahakian, V V; Samorski, M; Schilling, M; Siems, M; Sobzynska, D; Stamm, W; Vitale, V; Völk, H J; Wiedner, C A

    2003-01-01

    Between early 1997 and late 2002, the HEGRA collaboration operated a stereoscopic system of 4 (later 5) imaging atmospheric Cherenkov telescopes. In this paper we present the calibration schemes which were developed for the system, and report on the performance of the detector over the years. In general, the telescope system was very well understood, regarding both the absolute calibration and the slight changes in performance over the years. The system had an energy threshold of 500 GeV for observations at zenith and under optimum detector conditions. With the corresponding calibration schemes, a systematic accuracy of 15 percent on the absolute energy scale has been achieved. The continuous sensitivity monitoring provided a relative accuracy of a few percent, and showed that the threshold did not exceed 600 GeV throughout the entire operation time. The readout electronics and the imaging quality of the dishes were well monitored and stable. The absolute pointing had an accuracy of at least 25 arcsec; this n...

  10. The Cherenkov Telescope Array Large Size Telescope

    CERN Document Server

    Ambrosi, G; Baba, H; Bamba, A; Barceló, M; de Almeida, U Barres; Barrio, J A; Bigas, O Blanch; Boix, J; Brunetti, L; Carmona, E; Chabanne, E; Chikawa, M; Colin, P; Conteras, J L; Cortina, J; Dazzi, F; Deangelis, A; Deleglise, G; Delgado, C; Díaz, C; Dubois, F; Fiasson, A; Fink, D; Fouque, N; Freixas, L; Fruck, C; Gadola, A; García, R; Gascon, D; Geffroy, N; Giglietto, N; Giordano, F; Grañena, F; Gunji, S; Hagiwara, R; Hamer, N; Hanabata, Y; Hassan, T; Hatanaka, K; Haubold, T; Hayashida, M; Hermel, R; Herranz, D; Hirotani, K; Inoue, S; Inoue, Y; Ioka, K; Jablonski, C; Kagaya, M; Katagiri, H; Kishimoto, T; Kodani, K; Kohri, K; Konno, Y; Koyama, S; Kubo, H; Kushida, J; Lamanna, G; Flour, T Le; López-Moya, M; López, R; Lorenz, E; Majumdar, P; Manalaysay, A; Mariotti, M; Martínez, G; Martínez, M; Mazin, D; Miranda, J M; Mirzoyan, R; Monteiro, I; Moralejo, A; Murase, K; Nagataki, S; Nakajima, D; Nakamori, T; Nishijima, K; Noda, K; Nozato, A; Ohira, Y; Ohishi, M; Ohoka, H; Okumura, A; Orito, R; Panazol, J L; Paneque, D; Paoletti, R; Paredes, J M; Pauletta, G; Podkladkin, S; Prast, J; Rando, R; Reimann, O; Ribó, M; Rosier-Lees, S; Saito, K; Saito, T; Saito, Y; Sakaki, N; Sakonaka, R; Sanuy, A; Sasaki, H; Sawada, M; Scalzotto, V; Schultz, S; Schweizer, T; Shibata, T; Shu, S; Sieiro, J; Stamatescu, V; Steiner, S; Straumann, U; Sugawara, R; Tajima, H; Takami, H; Tanaka, S; Tanaka, M; Tejedor, L A; Terada, Y; Teshima, M; Totani, T; Ueno, H; Umehara, K; Vollhardt, A; Wagner, R; Wetteskind, H; Yamamoto, T; Yamazaki, R; Yoshida, A; Yoshida, T; Yoshikoshi, T

    2013-01-01

    The two arrays of the Very High Energy gamma-ray observatory Cherenkov Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA to achieve a low-energy threshold of 20 GeV, which is critical for important studies in astrophysics, astroparticle physics and cosmology. This work presents the key specifications and performance of the current LST design in the light of the CTA scientific objectives.

  11. Bokeh Mirror Alignment for Cherenkov Telescopes

    CERN Document Server

    Ahnen, M L; Balbo, M; Bergmann, M; Biland, A; Blank, M; Bretz, T; Bruegge, K A; Buss, J; Domke, M; Dorner, D; Einecke, S; Hempfling, C; Hildebrand, D; Hughes, G; Lustermann, W; Mannheim, K; Mueller, S A; Neise, D; Neronov, A; Noethe, M; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Shukla, A; Temme, F; Thaele, J; Toscano, S; Vogler, P; Walter, R; Wilbert, A

    2016-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment remains a challenge. Here we present a simple, yet extendable method, to align a segmented reflector using its Bokeh. Bokeh alignment does not need a star or good weather nights but can be done even during daytime. Bokeh alignment optimizes the facet orientations by comparing the segmented reflectors Bokeh to a predefined template. The optimal Bokeh template is highly constricted by the reflector's aperture and is easy accessible. The Bokeh is observed using the out of focus image of a near by point like light source in a distance of about 10 focal lengths. We introduce Bokeh alignment ...

  12. Bokeh mirror alignment for Cherenkov telescopes

    Science.gov (United States)

    Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Domke, M.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Lustermann, W.; Mannheim, K.; Mueller, S. A.; Neise, D.; Neronov, A.; Noethe, M.; Overkemping, A.-K.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Toscano, S.; Vogler, P.; Walter, R.; Wilbert, A.

    2016-09-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment remains a challenge. Here we present a simple, yet extendable method, to align a segmented reflector using its Bokeh. Bokeh alig nment does not need a star or good weather nights but can be done even during daytime. Bokeh alignment optimizes the facet orientations by comparing the segmented reflectors Bokeh to a predefined template. The optimal Bokeh template is highly constricted by the reflector's aperture and is easy accessible. The Bokeh is observed using the out of focus image of a near by point like light source in a distance of about 10 focal lengths. We introduce Bokeh alignment on segmented reflectors and demonstrate it on the First Geiger-mode Avalanche Cherenkov Telescope (FACT) on La Palma, Spain.

  13. Cherenkov Telescope Array Data Management

    CERN Document Server

    Lamanna, G; Contreras, J L; Knödlseder, J; Kosack, K; Neyroud, N; Aboudan, A; Arrabito, L; Barbier, C; Bastieri, D; Boisson, C; Brau-Nogué, S; Bregeon, J; Bulgarelli, A; Carosi, A; Costa, A; De Cesare, G; Reyes, R de los; Fioretti, V; Gallozzi, S; Jacquemier, J; Khelifi, B; Kocot, J; Lombardi, S; Lucarelli, F; Lyard, E; Maier, G; Massimino, P; Osborne, J P; Perri, M; Rico, J; Sanchez, D A; Satalecka, K; Siejkowski, H; Stolarczyk, T; Szepieniec, T; Testa, V; Walter, R; Ward, J E; Zoli, A

    2015-01-01

    Very High Energy gamma-ray astronomy with the Cherenkov Telescope Array (CTA) is evolving towards the model of a public observatory. Handling, processing and archiving the large amount of data generated by the CTA instruments and delivering scientific products are some of the challenges in designing the CTA Data Management. The participation of scientists from within CTA Consortium and from the greater worldwide scientific community necessitates a sophisticated scientific analysis system capable of providing unified and efficient user access to data, software and computing resources. Data Management is designed to respond to three main issues: (i) the treatment and flow of data from remote telescopes; (ii) "big-data" archiving and processing; (iii) and open data access. In this communication the overall technical design of the CTA Data Management, current major developments and prototypes are presented.

  14. Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Meagher, Kevin J

    2014-01-01

    The Cherenkov Telescope Array (CTA) is the next major ground-based observatory for gamma-ray astronomy. With CTA gamma-ray sources will be studied in the very-high energy gamma-ray range of a few tens of GeV to 100 TeV with up to ten times better sensitivity than available with current generation instruments. We discuss the proposed US contribution to CTA that comprises imaging atmospheric Cherenkov telescope with Schwarzschild-Couder (SC) optics. Key features of the SC telescope are a wide field of view of eight degrees, a finely pixelated camera with silicon photomultipliers as photon detectors, and a compact and power efficient 1 GS/s readout. The progress in both the optical system and camera development are discussed in this paper.

  15. Camera Development for the Cherenkov Telescope Array

    Science.gov (United States)

    Moncada, Roberto Jose

    2017-01-01

    With the Cherenkov Telescope Array (CTA), the very-high-energy gamma-ray universe, between 30 GeV and 300 TeV, will be probed at an unprecedented resolution, allowing deeper studies of known gamma-ray emitters and the possible discovery of new ones. This exciting project could also confirm the particle nature of dark matter by looking for the gamma rays produced by self-annihilating weakly interacting massive particles (WIMPs). The telescopes will use the imaging atmospheric Cherenkov technique (IACT) to record Cherenkov photons that are produced by the gamma-ray induced extensive air shower. One telescope design features dual-mirror Schwarzschild-Couder (SC) optics that allows the light to be finely focused on the high-resolution silicon photomultipliers of the camera modules starting from a 9.5-meter primary mirror. Each camera module will consist of a focal plane module and front-end electronics, and will have four TeV Array Readout with GSa/s Sampling and Event Trigger (TARGET) chips, giving them 64 parallel input channels. The TARGET chip has a self-trigger functionality for readout that can be used in higher logic across camera modules as well as across individual telescopes, which will each have 177 camera modules. There will be two sites, one in the northern and the other in the southern hemisphere, for full sky coverage, each spanning at least one square kilometer. A prototype SC telescope is currently under construction at the Fred Lawrence Whipple Observatory in Arizona. This work was supported by the National Science Foundation's REU program through NSF award AST-1560016.

  16. The Gamma-ray Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Tibaldo, L; Allan, D; Amans, J -P; Armstrong, T P; Balzer, A; Berge, D; Boisson, C; Bousquet, J -J; Brown, A M; Bryan, M; Buchholtz, G; Chadwick, P M; Costantini, H; Cotter, G; Daniel, M K; De Franco, A; De Frondat, F; Dournaux, J -L; Dumas, D; Ernenwein, J -P; Fasola, G; Funk, S; Gironnet, J; Graham, J A; Greenshaw, T; Hervet, O; Hidaka, N; Hinton, J A; Huet, J -M; Jankowsky, D; Jegouzo, I; Jogler, T; Kraus, M; Lapington, J S; Laporte, P; Lefaucheur, J; Markoff, S; Melse, T; Mohrmann, L; Molyneux, P; Nolan, S J; Okumura, A; Osborne, J P; Parsons, R D; Rosen, S; Ross, D; Rowell, G; Rulten, C B; Sato, Y; Sayede, F; Schmoll, J; Schoorlemmer, H; Servillat, M; Sol, H; Stamatescu, V; Stephan, M; Stuik, R; Sykes, J; Tajima, H; Thornhill, J; Trichard, C; Vink, J; Watson, J J; White, R; Yamane, N; Zech, A; Zink, A; Zorn, J

    2016-01-01

    The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine telescopes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view $\\gtrsim 8^\\circ$ and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cher...

  17. Atmospheric Cherenkov Gamma-ray Telescopes

    CERN Document Server

    Holder, Jamie

    2015-01-01

    The stereoscopic imaging atmospheric Cherenkov technique, developed in the 1980s and 1990s, is now used by a number of existing and planned gamma-ray observatories around the world. It provides the most sensitive view of the very high energy gamma-ray sky (above 30 GeV), coupled with relatively good angular and spectral resolution over a wide field-of-view. This Chapter summarizes the details of the technique, including descriptions of the telescope optical systems and cameras, as well as the most common approaches to data analysis and gamma-ray reconstruction.

  18. Light Sensor Candidates for the Cherenkov Telescope Array

    CERN Document Server

    Knoetig, M L; Kurz, M; Hose, J; Lorenz, E; Schweizer, T; Teshima, M; Buzhan, P; Popova, E; Bolmont, J; Tavernet, J -P; Vincent, P; Shayduk, M

    2011-01-01

    We report on the characterization of candidate light sensors for use in the next-generation Imaging Atmospheric Cherenkov Telescope project called Cherenkov Telescope Array, a major astro-particle physics project of about 100 telescopes that is currently in the prototyping phase. Our goal is to develop with the manufacturers the best possible light sensors (highest photon detection efficiency, lowest crosstalk and afterpulsing). The cameras of those telescopes will be based on classical super-bi-alkali Photomultiplier tubes but also Silicon Photomultipliers are candidate light sensors. A full characterisation of selected sensors was done. We are working in close contact with several manufacturers, giving them feedback and suggesting improvements.

  19. MACHETE: A transit Imaging Atmospheric Cherenkov Telescope to survey half of the Very High Energy $\\gamma$-ray sky

    CERN Document Server

    Cortina, J; Moralejo, A

    2015-01-01

    Current Imaging Atmospheric Cherenkov Telescopes for Very High Energy $\\gamma$-ray astrophysics are pointing instruments with a Field of View up to a few tens of sq deg. We propose to build an array of two non-steerable (drift) telescopes. Each of the telescopes would have a camera with a FOV of 5$\\times$60 sq deg oriented along the meridian. About half of the sky drifts through this FOV in a year. We have performed a Montecarlo simulation to estimate the performance of this instrument. We expect it to survey this half of the sky with an integral flux sensitivity of $\\sim$0.77\\% of the steady flux of the Crab Nebula in 5 years, an analysis energy threshold of $\\sim$150 GeV and an angular resolution of $\\sim$0.1$^{\\circ}$. For astronomical objects that transit over the telescope for a specific night, we can achieve an integral sensitivity of 12\\% of the Crab Nebula flux in a night, making it a very powerful tool to trigger further observations of variable sources using steerable IACTs or instruments at other w...

  20. MACHETE: A transit imaging atmospheric Cherenkov telescope to survey half of the very high energy γ-ray sky

    Science.gov (United States)

    Cortina, J.; López-Coto, R.; Moralejo, A.

    2016-01-01

    Current imaging atmospheric Cherenkov telescopes for very high energy γ-ray astrophysics are pointing instruments with a field of view up to a few tens of sq deg. We propose to build an array of two non-steerable (drift) telescopes. Each of the telescopes would have a camera with a FOV of 5 × 60 sq deg oriented along the meridian. About half of the sky drifts through this FOV in a year. We have performed a Monte Carlo simulation to estimate the performance of this instrument. We expect it to survey this half of the sky with an integral flux sensitivity of ˜0.77% of the steady flux of the Crab Nebula in 5 years, an analysis energy threshold of ˜150 GeV and an angular resolution of ˜0.1°. For astronomical objects that transit over the telescope for a specific night, we can achieve an integral sensitivity of 12% of the Crab Nebula flux in a night, making it a very powerful tool to trigger further observations of variable sources using steerable IACTs or instruments at other wavelengths.

  1. Qualification and Testing of a Large Hot Slumped Secondary Mirror for Schwarzschild-Couder Imaging Air Cherenkov Telescopes

    Science.gov (United States)

    Rodeghiero, G.; Giro, E.; Canestrari, R.; Pernechele, C.; Sironi, G.; Pareschi, G.; Lessio, L.; Conconi, P.

    2016-05-01

    Dual-mirror Schwarzschild-Couder (SC) telescopes are based on highly aspherical optics, and they represent a novel design in the world of very high energy astrophysics. This work addresses the realization and the qualification of the secondary mirror for an SC telescope, named ASTRI, developed in the context of the Cherenkov Telescope Array Observatory. The discussion surveys the overall development from the early design concept to the final acceptance optical tests.

  2. Gamma/hadron segregation for a ground based imaging atmospheric Cherenkov telescope using machine learning methods: Random Forest leads

    CERN Document Server

    Sharma, Mradul; Koul, M K; Bose, S; Mitra, Abhas

    2014-01-01

    A detailed case study of $\\gamma$-hadron segregation for a ground based atmospheric Cherenkov telescope is presented. We have evaluated and compared various supervised machine learning methods such as the Random Forest method, Artificial Neural Network, Linear Discriminant method, Naive Bayes Classifiers,Support Vector Machines as well as the conventional dynamic supercut method by simulating triggering events with the Monte Carlo method and applied the results to a Cherenkov telescope. It is demonstrated that the Random Forest method is the most sensitive machine learning method for $\\gamma$-hadron segregation.

  3. A Monte Carlo template-based analysis for very high definition imaging atmospheric Cherenkov telescopes as applied to the VERITAS telescope array

    CERN Document Server

    ,

    2015-01-01

    We present a sophisticated likelihood reconstruction algorithm for shower-image analysis of imaging Cherenkov telescopes. The reconstruction algorithm is based on the comparison of the camera pixel amplitudes with the predictions from a Monte Carlo based model. Shower parameters are determined by a maximisation of a likelihood function. Maximisation of the likelihood as a function of shower fit parameters is performed using a numerical non-linear optimisation technique. A related reconstruction technique has already been developed by the CAT and the H.E.S.S. experiments, and provides a more precise direction and energy reconstruction of the photon induced shower compared to the second moment of the camera image analysis. Examples are shown of the performance of the analysis on simulated gamma-ray data from the VERITAS array.

  4. The GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    Brown, Anthony M; Allan, D; Amans, J P; Armstrong, T P; Balzer, A; Berge, D; Boisson, C; Bousquet, J -J; Bryan, M; Buchholtz, G; Chadwick, P M; Costantini, H; Cotter, G; Daniel, M K; De Franco, A; De Frondat, F; Dournaux, J -L; Dumas, D; Fasola, G; Funk, S; Gironnet, J; Graham, J A; Greenshaw, T; Hervet, O; Hidaka, N; Hinton, J A; Huet, J -M; Jegouzo, I; Jogler, T; Kraus, M; Lapington, J S; Laporte, P; Lefaucheur, J; Markoff, S; Melse, T; Mohrmann, L; Molyneux, P; Nolan, S J; Okumura, A; Osborne, J P; Parsons, R D; Rosen, S; Ross, D; Rowell, G; Sato, Y; Sayede, F; Schmoll, J; Schoorlemmer, H; Servillat, M; Sol, H; Stamatescu, V; Stephan, M; Stuik, R; Sykes, J; Tajima, H; Thornhill, J; Tibaldo, L; Trichard, C; Vink, J; Watson, J J; White, R; Yamane, N; Zech, A; Zink, A; Zorn, J

    2016-01-01

    The Gamma-ray Cherenkov Telescope (GCT) is proposed for the Small-Sized Telescope component of the Cherenkov Telescope Array (CTA). GCT's dual-mirror Schwarzschild-Couder (SC) optical system allows the use of a compact camera with small form-factor photosensors. The GCT camera is ~0.4 m in diameter and has 2048 pixels; each pixel has a ~0.2 degree angular size, resulting in a wide field-of-view. The design of the GCT camera is high performance at low cost, with the camera housing 32 front-end electronics modules providing full waveform information for all of the camera's 2048 pixels. The first GCT camera prototype, CHEC-M, was commissioned during 2015, culminating in the first Cherenkov images recorded by a SC telescope and the first light of a CTA prototype. In this contribution we give a detailed description of the GCT camera and present preliminary results from CHEC-M's commissioning.

  5. First data from IceAct, an imaging air Cherenkov telescope with SiPMs at the South Pole

    Energy Technology Data Exchange (ETDEWEB)

    Auffenberg, Jan; Bretz, Thomas; Hansmann, Bengt; Hansmann, Tim; Hebbeker, Thomas; Kemp, Julian; Middendorf, Lukas; Niggemann, Tim; Raedel, Leif; Schaufel, Merlin; Schumacher, Johannes; Stahlberg, Martin; Werhan, Ansgar; Wiebusch, Christopher [RWTH Aachen University (Germany)

    2016-07-01

    IceCube-Gen2 is planned to extend the IceCube Neutrino Observatory at the geographic South Pole. For neutrino astronomy, a large background-free sample of well-reconstructed astrophysical neutrinos is essential. The main background for this signal are muons and neutrinos which are produced in cosmic-ray air showers in the Earth's atmosphere. The coincident detection of these air showers by the surface detector IceTop has been proven to be a powerful veto for atmospheric neutrinos and muons in the field of view of the Southern Hemisphere. This motivates a large extension of IceTop to more efficiently detect cosmic rays, IceVeto. Part of these extension plans is an array of imaging air Cherenkov telescopes, IceAct. A first IceAct prototype is consisting of an SiPM camera and lens optics optimized for harsh environments. Compared to IceTop stations, these telescopes potentially lower the detection threshold for air showers at the cost of a lower duty cycle. We present first data, taken during the commissioning of an IceAct prototype in December 2015 at the South Pole.

  6. The FACT camera project, a novel camera type for very high energy (VHE) gamma astronomy with imaging air Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Neise, Dominik [TU, Dortmund (Germany)

    2010-07-01

    Recent progress in the field of photon detectors allows the development of novel camera types for VHE gamma astronomy with Imaging Air Cherenkov Telescopes. We are currently constructing a first full size camera, dubbed FACT (first avalanche-photodiode camera test) based on the novel Geiger-mode avalanche photodiodes (G-APD). These semiconductor photon detectors show several advanced features compared to conventional photomultiplier tubes, such as a significantly higher photon detection efficiency (PDE), high compactness, insensitivity against magnetic fields etc. In addition an entirely embedded new type of data acquisition as well as trigger system based on the novel domino ring sampling chip (DRS4) is being developed. The camera will be integral part of the new DWARF telescope located on the Canary island La Palma using the renovated HEGRA CT3 mount. DWARF is dedicated for long-term monitoring and observations of bright active galactic nuclei. A report about the successful prototype runs as well as about the concept and current status of the camera development is given.

  7. Normalized and Asynchronous Mirror Alignment for Cherenkov Telescopes

    CERN Document Server

    Ahnen, M L; Balbo, M; Bergmann, M; Biland, A; Blank, M; Bretz, T; Bruegge, K A; Buss, J; Domke, M; Dorner, D; Einecke, S; Hempfling, C; Hildebrand, D; Hughes, G; Lustermann, W; Mannheim, K; Mueller, S A; Neise, D; Neronov, A; Noethe, M; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Shukla, A; Temme, F; Thaele, J; Toscano, S; Vogler, P; Walter, R; Wilbert, A

    2016-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and as they are composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment is a challenge. Here we present a computer vision based star tracking alignment method, which also works for limited or changing star light visibility. Our method normalizes the mirror facet reflection intensities to become independent of the reference star's intensity or the cloud coverage. Using two CCD cameras, our method records the mirror facet orientations asynchronously of the telescope drive system, and thus makes the method easy to integrate into existing telescopes. It can be combined with remote facet actuation, but does not require one to work. Furthermore, it ca...

  8. Searching for tau neutrinos with Cherenkov telescopes

    Science.gov (United States)

    Góra, D.; Bernardini, E.; Kappes, A.

    2015-02-01

    Cherenkov telescopes have the capability of detecting high energy tau neutrinos in the energy range of 1-1000 PeV by searching for very inclined showers. If a tau lepton, produced by a tau neutrino, escapes from the Earth or a mountain, it will decay and initiate a shower in the air which can be detected by an air shower fluorescence or Cherenkov telescope. In this paper, we present detailed Monte Carlo simulations of corresponding event rates for the VERITAS and two proposed Cherenkov Telescope Array sites: Meteor Crater and Yavapai Ranch, which use representative AGN neutrino flux models and take into account topographic conditions of the detector sites. The calculated neutrino sensitivities depend on the observation time and the shape of the energy spectrum, but in some cases are comparable or even better than corresponding neutrino sensitivities of the IceCube detector. For VERITAS and the considered Cherenkov Telescope Array sites the expected neutrino sensitivities are up to factor 3 higher than for the MAGIC site because of the presence of surrounding mountains.

  9. Mirror Development for the Cherenkov Telescope Array

    CERN Document Server

    Förster, A; Baba, H; Bähr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; De Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; MANDAT, D; Mariotti, M; Medina, C; Michałowski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pareschi, G; Pech, M; Peyaud, B; Pühlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; Van Eldik, C; Vassiliev, V; Wiśniewski, Ł; Wörnlein, A; Yoshida, T

    2013-01-01

    The Cherenkov Telescope Array (CTA) is a planned observatory for very-high energy gamma-ray astronomy. It will consist of several tens of telescopes of different sizes, with a total mirror area of up to 10,000 square meters. Most mirrors of current installations are either polished glass mirrors or diamond-turned aluminium mirrors, both labour intensive technologies. For CTA, several new technologies for a fast and cost-efficient production of light-weight and reliable mirror substrates have been developed and industrial pre-production has started for most of them. In addition, new or improved aluminium-based and dielectric surface coatings have been developed to increase the reflectance over the lifetime of the mirrors compared to those of current Cherenkov telescope instruments.

  10. INTENSITY INTERFEROMETRY WITH CHERENKOV TELESCOPES

    Directory of Open Access Journals (Sweden)

    D. B. Kieda

    2010-01-01

    Full Text Available Se discuten las capacidades de arreglos de interferometría de intensidad estelar (SII que se pueden construir usando la siguiente generación de arreglos de telescopios de Cherenkov de imágenes de aire (IACTs. Estos arreglos de IACT tendrán un gran diámetro de - 100 m (> 8 m de re ectores ópticos, ofreciendo cerca de 5000 líneas de base interferométricas, extendiéndose a partir de 50 m a más que 1000 m. La implementación del SII en arreglos de IACT permitirán imágenes de alta resolución (< 0:1 mas en anchos de banda cortos (bandas B/V, que son óptimas para el estudio de estrellas calientes.

  11. Silicon Photomultiplier Camera for Schwarzschild-Couder Cherenkov Telescopes

    CERN Document Server

    Vandenbroucke, J

    2014-01-01

    The Cherenkov Telescope Array (CTA) is an atmospheric Cherenkov observatory that will image the cosmos in very-high-energy gamma rays. CTA will study the highest-energy particle accelerators in the Universe and potentially confirm the particle nature of dark matter. We have designed an innovative Schwarzschild-Couder telescope which uses two mirrors to achieve excellent optical performance across a wide field of view. The small plate scale of the dual-mirror optics enables a compact camera which uses modern technology including silicon photomultipliers and the TARGET application-specific integrated circuit to read out a finely pixelated focal plane of 11,328 channels with modest weight, volume, cost, and power consumption. The camera design is hierarchical and modular at each level, enabling robust construction, operation, and maintenance. A prototype telescope is under construction and will be commissioned at the VERITAS site in Arizona. An array of such telescopes will provide excellent angular resolution a...

  12. Normalized and asynchronous mirror alignment for Cherenkov telescopes

    Science.gov (United States)

    Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Domke, M.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Lustermann, W.; Mannheim, K.; Mueller, S. A.; Neise, D.; Neronov, A.; Noethe, M.; Overkemping, A.-K.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Toscano, S.; Vogler, P.; Walter, R.; Wilbert, A.

    2016-09-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and as they are composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment is a challenge. Here we present a computer vision based star tracking alignment method, which also works for limited or changing star light visibility. Our method normalizes the mirror facet reflection intensities to become independent of the reference star's intensity or the cloud coverage. Using two CCD cameras, our method records the mirror facet orientations asynchronously of the telescope drive system, and thus makes the method easy to integrate into existing telescopes. It can be combined with remote facet actuation, but does not require one to work. Furthermore, it can reconstruct all individual mirror facet point spread functions without moving any mirror. We present alignment results on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).

  13. Monte Carlo Studies of medium-size telescope designs for the Cherenkov Telescope Array

    CERN Document Server

    Wood, M; Dumm, J; Funk, S

    2015-01-01

    We present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parameters including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters repre...

  14. Calibration of the Cherenkov Telescope Array

    CERN Document Server

    Gaug, Markus; Berge, David; Reyes, Raquel de los; Doro, Michele; Foerster, Andreas; Maccarone, Maria Concetta; Parsons, Dan; van Eldik, Christopher

    2015-01-01

    The construction of the Cherenkov Telescope Array is expected to start soon. We will present the baseline methods and their extensions currently foreseen to calibrate the observatory. These are bound to achieve the strong requirements on allowed systematic uncertainties for the reconstructed gamma-ray energy and flux scales, as well as on the pointing resolution, and on the overall duty cycle of the observatory. Onsite calibration activities are designed to include a robust and efficient calibration of the telescope cameras, and various methods and instruments to achieve calibration of the overall optical throughput of each telescope, leading to both inter-telescope calibration and an absolute calibration of the entire observatory. One important aspect of the onsite calibration is a correct understanding of the atmosphere above the telescopes, which constitutes the calorimeter of this detection technique. It is planned to be constantly monitored with state-of-the-art instruments to obtain a full molecular and...

  15. FACT. Normalized and asynchronous mirror alignment for Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Sebastian Achim [ETH Zurich (Switzerland); Buss, Jens [TU Dortmund (Germany)

    2016-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need fast and large imaging optics to map the faint Cherenkov light emitted in cosmic ray air showers onto their image sensors. Segmented reflectors are inexpensive, lightweight and offer good image quality. However, alignment of the mirror facets remains a challenge. A good alignment is crucial in IACT observations to separate gamma rays from hadronic cosmic rays. We present a star tracking alignment method which is not restricted to clear nights. It normalizes the mirror facet reflections to be independent of the reference star or the cloud coverage. It records asynchronously of the telescope drive which makes the method easy to integrate in existing telescopes. It can be combined with remote facet actuation, but it does not need one to work. Furthermore, it can reconstruct all individual mirror facet point spread functions. We present the method and alignment results on the First Geiger-mode Photo Diode Avalanche Cherenkov Telescope (FACT) on the Canary Island of La Palma, Spain.

  16. Roughness tolerances for Cherenkov telescope mirrors

    CERN Document Server

    Tayabaly, K; Canestrari, R; Bonnoli, G; Lavagna, M; Pareschi, G

    2016-01-01

    The Cherenkov Telescope Array (CTA) is a forthcoming international ground-based observatory for very high-energy gamma rays. Its goal is to reach sensitivity five to ten times better than existing Cherenkov telescopes such as VERITAS, H.E.S.S. or MAGIC and extend the range of observation to energies down to few tens of GeV and beyond 100 TeV. To achieve this goal, an array of about 100 telescopes is required, meaning a total reflective surface of several thousands of square meters. Thence, the optimal technology used for CTA mirrors manufacture should be both low-cost (~1000 euros/m2) and allow high optical performances over the 300-550 nm wavelength range. More exactly, a reflectivity higher than 85% and a PSF (Point Spread Function) diameter smaller than 1 mrad. Surface roughness can significantly contribute to PSF broadening and limit telescope performances. Fortunately, manufacturing techniques for mirrors are now available to keep the optical scattering well below the geometrically-predictable effect of ...

  17. Cherenkov Telescopes Results on Pulsar Wind Nebulae and Pulsars

    Science.gov (United States)

    Wilhelmi, Emma De Oña

    The last few years have seen a revolution in very high γ-ray astronomy (VHE; E>100 GeV) driven largely by a new generation of Cherenkov telescopes. These new facilities, namely H.E.S.S. (High Energy Stereoscopic System), MAGIC (Major Atmospheric Gamma Imaging Cherenkov Telescope) and its upgrade MAGIC 2, VERITAS (Very Energetic Radiation Imaging Telescope Array System) and CANGAROO (Collaboration of Australia and Nippon for a Gamma Ray Observatory in the Outback) were designed to increase the flux sensitivity in the energy regime of hundreds of GeV, expanding the observed energy range from 50 to multi-TeV, and fostered as a result a period of rapid growth in our understanding of the Non-ThermalUniverse. As a result of this fast development the number of pulsar wind nebulae (PWNe) detected has increased from a few in the early 90's to more than two dozen of firm candidates nowadays. Also, the low energy threshold achieved allows to investigate the pulsed spectra of the high energy pulsars powering PWNe. A review of the most relevant VHE results concerning pulsars and their relativistic winds is discussed here in the context of Cherenkov telescopes.

  18. Schwarzschild-Couder telescope for the Cherenkov Telescope Array: Development of the Optical System

    CERN Document Server

    Rousselle, Julien; Errando, Manel; Humensky, Brian; Mukherjee, Reshmi; Nieto, Daniel; Okumura, Akira; Vassiliev, Vladimir

    2013-01-01

    The CTA (Cherenkov Telescope Array) is the next generation ground-based experiment for very high-energy (VHE) gamma-ray observations. It will integrate several tens of imaging atmospheric Cherenkov telescopes (IACTs) with different apertures into a single astronomical instrument. The US part of the CTA collaboration has proposed and is developing a novel IACT design with a Schwarzschild-Couder (SC) aplanatic two mirror optical system. In comparison with the traditional single mirror Davies-Cotton IACT the SC telescope, by design, can accommodate a wide field-of-view, with significantly improved imaging resolution. In addition, the reduced plate scale of an SC telescope makes it compatible with highly integrated cameras assembled from silicon photo multipliers. In this submission we report on the status of the development of the SC optical system, which is part of the effort to construct a full-scale prototype telescope of this type at the Fred Lawrence Whipple Observatory in southern Arizona.

  19. Observations of $\\gamma$-ray emission from the blazar Markarian 421 above 250 GeV with the CAT Cherenkov imaging telescope

    CERN Document Server

    Piron, Frédéric

    1999-01-01

    The gamma-ray emission of the blazar Markarian 421 above 250 GeV has been observed by the CAT Cherenkov imaging telescope since December, 1996. We report here results on the source variability up to April, 1998, with emphasis on the 1998 campaign. For the flaring periods of this year, the energy spectrum was derived from 330 GeV up to 5.2 TeV: it is very well represented by a simple power law, with a differential spectral index of 2.96 +/- 0.13.

  20. Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Otte, A N; Dickinson, H.; Funk, S.; Jogler, T.; Johnson, C.A.; Karn, P.; Meagher, K.; Naoya, H.; Nguyen, T.; Okumura, A.; Santander, M.; Sapozhnikov, L.; Stier, A.; Tajima, H.; Tibaldo, L.; Vandenbroucke, J.; Wakely, S.; Weinstein, A.; Williams, D.A.

    2015-01-01

    We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give ...

  1. The small size telescope projects for the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    The small size telescopes (SSTs), spread over an area of several square km, dominate the CTA sensitivity in the photon energy range from a few TeV to over 100 TeV, enabling for the detailed exploration of the very high energy gamma-ray sky. The proposed telescopes are innovative designs providing a wide field of view. Two of them, the ASTRI (Astrophysics con Specchi a Tecnologia Replicante Italiana) and the GCT (Gamma-ray Cherenkov Telescope) telescopes, are based on dual mirror Schwarzschild-Couder optics, with primary mirror diameters of 4 m. The third, SST-1M, is a Davies-Cotton design with a 4 m diameter mirror. Progress with the construction and testing of prototypes of these telescopes is presented. The SST cameras use silicon photomultipliers, with preamplifier and readout/trigger electronics designed to optimize the performance of these sensors for (atmospheric) Cherenkov light. The status of the camera developments is discussed. The SST sub-array will consist of about 70 telescopes at the CTA souther...

  2. Building Medium Size Telescope Structures for the Cherenkov Telescope Array

    CERN Document Server

    Schulz, A; Oakes, L; Schlenstedt, S; Schwanke, U

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the future instrument in ground-based gamma-ray astronomy in the energy range from 20 GeV to 300 TeV. Its sensitivity will surpass that of current generation experiments by a factor $\\sim$10, facilitated by telescopes of three sizes. The performance in the core energy regime will be dominated by Medium Size Telescopes (MST) with a reflector of 12 m diameter. A full-size mechanical prototype of the telescope structure has been constructed in Berlin. The performance of the prototype is being evaluated and optimisations, among others, facilitating the assembly procedure and mass production possibilities are being implemented. We present the current status of the developments from prototyping towards pre-production telescopes, which will be deployed at the final site.

  3. PyFACT: Python and FITS analysis for Cherenkov telescopes

    Science.gov (United States)

    Raue, Martin; Deil, Christoph

    2012-12-01

    Ground-based very-high energy (VHE; E>100 GeV) gamma-ray astronomy is growing from being conducted by small teams in closed collaborations into a full-fledged branch of astronomy with open observatories. This is best illustrated by the number of known sources: it increased by one order of magnitude in the past ten years, from 10 in the year 2000 to more than 100 in 2010. It is expected that this trend will continue with the next-generation instrument Cherenkov Telescope Array (CTA). This transformation has a profound impact on the data format and analysis of Imaging Atmospheric Cherenkov Telescopes (IACTs). Up to now, IACT data analysis was an internal task performed by specialists with no public access to the data or software. In the future, a large community of VHE astronomers from different scientific topics should be enabled to work with the data. Ease of use, compatibility, and integration with existing astronomy standards and tools will be key. In this contribution, a collection of Python tools for the analysis of data in FITS format (PyFACT; Python and FITS Analysis for Cherenkov Telescopes) is presented, which connects with existing tools like xspec, sherpa, and ds9. The package is available as open source (https://github.com/mraue/pyfact, comments and contributions welcome). Advantages of the chosen ansatz are discussed and implications for future observatories and data archival are presented.

  4. Performance of the STACEE Atmospheric Cherenkov Telescope

    Science.gov (United States)

    Williams, D. A.; Bhattacharya, D.; Boone, L. M.; Chantell, M. C.; Conner, Z.; Covault, C. E.; Dragovan, M.; Fortin, P.; Gingrich, D.; Gregorich, D. T.; Hanna, D. S.; Mohanty, G.; Mukherjee, R.; Ong, R. A.; Oser, S.; Ragan, K.; Scalzo, R. A.; Schuette, D. R.; Théoret, C. G.; Tümer, T. O.; Vincent, F.; Zweerink, J. A.

    2001-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is located at the National Solar Thermal Test Facility of Sandia National Laboratories in Albuquerque, New Mexico, USA. The field of solar tracking mirrors (heliostats) around a central receiver tower is used to direct Cherenkov light from atmospheric showers onto secondary mirrors on the tower, which in turn image the light onto cameras of photomultiplier tubes. The STACEE Collaboration has previously reported a detection of the Crab Nebula with approximately 7 standard deviation significance, using 32 heliostats (STACEE-32). This result demonstrates both the viability of the technique and the suitability of the site. We are in the process of completing an upgrade to 48 heliostats (STACEE-48) en route to an eventual configuration using 64 heliostats (STACEE-64) in early 2001. In this paper, we summarize the results obtained on the sensitivity of STACEE-32 and our expectations for STACEE-48 and STACEE-64. .

  5. Performance of the STACEE Atmospheric Cherenkov Telescope

    CERN Document Server

    Williams, D A; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gingrich, D M; Gregorich, D T; Hanna, D S; Mohanty, G B; Mukherjee, R; Ong, R A; Oser, S M; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Vincent, F; Zweerink, J A

    2000-01-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is located at the National Solar Thermal Test Facility of Sandia National Laboratories in Albuquerque, New Mexico, USA. The field of solar tracking mirrors (heliostats) around a central receiver tower is used to direct Cherenkov light from atmospheric showers onto secondary mirrors on the tower, which in turn image the light onto cameras of photomultiplier tubes. The STACEE Collaboration has previously reported a detection of the Crab Nebula with approximately 7 standard deviation significance, using 32 heliostats (STACEE-32). This result demonstrates both the viability of the technique and the suitability of the site. We are in the process of completing an upgrade to 48 heliostats (STACEE-48) en route to an eventual configuration using 64 heliostats (STACEE-64) in early 2001. In this paper, we summarize the results obtained on the sensitivity of STACEE-32 and our expectations for STACEE-48 and STACEE-64.

  6. MACHETE: A transit Imaging Atmospheric Cherenkov Telescope to survey half of the Very High Energy γ-ray sky

    Science.gov (United States)

    López-Coto, Rubén; Cortina, Juan; Moralejo, Abelardo

    2016-10-01

    Current Cherenkov Telescopes for VHE gamma ray astrophysics are pointing instruments with a field of view up to a few tens of deg2. We propose to build an array of two non-steerable telescopes with a FoV of 5×60 deg2 oriented along the meridian. Roughly half of the sky drifts through this FoV in a year. We have performed a MC simulation to estimate the performance of this instrument, which we dub MACHETE. The sensitivity that MACHETE would achieve after 5 years of operation for every source in this half of the sky is comparable to the sensitivity that a current IACT achieves for a specific source after a 50 h devoted observation. The analysis energy threshold would be 150 GeV and the angular resolution 0.1 deg. For astronomical objects that transit over MACHETE for a specific night, it would achieve an integral sensitivity of 12% of Crab in a night. This makes MACHETE a powerful tool to trigger observations of variable sources at VHE or any other wavelengths.

  7. Observer Access to the Cherenkov Telescope Array

    CERN Document Server

    Knödlseder, Jürgen; Boisson, Catherine; Brau-Nogué, Sylvie; Deil, Christoph; Khélifi, Bruno; Mayer, Michael; Walter, Roland

    2015-01-01

    The Cherenkov Telescope Array (CTA), a ground-based facility for very-high-energy (VHE) gamma-ray astronomy, will operate as an open observatory, serving a wide scientific community to explore and to study the non-thermal universe. Open community access is a novelty in this domain, putting a challenge on the implementation of services that make VHE gamma-ray astronomy as accessible as any other waveband. We present here the design of the CTA Observer Access system that comprises support of scientific users, dissemination of data and software, tools for scientific analysis, and the system to submit observing proposals. We outline the scientific user workflows and provide the status of the current developments.

  8. Sensivity studies for the Cherenkov Telescope Array

    Science.gov (United States)

    Collado, Tarek Hassan

    2015-06-01

    Since the creation of the first telescope in the 17th century, every major discovery in astrophysics has been the direct consequence of the development of novel observation techniques, opening new windows in the electromagnetic spectrum. After Karl Jansky discovered serendipitously the first radio source in 1933, Grote Reber built the first parabolic radio telescope in his backyard, planting the seed of a whole new field in astronomy. Similarly, new technologies in the 1950s allowed the establishment of other fields, such as the infrared, ultraviolet or the X-rays. The highest energy end of the electromagnetic spectrum, the γ-ray range, represents the last unexplored window for astronomers and should reveal the most extreme phenomena that take place in the Universe. Given the technical complexity of γ-ray detection and the extremely relative low fluxes, γ-ray astronomy has undergone a slower development compared to other wavelengths. Nowadays, the great success of consecutive space missions together with the development and refinement of new detection techniques from the ground, has allowed outstanding scientific results and has brought gamma-ray astronomy to a worthy level in par with other astronomy fields. This work is devoted to the study and improvement of the future Cherenkov Telescope Array (CTA), the next generation of ground based γ-ray detectors, designed to observe photons with the highest energies ever observed from cosmic sources.

  9. A Compact High Energy Camera for the Cherenkov Telescope Array

    CERN Document Server

    Daniel, M K; Berge, D; Buckley, J; Chadwick, P M; Cotter, G; Funk, S; Greenshaw, T; Hidaka, N; Hinton, J; Lapington, J; Markoff, S; Moore, P; Nolan, S; Ohm, S; Okumura, A; Ross, D; Sapozhnikov, L; Schmoll, J; Sutcliffe, P; Sykes, J; Tajima, H; Varner, G S; Vandenbroucke, J; Vink, J; Williams, D

    2013-01-01

    The Compact High Energy Camera (CHEC) is a camera-development project involving UK, US, Japanese and Dutch institutes for the dual-mirror Small-Sized Telescopes (SST-2M) of the Cherenkov Telescope Array (CTA). Two CHEC prototypes, based on different photosensors are funded and will be assembled and tested in the UK over the next ~18 months. CHEC is designed to record flashes of Cherenkov light lasting from a few to a hundred nanoseconds, with typical RMS image width and length of ~0.2 x 1.0 degrees, and has a 9 degree field of view. The physical camera geometry is dictated by the telescope optics: a curved focal surface with radius of curvature 1m and diameter ~35cm is required. CHEC is designed to work with both the ASTRI and GATE SST-2M telescope structures and will include an internal LED flasher system for calibration. The first CHEC prototype will be based on multi-anode photomultipliers (MAPMs) and the second on silicon photomultipliers (SiPMs or MPPCs). The first prototype will soon be installed on the...

  10. INFN Camera demonstrator for the Cherenkov Telescope Array

    CERN Document Server

    Ambrosi, G; Aramo, C.; Bertucci, B.; Bissaldi, E.; Bitossi, M.; Brasolin, S.; Busetto, G.; Carosi, R.; Catalanotti, S.; Ciocci, M.A.; Consoletti, R.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Palma, F.; Desiante, R.; Di Girolamo, T.; Di Giulio, C.; Doro, M.; D'Urso, D.; Ferraro, G.; Ferrarotto, F.; Gargano, F.; Giglietto, N.; Giordano, F.; Giraudo, G.; Iacovacci, M.; Ionica, M.; Iori, M.; Longo, F.; Mariotti, M.; Mastroianni, S.; Minuti, M.; Morselli, A.; Paoletti, R.; Pauletta, G.; Rando, R.; Fernandez, G. Rodriguez; Rugliancich, A.; Simone, D.; Stella, C.; Tonachini, A.; Vallania, P.; Valore, L.; Vagelli, V.; Verzi, V.; Vigorito, C.

    2015-01-01

    The Cherenkov Telescope Array is a world-wide project for a new generation of ground-based Cherenkov telescopes of the Imaging class with the aim of exploring the highest energy region of the electromagnetic spectrum. With two planned arrays, one for each hemisphere, it will guarantee a good sky coverage in the energy range from a few tens of GeV to hundreds of TeV, with improved angular resolution and a sensitivity in the TeV energy region better by one order of magnitude than the currently operating arrays. In order to cover this wide energy range, three different telescope types are envisaged, with different mirror sizes and focal plane features. In particular, for the highest energies a possible design is a dual-mirror Schwarzschild-Couder optical scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based camera is being proposed as a solution to match the dimensions of the pixel (angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made by 9 Photo Sensor Modules (PSMs...

  11. DELPHI's Ring Imaging Cherenkov Chamber

    CERN Multimedia

    1989-01-01

    The hundreds of mirrors around this Ring Imaging Cherenkov Chamber reflect cones of light created by fast moving particles to a detector. The velocity of a particle can be measured by the size of the ring produced on the detector. DELPHI, which ran from 1989 to 2000 on the LEP accelerator, was primarily concerned with particle identification.

  12. The next generation Cherenkov Telescope Array observatory: CTA

    Energy Technology Data Exchange (ETDEWEB)

    Vercellone, S., E-mail: stefano@ifc.inaf.it

    2014-12-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the very high-energy gamma-ray astrophysics in the energy range 30 GeV–100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23 m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100 m. A larger number (about 25 units) of 12 m Medium Size Telescopes (MSTs, separated by about 150 m), will cover a larger area. The southern site will also include up to 24 Schwarzschild–Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5 m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To achieve the required sensitivity at high energies, a huge area on the ground needs to be covered by Small Size Telescopes (SSTs) with a field of view of about 10° and an angular resolution of about 0.2°, making the dual-mirror configuration very effective. The SST sub-array will be composed of 50–70 telescopes with a mirror area of about 5–10 m{sup 2} and about 300 m spacing, distributed across an area of about 10 km{sup 2}. In this presentation we will focus on the innovative solution for the optical design of the medium and small size telescopes based on a dual-mirror configuration. This layout will allow us to reduce the dimension and the weight of the camera at the focal plane of the telescope, to adopt Silicon-based photo-multipliers as light detectors thanks to the reduced plate-scale, and to have an optimal imaging resolution on a wide field of view.

  13. The next generation Cherenkov Telescope Array observatory: CTA

    Science.gov (United States)

    Vercellone, S.

    2014-12-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the very high-energy gamma-ray astrophysics in the energy range 30 GeV-100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23 m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100 m. A larger number (about 25 units) of 12 m Medium Size Telescopes (MSTs, separated by about 150 m), will cover a larger area. The southern site will also include up to 24 Schwarzschild-Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5 m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To achieve the required sensitivity at high energies, a huge area on the ground needs to be covered by Small Size Telescopes (SSTs) with a field of view of about 10° and an angular resolution of about 0.2°, making the dual-mirror configuration very effective. The SST sub-array will be composed of 50-70 telescopes with a mirror area of about 5-10 m2 and about 300 m spacing, distributed across an area of about 10 km2. In this presentation we will focus on the innovative solution for the optical design of the medium and small size telescopes based on a dual-mirror configuration. This layout will allow us to reduce the dimension and the weight of the camera at the focal plane of the telescope, to adopt Silicon-based photo-multipliers as light detectors thanks to the reduced plate-scale, and to have an optimal imaging resolution on a wide field of view.

  14. The Medium Size Telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Pühlhofer, G

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the planned next-generation instrument for ground-based gamma-ray astronomy, covering a photon energy range of ~20 GeV to above 100 TeV. CTA will consist of the order of 100 telescopes of three sizes, installed at two sites in the Northern and Southern Hemisphere. This contribution deals with the 12 meter Medium Size Telescopes (MST) having a single mirror (modified Davies-Cotton, DC) design. In the baseline design of the CTA arrays, 25 MSTs in the South and 15 MSTs in the North provide the necessary sensitivity for CTA in the core energy range of 100 GeV to 10 TeV. DC-MSTs will be equipped with photomultiplier (PMT)-based cameras. Two options are available for these focal plane instruments, that will be provided by the FlashCam and the NectarCAM sub-consortia. In this contribution, a short introduction to the projects and their status is given.

  15. An Analog Trigger System for Atmospheric Cherenkov Telescopes

    CERN Document Server

    Barcelo, M; Bigas, O Blanch; Boix, J; Delgado, C; Herranz, D; Lopez-Coto, R; Martinez, G

    2013-01-01

    Arrays of Cherenkov telescopes typically use multi-level trigger schemes to keep the rate of random triggers from the night sky background low. At a first stage, individual telescopes produce a trigger signal from the pixel information in the telescope camera. The final event trigger is then formed by combining trigger signals from several telescopes. In this poster, we present a possible scheme for the Cherenkov Telescope Array telescope trigger, which is based on the analog pulse information of the pixels in a telescope camera. Advanced versions of all components of the system have been produced and working prototypes have been tested, showing a performance that meets the original specifications. Finally, issues related to integrating the trigger system in a telescope camera and in the whole array will be dealt with.

  16. Open-structure composite mirrors for the Cherenkov Telescope Array

    CERN Document Server

    Dyrda, Michal; Niemiec, Jacek; Stodulski, Marek

    2013-01-01

    The Cherenkov Telescope Array (CTA) Observatory for high-energy gamma-ray astronomy will comprise several tens of imaging atmospheric Cherenkov telescopes (IACTs) of different size with a total reflective area of about 10,000 m$^2$. Here we present a new technology for the production of IACT mirrors that has been developed in the Institute of Nuclear Physics PAS in Krakow, Poland. An open-structure composite mirror consists of a rigid flat sandwich support structure and cast-in-mould spherical epoxy resin layer. To this layer a thin glass sheet complete with optical coating is cold-slumped to provide the spherical reflective layer of the mirror. The main components of the sandwich support structure are two flat float glass panels inter spaced with V-shape aluminum spacers of equal length. The sandwich support structure is open, thus enabling good cooling and ventilation of the mirror. A special arrangement of the aluminum spacers also prohibits water being trapped inside. The open-structure technology thus re...

  17. NECTAr: New electronics for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiov, S., E-mail: vorobiov@lpta.in2p3.f [LPTA, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France); Delagnes, E. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Feinstein, F. [LPTA, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Gascon, D. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Glicenstein, J.-F. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France); Sanuy, A. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Toussenel, F.; Vincent, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France)

    2011-05-21

    The European astroparticle physics community aims to design and build the next generation array of Imaging Atmospheric Cherenkov Telescopes (IACTs), that will benefit from the experience of the existing H.E.S.S. and MAGIC detectors, and further expand the very-high energy astronomy domain. In order to gain an order of magnitude in sensitivity in the 10 GeV to >100TeV range, the Cherenkov Telescope Array (CTA) will employ 50-100 mirrors of various sizes equipped with 1000-4000 channels per camera, to be compared with the 6000 channels of the final H.E.S.S. array. A 3-year program, started in 2009, aims to build and test a demonstrator module of a generic CTA camera. We present here the NECTAr design of front-end electronics for the CTA, adapted to the trigger and data acquisition of a large IACTs array, with simple production and maintenance. Cost and camera performances are optimized by maximizing integration of the front-end electronics (amplifiers, fast analog samplers, ADCs) in an ASIC, achieving several GS/s and a few {mu}s readout dead-time. We present preliminary results and extrapolated performances from Monte Carlo simulations.

  18. DELPHI Barrel Ring Imaging Cherenkov Detector

    CERN Multimedia

    DELPHI was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. This is a piece of the Barrel Ring Imaging Cherenkov detector which was used to identify particles in DELPHI.It measured the Cherenkov light emitted when particles travelled faster than the speed of light through the material of the detector. The photo shows the complete Cherenkov detector.

  19. Prototyping the graphical user interface for the operator of the Cherenkov Telescope Array

    Science.gov (United States)

    Sadeh, I.; Oya, I.; Schwarz, J.; Pietriga, E.

    2016-07-01

    The Cherenkov Telescope Array (CTA) is a planned gamma-ray observatory. CTA will incorporate about 100 imaging atmospheric Cherenkov telescopes (IACTs) at a Southern site, and about 20 in the North. Previous IACT experiments have used up to five telescopes. Subsequently, the design of a graphical user interface (GUI) for the operator of CTA involves new challenges. We present a GUI prototype, the concept for which is being developed in collaboration with experts from the field of Human-Computer Interaction (HCI). The prototype is based on Web technology; it incorporates a Python web server, Web Sockets and graphics generated with the d3.js Javascript library.

  20. Prototyping the graphical user interface for the operator of the Cherenkov Telescope Array

    CERN Document Server

    Sadeh, Iftach; Schwarz, Joseph; Pietriga, Emmanuel

    2016-01-01

    The Cherenkov Telescope Array (CTA) is a planned gamma-ray observatory. CTA will incorporate about 100 imaging atmospheric Cherenkov telescopes (IACTs) at a Southern site, and about 20 in the North. Previous IACT experiments have used up to five telescopes. Subsequently, the design of a graphical user interface (GUI) for the operator of CTA involves new challenges. We present a GUI prototype, the concept for which is being developed in collaboration with experts from the field of Human-Computer Interaction. The prototype is based on Web technology; it incorporates a Python web server, Web Sockets and graphics generated with the d3.js Javascript library.

  1. Wide-angle cherenkov telescope prototype preliminary data

    Science.gov (United States)

    Timofeev, Lev; Anatoly, Ivanov

    2016-07-01

    This report presents an observation method of Cherenkov light from extensive air showers (EAS) generated by cosmic rays (CRs) above 10^16eV and preliminary observations. The interest in Cherenkov light differential detectors of EAS is caused by the possibility to measure the depth of cascade maximum, Xmax, and/or the shower age via angular and temporal distributions of the Cherenkov signal. In particular, it was shown using EAS model simulations that the pulse width measured at the periphery of the shower, r > 300 m, at sea level is pronouncedly connected with Xmax. Cherenkov detector is a wide-angle telescope working in coincidence with scintillation detectors, integral and differential Cherenkov detectors Yakutsk complex EAS.

  2. The first GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    De Franco, A.; Allan, D.; Armstrong, T.; Ashton, T.; Balzer, A.; Berge, D.; Bose, R.; Brown, A.M.; Buckley, J.; Chadwick, P.M.; Cooke, P.; Cotter, G.; Daniel, M.K.; Funk, S.; Greenshaw, T.; Hinton, J.; Kraus, M.; Lapington, J.; Molyneux, P.; Moore, P.; Nolan, S.; Okumura, A.; Ross, D.; Rulten, C.; Schmoll, J.; Schoorlemmer, H.; Stephan, M.; Sutcliffe, P.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Varner, G.; Watson, J.; Zink, A.

    2015-01-01

    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\\deg} angular size, resulting in a field of view of ~9{\\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.

  3. Status of the Cherenkov Telescope Array's Large Size Telescopes

    CERN Document Server

    Cortina, J

    2015-01-01

    The Cherenkov Telescope Array (CTA) observatory, will be deployed over two sites in the two hemispheres. Both sites will be equipped with four Large Size Telescopes (LSTs), which are crucial to achieve the science goals of CTA in the 20-200 GeV energy range. Each LST is equipped with a primary tessellated mirror dish of 23 m diameter, supported by a structure made mainly of carbon fibre reinforced plastic tubes and aluminum joints. This solution guarantees light weight (around 100 tons), essential for fast repositioning to any position in the sky in <20 seconds. The camera is composed of 1855 PMTs and embeds the control, readout and trigger electronics. The detailed design is now complete and production of the first LST, which will serve as a prototype for the remaining seven, is well underway. In 2016 the first LST will be installed at the Roque de los Muchachos Observatory on the Canary island of La Palma (Spain). In this talk we will outline the technical solutions adopted to fulfill the design requirem...

  4. A versatile digital camera trigger for telescopes in the Cherenkov Telescope Array

    CERN Document Server

    Schwanke, U; Sulanke, K -H; Vorobiov, S; Wischnewski, R

    2015-01-01

    This paper describes the concept of an FPGA-based digital camera trigger for imaging atmospheric Cherenkov telescopes, developed for the future Cherenkov Telescope Array (CTA). The proposed camera trigger is designed to select images initiated by the Cherenkov emission of extended air showers from very-high energy (VHE, E>20 GeV) photons and charged particles while suppressing signatures from background light. The trigger comprises three stages. A first stage employs programmable discriminators to digitize the signals arriving from the camera channels (pixels). At the second stage, a grid of low-cost FPGAs is used to process the digitized signals for camera regions with 37 pixels. At the third stage, trigger conditions found independently in any of the overlapping 37-pixel regions are combined into a global camera trigger by few central FPGAs. Trigger prototype boards based on Xilinx FPGAs have been designed, built and tested and were shown to function properly. Using these components a full camera trigger wi...

  5. A Pointing Solution for the Medium Size Telescopes for the Cherenkov Telescope Array

    CERN Document Server

    Tiziani, D; Oakes, L; Schwanke, U

    2016-01-01

    An important aspect of the calibration of the Cherenkov Telescope Array is the pointing, which enables an exact alignment of each telescope and therefore allows to transform a position in the sky to a point in the plane of the Cherenkov camera and vice versa. The favoured approach for the pointing calibration of the medium size telescopes (MST) is the installation of an optical CCD-camera in the dish of the telescope that captures the position of the Cherenkov camera and of the stars in the night sky simultaneously during data taking. The adaption of this approach is presented in this proceeding.

  6. Construction of a Medium-Sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array: Implementation of the Cherenkov-Camera Data Acquisition System

    CERN Document Server

    Santander, M; Humensky, B; Mukherjee, R

    2015-01-01

    A medium-sized Schwarzchild-Couder Telescope (SCT) is being developed as a possible extension for the Cherenkov Telescope Array (CTA). The Cherenkov camera of the telescope is designed to have 11328 silicon photomultiplier pixels capable of capturing high-resolution images of air showers in the atmosphere. The combination of the large number of pixels and the high trigger rate (> 5 kHz) expected for this telescope results in a multi-Gbps data throughput. This sets challenging requirements on the design and performance of a data acquisition system for processing and storing this data. A prototype SCT (pSCT) with a partial camera containing 1600 pixels, covering a field of view of 2.5 x 2.5 square degrees, is being assembled at the F.L. Whipple Observatory. We present the design and current status of the SCT data acquisition system.

  7. Upgrading and testing the 3D reconstruction of gamma-ray air showers as observed with an array of Imaging Atmospheric Cherenkov telescopes

    CERN Document Server

    Naumann-Godó, M; Degrange, B

    2009-01-01

    Stereoscopic arrays of Imaging Atmospheric Cherenkov Telescopes allow to reconstruct gamma-ray-induced showers in 3 dimensions, which offers several advantages: direct access to the shower parameters in space and straightforward calorimetric measurement of the incident energy. In addition, correlations between the different images of the same shower are taken into account. An analysis method based on a simple 3D-model of electromagnetic showers was recently implemented in the framework of the H.E.S.S. experiment. In the present article, the method is completed by an additional quality criterion, which reduces the background contamination by a factor of about 2 in the case of extended sources, while keeping gamma-ray efficiency at a high level. On the other hand, the dramatic flares of the blazar PKS 2155-304 in July 2006, which provided H.E.S.S. data with an almost pure gamma-ray sample, offered the unique opportunity of a precision test of the 3D-reconstruction method as well as of the H.E.S.S. simulations u...

  8. A New Light Boson from Cherenkov Telescopes Observations?

    CERN Document Server

    Roncadelli, Marco; Mansutti, Oriana

    2010-01-01

    Early indications by H.E.S.S. and the subsequent detection of blazar 3C279 by MAGIC show that the Universe is more transparent to very-high-energy gamma rays than previously thought. We demonstrate that this circumstance can be reconciled with standard blazar emission models provided that photon oscillations into a very light Axion-Like Particle occur in extragalactic magnetic fields. A quantitative estimate of this effect indeed explains the observed spectrum of 3C279. Our prediction can be tested by the satellite-borne Fermi/LAT detector as well as by the ground-based Imaging Atmospheric Cherenkov Telescopes H.E.S.S., MAGIC, CANGAROO III, VERITAS and by the Extensive Air Shower arrays ARGO-YBJ and MILAGRO.

  9. A facility to evaluate the focusing performance of mirrors for Cherenkov Telescopes

    CERN Document Server

    Canestrari, Rodolfo; Bonnoli, Giacomo; Farisato, Giancarlo; Lessio, Luigi; Rodeghiero, Gabriele; Spiga, Rossella; Toso, Giorgio; Pareschi, Giovanni

    2015-01-01

    With the advent of the imaging atmospheric Cherenkov technique in late 1980's, ground-based observations of Very High-Energy gamma rays came into reality. Since the first source detected at TeV energies in 1989 by Whipple, the number of high energy gamma-ray sources has rapidly grown up to more than 150 thanks to the second generation experiments like MAGIC, H.E.S.S. and VERITAS. The Cherenkov Telescope Array observatory is the next generation of Imaging Atmospheric Cherenkov Telescopes, with at least 10 times higher sensitivity than current instruments. Cherenkov Telescopes have to be equipped with optical dishes of large diameter -- in general based on segmented mirrors -- with typical angular resolution of a few arc-minutes. To evaluate the mirror's quality specific metrological systems are required that possibly take into account the environmental conditions in which typically Cherenkov telescopes operate (in open air without dome protection). For this purpose a new facility for the characterization of mi...

  10. Status of the technologies for the production of the Cherenkov Telescope Array (CTA) mirrors

    CERN Document Server

    Pareschi, G; Baba, H; Bähr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; de Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Förster, A; Garczarczyk, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; Mandat, D; Mariotti, M; Medina, C; Michałowski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pech, M; Peyaud, B; Pühlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; van Eldik, C; Vassiliev, V; Wiśniewski, Ł; Wörnlein, A; Yoshida, T

    2013-01-01

    The Cherenkov Telescope Array (CTA) is the next generation very high-energy gamma-ray observatory, with at least 10 times higher sensitivity than current instruments. CTA will comprise several tens of Imaging Atmospheric Cherenkov Telescopes (IACTs) operated in array-mode and divided into three size classes: large, medium and small telescopes. The total reflective surface could be up to 10,000 m2 requiring unprecedented technological efforts. The properties of the reflector directly influence the telescope performance and thus constitute a fundamental ingredient to improve and maintain the sensitivity. The R&D status of lightweight, reliable and cost-effective mirror facets for the CTA telescope reflectors for the different classes of telescopes is reviewed in this paper.

  11. The Energy Spectrum of TeV $\\Gamma$-Rays from the Crab Nebula as measured by the HEGRA system of imaging air Cherenkov telescopes

    CERN Document Server

    Aharonian, F A; Barrio, J A; Bernlöhr, K; Bojahr, H; Calle, I; Contreras, J L; Cortina, J; Denninghoff, S; Fonseca, V; González, J C; Götting, N; Heinzelmann, G; Hemberger, M; Hermann, G; Heusler, A; Hofmann, W; Horns, D; Ibarra, Alejandro; Kankanyan, R; Kestel, M; Kettler, J; Köhler, C; Kohnle, A; Konopelko, A K; Kornmayer, H; Kranich, D; Krawczynski, H; Lampeitl, H; Lindner, A; Lorenz, E; Lucarelli, F; Magnussen, N; Mang, O; Meyer, H; Mirzoian, R M; Moralejo, A; Padilla, L; Panter, M; Plaga, R; Plyasheshnikov, A V; Prahl, J; Pühlhofer, G; Rauterberg, G; Röhring, A; Sahakian, V V; Samorski, M; Schilling, M; Schmele, D; Schröder, F; Stamm, W; Tluczykont, M; Völk, H J; Wiebel-Sooth, B; Wiedner, C A; Willmer, M; Wittek, W

    2000-01-01

    The Crab Nebula has been observed by the HEGRA (High-Energy Gamma-Ray Astronomy) stereoscopic system of imaging air Cherenkov telescopes (IACTs) for a total of about 200 hrs during two observational campaigns: from September 1997 to March 1998 and from August 1998 to April 1999. The recent detailed studies of system performance give an energy threshold and an energy resolution for gamma-rays of 500 GeV and ~ 18, respectively. The Crab energy spectrum was measured with the HEGRA IACT system in a very broad energy range up to 20 TeV, using observations at zenith angles up to 65 degrees. The Crab data can be fitted in the energy range from 1 to 20 TeV by a simple power-law, which yields dJg/dE = (2.79+/-0.02 +/- 0.5) 10^{-7} E^{-2.59 +/- 0.03 +/- 0.05}, ph m^{-2} s^{-1} TeV^{-1} The Crab Nebula energy spectrum, as measured with the HEGRA IACT system, agrees within 15 0n the absolute scale and within 0.1 units in the power law index with the latest measurements by the Whipple, CANGAROO and CAT groups, consistent ...

  12. On-site mirror facet condensation measurements for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Dipold, J., E-mail: jessica.dipold@gmail.com [Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP (Brazil); Medina, M.C. [Instituto Argentino de Radioastronomía, CCT La Plata-CONICET (Argentina); García, B. [Instituto en Tecnologías de Detección y Astropartículas, CNEA, CONICET, UNSAM (Argentina); Universidad Tecnológica Nacional, FR-Mendoza (Argentina); Rasztocky, E. [Instituto Argentino de Radioastronomía, CCT La Plata-CONICET (Argentina); Mancilla, A.; Maya, J. [Instituto en Tecnologías de Detección y Astropartículas, CNEA, CONICET, UNSAM (Argentina); Larrarte, J.J. [Instituto Argentino de Radioastronomía, CCT La Plata-CONICET (Argentina); Souza, V. de [Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP (Brazil)

    2016-09-11

    The Imaging Atmospheric Cherenkov Technique (IACT) has provided very important discoveries in Very High Energy (VHE) γ-ray astronomy for the last two decades, being exploited mainly by experiments such as H.E.S.S., MAGIC and VERITAS. The same technique will be used by the next generation of γ-ray telescopes, Cherenkov Telescope Array – CTA, which is conceived to be an Observatory composed by two arrays strategically placed in both hemispheres, one in the Northern and one in the Southern. Each site will consist of several tens of Cherenkov telescopes of different sizes and will be equipped with about 10000 m{sup 2} of reflective surface. Because of its large size, the reflector of a Cherenkov telescope is composed of many individual mirror facets. Cherenkov telescopes operate without any protective system from weather conditions therefore it is important to understand how the reflective surfaces behave under different environmental conditions. This paper describes a study of the behavior of the mirrors in the presence of water vapor condensation. The operational time of a telescope is reduced by the presence of condensation on the mirror surface, therefore, to control and to monitor the formation of condensation is an important issue for IACT observatories. We developed a method based on pictures of the mirrors to identify the areas with water vapor condensation. The method is presented here and we use it to estimate the time and area two mirrors had condensation when exposed to the environmental conditions in the Argentinean site. The study presented here shows important guidelines in the selection procedure of mirror technologies and shows an innovative monitoring tool to be used in future Cherenkov telescopes.

  13. On-site mirror facet condensation measurements for the Cherenkov Telescope Array

    Science.gov (United States)

    Dipold, J.; Medina, M. C.; García, B.; Rasztocky, E.; Mancilla, A.; Maya, J.; Larrarte, J. J.; de Souza, V.

    2016-09-01

    The Imaging Atmospheric Cherenkov Technique (IACT) has provided very important discoveries in Very High Energy (VHE) γ-ray astronomy for the last two decades, being exploited mainly by experiments such as H.E.S.S., MAGIC and VERITAS. The same technique will be used by the next generation of γ-ray telescopes, Cherenkov Telescope Array - CTA, which is conceived to be an Observatory composed by two arrays strategically placed in both hemispheres, one in the Northern and one in the Southern. Each site will consist of several tens of Cherenkov telescopes of different sizes and will be equipped with about 10000 m2 of reflective surface. Because of its large size, the reflector of a Cherenkov telescope is composed of many individual mirror facets. Cherenkov telescopes operate without any protective system from weather conditions therefore it is important to understand how the reflective surfaces behave under different environmental conditions. This paper describes a study of the behavior of the mirrors in the presence of water vapor condensation. The operational time of a telescope is reduced by the presence of condensation on the mirror surface, therefore, to control and to monitor the formation of condensation is an important issue for IACT observatories. We developed a method based on pictures of the mirrors to identify the areas with water vapor condensation. The method is presented here and we use it to estimate the time and area two mirrors had condensation when exposed to the environmental conditions in the Argentinean site. The study presented here shows important guidelines in the selection procedure of mirror technologies and shows an innovative monitoring tool to be used in future Cherenkov telescopes.

  14. A Smart Pixel Camera for future Cherenkov Telescopes

    CERN Document Server

    Hermann, G; Glück, B; Hauser, D; Hermann, German; Carrigan, Svenja; Gl\\"uck, Bernhard; Hauser, Dominik

    2005-01-01

    The Smart Pixel Camera is a new camera for imaging atmospheric Cherenkov telescopes, suited for a next generation of large multi-telescope ground based gamma-ray observatories. The design of the camera foresees all electronics needed to process the images to be located inside the camera body at the focal plane. The camera has a modular design and is scalable in the number of pixels. The camera electronics provides the performance needed for the next generation instruments, like short signal integration time, topological trigger and short trigger gate, and at the same time the design is optimized to minimize the cost per channel. In addition new features are implemented, like the measurement of the arrival time of light pulses in the pixels on the few hundred psec timescale. The buffered readout system of the camera allows to take images at sustained rates of O(10 kHz) with a dead-time of only about 0.8 % per kHz.

  15. Performance of Silicon Photomultipliers for the Dual-Mirror Medium-Sized Telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Biteau, Jonathan; Dang, Dennis; Doyle, Kevin; Johnson, Caitlin A.; Williams, David A.

    2015-01-01

    Gamma-ray observations in the very-high-energy domain (E > 30 GeV) can exploit the imaging of few-nanosecond Cherenkov flashes from atmospheric particle showers. Photomultipliers have been used as the primary photosensors to detect gamma-ray induced Cherenkov light for the past 25 years, but they are increasingly challenged by the swift progress of silicon photomultipliers (SiPMs). We are working to identify the optimal photosensors for medium-sized Schwarzschild-Couder telescopes (SCT), which are proposed to contribute a significant fraction of the sensitivity of the Cherenkov Telescope Array in its core energy range. We present the capabilities of the latest SiPMs from the Hamamatsu, SensL, and Excelitas companies that we have characterized in our laboratory, and compare them to the SiPMs equipping the prototype SCT camera that is under construction.

  16. SST-GATE: A dual mirror telescope for the Cherenkov Telescope Array

    CERN Document Server

    Zech, A; Blake, S; Boisson, C; Costille, C; De-Frondat, F; Dournaux, J -L; Dumas, D; Fasola, G; Greenshaw, T; Hervet, O; Huet, J -M; Laporte, P; Rulten, C; Savoie, D; Sayede, F; Schmoll, J

    2013-01-01

    The Cherenkov Telescope Array (CTA) will be the world's first open observatory for very high energy gamma-rays. Around a hundred telescopes of different sizes will be used to detect the Cherenkov light that results from gamma-ray induced air showers in the atmosphere. Amongst them, a large number of Small Size Telescopes (SST), with a diameter of about 4 m, will assure an unprecedented coverage of the high energy end of the electromagnetic spectrum (above ~1TeV to beyond 100 TeV) and will open up a new window on the non-thermal sky. Several concepts for the SST design are currently being investigated with the aim of combining a large field of view (~9 degrees) with a good resolution of the shower images, as well as minimizing costs. These include a Davies-Cotton configuration with a Geiger-mode avalanche photodiode (GAPD) based camera, as pioneered by FACT, and a novel and as yet untested design based on the Schwarzschild-Couder configuration, which uses a secondary mirror to reduce the plate-scale and to all...

  17. Silicon Photomultiplier Research and Development Studies for the Large Size Telescope of the Cherenkov Telescope Array

    CERN Document Server

    Rando, Riccardo; Dazzi, Francesco; De Angelis, Alessandro; Dettlaff, Antonios; Dorner, Daniela; Fink, David; Fouque, Nadia; Grundner, Felix; Haberer, Werner; Hahn, Alexander; Hermel, Richard; Korpar, Samo; Mezek, Gašper Kukec; Maier, Ronald; Manea, Christian; Mariotti, Mosè; Mazin, Daniel; Mehrez, Fatima; Mirzoyan, Razmik; Podkladkin, Sergey; Reichardt, Ignasi; Rhode, Wolfgang; Rosier, Sylvie; Schultz, Cornelia; Stella, Carlo; Teshima, Masahiro; Wetteskind, Holger; Zavrtanik, Marko

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the the next generation facility of imaging atmospheric Cherenkov telescopes; two sites will cover both hemispheres. CTA will reach unprecedented sensitivity, energy and angular resolution in very-high-energy gamma-ray astronomy. Each CTA array will include four Large Size Telescopes (LSTs), designed to cover the low-energy range of the CTA sensitivity ($\\sim$20 GeV to 200 GeV). In the baseline LST design, the focal-plane camera will be instrumented with 265 photodetector clusters; each will include seven photomultiplier tubes (PMTs), with an entrance window of 1.5 inches in diameter. The PMT design is based on mature and reliable technology. Recently, silicon photomultipliers (SiPMs) are emerging as a competitor. Currently, SiPMs have advantages (e.g. lower operating voltage and tolerance to high illumination levels) and disadvantages (e.g. higher capacitance and cross talk rates), but this technology is still young and rapidly evolving. SiPM technology has a strong pot...

  18. TARGET: A Digitizing And Trigger ASIC For The Cherenkov Telescope Array

    CERN Document Server

    Funk, S; Katagiri, H; Kraus, M; Okumura, A; Schoorlemmer, H; Shigenaka, A; Tajima, H; Tibaldo, L; Varner, G; Zink, A; Zorn, J

    2016-01-01

    The future ground-based gamma-ray observatory Cherenkov Telescope Array (CTA) will feature multiple types of imaging atmospheric Cherenkov telescopes, each with thousands of pixels. To be affordable, camera concepts for these telescopes have to feature low cost per channel and at the same time meet the requirements for CTA in order to achieve the desired scientific goals. We present the concept of the TeV Array Readout Electronics with GSa/s sampling and Event Trigger (TARGET) Application Specific Circuit (ASIC), envisaged to be used in the cameras of various CTA telescopes, e.g. the Gamma-ray Cherenkov Telescope (GCT), a proposed 2-Mirror Small-Sized Telescope, and the Schwarzschild-Couder Telescope (SCT), a proposed Medium-Sized Telescope. In the latest version of this readout concept the sampling and trigger parts are split into dedicated ASICs, TARGET C and T5TEA, both providing 16 parallel input channels. TARGET C features a tunable sampling rate (usually 1 GSa/s), a 16k sample deep buffer for each chann...

  19. Information and Communications Technology (ICT) Infrastructure for the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gianotti, F.; Tacchini, A.; Leto, G.; Martinetti, E.; Bruno, P.; Bellassai, G.; Conforti, V.; Gallozzi, S.; Mastropietro, M.; Tanci, C.; Malaguti, G.; Trifoglio, M.

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground-based observatories for very high energy gamma-ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The Italian National Institute for Astrophysics (INAF) is developing the Cherenkov Small Size Telescope ASTRI SST- 2M end-to-end prototype telescope within the framework of the International Cherenkov Telescope Array (CTA) project. The ASTRI prototype has been installed at the INAF observing station located in Serra La Nave on Mt. Etna, Italy. Furthermore a mini-array, composed of nine of ASTRI telescopes, has been proposed to be installed at the Southern CTA site. Among the several different infrastructures belonging the ASTRI project, the Information and Communication Technology (ICT) equipment is dedicated to operations of computing and data storage, as well as the control of the entire telescope, and it is designed to achieve the maximum efficiency for all performance requirements. Thus a complete and stand-alone computer centre has been designed and implemented. The goal is to obtain optimal ICT equipment, with an adequate level of redundancy, that might be scaled up for the ASTRI mini-array, taking into account the necessary control, monitor and alarm system requirements. In this contribution we present the ICT equipment currently installed at the Serra La Nave observing station where the ASTRI SST-2M prototype will be operated. The computer centre and the control room are described with particular emphasis on the Local Area Network scheme, the computing and data storage system, and the

  20. Pointing Calibration for the Cherenkov Telescope Array Medium Size Telescope Prototype

    CERN Document Server

    Oakes, Louise; Baehr, Juergen; Gruenewald, Sandra; Raeck, Tobias; Schlenstedt, Stefan; Schubert, Anja; Schwanke, Ullrich

    2013-01-01

    Pointing calibration is an offline correction applied in order to obtain the true pointing direction of a telescope. The Cherenkov Telescope Array (CTA) aims to have the precision to determine the position of point-like as well as slightly extended sources, with the goal of systematic errors less than 7 arc seconds in space angle. This poster describes the pointing calibration concept being developed for the CTA Medium Size Telescope (MST) prototype at Berlin-Adlershof, showing test results and preliminary measurements. The MST pointing calibration method uses two CCD cameras, mounted on the telescope dish, to determine the true pointing of the telescope. The "Lid CCD" is aligned to the optical axis of the telescope, calibrated with LEDs on the dummy gamma-camera lid; the "Sky CCD" is pre-aligned to the Lid CCD and the transformation between the Sky and Lid CCD camera fields of view is precisely modelled with images from special pointing runs which are also used to determine the pointing model. During source ...

  1. On the Use of Cherenkov Telescopes for Outer Solar System Body Occultations

    CERN Document Server

    Lacki, Brian C

    2014-01-01

    Imaging Atmosphere Cherenkov Telescopes (IACT) are arrays of very large optical telescopes that are well-suited for rapid photometry of bright sources. I investigate their potential in observing stellar occultations by small objects in the outer Solar System, Transjovian Objects (TJOs). These occultations cast diffraction patterns on the Earth. Current IACT arrays are capable of detecting objects smaller than 100 meters in radius in the Kuiper Belt and 1 km radius out to 5000 AU. The future Cherenkov Telescope Array (CTA) will have even greater capabilities. Because the arrays include several telescopes, they can potentially measure the speeds of TJOs without degeneracies, and the sizes of the TJOs and background stars. I estimate the achievable precision using a Fisher matrix analysis. With CTA, the precisions of these parameter estimations will be as good as a few percent. I consider how often IACTs can observe occultations by members of different TJO populations, including Centaurs, Kuiper Belt Objects (KB...

  2. Design and Operation of FACT -- The First G-APD Cherenkov Telescope

    CERN Document Server

    Anderhub, H; Biland, A; Boccone, V; Braun, I; Bretz, T; Buß, J; Cadoux, F; Commichau, V; Djambazov, L; Dorner, D; Einecke, S; Eisenacher, D; Gendotti, A; Grimm, O; von Gunten, H; Haller, C; Hildebrand, D; Horisberger, U; Huber, B; Kim, K -S; Knoetig, M L; K"ohne, J H; Kr"ahenb"uhl, T; Krumm, B; Lee, M; Lorenz, E; Lustermann, W; Lyard, E; Mannheim, K; Meharga, M; Meier, K; Montaruli, T; Neise, D; Nessi-Tedaldi, F; Overkemping, A -K; Paravac, A; Pauss, F; Renker, D; Rhode, W; Ribordy, M; R"oser, U; Stucki, J -P; Schneider, J; Steinbring, T; Temme, F; Thaele, J; Tobler, S; Viertel, G; Vogler, P; Walter, R; Warda, K; Weitzel, Q; Z"anglein, M

    2013-01-01

    The First G-APD Cherenkov Telescope (FACT) is designed to detect cosmic gamma-rays with energies from several hundred GeV up to about 10 TeV using the Imaging Atmospheric Cherenkov Technique. In contrast to former or existing telescopes, the camera of the FACT telescope is comprised of solid-state Geiger-mode Avalanche Photodiodes (G-APD) instead of photomultiplier tubes for photo detection. It is the first full-scale device of its kind employing this new technology. The telescope is operated at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands, Spain) since fall 2011. This paper describes in detail the design, construction and operation of the system, including hardware and software aspects. Technical experiences gained after one year of operation are discussed and conclusions with regard to future projects are drawn.

  3. Design and operation of FACT - the first G-APD Cherenkov telescope

    Science.gov (United States)

    Anderhub, H.; Backes, M.; Biland, A.; Boccone, V.; Braun, I.; Bretz, T.; Buß, J.; Cadoux, F.; Commichau, V.; Djambazov, L.; Dorner, D.; Einecke, S.; Eisenacher, D.; Gendotti, A.; Grimm, O.; von Gunten, H.; Haller, C.; Hildebrand, D.; Horisberger, U.; Huber, B.; Kim, K.-S.; Knoetig, M. L.; Köhne, J.-H.; Krähenbühl, T.; Krumm, B.; Lee, M.; Lorenz, E.; Lustermann, W.; Lyard, E.; Mannheim, K.; Meharga, M.; Meier, K.; Montaruli, T.; Neise, D.; Nessi-Tedaldi, F.; Overkemping, A.-K.; Paravac, A.; Pauss, F.; Renker, D.; Rhode, W.; Ribordy, M.; Röser, U.; Stucki, J.-P.; Schneider, J.; Steinbring, T.; Temme, F.; Thaele, J.; Tobler, S.; Viertel, G.; Vogler, P.; Walter, R.; Warda, K.; Weitzel, Q.; Zänglein, M.

    2013-06-01

    The First G-APD Cherenkov Telescope (FACT) is designed to detect cosmic gamma-rays with energies from several hundred GeV up to about 10 TeV using the Imaging Atmospheric Cherenkov Technique. In contrast to former or existing telescopes, the camera of the FACT telescope is comprised of solid-state Geiger-mode Avalanche Photodiodes (G-APD) instead of photomultiplier tubes for photo detection. It is the first full-scale device of its kind employing this new technology. The telescope is operated at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands, Spain) since fall 2011. This paper describes in detail the design, construction and operation of the system, including hardware and software aspects. Technical experiences gained after one year of operation are discussed and conclusions with regard to future projects are drawn.

  4. Active optics system of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gardiol, Daniele; Capobianco, Gerardo; Fantinel, Daniela; Giro, Enrico; Lessio, Luigi; Loreggia, Davide; Rodeghiero, Gabriele; Russo, Federico; Volpicelli, Antonio C.

    2014-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) SST-2M is an end-to-end prototype of Small Size class of Telescope for the Cherenkov Telescope Array. It will apply a dual mirror configuration to Imaging Atmospheric Cherenkov Telescopes. The 18 segments composing the primary mirror (diameter 4.3 m) are equipped with an active optics system enabling optical re-alignment during telescope slew. The secondary mirror (diameter 1.8 m) can be moved along three degrees of freedom to perform focus and tilt corrections. We describe the kinematic model used to predict the system performance as well as the hardware and software design solution that will be implemented for optics control.

  5. The ARCADE Raman Lidar System for the Cherenkov Telescope Array

    CERN Document Server

    Valore, Laura; Doro, Michele; Iarlori, Marco; Rizi, Vincenzo; Tonachini, Aurelio Siro; Vallania, Piero

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation of ground-based very high energy gamma-ray instruments; the facility will be organized in two arrays, one for each hemisphere. The atmospheric calibration of the CTA telescopes is a critical task. The atmosphere affects the measured Cherenkov yield in several ways: the air-shower development itself, the variation of the Cherenkov angle with altitude, the loss of photons due to scattering and absorption of Cherenkov light out of the camera field-of-view and the scattering of photons into the camera. In this scenario, aerosols are the most variable atmospheric component in time and space and therefore need a continuous monitoring. Lidars are among the most used instruments in atmospheric physics to measure the aerosol attenuation profiles of light. The ARCADE Lidar system is a very compact and portable Raman Lidar system that has been built within the FIRB 2010 grant and is currently taking data in Lamar, Colorado. The ARCADE Lidar is proposed to operat...

  6. Analogue Sum ASIC for L1 Trigger Decision in Cherenkov Telescope Cameras

    CERN Document Server

    Barrio, Joan Abel; Boix, Joan; Delagnes, Eric; Delgado, Carlos; Coromina, Lluis Freixas; Gascon, David; Guilloux, Fabrice; Coto, Ruben Lopez; Martinez, Gustavo; Sanuy, Andreu; Tejedor, Luis Angel

    2014-01-01

    The Cherenkov Telescope Array (CTA) project aims to build the largest ground-based gamma-ray observatory based on an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The CTA will implement a multi-level trigger system to distinguish between gamma ray-like induced showers and background images induced by night sky background (NSB) light. The trigger system is based on coincident detections among pixels (level 0 trigger), clusters of pixels (level 1) or telescopes. In this article, the first version of the application specific integrated circuit (ASIC) for Level 1 trigger system is presented, capable of working with different Level 0 strategies and different trigger region sizes. In addition, it complies with all the requirements specified by the CTA project, specially the most critical ones as regards noise, bandwidth, dynamic range and power consumption. All these features make the presented system very suitable for use in the CTA cameras and improve the features of discrete components prototypes of...

  7. The next generation Cherenkov Telescope Array observatory: CTA

    CERN Document Server

    Vercellone, Stefano

    2014-01-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the VHE gamma-ray astrophysics in the energy range 30 GeV-100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100m. A larger number (about 25 units) of 12m Medium Size Telescopes (MSTs, separated by about 150m), will cover a larger area. The southern site will also include up to 24 Schwarzschild-Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To a...

  8. Control Software for the VERITAS Cherenkov Telescope System

    CERN Document Server

    Krawczynski, H; Sembroski, G; Gibbs, K

    2003-01-01

    The VERITAS collaboration is developing a system of initially 4 and eventually 7 Cherenkov Telescopes of the 12 m diameter class for high sensitivity gamma-ray astronomy in the >50 GeV energy range. In this contribution we describe the software that controls and monitors the various VERITAS sub-systems. The software uses an object-oriented approach to cope with the complexities that arise from using sub-groups of the 7 VERITAS telescopes to observe several sources at the same time. Inter-process communication is based on the CORBA Object Request Broker protocol and watch-dog processes monitor the sub-system performance.

  9. Redshift measurement of Fermi blazars for the Cherenkov telescope array

    Science.gov (United States)

    Pita, S.; Goldoni, P.; Boisson, C.; Cotter, G.; Lefaucheur, J.; Lenain, J.-P.; Lindfors, E.; Williams, D. A.

    2017-01-01

    Blazars are active galactic nuclei, and the most numerous High Energy (HE) and Very High Energy (VHE) γ-ray emitters. Their optical emission is often dominated by non-thermal, and, in the case of BL Lacs, featureless continuum radiation. This makes the determination of their redshift extremely difficult. Indeed, as of today only about 50% of γ-ray blazars have a measured spectroscopic redshift. The knowledge of redshift is fundamental because it allows the precise modeling of the VHE emission and also of its interaction with the extragalactic background light (EBL). The beginning of the Cherenkov Telescope Array (CTA) operations in the near future will allow the detection of several hundreds of new blazars. Using the Fermi catalogue of sources above 50 GeV (2FHL), we performed simulations which indicate that a significant fraction of the 2FHL blazars detectable by CTA will not have a measured redshift. As a matter of fact, the organization of observing campaigns to measure the redshift of these blazars has been recognized as a necessary support for the AGN Key Science Project of CTA. We are planning such an observing campaign. In order to optimize our chances of success, we will perform preliminary deep imaging observations aimed at detecting or setting upper limits to the host galaxy. We will then take spectra of the candidates with the brightest host galaxies. Taking advantage of the recent success of an X-shooter GTO observing campaign, these observations will be different with respect to previous ones due to the use of higher resolution spectrographs and of 8 meter class telescopes. We are starting to submit proposals for these observations. In this paper we briefly describe how candidates are selected and the corresponding observation program.

  10. The Photodetector Plane of the 4m Davies Cotton Small Size Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Boccone, V; Basili, A; Christov, A; della Volpe, M; Montaruli, T

    2013-01-01

    Photomultipliers (PMTs) are currently adopted for the photodetector plane of Imaging Atmospheric Cherenkov Telescopes (IACTs). Even though PMT quantum efficiency has improved impressively in the recent years, one of the main limitation for their application in the gamma-astronomy field - the impossibility to operate with moon light - still remains. As a matter of fact, the light excess would lead to significant and faster camera ageing. Solid state detectors, in particular Geiger-mode avalanche photo-diodes (G-APDs) represent a valuable alternative solution to overcome this limitation as demonstrated in the field by the FACT experiment (The First G- APD Cherenkov Telescope). They can be regarded as a more promising long term approach, which can be easily adopted for the new generation of cameras and for the Cherenkov Telescope Array (CTA). We describe here the Photo-Detector Plane (PDP) of the camera for the 4 m Davies Cotton CTA Small Size Telescopes, for which large area G-APD coupled to non-imaging light c...

  11. Status of the Cherenkov Telescope Array Project

    CERN Document Server

    de Almeida, Ulisses Barres

    2016-01-01

    Gamma-ray astronomy holds a great potential for Astrophysics, Particle Physics and Cosmology. The CTA is an inter- national initiative to build the next generation of ground-based gamma-ray observatories, which will represent a factor of 5-10 times improvement in the sensitivity of observations in the range 100 GeV - 10 TeV, as well as an extension of the observational capabilities down to energies below 100 GeV and beyond 100 TeV. The array will consist of two telescope networks (one in the Northern Hemisphere and another in the South) so to achieve a full-sky coverage, and will be com- posed by a hybrid system of 4 different telescope types. It will operate as an observatory, granting open access to the community through calls for submission of proposals competing for observation time. The CTA will give us access to the non-thermal and high-energy universe at an unprecedented level, and will be one of the main instruments for high-energy astrophysics and astroparticle physics of the next 30 years. CTA has n...

  12. The Cherenkov Telescope Array: Exploring the Very-high-energy Sky from ESO's Paranal Site

    Science.gov (United States)

    Hofmann, W.

    2017-06-01

    The Cherenkov Telescope Array (CTA) is a next-generation observatory for ground-based very-high-energy gamma-ray astronomy, using the imaging atmospheric Cherenkov technique to detect and reconstruct gamma-ray induced air showers. The CTA project is planning to deploy 19 telescopes on its northern La Palma site, and 99 telescopes on its southern site at Paranal, covering the 20 GeV to 300 TeV energy domain and offering vastly improved performance compared to currently operating Cherenkov telescopes. The combination of three different telescope sizes (23-, 12- and 4-metre) allows cost-effective coverage of the wide energy range. CTA will be operated as a user facility, dividing observation time between a guest observer programme and large Key Science Projects (KSPs), and the data will be made public after a one-year proprietary period. The history of the project, the implementation of the arrays, and some of the major science goals and KSPs, are briefly summarised.

  13. Status of the Cherenkov telescope array project

    Science.gov (United States)

    Barres de Almeida, Ulisses

    2015-12-01

    Gamma-ray astronomy holds a great potential for Astrophysics, Particle Physics and Cosmology. The CTA is an international initiative to build the next generation of ground-based gamma-ray observatories, which will represent a factor of 5-10× improvement in the sensitivity of observations in the range 100 GeV - 10 TeV, as well as an extension of the observational capabilities down to energies below 100 GeV and beyond 100 TeV. The array will consist of two telescope networks (one in the Northern Hemisphere and another in the South) so to achieve a full-sky coverage, and will be composed by a hybrid system of 4 different telescope types. It will operate as an observatory, granting open access to the community through calls for submission of proposals competing for observation time. The CTA will give us access to the non-thermal and high-energy universe at an unprecedented level, and will be one of the main instruments for high-energy astrophysics and astroparticle physics of the next 30 years. CTA has now entered its prototyping phase with the first, stand-alone instruments being built. Brazil is an active member of the CTA consortium, and the project is represented in Latin America also by Argentina, Mexico and Chile. In the next few months the consortium will define the site for installation of CTA South, which might come to be hosted in the Chilean Andes, with important impact for the high-energy community in Latin America. In this talk we will present the basic concepts of the CTA and the detailed project of the observatory. Emphasis will be put on its scientific potential and on the Latin-American involvement in the preparation and construction of the observatory, whose first seed, the ASTRI mini-array, is currently being constructed in Sicily, in a cooperation between Italy, Brazil and South Africa. ASTRI should be installed on the final CTA site in 2016, whereas the full CTA array is expected to be operational by the end of the decade.

  14. Status of the Schwarzchild-Couder Medium-Sized Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Benbow, W

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next-generation very-high-energy (VHE; E > 100 GeV) gamma-ray observatory. It is anticipated that CTA will improve upon the sensitivity of the current generation of VHE experiments, such as VERITAS, HESS and MAGIC, by an order of magnitude. CTA is planned to consist of two graded arrays of Cherenkov telescopes with three primary-mirror sizes. A proof-of-concept telescope, based on the dual-mirror Schwarzchild-Couder design, is being constructed on the VERITAS site at the F.L. Whipple Observatory in southern Arizona, USA, and is a candidate design for the medium-sized telescopes. The construction of the telescope will be completed in early 2017, and the status of this project is presented here.

  15. Performance of the SST-1M telescope for the Cherenkov Telescope Array observatory

    CERN Document Server

    Moderski, R; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Chruślińska, M.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Pueschel, E.; Rajda, P.; Rameez, M.; Rozwadowski, P.; Schioppa, E. jr; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Pujadas, I. Troyano; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.

    2015-01-01

    The single mirror small-size telescope (SST-1M) is one of the telescope projects being proposed for the Cherenkov Telescope Array observatory by a sub-consortium of Polish and Swiss institutions. The SST-1M prototype structure is currently being constructed at the Institute of Nuclear Physics in Cracow, Poland, while the camera will be assembled at the University of Geneva, Switzerland. This prototype enables measurements of parameters having a decisive influence on the telescope performance. We present results of numerical simulations of the SST-1M performance based on such measurements. The telescope effective area, the expected trigger rates and the optical point spread function are calculated.

  16. NICHE: The Non-Imaging CHErenkov Array

    CERN Document Server

    Bergman, Douglas

    2012-01-01

    The accurate measurement of the Cosmic Ray (CR) nuclear composition around and above the Knee (~ 10^15.5 eV) has been difficult due to uncertainties inherent to the measurement techniques and/or dependence on hadronic Monte Carlo simulation models required to interpret the data. Measurement of the Cherenkov air shower signal, calibrated with air fluorescence measurements, offers a methodology to provide an accurate measurement of the nuclear composition evolution over a large energy range. NICHE will use an array of widely-spaced, non-imaging Cherenkov counters to measure the amplitude and time-spread of the air shower Cherenkov signal to extract CR nuclear composition measurements and to cross-calibrate the Cherenkov energy and composition measurements with TA/TALE fluorescence and surface detector measurements.

  17. The SST-1M camera for the Cherenkov Telescope Array

    CERN Document Server

    Schioppa, E J; Christov, A.; della Volpe, D.; Favre, Y.; Heller, M.; Montaruli, T.; Porcelli, A.; Rameez, M.; Pujadas, I. Troyano; Bilnik, W.; Blocki, J.; Bogacz, L.; Bulik, T.; Curylo, M.; Dyrda, M.; Frankowski, A.; Grudniki, L.; Grudzinska, M.; Idzkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszalek, A.; Michaowski, J.; Moderski, R.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Pasko, P.; Pech, M.; Prandini, E.; Rajda, P.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowinski, M.; Stawarz, L.; Stodulska, M.; Stodulski, M.; Toscano, S.; Walter, R.; Wiecek, M.; Zagdanski, A.; Zietara, K.; Zychowski, P.

    2015-01-01

    The prototype camera of the single-mirror Small Size Telescopes (SST-1M) proposed for the Cherenkov Telescope Array (CTA) project has been designed to be very compact and to deliver high performance over thirty years of operation. The camera is composed of an hexagonal photo-detection plane made of custom designed large area hexagonal silicon photomultipliers and a high throughput, highly configurable, fully digital readout and trigger system (DigiCam). The camera will be installed on the telescope structure at the H. Niewodnicza{\\'n}ski institute of Nuclear Physics in Krakow in fall 2015. In this contribution, we review the steps that led to the development of the innovative photo-detection plane and readout electronics, and we describe the test and calibration strategy adopted.

  18. PATRICIA, a powerful Cherenkov telescope camera concept based on Geiger-mode-APD light sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Eckart [MPI fuer Physik, Muenchen (Germany); Wagner, Robert [MPI fuer Physik, Muenchen (Germany); Excellence Cluster Universe, Garching (Germany)

    2012-07-01

    We present a concept for a new powerful camera for the 23-m diameter large-size Cherenkov telescopes for the CTA observatory. It is equally suited for any other imaging Cherenkov telescope. PATRICIA (Powerful Atmospheric Telescope Camera for RecordIng Cherenkov LIght with g-Apds) is based on Geiger-mode avalanche photodiodes (G-APD) as light sensors. The camera is split in a sensor plane and both the readout and trigger electronics of the telescope array located in a central container. Analog signals will be transmitted by optical fibers to a readout container. The thin pizzabox-like camera with a 4.5-degree field of view and 0.1-degree pixels will weigh less than a ton and has a considerably lower wind resistance compared to a conventional PMT camera. The camera requires below 1 kW power and simple cooling by Peltier elements is possible. The key light sensor element will be a multi-element G-APD structure of hexagonal shape and 5 sqcm active area, replacing nearly 1:1 the current PMT design. The sensitivity will be at least 1.5 times superior compared to currently proposed PMTs. Importantly, the camera can work at full moonshine, allowing a gain of at least 30-40% in observation time. About 1-2 years of development time is needed.

  19. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: opto-mechanical performance

    Science.gov (United States)

    Canestrari, Rodolfo; Giro, Enrico; Sironi, Giorgia; Antolini, Elisa; Fugazza, Dino; Scuderi, Salvatore; Tosti, Gino; Tanci, Claudio; Russo, Federico; Gardiol, Daniele; Fermino, Carlos Eduardo; Stringhetti, Luca; Pareschi, Giovanni; Marchiori, G.; Busatta, A.; Marcuzzi, E.; Folla, I.

    2016-08-01

    ASTRI SST-2M is an end-to-end telescope prototype developed by the Italian National Institute of Astrophysics (INAF) in the framework of the Cherenkov Telescope Array (CTA). The CTA observatory, with a combination of large-, medium-, and small-sized telescopes (LST, MST and SST, respectively), will represent the next generation of imaging atmospheric Cherenkov telescopes. It will explore the very high-energy domain from a few tens of GeV up to few hundreds of TeV. The ASTRI SST-2M telescope structure and mirrors have been installed at the INAF observing station at Serra La Nave, on Mt. Etna (Sicily, Italy) in September 2014. Its performance verification phase began in autumn 2015. Part of the scheduled activities foresees the study and characterization of the optical and opto-mechanical performance of the telescope prototype. In this contribution we report the results achieved in terms of kinematic model analysis, mirrors reflectivity evolution, telescopes positioning, flexures and pointing model and the thermal behavior.

  20. FACT - The first G-APD Cherenkov telescope (first results)

    Science.gov (United States)

    Bretz, T.; Dorner, D.; Backes, M.; Biland, A.; Buß, J.; Commichau, V.; Djambazov, L.; Eisenacher, D.; Grimm, O.; von Gunten, H.; Hildebrand, D.; Krähenbühl, T.; Lustermann, W.; Lyard, E.; Mannheim, K.; Neise, D.; Overkemping, A.-K.; Paravac, A.; Pauss, F.; Rhode, W.; Ribordy, M.; Röser, U.; Stucki, J.-P.; Temme, F.; Thaele, J.; Tobler, S.; Vogler, P.; Walter, R.; Weitzel, Q.; Zänglein, M.

    2012-12-01

    In October 2011, the first air-Cherenkov telescope utilizing Geiger-mode avalanche photodiodes commenced operations. The silicon-based devices display several advantages compared to classical photomultiplier tubes allowing for a more compact camera design of higher reliability, lower power consumption and bias voltage, and better prospects for improving the photon detection efficiency. Here, the first physics results are presented from a few months of data taking. Although still preliminary, the results already show a superb fidelity of the data, demonstrating the potential of avalanche photodiodes for ground-based gamma ray astronomy. The stability and high sensitivity are ideal for remote monitoring observations of variable gamma-ray sources.

  1. CELESTE an atmospheric Cherenkov telescope for high energy gamma astrophysics

    CERN Document Server

    Paré, E; Bazer-Bachi, R; Bergeret, H; Berny, F; Briand, N; Bruel, P; Cerutti, M; Collon, J; Cordier, A; Cornebise, P; Debiais, G; Dezalay, J P; Dumora, D; Durand, E; Eschstruth, P T; Espigat, P; Fabre, B; Fleury, P; Gilly, J; Gouillaud, J C; Gregory, C; Herault, N; Holder, J; Hrabovsky, M; Incerti, S; Jouenne, A; Kalt, L; Legallou, R; Lott, B; Lodygensky, O; Manigot, P; Manseri, H; Manitaz, H; Martin, M; Morano, R; Morineaud, G; Muenz, F; Musquere, A; Naurois, M D; Neveu, J; Noppe, J M; Olive, J F; Palatka, M; Pérez, A; Quebert, J; Rebii, A; Reposeur, T; Rob, L; Roy, P; Sans, J L; Sako, T; Schovanek, P; Smith, D A; Snabre, P; Villard, G

    2002-01-01

    CELESTE is an atmospheric Cherenkov telescope based on the sampling method which makes use of the de-commissioned THEMIS solar electrical plant in the French Pyrenees. A large (2000 m sup 2) mirror surface area from 40 independent heliostats followed by a secondary optic, a trigger system using analog summing techniques and signal digitization with 1 GHz flash ADCs make possible the detection of cosmic gamma-rays down to 30 GeV. This paper provides a detailed technical description of the CELESTE installation.

  2. FACT -- Operation of the First G-APD Cherenkov Telescope

    CERN Document Server

    Bretz, T; Buß, J; Commichau, V; Djambazov, L; Dorner, D; Einecke, S; Eisenacher, D; Freiwald, J; Grimm, O; von Gunten, H; Haller, C; Hempfling, C; Hildebrand, D; Hughes, G; Horisberger, U; Knoetig, M L; Krähenbühl, T; Lustermann, W; Lyard, E; Mannheim, K; Meier, K; Mueller, S; Neise, D; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Röser, U; Stucki, J -P; Steinbring, T; Temme, F; Thaele, J; Vogler, P; Walter, R; Weitzel, Q

    2014-01-01

    Since more than two years, the First G-APD Cherenkov Telescope (FACT) is operating successfully at the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD aka. MPPC or SiPM) for photon detection. Since properties as the gain of G-APDs depend on temperature and the applied voltage, a real-time feedback system has been developed and implemented. To correct for the change introduced by temperature, several sensors have been placed close to the photon detectors. Their read out is used to calculate a corresponding voltage offset. In addition to temperature changes, changing current introduces a voltage drop in the supporting resistor network. To correct changes in the voltage drop introduced by varying photon flux from the night-sky background...

  3. TARGET: A digitizing and trigger ASIC for the Cherenkov telescope array

    Science.gov (United States)

    Funk, S.; Jankowsky, D.; Katagiri, H.; Kraus, M.; Okumura, A.; Schoorlemmer, H.; Shigenaka, A.; Tajima, H.; Tibaldo, L.; Varner, G.; Zink, A.; Zorn, J.

    2017-01-01

    The future ground-based gamma-ray observatory Cherenkov Telescope Array (CTA) will feature multiple types of imaging atmospheric Cherenkov telescopes, each with thousands of pixels. To be affiordable, camera concepts for these telescopes have to feature low cost per channel and at the same time meet the requirements for CTA in order to achieve the desired scientific goals. We present the concept of the TeV Array Readout Electronics with GSa/s sampling and Event Trigger (TARGET) Application Specific Circuit (ASIC), envisaged to be used in the cameras of various CTA telescopes, e.g. the Gamma-ray Cherenkov Telescope (GCT), a proposed 2-Mirror Small-Sized Telescope, and the Schwarzschild-Couder Telescope (SCT), a proposed Medium-Sized Telescope. In the latest version of this readout concept the sampling and trigger parts are split into dedicated ASICs, TARGET C and T5TEA, both providing 16 parallel input channels. TARGET C features a tunable sampling rate (usually 1 GSa/s), a 16k sample deep buffier for each channel and on-demand digitization and transmission of waveforms with typical spans of ˜100 ns. The trigger ASIC, T5TEA, provides 4 low voltage diffierential signal (LVDS) trigger outputs and can generate a pedestal voltage independently for each channel. Trigger signals are generated by T5TEA based on the analog sum of the input in four independent groups of four adjacent channels and compared to a threshold set by the user. Thus, T5TEA generates four LVDS trigger outputs, as well as 16 pedestal voltages fed to TARGET C independently for each channel. We show preliminary results of the characterization and testing of TARGET C and T5TEA.

  4. Monte Carlo Performance Studies of Candidate Sites for the Cherenkov Telescope Array

    CERN Document Server

    Maier, G; Bernlöhr, K; Bregeon, J; Di Pierro, F; Hassan, T; Jogler, T; Hinton, J; Moralejo, A; Wood, M

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next-generation gamma-ray observatory with sensitivity in the energy range from 20 GeV to beyond 300 TeV. CTA is proposed to consist of two arrays of 40-100 imaging atmospheric Cherenkov telescopes, with one site located in each of the Northern and Southern Hemispheres. The evaluation process for the candidate sites for CTA is supported by detailed Monte Carlo simulations, which take different attributes like site altitude and geomagnetic field configuration into account. In this contribution we present the comparison of the sensitivity and performance of the different CTA site candidates for the measurement of very-high energy gamma rays.

  5. Sensitivity of the space-based CHerenkov from Astrophysical Neutrinos Telescope (CHANT)

    CERN Document Server

    Neronov, A; Anchordoqui, L A; Adams, J; Olinto, A V

    2016-01-01

    Neutrinos with energies in the PeV to EeV range produce upgoing extensive air showers when they interact underground close enough to the surface of the Earth. We study the possibility for detection of such showers with a system of very wide field-of-view imaging atmospheric Cherenkov telescopes, named CHANT for CHerenkov from Astrophysical Neutrinos Telescope, pointing down to a strip below the Earth's horizon from space. We find that CHANT provides sufficient sensitivity for the study of the astrophysical neutrino flux in a wide energy range, from 10~PeV to 10~EeV. A space-based CHANT system can discover and study in detail the cosmogenic neutrino flux originating from interactions of ultra-high-energy cosmic rays in the intergalactic medium.

  6. Sensitivity of a proposed space-based Cherenkov astrophysical-neutrino telescope

    Science.gov (United States)

    Neronov, Andrii; Semikoz, Dmitri V.; Anchordoqui, Luis A.; Adams, James H.; Olinto, Angela V.

    2017-01-01

    Neutrinos with energies in the PeV to EeV range produce upgoing extensive air showers when they interact underground close enough to the surface of the Earth. We study the possibility for detection of such showers with a system of very wide field-of-view imaging atmospheric Cherenkov telescopes, named CHANT (Cherenkov from astrophysical neutrinos telescope), pointing down to a strip below the Earth's horizon from space. We find that CHANT provides sufficient sensitivity for the study of the astrophysical neutrino flux in a wide energy range, from 10 PeV to 10 EeV. A space-based CHANT system can discover and study in detail the cosmogenic neutrino flux originating from interactions of ultra-high-energy cosmic rays in the intergalactic medium.

  7. Search for annihilating Dark Matter towards dwarf galaxies with the Cherenkov Telescope Array

    Science.gov (United States)

    Morselli, Aldo; Rodríguez, Gonzalo

    2017-03-01

    The standard model of cosmology indicates that approximately 27% of the energy density of the Universe is in the form of dark matter. The nature of dark matter is an open question in modern physics. Indirect dark matter searches with imaging atmospheric Cherenkov telescopes are playing a crucial role in constraining the nature of the dark matter particle through the study of their potential annihilation that could produce very high energy gamma rays from different astrophysical structures. The Cherenkov Telescope Array will provide an unprecedented sensitivity over a range of dark matter mass from 100 GeV to 30 TeV. In this contribution we review the status of indirect dark matter searches at dwarf spheroidal galaxies.

  8. Sites in Argentina for the Cherenkov Telescope Array Project

    CERN Document Server

    Allekotte, Ingo; Etchegoyen, Alberto; García, Beatriz; Mancilla, Alexis; Maya, Javier; Ravignani, Diego; Rovero, Adrián

    2013-01-01

    The Cherenkov Telescope Array (CTA) Project will consist of two arrays of atmospheric Cherenkov telescopes to study high-energy gamma radiation in the range of a few tens of GeV to beyond 100 TeV. To achieve full-sky coverage, the construction of one array in each terrestrial hemisphere is considered. Suitable candidate sites are being explored and characterized. The candidate sites in the Southern Hemisphere include two locations in Argentina, one in San Antonio de los Cobres (Salta Province, Lat. 24:02:42 S, Long. 66:14:06 W, at 3600 m.a.s.l) and another one in El Leoncito (San Juan Province, Lat. 31:41:49 S, Long. 69:16:21 W, at 2600 m.a.s.l). Here we describe the two sites and the instrumentation that has been deployed to characterize them. We summarize the geographic, atmospheric and climatic data that have been collected for both of them.

  9. The On-Site Analysis of the Cherenkov Telescope Array

    CERN Document Server

    Bulgarelli, Andrea; Zoli, Andrea; Aboudan, Alessio; Rodríguez-Vázquez, Juan José; De Cesare, Giovanni; De Rosa, Adriano; Maier, Gernot; Lyard, Etienne; Bastieri, Denis; Lombardi, Saverio; Tosti, Gino; Bergamaschi, Sonia; Beneventano, Domenico; Lamanna, Giovanni; Jacquemier, Jean; Kosack, Karl; Antonelli, Lucio Angelo; Boisson, Catherine; Borkowski, Jerzy; Buson, Sara; Carosi, Alessandro; Conforti, Vito; Colomé, Pep; Reyes, Raquel de los; Dumm, Jon; Evans, Phil; Fortson, Lucy; Fuessling, Matthias; Gotz, Diego; Graciani, Ricardo; Gianotti, Fulvio; Grandi, Paola; Hinton, Jim; Humensky, Brian; Inoue, Susumu; Knödlseder, Jürgen; Flour, Thierry Le; Lindemann, Rico; Malaguti, Giuseppe; Markoff, Sera; Marisaldi, Martino; Neyroud, Nadine; Nicastro, Luciano; Ohm, Stefan; Osborne, Julian; Oya, Igor; Rodriguez, Jerome; Rosen, Simon; Ribo, Marc; Tacchini, Alessandro; Schüssler, Fabian; Stolarczyk, Thierry; Torresi, Eleonora; Testa, Vincenzo; Wegner, Peter

    2015-01-01

    The Cherenkov Telescope Array (CTA) observatory will be one of the largest ground-based very high-energy gamma-ray observatories. The On-Site Analysis will be the first CTA scientific analysis of data acquired from the array of telescopes, in both northern and southern sites. The On-Site Analysis will have two pipelines: the Level-A pipeline (also known as Real-Time Analysis, RTA) and the level-B one. The RTA performs data quality monitoring and must be able to issue automated alerts on variable and transient astrophysical sources within 30 seconds from the last acquired Cherenkov event that contributes to the alert, with a sensitivity not worse than the one achieved by the final pipeline by more than a factor of 3. The Level-B Analysis has a better sensitivity (not be worse than the final one by a factor of 2) and the results should be available within 10 hours from the acquisition of the data: for this reason this analysis could be performed at the end of an observation or next morning. The latency (in part...

  10. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: primary mirror characterization by deflectometry

    Science.gov (United States)

    Sironi, Giorgia; Canestrari, Rodolfo

    2015-09-01

    In 2014 the ASTRI Collaboration, led by the Italian National Institute for Astrophysics, has constructed an end-to-end prototype of a dual-mirror imaging air Cherenkov telescope, proposed for the small size class of telescopes for the Cherenkov Telescope Array. The prototype, named ASTRI SST-2M, has been installed at the observing station located at Serra La Nave (Italy). In this project the Brera Astronomical Observatory was responsible for the production and the testing of the primary mirror. The ASTRI SST-2M telescope's primary mirror has an aperture of ~ 4 m, a polynomial design, and consists of 18 individual hexagonal facets. These characteristics require the production and testing of panels with a typical size of ~1 m vertex-to-vertex and with an aspheric component of up to several millimetres. The mirror segments were produced assembling a sandwich of thin glass foils bent at room temperature to reach the desired shape. For the characterization of the mirrors we developed an ad-hoc deflectometry facility that works as an inverse Ronchi test in combination with a ray-tracing code. In this contribution we report the results of the deflectometric measurements performed on the primary mirror segments of the ASTRI SST-2M dual mirror telescope. The expected point spread function and the contributions to the degradation of the image quality are studied.

  11. Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes

    CERN Document Server

    Zhang, S S; Cao, Z; Chen, S Z; Chen, M J; Chen, Y; Chen, L H; Ding, K Q; He, H H; Liu, J L; Li, X X; Liu, J; Ma, L L; Ma, X H; Sheng, X D; Zhou, B; Zhang, Y; Zhao, J; Zha, M; Xiao, G

    2011-01-01

    A wide field of view Cherenkov/fluorescence telescope array is one of the main components of the Large High Altitude Air Shower Observatory project. To serve as Cherenkov and fluorescence detectors, a flexible and mobile design is adopted for easy reconfiguring of the telescope array. Two prototype telescopes have been constructed and successfully run at the site of the ARGO-YBJ experiment in Tibet. The features and performance of the telescopes are presented.

  12. Development of a mid-sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.

    2012-06-28

    The Cherenkov Telescope Array (CTA) is a ground-based observatory for very high-energy (10 GeV to 100 TeV) gamma rays, planned for operation starting in 2018. It will be an array of dozens of optical telescopes, known as Atmospheric Cherenkov Telescopes (ACTs), of 8 m to 24 m diameter, deployed over an area of more than 1 square km, to detect flashes of Cherenkov light from showers initiated in the Earth's atmosphere by gamma rays. CTA will have improved angular resolution, a wider energy range, larger fields of view and an order of magnitude improvement in sensitivity over current ACT arrays such as H.E.S.S., MAGIC and VERITAS. Several institutions have proposed a research and development program to eventually contribute 36 medium-sized telescopes (9 m to 12 m diameter) to CTA to enhance and optimize its science performance. The program aims to construct a prototype of an innovative, Schwarzschild-Couder telescope (SCT) design that will allow much smaller and less expensive cameras and much larger fields of view than conventional Davies-Cotton designs, and will also include design and testing of camera electronics for the necessary advances in performance, reliability and cost. We report on the progress of the mid-sized SCT development program.

  13. The BRAHMS ring imaging Cherenkov detector

    Science.gov (United States)

    Debbe, R.; Jørgensen, C. E.; Olness, J.; Yin, Z.

    2007-01-01

    A Ring Imaging Cherenkov detector built for the BRAHMS experiment at the Brookhaven RHIC is described. This detector has a high index of refraction gas radiator. Cherenkov light is focused on a photo-multiplier based photon detector with a large spherical mirror. The combination of momentum and ring radius measurement provides particle identification from 2.5 to 35 GeV/ c for pions and kaons and well above 40 GeV/ c for protons during runs that had the radiator index of refraction set at n-1=1700×10-6.

  14. An outdoor test facility for the Cherenkov Telescope Array mirrors

    CERN Document Server

    Medina, M C; Maya, J; Mancilla, A; Larrarte, J J; Rasztocky, E; Benitez, M; Dipold, J; Platino, M

    2013-01-01

    The Cherenkov Telescopes Array (CTA) is planned to be an Observatory for very high energy gamma ray astronomy and will consist of several tens of telescopes which account for a reflective surface of more than 10000 m$^2$. The mirrors of these telescopes will be formed by a set of facets. Different technological solutions, for a fast and cost efficient production of light-weight mirror facets are under test inside the CTA Consortium. Most of them involve composite structures whose behavior under real observing conditions is not yet fully tested. An outdoor test facility has been built in one of the candidate sites for CTA, in Argentina (San Antonio de los Cobres [SAC], 3600m a.s.l) in order to monitor the optical and mechanical properties of these facets exposed to the local atmospheric conditions for a given period of time. In this work we present the preliminary results of the first Middle Size Telescope (MST) mirror-monitoring campaign, started in 2013.

  15. Prototype of the SST-1M Telescope Structure for the Cherenkov Telescope Array

    CERN Document Server

    Niemiec, J; Błocki, J; Bogacz, L; Borkowski, J; Bulik, T; Cadoux, F; Christov, A; Curyło, M; della Volpe, D; Dyrda, M; Favre, Y; Frankowski, A; Grudnik, Ł; Grudzińska, M; Heller, M; Idźkowski, B; Jamrozy, M; Janiak, M; Kasperek, J; Lalik, K; Lyard, E; Mach, E; Mandat, D; Marszałek, A; Michałowski, J; Moderski, R; Montaruli, T; Neronov, A; Ostrowski, M; Paśko, P; Pech, M; Porcelli, A; Prandini, E; Rajda, P; Rameez, M; Schioppa, E jr; Schovanek, P; Seweryn, K; Skowron, K; Sliusar, V; Sowiński, M; Stawarz, Ł; Stodulska, M; Stodulski, M; Pujadas, I Troyano; Toscano, S; Walter, R; Wiȩcek, M; Zagdański, A; Ziȩtara, K

    2015-01-01

    A single-mirror small-size (SST-1M) Davies-Cotton telescope with a dish diameter of 4 m has been built by a consortium of Polish and Swiss institutions as a prototype for one of the proposed small-size telescopes for the southern observatory of the Cherenkov Telescope Array (CTA). The design represents a very simple, reliable, and cheap solution. The mechanical structure prototype with its drive system is now being tested at the Institute of Nuclear Physics PAS in Krakow. Here we present the design of the prototype and results of the performance tests of the structure and the drive and control system.

  16. The readout system of the MAGIC-II Cherenkov Telescope

    CERN Document Server

    Tescaro, D; Barcelo, M; Bitossi, M; Cortina, J; Fras, M; Hadasch, D; Illa, J M; Martínez, M; Mazin, D; Paoletti, R; Pegna, R

    2009-01-01

    In this contribution we describe the hardware, firmware and software components of the readout system of the MAGIC-II Cherenkov telescope on the Canary island La Palma. The PMT analog signals are transmitted by means of optical fibers from the MAGIC-II camera to the 80 m away counting house where they are routed to the new high bandwidth and fully programmable receiver boards (MONSTER), which convert back the signals from optical to electrical ones. Then the signals are split, one half provide the input signals for the level ONE trigger system while the other half is sent to the digitizing units. The fast Cherenkov pulses are sampled by low-power Domino Ring Sampler chips (DRS2) and temporarily stored in an array of 1024 capacitors. Signals are sampled at the ultra-fast speed of 2 GSample/s, which allows a very precise measurement of the signal arrival times in all pixels. They are then digitized with 12-bit resolution by an external ADC readout at 40 MHz speed. The Domino samplers are integrated in the newly...

  17. Stellar intensity interferometry over kilometer baselines: Laboratory simulation of observations with the Cherenkov Telescope Array

    CERN Document Server

    Dravins, Dainis

    2014-01-01

    A long-held astronomical vision is to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, show their evolution over time, and reveal interactions of stellar winds and gas flows in binary star systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and used also for intensity interferometry. With no optical connection between the telescopes, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are on the order of one meter, making the method practically insensitive to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Theoretical modeling has shown how stellar surface images can be retrieved from such observ...

  18. Construction of a Schwarzschild-Couder telescope as a candidate for the Cherenkov Telescope Array: status of the optical system

    CERN Document Server

    Rousselle, J; Cameron, R; Connaughton, V; Errando, M; Guarino, V; Humensky, T B; Jenke, P; Kieda, D; Mukherjee, R; Nieto, D; Okumura, A; Petrashyk, A; Vassiliev, V

    2015-01-01

    We present the design and the status of procurement of the optical system of the prototype Schwarzschild-Couder telescope (pSCT), for which construction is scheduled to begin in fall at the Fred Lawrence Whipple Observatory in southern Arizona, USA. The Schwarzschild-Couder telescope is a candidate for the medium-sized telescopes of the Cherenkov Telescope Array, which utilizes imaging atmospheric Cherenkov techniques to observe gamma rays in the energy range of 60Gev-60TeV. The pSCT novel aplanatic optical system is made of two segmented aspheric mirrors. The primary mirror has 48 mirror panels with an aperture of 9.6 m, while the secondary, made of 24 panels, has an diameter of 5.4 m. The resulting point spread function (PSF) is required to be better than 4 arcmin within a field of view of 6.4 degrees (80% of the field of view), which corresponds to a physical size of 6.4 mm on the focal plane. This goal represents a challenge for the inexpensive fabrication of aspheric mirror panels and for the precise ali...

  19. Data compression for the First G-APD Cherenkov Telescope

    CERN Document Server

    Ahnen, M L; Bergmann, M; Biland, A; Bretz, T; Buß, J; Dorner, D; Einecke, S; Freiwald, J; Hempfling, C; Hildebrand, D; Hughes, G; Lustermann, W; Lyard, E; Mannheim, K; Meier, K; Mueller, S; Neise, D; Neronov, A; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Steinbring, T; Temme, F; Thaele, J; Toscano, S; Vogler, P; Walter, R; Wilbert, A

    2015-01-01

    The First Geiger-mode Avalanche photodiode (G-APD) Cherenkov Telescope (FACT) has been operating on the Canary island of La Palma since October 2011. Operations were automated so that the system can be operated remotely. Manual interaction is required only when the observation schedule is modified due to weather conditions or in case of unexpected events such as a mechanical failure. Automatic operations enabled high data taking efficiency, which resulted in up to two terabytes of FITS files being recorded nightly and transferred from La Palma to the FACT archive at ISDC in Switzerland. Since long term storage of hundreds of terabytes of observations data is costly, data compression is mandatory. This paper discusses the design choices that were made to increase the compression ratio and speed of writing of the data with respect to existing compression algorithms. Following a more detailed motivation, the FACT compression algorithm along with the associated I/O layer is discussed. Eventually, the performances...

  20. Early attempts at atmospheric simulations for the Cherenkov Telescope Array

    CERN Document Server

    Rulten, Cameron B

    2014-01-01

    The Cherenkov Telescope Array (CTA) will be the world's first observatory for detecting gamma-rays from astrophysical phenomena and is now in its prototyping phase with construction expected to begin in 2015/16. In this work we present the results from early attempts at detailed simulation studies performed to assess the need for atmospheric monitoring. This will include discussion of some lidar analysis methods with a view to determining a range resolved atmospheric transmission profile. We find that under increased aerosol density levels, simulated gamma-ray astronomy data is systematically shifted leading to softer spectra. With lidar data we show that it is possible to fit atmospheric transmission models needed for generating lookup tables, which are used to infer the energy of a gamma-ray event, thus making it possible to correct affected data that would otherwise be considered unusable.

  1. Data model issues in the Cherenkov Telescope Array project

    CERN Document Server

    Contreras, J L; Bernlöhr, K; Boisson, C; Bregeon, J; Bulgarelli, A; de Cesare, G; Reyes, R de los; Fioretti, V; Kosack, K; Lavalley, C; Lyard, E; Marx, R; Rico, J; Sanguillot, M; Servillat, M; Walter, R; Ward, J E

    2015-01-01

    The planned Cherenkov Telescope Array (CTA), a future ground-based Very-High-Energy (VHE) gamma-ray observatory, will be the largest project of its kind. It aims to provide an order of magnitude increase in sensitivity compared to currently operating VHE experiments and open access to guest observers. These features, together with the thirty years lifetime planned for the installation, impose severe constraints on the data model currently being developed for the project. In this contribution we analyze the challenges faced by the CTA data model development and present the requirements imposed to face them. While the full data model is still not completed we show the organization of the work, status of the design, and an overview of the prototyping efforts carried out so far. We also show examples of specific aspects of the data model currently under development.

  2. An Innovative Workspace for The Cherenkov Telescope Array

    CERN Document Server

    Costa, Alessandro; Becchini, Ugo; Massimino, Piero; Riggi, Simone; Sanchez, David; Vitello, Fabio

    2016-01-01

    The Cherenkov Telescope Array (CTA) is an initiative to build the next generation, ground-based gamma-ray observatories. We present a prototype workspace developed at INAF that aims at providing innovative solutions for the CTA community. The workspace leverages open source technologies providing web access to a set of tools widely used by the CTA community. Two different user interaction models, connected to an authentication and authorization infrastructure, have been implemented in this workspace. The first one is a workflow management system accessed via a science gateway (based on the Liferay platform) and the second one is an interactive virtual desktop environment. The integrated workflow system allows to run applications used in astronomy and physics researches into distributed computing infrastructures (ranging from clusters to grids and clouds). The interactive desktop environment allows to use many software packages without any installation on local desktops exploiting their native graphical user i...

  3. Monte Carlo design studies for the Cherenkov Telescope Array

    CERN Document Server

    Bernlöhr, K; Becherini, Y; Bigas, O Blanch; Carmona, E; Colin, P; Decerprit, G; Di Pierro, F; Dubois, F; Farnier, C; Funk, S; Hermann, G; Hinton, J A; Humensky, T B; Khélifi, B; Kihm, T; Komin, N; Lenain, J -P; Maier, G; Mazin, D; Medina, M C; Moralejo, A; Nolan, S J; Ohm, S; Wilhelmi, E de Oña; Parsons, R D; Arribas, M Paz; Pedaletti, G; Pita, S; Prokoph, H; Rulten, C B; Schwanke, U; Shayduk, M; Stamatescu, V; Vallania, P; Vorobiov, S; Wischnewski, R; Yoshikoshi, T; Zech, A

    2012-01-01

    The Cherenkov Telescopes Array (CTA) is planned as the future instrument for very-high-energy (VHE) gamma-ray astronomy with a wide energy range of four orders of magnitude and an improvement in sensitivity compared to current instruments of about an order of magnitude. Monte Carlo simulations are a crucial tool in the design of CTA. The ultimate goal of these simulations is to find the most cost-effective solution for given physics goals and thus sensitivity goals or to find, for a given cost, the solution best suited for different types of targets with CTA. Apart from uncertain component cost estimates, the main problem in this procedure is the dependence on a huge number of configuration parameters, both in specifications of individual telescope types and in the array layout. This is addressed by simulation of a huge array intended as a superset of many different realistic array layouts, and also by simulation of array subsets for different telescope parameters. Different analysis methods -- in use with cu...

  4. A Prototype Data Format for the Cherenkov Telescope Array: Regions Of Interest (ROI)

    CERN Document Server

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA) is a ground-based $\\gamma$-ray observatory that will observe the full sky in the energy range from 20 GeV to 100 TeV from facilities in both hemispheres. It is proposed to consist of more than 100 telescopes and the large amount of data produced will exceed the volume of current VHE Imaging Atmospheric Cherenkov Telescopes by $\\sim$two orders of magnitude. This volume of data represents a new challenge to the community, which is looking for new data formats to transfer and store the CTA data. One of the prototypes currently under study is the ROI (Regions Of Interest) file format for camera images. It can store only those pixels of a camera image that are close to the shower, thus removing the major part of the night sky background (NSB) while keeping all pixels that might belong to the shower. Simple on-the-fly compression is used to reduce the file size even further. Here, we explain the ROI prototype in detail and present preliminary results when applied to simulations.

  5. Single-Mirror Small-Size Telescope structure for the Cherenkov Telescope Array

    CERN Document Server

    Niemiec, Jacek; Dyrda, Michał; Kochański, Wojciech; Ludwin, Jaromir; Stodulski, Marek; Ziółkowski, Paweł

    2013-01-01

    A single-mirror small-size (1M-SST) Davies-Cotton telescope has been proposed for the southern observatory of the Cherenkov Telescope Array (CTA) by a consortium of scientific institutions from Poland, Switzerland, and Germany. The telescope has a 4 m diameter reflector and will be equipped with a fully digital camera based on Geiger avalanche photodiodes (APDs). Such a design is particularly interesting for CTA because it represents a very simple, reliable, and cheap solution for a SST. Here we present the design and the characteristics of the mechanical structure of the 1M-SST telescope and its drive system. We also discuss the results of a finite element method analysis in order to demonstrate the conformance of the design with the CTA specifications and scientific objectives. In addition, we report on the current status of the construction of a prototype telescope structure at the Institute of Nuclear Physics PAS in Krakow.

  6. The Cherenkov Telescope Array single-mirror small size telescope project: status and prospects

    Science.gov (United States)

    Aguilar, J. A.; Bilnik, W.; Bogacz, L.; Bulik, T.; Christov, A.; della Volpe, D.; Dyrda, M.; Frankowski, A.; Grudzińska, M.; Grygorczuk, J.; Heller, M.; Idźkowski, B.; Janiak, M.; Jamrozy, M.; Karczewski, M.; Kasperek, J.; Lyard, E.; Marszalek, A.; Michalowski, J.; Rameez, M.; Moderski, R.; Montaruli, T.; Neronov, A.; Nicolau-Kukliński, J.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Płatos, Ł.; Prandini, E.; Rafalski, J.; Rajda, P. J.; Rataj, M.; Rupiński, M.; Rutkowskai, K.; Seweryn, K.; Sidz, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Tokarz, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wawer, P.; Wawrzaszek, R.; Wiśniewski, L.; Winiarski, K.; Zietara, K.; Ziółkowski, P.; Źychowski, P.

    2014-07-01

    The Cherenkov Telescope Array (CTA), the next generation very high energy gamma-ray observatory, will consist of three types of telescopes: large (LST), medium (MST) and small (SST) size telescopes. The small size telescopes are dedicated to the observation of gamma-rays with energy between a few TeV and few hundreds of TeV. The single-mirror small size telescope (SST-1M) is one of several SST designs. It will be equipped with a 4 m-diameter segmented mirror dish and a fully digital camera based on Geiger-mode avalanche photodiodes. Currently, the first prototype of the mechanical structure is under assembly in Poland. In 2014 it will be equipped with 18 mirror facets and a prototype of the camera.

  7. New electronics for the Cherenkov Telescope Array (NECTAr)

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, C.L., E-mail: christopher.naumann@lpnhe.in2p3.fr [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Delagnes, E. [IRFU, CEA/DSM, Saclay, Gif-sur-Yvette (France); Bolmont, J.; Corona, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Dzahini, D. [LPSC, Universite Joseph Fourier, INPG and IN2P3/CNRS, Grenoble (France); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Gascon, D. [ICC-UB, Universitat Barcelona (Spain); Glicenstein, J.-F.; Guilloux, F. [IRFU, CEA/DSM, Saclay, Gif-sur-Yvette (France); Nayman, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Rarbi, F. [LPSC, Universite Joseph Fourier, INPG and IN2P3/CNRS, Grenoble (France); Sanuy, A. [ICC-UB, Universitat Barcelona (Spain); Tavernet, J.-P.; Toussenel, F.; Vincent, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Vorobiov, S. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); DESY Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany)

    2012-12-11

    The international CTA consortium has recently entered into its preparatory phase towards the construction of the next-generation Cherenkov Telescope Array CTA. This experiment will be a successor, and based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS, and aims to significantly improve upon the sensitivity as well as the energy range of its highly successful predecessors. Construction is planned to begin by 2013, and when finished, CTA will be able to explore the highest-energy gamma ray sky in unprecedented detail. To achieve this increase in sensitivity and energy range, CTA will employ the order of 100 telescopes of three different sizes on two sites, with around 1000-4000 channels per camera, depending on the telescope size. To equip and reliably operate the order of 100000 channels of photodetectors (compared to 6000 of the H.E.S.S. array), a new kind of flexible and powerful yet inexpensive front-end hardware will be required. One possible solution is pursued by the NECTAr (New Electronics for the Cherenkov Telescope Array) project. Its main feature is the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC, which will allow very fast readout performances while significantly reducing the cost and the power consumption per channel. Also included is a low-cost FPGA for digital treatment and online data processing, as well as an Ethernet connection. Other priorities of NECTAr are the modularity of the system, a high degree of flexibility in the trigger system as well as the possibility of flexible readout modes to optimise the signal-to-noise ratio while at the same time allowing a significant reduction of data rates, both of which could improve the sensitivity of CTA compared to current detection systems. This paper gives an overview over the development work for the Nectar system, with particular focus on its main

  8. On the possiblity of using vertically pointing Central Laser Facilities to calibrate the Cherenkov Telescope Array

    CERN Document Server

    Gaug, Markus

    2014-01-01

    A Central Laser Facility is a system composed of a laser placed at a certain distance from a light-detector array, emitting fast light pulses, typically in the vertical direction, with the aim to calibrate that array. During calibration runs, all detectors are pointed towards the same portion of the laser beam at a given altitude. Central Laser Facilities are used for various currently operating ultra-high-energy cosmic ray and imaging atmospheric Cherenkov telescope arrays. In view of the future Cherenkov Telescope Array, a similar device could provide a fast calibration of the whole installation at different wavelengths. The relative precision (i.e. each individual telescope with respect to the rest of the array is expected) to be better than 5%, while an absolute calibration should reach a precisions of 4-11%, if certain design requirements are met. Additionally, a preciser monitoring of the sensitivity of each telescope can be made on time-scales of days to years.

  9. Time and charge calibration of Cherenkov telescope data acquired by Domino Ring Sampler 4 chips

    Energy Technology Data Exchange (ETDEWEB)

    Hoerbe, Mario; Doert, Marlene [Ruhr-Universitaet Bochum (Germany); Bruegge, Kai; Buss, Jens; Bockermann, Christian; Egorov, Alexej [TU Dortmund (Germany)

    2016-07-01

    Very-high-energy gamma-ray astronomy aims to give an insight into the most energetic phenomena in our Universe. Earthbound Cherenkov telescopes can measure Cherenkov light emitted by atmospheric particle showers which are produced by incoming cosmic particles at high energies. Current Cherenkov telescopes, e.g. operated in the FACT and the MAGIC experiments, utilize Domino Ring Sampler 4 (DRS4) chips for recording signals at high speed coming from the telescopes' cameras. DRS4 chips will also be used in the cameras of the Large-Size telescopes of the projected Cherenkov Telescope Array (CTA). We aim at developing a software solution for the calibration of DRS4 data based on the streams-framework, a software tool for streaming analysis which has been developed within the Collaborative Research Center SFB 876. The objectives and the current status of the project are presented.

  10. Towards micro-arcsecond spatial resolution with Air Cherenkov Telescope arrays as optical intensity interferometers

    CERN Document Server

    De Wit, W J; Hinton, J A; White, R J; Daniel, M K; Holder, J

    2008-01-01

    In this poster contribution we highlight the equivalence between an Imaging Air Cherenkov Telescope (IACT) array and an Intensity Interferometer for a range of technical requirements. We touch on the differences between a Michelson and an Intensity Interferometer and give a brief overview of the current IACT arrays, their upgrades and next generation concepts (CTA, AGIS, completion 2015). The latter are foreseen to include 30-90 telescopes that will provide 400-4000 different baselines that range in length between 50m and a kilometre. Intensity interferometry with such arrays of telescopes attains 50 micro-arcseconds resolution for a limiting V magnitude of ~8.5. This technique opens the possibility of a wide range of studies, amongst others, probing the stellar surface activity and the dynamic AU scale circumstellar environment of stars in various crucial evolutionary stages. Here we discuss possibilities for using IACT arrays as optical Intensity Interferometers.

  11. Performance of the Gamma-ray Cherenkov Telescope structure: a dual-mirror telescope prototype proposed for the future Cherenkov Telescope Array

    Science.gov (United States)

    Dournaux, J. L.; Amans, J. P.; Dangeon, L.; Fasola, G.; Gironnet, J.; Huet, J. M.; Laporte, P.; Abchiche, A.; Barkaoui, S.; Bousquet, J. J.; Buchholtz, G.; Dumas, D.; Gaudemard, J.; Jégouzo, I.; Poinsignon, P.; Vergne, L.; Sol, H.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project aims to create the next generation Very High-Energy (VHE) gamma-ray telescope array. It will be devoted to the observation of gamma rays from 20 GeV to above 100 TeV. Because of this wide energy band, three classes of telescopes, associated with different energy ranges and different mirror sizes, are defined. The Small Size Telescopes (SSTs) are associated with the highest energy range. Seventy of these telescopes are foreseen on the Southern site of the CTA. The large number of telescopes constrains their mechanical structure because easy maintenance and reduced cost per telescope are needed. Moreover, of course, the design shall fulfill the required performance and lifetime in the environment conditions of the site. The Observatoire de Paris started design studies in 2011 of the mechanical structure of the GCT (Gamma-ray Cherenkov Telescope), a four-meter prototype telescope for the SSTs of CTA, from optical and preliminary mechanical designs made by the University of Durham. At the end of 2014 these studies finally resulted in a lightweight ( 8 tons) and stiff design. This structure was based on the dual-mirror Schwarzschild-Couder (SC) optical design, which is an interesting and innovative alternative to the one-mirror Davies-Cotton design commonly used in ground-based Cherenkov astronomy. The benefits of such a design are many since it enables a compact structure, lightweight camera and a good angular resolution across the entire field-of-view. The mechanical structure was assembled on the Meudon site of the Observatoire de Paris in spring 2015. The secondary mirror, panels of the primary mirror and the Telescope Control System were successfully implemented afterwards leading now to a fully operational telescope. This paper focuses on the mechanics of the telescope prototype. It describes the mechanical structure and presents its performance identified from computations or direct measurements. Upgrades of the design

  12. Simulating the optical performance of a small-sized telescope with secondary optics for the Cherenkov Telescope Array

    Science.gov (United States)

    Rulten, Cameron; Zech, Andreas; Okumura, Akira; Laporte, Philippe; Schmoll, Jürgen

    2016-09-01

    The Gamma-ray Cherenkov Telescope (GCT) is a small-sized telescope (SST) that represents one of three novel designs that are based on Schwarzschild-Couder optics and are proposed for use within the Cherenkov Telescope Array (CTA). The GAmma-ray Telescope Elements (GATE) program has led an effort to build a prototype of the GCT at the Paris Observatory in Meudon, France. The mechanical structure of the prototype, known as the SST-GATE prototype telescope, is now complete along with the successful installation of the camera. We present the results of extensive simulation work to determine the optical performance of the SST-GATE prototype telescope. Using the ROBAST software and assuming an ideal optical system, we find the radius of the encircled point spread function (θ80) of the SST-GATE to be ∼1.3 arcmin (∼0.02°) for an on-axis (θfield =0∘) observation and ∼3.6 arcmin (∼0.06°) for an observation at the edge of the field of view (θfield = 4 .4∘). In addition, this research highlights the shadowing that results from the stopping of light rays by various telescope components such as the support masts and trusses. It is shown that for on-axis observations the effective collection area decreases by approximately 1 m2 as a result of shadowing components other than the secondary mirror. This is a similar loss (∼11%) to that seen with the current generation of conventional Davies-Cotton (DC) Cherenkov telescopes. An extensive random tolerance analysis was also performed and it was found that certain parameters, especially the secondary mirror z-position and the tip and tilt rotations of the mirrors, are critical in order to contain θ80 within the pixel limit radius for all field angles. In addition, we have studied the impact upon the optical performance of introducing a hole in the center of the secondary mirror for use with pointing and alignment instruments. We find that a small circular area (radius cost of poorer image quality and light collection

  13. The Single Mirror Small Sized Telescope For The Cherenkov Telescope Array

    CERN Document Server

    Heller, M; Porcelli, A; Pujadas, I Troyano; Zietara, K; della Volpe, D; Montaruli, T; Cadoux, F; Favre, Y; Aguilar, J A; Christov, A; Prandini, E; Rajda, P; Rameez, M; Bilnik, W; Blocki, J; Bogacz, L; Borkowski, J; Bulik, T; Frankowski, A; Grudzinska, M; Idzkowski, B; Jamrozy, M; Janiak, M; Kasperek, J; Lalik, K; Lyard, E; Mach, E; Mandat, D; Marszalek, A; Miranda, L D Medina; Michalowski, J; Moderski, R; Neronov, A; Niemiec, J; Ostrowski, M; Pasko, P; Pech, M; Schovanek, P; Seweryn, K; Sliusar, V; Skowron, K; Stawarz, L; Stodulska, M; Stodulski, M; Walter, R; Wiecek, M; Zagdanski, A

    2016-01-01

    The Small Size Telescope with Single Mirror (SST-1M) is one of the proposed types of Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA). About 70 SST telescopes will be part the CTA southern array which will also include Medium Sized Telescopes (MST) in its threshold configuration. Optimized for the detection of gamma rays in the energy range from 5 TeV to 300 TeV, the SST-1M uses a Davies-Cotton optics with a 4 m dish diameter with a field of view of 9 degrees. The Cherenkov light resulting from the interaction of the gamma-rays in the atmosphere is focused onto a 88 cm side-to-side hexagonal photo-detection plane. The latter is composed of 1296 hollow light guides coupled to large area hexagonal silicon photomultipliers (SiPM). The SiPM readout is fully digital readout as for the trigger system. The compact and lightweight design of the SST-1M camera offers very high performance ideal for gamma-ray observation requirement. In this contribution, the concept, design, performance and status of...

  14. The software architecture to control the Cherenkov Telescope Array

    Science.gov (United States)

    Oya, I.; Füßling, M.; Antonino, P. O.; Conforti, V.; Hagge, L.; Melkumyan, D.; Morgenstern, A.; Tosti, G.; Schwanke, U.; Schwarz, J.; Wegner, P.; Colomé, J.; Lyard, E.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project is an initiative to build two large arrays of Cherenkov gamma- ray telescopes. CTA will be deployed as two installations, one in the northern and the other in the southern hemisphere, containing dozens of telescopes of different sizes. CTA is a big step forward in the field of ground- based gamma-ray astronomy, not only because of the expected scientific return, but also due to the order-of- magnitude larger scale of the instrument to be controlled. The performance requirements associated with such a large and distributed astronomical installation require a thoughtful analysis to determine the best software solutions. The array control and data acquisition (ACTL) work-package within the CTA initiative will deliver the software to control and acquire the data from the CTA instrumentation. In this contribution we present the current status of the formal ACTL system decomposition into software building blocks and the relationships among them. The system is modelled via the Systems Modelling Language (SysML) formalism. To cope with the complexity of the system, this architecture model is sub-divided into different perspectives. The relationships with the stakeholders and external systems are used to create the first perspective, the context of the ACTL software system. Use cases are employed to describe the interaction of those external elements with the ACTL system and are traced to a hierarchy of functionalities (abstract system functions) describing the internal structure of the ACTL system. These functions are then traced to fully specified logical elements (software components), the deployment of which as technical elements, is also described. This modelling approach allows us to decompose the ACTL software in elements to be created and the ow of information within the system, providing us with a clear way to identify sub-system interdependencies. This architectural approach allows us to build the ACTL system model and

  15. Design constraints on Cherenkov telescopes with Davies-Cotton reflectors

    CERN Document Server

    Bretz, Thomas

    2013-01-01

    This paper discusses the construction of high-performance ground-based gamma-ray Cherenkov telescopes with a Davies-Cotton reflector. For the design of such telescopes, usually physics constrains the field-of-view, while the photo-sensor size is defined by limited options. Including the effect of light-concentrators in front of the photo sensor, it is demonstrated that these constraints are enough to mutually constrain all other design parameters. The dependability of the various design parameters naturally arises once a relationship between the value of the point-spread functions at the edge of the field-of-view and the pixel field-of-view is introduced. To be able to include this constraint into a system of equations, an analytical description for the point-spread function of a tessellated Davies-Cotton reflector is derived from Taylor developments and ray-tracing simulations. Including higher order terms renders the result precise on the percent level. Design curves are provided within the typical phase sp...

  16. Simulated gamma-ray pulse profile of the Crab pulsar with the Cherenkov Telescope Array

    Science.gov (United States)

    Burtovoi, A.; Zampieri, L.

    2016-07-01

    We present simulations of the very high energy (VHE) gamma-ray light curve of the Crab pulsar as observed by the Cherenkov Telescope Array (CTA). The CTA pulse profile of the Crab pulsar is simulated with the specific goal of determining the accuracy of the position of the interpulse. We fit the pulse shape obtained by the Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) telescope with a three-Gaussian template and rescale it to account for the different CTA instrumental and observational configurations. Simulations are performed for different configurations of CTA and for the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) mini-array. The northern CTA configuration will provide an improvement of a factor of ˜3 in accuracy with an observing time comparable to that of MAGIC (73 h). Unless the VHE spectrum above 1 TeV behaves differently from what we presently know, unreasonably long observing times are required for a significant detection of the pulsations of the Crab pulsar with the high-energy-range sub-arrays. We also found that an independent VHE timing analysis is feasible with Large Size Telescopes. CTA will provide a significant improvement in determining the VHE pulse shape parameters necessary to constrain theoretical models of the gamma-ray emission of the Crab pulsar. One of such parameters is the shift in phase between peaks in the pulse profile at VHE and in other energy bands that, if detected, may point to different locations of the emission regions.

  17. Developments of a new mirror technology for the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA) observatory for very high-energy gamma rays will consist of about a hundred of imaging atmospheric Cherenkov telescopes (IACTs) of different size with a total reflective area of about 10,000 m$^2$. Here we present a novel technology for the production of IACT mirrors that has been developed in the Institute of Nuclear Physics PAS in Krakow, Poland. The mirrors are made by cold-slumping of the front reflecting aluminium-coated panel and the rear panel interspaced with aluminium spacers. Each panel is built of two glass panels laminated with a layer of a fibreglass tissue in between for reinforcement of the structure against mechanical damage. The mirror structure is open and does not require a perfect sealing needed in closed-type designs. It prohibits water to be trapped inside and enables a proper ventilation of the mirror. Full-size hexagonal prototype mirrors produced for the medium-sized CTA telescopes will be presented together with the results of recent comprehensive ...

  18. Design of a Cherenkov telescope for the measurement of PCR composition above 1 PeV

    Directory of Open Access Journals (Sweden)

    Galkin V I

    2013-06-01

    Full Text Available The problem of PCR Composition at super high energies is far from being solved.EAS Cherenkov light spatial-angular distribution (CL SAD can yield important information on the primary mass. In order to use EAS CL SAD for the study of PCR composition one needs a set of imaging telescopes with the appropriate parameters supported by a dense net of fast optical detectors capable of measuring EAS Cherenkov light pulses. On the basis of full Monte-Carlo simulations the pixel size of imaging telescopes is optimized for a specific observation level ∼4km which is typical for the Eastern Pamir mountains. Another goal to be pursued by the new detector array is the search for ultra high energy gamma ray sources and this is where the imaging technique can help a lot. A simple criterion is introduced to recognize gamma-quanta against the proton background and its performance, once again analyzed using simulated events, sets certain limits to the pixel size.

  19. Actuator Development at IAAT for the Cherenkov Telescope Array Medium Size Telescopes

    CERN Document Server

    Diebold, S; Pühlhofer, G; Renner, S; Santangelo, A; Schanz, T; Tenzer, C

    2016-01-01

    The Cherenkov Telescope Array (CTA) will be the future observatory for TeV gamma-ray astronomy. In order to increase the sensitivity and to extend the energy coverage beyond the capabilities of current facilities, its design concept features telescopes of three different size classes. Based on the experience from H.E.S.S. phase II, the Institute for Astronomy and Astrophysics T\\"ubingen (IAAT) develops actuators for the mirror control system of the CTA Medium Size Telescopes (MSTs). The goals of this effort are durability, high precision, and mechanical stability under all environmental conditions. Up to now, several revisions were developed and the corresponding prototypes were extensively tested. In this contribution our latest design revision proposed for the CTA MSTs are presented.

  20. Redshift measurement of Fermi Blazars for the Cherenkov Telescope Array

    CERN Document Server

    Goldoni, P; Boisson, C; Cotter, G; Williams, D A

    2015-01-01

    Blazars are active galactic nuclei, and the most numerous High Energy (HE) and Very High Energy (VHE) gamma-ray emitters. Their optical emission is often dominated by non-thermal, and, in the case of BL Lacs, featureless continuum radiation. This renders the determination of their redshift extremely difficult. Indeed, as of today only about 50 % of gamma-ray blazars have a measured spectroscopic redshift. The knowledge of redshift is fundamental because it allows the precise modeling of the VHE emission and also of its interaction with the extragalactic background light (EBL). The beginning of the Cherenkov Telescope Array (CTA) operations in the near future will allow the detection of several hundreds of new BL Lacs. Using the first Fermi catalogue of sources above 10 GeV (1FHL), we performed simulations which demonstrate that at least half of the 1FHL BL Lacs detectable by CTA will not have a measured redshift. Indeed the organization of observing campaigns to measure the redshift of these blazars has been ...

  1. Cosmic ray composition measurements and cosmic ray background free gamma-ray observations with Cherenkov telescopes

    CERN Document Server

    Neronov, A; Vovk, Ie; Mirzoyan, R

    2016-01-01

    Muon component of extensive air showers (EAS) initiated by cosmic ray particles carries information on the primary particle identity. We show that the muon content of EAS could be measured in a broad energy range from 10-100 TeV up to ultra-high-energy cosmic ray range using wide field-of-view imaging atmospheric Cherenkov telescopes observing strongly inclined or nearly horizontal EAS from the ground of from high altitude. Cherenkov emission from muons in such EAS forms a distinct component (halo or tail) of the EAS image in the telescope camera. We show that detection of the muon signal could be used to measure composition of the cosmic ray spectrum in the energy ranges of the knee, the ankle and of the Galactic-to-extragalactic transition. It could also be used to veto the cosmic ray background in gamma-ray observations. This technique provides a possibility for up to two orders of magnitude improvement of sensitivity for gamma-ray flux in the energy band above 10 PeV, compared to KASCADE-Grande, and an or...

  2. 4 m Davies-Cotton telescope for the Cherenkov Telescope Array

    CERN Document Server

    Moderski, R; Barnacka, A; Basili, A; Boccone, V; Bogacz, L; Cadoux, F; Christov, A; Della Volpe, M; Dyrda, M; Frankowski, A; Grudzińska, M; Janiak, M; Karczewski, M; Kasperek, J; Kochański, W; Korohoda, P; Kozioł, J; Lubiński, P; Ludwin, J; Lyard, E; Marszałek, A; Michałowski, J; Montaruli, T; Nicolau-Kukliński, J; Niemiec, J; Ostrowski, M; Płatos, Ł; Rajda, P J; Rameez, M; Romaszkan, W; Rupiński, M; Seweryn, K; Stodulska, M; Stodulski, M; Walter, R; Winiarski, K; Wiśniewski, Ł; Zagdański, A; Zietara, K; Ziółkowski, P; Żychowski, P

    2013-01-01

    The Cherenkov Telescope Array (CTA) is the next generation very high energy gamma-ray observatory. It will consist of three classes of telescopes, of large, medium and small sizes. The small telescopes, of 4 m diameter, will be dedicated to the observations of the highest energy gamma-rays, above several TeV. We present the technical characteristics of a single mirror, 4 m diameter, Davies-Cotton telescope for the CTA and the performance of the sub-array consisting of the telescopes of this type. The telescope will be equipped with a fully digital camera based on custom made, hexagonal Geiger-mode avalanche photodiodes. The development of cameras based on such devices is an RnD since traditionally photomultipliers are used. The photodiodes are now being characterized at various institutions of the CTA Consortium. Glass mirrors will be used, although an alternative is being considered: composite mirrors that could be adopted if they meet the project requirements. We present a design of the telescope structure,...

  3. Development of the photomultiplier tube readout system for the first Large-Sized Telescope of the Cherenkov Telescope Array

    CERN Document Server

    Masuda, Shu; Barrio, Juan Abel; Bigas, Oscar Blanch; Delgado, Carlos; Coromina, Lluís Freixas; Gunji, Shuichi; Hadasch, Daniela; Hatanaka, Kenichiro; Ikeno, Masahiro; Laguna, Jose Maria Illa; Inome, Yusuke; Ishio, Kazuma; Katagiri, Hideaki; Kubo, Hidetoshi; Martínez, Gustavo; Mazin, Daniel; Nakajima, Daisuke; Nakamori, Takeshi; Ohoka, Hideyuki; Paoletti, Riccardo; Ritt, Stefan; Rugliancich, Andrea; Saito, Takayuki; Sulanke, Karl-Heinz; Takeda, Junki; Tanaka, Manobu; Tanigawa, Shunsuke; Tejedor, Luis Ángel; Teshima, Masahiro; Tsuchiya, Yugo; Uchida, Tomohisa; Yamamoto, Tokonatsu

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation ground-based very high energy gamma-ray observatory. The Large-Sized Telescope (LST) of CTA targets 20 GeV -- 1 TeV gamma rays and has 1855 photomultiplier tubes (PMTs) installed in the focal plane camera. With the 23 m mirror dish, the night sky background (NSB) rate amounts to several hundreds MHz per pixel. In order to record clean images of gamma-ray showers with minimal NSB contamination, a fast sampling of the signal waveform is required so that the signal integration time can be as short as the Cherenkov light flash duration (a few ns). We have developed a readout board which samples waveforms of seven PMTs per board at a GHz rate. Since a GHz FADC has a high power consumption, leading to large heat dissipation, we adopted the analog memory ASIC "DRS4". The sampler has 1024 capacitors per channel and can sample the waveform at a GHz rate. Four channels of a chip are cascaded to obtain deeper sampling depth with 4096 capacitors. After a trigger ...

  4. Light sensors selection for the Cherenkov Telescope Array: PMT and SiPM

    Energy Technology Data Exchange (ETDEWEB)

    Shayduk, M., E-mail: mshayduk@googlemail.com [DESY Zeuthen, D-15738 (Germany); Mirzoyan, R.; Kurz, M.; Knoetig, M. [Max-Planck-Institute for Physics, D-80805 Muenchen (Germany); Bolmont, J. [LPNHE Universite Pierre et Marie Curie, Paris (France); Dickinson, H. [Oskar Klein Centre, Stockholm University (Sweden); Lorenz, E. [Max-Planck-Institute for Physics, D-80805 Muenchen (Germany); Tavernet, J.-P. [LPNHE Universite Pierre et Marie Curie, Paris (France); Hose, J.; Teshima, M. [Max-Planck-Institute for Physics, D-80805 Muenchen (Germany); Vincent, P. [LPNHE Universite Pierre et Marie Curie, Paris (France)

    2012-12-11

    The Cherenkov Telescope Array (CTA) is planned as the next generation ground-based instrument (after VERITAS, H.E.S.S. and MAGIC) for astrophysics by means of very high energy {gamma}-rays. The CTA collaboration includes the MAGIC, the H.E.S.S. and the VERITAS collaborations. Also, a large number of astrophysicists from European institutions, from Japan and USA have joined the CTA. The CTA array will comprise about 100 imaging telescopes of three sizes that shall provide one order of magnitude higher sensitivity than the current generation of telescopes. Every telescope will use an imaging camera based on {approx}2000PMTs. We have set up a PMT development program with Hamamatsu (Japan) and Electron Tube Enterprises (England) aiming to produce 1.5 in. PMTs of optimized parameters for the CTA project. The entire scientific community, including the medicine and biology, as well as many industrial applications, where a low light level sensors are necessary, may profit from it. Together with PMTs also SiPMs are interesting sensor candidates for the CTA telescopes. One expects about two times higher photon detection efficiency for SiPM compared to PMT. A set of parameters like the photon detection efficiency, cross-talk, afterpulsing, dark rate together with other important factors were evaluated. Here we report on the progress of these developments, based on detailed measurements.

  5. Enhancement of the Yakutsk array by atmospheric Cherenkov telescopes to study cosmic rays above $10^{15}$ eV

    CERN Document Server

    Ivanov, A A; Petrov, Z E; Pravdin, M I; Sleptsov, I Ye

    2010-01-01

    The aim of the Yakutsk array enhancement project is to create an instrument to study the highest-energy galactic cosmic rays (CRs) -- their sources, energy spectrum, and mass composition. Additionally, there will be unique capabilities for investigations in the transition region between galactic and extragalactic components of CRs. Using the well-developed imaging atmospheric Cherenkov telescope technique adapted to the energy region $E>10^{15}$ eV, we plan to measure the longitudinal structure parameters of the shower, e.g., angular and temporal distributions of the Cherenkov signal related to $X_{max}$ and the mass composition of CRs. The main advantages of the Yakutsk array, such as its multi-component measurements of extensive air showers, and model-independent CR energy estimation based on Cherenkov light measurements, will be inherited by the instrument to be created.

  6. The IFAE/UAB and LUPM Raman LIDARs for Cherenkov Telescope Array Observatory

    CERN Document Server

    López-Oramas, A; Bigas, O Blanch; Boix, J; Da Deppo, V; Doro, M; Font, L; Garrido, D; Gaug, M; Martínez, M; Vasileiadis, G

    2013-01-01

    The Cherenkov Telescope Array (CTA) is the next generation of Imaging Atmospheric Cherenkov Telescopes. It will reach a sensitivity and an energy resolution with no precendent in very high energy gamma-ray astronomy. In order to achieve this goal, the systematic uncertainties derived from the atmospheric conditions shall be reduced to the minimum. Different instruments may help account for these uncertainties. The Barcelona IFAE/UAB (acronyms for Institut de F\\'isica d'Altes Energies and Universitat Aut\\`onoma de Barcelona, respectively) and the Montpellier LUPM (Laboratoire Univers et Particules de Montpellier) groups are building Raman LIDARs, devices which can reduce the systematic uncertainties in the reconstruction of the gamma-ray energies from 20$%$ down to 5$%$. The Raman LIDARs subject of this work have coaxial 1.8 m mirrors with a Nd-YAG laser each. A liquid light-guide collects the light at the focal plane and transports it to the readout system. We are developping a monochromator with the purpose ...

  7. The Cherenkov Telescope Array On-Site integral sensitivity: observing the Crab

    CERN Document Server

    Fioretti, Valentina; Schussler, Fabian

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the future large observatory in the very high energy (VHE) domain. Operating from 20 GeV to 300 TeV, it will be composed of tens of Imaging Air Cherenkov Telescopes (IACTs) displaced in a large area of a few square kilometers in both the southern and northern hemispheres. The CTA/DATA On-Site Analysis (OSA) is the system devoted to the development of dedicated pipelines and algorithms to be used at the CTA site for the reconstruction, data quality monitoring, science monitoring and realtime science alerting during observations. The OSA integral sensitivity is computed here for the most studied source at Gamma-rays, the Crab Nebula, for a set of exposures ranging from 1000 seconds to 50 hours, using the full CTA Southern array. The reason for the Crab Nebula selection as the first example of OSA integral sensitivity is twofold: (i) this source is characterized by a broad spectrum covering the entire CTA energy range; (ii) it represents, at the time of writing, the standar...

  8. Prototype of a production system for Cherenkov Telescope Array with DIRAC

    CERN Document Server

    Arrabito, L; Haupt, A; Graciani Diaz, R; Stagni, F; Tsaregorodtsev, A

    2015-01-01

    The Cherenkov Telescope Array (CTA) — an array of many tens of Imaging Atmospheric Cherenkov Telescopes deployed on an unprecedented scale — is the next generation instrument in the field of very high energy gamma-ray astronomy. CTA will operate as an open observatory providing data products to the scientific community. An average data stream of about 10 GB/s for about 1000 hours of observation per year, thus producing several PB/year, is expected. Large CPU time is required for data-processing as well for massive Monte Carlo simulations needed for detector calibration purposes. The current CTA computing model is based on a distributed infrastructure for the archive and the data off-line processing. In order to manage the off-line data-processing in a distributed environment, CTA has evaluated the DIRAC (Distributed Infrastructure with Remote Agent Control) system, which is a general framework for the management of tasks over distributed heterogeneous computing environments. In particular, a production sy...

  9. Cherenkov light imaging in astro-particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Mirzoyan, Razmik, E-mail: Razmik.Mirzoyan@mpp.mpg.de

    2014-12-01

    Cherenkov light emission plays a key role in contemporary science; it is widely used in high energy, nuclear, and numerous astro-particle physics experiments. Most astro-particle physics experiments are based on the detection of light, and a vast majority of them on the measurement of Cherenkov light. Cherenkov light emission is measured in gases (used in air-Cherenkov technique), in water (for example, neutrino experiments BAIKAL, Super-Kamiokande, NESTOR, ANTARES, future KM3NeT; cosmic and γ-ray experiments Milagro, HAWC, AUGER) and in ice (IceCube). In this report our goal is not limited to simply listing the multitude of experiments that are based on using Cherenkov emission, but we will clarify the reasons making this emission so important and so frequently used. For completeness we will first give a short historical overview on the discovery and evolution of Cherenkov emission and then we will dwell on its main features and numerous applications in astro-particle physics experiments. - Highlights: • We explain why Cherenkov emission is so important and why it is so widely used. • A brief historical excursion is made to the very beginning of Cherenkov emission. • Imaging of the Cherenkov light emission is discussed in a great detail. • The principle of Cherenkov light imaging in diverse experiments is the same.

  10. Flasher and muon-based calibration of the GCT telescopes proposed for the Cherenkov Telescope Array

    CERN Document Server

    Brown, Anthony M; Chadwick, Paula M; Daniel, Michael; White, Richard

    2015-01-01

    The GCT is a dual-mirror Small-Sized-Telescope prototype proposed for the Cherenkov Telescope Array. Calibration of the GCT's camera is primarily achieved with LED-based flasher units capable of producing $\\sim4$ ns FWHM pulses of 400 nm light across a large dynamic range, from 0.1 up to 1000 photoelectrons. The flasher units are housed in the four corners of the camera's focal plane and illuminate it via reflection from the secondary mirror. These flasher units are adaptable to allow several calibration scenarios to be accomplished: camera flat-fielding, linearity measurements (up to and past saturation), and gain estimates from both single pe measurements and from the photon statistics at various high illumination levels. In these proceedings, the performance of the GCT flashers is described, together with ongoing simulation work to quantify the efficiency of using muon rings as an end-to-end calibration for the optical throughput of the GCT.

  11. NectarCAM, a camera for the medium sized telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Glicenstein, J-F

    2016-01-01

    NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) which covers the core energy range of ~100 GeV to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The expected performance of the camera are discussed. Prototypes of NectarCAM components have been built to validate the design. Preliminary results of a 19-module mini-camera are presented, as well as future plans for building and testing a full size camera.

  12. The dual-mirror Small Size Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Pareschi, G; Antonelli, L A; Bastieri, D; Bellassai, G; Belluso, M; Bigongiari, C; Billotta, S; Biondo, B; Bonanno, G; Bonnoli, G; Bruno, P; Bulgarelli, A; Canestrari, R; Capalbi, M; Caraveo, P; Carosi, A; Cascone, E; Catalano, O; Cereda, M; Conconi, P; Conforti, V; Cusumano, G; De Caprio, V; De Luca, A; Di Paola, A; Di Pierro, F; Fantinel, D; Fiorini, M; Fugazza, D; Gardiol, D; Ghigo, M; Gianotti, F; Giarrusso, S; Giro, E; Grillo, A; Impiombato, D; Incorvaia, S; La Barbera, A; La Palombara, N; La Parola, V; La Rosa, G; Lessio, L; Leto, G; Lombardi, S; Lucarelli, F; Maccarone, M C; Malaguti, G; Malaspina, G; Mangano, V; Marano, D; Martinetti, E; Millul, R; Mineo, T; MistÒ, A; Morello, C; Morlino, G; Panzera, M R; Rodeghiero, G; Romano, P; Russo, F; Sacco, B; Sartore, N; Schwarz, J; Segreto, A; Sironi, G; Sottile, G; Stamerra, A; Strazzeri, E; Stringhetti, L; Tagliaferri, G; Testa, V; Timpanaro, M C; Toso, G; Tosti, G; Trifoglio, M; Vallania, P; Vercellone, S; Zitelli, V; Amans, J P; Boisson, C; Costille, C; Dournaux, J L; Dumas, D; Fasola, G; Hervet, O; Huet, J M; Laporte, P; Rulten, C; Sol, H; Zech, A; White, R; Hinton, J; Ross, D; Sykes, J; Ohm, S; Schmoll, J; Chadwick, P; Greenshaw, T; Daniel, M; Cotter, G; Varner, G S; Funk, S; Vandenbroucke, J; Sapozhnikov, L; Buckley, J; Moore, P; Williams, D; Markoff, S; Vink, J; Berge, D; Hidaka, N; Okumura, A; Tajima, H

    2013-01-01

    In this paper, the development of the dual mirror Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA) is reviewed. Up to 70 SST, with a primary mirror diameter of 4 m, will be produced and installed at the CTA southern site. These will allow investigation of the gamma-ray sky at the highest energies accessible to CTA, in the range from about 1 TeV to 300 TeV. The telescope presented in this contribution is characterized by two major innovations: the use of a dual mirror Schwarzschild-Couder configuration and of an innovative camera using as sensors either multi-anode photomultipliers (MAPM) or silicon photomultipliers (SiPM). The reduced plate-scale of the telescope, achieved with the dual-mirror optics, allows the camera to be compact (40 cm in diameter), and low-cost. The camera, which has about 2000 pixels of size 6x6 mm^2, covers a field of view of 10{\\deg}. The dual mirror telescopes and their cameras are being developed by three consortia, ASTRI (Astrofisica con Specchi a Tecnologia Repl...

  13. The Cherenkov Telescope Array Observatory: top level use cases

    Science.gov (United States)

    Bulgarelli, A.; Kosack, K.; Hinton, J.; Tosti, G.; Schwanke, U.; Schwarz, J.; Colomé, P.; Conforti, V.; Khelifi, B.; Goullon, J.; Ong, R.; Markoff, S.; Contreras, J. L.; Lucarelli, F.; Antonelli, L. A.; Bigongiari, C.; Boisson, C.; Bosnjak, Z.; Brau-Nogué, S.; Carosi, A.; Chen, A.; Cotter, G.; Covino, S.; Daniel, M.; De Cesare, G.; de Ona Wilhelmi, E.; Della Volpe, M.; Di Pierro, F.; Fioretti, V.; Füßling, M.; Garczarczyk, M.; Gaug, M.; Glicenstein, J. F.; Goldoni, P.; Götz, D.; Grandi, P.; Heller, M.; Hermann, G.; Inoue, S.; Knödlseder, J.; Lenain, J.-P.; Lindfors, E.; Lombardi, S.; Luque-Escamilla, P.; Maier, G.; Marisaldi, M.; Mundell, C.; Neyroud, N.; Noda, K.; O'Brien, P.; Petrucci, P. O.; Martí Ribas, J.; Ribó, M.; Rodriguez, J.; Romano, P.; Schmid, J.; Serre, N.; Sol, H.; Schussler, F.; Stamerra, A.; Stolarczyk, T.; Vandenbrouck, J.; Vercellone, S.; Vergani, S.; Zech, A.; Zoli, A.

    2016-08-01

    Today the scientific community is facing an increasing complexity of the scientific projects, from both a technological and a management point of view. The reason for this is in the advance of science itself, where new experiments with unprecedented levels of accuracy, precision and coverage (time and spatial) are realised. Astronomy is one of the fields of the physical sciences where a strong interaction between the scientists, the instrument and software developers is necessary to achieve the goals of any Big Science Project. The Cherenkov Telescope Array (CTA) will be the largest ground-based very high-energy gamma-ray observatory of the next decades. To achieve the full potential of the CTA Observatory, the system must be put into place to enable users to operate the telescopes productively. The software will cover all stages of the CTA system, from the preparation of the observing proposals to the final data reduction, and must also fit into the overall system. Scientists, engineers, operators and others will use the system to operate the Observatory, hence they should be involved in the design process from the beginning. We have organised a workgroup and a workflow for the definition of the CTA Top Level Use Cases in the context of the Requirement Management activities of the CTA Observatory. Scientists, instrument and software developers are collaborating and sharing information to provide a common and general understanding of the Observatory from a functional point of view. Scientists that will use the CTA Observatory will provide mainly Science Driven Use Cases, whereas software engineers will subsequently provide more detailed Use Cases, comments and feedbacks. The main purposes are to define observing modes and strategies, and to provide a framework for the flow down of the Use Cases and requirements to check missing requirements and the already developed Use-Case models at CTA sub-system level. Use Cases will also provide the basis for the definition of

  14. Development of the optical system for the SST-1M telescope of the Cherenkov Telescope Array observatory

    CERN Document Server

    Seweryn, K; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Chruślińska, M.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Pueschel, E.; Rajda, P.; Rameez, M.; Rozwadowski, P.; Schioppa, E. jr; Schovanek, P.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Pujadas, I. Troyano; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.; Barciński, T.; Karczewski, M.; Kukliński, J. Nicolau; Płatos, Ł.; Rataj, M.; Wawer, P.; Wawrzaszek, R.

    2015-01-01

    The prototype of a Davies-Cotton small size telescope (SST-1M) has been designed and developed by a consortium of Polish and Swiss institutions and proposed for the Cherenkov Telescope Array (CTA) observatory. The main purpose of the optical system is to focus the Cherenkov light emitted by extensive air showers in the atmosphere onto the focal plane detectors. The main component of the system is a dish consisting of 18 hexagonal mirrors with a total effective collection area of 6.47 m2 (including the shadowing and estimated mirror reflectivity). Such a solution was chosen taking into account the analysis of the Cherenkov light propagation and based on optical simulations. The proper curvature and stability of the dish is ensured by the mirror alignment system and the isostatic interface to the telescope structure. Here we present the design of the optical subsystem together with the performance measurements of its components.

  15. FACT-The first Cherenkov telescope using a G-APD camera for TeV gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Anderhub, H. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Backes, M., E-mail: michael.backes@physik.tu-dortmund.d [Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Biland, A.; Boller, A.; Braun, I. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Bretz, T. [Ecole Polytechnique Federale de Lausanne, CH-1015 (Switzerland); Commichau, S.; Commichau, V. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Domke, M. [Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Dorner, D. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); ISDC, Data Centre for Astrophysics, CH-1290 Versoix (Switzerland); Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Koehne, J.-H. [Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Kraehenbuehl, T.; Kranich, D. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Krumm, B. [Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Lorenz, E. [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland)

    2011-05-21

    Geiger-mode Avalanche Photodiodes (G-APD) bear the potential to significantly improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing an old IACT with a mirror area of 9.5 square meters and are constructing a new, fine-pixelized camera using novel G-APDs. The main goal is to evaluate the performance of a complete system by observing very high energy gamma-rays from the Crab Nebula. This is an important field test to check the feasibility of G-APD-based cameras to replace at some time the PMT-based cameras of planned future IACTs like AGIS and CTA. In this article, we present the basic design of such a camera as well as some important details.

  16. The Ring Imaging Cherenkov Detectors for LHCb

    CERN Document Server

    Papanestis, Antonis

    2005-01-01

    The success of the LHCb experiment depends heavily on particle identification over the momentum 2-100 GeV/c. To meet this challenge, LHCb uses a Ring Imaging Cherenkov (RICH) system composed of two detectors with three radiators. RICH1 has both aerogel and gas (C$_4$F$_{10}$) radiators, while RICH2 has only a gas (CF$_4$) radiator. The design of RICH1 is almost complete, whereas RICH2 has been constructed and installed (Nov 2005). Novel Hybrid Photon Detectors (HPDs) have been developed in collaboration with industry to detect the Cherenkov photons. A silicon pixel detector bump-bonded to a readout chip is encapsulated in a vacuum tube. A bi-alkali photocathode is deposited on the inside of the quartz entrance window to convert photons in the range 200-600 nm. The pixel chip is manufactured in 0.25 $\\mu$m deep-submicron radiation-tolerant technology and consists of 1024 logical pixels, each pixel having an area of 0.5 mm x 05. Mm. Photo-electrons are accelerated by a 20kV potential, resulting in a signal of ...

  17. The Non-Imaging CHErenkov (NICHE) Array: A TA/TALE extension using Cherenkov radiation to measure Cosmic Ray Composition to sub-PeV energies

    Science.gov (United States)

    Krizmanic, John; Bergman, Douglas; Tsunesada, Yoshiki; Abu-Zayyad, Tareq; Belz, John; Thomson, Gordon

    2017-01-01

    Co-sited with the Telescope Array (TA) Low Energy (TALE) extension, the Non-Imaging CHErenkov (NICHE) Array will measure the flux and nuclear composition evolution of cosmic rays (CRs) from below 1 PeV to 1 EeV in its eventual full deployment. NICHE will co-measure CR air showers with TA/TALE and will initially be deployed to observe events simultaneously with the TALE telescopes acting in imaging-Cherenkov mode, providing the first hybrid-Cherenkov (simultaneous imaging and non-imaging Cherenkov) measurements of CRs in the Knee region of the CR energy spectrum. NICHE uses easily deployable detectors to measure the amplitude and time-spread of the air-shower Cherenkov signal to achieve an event-by-event measurement of Xmax and energy, each with excellent resolution. First generation detectors are under construction and will form an initial prototype array (jNICHE) that will be deployed in early 2017 at the TA/TALE site. In this talk, the NICHE design, array performance, jNICHE development, and status will be discussed as well as NICHE's ability to measure the cosmic ray nuclear composition as a function of energy.

  18. The HERA-B ring imaging Cherenkov counter

    Energy Technology Data Exchange (ETDEWEB)

    Arino, I.; Bastos, J.; Broemmelsiek, D.; Carvalho, J.; Chmeissani, M.; Conde, P.; Davila, J.; Dujmic, D.; Eckmann, R.; Garrido, L.; Gascon, D.; Hamacher, T.; Gorisek, A.; Ivaniouchenkov, I.; Ispirian, M.; Karabekian, S.; Kim, M.; Korpar, S.; Krizan, P. E-mail: peter.krizan@ijs.si; Kupper, S.; Lau, K.; Maas, P.; McGill, J.; Miquel, R.; Murthy, N.; Peralta, D.; Pestotnik, R.; Pyrlik, J.; Ramachandran, S.; Reeves, K.; Rosen, J.; Schmidt-Parzefall, W.; Schwarz, A.; Schwitters, R.F.; Siero, X.; Staric, M.; Stanovnik, A.; Skrk, D.; Zivko, T

    2004-01-11

    The HERA-B RICH uses a radiation path length of 2.8 m in C{sub 4}F{sub 10} gas and a large 24 m{sup 2} spherical mirror for imaging Cherenkov rings. The photon detector consists of 2240 Hamamatsu multi-anode photomultipliers with about 27 000 channels. A 2:1 reducing two-lens telescope in front of each photomultiplier tube increases the sensitive area at the expense of increased pixel size, resulting in a contribution to the resolution which roughly matches that of dispersion. The counter was completed in January of 1999, and its performance has been steady and reliable over the years it has been in operation. The design performance of the Ring Imaging Cherenkov counter was fully reached: the average number of detected photons in the RICH for a {beta}=1 particle was found to be 33 with a single-hit resolution of 0.7 and 1 mrad in the fine and coarse granularity regions, respectively.

  19. The HERA-B ring imaging Cherenkov counter

    Science.gov (United States)

    Ariño, I.; Bastos, J.; Broemmelsiek, D.; Carvalho, J.; Chmeissani, M.; Conde, P.; Davila, J.; Dujmić, D.; Eckmann, R.; Garrido, L.; Gascon, D.; Hamacher, T.; Gorišek, A.; Ivaniouchenkov, I.; Ispirian, M.; Karabekian, S.; Kim, M.; Korpar, S.; Križan, P.; Kupper, S.; Lau, K.; Maas, P.; McGill, J.; Miquel, R.; Murthy, N.; Peralta, D.; Pestotnik, R.; Pyrlik, J.; Ramachandran, S.; Reeves, K.; Rosen, J.; Schmidt-Parzefall, W.; Schwarz, A.; Schwitters, R. F.; Siero, X.; Starič, M.; Stanovnik, A.; Škrk, D.; Živko, T.

    2004-01-01

    The HERA-B RICH uses a radiation path length of 2.8 m in C 4F 10 gas and a large 24 m2 spherical mirror for imaging Cherenkov rings. The photon detector consists of 2240 Hamamatsu multi-anode photomultipliers with about 27 000 channels. A 2:1 reducing two-lens telescope in front of each photomultiplier tube increases the sensitive area at the expense of increased pixel size, resulting in a contribution to the resolution which roughly matches that of dispersion. The counter was completed in January of 1999, and its performance has been steady and reliable over the years it has been in operation. The design performance of the Ring Imaging Cherenkov counter was fully reached: the average number of detected photons in the RICH for a β=1 particle was found to be 33 with a single-hit resolution of 0.7 and 1 mrad in the fine and coarse granularity regions, respectively.

  20. Design of a 7m Davies-Cotton Cherenkov telescope mount for the high energy section of the Cherenkov Telescope Array

    CERN Document Server

    Rovero, A C; Vallejo, G; Supanitsky, A D; Actis, M; Botani, A; Ochoa, I; Hughes, G

    2013-01-01

    The Cherenkov Telescope Array is the next generation ground-based observatory for the study of very-high-energy gamma-rays. It will provide an order of magnitude more sensitivity and greater angular resolution than present systems as well as an increased energy range (20 GeV to 300 TeV). For the high energy portion of this range, a relatively large area has to be covered by the array. For this, the construction of ~7 m diameter Cherenkov telescopes is an option under study. We have proposed an innovative design of a Davies-Cotton mount for such a telescope, within Cherenkov Telescope Array specifications, and evaluated its mechanical and optical performance. The mount is a reticulated-type structure with steel tubes and tensioned wires, designed in three main parts to be assembled on site. In this work we show the structural characteristics of the mount and the optical aberrations at the focal plane for three options of mirror facet size caused by mount deformations due to wind and gravity.

  1. All Sky Cameras for the characterization of the Cherenkov Telescope Array candidate sites

    CERN Document Server

    Mandát, Dušan; Ebr, Jan; Hrabovský, Miroslav; Prouza, Michael; Bulik, Tomasz; Allekotte, Ingomar

    2013-01-01

    The All Sky Camera (ASC) was developed as a universal device for the monitoring of the night sky quality. Eight ASCs are already installed and measure night sky parameters at eight of the candidate sites of the Cherenkov Telescope Array (CTA) gamma-ray observatory. The ACS system consists of an astronomical CCD camera, a fish eye lens, a control computer and associated electronics. The measurement is carried out during astronomical night. The images are automatically taken every 5 minutes and automatically processed using the control computer of the device. The analysis results are the cloud fraction (the percentage of the sky covered by clouds) and night sky brightness (in mag/arcsec$^{2}$)

  2. Evaluation of Photo Multiplier Tube candidates for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Mirzoyan, R. [Max-Planck-Institute for Physics, Föhringer Ring 6, 80805 Munich (Germany); Müller, D., E-mail: dmueller@mpp.mpg.de [Max-Planck-Institute for Physics, Föhringer Ring 6, 80805 Munich (Germany); Hanabata, Y. [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hose, J.; Menzel, U. [Max-Planck-Institute for Physics, Föhringer Ring 6, 80805 Munich (Germany); Nakajima, D.; Takahashi, M. [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Teshima, M. [Max-Planck-Institute for Physics, Föhringer Ring 6, 80805 Munich (Germany); Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Toyama, T. [Max-Planck-Institute for Physics, Föhringer Ring 6, 80805 Munich (Germany); Yamamoto, T. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada-ku, Kobe, Hyogo 658-0072 (Japan)

    2016-07-11

    Photo Multiplier Tubes (PMTs) are the most wide spread detectors for fast, faint light signals. Six years ago, an improvement program for the PMT candidates for the Cherenkov Telescope Array (CTA) project was started with the companies Hamamatsu Photonics K.K. and Electron Tubes Enterprises Ltd. (ETE). For maximizing the performance of the CTA imaging cameras we need PMTs with outstanding good quantum efficiency, high photoelectron collection efficiency, short pulse width, very low afterpulse probability and transit time spread. We will report on the measurements of PMT R-12992-100 from Hamamatsu as their final product and the PMT D573KFLSA as one of the latest test versions from ETE as candidate PMTs for the CTA project.

  3. Reconfigurable ASIC for a Low Level Trigger System in Cherenkov Telescope Cameras

    CERN Document Server

    Gascon, David; Blanch, Oscar; Boix, Joan; Delagnes, Eric; Delgado, Carlos; Freixas, Lluís; Guilloux, Fabrice; López-Coto, Rubén; Griffiths, Scott; Martínez, Gustavo; Martínez, Oscar; Sanuy, Andreu; Tejedor, Luis Ángel

    2016-01-01

    A versatile and reconfigurable ASIC is presented, which implements two different concepts of low level trigger (L0) for Cherenkov telescopes: the Majority trigger (sum of discriminated inputs) and the Sum trigger concept (analogue clipped sum of inputs). Up to 7 input signals can be processed following one or both of the previous trigger concepts. Each differential pair output of the discriminator is also available as a LVDS output. Differential circuitry using local feedback allows the ASIC to achieve high speed (500 MHz) while maintaining good linearity in a 1 Vpp range. Experimental results are presented. A number of prototype camera designs of the Cherenkov Telescope Array (CTA) project will use this ASIC.

  4. Prototyping of Hexagonal Light Concentrators for the Large-Sized Telescopes of the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    Reflective light concentrators with hexagonal entrance and exit apertures are frequently used at the focal plane of gamma-ray telescopes in order to reduce the size of the dead area caused by the geometries of the photodetectors, as well as to reduce the amount of stray light entering at large field angles. The focal plane of the large-sized telescopes (LSTs) of the Cherenkov Telescope Array (CTA) will also be covered by hexagonal light concentrators with an entrance diameter of 50 mm (side to side) to maximize the active area and the photon collection efficiency, enabling realization of a very low energy threshold of 20 GeV. We have developed a prototype of this LST light concentrator with an injection-molded plastic cone and a specular multilayer film. The shape of the plastic cone has been optimized with a cubic B\\'{e}zier curve and a ray-tracing simulation. We have also developed a multilayer film with very high reflectance ($\\gtrsim95$\\%) along wide wavelength and angle coverage. The current status of th...

  5. Construction of a medium-sized Schwarzschild-Couder telescope as a candidate for the Cherenkov Telescope Array: development of the optical alignment system

    CERN Document Server

    Nieto, D; Humensky, B; Kaaret, P; Limon, M; Mognet, I; Peck, A; Petrashyk, A; Ribeiro, D; Rousselle, J; Stevenson, B; Vassiliev, V; Yu, P

    2015-01-01

    The Cherenkov Telescope Array (CTA) is an international project for a next-generation ground-based gamma-ray observatory. CTA, conceived as an array of tens of imaging atmospheric Cherenkov telescopes, comprising small, medium and large-size telescopes, is aiming to improve on the sensitivity of current-generation experiments by an order of magnitude and provide energy coverage from 20 GeV to more than 300 TeV. The Schwarzschild-Couder (SC) medium-size candidate telescope model features a novel aplanatic two-mirror optical design capable of a wide field-of-view with significantly improved imaging resolution as compared to the traditional Davis-Cotton optics design. Achieving this imaging resolution imposes strict alignment requirements to be accomplished by a dedicated alignment system. In this contribution we present the status of the development of the SC optical alignment system, soon to be materialized in a full-scale prototype SC medium-size telescope at the Fred Lawrence Whipple Observatory in southern ...

  6. The ASTRI prototype and mini-array: precursor telescopes for the Cherenkov Telescope Array

    Science.gov (United States)

    Pareschi, Giovanni

    2016-07-01

    In the framework of the Cherenkov Telescope Array (CTA) Observatory, the Italian National Institute of Astrophysics (INAF) has recently inaugurated in Sicily (Italy), at the Serra La Nave astronomical site on the slopes of Mount Etna, a large field of view (9.6 degrees) dual-mirror prototype (ASTRI SST-2M) of the CTA small size class of telescopes. CTA plans to install about 70 small size telescopes in the southern site to allow the study of the gamma rays from a few TeV up to hundreds of TeV. The ASTRI SST-2M telescope prototype has been developed following an end-to-end approach, since it includes the entire system of structure, mirror's optics (primary and secondary mirrors), camera, and control/acquisition software. Although it is a technological prototype, the ASTRI SST-2M prototype will be able to perform systematic monitoring of bright TeV sources. A remarkable improvement in terms of performance could come from the operation of the ASTRI mini-array, led by INAF in synergy with the Universidade de Sao Paulo (Brazil) and the North-West University (South Africa) and with also a contribution by INFN. The ASTRI mini-array will be composed of at least nine ASTRI SST-2M units. It is proposed as one of the CTA mini-array of telescope precursors and initial seeds of CTA, to be installed at the final CTA southern site. Apart from the assessment of a number of technological aspects related to CTA, the ASTRI mini-array will extend and improve the sensitivity, similar to the H.E.S.S. one in the 1-10 TeV energy range, up to about 100 TeV.

  7. Divergent pointing with the Cherenkov Telescope Array for surveys and beyond

    CERN Document Server

    ,

    2015-01-01

    The galactic and extragalactic surveys are two of the main proposed legacy projects of the Cherenkov Telescope Array (CTA), providing an unbiased view of the Universe at energies above tens of GeV. Considering Cherenkov telescopes' limited field of view ($<10^\\circ$), the time needed for those projects is large. The many telescopes of CTA will allow taking full advantage of new pointing modes in which telescopes point slightly offset from one another. This divergent pointing mode leads to an increase of the array field of view ($\\sim 14^\\circ$ or larger) with competitive performance compared to normal pointing. We present here a study of the performance of the divergent pointing for different array configurations and number of telescopes. We briefly discuss the prospect of using divergent pointing for surveys.

  8. Detection of VHE $\\gamma$-rays from Mkn 421 with the HEGRA Cherenkov telescopes

    CERN Document Server

    Petry, D; Konopelko, A K; Fernández, J

    1996-01-01

    A detection of Gamma-rays from Mkn 421 at energies above 1 TeV is reported, based on observations made in December 1994 - May 1995 with the first two HEGRA Cherenkov telescopes. From the image analysis, 111 excess gamma candidates are obtained from the 26 h Telescope #1 (CT1) dataset (significance 4.0 sigma) and 218 from the 41 h Telescope #2 (CT2) dataset (significance 4.2 sigma) at zenith angles theta < 25 degrees. The combined significance is approx. 5.8 sigma. This is the second detection of Mkn 421 at TeV energies. The average excess rate is 4.3 +- 1.0 h^-1 for CT1 and 5.4 +- 1.3 h^-1 for CT2. Comparison with our contemporary observations of the Crab Nebula indicates that Mkn 421 has a steeper spectrum than the Crab Nebula above 1 TeV. Under the assumption that the spectrum of Mkn 421 follows a power law, we obtain a differential spectral index of 3.6 +- 1.0 and an integral flux above 1 TeV of 8 (+-2)_(Stat) (+6-3)_(Syst) x 10^-12 cm^-2 s^-1 from a comparison with Monte Carlo data. This flux is smalle...

  9. A major electronics upgrade for the H.E.S.S. Cherenkov telescopes 1-4

    CERN Document Server

    Giavitto, G; Balzer, A.; Berge, D.; Brun, F.; Chaminade, T.; Delagnes, E.; Fontaine, G.; Füßling, M.; Giebels, B.; Glicenstein, J.F.; Gräber, T.; Hinton, J.A.; Jahnke, A.; Klepser, S.; Kossatz, M.; Kretzschmann, A.; Lefranc, V.; Leich, H.; Lüdecke, H.; Manigot, P.; Marandon, V.; Moulin, E.; de, M.; Nayman, P.; Penno, M.; Ross, D.; Salek, D.; Schade, M.; Schwab, T.; Simoni, R.; Stegmann, C.; Thornhill, J.; Toussenel, F.

    2015-01-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of imaging atmospheric Cherenkov telescopes (IACTs) located in the Khomas Highland in Namibia. It consists of four 12-m telescopes (CT1-4), which started operations in 2003, and a 28-m diameter one (CT5), which was brought online in 2012. It is the only IACT system featuring telescopes of different sizes, which provides sensitivity for gamma rays across a very wide energy range, from ~30 GeV up to ~100 TeV. Since the camera electronics of CT1-4 are much older than the one of CT5, an upgrade is being carried out; first deployment was in 2015, full operation is planned for 2016. The goals of this upgrade are threefold: reducing the dead time of the cameras, improving the overall performance of the array and reducing the system failure rate related to aging. Upon completion, the upgrade will assure the continuous operation of H.E.S.S. at its full sensitivity until and possibly beyond the advent of CTA. In the design of the new components, several CTA con...

  10. Using muon rings for the optical throughput calibration of the SST-1M prototype for the Cherenkov Telescope Array

    CERN Document Server

    Toscano, S; Bilnik, W; Błocki, J; Bogacz, L; Bulik, T; Cadoux, F; Christov, A; Curyło, M; della Volpe, D; Dyrda, M; Favre, Y; Frankowski, A; Grudnik, Ł; Grudzińska, M; Heller, M; Idźkowski, B; Jamrozy, M; Janiak, M; Kasperek, J; Lalik, K; Lyard, E; Mach, E; Mandat, D; Marszałek, A; Michałowski, J; Moderski, R; Montaruli, T; Neronov, A; Niemiec, J; Ostrowski, M; Paśko, P; Pech, M; Porcelli, A; Rameez, M; Rajda, P; Schioppa, E jr; Schovanek, P; Seweryn, K; Skowron, K; Sliusar, V; Sowiński, M; Stawarz, Ł; Stodulska, M; Stodulski, M; Pujadas, I Troyano; Walter, R; Więcek, M; Zagdański, A; Ziętara, K; Żychowski, P

    2015-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) are ground-based instruments devoted to the study of very high energy gamma-rays coming from space. The detection technique consists of observing images created by the Cherenkov light emitted when gamma rays, or more generally cosmic rays, propagate through the atmosphere. While in the case of protons or gamma-rays the images present a filled and more or less elongated shape, energetic muons penetrating the atmosphere are visualised as characteristic circular rings or arcs. A relatively simple analysis of the ring images allows the reconstruction of all the relevant parameters of the detected muons, such as the energy, the impact parameter, and the incoming direction, with the final aim to use them to calibrate the total optical throughput of the given IACT telescope. We present the results of preliminary studies on the use of images created by muons as optical throughput calibrators of the single mirror small size telescope prototype SST-1M proposed for the Ch...

  11. Satellite Characterization of four candidate sites for the Cherenkov Telescope Array telescope

    CERN Document Server

    Cavazzani, S; Bulik, T; Ortolani, S

    2012-01-01

    In this paper we have evaluated the amount of available telescope time at four sites which are candidate to host the future Cherenkov Telescope Array (CTA). We use the GOES 12 data for the years 2008 and 2009. We use a homogeneous methodology presented in several previous papers to classify the nights as clear (completely cloud-free), mixed (partially cloud-covered), and covered. Additionally, for the clear nights, we have evaluated the amount of satellite stable nights which correspond to the amount of ground based photometric nights, and the clear nights corresponding to the spectroscopic nights. We have applied this model to two sites in the Northern Hemisphere (San Pedro Martir (SPM), Mexico; Izana, Canary Islands) and to two sites in the Southern Hemisphere (El Leoncito, Argentine; San Antonio de Los Cobres (SAC), Argentine). We have obtained, from the two years considered, a mean amount of cloud free nights of 68.6% at Izana, 76.0% at SPM, 70.6% at Leoncito and 70.0% at SAC. We have evaluated, among the...

  12. NectarCAM : a camera for the medium size telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Glicenstein, J-F; Barrio, J-A; Blanch~Bigas, O; Bolmont, J; Bouyjou, F; Brun, P; Chabanne, E; Champion, C; Colonges, S; Corona, P; Delagnes, E; Delgado, C; Ginzov, C Diaz; Durand, D; Ernenwein, J-P; Fegan, S; Ferreira, O; Fesquet, M; Fiasson, A; Fontaine, G; Fouque, N; Gascon, D; Giebels, B; Henault, F; Hermel, R; Hoffmann, D; Horan, D; Houles, J; Jean, P; Jocou, L; Karkar, S; Knoedlseder, J; Kossakowski, R; Lamanna, G; LeFlour, T; Lenain, J-P; Leveque, A; Louis, F; Martinez, G; Moudden, Y; Moulin, E; Nayman, P; Nunio, F; Olive, J-F; Panazol, J-L; Pavy, S; Petrucci, P-O; Pierre, E; Prast, J; Punch, M; Ramon, P; Rateau, S; Ravel, T; Rosier-Lees, S; Sanuy, A; Shayduk, M; Sizun, P-Y; Sulanke, K-H; Tavernet, J-P; Tejedor~Alvarez, L-A; Toussenel, F; Vasileiadis, G; Voisin, V; Waegebert, V; Wischnewski, R

    2015-01-01

    NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range of ~100 GeV to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and a 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes the photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The camera trigger will be flexible so as to minimize the read-out dead-time of the NECTAr chips. NectarCAM is designed to sustain a data rate of more than 4 kHz with less than 5\\% dead time. The camera concept, the design and tests of the various subcomponents and results of thermal and electrical prototypes are presented. The design includes the mechanical structure, cooling of the electro...

  13. The Optical System for the Large Size Telescope of the Cherenkov Telescope Array

    CERN Document Server

    Hayashida, M; Teshima, M; de Almeida, U Barres; Chikawa, M; Cho, N; Fukami, S; Gadola, A; Hanabata, Y; Horns, D; Jablonski, C; Katagiri, H; Kagaya, M; Ogino, M; Okumura, A; Saito, T; Stadler, R; Steiner, S; Straumann, U; Vollhardt, A; Wetteskind, H; Yamamoto, T; Yoshida, T

    2015-01-01

    The Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) is designed to achieve a threshold energy of 20 GeV. The LST optics is composed of one parabolic primary mirror 23 m in diameter and 28 m focal length. The reflector dish is segmented in 198 hexagonal, 1.51 m flat to flat mirrors. The total effective reflective area, taking into account the shadow of the mechanical structure, is about 368 m$^2$. The mirrors have a sandwich structure consisting of a glass sheet of 2.7 mm thickness, aluminum honeycomb of 60 mm thickness, and another glass sheet on the rear, and have a total weight about 47 kg. The mirror surface is produced using a sputtering deposition technique to apply a 5-layer coating, and the mirrors reach a reflectivity of $\\sim$94% at peak. The mirror facets are actively aligned during operations by an active mirror control system, using actuators, CMOS cameras and a reference laser. Each mirror facet carries a CMOS camera, which measures the position of the light spot of the optical ...

  14. Recent developments for the testing of Cherenkov Telescope Array mirrors and actuators in T\\"ubingen

    CERN Document Server

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation Cherenkov telescope facility. It will consist of a large number of segmented-mirror telescopes of three different diameters, placed in two locations, one in the northern and one in the southern hemisphere, thus covering the whole sky. The total number of mirror tiles will be on the order of 10,000, corresponding to a reflective area of ~10^4 m^2. The Institute for Astronomy and Astrophysics in T\\"ubingen (IAAT) is currently developing mirror control alignment mechanics, electronics, and software optimized for the medium sized telescopes. In addition, IAAT is participating in the CTA mirror prototype testing. In this paper we present the status of the current developments, the main results of recent tests, and plans for the production phase of the mirror control system. We also briefly present the T\\"ubingen facility for mirror testing.

  15. VERITAS The Very Energetic Radiation Imaging Telescope Array System

    CERN Document Server

    Weekes, T C; Biller, S D; Breslin, A C; Buckley, J H; Carter-Lewis, D A; Catanese, M; Cawley, M F; Dingus, B L; Fazio, G G; Fegan, D J; Finley, J; Fishman, G; Gaidos, J A; Gillanders, G H; Gorham, P W; Grindlay, J E; Hillas, A M; Huchra, J P; Kaaret, P E; Kertzman, M P; Kieda, D B; Krennrich, F; Lamb, R C; Lang, M J; Marscher, A P; Matz, S; McKay, T; Müller, D; Ong, R; Purcell, W; Rose, J; Sembroski, G H; Seward, F D; Slane, P O; Swordy, S P; Tümer, T O; Ulmer, M P; Urban, M; Wilkes, B J

    1997-01-01

    A next generation atmospheric Cherenkov observatory is described based on the Whipple Observatory $\\gamma$-ray telescope. A total of nine such imaging telescopes will be deployed in an array that will permit the maximum versatility and give high sensitivity in the 50 GeV - 50 TeV band (with maximum sensitivity from 100 GeV to 10 TeV).

  16. Aspherical mirrors for the Gamma-ray Cherenkov Telescope, a Schwarschild-Couder prototype proposed for the future Cherenkov Telescope Array

    Science.gov (United States)

    Dournaux, J. L.; Gironnet, J.; Huet, J. M.; Laporte, P.; Chadwick, P.; Dumas, D.; Pech, M.; Rulten, C. B.; Sayède, F.; Schmoll, J.; Sol, H.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project, led by an international collaboration of institutes, aims to create the world's largest next generation Very High-Energy (VHE) gamma-ray telescope array, devoted to observations in a wide band of energy, from a few tens of GeV to more than 100 TeV. The Small-Sized Telescopes (SSTs) are dedicated to the highest energy range. Seventy SSTs are planned in the baseline array design with a required lifetime of about 30 years. The GCT (Gamma-ray Cherenkov Telescope) is one of the prototypes proposed for CTA's SST sub-array. It is based on a Schwarzschild-Couder dual-mirror optical design. This configuration has the benefit of increasing the field-of-view and decreasing the masses of the telescope and of the camera. But, in spite of these many advantages, it was never implemented before in ground-based Cherenkov astronomy because of the aspherical and highly curved shape required for the mirrors. The optical design of the GCT consists of a primary 4 meter diameter mirror, segmented in six aspherical petals, a secondary monolithic 2-meter mirror and a light camera. The reduced number of segments simplifies the alignment of the telescope but complicates the shape of the petals. This, combined with the strong curvature of the secondary mirror, strongly constrains the manufacturing process. The Observatoire de Paris implemented metallic lightweight mirrors for the primary and the secondary mirrors of GCT. This choice was made possible because of the relaxed requirements of optical Cherenkov telescopes compared to optical ones. Measurements on produced mirrors show that these ones can fulfill requirements in shape, PSF and reflectivity, with a clear competition between manufacturing cost and final performance. This paper describes the design of these mirrors in the context of their characteristics and how design optimization was used to produce a lightweight design. The manufacturing process used for the prototype and planned for the

  17. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    NARCIS (Netherlands)

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S.; Asano, K.; Asorey, H.; Bähr, J.; Bais, A.; Baixeras, C.; Bajtlik, S.; Balis, D.; Bamba, A.; Barbier, C.; Barceló, M.; Barnacka, A.; Barnstedt, J.; Barres de Almeida, U.; Barrio, J. A.; Basso, S.; Bastieri, D.; Bauer, C.; Becerra, J.; Becherini, Y.; Bechtol, K.; Becker, J.; Beckmann, V.; Bednarek, W.; Behera, B.; Beilicke, M.; Belluso, M.; Benallou, M.; Benbow, W.; Berdugo, J.; Berger, K.; Bernardino, T.; Bernlöhr, K.; Biland, A.; Billotta, S.; Bird, T.; Birsin, E.; Bissaldi, E.; Blake, S.; Blanch, O.; Bobkov, A. A.; Bogacz, L.; Bogdan, M.; Boisson, C.; Boix, J.; Bolmont, J.; Bonanno, G.; Bonardi, A.; Bonev, T.; Borkowski, J.; Botner, O.; Bottani, A.; Bourgeat, M.; Boutonnet, C.; Bouvier, A.; Brau-Nogué, S.; Braun, I.; Bretz, T.; Briggs, M. S.; Brun, P.; Brunetti, L.; Buckley, J. H.; Bugaev, V.; Bühler, R.; Bulik, T.; Busetto, G.; Buson, S.; Byrum, K.; Cailles, M.; Cameron, R.; Canestrari, R.; Cantu, S.; Carmona, E.; Carosi, A.; Carr, J.; Carton, P. H.; Casiraghi, M.; Castarede, H.; Catalano, O.; Cavazzani, S.; Cazaux, S.; Cerruti, B.; Cerruti, M.; Chadwick, P. M.; Chiang, J.; Chikawa, M.; Cieślar, M.; Ciesielska, M.; Cillis, A.; Clerc, C.; Colin, P.; Colomé, J.; Compin, M.; Conconi, P.; Connaughton, V.; Conrad, J.; Contreras, J. L.; Coppi, P.; Corlier, M.; Corona, P.; Corpace, O.; Corti, D.; Cortina, J.; Costantini, H.; Cotter, G.; Courty, B.; Couturier, S.; Covino, S.; Croston, J.; Cusumano, G.; Daniel, M. K.; Dazzi, F.; Angelis, A. De; de Cea Del Pozo, E.; de Gouveia Dal Pino, E. M.; de Jager, O.; de La Calle Pérez, I.; de La Vega, G.; de Lotto, B.; de Naurois, M.; de Oña Wilhelmi, E.; de Souza, V.; Decerprit, B.; Deil, C.; Delagnes, E.; Deleglise, G.; Delgado, C.; Dettlaff, T.; di Paolo, A.; di Pierro, F.; Díaz, C.; Dick, J.; Dickinson, H.; Digel, S. W.; Dimitrov, D.; Disset, G.; Djannati-Ataï, A.; Doert, M.; Domainko, W.; Dorner, D.; Doro, M.; Dournaux, J.-L.; Dravins, D.; Drury, L.; Dubois, F.; Dubois, R.; Dubus, G.; Dufour, C.; Durand, D.; Dyks, J.; Dyrda, M.; Edy, E.; Egberts, K.; Eleftheriadis, C.; Elles, S.; Emmanoulopoulos, D.; Enomoto, R.; Ernenwein, J.-P.; Errando, M.; Etchegoyen, A.; Falcone, A. D.; Farakos, K.; Farnier, C.; Federici, S.; Feinstein, F.; Ferenc, D.; Fillin-Martino, E.; Fink, D.; Finley, C.; Finley, J. P.; Firpo, R.; Florin, D.; Föhr, C.; Fokitis, E.; Font, Ll.; Fontaine, G.; Fontana, A.; Förster, A.; Fortson, L.; Fouque, N.; Fransson, C.; Fraser, G. W.; Fresnillo, L.; Fruck, C.; Fujita, Y.; Fukazawa, Y.; Funk, S.; Gäbele, W.; Gabici, S.; Gadola, A.; Galante, N.; Gallant, Y.; García, B.; García López, R. J.; Garrido, D.; Garrido, L.; Gascón, D.; Gasq, C.; Gaug, M.; Gaweda, J.; Geffroy, N.; Ghag, C.; Ghedina, A.; Ghigo, M.; Gianakaki, E.; Giarrusso, S.; Giavitto, G.; Giebels, B.; Giro, E.; Giubilato, P.; Glanzman, T.; Glicenstein, J.-F.; Gochna, M.; Golev, V.; Gómez Berisso, M.; González, A.; González, F.; Grañena, F.; Graciani, R.; Granot, J.; Gredig, R.; Green, A.; Greenshaw, T.; Grimm, O.; Grube, J.; Grudzińska, M.; Grygorczuk, J.; Guarino, V.; Guglielmi, L.; Guilloux, F.; Gunji, S.; Gyuk, G.; Hadasch, D.; Haefner, D.; Hagiwara, R.; Hahn, J.; Hallgren, A.; Hara, S.; Hardcastle, M. J.; Hassan, T.; Haubold, T.; Hauser, M.; Hayashida, M.; Heller, R.; Henri, G.; Hermann, G.; Herrero, A.; Hinton, J. A.; Hoffmann, D.; Hofmann, W.; Hofverberg, P.; Horns, D.; Hrupec, D.; Huan, H.; Huber, B.; Huet, J.-M.; Hughes, G.; Hultquist, K.; Humensky, T. B.; Huppert, J.-F.; Ibarra, A.; Illa, J. M.; Ingjald, J.; Inoue, Y.; Inoue, S.; Ioka, K.; Jablonski, C.; Jacholkowska, A.; Janiak, M.; Jean, P.; Jensen, H.; Jogler, T.; Jung, I.; Kaaret, P.; Kabuki, S.; Kakuwa, J.; Kalkuhl, C.; Kankanyan, R.; Kapala, M.; Karastergiou, A.; Karczewski, M.; Karkar, S.; Karlsson, N.; Kasperek, J.; Katagiri, H.; Katarzyński, K.; Kawanaka, N.; Kȩdziora, B.; Kendziorra, E.; Khélifi, B.; Kieda, D.; Kifune, T.; Kihm, T.; Klepser, S.; Kluźniak, W.; Knapp, J.; Knappy, A. R.; Kneiske, T.; Knödlseder, J.; Köck, F.; Kodani, K.; Kohri, K.; Kokkotas, K.; Komin, N.; Konopelko, A.; Kosack, K.; Kossakowski, R.; Kostka, P.; Kotuła, J.; Kowal, G.; Kozioł, J.; Krähenbühl, T.; Krause, J.; Krawczynski, H.; Krennrich, F.; Kretzschmann, A.; Kubo, H.; Kudryavtsev, V. A.; Kushida, J.; La Barbera, N.; La Parola, V.; La Rosa, G.; López, A.; Lamanna, G.; Laporte, P.; Lavalley, C.; Le Flour, T.; Le Padellec, A.; Lenain, J.-P.; Lessio, L.; Lieunard, B.; Lindfors, E.; Liolios, A.; Lohse, T.; Lombardi, S.; Lopatin, A.; Lorenz, E.; Lubiński, P.; Luz, O.; Lyard, E.; Maccarone, M. C.; Maccarone, T.; Maier, G.; Majumdar, P.; Maltezos, S.; Małkiewicz, P.; Mañá, C.; Manalaysay, A.; Maneva, G.; Mangano, A.; Manigot, P.; Marín, J.; Mariotti, M.; Markoff, S.; Martínez, G.; Martínez, M.; Mastichiadis, A.; Matsumoto, H.; Mattiazzo, S.; Mazin, D.; McComb, T. J. L.; McCubbin, N.; McHardy, I.; Medina, C.; Melkumyan, D.; Mendes, A.; Mertsch, P.; Meucci, M.; Michałowski, J.; Micolon, P.; Mineo, T.; Mirabal, N.; Mirabel, F.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Moal, B.; Moderski, R.; Molinari, E.; Monteiro, I.; Moralejo, A.; Morello, C.; Mori, K.; Motta, G.; Mottez, F.; Moulin, E.; Mukherjee, R.; Munar, P.; Muraishi, H.; Murase, K.; Murphy, A. Stj.; Nagataki, S.; Naito, T.; Nakamori, T.; Nakayama, K.; Naumann, C.; Naumann, D.; Nayman, P.; Nedbal, D.; Niedźwiecki, A.; Niemiec, J.; Nikolaidis, A.; Nishijima, K.; Nolan, S. J.; Nowak, N.; O'Brien, P. T.; Ochoa, I.; Ohira, Y.; Ohishi, M.; Ohka, H.; Okumura, A.; Olivetto, C.; Ong, R. A.; Orito, R.; Orr, M.; Osborne, J. P.; Ostrowski, M.; Otero, L.; Otte, A. N.; Ovcharov, E.; Oya, I.; Oziȩbło, A.; Paiano, S.; Pallota, J.; Panazol, J. L.; Paneque, D.; Panter, M.; Paoletti, R.; Papyan, G.; Paredes, J. M.; Pareschi, G.; Parsons, R. D.; Paz Arribas, M.; Pedaletti, G.; Pepato, A.; Persic, M.; Petrucci, P. O.; Peyaud, B.; Piechocki, W.; Pita, S.; Pivato, G.; Płatos, Ł.; Platzer, R.; Pogosyan, L.; Pohl, M.; Pojmański, G.; Ponz, J. D.; Potter, W.; Prandini, E.; Preece, R.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quel, E.; Quirrenbach, A.; Rajda, P.; Rando, R.; Rataj, M.; Raue, M.; Reimann, C.; Reimann, O.; Reimer, A.; Reimer, O.; Renaud, M.; Renner, S.; Reymond, J.-M.; Rhode, W.; Ribó, M.; Ribordy, M.; Rico, J.; Rieger, F.; Ringegni, P.; Ripken, J.; Ristori, P.; Rivoire, S.; Rob, L.; Rodriguez, S.; Roeser, U.; Romano, P.; Romero, G. E.; Rosier-Lees, S.; Rovero, A. C.; Roy, F.; Royer, S.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Russo, F.; Ryde, F.; Sacco, B.; Saggion, A.; Sahakian, V.; Saito, K.; Saito, T.; Sakaki, N.; Salazar, E.; Salini, A.; Sánchez, F.; Sánchez Conde, M. Á.; Santangelo, A.; Santos, E. M.; Sanuy, A.; Sapozhnikov, L.; Sarkar, S.; Scalzotto, V.; Scapin, V.; Scarcioffolo, M.; Schanz, T.; Schlenstedt, S.; Schlickeiser, R.; Schmidt, T.; Schmoll, J.; Schroedter, M.; Schultz, C.; Schultze, J.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schweizer, T.; Seiradakis, J.; Selmane, S.; Seweryn, K.; Shayduk, M.; Shellard, R. C.; Shibata, T.; Sikora, M.; Silk, J.; Sillanpää, A.; Sitarek, J.; Skole, C.; Smith, N.; Sobczyńska, D.; Sofo Haro, M.; Sol, H.; Spanier, F.; Spiga, D.; Spyrou, S.; Stamatescu, V.; Stamerra, A.; Starling, R. L. C.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steiner, S.; Stergioulas, N.; Sternberger, R.; Stinzing, F.; Stodulski, M.; Straumann, U.; Suárez, A.; Suchenek, M.; Sugawara, R.; Sulanke, K. H.; Sun, S.; Supanitsky, A. D.; Sutcliffe, P.; Szanecki, M.; Szepieniec, T.; Szostek, A.; Szymkowiak, A.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, K.; Takalo, L.; Takami, H.; Talbot, R. G.; Tam, P. H.; Tanaka, M.; Tanimori, T.; Tavani, M.; Tavernet, J.-P.; Tchernin, C.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Tenzer, C.; Terada, Y.; Terrier, R.; Teshima, M.; Testa, V.; Tibaldo, L.; Tibolla, O.; Tluczykont, M.; Todero Peixoto, C. J.; Tokanai, F.; Tokarz, M.; Toma, K.; Torres, D. F.; Tosti, G.; Totani, T.; Toussenel, F.; Vallania, P.; Vallejo, G.; van der Walt, J.; van Eldik, C.; Vandenbroucke, J.; Vankov, H.; Vasileiadis, G.; Vassiliev, V. V.; Vegas, I.; Venter, L.; Vercellone, S.; Veyssiere, C.; Vialle, J. P.; Videla, M.; Vincent, P.; Vink, J.; Vlahakis, N.; Vlahos, L.; Vogler, P.; Vollhardt, A.; Volpe, F.; von Gunten, H. P.; Vorobiov, S.; Wagner, S.; Wagner, R. M.; Wagner, B.; Wakely, S. P.; Walter, P.; Walter, R.; Warwick, R.; Wawer, P.; Wawrzaszek, R.; Webb, N.; Wegner, P.; Weinstein, A.; Weitzel, Q.; Welsing, R.; Wetteskind, H.; White, R.; Wierzcholska, A.; Wilkinson, M. I.; Williams, D. A.; Winde, M.; Wischnewski, R.; Wiśniewski, Ł.; Wolczko, A.; Wood, M.; Xiong, Q.; Yamamoto, T.; Yamaoka, K.; Yamazaki, R.; Yanagita, S.; Yoffo, B.; Yonetani, M.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.; Zabalza, V.; Zagdański, A.; Zajczyk, A.; Zdziarski, A.; Zech, A.; Ziȩtara, K.; Ziółkowski, P.; Zitelli, V.; Zychowski, P.

    2011-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to b

  18. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    NARCIS (Netherlands)

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S.; Asano, K.; Asorey, H.; Bähr, J.; Bais, A.; Baixeras, C.; Bajtlik, S.; Balis, D.; Bamba, A.; Barbier, C.; Barceló, M.; Barnacka, A.; Barnstedt, J.; Barres de Almeida, U.; Barrio, J. A.; Basso, S.; Bastieri, D.; Bauer, C.; Becerra, J.; Becherini, Y.; Bechtol, K.; Becker, J.; Beckmann, V.; Bednarek, W.; Behera, B.; Beilicke, M.; Belluso, M.; Benallou, M.; Benbow, W.; Berdugo, J.; Berger, K.; Bernardino, T.; Bernlöhr, K.; Biland, A.; Billotta, S.; Bird, T.; Birsin, E.; Bissaldi, E.; Blake, S.; Blanch, O.; Bobkov, A. A.; Bogacz, L.; Bogdan, M.; Boisson, C.; Boix, J.; Bolmont, J.; Bonanno, G.; Bonardi, A.; Bonev, T.; Borkowski, J.; Botner, O.; Bottani, A.; Bourgeat, M.; Boutonnet, C.; Bouvier, A.; Brau-Nogué, S.; Braun, I.; Bretz, T.; Briggs, M. S.; Brun, P.; Brunetti, L.; Buckley, J. H.; Bugaev, V.; Bühler, R.; Bulik, T.; Busetto, G.; Buson, S.; Byrum, K.; Cailles, M.; Cameron, R.; Canestrari, R.; Cantu, S.; Carmona, E.; Carosi, A.; Carr, J.; Carton, P. H.; Casiraghi, M.; Castarede, H.; Catalano, O.; Cavazzani, S.; Cazaux, S.; Cerruti, B.; Cerruti, M.; Chadwick, P. M.; Chiang, J.; Chikawa, M.; Cieślar, M.; Ciesielska, M.; Cillis, A.; Clerc, C.; Colin, P.; Colomé, J.; Compin, M.; Conconi, P.; Connaughton, V.; Conrad, J.; Contreras, J. L.; Coppi, P.; Corlier, M.; Corona, P.; Corpace, O.; Corti, D.; Cortina, J.; Costantini, H.; Cotter, G.; Courty, B.; Couturier, S.; Covino, S.; Croston, J.; Cusumano, G.; Daniel, M. K.; Dazzi, F.; Angelis, A. De; de Cea Del Pozo, E.; de Gouveia Dal Pino, E. M.; de Jager, O.; de La Calle Pérez, I.; de La Vega, G.; de Lotto, B.; de Naurois, M.; de Oña Wilhelmi, E.; de Souza, V.; Decerprit, B.; Deil, C.; Delagnes, E.; Deleglise, G.; Delgado, C.; Dettlaff, T.; di Paolo, A.; di Pierro, F.; Díaz, C.; Dick, J.; Dickinson, H.; Digel, S. W.; Dimitrov, D.; Disset, G.; Djannati-Ataï, A.; Doert, M.; Domainko, W.; Dorner, D.; Doro, M.; Dournaux, J.-L.; Dravins, D.; Drury, L.; Dubois, F.; Dubois, R.; Dubus, G.; Dufour, C.; Durand, D.; Dyks, J.; Dyrda, M.; Edy, E.; Egberts, K.; Eleftheriadis, C.; Elles, S.; Emmanoulopoulos, D.; Enomoto, R.; Ernenwein, J.-P.; Errando, M.; Etchegoyen, A.; Falcone, A. D.; Farakos, K.; Farnier, C.; Federici, S.; Feinstein, F.; Ferenc, D.; Fillin-Martino, E.; Fink, D.; Finley, C.; Finley, J. P.; Firpo, R.; Florin, D.; Föhr, C.; Fokitis, E.; Font, Ll.; Fontaine, G.; Fontana, A.; Förster, A.; Fortson, L.; Fouque, N.; Fransson, C.; Fraser, G. W.; Fresnillo, L.; Fruck, C.; Fujita, Y.; Fukazawa, Y.; Funk, S.; Gäbele, W.; Gabici, S.; Gadola, A.; Galante, N.; Gallant, Y.; García, B.; García López, R. J.; Garrido, D.; Garrido, L.; Gascón, D.; Gasq, C.; Gaug, M.; Gaweda, J.; Geffroy, N.; Ghag, C.; Ghedina, A.; Ghigo, M.; Gianakaki, E.; Giarrusso, S.; Giavitto, G.; Giebels, B.; Giro, E.; Giubilato, P.; Glanzman, T.; Glicenstein, J.-F.; Gochna, M.; Golev, V.; Gómez Berisso, M.; González, A.; González, F.; Grañena, F.; Graciani, R.; Granot, J.; Gredig, R.; Green, A.; Greenshaw, T.; Grimm, O.; Grube, J.; Grudzińska, M.; Grygorczuk, J.; Guarino, V.; Guglielmi, L.; Guilloux, F.; Gunji, S.; Gyuk, G.; Hadasch, D.; Haefner, D.; Hagiwara, R.; Hahn, J.; Hallgren, A.; Hara, S.; Hardcastle, M. J.; Hassan, T.; Haubold, T.; Hauser, M.; Hayashida, M.; Heller, R.; Henri, G.; Hermann, G.; Herrero, A.; Hinton, J. A.; Hoffmann, D.; Hofmann, W.; Hofverberg, P.; Horns, D.; Hrupec, D.; Huan, H.; Huber, B.; Huet, J.-M.; Hughes, G.; Hultquist, K.; Humensky, T. B.; Huppert, J.-F.; Ibarra, A.; Illa, J. M.; Ingjald, J.; Inoue, Y.; Inoue, S.; Ioka, K.; Jablonski, C.; Jacholkowska, A.; Janiak, M.; Jean, P.; Jensen, H.; Jogler, T.; Jung, I.; Kaaret, P.; Kabuki, S.; Kakuwa, J.; Kalkuhl, C.; Kankanyan, R.; Kapala, M.; Karastergiou, A.; Karczewski, M.; Karkar, S.; Karlsson, N.; Kasperek, J.; Katagiri, H.; Katarzyński, K.; Kawanaka, N.; Kȩdziora, B.; Kendziorra, E.; Khélifi, B.; Kieda, D.; Kifune, T.; Kihm, T.; Klepser, S.; Kluźniak, W.; Knapp, J.; Knappy, A. R.; Kneiske, T.; Knödlseder, J.; Köck, F.; Kodani, K.; Kohri, K.; Kokkotas, K.; Komin, N.; Konopelko, A.; Kosack, K.; Kossakowski, R.; Kostka, P.; Kotuła, J.; Kowal, G.; Kozioł, J.; Krähenbühl, T.; Krause, J.; Krawczynski, H.; Krennrich, F.; Kretzschmann, A.; Kubo, H.; Kudryavtsev, V. A.; Kushida, J.; La Barbera, N.; La Parola, V.; La Rosa, G.; López, A.; Lamanna, G.; Laporte, P.; Lavalley, C.; Le Flour, T.; Le Padellec, A.; Lenain, J.-P.; Lessio, L.; Lieunard, B.; Lindfors, E.; Liolios, A.; Lohse, T.; Lombardi, S.; Lopatin, A.; Lorenz, E.; Lubiński, P.; Luz, O.; Lyard, E.; Maccarone, M. C.; Maccarone, T.; Maier, G.; Majumdar, P.; Maltezos, S.; Małkiewicz, P.; Mañá, C.; Manalaysay, A.; Maneva, G.; Mangano, A.; Manigot, P.; Marín, J.; Mariotti, M.; Markoff, S.; Martínez, G.; Martínez, M.; Mastichiadis, A.; Matsumoto, H.; Mattiazzo, S.; Mazin, D.; McComb, T. J. L.; McCubbin, N.; McHardy, I.; Medina, C.; Melkumyan, D.; Mendes, A.; Mertsch, P.; Meucci, M.; Michałowski, J.; Micolon, P.; Mineo, T.; Mirabal, N.; Mirabel, F.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Moal, B.; Moderski, R.; Molinari, E.; Monteiro, I.; Moralejo, A.; Morello, C.; Mori, K.; Motta, G.; Mottez, F.; Moulin, E.; Mukherjee, R.; Munar, P.; Muraishi, H.; Murase, K.; Murphy, A. Stj.; Nagataki, S.; Naito, T.; Nakamori, T.; Nakayama, K.; Naumann, C.; Naumann, D.; Nayman, P.; Nedbal, D.; Niedźwiecki, A.; Niemiec, J.; Nikolaidis, A.; Nishijima, K.; Nolan, S. J.; Nowak, N.; O'Brien, P. T.; Ochoa, I.; Ohira, Y.; Ohishi, M.; Ohka, H.; Okumura, A.; Olivetto, C.; Ong, R. A.; Orito, R.; Orr, M.; Osborne, J. P.; Ostrowski, M.; Otero, L.; Otte, A. N.; Ovcharov, E.; Oya, I.; Oziȩbło, A.; Paiano, S.; Pallota, J.; Panazol, J. L.; Paneque, D.; Panter, M.; Paoletti, R.; Papyan, G.; Paredes, J. M.; Pareschi, G.; Parsons, R. D.; Paz Arribas, M.; Pedaletti, G.; Pepato, A.; Persic, M.; Petrucci, P. O.; Peyaud, B.; Piechocki, W.; Pita, S.; Pivato, G.; Płatos, Ł.; Platzer, R.; Pogosyan, L.; Pohl, M.; Pojmański, G.; Ponz, J. D.; Potter, W.; Prandini, E.; Preece, R.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quel, E.; Quirrenbach, A.; Rajda, P.; Rando, R.; Rataj, M.; Raue, M.; Reimann, C.; Reimann, O.; Reimer, A.; Reimer, O.; Renaud, M.; Renner, S.; Reymond, J.-M.; Rhode, W.; Ribó, M.; Ribordy, M.; Rico, J.; Rieger, F.; Ringegni, P.; Ripken, J.; Ristori, P.; Rivoire, S.; Rob, L.; Rodriguez, S.; Roeser, U.; Romano, P.; Romero, G. E.; Rosier-Lees, S.; Rovero, A. C.; Roy, F.; Royer, S.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Russo, F.; Ryde, F.; Sacco, B.; Saggion, A.; Sahakian, V.; Saito, K.; Saito, T.; Sakaki, N.; Salazar, E.; Salini, A.; Sánchez, F.; Sánchez Conde, M. Á.; Santangelo, A.; Santos, E. M.; Sanuy, A.; Sapozhnikov, L.; Sarkar, S.; Scalzotto, V.; Scapin, V.; Scarcioffolo, M.; Schanz, T.; Schlenstedt, S.; Schlickeiser, R.; Schmidt, T.; Schmoll, J.; Schroedter, M.; Schultz, C.; Schultze, J.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schweizer, T.; Seiradakis, J.; Selmane, S.; Seweryn, K.; Shayduk, M.; Shellard, R. C.; Shibata, T.; Sikora, M.; Silk, J.; Sillanpää, A.; Sitarek, J.; Skole, C.; Smith, N.; Sobczyńska, D.; Sofo Haro, M.; Sol, H.; Spanier, F.; Spiga, D.; Spyrou, S.; Stamatescu, V.; Stamerra, A.; Starling, R. L. C.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steiner, S.; Stergioulas, N.; Sternberger, R.; Stinzing, F.; Stodulski, M.; Straumann, U.; Suárez, A.; Suchenek, M.; Sugawara, R.; Sulanke, K. H.; Sun, S.; Supanitsky, A. D.; Sutcliffe, P.; Szanecki, M.; Szepieniec, T.; Szostek, A.; Szymkowiak, A.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, K.; Takalo, L.; Takami, H.; Talbot, R. G.; Tam, P. H.; Tanaka, M.; Tanimori, T.; Tavani, M.; Tavernet, J.-P.; Tchernin, C.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Tenzer, C.; Terada, Y.; Terrier, R.; Teshima, M.; Testa, V.; Tibaldo, L.; Tibolla, O.; Tluczykont, M.; Todero Peixoto, C. J.; Tokanai, F.; Tokarz, M.; Toma, K.; Torres, D. F.; Tosti, G.; Totani, T.; Toussenel, F.; Vallania, P.; Vallejo, G.; van der Walt, J.; van Eldik, C.; Vandenbroucke, J.; Vankov, H.; Vasileiadis, G.; Vassiliev, V. V.; Vegas, I.; Venter, L.; Vercellone, S.; Veyssiere, C.; Vialle, J. P.; Videla, M.; Vincent, P.; Vink, J.; Vlahakis, N.; Vlahos, L.; Vogler, P.; Vollhardt, A.; Volpe, F.; von Gunten, H. P.; Vorobiov, S.; Wagner, S.; Wagner, R. M.; Wagner, B.; Wakely, S. P.; Walter, P.; Walter, R.; Warwick, R.; Wawer, P.; Wawrzaszek, R.; Webb, N.; Wegner, P.; Weinstein, A.; Weitzel, Q.; Welsing, R.; Wetteskind, H.; White, R.; Wierzcholska, A.; Wilkinson, M. I.; Williams, D. A.; Winde, M.; Wischnewski, R.; Wiśniewski, Ł.; Wolczko, A.; Wood, M.; Xiong, Q.; Yamamoto, T.; Yamaoka, K.; Yamazaki, R.; Yanagita, S.; Yoffo, B.; Yonetani, M.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.; Zabalza, V.; Zagdański, A.; Zajczyk, A.; Zdziarski, A.; Zech, A.; Ziȩtara, K.; Ziółkowski, P.; Zitelli, V.; Zychowski, P.

    2011-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to b

  19. Design concepts for the Cherenkov Telescope Array CTA : An advanced facility for ground-based high-energy gamma-ray astronomy

    NARCIS (Netherlands)

    Actis et al., M.; Cazaux, Stéphanie

    2011-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to b

  20. Development of a SiPM Cherenkov camera demonstrator for the CTA observatory telescopes

    OpenAIRE

    Ambrosio, Michelangelo; Ambrosi, Giovanni; Aramo, Carla; Bissaldi, Elisabetta; Boiano, Alfonso; Bonavolontà, Carmela; Fiandrini, Emanuele; Giglietto, Nicola; Giordano, Francesco; Ionica, Maria; de Lisio, Corrado; Masone, Vincenzo; Paoletti, Riccardo; Postolache, Vasile; Rugliancich, Andrea

    2016-01-01

    The Cherenkov Telescope Array (CTA) Consortium is developing the new generation of ground observatories for the detection of ultra-high energy gamma-rays. The Italian Institute of Nuclear Physics (INFN) is participating to the R&D of a possible solution for the Cherenkov photon cameras based on Silicon Photomultiplier (SiPM) detectors sensitive to Near Ultraviolet (NUV) energies. The latest NUV-HD SiPM technology achieved by the collaboration of INFN with Fondazione Bruno Kessler (FBK) is bas...

  1. A Trigger and Readout Scheme for future Cherenkov Telescope Arrays

    CERN Document Server

    Hermann, G; Foehr, C; Hofmann, W; Kihm, T; Köck, F

    2008-01-01

    The next generation of ground-based gamma-ray observatories, such as e.g. CTA, will consist of about 50-100 telescopes, and cameras with in total ~100000 to ~200000 channels. The telescopes of the core array will cover and effective area of ~ 1 km2 and will be possibly accompanied by a large halo of smaller telescopes spread over about 10 km2 . In order to make maximum use of the stereoscopic approach, a very flexible inter-telescope trigger scheme is needed which allows to couple telescopes that located up to ~1 km apart. The development of a cost effective readout scheme for the camera signals exhibits a major technological challenge. Here we present ideas on a new asynchronous inter-telescope trigger scheme, and a very cost-effective, high-bandwidth frontend to backend data transfer system, both based on standard Ethernet components and an Ethernet front-end interface based on mass production standard FPGAs.

  2. TARGET: toward a solution for the readout electronics of the Cherenkov Telescope Array

    CERN Document Server

    Tibaldo, L; Albert, A M; Funk, S; Kawashima, T; Kraus, M; Okumura, A; Sapozhnikov, L; Tajima, H; Varner, G S; Wu, T; Zink, A

    2015-01-01

    TARGET is an application specific integrated circuit (ASIC) designed to read out signals recorded by the photosensors in cameras of very-high-energy gamma-ray telescopes exploiting the imaging of Cherenkov radiation from atmospheric showers. TARGET capabilities include sampling at a high rate (typically 1 GSample/s), digitization, and triggering on the sum of four adjacent pixels. The small size, large number of channels read out per ASIC (16), low cost per channel, and deep buffer for trigger latency (~16 $\\mu$s at 1 GSample/s) make TARGET ideally suited for the readout in systems with a large number of telescopes instrumented with compact photosensors like multi-anode or silicon photomultipliers combined with dual-mirror optics. The possible advantages of such systems are better sensitivity, a larger field of view, and improved angular resolution. The two latest generations of TARGET ASICs, TARGET 5 and TARGET 7, are soon to be used for the first time in two prototypes of small-sized and medium-sized dual-m...

  3. Photon Detection Efficiency Measurements of the VERITAS Cherenkov Telescope Photomultipliers after four Years of Operation

    CERN Document Server

    Gazda, Eliza; Otte, Nepomuk; Richards, Gregory

    2016-01-01

    The photon detection efficiency of two sets of R10560-100-20 superbialkali photomultiplier tubes from Hamamatsu were measured between 200 nm and 750 nm to quantify a possible degradation of the photocathode sensitivity after four years of operation in the cameras of the VERITAS Cherenkov telescopes. A sample of 20 photomultiplier tubes, which was removed from the telescopes was compared with a sample of 20 spare photomultiplier tubes, which had been kept in storage. It is found that the average photocathode sensitivity marginally increased below 300 nm and dropped by 10% to 30% above 500 nm. The average photocathode sensitivity folded with the Cherenkov spectrum emitted by particles in air showers, however, reveals a consistent detection yield of 18.9+/-0.2% and 19.1+/-0.2% for the sample removed from the telescope and the spare sample, respectively.

  4. The ASTRI Project: a mini-array of dual-mirror small Cherenkov telescopes for CTA

    CERN Document Server

    La Palombara, N; Antonelli, L A; Bastieri, D; Bellassai, G; Belluso, M; Bigongiari, C; Billotta, S; Biondo, B; Bonanno, G; Bonnoli, G; Bruno, P; Bulgarelli, A; Canestrari, R; Capalbi, M; Caraveo, P; Carosi, A; Cascone, E; Catalano, O; Cereda, M; Conconi, P; Conforti, V; Cusumano, G; De Caprio, V; De Luca, A; Di Paola, A; Di Pierro, F; Fantinel, D; Fiorini, M; Fugazza, D; Gardiol, D; Ghigo, M; Gianotti, F; Giarrusso, S; Giro, E; Grillo, A; Impiombato, D; Incorvaia, S; La Barbera, A; La Parola, V; La Rosa, G; Lessio, L; Leto, G; Lombardi, S; Lucarelli, F; Maccarone, M C; Malaguti, G; Malaspina, G; Mangano, V; Marano, D; Martinetti, E; Millul, R; Mineo, T; Mistó, A; Morello, C; Morlino, G; Panzera, M R; Pareschi, G; Rodeghiero, G; Romano, P; Russo, F; Sacco, B; Sartore, N; Schwarz, J; Segreto, A; Sironi, G; Sottile, G; Stamerra, A; Strazzeri, E; Stringhetti, L; Tagliaferri, G; Testa, V; Timpanaro, M C; Toso, G; Tosti, G; Trifoglio, M; Vallania, P; Vercellone, S; Zitelli, V

    2013-01-01

    ASTRI is a flagship project of the Italian Ministry of Education, University and Research, which aims to develop an end-to-end prototype of the CTA small-size telescope. The proposed design is characterized by a dual-mirror Schwarzschild-Couder configuration and a camera based on Silicon photo-multipliers, two challenging but innovative technological solutions which will be adopted for the first time on a Cherenkov telescope. Here we describe the current status of the project, the expected performance and the possibility to realize a mini-array composed by a few small-size telescopes, which shall be placed at the final CTA Southern Site.

  5. FlashCam: a fully-digital camera for the medium-sized telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Pühlhofer, G; Bernhard, S; Capasso, M; Diebold, S; Eisenkolb, F; Florin, D; Föhr, C; Funk, S; Gadola, A; Garrecht, F; Hermann, G; Jung, I; Kalekin, O; Kalkuhl, C; Kasperek, J; Kihm, T; Lahmann, R; Manalaysay, A; Marszalek, A; Pfeifer, M; Rajda, P J; Reimer, O; Santangelo, A; Schanz, T; Schwab, T; Steiner, S; Straumann, U; Tenzer, C; Vollhardt, A; Weitzel, Q; Werner, F; Wolf, D; Zietara, K

    2015-01-01

    The FlashCam group is currently preparing photomultiplier-tube based cameras proposed for the medium-sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The cameras are designed around the FlashCam readout concept which is the first fully-digital readout system for Cherenkov cameras, based on commercial FADCs and FPGAs as key components for the front-end electronics modules and a high performance camera server as back-end. This contribution describes the progress of the full-scale FlashCam camera prototype currently under construction, as well as performance results also obtained with earlier demonstrator setups. Plans towards the production and implementation of FlashCams on site are also briefly presented.

  6. Feasibility of utilizing Cherenkov Telescope Array gamma-ray telescopes as free-space optical communication ground stations

    CERN Document Server

    Carrasco-Casado, Alberto; Vergaz, Ricardo; Cabrero, Juan Francisco

    2013-01-01

    The signals that will be received on Earth from deep-space probes in future implementations of free-space optical communication will be extremely weak, and new ground stations will have to be developed in order to support these links. This paper addresses the feasibility of using the technology developed in the gamma-ray telescopes that will make up the Cherenkov Telescope Array (CTA) observatory in the implementation of a new kind of ground station. Among the main advantages that these telescopes provide are the much larger apertures needed to overcome the power limitation that ground-based gamma-ray astronomy and optical communication both have. Also, the large number of big telescopes that will be built for CTA will make it possible to reduce costs by economy-scale production, enabling optical communications in the large telescopes that will be needed for future deep-space links.

  7. LHCb ring imaging Cherenkov detector mirrors

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    In a large dark room, men in white move around an immense structure some 7 m high, 10 m wide and nearly 2.5 m deep. Apparently effortlessly, they are installing the two large high-precision spherical mirrors. These mirrors will focus Cherenkov light, created by the charged particles that will traverse this detector, onto the photon detectors.

  8. Perspectives With The GCT End-to-end Prototype Of The Small-Sized Telescope Proposed For The Cherenkov Telescope Array

    CERN Document Server

    Costantini, H; Ernenwein, J -P; Laporte, Ph; Sol, H

    2016-01-01

    In the framework of the Cherenkov Telescope Array (CTA), the GCT (Gamma-ray Cherenkov Telescope) team is building a dual-mirror telescope as one of the proposed prototypes for the CTA small size class of telescopes. The telescope is based on a Schwarzschild- Couder (SC) optical design, an innovative solution for ground-based Cherenkov astronomy, which allows a compact telescope structure, a lightweight large Field of View (FoV) camera and enables good angular resolution across the entire FoV. We review the different mechanical and optical components of the telescope. In order to characterise them, the Paris prototype will be operated during several weeks in 2016. In this framework, an estimate of the expected performance of this prototype has been made, based on Monte Carlo simulations. In particular the observability of the Crab Nebula in the context of high Night Sky Background (NSB) is presented.

  9. Perspectives with the GCT end-to-end prototype of the small-sized telescope proposed for the Cherenkov telescope array

    Science.gov (United States)

    Costantini, H.; Dournaux, J.-L.; Ernenwein, J.-P.; Laporte, P.; Sol, H.

    2017-01-01

    In the framework of the Cherenkov Telescope Array (CTA), the GCT (Gamma-ray Cherenkov Telescope) team is building a dual-mirror telescope as one of the proposed prototypes for the CTA small size class of telescopes. The telescope is based on a Schwarzschild-Couder (SC) optical design, an innovative solution for ground-based Cherenkov astronomy, which allows a compact telescope structure, a lightweight large Field of View (FoV) camera and enables good angular resolution across the entire FoV. We review the different mechanical and optical components of the telescope. In order to characterise them, the Paris prototype will be operated during several weeks in 2016. In this framework, an estimate of the expected performance of this prototype has been made, based on Monte Carlo simulations. In particular the observability of the Crab Nebula in the context of high Night Sky Background (NSB) is presented.

  10. Status of the array control and data acquisition system for the Cherenkov Telescope Array

    Science.gov (United States)

    Füßling, Matthias; Oya, Igor; Balzer, Arnim; Berge, David; Borkowski, Jerzy; Conforti, Vito; Colomé, Josep; Lindemann, Rico; Lyard, Etienne; Melkumyan, David; Punch, Michael; Schwanke, Ullrich; Schwarz, Joseph; Tanci, Claudio; Tosti, Gino; Wegner, Peter; Wischnewski, Ralf; Weinstein, Amanda

    2016-08-01

    The Cherenkov Telescope Array (CTA) will be the next-generation ground-based observatory using the atmospheric Cherenkov technique. The CTA instrument will allow researchers to explore the gamma-ray sky in the energy range from 20 GeV to 300 TeV. CTA will comprise two arrays of telescopes, one with about 100 telescopes in the Southern hemisphere and another smaller array of telescopes in the North. CTA poses novel challenges in the field of ground-based Cherenkov astronomy, due to the demands of operating an observatory composed of a large and distributed system with the needed robustness and reliability that characterize an observatory. The array control and data acquisition system of CTA (ACTL) provides the means to control, readout and monitor the telescopes and equipment of the CTA arrays. The ACTL system must be flexible and reliable enough to permit the simultaneous and automatic control of multiple sub-arrays of telescopes with a minimum effort of the personnel on-site. In addition, the system must be able to react to external factors such as changing weather conditions and loss of telescopes and, on short timescales, to incoming scientific alerts from time-critical transient phenomena. The ACTL system provides the means to time-stamp, readout, filter and store the scientific data at aggregated rates of a few GB/s. Monitoring information from tens of thousands of hardware elements need to be channeled to high performance database systems and will be used to identify potential problems in the instrumentation. This contribution provides an overview of the ACTL system and a status report of the ACTL project within CTA.

  11. Prospects for the detection of high-energy (E > 25 GeV) Fermi pulsars with the Cherenkov Telescope Array

    Science.gov (United States)

    Burtovoi, A.; Saito, T. Y.; Zampieri, L.; Hassan, T.

    2017-10-01

    Around 160 gamma-ray pulsars were discovered by the Fermi-Large Area Telescope (LAT) since 2008. The most energetic of them, 12 objects with emission above 25 GeV, are suitable candidates for the detection with the current and future Imaging Atmospheric Cherenkov Telescopes above few tens of GeV. We perform an analysis of the Fermi-LAT data of these high-energy pulsars in order to determine if such objects can be detected with the Cherenkov Telescope Array (CTA). Our goal is to forecast the significance of their point source detection with CTA. We analyse 5 yr of the Fermi-LAT data fitting the spectra of each pulsar at energies E > 10 GeV with a power-law function. Assuming no spectral cut-off, we extrapolate the resulting spectra to the very high energy range (VHE, E > 0.1 TeV) and simulate CTA observations of all 12 pulsars with the ctools software package. Using different analysis tools, individual CTA sensitivity curves are independently calculated for each pulsar and cross-checked with the ctools results. Our simulations result in significant CTA detections of up to eight pulsars in 50 h. Observations of the most energetic Fermi pulsars with CTA will shed light on the nature of the high-energy emission of pulsars, clarifying whether the VHE emission detected in the Crab pulsar spectrum is present also in other gamma-ray pulsars.

  12. Towards a full Atmospheric Calibration system for the Cherenkov Telescope Array

    CERN Document Server

    Doro, M; Blanch, O; Font, LL; Garrido, D; Lopez-Oramas, A

    2013-01-01

    The current generation of Cherenkov telescopes is mainly limited in their gamma-ray energy and flux reconstruction by uncertainties in the determination of atmospheric parameters. The Cherenkov Telescope Array (CTA) aims to provide high-precision data extending the duty cycle as much as possible. To reach this goal, it is necessary to continuously and precisely monitor the atmosphere by means of remote-sensing devices, which are able to provide altitude-resolved and wavelength-dependent extinction factors, sensitive up to the tropopause and higher. Raman LIDARs are currently the best suited technology to achieve this goal with one single instrument. However, the synergy with other instruments like radiometers, solar and stellar photometers, all-sky cameras, and possibly radio-sondes is desirable in order to provide more precise and accurate results, and allows for weather forecasts and now-casts. In this contribution, we will discuss the need and features of such multifaceted atmospheric calibration systems.

  13. The Cherenkov Telescope array on-site integral sensitivity: observing the Crab

    Science.gov (United States)

    Fioretti, Valentina; Bulgarelli, Andrea; Schüssler, Fabian

    2016-07-01

    The Cherenkov Telescope Array (CTA) is the future large observatory in the very high energy (VHE) domain. Operating from 20 GeV to 300 TeV, it will be composed of tens of Imaging Air Cherenkov Telescopes (IACTs) displaced in a large area of a few square kilometers in both the southern and northern hemispheres. Thanks to the wide energy coverage and the tremendous boost in effective area (10 times better than the current IACTs), for the first time a VHE observatory will be able to detect transient phenomena in short exposures. The CTA/DATA On-Site Analysis (OSA) is the system devoted to the development of dedicated pipelines and algorithms to be used at the CTA site for the reconstruction, data quality monitoring, science monitoring and realtime science alerting during observations. The minimum exposure required to issue a science alert is not a general requirement of the observatory but is a function of the astrophysical object under study, because the ability to detect a given source is determined by the integral sensitivity which, in addition to the CTA Monte Carlo simulations, providing the energy-dependent instrument response (e.g. the effective area and the background rate), requires the spectral distribution of the science target. The OSA integral sensitivity is computed here for the most studied source at Gamma-rays, the Crab Nebula, for a set of exposures ranging from 1000 seconds to 50 hours, using the full CTA Southern array. The reason for the Crab Nebula selection as the first example of OSA integral sensitivity is twofold: (i) this source is characterized by a broad spectrum covering the entire CTA energy range; (ii) it represents, at the time of writing, the standard candle in VHE and it is often used as unit for the IACTs sensitivity. The effect of different Crab Nebula emission models on the CTA integral sensitivity is evaluated, to emphasize the need for representative spectra of the CTA science targets in the evaluation of the OSA use cases. Using

  14. Towards the development of a SiPM-based camera for the Cherenkov Telescope Array

    Science.gov (United States)

    Ambrosi, G.; Bissaldi, E.; Di Venere, L.; Fiandrini, E.; Giglietto, N.; Giordano, F.; Ionica, M.; Paoletti, R.; Simone, D.; Vagelli, V.

    2017-03-01

    The Italian National Institute for Nuclear Physics (INFN) is involved in the development of a prototype for a camera based on Silicon Photomultipliers (SiPMs) for the Cherenkov Telescope Array (CTA), a new generation of telescopes for ground-based gamma-ray astronomy. In this framework, an R&D program within the `Progetto Premiale TElescopi CHErenkov made in Italy (TECHE.it)' for the development of SiPMs suitable for Cherenkov light detection in the Near-Ultraviolet (NUV) has been carried out. The developed device is a NUV High-Density (NUV-HD) SiPM based on a micro cell of 30 μm × 30 μm and an area of 6 mm × 6 mm, produced by Fondazione Bruno Kessler (FBK). A full characterization of the single NUV-HD SiPM will be presented. A matrix of 8 × 8 single NUV-HD SiPMs will be part of the focal plane of the Schwarzschild- Couder Telescope prototype (pSCT) for CTA. An update on recent tests on the detectors arranged in this matrix configuration and on the front-end electronics will be given.

  15. Towards the development of a SiPM-based camera for the Cherenkov Telescope Array

    Directory of Open Access Journals (Sweden)

    Ambrosi G.

    2017-01-01

    Full Text Available The Italian National Institute for Nuclear Physics (INFN is involved in the development of a prototype for a camera based on Silicon Photomultipliers (SiPMs for the Cherenkov Telescope Array (CTA, a new generation of telescopes for ground-based gamma-ray astronomy. In this framework, an R&D program within the ‘Progetto Premiale TElescopi CHErenkov made in Italy (TECHE.it’ for the development of SiPMs suitable for Cherenkov light detection in the Near-Ultraviolet (NUV has been carried out. The developed device is a NUV High-Density (NUV-HD SiPM based on a micro cell of 30 μm × 30 μm and an area of 6 mm × 6 mm, produced by Fondazione Bruno Kessler (FBK. A full characterization of the single NUV-HD SiPM will be presented. A matrix of 8 × 8 single NUV-HD SiPMs will be part of the focal plane of the Schwarzschild- Couder Telescope prototype (pSCT for CTA. An update on recent tests on the detectors arranged in this matrix configuration and on the front-end electronics will be given.

  16. Inauguration and First Light of the GCT-M Prototype for the Cherenkov Telescope Array

    CERN Document Server

    Watson, J J; Abchiche, A; Allan, D; Amans, J -P; Armstrong, T P; Balzer, A; Berge, D; Boisson, C; Bousquet, J -J; Brown, A M; Bryan, M; Buchholtz, G; Chadwick, P M; Costantini, H; Cotter, G; Daniel, M K; De Frondat, F; Dournaux, J -L; Dumas, D; Ernenwein, J -P; Fasola, G; Funk, S; Gironnet, J; Graham, J A; Greenshaw, T; Hervet, O; Hidaka, N; Hinton, J A; Huet, J -M; Jegouzo, I; Jogler, T; Kraus, M; Lapington, J S; Laporte, P; Lefaucheur, J; Markoff, S; Melse, T; Mohrmann, L; Molyneux, P; Nolan, S J; Okumura, A; Osborne, J P; Parsons, R D; Rosen, S; Ross, D; Rowell, G; Rulten, C B; Sato, Y; Sayéde, F; Schmoll, J; Schoorlemmer, H; Servillat, M; Sol, H; Stamatescu, V; Stephan, M; Stuik, R; Sykes, J; Tajima, H; Thornhill, J; Tibaldo, L; Trichard, C; Vink, J; White, R; Yamane, N; Zech, A; Zink, A; Zorn, J

    2016-01-01

    The Gamma-ray Cherenkov Telescope (GCT) is a candidate for the Small Size Telescopes (SSTs) of the Cherenkov Telescope Array (CTA). Its purpose is to extend the sensitivity of CTA to gamma-ray energies reaching 300 TeV. Its dual-mirror optical design and curved focal plane enables the use of a compact camera of 0.4 m diameter, while achieving a field of view of above 8 degrees. Through the use of the digitising TARGET ASICs, the Cherenkov flash is sampled once per nanosecond continuously and then digitised when triggering conditions are met within the analogue outputs of the photosensors. Entire waveforms (typically covering 96 ns) for all 2048 pixels are then stored for analysis, allowing for a broad spectrum of investigations to be performed on the data. Two prototypes of the GCT camera are under development, with differing photosensors: Multi-Anode Photomultipliers (MAPMs) and Silicon Photomultipliers (SiPMs). During November 2015, the GCT MAPM (GCT-M) prototype camera was integrated onto the GCT structure...

  17. First observation of Cherenkov ring images using hybrid photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, E.; Wilkinson, G. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Barber, G.; Duane, A.; John, M.; Miller, D.G.; Websdale, D. [Imperial College of Science Technology and Medicine, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Bibby, J.H.; Giles, R.; Harnew, N.; Smale, N. [University of Oxford, Department of Nuclear Physics, Keble Road, Oxford OX1 3RH (United Kingdom); Brook, N.H.; Halley, A.W.; O`Shea, V. [University of Glasgow, Department of Physics, Glasgow G12 8QQ (United Kingdom); French, M. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Gibson, V.; Wotton, S.A. [University of Cambridge, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom); Schomaker, R. [Delft Electronic Products BV, 9300 AB Roden (Netherlands)

    1998-07-11

    A ring-imaging Cherenkov detector, equipped with hybrid photon detectors, has been operated in a charged-particle beam. Focussed ring images from various particle types were detected using silica aerogel, air and C{sub 4}F{sub 10} gas radiators. The detector, a prototype for the CERN LHC-B experiment, is described and first observations are reported. (orig.)

  18. A decade of dark matter searches with ground-based Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Doro, Michele, E-mail: michele.doro@pd.infn.it [University and INFN Padova, via Marzolo 8, 35131 Padova (Italy); Department of Physics and CERES, Campus Universitat Autonoma Barcelona, 08135 Bellaterra (Spain)

    2014-04-01

    In the general scenario of Weakly Interacting Massive Particles (WIMP), dark matter (DM) can be observed via astrophysical gamma-rays because photons are produced in various DM annihilation or decay processes, either as broad-band or line emission, or because of the secondary processes of charged particles in the final stages of the annihilations or the decays. The energy range of the former processes is accessible by current ground-based Imaging Atmospheric Cherenkov telescopes (IACTs, like H.E.S.S., MAGIC and VERITAS). The strengths of this technique are (a) the expected DM gamma-ray spectra show peculiar features like bumps, spikes and cutoff that make them clearly distinguishable from the smoother astrophysical spectra and (b) the expected DM spectrum is universal and therefore by observing two or more DM targets with the same spectrum, a clear identification (besides detection) of DM would be enabled. The role of IACTs may gain more importance in the future as the results from the LHC may hint to a DM particle with mass at the TeV or above, where the IACTs sensitivity is unsurpassed by other experiments. In this contribution, a review of the search for DM with the current generation of IACT will be presented.

  19. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    CERN Document Server

    Sanchez-Conde, Miguel A; Zandanel, F; Gomez, Mario E; Prada, F

    2011-01-01

    In the last few years, most of the attention in gamma-ray dark matter (DM) searches has been devoted to neutralino annihilations in nearby dwarf galaxies. However, massive galaxy clusters in the local Universe may constitute very good targets as well. The main aim of this work is to compare both dwarf galaxies and local galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies and galaxy clusters, and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman~1 appears as the best candidate in the sample and, given the morphology of its annihilation signal, it is also one of the objects more readily observable by IACTs. As for galaxy clusters, Virgo represents the one with the hi...

  20. Dark matter in satellite galaxies: Will future Iimaging Air Cherenkov Telescopes play a role?

    Energy Technology Data Exchange (ETDEWEB)

    Fornasa, Mattia, E-mail: mfornasa@pd.infn.i [University of Padova and I.N.F.N. sezione di Padova, via Marzolo 8, 35131 Padova (Italy)

    2011-02-21

    Addressing the question about the importance of future Imaging Air Cherenkov Telescopes (IACTs) for indirect detection of Dark Matter (DM), I will review the results of a paper by Bringmann et al. (2008) in which the authors computed the gamma-ray flux from DM annihilation associated to the halos of two reference dwarf Spheroidal galaxies, Draco and Willman 1. The previously neglected contribution of Virtual Internal Bremsstrahlung is also taken into account, which produces, when present, a bump in the higher part of the energy spectrum. The boost factor is the quantity used to describe how far the experiment is from probing interesting DM scenarios and it is computed for the next generation of IACTs, namely MAGIC-II and CTA. Due to the presence of spectral features, the boost factors can vary, becoming dependent to the characteristics of the particular DM candidate, obstacling a clear statement about prospects of detection. However, at least for the case of Willman 1 observed by CTA, boost factors may be below 10, even without considering the effect of substructures or the Sommerfeld enhancement. This, added to the comparison with the prospects of detection by the Fermi satellite, clearly demonstrate that the answer to the question in the title is an affirmative one.

  1. Cosmic-ray composition measurements and cosmic ray background-free γ -ray observations with Cherenkov telescopes

    Science.gov (United States)

    Neronov, Andrii; Semikoz, Dmitri V.; Vovk, Ievgen; Mirzoyan, Razmik

    2016-12-01

    The muon component of extensive air showers (EAS) initiated by cosmic-ray particles carries information on the primary particle identity. We show that the muon content of EAS could be measured in a broad energy range from 10-100 TeV up to ultra-high-energy cosmic-ray range using wide field-of-view imaging atmospheric Cherenkov telescopes observing strongly inclined or nearly horizontal EAS from the ground of from high altitude. Cherenkov emission from muons in such EAS forms a distinct component (halo or tail) of the EAS image in the telescope camera. We show that detection of the muon signal could be used to measure composition of the cosmic-ray spectrum in the energy ranges of the knee, the ankle and of the Galactic-to-extragalactic transition. It could also be used to veto the cosmic-ray background in gamma-ray observations. This technique provides a possibility for up to 2 orders of magnitude improvement of sensitivity for γ -ray flux in the energy band above 10 PeV, compared to KASCADE-Grande, and an order-of-magnitude improvement of sensitivity in the multi-EeV energy band, compared to Pierre Auger Observatory.

  2. Monte Carlo Simulations For The Cherenkov Telescope Array Observatory Using Pl-Grid E-Infrastructure

    Directory of Open Access Journals (Sweden)

    Anna Barnacka

    2012-01-01

    Full Text Available The paper presents Monte Carlo simulations carried out during the preparatory phase of the Cherenkov Telescope Array project. The aim of the project is to build the next generation observatory of very high energy gamma rays. During the preparatory phase there is a need to optimize and verify design concepts for various elements of the array. In this paper we describe the main components of the software being used for that purpose, their functions and requirements. Preliminary results of the optimization of the small telescope – one of the several kinds intended for the array, are presented.

  3. TARGET 5: A new multi-channel digitizer with triggering capabilities for gamma-ray atmospheric Cherenkov telescopes

    Science.gov (United States)

    Albert, A.; Funk, S.; Katagiri, H.; Kawashima, T.; Murphy, M.; Okumura, A.; Quagliani, R.; Sapozhnikov, L.; Shigenaka, A.; Tajima, H.; Tibaldo, L.; Vandenbroucke, J.; Varner, G.; Wu, T.

    2017-06-01

    TARGET 5 is a new application-specific integrated circuit (ASIC) of the TARGET family, designed for the readout of signals from photosensors in the cameras of imaging atmospheric Cherenkov telescopes (IACTs) for ground-based gamma-ray astronomy. TARGET 5 combines sampling and digitization on 16 signal channels with the formation of trigger signals based on the analog sum of groups of four channels. We describe the ASIC architecture and performance. TARGET 5 improves over the performance of the first-generation TARGET ASIC, achieving: tunable sampling frequency from 1 GSa/s; a dynamic range on the data path of 1.2 V with effective dynamic range of 11 bits and DC noise of ∼0.6 mV; 3-dB bandwidth of 500 MHz; crosstalk between adjacent channels 100 p.e. (assuming 4 mV per p.e.); and minimum stable trigger threshold of 20 mV (5 p.e.) with trigger noise of 5 mV (1.2 p.e.), which is mostly limited by interference between trigger and sampling operations. TARGET 5 is the first ASIC of the TARGET family used in an IACT prototype, providing one development path for readout electronics in the forthcoming Cherenkov Telescope Array (CTA).

  4. Lunar Imaging and Ionospheric Calibration for the Lunar Cherenkov Technique

    CERN Document Server

    McFadden, Rebecca; Mevius, Maaijke

    2013-01-01

    The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the ionosphere is an important experimental concern as it reduces the pulse amplitude and subsequent chances of detection. We are continuing to investigate a new method to calibrate the dispersive effect of the ionosphere on lunar Cherenkov pulses via Faraday rotation measurements of the Moon's polarised emission combined with geomagnetic field models. We also extend this work to include radio imaging of the Lunar surface, which provides information on the physical and chemical properties of the lunar surface that may affect experimental strategies for the lunar Cherenkov technique.

  5. Status and Plans for the Array Control and Data Acquisition System of the Cherenkov Telescope Array

    CERN Document Server

    Oya, I; Schwanke, U; Wegner, P; Balzer, A; Berge, D; Borkowski, J; Camprecios, J; Colonges, S; Colome, J; Champion, C; Conforti, V; Gianotti, F; Flour, T Le; Lindemann, R; Lyard, E; Mayer, M; Melkumyan, D; Punch, M; Tanci, C; Schmidt, T; Schwarz, J; Tosti, G; Verma, K; Weinstein, A; Wiesand, S; Wischnewski, R

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next-generation atmospheric Cherenkov gamma-ray observatory. CTA will consist of two installations, one in the northern, and the other in the southern hemisphere, containing tens of telescopes of different sizes. The CTA performance requirements and the inherent complexity associated with the operation, control and monitoring of such a large distributed multi-telescope array leads to new challenges in the field of the gamma-ray astronomy. The ACTL (array control and data acquisition) system will consist of the hardware and software that is necessary to control and monitor the CTA arrays, as well as to time-stamp, read-out, filter and store -at aggregated rates of few GB/s- the scientific data. The ACTL system must be flexible enough to permit the simultaneous automatic operation of multiple sub-arrays of telescopes with a minimum personnel effort on site. One of the challenges of the system is to provide a reliable integration of the control of a large and heterogene...

  6. Software design for the control system for Small-Size Telescopes with single-mirror of the Cherenkov Telescope Array

    CERN Document Server

    :,; Błocki, J; Bogacz, L; Borkowski, J; Bulik, T; Cadoux, F; Christov, A; Curyło, M; della Volpe, D; Dyrda, M; Favre, Y; Frankowski, A; Grudnik, Ł; Grudzińska, M; Heller, M; Idźkowski, B; Jamrozy, M; Janiak, M; Kasperek, J; Lalik, K; Lyard, E; Mach, E; Mandat, D; Marszałek, A; Michałowski, J; Moderski, R; Rameez, M; Montaruli, T; Neronov, A; Niemiec, J; Ostrowski, M; Paśko, P; Pech, M; Porcelli, A; Prandini, E; Rajda, P; Schioppa, E jr; Schovanek, P; Seweryn, K; Skowron, K; Sliusar, V; Sowiński, M; Stawarz, Ł; Stodulska, M; Stodulski, M; Pujadas, I Troyano; Toscano, S; Walter, R; Wiȩcek, M; Zagdański, A; Ziȩtara, K; Zychowski, P

    2015-01-01

    The Small-Size Telescope with single-mirror (SST-1M) is a 4 m Davies-Cotton telescope and is among the proposed telescope designs for the Cherenkov Telescope Array (CTA). It is conceived to provide the high-energy ($>$ few TeV) coverage. The SST-1M contains proven technology for the telescope structure and innovative electronics and photosensors for the camera. Its design is meant to be simple, low-budget and easy-to-build industrially. Each device subsystem of an SST-1M telescope is made visible to CTA through a dedicated industrial standard server. The software is being developed in collaboration with the CTA Medium-Size Telescopes to ensure compatibility and uniformity of the array control. Early operations of the SST-1M prototype will be performed with a subset of the CTA central array control system based on the Alma Common Software (ACS). The triggered event data are time stamped, formatted and finally transmitted to the CTA data acquisition. The software system developed to control the devices of an SS...

  7. Mount control system of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Antolini, Elisa; Tosti, Gino; Tanci, Claudio; Bagaglia, Marco; Canestrari, Rodolfo; Cascone, Enrico; Gambini, Giorgio; Nucciarelli, Giuliano; Pareschi, Giovanni; Scuderi, Salvo; Stringhetti, Luca; Busatta, Andrea; Giacomel, Stefano; Marchiori, Gianpietro; Manfrin, Cristiana; Marcuzzi, Enrico; Di Michele, Daniele; Grigolon, Carlo; Guarise, Paolo

    2016-08-01

    The ASTRI SST-2M telescope is an end-to-end prototype proposed for the Small Size class of Telescopes (SST) of the future Cherenkov Telescope Array (CTA). The prototype is installed in Italy at the INAF observing station located at Serra La Nave on Mount Etna (Sicily) and it was inaugurated in September 2014. This paper presents the software and hardware architecture and development of the system dedicated to the control of the mount, health, safety and monitoring systems of the ASTRI SST-2M telescope prototype. The mount control system installed on the ASTRI SST-2M telescope prototype makes use of standard and widely deployed industrial hardware and software. State of the art of the control and automation industries was selected in order to fulfill the mount related functional and safety requirements with assembly compactness, high reliability, and reduced maintenance. The software package was implemented with the Beckhoff TwinCAT version 3 environment for the software Programmable Logical Controller (PLC), while the control electronics have been chosen in order to maximize the homogeneity and the real time performance of the system. The integration with the high level controller (Telescope Control System) has been carried out by choosing the open platform communications Unified Architecture (UA) protocol, supporting rich data model while offering compatibility with the PLC platform. In this contribution we show how the ASTRI approach for the design and implementation of the mount control system has made the ASTRI SST-2M prototype a standalone intelligent machine, able to fulfill requirements and easy to be integrated in an array configuration such as the future ASTRI mini-array proposed to be installed at the southern site of the Cherenkov Telescope Array (CTA).

  8. Techniques And Results For The Calibration Of The MST Prototype For The Cherenkov Telescope Array

    CERN Document Server

    ,

    2016-01-01

    The next generation instrument for ground-based gamma-ray astronomy will be the Cherenkov Telescope Array (CTA), consisting of approximately 100 telescopes in three sizes, built on two sites with one each in the Northern and Southern Hemi- spheres. Up to 40 of these will be Medium Size Telescopes (MSTs) which will dominate sensitivity in the core energy range. Since 2012, a full size mechanical prototype for the modified 12 m Davies-Cotton design MST has been in operation in Berlin. This doc- ument describes the techniques which have been implemented to calibrate and optimise the mechanical and optical performance of the prototype, and gives the results of over three years of observations and measurements. Pointing calibration techniques will be discussed, along with the development of a bending model, and calibration of the CCD cameras used for pointing measurements. Additionally alignment of mirror segments using the Bokeh method is shown.

  9. Monte Carlo Studies of the GCT Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Armstrong, Thomas; Rulten, Cameron; Stamatescu, Victor; Zech, Andreas

    2015-01-01

    The GCT is an innovative dual-mirror solution proposed for the small-size telescopes for CTA, capable of imaging primary cosmic gamma-rays from below a TeV to hundreds of TeV. The reduced plate scale resulting from the secondary optics allows the use of compact photosensors, including multi-anode photomultiplier tubes or silicon photomultipliers. We show preliminary results of Monte Carlo simulations using the packages CORSIKA and Sim_telarray, comparing the relative performance of each photosensor type. We also investigate the effect of the secondary optics in terms of optical performance, image resolution and camera response. With the ongoing commissioning of the prototype structure and camera, we present the preliminary expected performance of GCT.

  10. Real-Time Analysis sensitivity evaluation of the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA), the new generation very high-energy gamma-ray observatory, will improve the flux sensitivity of the current Cherenkov telescopes by an order of magnitude over a continuous range from about 10 GeV to above 100 TeV. With tens of telescopes distributed in the Northern and Southern hemispheres, the large effective area and field of view coupled with the fast pointing capability make CTA a crucial instrument for the detection and understanding of the physics of transient, short-timescale variability phenomena (e.g. Gamma-Ray Bursts, Active Galactic Nuclei, gamma-ray binaries, serendipitous sources). The key CTA system for the fast identification of flaring events is the Real-Time Analysis (RTA) pipeline, a science alert system that will automatically detect and generate science alerts with a maximum latency of 30 seconds with respect to the triggering event collection and ensure fast communication to/from the astrophysics community. According to the CTA design requirements, the...

  11. Searching for Dark Matter signatures in dwarf spheroidal galaxies with the ASTRI mini-array in the framework of Cherenkov Telescope Array

    Science.gov (United States)

    Giammaria, P.; Lombardi, S.; Antonelli, L. A.; Brocato, E.; Bigongiari, C.; Di Pierro, F.; Stamerra, A.; ASTRI Collaboration; CTA Consortium, the

    2016-07-01

    The nature of Dark Matter (DM) is an open issue of modern physics. Cosmological considerations and observational evidences indicate a behaviour beyond the Standard Model for feasible DM particle candidates. Non-baryonic DM is compatible with cold and weakly interacting massive particles (WIMPs) expected to have a mass in the range between ∼10 GeV and ∼100 TeV. Indirect DM searches with imaging atmospheric Cherenkov telescopes may play a crucial role in constraining the nature of the DM particle(s) through the study of their annihilation in very high energy (VHE) gamma rays from promising targets, such as the dwarf spheroidal satellite galaxies (dSphs) of the Milky Way. Here, we focus on indirect DM searches in dSphs, presenting the preliminary prospects of this research beyond the TeV mass region achievable with the ASTRI mini-array, proposed to be installed at the Cherenkov Telescope Array southern site.

  12. First results of the two square meters multilayer glass composite mirror design proposed for the Cherenkov Telescope Array developed at INFN

    CERN Document Server

    Schultz, C; Lessio, L; Mariotti, M; Rando, R

    2015-01-01

    The Cherenkov Telescope Array (CTA) is a future ground-based gamma-ray astronomy detector that will consist of more than 100 Imaging Atmospheric Cherenkov Telescopes of different sizes. The total reflective surface of roughly 10 000 m$^2$ requires unprecedented technological efforts towards a cost-efficient production of light-weight and reliable mirror substrates at high production rate. We report on a new mirror concept proposed for CTA developed by INFN, which is based on the replication from a spherical convex mold under low pressure. The mirror substrate is an open structure design made by thin glass layers at the mirror's front and rear interspaced by steel cylinders. A first series of nominal size mirrors has been produced, for which we discuss the optical properties in terms of radius of curvature and focusing power.

  13. FACT -- the First Cherenkov Telescope using a G-APD Camera for TeV Gamma-ray Astronomy (HEAD 2010)

    CERN Document Server

    Anderhub, H; Biland, A; Boller, A; Braun, I; Bretz, T; Commichau, S; Commichau, V; Domke, M; Dorner, D; Gendotti, A; Grimm, O; von Gunten, H; Hildebrand, D; Horisberger, U; Köhne, J -H; Krähenbühl, T; Kranich, D; Krumm, B; Lorenz, E; Lustermann, W; Mannheim, K; Neise, D; Pauss, F; Renker, D; Rhode, W; Rissi, M; Ribordy, M; Röser, U; Stark, L S; Stucki, J -P; Tibolla, O; Viertel, G; Vogler, P; Warda, K; Weitzel, Q

    2010-01-01

    Geiger-mode Avalanche Photodiodes~(G-APD) bear the potential to significantly improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing an old IACT with a mirror area of 9.5 square meters and construct a new, fine pixelized camera using novel G-APDs. The main goal is to evaluate the performance of a complete system by observing very high energy gamma-rays from the Crab Nebula. This is an important field test to check the feasibility of G-APD-based cameras to replace at some time the PMT-based cameras of planned future IACTs like AGIS and CTA. In this article, we present the basic design of such a camera as well as some important details to be taken into account.

  14. SiPM detectors for the ASTRI project in the framework of the Cherenkov Telescope Array

    Science.gov (United States)

    Billotta, Sergio; Marano, Davide; Bonanno, Giovanni; Belluso, Massimiliano; Grillo, Alessandro; Garozzo, Salvatore; Romeo, Giuseppe; Timpanaro, Maria Cristina; Maccarone, Maria Concetta C.; Catalano, Osvaldo; La Rosa, Giovanni; Sottile, Giuseppe; Impiombato, Domenico; Gargano, Carmelo; Giarrusso, Salavtore

    2014-07-01

    The Cherenkov Telescope Array (CTA) is a worldwide new generation project aimed at realizing an array of a hundred ground based gamma-ray telescopes. ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is the Italian project whose primary target is the development of an end-to-end prototype, named ASTRI SST-2M, of the CTA small size class of telescopes devoted to investigation of the highest energy region, from 1 to 100 TeV. Next target is the implementation of an ASTRI/CTA mini-array based on seven identical telescopes. Silicon Photo-Multipliers (SiPMs) are the semiconductor photosensor devices designated to constitute the camera detection system at the focal plane of the ASTRI telescopes. SiPM photosensors are suitable for the detection of the Cherenkov flashes, since they are very fast and sensitive to the light in the 300-700nm wavelength spectrum. Their drawbacks compared to the traditional photomultiplier tubes are high dark count rates, after-pulsing and optical cross-talk contributions, and intrinsic gains strongly dependent on temperature. Nonetheless, for a single pixel, the dark count rate is well below the Night Sky Background, the effects of cross-talk and afterpulses are typically lower than 20%, and the gain can be kept stable against temperature variations by means of adequate bias voltage compensation strategies. This work presents and discusses some experimental results from a large set of measurements performed on the SiPM sensors to be used for the ASTRI SST-2M prototype camera and on recently developed detectors demonstrating outstanding performance for the future evolution of the project in the ASTRI/CTA mini-array.

  15. COLIBRI: partial camera readout and sliding trigger for the Cherenkov Telescope Array CTA

    Science.gov (United States)

    Naumann, C. L.; Tejedor, L. A.; Martínez, G.

    2013-06-01

    Plans for the future Cherenkov telescope array CTA include replacing the monolithic camera designs used in H.E.S.S. and MAGIC-I by one that is built up from a number of identical segments. These so-called clusters will be relatively autonomous, each containing its own triggering and readout hardware. While this choice was made for reasons of flexibility and ease of manufacture and maintenance, such a concept with semi-independent sub-units lends itself quite naturally to the possibility of new, and more flexible, readout modes. In all previously-used concepts, triggering and readout of the camera is centralised, with a single camera trigger per event that starts the readout of all pixels in the camera at the same time and within the same integration time window. The limitations of such a trigger system can reduce the performance of a large array such as CTA, due to the huge amount of useless data created by night-sky background if trigger thresholds are set low enough to achieve the desired 20 GeV energy threshold, and to image losses at high energies due to the rigid readout window. In this study, an alternative concept (``COLIBRI'' = Concept for an Optimised Local Image Building and Readout Infrastructure) is presented, where only those parts of the camera which are likely to actually contain image data (usually a small percentage of the total pixels) are read out. This leads to a significant reduction of the expected data rate and the dead-times incurred in the camera. Furthermore, the quasi-independence of the individual clusters can be used to read different parts of the camera at slightly different times, thus allowing the readout to follow the slow development of the shower image across the camera field of view. This concept of flexible, partial camera readout is presented in the following, together with a description of Monte-Carlo studies performed to evaluate its performance as well as a hardware implementation proposed for CTA.

  16. Cooling Tests of the NectarCAM camera for the Cherenkov Telescope Array

    CERN Document Server

    Moulin, E; Durand, D; Feirreira, O; Fesquet, M; Giebels, B; Glicenstein, J -F; Loiseau, D; Louis, F; Nunio, F; Rateau, S; consortia, CTA

    2015-01-01

    The NectarCAM is a camera proposed for the medium-sized telescopes in the framework of the Cherenkov Telescope Array (CTA), the next-generation observatory for very-high-energy gamma-ray astronomy. The cameras are designed to operate in an open environment and their mechanics must provide protection for all their components under the conditions defined for the CTA observatory. In order to operate in a stable environment and ensure the best physics performance, each NectarCAM will be enclosed in a slightly overpressurized, nearly air-tight, camera body, to prevent dust and water from entering. The total power dissipation will be ~7.7 kW for a 1855-pixel camera. The largest fraction is dissipated by the readout electronics in the modules. We present the design and implementation of the cooling system together with the test bench results obtained on the NectarCAM thermal demonstrator.

  17. Progress in Monte Carlo design and optimization of the Cherenkov Telescope Array

    CERN Document Server

    Bernlöhr, K; Becherini, Y; Bigas, O Blanch; Bouvier, A; Carmona, E; Colin, P; Decerprit, G; Di Pierro, F; Dubois, F; Farnier, C; Funk, S; Hermann, G; Hinton, J A; Humensky, T B; Jogler, T; Khélifi, B; Kihm, T; Komin, N; Lenain, J -P; López-Coto, R; Maier, G; Mazin, D; Medina, M C; Moralejo, A; Moderski, R; Nolan, S J; Ohm, S; Wilhelmi, E de Oña; Parsons, R D; Arribas, M Paz; Pedaletti, G; Pita, S; Prokoph, H; Rulten, C B; Schwanke, U; Shayduk, M; Stamatescu, V; Vallania, P; Vorobiov, S; Wischnewski, R; Wood, M; Yoshikoshi, T; Zech, A

    2013-01-01

    The Cherenkov Telescope Array (CTA) will be an instrument covering a wide energy range in very-high-energy (VHE) gamma rays. CTA will include several types of telescopes, in order to optimize the performance over the whole energy range. Both large-scale Monte Carlo (MC) simulations of CTA super-sets (including many different possible CTA layouts as sub-sets) and smaller-scale simulations dedicated to individual aspects were carried out and are on-going. We summarize results of the prior round of large-scale simulations, show where the design has now evolved beyond the conservative assumptions of the prior round and present first results from the on-going new round of MC simulations.

  18. The Real-Time Analysis of the Cherenkov Telescope Array Observatory

    CERN Document Server

    Bulgarelli, A; Contreras, J L; Lorca, A; Aboudan, A; Rodríguez-Vázquez, J J; Lombardi, S; Maier, G; Antonelli, L A; Bastieri, D; Boisson, C; Borkowski, J; Buson, S; Carosi, A; Conforti, V; Djannati-Ataï, A; Dumm, J; Evans, P; Fortson, L; Gianotti, F; Graciani, R; Grandi, P; Hinton, J; Humensky, B; Kosack, K; Lamanna, G; Malaguti, G; Marisaldi, M; Nicastro, L; Ohm, S; Osborne, J; Rosen, S; Trifoglio, M

    2013-01-01

    The Cherenkov Telescope Array (CTA) Observatory must be capable of issuing fast alerts on variable and transient sources to maximize the scientific return. This will be accomplished by means of a Real-Time Analysis (RTA) pipeline, a key system of the CTA observatory. The latency and sensitivity requirements of the alarm system impose a challenge because of the large foreseen data flow rate, between 0.5 and 8 GB/s. As a consequence, substantial efforts toward the optimization of this high-throughput computing service are envisaged, with the additional constraint that the RTA should be performed on-site (as part of the auxiliary infrastructure of the telescopes). In this work, the functional design of the RTA pipeline is presented.

  19. A Prototype for the Cherenkov Telescope Array Pipelines Framework: Modular Efficiency Simple System (MESS)

    CERN Document Server

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA) is a ground-based $\\gamma$-ray observatory that will observe the full sky in the energy range from 20 GeV to 100 TeV from facilities in both hemispheres. It is proposed to consist of more than 100 telescopes, producing large amounts of data. Apart from the storage system, there are also requirements on the software framework to allow efficient data processing, i.e. robustness, execution speed and coding efficiency. This contribution will present a plain and simple pipeline framework design prototype for CTA that builds upon well-known tools, allowing the users to focus on physics problems without learning complicated software paradigms.

  20. An Efficient Test Facility For The Cherenkov Telescope Array FlashCam Readout Electronics Production

    CERN Document Server

    Eisenkolb, F; Kalkuhl, C; Pühlhofer, G; Santangelo, A; Schanz, T; Tenzer, C

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the planned next-generation instrument for ground-based gamma-ray astronomy, currently under preparation by a world-wide consortium. The FlashCam group is preparing a photomultiplier-based camera for the Medium Size Telescopes of CTA, with a fully digital Readout System (ROS). For the forthcoming mass production of a substantial number of cameras, efficient test routines for all components are currently under development. We report here on a test facility for the ROS components. A test setup and routines have been developed and an early version of that setup has successfully been used to test a significant fraction of the ROS for the FlashCam camera prototype in January 2016. The test setup with its components and interface, as well as first results, are presented here.

  1. The telescope control of the ASTRI SST-2M prototype for the Cherenkov telescope Array: hardware and software design architecture

    Science.gov (United States)

    Antolini, Elisa; Cascone, Enrico; Schwarz, Joseph; Stringhetti, Luca; Tanci, Claudio; Tosti, Gino; Aisa, Damiano; Aisa, Simone; Bagaglia, Marco; Busatta, Andrea; Campeggi, Carlo; Cefala, Marco; Farnesini, Lucio; Giacomel, Stefano; Marchiori, Gianpiero; Marcuzzi, Enrico; Nucciarelli, Giuliano; Piluso, Antonfranco

    2014-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a flagship project of the Italian Ministry of Research and led by the Italian National Institute of Astrophysics (INAF). One of its aims is to develop, within the Cherenkov Telescope Array (CTA) framework, an end-to-end small-sized telescope prototype in a dual-mirror configuration (SST-2M) in order to investigate the energy range E ~ 1-100 TeV. A long-term goal of the ASTRI program is the production of an ASTRI/CTA mini-array composed of seven SST-2M telescopes. The prototype, named ASTRI SST-2M, is seen as a standalone system that needs only network and power connections to work. The software system that is being developed to control the prototype is the base for the Mini-Array Software System (MASS), which has the task to make possible the operation of both the ASTRI SST-2M prototype and the ASTRI/CTA mini-array. The scope of this contribution is to give an overview of the hardware and software architecture adopted for the ASTRI SST- 2M prototype, showing how to apply state of the art industrial technologies to telescope control and monitoring systems.

  2. The Ring Imaging CHerenkov Detectors of the LHCb Experiment

    CERN Document Server

    Perego, Davide Luigi

    2012-01-01

    Particle identification is a fundamental requirement of the LHCb experiment to fulfill its physics programme. Positive hadron identification is performed by two Ring Imaging CHerenkov (RICH) detectors. This system covers the full angular acceptance of the experiment and is equipped with three Cherenkov radiators to identify particles in a wide momentum range from1 GeV/ c up to 100 GeV/ c . The Hybrid Photon Detectors (HPDs) located outside the detector acceptance provide the photon detection with 500,000 channels. Specific read–out electronics has been developed to readout and process data from the HPDs including data transmission and power distribution. The operation and performanceoftheRICHsystemare ensuredbythe constant controland monitoringoflowandhighvoltage systems,of thegas qualityandenvironmental parameters,ofthe mirror alignment,and finallyofthe detector safety. The description of the LHCb RICH is given. The experience in operating the detector at the Large Hadron Collider is presented and discusse...

  3. The Ring Imaging Cherenkov detector (RICH) of the AMS experiment

    CERN Document Server

    Barão, F; Alcaraz, J; Arruda, L; Barrau, A; Barreira, G; Belmont, E; Berdugo, J; Brinet, M; Buénerd, M; Casadei, D; Casaus, J; Cortina, E; Delgado, C; Díaz, C; Derome, L; Eraud, L; Garcia-Lopez, R J; Gallin-Martel, L; Giovacchini, F; Gonçalves, P; Lanciotti, E; Laurenti, G; Malinine, A; Maña, C; Marin, J; Martínez, G; Menchaca-Rocha, A; Molla, M; Palomares, C; Panniello, M; Pereira, R; Pimenta, M; Protasov, K; Sánchez, E; Seo, E S; Sevilla, N; Torrento, A; Vargas-Trevino, M; Veziant, O

    2006-01-01

    The Alpha Magnetic Spectrometer (AMS) experiment to be installed on the International Space Station (ISS) will be equipped with a proximity focusing Ring Imaging Cherenkov (RICH) detector for measuring the electric charge and velocity of the charged cosmic particles. A RICH prototype consisting of 96 photomultiplier units, including a piece of the conical reflector, was built and its performance evaluated with ion beam data. Preliminary results of the in-beam tests performed with ion fragments resulting from collisions of a 158 GeV/c/nuc primary beam of Indium ions (CERN SPS) on a Pb target are reported. The collected data included tests to the final front-end electronics and to different aerogel radiators. Cherenkov rings for a large range of charged nuclei and with reflected photons were observed. The data analysis confirms the design goals. Charge separation up to Fe and velocity resolution of the order of 0.1% for singly charged particles are obtained.

  4. The ASTRI/CTA mini-array of Small Size Telescopes as a precursor of the Cherenkov Telescope Array

    Science.gov (United States)

    Pareschi, Giovanni; Agnetta, Gaetano; Antolini, Elisa; Antonelli, Lucio Angelo; Bastieri, Denis; Bellassai, Giancarlo; Belluso, Massimiliano; Bigongiari, Ciro; Billotta, Sergio; Biondo , Benedetto; Boettcher, Markus; Bonanno, Giovanni; Bonnoli, Giacomo; Bruno , Pietro; Bulgarelli, Andrea; Canestrari, Rodolfo; Capalbi, Milvia; Capobianco, G.; Caraveo, Patrizia; Carosi, Alòessandro; Cascone, Enrico; Catalano, Osvaldo; Cereda, Michele; Conconi, Paolo; Conforti, Vito; Cusumano, Giancarlo; De Caprio, Vincenzo; De Luca, Andrea; de Gouveia Dal Pino, Elisabete; Di Paola, Andrea; Di Pierro, Federico; Fantinel, Daniela; Fiorini, Mauro; Fugazza, Dino; Gardiol, Daniele; Gargano, Carmelo; Garozzo , Salvatore; Gianotti , Fulvio; Giarrusso , Salvatore; Giro, Enrico; Grillo, Aledssandro; Impiombato, Domenico; Incorvaia , Salvatore; La Barbera , Antonino; La Palombara , Nicola; La Parola , Valentina; La Rosa, Giovanni; Lessio, Luigi; Leto, Giuseppe; Lombardi , Saverio; Lucarelli, Fabrizio; Maccarone, Maria Concetta; Malaspina, Giuseppe; Marano, Davide; Martinetti , Eugenio; Melioli, C.; Millul, Rachele; Mineo , Teresa; Morello, Carlo; Morlino, Giovanni; Nemmen, R.; Perri, Luca; Rodeghiero, Gabriele; Romano, Patrizia; Romeo, Giuseppe; Russo, Francesco; Sacco, Bruno; Sartore, Nicola; Schwarz, Joseph; Alberto, Segreto; Selvestrel, Danilo; Sironi, Giorgia; Stamerra, Antonio; Strazzeri, Elisabetta; Stringhetti, Luca; Tagliaferri, Gianpiero; Tanci, Claudio; Testa, Vincenzo; Timpanaro , Maria Cristina; Toso, Giorgio; Tosti, Gino; Trifoglio, Massimo; Vallania, Piero; Vercellone, Stefano; Volpicelli, Antonio; Zitelli, Valentina

    2014-08-01

    ASTRI ("Astrofisica con Specchi a Tecnologia Replicante Italiana") is a flagship project of the Italian Ministry of Education, University and Research. Within this framework, INAF is currently developing a wide-field-of-view (9.6 degrees in diameter) end-to-end prototype of the small-size telescope (SST) of the Cherenkov Telescope Array, CTA, sensitive in the energy band from a few TeV up to hundreds TeV. The ASTRI telescope is based on a dual-mirror Schwarzschild-Couder (ASTRI SST-2M) optical design, with a compact (F# = 0.5) optical configuration named ASTRI SST-2M telescope. This allows us to adopt an innovative modular focal plane camera based on silicon photo-multipliers, with a logical pixel size of 6.2mm x 6.2mm. Moreover, planned, and already being developed, an SST mini-array based on 7 identical telescopes represents an evolution of the ASTRI SST-2M telescope. The ASTRI/CTA mini-array will be part of the CTA array, representing a precursor that will be included into the final array. With the mini-array, in addition to a technical assessment studies in the perpective of the full CTA implementation, it will be possible to perform an early scientific program. In particular we wish to start investigating the poorly known energy range between a few and 100 TeV, thus exploring e.g. the cut-off regime of cosmic accelerators. Apart from INAF, other international institutes will directly participate in the mini-array implementation, as the North-West University in South Africa and the University of Sao Paulo in Brazil. An interest about it has been expressed also by other international groups. In this talk we will report on the development status of the ASTRI prototype and ASTRI/CTA mini-array.

  5. Calibration and performance of the photon sensor response of FACT -- The First G-APD Cherenkov telescope

    CERN Document Server

    Biland, A; Buß, J; Commichau, V; Djambazov, L; Dorner, D; Einecke, S; Eisenacher, D; Freiwald, J; Grimm, O; von Gunten, H; Haller, C; Hempfling, C; Hildebrand, D; Hughes, G; Horisberger, U; Knoetig, M L; Krähenbühl, T; Lustermann, W; Lyard, E; Mannheim, K; Meier, K; Mueller, S; Neise, D; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Röser, U; Stucki, J -P; Steinbring, T; Temme, F; Thaele, J; Vogler, P; Walter, R; Weitzel, Q

    2014-01-01

    The First G-APD Cherenkov Telescope (FACT) is the first in-operation test of the performance of silicon photo detectors in Cherenkov Astronomy. For more than two years it is operated on La Palma, Canary Islands (Spain), for the purpose of long-term monitoring of astrophysical sources. For this, the performance of the photo detectors is crucial and therefore has been studied in great detail. Special care has been taken for their temperature and voltage dependence implementing a correction method to keep their properties stable. Several measurements have been carried out to monitor the performance. The measurements and their results are shown, demonstrating the stability of the gain below the percent level. The resulting stability of the whole system is discussed, nicely demonstrating that silicon photo detectors are perfectly suited for the usage in Cherenkov telescopes, especially for long-term monitoring purpose.

  6. FACT - The First G-APD Cherenkov Telescope: Status and Results

    CERN Document Server

    Bretz, T; Backes, M; Biland, A; Boccone, V; Braun, I; Bretz, T; Buss, J; Cadoux, F; Commichau, V; Djambazov, L; Dorner, D; Einecke, S; Eisenacher, D; Gendotti, A; Grimm, O; von Gunten, H; Haller, C; Hildebrand, D; Horisberger, U; Huber, B; Kim, K -S; Knoetig, M L; Koehne, J -H; Kraehenbuehl, T; Krumm, B; Lee, M; Lorenz, E; Lustermann, W; Lyard, E; Mannheim, K; Meharga, M; Meier, K; Montaruli, T; Neise, D; Nessi-Tedaldi, F; Overkemping, A -K; Paravac, A; Pauss, F; Renker, D; Rhode, W; Ribordy, M; Roeser, U; Stucki, J -P; Schneider, J; Steinbring, T; Temme, F; Thaele, J; Tobler, S; Viertel, G; Vogler, P; Walter, R; Warda, K; Weitzel, Q; Zaenglein, M

    2013-01-01

    The First G-APD Cherenkov telescope (FACT) is the first telescope using silicon photon detectors (G-APD aka. SiPM). It is built on the mount of the HEGRA CT3 telescope, still located at the Observatorio del Roque de los Muchachos, and it is successfully in operation since Oct. 2011. The use of Silicon devices promises a higher photon detection efficiency, more robustness and higher precision than photo-multiplier tubes. The FACT collaboration is investigating with which precision these devices can be operated on the long-term. Currently, the telescope is successfully operated from remote and robotic operation is under development. During the past months of operation, the foreseen monitoring program of the brightest known TeV blazars has been carried out, and first physics results have been obtained including a strong flare of Mrk501. An instantaneous flare alert system is already in a testing phase. This presentation will give an overview of the project and summarize its goals, status and first results.

  7. Silicon Photomultipliers and front-end electronics performance for Cherenkov Telescope Array camera development

    Science.gov (United States)

    Ambrosi, G.; Bissaldi, E.; Giglietto, N.; Giordano, F.; Ionica, M.; Paoletti, R.; Rando, R.; Simone, D.; Vagelli, V.

    2017-02-01

    In the last few years a number of efforts have been undertaken to develop new technology related to Silicon Photomultipliers (SiPMs). These photosensors consist of an array of identical Avalanche Photodiodes operating in Geiger mode and connected in parallel to a single output. The Italian Institute of Nuclear Physics (INFN) is involved in the R&D program Progetto Premiale Telescopi CHErenkov made in Italy (TECHE.it) to develop photosensors for a SiPM based camera that will be part of the Cherenkov Telescope Array (CTA) observatory. In this framework tests are ongoing on innovative devices suitable to detect Cherenkov light in the blue and near-UV wavelength region, the so-called Near Ultra-Violet Silicon Photomultipliers (NUV SiPMs). The tests on photosensors produced by Fondazione Bruno Kessler (FBK) are revealing promising performance: low operating voltage, capability to detect very low intensity light down to a single photon and high Photo Detection Efficiency (PDE) in the range 390-410 nm. In particular the developed device is a High Density NUV-SiPM (NUV-HD SiPM) based on a micro-cell of 30 μm×30 μm and 6 mm×6 mm area. Tests on this detector in single-cell configuration and in a matrix arrangement have been done. At the same time front-end electronics based on the waveform sampling technique optimized for the new NUV-HD SIPMs is under study and development.

  8. Real-time atmospheric monitoring for the Cherenkov Telescope Array using a wide-field optical telescope

    CERN Document Server

    Ebr, Jan; Prouza, Michael; Blazek, Jiri

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation of ground-based very high energy gamma-ray instruments and is planned to be built on two sites (one in each hemisphere) in the coming years, with full array operation foreseen to begin 2020. The goal of performing high precision gamma-ray energy measurements while maximizing the use of observation time demands detailed and fast information about atmospheric conditions. Besides LIDARs designed to monitor clouds and aerosol content of the atmosphere in the pointing direction of the CTA telescopes, we propose to use the "FRAM" (F(/Ph)otometric Robotic Atmospheric Monitor) device, which is a small robotic astronomical telescope with a large field of view and a sensitive CCD camera that together ensure precise atmospheric characterization over the complete field-of-view of the CTA. FRAM will use stellar photometry to measure atmospheric extinction across the field of view of the CTA without interfering with the observation (unlike laser-based methods). Thi...

  9. Typical atmospheric aerosol behavior at the Cherenkov Telescope Array candidate sites in Argentina

    CERN Document Server

    Piacentini, Rubén D; Micheletti, María I; Salum, Graciela M; Maya, Javier; Mancilla, Alexis; García, Beatriz

    2013-01-01

    Aerosols from natural and antropogenic sources are one of the atmospheric components that have the largest spacial-temporal variability, depending on the type (land or ocean) surface, human activity and climatic conditions (mainly temperature and wind). Since Cherenkov photons generated by the incidence of a primary ultraenergetic cosmic gamma photon have a spectral intensity distribution concentrated in the UV and visible ranges [Hillas AM. Space Science Reviews, 75, 17-30, 1996], it is important to know the aerosol concentration and its contribution to atmospheric radiative transfer. We present results of this concentration measured in typical rather calm (not windy) days at San Antonio de los Cobres (SAC) and El Leoncito/CASLEO proposed Argentinean Andes range sites for the placement of the Cherenkov Telescope Array (CTA). In both places, the aerosol concentration has a peak in the 2.5-5.0$\\mu$m range of the mean aerosol diameter and a very low mean total concentration of 0.097$\\mu$g/m$^3$ (0.365$\\mu$g/m$^...

  10. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Conde, Miguel A.; /KIPAC, Menlo Park /SLAC /IAC, La Laguna /Laguna U., Tenerife; Cannoni, Mirco; /Huelva U.; Zandanel, Fabio; /IAA, Granada; Gomez, Mario E.; /Huelva U.; Prada, Francisco; /IAA, Granada

    2012-06-06

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  11. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Conde, Miguel A. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Cannoni, Mirco; Gómez, Mario E. [Dpto. Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva (Spain); Zandanel, Fabio; Prada, Francisco, E-mail: masc@stanford.edu, E-mail: mirco.cannoni@dfa.uhu.es, E-mail: fabio@iaa.es, E-mail: mario.gomez@dfa.uhu.es, E-mail: fprada@iaa.es [Instituto de Astrofísica de Andalucía (CSIC), E-18008, Granada (Spain)

    2011-12-01

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  12. Astroclimatic Characterization of Vallecitos: A candidate site for the Cherenkov Telescope Array at San Pedro Martir

    CERN Document Server

    Tovmassian, Gagik; Ochoa, Jose Luis; Ernenwein, Jean-Pierre; Mandat, Dusan; Pech, Miroslav; Frayn, Ilse Plauchu; Colorado, Enrique; Murillo, Jose Manuel; Cesena, Urania; Garcia, Benjamin; Lee, William H; Bulik, Tomasz; Garczarczyk, Markus; Fruck, Christian; Costantini, Heide; Cieslar, Marek; Aune, Taylor; Vincent, Stephane; Carr, John; Serre, Natalia; Janecek, Petr; Haefner, Dennis

    2016-01-01

    We conducted an 18 month long study of the weather conditions of the Vallecitos, a proposed site in Mexico to harbor the northern array of the Cherenkov Telescope Array (CTA). It is located in Sierra de San Pedro Martir (SPM) a few kilometers away from Observatorio Astron\\'omico Nacional. The study is based on data collected by the ATMOSCOPE, a multi-sensor instrument measuring the weather and sky conditions, which was commissioned and built by the CTA Consortium. Additionally, we compare the weather conditions of the optical observatory at SPM to the Vallecitos regarding temperature, humidity, and wind distributions. It appears that the excellent conditions at the optical observatory benefit from the presence of microclimate established in the Vallecitos.

  13. Characterization of the candidate site for the Cherenkov Telescope Array at the Observatorio del Teide

    CERN Document Server

    Puerto-Giménez, Irene; Barrena, Rafael; Castro, Julio; Doro, Michele; Font, Lluís; Rosillo, Miguel Nievas; Zamorano, Jaime

    2013-01-01

    The Spanish partners of the future Cherenkov Telescope Array (CTA) have selected a candidate site for the Northern installation of CTA, at 3 km from the Observatorio del Teide (OT), in the Canary Island of Tenerife. As the OT is a very well-characterized astronomical site. We focus here on differences between the publicly accessible measurements from the OT observatory and those obtained with instruments deployed at the candidate site. We find that the winds are generally softer at the candidate site, and the level of background light comparable to the Observatorio del Roque de los Muchachos (ORM) at La Palma in the B-band, while it is only slightly higher in the V-band.

  14. Detecting extended gamma-ray emission with the next generation Cherenkov telescopes

    CERN Document Server

    Alonso, M Fernandez; Rovero, A C

    2015-01-01

    Very high energy (VHE $>$100 GeV) gamma rays coming from blazars can produce pairs when interacting with the Extragalactic Background Light (EBL) and the Cosmic Microwave Background, generating an electromagnetic cascade. Depending on the Intergalactic Magnetic Field (IGMF) intensity, this cascade may result in an extended isotropic emission of photons around the source (halo), or in a broadening of the emission beam. The detection of these effects might lead to important constrains both on the IGMF intensity and the EBL density, quantities of great relevance in cosmological models. Using a Monte Carlo program, we simulate electromagnetic cascades for different values of the IGMF intensities and coming from a source similar to 1ES0229+200, a blazar with hard intrinsic spectrum at redshift $z=0.14$, which is an ideal distance for potentially observing the effect. We study the possible response of a generic future Cherenkov telescope using a simplified model for the sensitivity, effective area and angular resol...

  15. Gamma-Ray Burst Science in the Era of the Cherenkov Telescope Array

    CERN Document Server

    Inoue, Susumu; O'Brien, Paul T; Asano, Katsuaki; Bouvier, Aurelien; Carosi, Alessandro; Connaughton, Valerie; Garczarczyk, Markus; Gilmore, Rudy; Hinton, Jim; Inoue, Yoshiyuki; Ioka, Kunihito; Kakuwa, Jun; Markoff, Sera; Murase, Kohta; Osborne, Julian P; Otte, A Nepomuk; Starling, Rhaana; Tajima, Hiroyasu; Teshima, Masahiro; Toma, Kenji; Wagner, Stefan; Wijers, Ralph A M J; Williams, David A; Yamamoto, Tokonatsu; Yamazaki, Ryo

    2013-01-01

    We outline the science prospects for gamma-ray bursts (GRBs) with the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory operating at energies above few tens of GeV. With its low energy threshold, large effective area and rapid slewing capabilities, CTA will be able to measure the spectra and variability of GRBs at multi-GeV energies with unprecedented photon statistics, and thereby break new ground in elucidating the physics of GRBs, which is still poorly understood. Such measurements will also provide crucial diagnostics of ultra-high-energy cosmic ray and neutrino production in GRBs, advance observational cosmology by probing the high-redshift extragalactic background light and intergalactic magnetic fields, and contribute to fundamental physics by testing Lorentz invariance violation with high precision. Aiming to quantify these goals, we present some simulated observations of GRB spectra and light curves, together with estimates of their detection rates with CTA. Alth...

  16. Upper Limits from Five Years of Blazar Observations with the VERITAS Cherenkov Telescopes

    Science.gov (United States)

    Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Biteau, J.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Eisch, J. D.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Fortin, P.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Griffin, S.; Grube, J.; Gyuk, G.; Hütten, M.; Håkansson, N.; Hanna, D.; Holder, J.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Kumar, S.; Lang, M. J.; Maier, G.; McArthur, S.; McCann, A.; Meagher, K.; Moriarty, P.; Mukherjee, R.; Nguyen, T.; Nieto, D.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Otte, A. N.; Park, N.; Perkins, J. S.; Pichel, A.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rovero, A. C.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Vincent, S.; Wakely, S. P.; Weiner, O. M.; Weinstein, A.; Williams, D. A.; Zitzer, B.; VERITAS Collaboration; Fumagalli, M.; Prochaska, J. X.

    2016-06-01

    Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E > 100 GeV) γ-ray sources. In this work, we present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of ˜570 hr. The sample includes several unidentified Fermi-Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi-LAT catalog that are contained within the field of view of the VERITAS observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have spectroscopic distance estimates. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of four of them. For each of the blazars included in our sample, we provide the flux upper limit in the VERITAS energy band. We also study the properties of the significance distributions and we present the result of a stacked analysis of the data set, which shows a 4σ excess.

  17. The ASTRI mini-array within the future Cherenkov Telescope Array

    CERN Document Server

    Vercellone, Stefano

    2015-01-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to very high-energy gamma-ray astrophysics in the energy range from a few tens of GeV to above 100 TeV, which will yield about an order of magnitude improvement in sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). Within this framework, the Italian National Institute for Astrophysics is leading the ASTRI project, whose main goals are the design and installation on Mt. Etna (Sicily) of an end-to-end dual-mirror prototype of the CTA small size telescope (SST) and the installation at the CTA Southern site of a dual-mirror SST mini-array composed of nine units with a relative distance of about 300 m. The innovative dual-mirror Schwarzschild-Couder optical solution adopted for the ASTRI Project allows us to substantially reduce the telescope plate-scale and, therefore, to adopt silicon photo-multipliers as light detectors. The ASTRI mini-array is a wid...

  18. The software system for the Control and Data Acquisition for the Cherenkov Telescope Array

    Science.gov (United States)

    Wegner, P.; FüBling, M.; Oya, I.; Hagge, L.; Schwanke, U.; Schwarz, J.; Tosti, G.; Conforti, V.; Lyard, E.; Walter, R.; Oliveira Antonino, P.; Morgenstern, A.

    2016-10-01

    The Cherenkov Telescope Array (CTA), as the next generation ground-based very high-energy gamma-ray observatory, is defining new areas beyond those related to physics. It is also creating new demands on the control and data acquisition system. CTA will consist of two installations, one in each hemisphere, containing tens of telescopes of different sizes. The ACTL (array control and data acquisition) system will consist of the hardware and software that is necessary to control and monitor the CTA array, as well as to time-stamp, read-out, filter and store the scientific data at aggregated rates of a few GB/s. The ACTL system must implement a flexible software architecture to permit the simultaneous automatic operation of multiple sub-arrays of telescopes with a minimum personnel effort on site. In addition ACTL must be able to modify the observation schedule on timescales of a few tens of seconds, to account for changing environmental conditions or to prioritize incoming scientific alerts from time-critical transient phenomena such as gamma-ray bursts. This contribution summarizes the status of the development of the software architecture and the main design choices and plans.

  19. Upper limits from five years of blazar observations with the VERITAS Cherenkov telescopes

    CERN Document Server

    Archambault, S; Benbow, W; Bird, R; Biteau, J; Buchovecky, M; Buckley, J H; Bugaev, V; Byrum, K; Cerruti, M; Chen, X; Ciupik, L; Connolly, M P; Cui, W; Eisch, J D; Errando, M; Falcone, A; Feng, Q; Finley, J P; Fleischhack, H; Fortin, P; Fortson, L; Furniss, A; Gillanders, G H; Griffin, S; Grube, J; Gyuk, G; Hütten, M; Hakansson, N; Hanna, D; Holder, J; Humensky, T B; Johnson, C A; Kaaret, P; Kar, P; Kelley-Hoskins, N; Kertzman, M; Kieda, D; Krause, M; Krennrich, F; Kumar, S; Lang, M J; Maier, G; McArthur, S; McCann, A; Meagher, K; Moriarty, P; Mukherjee, R; Nguyen, T; Nieto, D; De Bhróithe, A O'Faoláin; Ong, R A; Otte, A N; Park, N; Perkins, J S; Pichel, A; Pohl, M; Popkow, A; Pueschel, E; Quinn, J; Ragan, K; Reynolds, P T; Richards, G T; Roache, E; Rovero, A C; Santander, M; Sembroski, G H; Shahinyan, K; Smith, A W; Staszak, D; Telezhinsky, I; Tucci, J V; Tyler, J; Vincent, S; Wakely, S P; Weiner, O M; Weinstein, A; Williams, D A; Zitzer, B; Fumagalli, M; Prochaska, J X

    2016-01-01

    Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E>100 GeV) {\\gamma}-ray sources. In this work, we present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of ~570 hours. The sample includes several unidentified Fermi-Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi-LAT catalog which are contained within the field of view of the VERITAS observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have a spectroscopic distance estimate. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of fo...

  20. The ASTRI SST-2M prototype and mini-array for the Cherenkov Telescope Array (CTA)

    Science.gov (United States)

    Pareschi, Giovanni

    2016-08-01

    In the framework of the Cherenkov Telescope Array (CTA) Observatory, the Italian National Institute of Astrophysics (INAF) has recently inaugurated in Sicily (Italy), at the Serra La Nave astronomical site (on the slopes of Mount Etna), a dual-mirror prototype (ASTRI SST-2M) of the CTA small size class of telescopes. It is planned to install up to 70 small size telescopes in the southern CTA site, in order to allow the study of the gamma rays from a few TeV up to hundreds of TeV. The ASTRI SST-2M telescope prototype has been developed following an end-to-end approach. According to this philosophy, the telescope includes structure, primary and secondary mirrors, camera, software and hardware for control/acquisition and data handling. The camera, almost completed, has been designed to cover a field of view of 9.6 degrees. After the full implementation of the prototype, a remarkable improvement in terms of technology advancement and performance will come from the operation of the ASTRI mini-array, led within the CTA collaboration by INAF in synergy with the Universidade de Sao Paulo (Brazil) and the North-West University (South Africa). The ASTRI mini-array will be composed of at least 9 ASTRI SST-2M units and it is proposed to be installed at the CTA southern site as part of its pre-production phase. Apart from the assessment of a number of technological aspects related to CTA, the ASTRI mini-array will extend and improve the flux sensitivity compared with the current experiments (HESS, MAGIC and VERITAS) in the 5 - 300 TeV energy range.

  1. Design of a prototype device to calibrate the Large Size Telescope camera of the Cherenkov Telescope Array

    CERN Document Server

    Iori, M; De Persio, F; Chatterjee, A; Ferrarotto, F; Nagesh, B K; Saha, L; Singh, B B

    2015-01-01

    The Cherenkov Telescope Array is a project that aims to exploring the highest energy region of electromagnetic spectrum. Two arrays, one for each hemisphere, will cover the full sky in a range from few tens of GeV to hundreds of TeV improving the sensitivity and angular resolution of the present operating arrays. A prototype of the Large Size Telescope (LST) for the study of gamma ray astronomy above some tens of GeV will be installed at the Canary Island of La Palma in 2016. The LST camera, made by an array of photomultipliers (PMTs), requires an accurate and systematic calibration over a wide dynamic range. In this contribution, we present an optical calibration system made by a 355 nm wavelength laser with 400 ps pulse width, 1 muJ output energy, up to 4k Hz repetition rate and a set of neutral density filters to obtain a wide range of photon intensities, up to 1000 photoelectrons/PMT, to be sent to the camera plane 28 m away. The number of photons after the diffuser of the calibration box, located in the ...

  2. Simulation studies of an air Cherenkov telescope, IceACT, for future IceCube surface extensions

    Energy Technology Data Exchange (ETDEWEB)

    Hansmann, Bengt; Auffenberg, Jan; Bekman, Ilja; Kemp, Julian; Roegen, Martin; Schaufel, Merlin; Stahlberg, Martin; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen, Aachen (Germany); Bretz, Thomas; Hebbeker, Thomas; Middendorf, Lukas; Niggemann, Tim; Schumacher, Johannes [III. Physikalisches Institut A, RWTH Aachen, Aachen (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceACT is a compact air Cherenkov telescope using silicon photomultipliers. The Fresnel lens based design has been adopted from the fluorescence telescope FAMOUS. The goal of IceACT is the efficient detection of cosmic ray induced air showers above the IceCube Neutrino Observatory at the geographic South Pole. This allows to distinguish cosmic ray induced muons and neutrinos in the southern sky from astrophysical neutrinos in the deep ice detector. This leads to an increase in low-background astrophysical neutrinos of several dozen events per year for a detection threshold of several 100 TeV cosmic ray primary energy. To determine the actual telescope performance, dedicated CORSIKA air shower simulations incorporating the full Cherenkov light information are performed.

  3. The sensitivity of the Durham Mk6 ground-based Atmospheric Cherenkov Telescope to Very High Energy gamma-ray sources

    CERN Document Server

    Lyons, K

    2001-01-01

    The subject of this thesis is a determination of the sensitivity of the Durham Mk6 ground based Imaging Atmospheric Cherenkov Telescope (IACT), an instrument which uses the imaging atmospheric Cherenkov technique to detect Very High Energy (VHE) gamma-rays. The first three chapters are introductory: Chapter I describes the basics of Very High Energy (VHE) gamma ray astronomy. Chapter 2 describes the properties of Extensive Air Showers (EAS). Chapter 3 describes the detection of these EAS on the ground by lACTs, Chapter 4 details the Durham Mk6 IACT and includes a description of the Cherenkov imaging technique for background discrimination. Chapter 5 describes the MOCCA and SOLMK simulation codes. Chapter 6 contains a description of the details of the simulations produced for this thesis. This chapter continues to its logical conclusion and presents a revised VHE gamma-ray flux of 2.5 +- 0.7 sub s sub t sub a sub t [+0.5 or -1.6] sub s sub y sub s sub t x 10 sup - sup 7 photons m sup - sup 2 s sup - sup 1 for ...

  4. Science with the ASTRI mini-array for the Cherenkov Telescope Array: blazars and fundamental physics

    Science.gov (United States)

    Bonnoli, Giacomo; Tavecchio, Fabrizio; Giuliani, Andrea; Bigongiari, Ciro; Di Pierro, Federico; Stamerra, Antonio; Pareschi, Giovanni; Vercellone, Stefano; ASTRI Collaboration; CTA Consortium

    2016-05-01

    ASTRI (“Astronomia a Specchi con Tecnologia Replicante Italiana”) is a flagship project of the Italian Ministry of Research (MIUR), devoted to the realization, operation and scientific validation of an end-to-end prototype for the Small Size Telescope (SST) envisaged to become part of the Cherenkov Telescope Array (CTA). The ASTRI SST-2M telescope prototype is characterized by a dual mirror, Schwarzschild-Couder optical design and a compact camera based on silicon photo-multipliers. It will be sensitive to multi-TeV very high energy (VHE) gamma rays up to 100 TeV, with a PSF ~ 6’ and a wide (9.6°) unaberrated optical field of view. Right after validation of the design in single-dish observations at the Serra La Nave site (Sicily, Italy) during 2015, the ASTRI collaboration will be able to start deployment, at the final CTA southern site, of the ASTRI mini-array, proposed to constitute the very first CTA precursor. Counting 9 ASTRI SST-2M telescopes, the ASTRI mini-array will overtake current IACT systems in differential sensitivity above 5 TeV, thus allowing unprecedented observations of known and predicted bright TeV emitters in this band, including some extragalactic sources such as extreme high-peaked BL Lacs with hard spectra. We exploited the ASTRI scientific simulator ASTRIsim in order to understand the feasibility of observations tackling blazar and cosmic ray physics, including discrimination of hadronic and leptonic scenarios for the VHE emission from BL Lac relativistic jets and indirect measurements of the intergalactic magnetic field and of the extragalactic background light. We selected favorable targets, outlining observation modes, exposure times, multi-wavelength coverage needed and the results expected. Moreover, the perspectives for observation of effects due to the existence of axion-like particles or to Lorentz invariance violations have been investigated.

  5. Exploiting the time of arrival of Cherenkov photons at the 28 m H.E.S.S. telescope for background rejection: Methods and performance

    CERN Document Server

    Chalmé-Calvet, Raphaël; de Naurois, Mathieu; Tavernet, Jean-Paul

    2015-01-01

    In 2012, the High Energy Stereoscopic System (H.E.S.S.) was expanded by a fifth telescope (CT5). With an effective mirror diameter of 28m, CT5 is able to detect the Cherenkov light of very faint gamma-ray air showers, thereby significantly lowering the energy threshold of this telescope compared to the other four telescopes. Extracting as much information as possible from the recorded shower image is crucial for background rejection and to reach an energy threshold of a few tens of GeV. The camera of CT5 is conceived to register the time of the charge pulse maximum with respect to the beginning of the 16 ns integration window of each pixel. This information can be utilised to improve the event reconstruction. It also helps to reduce the background contamination at low energies. We present new techniques for background rejection based on CT5 timing information and evaluate their performance.

  6. Characterization and commissioning of the SST-1M camera for the Cherenkov Telescope Array

    Science.gov (United States)

    Aguilar, J. A.; Bilnik, W.; Błocki, J.; Bogacz, L.; Borkowski, J.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Medina Miranda, L. D.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Rajda, P.; Rameez, M.; Schioppa, E., Jr.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.

    2017-02-01

    The Cherenkov Telescope Array (CTA), the next generation very high energy gamma-rays observatory, will consist of three types of telescopes: large (LST), medium (MST) and small (SST) size telescopes. The SSTs are dedicated to the observation of gamma-rays with energy between a few TeV and a few hundreds of TeV. The SST array is expected to have 70 telescopes of different designs. The single-mirror small size telescope (SST-1 M) is one of the proposed telescope designs under consideration for the SST array. It will be equipped with a 4 m diameter segmented mirror dish and with an innovative camera based on silicon photomultipliers (SiPMs). The challenge is not only to build a telescope with exceptional performance but to do it foreseeing its mass production. To address both of these challenges, the camera adopts innovative solutions both for the optical system and readout. The Photo-Detection Plane (PDP) of the camera is composed of 1296 pixels, each made of a hollow, hexagonal light guide coupled to a hexagonal SiPM designed by the University of Geneva and Hamamatsu. As no commercial ASIC would satisfy the CTA requirements when coupled to such a large sensor, dedicated preamplifier electronics have been designed. The readout electronics also use an innovative approach in gamma-ray astronomy by adopting a fully digital approach. All signals coming from the PDP are digitized in a 250 MHz Fast ADC and stored in ring buffers waiting for a trigger decision to send them to the pre-processing server where calibration and higher level triggers will decide whether the data are stored. The latest generation of FPGAs is used to achieve high data rates and also to exploit all the flexibility of the system. As an example each event can be flagged according to its trigger pattern. All of these features have been demonstrated in laboratory measurements on realistic elements and the results of these measurements will be presented in this contribution.

  7. Cherenkov light production from the α-emitting decay chains of (223)Ra, (212)Pb, and (149)Tb for Cherenkov Luminescence Imaging.

    Science.gov (United States)

    Wood, V; Ackerman, N L

    2016-12-01

    Cherenkov Luminescence Imaging (CLI) is a new method to image radioactive therapeutic and diagnostic agents, primarily in preclinical studies. This study used Geant4 and Python to generate the predicted Cherenkov light production as a function of time for a set of isotopic chains of interest for targeted alpha therapy: (223)Ra, (212)Pb, and (149)Tb. All are shown to produce substantial Cherenkov light, though time delays between initial decays and the production of Cherenkov light requires caution in interpreting CLI. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Results from the 1997 run of the LHCb ring imaging Cherenkov test-beam

    CERN Document Server

    Halley, A; Teixeira-Dias, P; Wilkinson, G; Wilkinson, Guy

    1998-01-01

    Analysis results of data from the ring imaging Cherenkov test-beam using hybrid photo diodes are presented. Details are given of the geometrical arrangement of the prototype and data-taking conditions, together with results of simulation and studies of the detector performance, photon yield and Cherenkov angle resolution using different radiators. Good agreement with simulation is found for both gas and aerogel photon yield calculations and the observed Cherenkov angle resolution.1

  9. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    OpenAIRE

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L.A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S

    2011-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV to 10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will con...

  10. Modern middleware for the data acquisition of the Cherenkov Telescope Array

    CERN Document Server

    Lyard, Etienne; Kosack, Karl; Jacquemier, Jean; Oya, Igor; Wegner, Peter; Fuessling, Matthias; Wu, Xin

    2015-01-01

    The data acquisition system (DAQ) of the future Cherenkov Telescope Array (CTA) must be ef- ficient, modular and robust to be able to cope with the very large data rate of up to 550 Gbps coming from many telescopes with different characteristics. The use of modern middleware, namely ZeroMQ and Protocol Buffers, can help to achieve these goals while keeping the development effort to a reasonable level. Protocol Buffers are used as an on-line data for- mat, while ZeroMQ is employed to communicate between processes. The DAQ will be controlled and monitored by the Alma Common Software (ACS). Protocol Buffers from Google are a way to define high-level data structures through an in- terface description language (IDL) and a meta-compiler. ZeroMQ is a middleware that augments the capabilities of TCP/IP sockets. It does not implement very high-level features like those found in CORBA for example, but makes use of sockets easier, more robust and almost as effective as raw TCP. The use of these two middlewares enabled u...

  11. Current Status of the Namibian bid to host the Cherenkov Telescope Array

    Science.gov (United States)

    Backes, M.

    The Cherenkov Telescope Array (CTA) is the next generation instrument for very high energy (VHE) gamma-ray astronomy. Being successor to the vastly successful instruments H.E.S.S. in Namibia, MAGIC on the Canary Island of La Palma, and VERITAS in Arizona, USA, it is expected to outperform the former by a factor of 10, both in sensitivity as well as in the accessible energy range. To achieve these goals, the best possible operational conditions must be met and thus a world-wide site investigation campaign was launched. Based on the experience of successfully hosting the H.E.S.S. telescopes since 2002, proposals were submitted to host CTA in Namibia. Thorough investigations of the atmospheric and climatic conditions were carried out to estimate the average annual observation time. The scientific performance was estimated by means of Monte Carlo simulations, taking both the altitude and the local geomagnetic field into account. Eventually, the proposed site in Namibia was singled out as the scientifically best site in the world to host the CTA and in April 2014, the decision was taken to engage into official negotiations with the Republic of Namibia and with the European Southern Observatory (ESO), being patron to the competitor site in Chile. Details of the bidding process as well as the current status will be presented.

  12. Parallel waveform extraction algorithms for the Cherenkov Telescope Array Real-Time Analysis

    CERN Document Server

    Zoli, Andrea; De Rosa, Adriano; Aboudan, Alessio; Fioretti, Valentina; De Cesare, Giovanni; Marx, Ramin

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation observatory for the study of very high-energy gamma rays from about 20 GeV up to 300 TeV. Thanks to the large effective area and field of view, the CTA observatory will be characterized by an unprecedented sensitivity to transient flaring gamma-ray phenomena compared to both current ground (e.g. MAGIC, VERITAS, H.E.S.S.) and space (e.g. Fermi) gamma-ray telescopes. In order to trigger the astrophysics community for follow-up observations, or being able to quickly respond to external science alerts, a fast analysis pipeline is crucial. This will be accomplished by means of a Real-Time Analysis (RTA) pipeline, a fast and automated science alert trigger system, becoming a key system of the CTA observatory. Among the CTA design key requirements to the RTA system, the most challenging is the generation of alerts within 30 seconds from the last acquired event, while obtaining a flux sensitivity not worse than the one of the final analysis by more than a fac...

  13. Probing the Pulsar Origin of the Anomalous Positron Fraction with AMS-02 and Atmospheric Cherenkov Telescopes

    CERN Document Server

    Linden, Tim

    2013-01-01

    Recent observations by PAMELA, Fermi-LAT, and AMS-02 have conclusively indicated a rise in the cosmic-ray positron fraction above 10 GeV, a feature which is impossible to mimic under the paradigm of secondary positron production with self-consistent Galactic cosmic-ray propagation models. A leading explanation for the rising positron fraction is an additional source of electron-positron pairs, for example one or more mature, energetic, and relatively nearby pulsars. We point out that any one of two well-known nearby pulsars, Geminga and Monogem, can satisfactorily provide enough positrons to reproduce AMS-02 observations. A smoking-gun signature of this scenario is an anisotropy in the arrival direction of the cosmic-ray electrons and positrons, which may be detectable by existing, or future, telescopes. The predicted anisotropy level is, at present, consistent with limits from Fermi-LAT and AMS-02. We argue that the large collecting area of Atmospheric Cherenkov Telescopes (ACTs) makes them optimal tools for...

  14. Simulated Gamma-Ray Pulse Profile of the Crab Pulsar with the Cherenkov Telescope Array

    CERN Document Server

    Burtovoi, A

    2016-01-01

    We present simulations of the very high energy (VHE) gamma-ray light curve of the Crab pulsar as observed by the Cherenkov Telescope Array (CTA). The CTA pulse profile of the Crab pulsar is simulated with the specific goal of determining the accuracy of the position of the interpulse. We fit the pulse shape obtained by the MAGIC telescope with a three-Gaussian template and rescale it to account for the different CTA instrumental and observational configurations. Simulations are performed for different configurations of CTA and for the ASTRI mini-array. The northern CTA configuration will provide an improvement of a factor of ~3 in accuracy with an observing time comparable to that of MAGIC (73 hours). Unless the VHE spectrum above 1 TeV behaves differently from what we presently know, unreasonably long observing times are required for a significant detection of the pulsations of the Crab pulsar with the high-energy-range sub-arrays. We also found that an independent VHE timing analysis is feasible with Large ...

  15. Characterization study of silica aerogel for Cherenkov imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sallaz-Damaz, Y. [LPSC, IN2P3/CNRS, 53 av. des Martyrs, 38026 Grenoble Cedex (France); Derome, L., E-mail: derome@lpsc.in2p3.f [LPSC, IN2P3/CNRS, 53 av. des Martyrs, 38026 Grenoble Cedex (France); Mangin-Brinet, M.; Loth, M.; Protasov, K.; Putze, A.; Vargas-Trevino, M.; Veziant, O.; Buenerd, M. [LPSC, IN2P3/CNRS, 53 av. des Martyrs, 38026 Grenoble Cedex (France); Menchaca-Rocha, A.; Belmont, E.; Vargas-Magana, M.; Leon-Vargas, H.; Ortiz-Velasquez, A. [Instituto de Fisica, UNAM, AP 20-364, Mexico DF (Mexico); Malinine, A. [University of Maryland, College Park, MD 20742 (United States); Barao, F.; Pereira, R. [LIP, Avenida Elias Garcia 14-1, P - 1000 Lisboa (Portugal); Bellunato, T.; Matteuzzi, C.; Perego, D.L. [Universita degli Studi di Milano-Bicocca and INFN, Milano (Italy)

    2010-03-01

    Different methods to measure the characteristics of silica aerogel tiles used as Cherenkov radiator in the CREAM and AMS experiments have been investigated to optimize the detector performances. The measurement accuracy dictated by the physics objectives on the velocity and charge resolutions set stringent requirements on the aerogel refractive index determination, namely DELTAnapprox1.5x10{sup -4} and DELTAnapprox5x10{sup -4} for the AMS and CREAM imagers, respectively. The matching of such accuracies for this material turned out to be a metrological challenge, and finally led to a full R and D program, to develop an appropriate characterization procedure. Preliminary studies performed with a standard refractive index measurement technique (laser beam deviation by a prism) have revealed a significant systematic index nonuniformity for the AMS tiles at a level (10{sup -3}), not acceptable considering the aimed accuracy. These large variations were confirmed in a beam test. A second method, mapping the transverse index gradient by deflection of a laser beam entering normally to the tile has then been developed. It is shown that this procedure is suitable to reach the required accuracy, at the price of using both methods combined. The several hundreds of tiles of the radiator plane of the CREAM and AMS Cherenkov imagers were characterized using a simplified procedure, however, appropriate for each case, compromising between the amount of work and the time available. The experimental procedures and set-ups used are described in the text, and the obtained results are reported.

  16. The ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array: camera DAQ software architecture

    Science.gov (United States)

    Conforti, Vito; Trifoglio, Massimo; Bulgarelli, Andrea; Gianotti, Fulvio; Fioretti, Valentina; Tacchini, Alessandro; Zoli, Andrea; Malaguti, Giuseppe; Capalbi, Milvia; Catalano, Osvaldo

    2014-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a Flagship Project financed by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. Within this framework, INAF is currently developing an end-to-end prototype of a Small Size dual-mirror Telescope. In a second phase the ASTRI project foresees the installation of the first elements of the array at CTA southern site, a mini-array of 7 telescopes. The ASTRI Camera DAQ Software is aimed at the Camera data acquisition, storage and display during Camera development as well as during commissioning and operations on the ASTRI SST-2M telescope prototype that will operate at the INAF observing station located at Serra La Nave on the Mount Etna (Sicily). The Camera DAQ configuration and operations will be sequenced either through local operator commands or through remote commands received from the Instrument Controller System that commands and controls the Camera. The Camera DAQ software will acquire data packets through a direct one-way socket connection with the Camera Back End Electronics. In near real time, the data will be stored in both raw and FITS format. The DAQ Quick Look component will allow the operator to display in near real time the Camera data packets. We are developing the DAQ software adopting the iterative and incremental model in order to maximize the software reuse and to implement a system which is easily adaptable to changes. This contribution presents the Camera DAQ Software architecture with particular emphasis on its potential reuse for the ASTRI/CTA mini-array.

  17. Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Ogata, Yoshimune [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Kawachi, Naoki; Suzui, Nobuo; Yin, Yong-Gen; Fujimaki, Shu [Radiotracer Imaging Group, Japan Atomic Energy Agency (Japan)

    2015-03-21

    After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since {sup 137}Cs and {sup 134}Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from {sup 137}Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm {sup 137}Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq {sup 137}Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a {sup 137}Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject.

  18. Contributions of the Cherenkov Telescope Array (CTA) to the 6th International Symposium on High-Energy Gamma-Ray Astronomy (Gamma 2016)

    CERN Document Server

    :,; Abeysekara, U; Abril, Ó; Acero, F; Acharya, B S; Adams, C; Agnetta, G; Aharonian, F; Akhperjanian, A; Albert, A; Alcubierre, M; Alfaro, J; Alfaro, R; Allafort, A J; Aloisio, R; Amans, J -P; Amato, E; Ambrogi, L; Ambrosi, G; Ambrosio, M; Anderson, J; Anduze, M; Angüner, E O; Antolini, E; Antonelli, L A; Antonucci, M; Antonuccio, V; Antoranz, P; Aramo, C; Aravantinos, A; Araya, M; Arcaro, C; Arezki, B; Argan, A; Armstrong, T; Arqueros, F; Arrabito, L; Arrieta, M; Asano, K; Ashley, M; Aubert, P; Singh, C B; Babic, A; Backes, M; Bais, A; Bajtlik, S; Balazs, C; Balbo, M; Balis, D; Balkowski, C; Ballester, O; Ballet, J; Balzer, A; Bamba, A; Bandiera, R; Barber, A; Barbier, C; Barcelo, M; Barkov, M; Barnacka, A; de Almeida, U Barres; Barrio, J A; Basso, S; Bastieri, D; Bauer, C; Becciani, U; Becherini, Y; Tjus, J Becker; Beckmann, V; Bednarek, W; Benbow, W; Ventura, D Benedico; Berdugo, J; Berge, D; Bernardini, E; Bernardini, M G; Bernhard, S; Bernlöhr, K; Bertucci, B; Besel, M -A; Beshley, V; Bhatt, N; Bhattacharjee, P; Bhattacharyya, W; Bhattachryya, S; Biasuzzi, B; Bicknell, G; Bigongiari, C; Biland, A; Bilinsky, A; Bilnik, W; Biondo, B; Bird, R; Bird, T; Bissaldi, E; Bitossi, M; Blanch, O; Blasi, P; Blazek, J; Bockermann, C; Boehm, C; Bogacz, L; Bogdan, M; Bohacova, M; Boisson, C; Boix, J; Bolmont, J; Bonanno, G; Bonardi, A; Bonavolontà, C; Bonifacio, P; Bonnarel, F; Bonnoli, G; Borkowski, J; Bose, R; Bosnjak, Z; Böttcher, M; Bousquet, J -J; Boutonnet, C; Bouyjou, F; Bowman, L; Braiding, C; Brantseg, T; Brau-Nogué, S; Bregeon, J; Briggs, M; Brigida, M; Bringmann, T; Brisken, W; Bristow, D; Britto, R; Brocato, E; Bron, S; Brook, P; Brooks, W; Brown, A M; Brügge, K; Brun, F; Brun, P; Brun, P; Brunetti, G; Brunetti, L; Bruno, P; Buanes, T; Bucciantini, N; Buchholtz, G; Buckley, J; Bugaev, V; Bühler, R; Bulgarelli, A; Bulik, T; Burton, M; Burtovoi, A; Busetto, G; Buson, S; Buss, J; Byrum, K; Cadoux, F; Tovar, J Calvo; Cameron, R; Canelli, F; Canestrari, R; Capalbi, M; Capasso, M; Capobianco, G; Caproni, A; Caraveo, P; Cardenzana, J; Cardillo, M; Carius, S; Carlile, C; Carosi, A; Carosi, R; Carquín, E; Carr, J; Carroll, M; Carter, J; Carton, P -H; Casandjian, J -M; Casanova, S; Casanova, S; Cascone, E; Casiraghi, M; Castellina, A; Mora, J Castroviejo; Catalani, F; Catalano, O; Catalanotti, S; Cauz, D; Cavazzani, S; Cerchiara, P; Chabanne, E; Chadwick, P; Chaleil, T; Champion, C; Chatterjee, A; Chaty, S; Chaves, R; Chen, A; Chen, X; Chen, X; Cheng, K; Chernyakova, M; Chiappetti, L; Chikawa, M; Chinn, D; Chitnis, V R; Cho, N; Christov, A; Chudoba, J; Cieślar, M; Ciocci, M A; Clay, R; Colafrancesco, S; Colin, P; Colley, J -M; Colombo, E; Colome, J; Colonges, S; Conforti, V; Connaughton, V; Connell, S; Conrad, J; Contreras, J L; Coppi, P; Corbel, S; Coridian, J; Cornat, R; Corona, P; Corti, D; Cortina, J; Cossio, L; Costa, A; Costantini, H; Cotter, G; Courty, B; Covino, S; Covone, G; Crimi, G; Criswell, S J; Crocker, R; Croston, J; Cuadra, J; Cumani, P; Cusumano, G; Da Vela, P; Dale, Ø; D'Ammando, F; Dang, D; Dang, V T; Dangeon, L; Daniel, M; Davids, I; Davids, I; Dawson, B; Dazzi, F; Costa, B de Aguiar; De Angelis, A; Cardoso, R F de Araujo; De Caprio, V; Anjos, R de Cássia dos; De Cesare, G; De Franco, A; De Frondat, F; Pino, E M de Gouveia Dal; de la Calle, I; De Lisio, C; Lopez, R de los Reyes; De Lotto, B; De Luca, A; Neto, J R T de Mello; de Naurois, M; Wilhelmi, E de Oña; De Palma, F; De Persio, F; de Souza, V; Decock, G; Decock, J; Deil, C; Del Santo, M; Delagnes, E; Deleglise, G; Delgado, C; Delgado, J; della Volpe, D; Deloye, P; Detournay, M; Dettlaff, A; Devin, J; Di Girolamo, T; Di Giulio, C; Di Paola, A; Di Pierro, F; Diaz, M A; Díaz, C; Dib, C; Dick, J; Dickinson, H; Diebold, S; Digel, S; Dipold, J; Disset, G; Distefano, A; Djannati-Ataï, A; Doert, M; Dohmke, M; Domínguez, A; Dominik, N; Dominique, J -L; Prester, D Dominis; Donat, A; Donnarumma, I; Dorner, D; Doro, M; Dournaux, J -L; Downes, T; Doyle, K; Drake, G; Drappeau, S; Drass, H; Dravins, D; Drury, L; Dubus, G; Ducci, L; Dumas, D; Morå, K Dundas; Durand, D; D'Urso, D; Dwarkadas, V; Dyks, J; Dyrda, M; Ebr, J; Edy, E; Egberts, K; Eger, P; Egorov, A; Einecke, S; Eisch, J; Eisenkolb, F; Eleftheriadis, C; Elsaesser, D; Elsässer, D; Emmanoulopoulos, D; Engelbrecht, C; Engelhaupt, D; Ernenwein, J -P; Escarate, P; Eschbach, S; Espinoza, C; Evans, P; Fairbairn, M; Falceta-Goncalves, D; Falcone, A; Ramazani, V Fallah; Fantinel, D; Farakos, K; Farnier, C; Farrell, E; Fasola, G; Favre, Y; Fede, E; Fedora, R; Fedorova, E; Fegan, S; Ferenc, D; Fernandez-Alonso, M; Fernández-Barral, A; Ferrand, G; Ferreira, O; Fesquet, M; Fetfatzis, P; Fiandrini, E; Fiasson, A; Filipčič, A; Filipovic, M; Fink, D; Finley, C; Finley, J P; Finoguenov, A; Fioretti, V; Fiorini, M; Fleischhack, H; Flores, H; Florin, D; Föhr, C; Fokitis, E; Fonseca, M V; Font, L; Fontaine, G; Fontes, B; Fornasa, M; Fornasa, M; Förster, A; Fortin, P; Fortson, L; Fouque, N; Franckowiak, A; Franckowiak, A; Franco, F J; Albuquerque, I Freire Mota; Coromina, L Freixas; Fresnillo, L; Fruck, C; Fuessling, M; Fugazza, D; Fujita, Y; Fukami, S; Fukazawa, Y; Fukuda, T; Fukui, Y; Funk, S; Furniss, A; Gäbele, W; Gabici, S; Gadola, A; Galindo, D; Gall, D D; Gallant, Y; Galloway, D; Gallozzi, S; Galvez, J A; Gao, S; Garcia, A; Garcia, B; Gil, R García; López, R Garcia; Garczarczyk, M; Gardiol, D; Gargano, C; Gargano, F; Garozzo, S; Garrecht, F; Garrido, L; Garrido-Ruiz, M; Gascon, D; Gaskins, J; Gaudemard, J; Gaug, M; Gaweda, J; Gebhardt, B; Gebyehu, M; Geffroy, N; Genolini, B; Gerard, L; Ghalumyan, A; Ghedina, A; Ghislain, P; Giammaria, P; Giannakaki, E; Gianotti, F; Giarrusso, S; Giavitto, G; Giebels, B; Gieras, T; Giglietto, N; Gika, V; Gimenes, R; Giomi, M; Giommi, P; Giordano, F; Giovannini, G; Girardot, P; Giro, E; Giroletti, M; Gironnet, J; Giuliani, A; Glicenstein, J -F; Gnatyk, R; Godinovic, N; Goldoni, P; Gomez, G; Gonzalez, M M; González, A; Gora, D; Gothe, K S; Gotz, D; Goullon, J; Grabarczyk, T; Graciani, R; Graham, J; Grandi, P; Granot, J; Grasseau, G; Gredig, R; Green, A J; Green, A M; Greenshaw, T; Grenier, I; Griffiths, S; Grillo, A; Grondin, M -H; Grube, J; Grudzinska, M; Grygorczuk, J; Guarino, V; Guberman, D; Gunji, S; Gyuk, G; Hadasch, D; Hagedorn, A; Hagge, L; Hahn, J; Hakobyan, H; Hara, S; Hardcastle, M J; Hassan, T; Hatanaka, K; Haubold, T; Haupt, A; Hayakawa, T; Hayashida, M; Heller, M; Heller, R; Helo, J C; Henault, F; Henri, G; Hermann, G; Hermel, R; Llorente, J Herrera; Llorente, J Herrera; Herrero, A; Hervet, O; Hidaka, N; Hinton, J; Hirai, W; Hirotani, K; Hnatyk, B; Hoang, J; Hoffmann, D; Hofmann, W; Holch, T; Holder, J; Hooper, S; Horan, D; Hörandel, J; Hörbe, M; Horns, D; Horvath, P; Hose, J; Houles, J; Hovatta, T; Hrabovsky, M; Hrupec, D; Huet, J -M; Huetten, M; Hughes, G; Hui, D; Humensky, T B; Hussein, M; Iacovacci, M; Ibarra, A; Ikeno, Y; Illa, J M; Impiombato, D; Inada, T; Incorvaia, S; Infante, L; Inome, Y; Inoue, S; Inoue, T; Inoue, Y; Iocco, F; Ioka, K; Iori, M; Ishio, K; Ishio, K; Israel, G L; Iwamura, Y; Jablonski, C; Jacholkowska, A; Jacquemier, J; Jamrozy, M; Janecek, P; Janiak, M; Jankowsky, D; Jankowsky, F; Jean, P; Jegouzo, I; Jenke, P; Jimenez, J J; Jingo, M; Jingo, M; Jocou, L; Jogler, T; Johnson, C A; Jones, M; Josselin, M; Journet, L; Jung, I; Kaaret, P; Kagaya, M; Kakuwa, J; Kalekin, O; Kalkuhl, C; Kamon, H; Kankanyan, R; Karastergiou, A; Kärcher, K; Karczewski, M; Karkar, S; Karn, P; Kasperek, J; Katagiri, H; Kataoka, J; Katarzyński, K; Kato, S; Katz, U; Kawanaka, N; Kaye, L; Kazanas, D; Kelley-Hoskins, N; Kersten, J; Khélifi, B; Kieda, D B; Kihm, T; Kimeswenger, S; Kisaka, S; Kishida, S; Kissmann, R; Klepser, S; Kluźniak, W; Knapen, J; Knapp, J; Knödlseder, J; Koch, B; Köck, F; Kocot, J; Kohri, K; Kokkotas, K; Kokkotas, K; Kolitzus, D; Komin, N; Kominis, I; Kong, A; Konno, Y; Kosack, K; Koss, G; Kossatz, M; Kowal, G; Koyama, S; Kozioł, J; Kraus, M; Krause, J; Krause, M; Krawzcynski, H; Krennrich, F; Kretzschmann, A; Kruger, P; Kubo, H; Kudryavtsev, V; Mezek, G Kukec; Kuklis, M; Kuroda, H; Kushida, J; La Barbera, A; La Palombara, N; La Parola, V; La Rosa, G; Laffon, H; Lahmann, R; Lakicevic, M; Lalik, K; Lamanna, G; Landriu, D; Landt, H; Lang, R G; Lapington, J; Laporte, P; Fèvre, J -P Le; Flour, T Le; Sidaner, P Le; Lee, S -H; Lee, W H; Lees, J -P; Lefaucheur, J; Leffhalm, K; Leich, H; de Oliveira, M A Leigui; Lelas, D; Lemière, A; Lemoine-Goumard, M; Lenain, J -P; Leonard, R; Leoni, R; Lessio, L; Leto, G; Leveque, A; Lieunard, B; Limon, M; Lindemann, R; Lindfors, E; Linhoff, L; Liolios, A; Lipniacka, A; Lockart, H; Lohse, T; Łokas, E; Lombardi, S; Longo, F; Lopatin, A; Lopez, M; Loreggia, D; Louge, T; Louis, F; Louys, M; Lucarelli, F; Lucchesi, D; Lüdecke, H; Luigi, T; Luque-Escamilla, P L; Lyard, E; Maccarone, M C; Maccarone, T; Maccarone, T J; Mach, E; Madejski, G M; Madonna, A; Magniette, F; Magniez, A; Mahabir, M; Maier, G; Majumdar, P; Majumdar, P; Makariev, M; Malaguti, G; Malaspina, G; Mallot, A K; Malouf, A; Maltezos, S; Malyshev, D; Mancilla, A; Mandat, D; Maneva, G; Manganaro, M; Mangano, S; Manigot, P; Mankushiyil, N; Mannheim, K; Maragos, N; Marano, D; Marchegiani, P; Marcomini, J A; Marcowith, A; Mariotti, M; Marisaldi, M; Markoff, S; Martens, C; Martí, J; Martin, J -M; Martin, L; Martin, P; Martínez, G; Martínez, M; Martínez, O; Martynyuk-Lototskyy, K; Marx, R; Masetti, N; Massimino, P; Mastichiadis, A; Mastroianni, S; Mastropietro, M; Masuda, S; Matsumoto, H; Matsuoka, S; Matthews, N; Mattiazzo, S; Maurin, G; Maxted, N; Maxted, N; Maya, J; Mayer, M; Mazin, D; Mazziotta, M N; Comb, L Mc; McCubbin, N; McHardy, I; Medina, C; Mehrez, F; Melioli, C; Melkumyan, D; Melse, T; Mereghetti, S; Merk, M; Mertsch, P; Meunier, J -L; Meures, T; Meyer, M; Meyrelles, J L; Miccichè, A; Michael, T; Michałowski, J; Mientjes, P; Mievre, I; Mihailidis, A; Miller, J; Mineo, T; Minuti, M; Mirabal, N; Mirabel, F; Miranda, J M; Mirzoyan, R; Mitchell, A; Mizuno, T; Moderski, R; Mognet, I; Mohammed, M; Moharana, R; Mohrmann, L; Molinari, E; Molyneux, P; Monmarthe, E; Monnier, G; Montaruli, T; Monte, C; Monteiro, I; Mooney, D; Moore, P; Moralejo, A; Morello, C; Moretti, E; Mori, K; Morris, P; Morselli, A; Moscato, F; Motohashi, D; Mottez, F; Moudden, Y; Moulin, E; Mueller, S; Mukherjee, R; Munar, P; Munari, M; Mundell, C; Mundet, J; Muraishi, H; Murase, K; Muronga, A; Murphy, A; Nagar, N; Nagataki, S; Nagayoshi, T; Nagesh, B K; Naito, T; Nakajima, D; Nakajima, D; Nakamori, T; Nakayama, K; Nanni, J; Naumann, D; Nayman, P; Nellen, L; Nemmen, R; Neronov, A; Neyroud, N; Nguyen, T; Nguyen, T T; Trung, T Nguyen; Nicastro, L; Nicolau-Kukliński, J; Niederwanger, F; Niedźwiecki, A; Niemiec, J; Nieto, D; Nievas-Rosillo, M; Nikolaidis, A; Nikołajuk, M; Nishijima, K; Nishikawa, K -I; Nishiyama, G; Noda, K; Noda, K; Nogues, L; Nolan, S; Northrop, R; Nosek, D; Nöthe, M; Novosyadlyj, B; Nozka, L; Nunio, F; Oakes, L; O'Brien, P; Ocampo, C; Occhipinti, G; Ochoa, J P; de Bhroithe, A OFaolain; Oger, R; Ohira, Y; Ohishi, M; Ohm, S; Ohoka, H; Okazaki, N; Okumura, A; Olive, J -F; Olszowski, D; Ong, R A; Ono, S; Orienti, M; Orito, R; Orlati, A; Osborne, J; Ostrowski, M; Ottaway, D; Otte, N; Öttl, S; Ovcharov, E; Oya, I; Ozieblo, A; Padovani, M; Pagano, I; Paiano, S; Paizis, A; Palacio, J; Palatka, M; Pallotta, J; Panagiotidis, K; Panazol, J -L; Paneque, D; Panter, M; Panzera, M R; Paoletti, R; Paolillo, M; Papayannis, A; Papyan, G; Paravac, A; Paredes, J M; Pareschi, G; Park, N; Parsons, D; Paśko, P; Pavy, S; Pech, M; Peck, A; Pedaletti, G; Pe'er, A; Peet, S; Pelat, D; Pepato, A; Perez, M d C; Perri, L; Perri, M; Persic, M; Persic, M; Petrashyk, A; Petrucci, P -O; Petruk, O; Peyaud, B; Pfeifer, M; Pfeiffer, G; Piano, G; Pieloth, D; Pierre, E; de Pinho, F Pinto; García, C Pio; Piret, Y; Pisarski, A; Pita, S; Platos, Ł; Platzer, R; Podkladkin, S; Pogosyan, L; Pohl, M; Poinsignon, P; Pollo, A; Porcelli, A; Porthault, J; Potter, W; Poulios, S; Poutanen, J; Prandini, E; Prandini, E; Prast, J; Pressard, K; Principe, G; Profeti, F; Prokhorov, D; Prokoph, H; Prouza, M; Pruchniewicz, R; Pruteanu, G; Pueschel, E; Pühlhofer, G; Puljak, I; Punch, M; Pürckhauer, S; Pyzioł, R; Queiroz, F; Quel, E J; Quinn, J; Quirrenbach, A; Rafighi, I; Rainò, S; Rajda, P J; Rameez, M; Rando, R; Rannot, R C; Rataj, M; Ravel, T; Razzaque, S; Reardon, P; Reichardt, I; Reimann, O; Reimer, A; Reimer, O; Reisenegger, A; Renaud, M; Renner, S; Reposeur, T; Reville, B; Rezaeian, A; Rhode, W; Ribeiro, D; Prado, R Ribeiro; Ribó, M; Richards, G; Richer, M G; Richtler, T; Rico, J; Ridky, J; Rieger, F; Riquelme, M; Ristori, P R; Rivoire, S; Rizi, V; Roache, E; Rodriguez, J; Fernandez, G Rodriguez; Vázquez, J J Rodríguez; Rojas, G; Romano, P; Romeo, G; Roncadelli, M; Rosado, J; Rose, J; Rosen, S; Lees, S Rosier; Ross, D; Rouaix, G; Rousselle, J; Rovero, A C; Rowell, G; Roy, F; Royer, S; Rubini, A; Rudak, B; Rugliancich, A; Rujopakarn, W; Rulten, C; Rupiński, M; Russo, F; Russo, F; Rutkowski, K; Saavedra, O; Sabatini, S; Sacco, B; Sadeh, I; Saemann, E O; Safi-Harb, S; Saggion, A; Sahakian, V; Saito, T; Sakaki, N; Sakurai, S; Salamon, A; Salega, M; Salek, D; Greus, F Salesa; Salgado, J; Salina, G; Salinas, L; Salini, A; Sanchez, D; Sanchez-Conde, M; Sandaker, H; Sandoval, A; Sangiorgi, P; Sanguillon, M; Sano, H; Santander, M; Santangelo, A; Santos, E M; Santos-Lima, R; Sanuy, A; Sapozhnikov, L; Sarkar, S; Satalecka, K; Satalecka, K; Sato, Y; Savalle, R; Sawada, M; Sayède, F; Schanne, S; Schanz, T; Schioppa, E J; Schlenstedt, S; Schmid, J; Schmidt, T; Schmoll, J; Schneider, M; Schoorlemmer, H; Schovanek, P; Schubert, A; Schullian, E -M; Schultze, J; Schulz, A; Schulz, S; Schure, K; Schussler, F; Schwab, T; Schwanke, U; Schwarz, J; Schweizer, T; Schwemmer, S; Schwendicke, U; Schwerdt, C; Sciacca, E; Scuderi, S; Segreto, A; Seiradakis, J -H; Sembroski, G H; Semikoz, D; Sergijenko, O; Serre, N; Servillat, M; Seweryn, K; Shafi, N; Shalchi, A; Sharma, M; Shayduk, M; Shellard, R C; Shibata, T; Shigenaka, A; Shilon, I; Shum, E; Sidoli, L; Sidz, M; Sieiro, J; Siejkowski, H; Silk, J; Sillanpää, A; Simone, D; Simpson, H; Singh, B B; Sinha, A; Sironi, G; Sitarek, J; Sizun, P; Sliusar, V; Sliusar, V; Smith, A; Sobczyńska, D; Sol, H; Sottile, G; Sowiński, M; Spanier, F; Spengler, G; Spiga, R; Stadler, R; Stahl, O; Stamerra, A; Stanič, S; Starling, R; Staszak, D; Stawarz, Ł; Steenkamp, R; Stefanik, S; Stegmann, C; Steiner, S; Stella, C; Stephan, M; Stergioulas, N; Sternberger, R; Sterzel, M; Stevenson, B; Stinzing, F; Stodulska, M; Stodulski, M; Stolarczyk, T; Stratta, G; Straumann, U; Stringhetti, L; Strzys, M; Stuik, R; Sulanke, K -H; Suomijärvi, T; Supanitsky, A D; Suric, T; Sushch, I; Sutcliffe, P; Sykes, J; Szanecki, M; Szepieniec, T; Szwarnog, P; Tacchini, A; Tachihara, K; Tagliaferri, G; Tajima, H; Takahashi, H; Takahashi, K; Takahashi, M; Takalo, L; Takami, S; Takata, J; Takeda, J; Talbot, G; Tam, T; Tanaka, M; Tanaka, S; Tanaka, T; Tanaka, Y; Tanci, C; Tanigawa, S; Tavani, M; Tavecchio, F; Tavernet, J -P; Tayabaly, K; Taylor, A; Tejedor, L A; Telezhinsky, I; Temme, F; Temnikov, P; Tenzer, C; Terada, Y; Terrazas, J C; Terrier, R; Terront, D; Terzic, T; Tescaro, D; Teshima, M; Teshima, M; Testa, V; Tezier, D; Thayer, J; Thornhill, J; Thoudam, S; Thuermann, D; Tibaldo, L; Tiengo, A; Timpanaro, M C; Tiziani, D; Tluczykont, M; Peixoto, C J Todero; Tokanai, F; Tokarz, M; Toma, K; Tomastik, J; Tomono, Y; Tonachini, A; Tonev, D; Torii, K; Tornikoski, M; Torres, D F; Torres, M; Torresi, E; Toso, G; Tosti, G; Totani, T; Tothill, N; Toussenel, F; Tovmassian, G; Toyama, T; Travnicek, P; Trichard, C; Trifoglio, M; Pujadas, I Troyano; Trzeciak, M; Tsinganos, K; Tsujimoto, S; Tsuru, T; Uchiyama, Y; Umana, G; Umetsu, Y; Upadhya, S S; Uslenghi, M; Vagelli, V; Vagnetti, F; Valdes-Galicia, J; Valentino, M; Vallania, P; Valore, L; van Driel, W; van Eldik, C; van Soelen, B; Vandenbroucke, J; Vanderwalt, J; Vasileiadis, G; Vassiliev, V; Vázquez, J R; Acosta, M L Vázquez; Vecchi, M; Vega, A; Vegas, I; Veitch, P; Venault, P; Venema, L; Venter, C; Vercellone, S; Vergani, S; Verma, K; Verzi, V; Vettolani, G P; Veyssiere, C; Viana, A; Viaux, N; Vicha, J; Vigorito, C; Vincent, P; Vincent, S; Vink, J; Vittorini, V; Vlahakis, N; Vlahos, L; Voelk, H; Voisin, V; Vollhardt, A; Volpicelli, A; von Brand, H; Vorobiov, S; Vovk, I; Vrastil, M; Vu, L V; Vuillaume, T; Wagner, R; Wagner, R; Wagner, S J; Wakely, S P; Walstra, T; Walter, R; Walther, T; Ward, J E; Ward, M; Warda, K; Warren, D; Wassberg, S; Watson, J J; Wawer, P; Wawrzaszek, R; Webb, N; Wegner, P; Weiner, O; Weinstein, A; Wells, R; Werner, F; Wetteskind, H; White, M; White, R; Więcek, M; Wierzcholska, A; Wiesand, S; Wijers, R; Wilcox, P; Wild, N; Wilhelm, A; Wilkinson, M; Will, M; Will, M; Williams, D A; Williams, J T; Willingale, R; Wilson, N; Winde, M; Winiarski, K; Winkler, H; Winter, M; Wischnewski, R; Witt, E; Wojcik, P; Wolf, D; Wood, M; Wörnlein, A; Wu, E; Wu, T; Yadav, K K; Yamamoto, H; Yamamoto, T; Yamane, N; Yamazaki, R; Yanagita, S; Yang, L; Yelos, D; Yoshida, A; Yoshida, M; Yoshida, T; Yoshiike, S; Yoshikoshi, T; Yu, P; Zabalza, V; Zaborov, D; Zacharias, M; Zaharijas, G; Zajczyk, A; Zampieri, L; Zandanel, F; Sanchez, R Zanmar; Zaric, D; Zavrtanik, D; Zavrtanik, M; Zdziarski, A; Zech, A; Zechlin, H; Zhao, A; Zhdanov, V; Ziegler, A; Ziemann, J; Ziętara, K; Zink, A; Ziółkowski, J; Zitelli, V; Zoli, A; Zorn, J; Żychowski, P

    2016-01-01

    List of contributions from the Cherenkov Telescope Array (CTA) Consortium presented at the 6th International Symposium on High-Energy Gamma-Ray Astronomy (Gamma 2016), July 11-15, 2016, in Heidelberg, Germany.

  19. Workshop on Non-Imaging Cherenkov at High Energy

    CERN Document Server

    2013-01-01

    The non-Imaging Cherenkov air shower measurement technique holds great promise in furthering our understanding the Knee-to-Ankle region of the cosmic ray spectrum. In particular, this technique offers a unique way to determine the evolution of the cosmic ray nuclear composition, and an example is given by the recent spectrum results of the Tunka Collaboration. With this in mind, we are organizing a workshop, to be held at the University of Utah, to bring together the various practitioners of this cosmic ray measurement technique to share simulations, analyses, detector designs, and past experimental results amongst the community. The workshop will also be in support of our effort, NICHE, to extend the reach of the TA/TALE detector systems down to the Knee. We anticipate that the workshop will result in a white paper on the scientific importance of these high-energy cosmic ray measurements and on using the Cherenkov technique to accomplish them. Our goal is to have contributions from members of the previous ge...

  20. Software design of the ASTRI camera server proposed for the Cherenkov Telescope Array

    Science.gov (United States)

    Conforti, Vito; Trifoglio, Massimo; Gianotti, Fulvio; Malaguti, Giuseppe; Bulgarelli, Andrea; Fioretti, Valentina; Zoli, Andrea; Catalano, Osvaldo; Capalbi, Milvia; Sangiorgi, Pierluca

    2016-07-01

    The Italian National Institute for Astrophysics (INAF) is leading the ASTRI project within the ambitious Cherenkov Telescope Array (CTA), the next generation of ground-based observatories for very high energy gamma-ray astronomy. In the framework of the small sized telescopes (SST), a first goal of the ASTRI project is the realization of an end-to-end prototype in dual-mirror configuration (2M) with the camera composed of a matrix of Silicon photo-multiplier sensors managed by innovative front-end and back-end electronics. The prototype, named ASTRI SST-2M, is installed in Italy at the INAF "M.G. Fracastoro" observing station located at Serra La Nave, 1735 m a.s.l. on Mount Etna, Sicily. As a second step, the ASTRI project is focused on the implementation of a mini-array composed at least of nine ASTRI telescopes and proposed to be placed at the CTA southern site. This paper outlines the design of the camera server software that will be installed on the ASTRI mini-array. The software is based on the version installed on the ASTRI SST-2M prototype operating in a single telescope configuration. The migration from single telescope to mini-array context has required additional interfaces in order to guarantee high interoperability with other software and hardware components. In the mini-array configuration each camera communicates with its own camera server via a dedicated high rate data link. The primary goal of the camera server is to acquire the bulk data, packet by packet, without any data loss and to timestamp each packet very precisely. During array operation, the camera server receives from the SoftWare Array Trigger (SWAT) the list of science events that participate in stereo triggered events. These science events, and all others that are flagged either by the camera as interleaved calibration or by the camera server as possible single-muon events, are sent to the Array DAQ. All remaining science events will be discarded. A suitable buffer is provided to

  1. Prospects for annihilating Dark Matter towards Milky Way's dwarf galaxies by the Cherenkov Telescope Array

    Science.gov (United States)

    Lefranc, Valentin; Mamon, Gary A.; Panci, Paolo

    2016-09-01

    We derive the Cherenkov Telescope Array (CTA) sensitivity to dark matter (DM) annihilation in several primary channels, over a broad range of DM masses. These sensitivities are estimated when CTA is pointed towards a large sample of Milky Way's dwarf spheroidal galaxies (dSphs) with promising J-factors and small statistical uncertainties. This analysis neglects systematic uncertainties, which we estimate at the level of at least 1 dex. We also present sensitivities on the annihilation cross section from a combined analysis of 4 dSphs. We assess the CTA sensitivity by: i) using, for each dSph, a recent determination of the J-factor and its statistical error; ii) considering the most up-to-date cosmic ray background; and iii) including both spatial and spectral terms in the likelihood analysis. We find that a joint spectral and spatial analysis improves the CTA sensitivity, in particular for primary channels with sharp features in the γ-ray energy spectrum and for dSphs with steep J-factor profiles, as deduced from the internal kinematics. The greatest sensitivities are obtained for observations of Ursa Minor among the classical dSphs and of Ursa Major II for ultra-faint dSphs.

  2. Prospects for annihilating Dark Matter towards Milky Way's dwarf galaxies by the Cherenkov Telescope Array

    CERN Document Server

    Lefranc, Valentin; Mamon, Gary A

    2016-01-01

    We derive the large Cherenkov Telescope Array (CTA) sensitivity to dark matter (DM) annihilation in several primary channels, over a broad range of DM masses. These sensitivities are estimated when CTA is pointed towards a large sample of Milky Way's dwarf spheroidal galaxies (dSphs) with promising $J$-factors and small statistical uncertainties. This analysis neglects systematic uncertainties, which we estimate at the level of at least 1 dex. We also present sensitivities on the annihilation cross section from a combined analysis of 4 dSphs. We assess the CTA sensitivity by: $i)$ using, for each dSph, recent determination of the $J$-factor and its statistical error; $ii)$ considering the most up-to-date cosmic ray background; and $iii)$ applying a joint spatial and spectral analysis in the likelihood. We find that a joint spectral and spatial analysis improves the CTA sensitivity, in particular for primary channels with sharp features in the $\\gamma$-ray energy spectrum and for dSphs with steep $J$-factor pr...

  3. Capability of Cherenkov Telescopes to Observe Ultra-fast Optical Flares

    CERN Document Server

    Deil, C; Hermann, G; Clapson, A -C; Förster, A; Van Eldik, C; Hofmann, W

    2008-01-01

    The large optical reflector (~ 100 m^2) of a H.E.S.S. Cherenkov telescope was used to search for very fast optical transients of astrophysical origin. 43 hours of observations targeting stellar-mass black holes and neutron stars were obtained using a dedicated photometer with microsecond time resolution. The photometer consists of seven photomultiplier tube pixels: a central one to monitor the target and a surrounding ring of six pixels to veto background events. The light curves of all pixels were recorded continuously and were searched offline with a matched-filtering technique for flares with a duration of 2 us to 100 ms. As expected, many unresolved (500 us) background events originating in the earth's atmosphere were detected. In the time range 3 to 500 us the measurement is essentially background-free, with only eight events detected in 43 h; five from lightning and three presumably from a piece of space debris. The detection of flashes of brightness ~ 0.1 Jy and only 20 us duration from the space debri...

  4. Seismic Imager Space Telescope

    Science.gov (United States)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; Ampuero, Jean Paul; Leprince, Sebastien; Michel, Remi

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  5. TARGET 5: a new multi-channel digitizer with triggering capabilities for gamma-ray atmospheric Cherenkov telescopes

    CERN Document Server

    Albert, A; Kawashima, T; Murphy, M; Okumura, A; Quagliani, R; Sapozhnikov, L; Tajima, H; Tibaldo, L; Vandenbroucke, J; Wu, T

    2016-01-01

    TARGET~5 is a new application-specific integrated circuit (ASIC) of the TARGET family, designed for the readout of signals from photosensors in the cameras of imaging atmospheric Cherenkov telescopes (IACTs) for ground-based gamma-ray astronomy. TARGET~5 combines sampling and digitization on 16 signal channels with the formation of trigger signals based on the analog sum of groups of four channels. {\\rev We describe the ASIC architecture and performance.} TARGET~5 improves over the performance of the first-generation TARGET ASIC, achieving: tunable sampling frequency from {\\rev $1$~GSa/s}}; a dynamic range on the data path of 1.2 V with {\\mod effective dynamic range of 11}~bits and DC noise of ${\\sim}0.6$~mV; 3-dB bandwidth of 500 MHz; {\\rev crosstalk between adjacent channels $100$~p.e.} (assuming 4 mV per p.e.); and minimum stable trigger threshold of 20 mV (5 p.e.) with trigger noise of 5 mV (1.2 p.e.), {\\rev which is} mostly limited by {\\mod interference between trigger and sampling operations}. {\\mod TAR...

  6. The HERMES dual-radiator ring imaging Cherenkov detector

    Science.gov (United States)

    Akopov, N.; Aschenauer, E. C.; Bailey, K.; Bernreuther, S.; Bianchi, N.; Capitani, G. P.; Carter, P.; Cisbani, E.; De Leo, R.; De Sanctis, E.; De Schepper, D.; Djordjadze, V.; Filippone, B. W.; Frullani, S.; Garibaldi, F.; Hansen, J.-O.; Hommez, B.; Iodice, M.; Jackson, H. E.; Jung, P.; Kaiser, R.; Kanesaka, J.; Kowalczyk, R.; Lagamba, L.; Maas, A.; Muccifora, V.; Nappi, E.; Negodaeva, K.; Nowak, W.-D.; O'Connor, T.; O'Neill, T. G.; Potterveld, D. H.; Ryckbosch, D.; Sakemi, Y.; Sato, F.; Schwind, A.; Shibata, T.-A.; Suetsugu, K.; Thomas, E.; Tytgat, M.; Urciuoli, G. M.; Van de Kerckhove, K.; Van de Vyver, R.; Yoneyama, S.; Zohrabian, H.; Zhang, L. F.

    2002-03-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C 4F 10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  7. The HERMES dual-radiator ring imaging Cherenkov detector

    CERN Document Server

    Akopov, N; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van De Kerckhove, K; Van De Vyver, R; Yoneyama, S; Zhang, L F; Zohrabyan, H G

    2002-01-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  8. Performance of the Mechanical Structure of the SST-2M GCT Proposed for the Cherenkov Telescope Array

    CERN Document Server

    Dournaux, Jean-Laurent; Dumas, Delphine; Amans, Jean-Philippe; Fasola, Gilles; Laporte, Philippe; Bousquet, Jean-Jacques; Sol, Hélène

    2015-01-01

    The Cherenkov Telescope Array (CTA) consortium aims to create the next generation Very High Energy gamma-ray observatory. It will be devoted to the observation of gamma rays over a wide band of energy, from 20 GeV to 300 TeV. Three different classes, Large, Medium and Small Size Telescopes, are foreseen to cover the low, intermediate and high energy regions, respectively. The energy range of the Small Size Telescopes (SSTs) extends from 1 TeV to 300 TeV. Among them, the Gamma-ray Cherenkov Telescope (GCT), a telescope based on a Schwarzschild-Couder dual-mirror optical design, is one of the prototypes under construction proposed for the SST sub-array of CTA. This contribution focuses on the mechanical structure of GCT. It reports on last progress on the mechanical design and discusses this in the context of CTA specifications. Recent advances in the assembly and installation of the opto-mechanical prototype of GCT on the French site of the Paris Observatory are also described.

  9. The ASTRI mini-array within the future Cherenkov Telescope Array

    Science.gov (United States)

    Vercellone, Stefano

    2016-07-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to very high-energy gamma-ray astrophysics in the energy range from a few tens of GeV to above 100 TeV, which will yield about an order of magnitude improvement in sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). Within this framework, the Italian National Institute for Astrophysics is leading the ASTRI project, whose main goals are the design and installation on Mt. Etna (Sicily) of an end-to-end dual-mirror prototype of the CTA small size telescope (SST) and the installation at the CTA Southern site of a dual-mirror SST mini-array composed of nine units with a relative distance of about 300 m. The innovative dual-mirror Schwarzschild-Couder optical solution adopted for the ASTRI Project allows us to substantially reduce the telescope plate-scale and, therefore, to adopt silicon photo-multipliers as light detectors. The ASTRI mini-array is a wider international effort. The mini-array, sensitive in the energy range 1-100 TeV and beyond with an angular resolution of a few arcmin and an energy resolution of about 10-15%, is well suited to study relatively bright sources (a few × 10-12 erg cm-2 s-1 at 10 TeV) at very high energy. Prominent sources such as extreme blazars, nearby well-known BL Lac objects, Galactic pulsar wind nebulae, supernovae remnants, micro-quasars, and the Galactic Center can be observed in a previously unexplored energy range. The ASTRI mini-array will extend the current IACTs sensitivity well above a few tens of TeV and, at the same time, will allow us to compare our results on a few selected targets with those of current (HAWC) and future high-altitude extensive air-shower detectors.

  10. Ultrafast imaging of terahertz Cherenkov waves and transition-like radiation in LiNbO₃.

    Science.gov (United States)

    Wang, Zhenyou; Su, FuHai; Hegmann, Frank A

    2015-03-23

    We use ultrafast phase-contrast imaging to directly observethe cone-like terahertz (THz) Cherenkov wave generated by optical rectification of femtosecond laser pulses focused into bulk lithium niobate (LiNbO₃) single crystals. The transverse imaging geometry allows the Cherenkov angle, THz wave velocity, and optical pump pulse group velocity to be measured. Furthermore, transition-like THz radiation generated by the femtosecond laser pulse at the air-crystal boundary is observed. The effect of optical pump pulse polarization on the generation of THz Cherenkov waves and transition-like radiation in LiNbO₃ is also investigated.

  11. Wide field-of-view Cherenkov telescope for the detection of cosmic rays in coincidence with the Yakutsk extensive air shower array

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.A., E-mail: ivanov@ikfia.ysn.ru; Knurenko, S.P.; Krasilnikov, A.D.; Petrov, Z.E.; Pravdin, M.I.; Sleptsov, I.Ye.; Timofeev, L.V.

    2015-02-01

    The Yakutsk array group is developing a wide field-of-view Cherenkov telescope to be operated in coincidence with the surface detectors of the extensive air shower array. Currently, the engineering prototype of the reflecting telescope with the front-end electronics is designed, assembled, and tested to demonstrate the feasibility of the conceived instrument. The status and specifications of the prototype telescope are presented, as well as the modernization program of the already existing Cherenkov light detectors subset of the array measuring ultra-high energy cosmic rays.

  12. Wide field-of-view Cherenkov telescope for the detection of cosmic rays in coincidence with the surface detectors of the extensive air shower array

    CERN Document Server

    Ivanov, A A; Krasilnikov, A D; Petrov, Z E; Pravdin, M I; Sleptsov, I Ye; Timofeev, L V

    2014-01-01

    The Yakutsk array group is developing the wide FOV Cherenkov telescope to be operated in coincidence with the surface detectors of the extensive air shower array. Currently, the engineering prototype of the reflecting telescope with the front-end electronics is designed and assembled to demonstrate the feasibility of a conceived instrument. The status and specifications of the prototype telescope are presented, as well as the modernization program of the Cherenkov light detectors subset of the array measuring ultra-high energy cosmic rays.

  13. ROBAST: Development of a ROOT-based ray-tracing library for cosmic-ray telescopes and its applications in the Cherenkov Telescope Array

    Science.gov (United States)

    Okumura, Akira; Noda, Koji; Rulten, Cameron

    2016-03-01

    We have developed a non-sequential ray-tracing simulation library, ROOT-basedsimulatorforraytracing (ROBAST), which is aimed to be widely used in optical simulations of cosmic-ray (CR) and gamma-ray telescopes. The library is written in C++, and fully utilizes the geometry library of the ROOT framework. Despite the importance of optics simulations in CR experiments, no open-source software for ray-tracing simulations that can be widely used in the community has existed. To reduce the dispensable effort needed to develop multiple ray-tracing simulators by different research groups, we have successfully used ROBAST for many years to perform optics simulations for the Cherenkov Telescope Array (CTA). Among the six proposed telescope designs for CTA, ROBAST is currently used for three telescopes: a Schwarzschild-Couder (SC) medium-sized telescope, one of SC small-sized telescopes, and a large-sized telescope (LST). ROBAST is also used for the simulation and development of hexagonal light concentrators proposed for the LST focal plane. Making full use of the ROOT geometry library with additional ROBAST classes, we are able to build the complex optics geometries typically used in CR experiments and ground-based gamma-ray telescopes. We introduce ROBAST and its features developed for CR experiments, and show several successful applications for CTA.

  14. ROBAST: Development of a Non-Sequential Ray-Tracing Simulation Library and its Applications in the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    We have developed a non-sequential ray-tracing simulation library, ROot-BAsed Simulator for ray Tracing (ROBAST), which is aimed for wide use in optical simulations of cosmic-ray (CR) and gamma-ray telescopes. The library is written in C++ and fully utilizes the geometry library of the ROOT analysis framework. Despite the importance of optics simulations in CR experiments, no open-source software for ray-tracing simulations that can be widely used existed. To reduce the unnecessary effort demanded when different research groups develop multiple ray-tracing simulators, we have successfully used ROBAST for many years to perform optics simulations for the Cherenkov Telescope Array (CTA). Among the proposed telescope designs for CTA, ROBAST is currently being used for three telescopes: a Schwarzschild--Couder telescope, one of the Schwarzschild--Couder small-sized telescopes, and a large-sized telescope (LST). ROBAST is also used for the simulations and the development of hexagonal light concentrators that has be...

  15. FACT: status and experience from four years of operation of the first G-APD Cherenkov Telescope

    Science.gov (United States)

    Biland, A.; Adam, J.; Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Blank, M.; Bretz, T.; Brügge, K. A.; Buss, J.; Dmytriiev, A.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Linhoff, L.; Mannheim, K.; Müller, S.; Neise, D.; Neronov, A.; Nöthe, M.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Walter, R.

    2016-07-01

    The First G-APD Cherenkov Telescope (FACT) is pioneering the usage of novel Geiger-mode operated Avalanche Photo Diodes (G-APD, nowadays usually called SiPM) for Cherenkov Telescopes. The camera consists of 1440 pixels with dedicated electronics operated at 2 GHz and is installed on a refurbished telescope with a mirror area of ≈ 9:5 m2 at the Canary Island La Palma. The camera was installed in October 2011, and data are taken almost every night since then. The very stable and reliable operation allows to operate FACT from remote without the need of a data taking crew on-site. Over the years, operation became more and more automatic, and the next step will be to switch to fully automatic operation. This results in a very high data taking efficiency. The operation of FACT allows monitoring the long-term behavior of few variable extra-galactic very-high energy sources with unprecedented sampling density as well as testing the behavior of the sensors under harsh conditions. Despite operating also under strong moonlight conditions and therefore collecting far more signals than during dark nights, the G-APDs show no change in their performance or any indication for ageing. Understanding the behavior of the G-APDs under all the varying conditions allows to operate FACT without the need of any external calibration device. The properties of the sensors themselves allow for a high precision self-calibration of the camera.

  16. The software architecture of the camera for the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Sangiorgi, Pierluca; Capalbi, Milvia; Gimenes, Renato; La Rosa, Giovanni; Russo, Francesco; Segreto, Alberto; Sottile, Giuseppe; Catalano, Osvaldo

    2016-07-01

    The purpose of this contribution is to present the current status of the software architecture of the ASTRI SST-2M Cherenkov Camera. The ASTRI SST-2M telescope is an end-to-end prototype for the Small Size Telescope of the Cherenkov Telescope Array. The ASTRI camera is an innovative instrument based on SiPM detectors and has several internal hardware components. In this contribution we will give a brief description of the hardware components of the camera of the ASTRI SST-2M prototype and of their interconnections. Then we will present the outcome of the software architectural design process that we carried out in order to identify the main structural components of the camera software system and the relationships among them. We will analyze the architectural model that describes how the camera software is organized as a set of communicating blocks. Finally, we will show where these blocks are deployed in the hardware components and how they interact. We will describe in some detail, the physical communication ports and external ancillary devices management, the high precision time-tag management, the fast data collection and the fast data exchange between different camera subsystems, and the interfacing with the external systems.

  17. Cherenkov light imaging in astro-particle physics

    Science.gov (United States)

    Mirzoyan, Razmik

    2014-12-01

    Cherenkov light emission plays a key role in contemporary science; it is widely used in high energy, nuclear, and numerous astro-particle physics experiments. Most astro-particle physics experiments are based on the detection of light, and a vast majority of them on the measurement of Cherenkov light. Cherenkov light emission is measured in gases (used in air-Cherenkov technique), in water (for example, neutrino experiments BAIKAL, Super-Kamiokande, NESTOR, ANTARES, future KM3NeT; cosmic and γ-ray experiments Milagro, HAWC, AUGER) and in ice (IceCube). In this report our goal is not limited to simply listing the multitude of experiments that are based on using Cherenkov emission, but we will clarify the reasons making this emission so important and so frequently used. For completeness we will first give a short historical overview on the discovery and evolution of Cherenkov emission and then we will dwell on its main features and numerous applications in astro-particle physics experiments.

  18. Particle Identification Using a Ring Imaging Cherenkov Counter

    Science.gov (United States)

    Goodwill, Justin; Benmokthar, Fatiha

    2016-09-01

    The installation of a Ring Imaging Cherenkov counter (RICH) on the CLAS12 spectrometer in Hall B of Jefferson Lab will aid in particle identification, specifically with regard to the separation between protons, pions, kaons. The RICH functions by detecting a ring of radiation that is given off by particles moving faster than the speed of light in a medium through the use of multi-anode photomultiplier tubes (MAPMTs). Because the size of the ring is dependent on the velocity of the particles, one can separate the incoming charged particles. With 391 MAPMTs being used in the specific design at Jefferson Lab, sophisticated electronic systems are needed to achieve complete data acquisition and ensure the safe operation of RICH. To monitor these electronic systems, the slow control system uses a compilation of graphical user interfaces (GUIs) that communicates and, if necessary, changes certain process variables such as the high voltage going to the MAPMTs and the temperature of the system. My actual project focuses on the development of an efficient and reliable slow control system for this detector as well as a java based analyzer for offline data analysis.

  19. Development of ring imaging Cherenkov detectors for the LHCb experiment

    CERN Document Server

    John, M J J

    2001-01-01

    This thesis reports on work done as part of the development of the Ring Imaging Cherenkov (RICH) detectors of the LHCb experiment. The context of this work is set out in Chapter 1, which includes an overview of the physics of CP violation, followed by a discussion of other experiments that study B physics. LHCb itself is then described, with particular emphasis on its RICH detectors, and the photon detectors to be used therein. The work done by the author to ensure an adequate shielding of the photon detectors in the two RICH detectors from the magnetic fields produced by the LHCb dipole is then presented. A candidate photodetector for the RICH is the Pixel HPD. The author's contribution to the upgrade of the HPD test system to operate at the LHC bunch-crossing rate of 40MHz is the subject of the following section. This system was used to investigate and optimise a method of minimising the threshold distribution of the Pixel HPD's encapsulated readout chip. The final chapter of the thesis concerns the aerogel...

  20. The current progress of the ALICE Ring Imaging Cherenkov Detector

    CERN Document Server

    Braem, André; Davenport, M; Mauro, A D; Franco, A; Gallas, A; Hoedlmoser, H; Martinengo, P; Nappi, E; Paic, G; Piuz, François; Peskov, Vladimir

    2007-01-01

    Recently, the last two modules (out of seven) of the ALICE High Momentum Particle Identification detector (HMPID) were assembled and tested. The full detector, after a pre-commissioning phase, has been installed in the experimental area, inside the ALICE solenoid, at the end of September 2006. In this paper we review the status of the ALICE/HMPID project and we present a summary of the series production of the CsI photo-cathodes. We describe the key features of the production procedure which ensures high quality photo-cathodes as well as the results of the quality assessment performed by means of a specially developed 2D scanner system able to produce a detailed map of the CsI photo-current over the entire photo-cathode surface. Finally we present our recent R&D efforts toward the development of a novel generation of imaging Cherenkov detectors with the aim to identify, in heavy ions collisions, hadrons up to 30 GeV/c.

  1. Development of Ring Imaging Cherenkov Detectors for LHCb

    CERN Document Server

    Bellunato, T; Matteuzzi, C

    2003-01-01

    The work described in this thesis has been carried out in the framework of the development program of the Ring Imaging Cherenkov (RICH) detectors of the LHCb experiment. LHCb will operate at the Large Hadron Collider at CERN, and it will perform a wide range of measurements in the b-hadrons realm. The extensive study of CP violation and rare decays in the b-hadron system are the main goals of the experiment. An introduction to CP violation in hadronic interactions is given in chapter 1. The high b-b bar production cross section at the LHC energy will provide an unprecedented amount of data which will give LHCb a unique opportunity for precision tests on a large set of physics channels as well as a promising discovery potential for sources of CP violation arising from physics beyond the Standard Model. The experiment is designed in such a way to optimally match the kinematic structure of events where a pair of b quarks is produced in the collision between to 7 GeV protons. Chapter 2 is devoted to an overview o...

  2. Development of a gaseous photon detector for Cherenkov imaging applications

    CERN Document Server

    Rocco, Elena; Dalla Torre, Silvia

    2010-01-01

    This thesis is dedicated to the R&D activity aiming at a novel micro pattern gaseous photon detector based on the THick Gas Electron Multiplier (THGEM). The goal application of the novel photon detector is the detection of single photon in Ring Imaging CHerenkov (RICH) counters. The THGEM principle is derived from the Gas Electron Multiplier (GEM) one, even if the material, the production technology and the size scale are different: a THGEM is a Circuit Printed Board (PCB) coated with thin copper layers on both faces, with holes obtained by drilling. Part of the THGEM features are similar to those of the GEMs, but a number of characteristics aspects result substantially different: in fact, if the geometrical parameters can be scaled from the GEM ones, the parameters related to the electrons multiplication, which is a microscopic physical phenomenon, do not. This is why, before starting the photon detector development, we have performed a systematic study of the THGEM multiplier. A photon detector is forme...

  3. ROBAST: Development of a ROOT-Based Ray-Tracing Library for Cosmic-Ray Telescopes and its Applications in the Cherenkov Telescope Array

    CERN Document Server

    Okumura, Akira; Rulten, Cameron

    2016-01-01

    We have developed a non-sequential ray-tracing simulation library, ROOT-based simulator for ray tracing (ROBAST), which is aimed to be widely used in optical simulations of cosmic-ray (CR) and gamma-ray telescopes. The library is written in C++, and fully utilizes the geometry library of the ROOT framework. Despite the importance of optics simulations in CR experiments, no open-source software for ray-tracing simulations that can be widely used in the community has existed. To reduce the dispensable effort needed to develop multiple ray-tracing simulators by different research groups, we have successfully used ROBAST for many years to perform optics simulations for the Cherenkov Telescope Array (CTA). Among the six proposed telescope designs for CTA, ROBAST is currently used for three telescopes: a Schwarzschild-Couder (SC) medium-sized telescope, one of SC small-sized telescopes, and a large-sized telescope (LST). ROBAST is also used for the simulation and development of hexagonal light concentrators propose...

  4. The Very Energetic Radiation Imaging Telescope Array System (VERITAS)

    CERN Document Server

    Bradbury, S M; Breslin, A C; Buckley, J H; Carter-Lewis, D A; Catanese, M; Criswell, S; Dingus, B L; Fegan, D J; Finley, J P; Gaidos, J A; Grindlay, J; Hillas, A M; Harris, K; Hermann, G; Kaaret, P E; Kieda, D B; Knapp, J; Krennrich, F; Le Bohec, S; Lessard, R W; Lloyd-Evans, J; McKernan, B; Müller, D; Ong, R; Quenby, J J; Quinn, J; Rochester, G D; Rose, H J; Salamon, M B; Sembroski, G H; Sumner, T J; Swordy, S P; Vasilev, V; Weekes, T C

    1999-01-01

    We give an overview of the current status and scientific goals of VERITAS, a proposed hexagonal array of seven 10 m aperture imaging Cherenkov telescopes. The selected site is Montosa Canyon (1390 m a.s.l.) at the Whipple Observatory, Arizona. Each telescope, of 12 m focal length, will initially be equipped with a 499 element photomultiplier camera covering a 3.5 degree field of view. A central station will initiate the readout of 500 MHz FADCs upon receipt of multiple telescope triggers. The minimum detectable flux sensitivity will be 0.5% of the Crab Nebula flux at 200 GeV. Detailed simulations of the array's performance are presented elsewhere at this meeting. VERITAS will operate primarily as a gamma-ray observatory in the 50 GeV to 50 TeV range for the study of active galaxies, supernova remnants, pulsars and gamma-ray bursts.

  5. On the potential of atmospheric Cherenkov telescope arrays for resolving TeV gamma-ray sources in the Galactic Plane

    CERN Document Server

    Ambrogi, Lucia; Aharonian, Felix

    2016-01-01

    The potential of an array of imaging atmospheric Cherenkov telescopes to detect gamma-ray sources in complex regions has been investigated. The basic characteristics of the gamma-ray instrument have been parametrized using simple analytic representations. In addition to the ideal (Gaussian form) point spread function (PSF), the impact of more realistic non-Gaussian PSFs with tails has been considered. Simulations of isolated point-like and extended sources have been used as a benchmark to test and understand the response of the instrument. The capability of the instrument to resolve multiple sources has been analyzed and the corresponding instrument sensitivities calculated. The results are of particular interest for weak gamma-ray emitters located in crowded regions of the Galactic plane, where the chance of clustering of two or more gamma-ray sources within 1 degree is high.

  6. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Science.gov (United States)

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S.; Asano, K.; Asorey, H.; Bähr, J.; Bais, A.; Baixeras, C.; Bajtlik, S.; Balis, D.; Bamba, A.; Barbier, C.; Barceló, M.; Barnacka, A.; Barnstedt, J.; Barres de Almeida, U.; Barrio, J. A.; Basso, S.; Bastieri, D.; Bauer, C.; Becerra, J.; Becherini, Y.; Bechtol, K.; Becker, J.; Beckmann, V.; Bednarek, W.; Behera, B.; Beilicke, M.; Belluso, M.; Benallou, M.; Benbow, W.; Berdugo, J.; Berger, K.; Bernardino, T.; Bernlöhr, K.; Biland, A.; Billotta, S.; Bird, T.; Birsin, E.; Bissaldi, E.; Blake, S.; Blanch, O.; Bobkov, A. A.; Bogacz, L.; Bogdan, M.; Boisson, C.; Boix, J.; Bolmont, J.; Bonanno, G.; Bonardi, A.; Bonev, T.; Borkowski, J.; Botner, O.; Bottani, A.; Bourgeat, M.; Boutonnet, C.; Bouvier, A.; Brau-Nogué, S.; Braun, I.; Bretz, T.; Briggs, M. S.; Brun, P.; Brunetti, L.; Buckley, J. H.; Bugaev, V.; Bühler, R.; Bulik, T.; Busetto, G.; Buson, S.; Byrum, K.; Cailles, M.; Cameron, R.; Canestrari, R.; Cantu, S.; Carmona, E.; Carosi, A.; Carr, J.; Carton, P. H.; Casiraghi, M.; Castarede, H.; Catalano, O.; Cavazzani, S.; Cazaux, S.; Cerruti, B.; Cerruti, M.; Chadwick, P. M.; Chiang, J.; Chikawa, M.; Cieślar, M.; Ciesielska, M.; Cillis, A.; Clerc, C.; Colin, P.; Colomé, J.; Compin, M.; Conconi, P.; Connaughton, V.; Conrad, J.; Contreras, J. L.; Coppi, P.; Corlier, M.; Corona, P.; Corpace, O.; Corti, D.; Cortina, J.; Costantini, H.; Cotter, G.; Courty, B.; Couturier, S.; Covino, S.; Croston, J.; Cusumano, G.; Daniel, M. K.; Dazzi, F.; Angelis, A. De; de Cea Del Pozo, E.; de Gouveia Dal Pino, E. M.; de Jager, O.; de La Calle Pérez, I.; de La Vega, G.; de Lotto, B.; de Naurois, M.; de Oña Wilhelmi, E.; de Souza, V.; Decerprit, B.; Deil, C.; Delagnes, E.; Deleglise, G.; Delgado, C.; Dettlaff, T.; di Paolo, A.; di Pierro, F.; Díaz, C.; Dick, J.; Dickinson, H.; Digel, S. W.; Dimitrov, D.; Disset, G.; Djannati-Ataï, A.; Doert, M.; Domainko, W.; Dorner, D.; Doro, M.; Dournaux, J.-L.; Dravins, D.; Drury, L.; Dubois, F.; Dubois, R.; Dubus, G.; Dufour, C.; Durand, D.; Dyks, J.; Dyrda, M.; Edy, E.; Egberts, K.; Eleftheriadis, C.; Elles, S.; Emmanoulopoulos, D.; Enomoto, R.; Ernenwein, J.-P.; Errando, M.; Etchegoyen, A.; Falcone, A. D.; Farakos, K.; Farnier, C.; Federici, S.; Feinstein, F.; Ferenc, D.; Fillin-Martino, E.; Fink, D.; Finley, C.; Finley, J. P.; Firpo, R.; Florin, D.; Föhr, C.; Fokitis, E.; Font, Ll.; Fontaine, G.; Fontana, A.; Förster, A.; Fortson, L.; Fouque, N.; Fransson, C.; Fraser, G. W.; Fresnillo, L.; Fruck, C.; Fujita, Y.; Fukazawa, Y.; Funk, S.; Gäbele, W.; Gabici, S.; Gadola, A.; Galante, N.; Gallant, Y.; García, B.; García López, R. J.; Garrido, D.; Garrido, L.; Gascón, D.; Gasq, C.; Gaug, M.; Gaweda, J.; Geffroy, N.; Ghag, C.; Ghedina, A.; Ghigo, M.; Gianakaki, E.; Giarrusso, S.; Giavitto, G.; Giebels, B.; Giro, E.; Giubilato, P.; Glanzman, T.; Glicenstein, J.-F.; Gochna, M.; Golev, V.; Gómez Berisso, M.; González, A.; González, F.; Grañena, F.; Graciani, R.; Granot, J.; Gredig, R.; Green, A.; Greenshaw, T.; Grimm, O.; Grube, J.; Grudzińska, M.; Grygorczuk, J.; Guarino, V.; Guglielmi, L.; Guilloux, F.; Gunji, S.; Gyuk, G.; Hadasch, D.; Haefner, D.; Hagiwara, R.; Hahn, J.; Hallgren, A.; Hara, S.; Hardcastle, M. J.; Hassan, T.; Haubold, T.; Hauser, M.; Hayashida, M.; Heller, R.; Henri, G.; Hermann, G.; Herrero, A.; Hinton, J. A.; Hoffmann, D.; Hofmann, W.; Hofverberg, P.; Horns, D.; Hrupec, D.; Huan, H.; Huber, B.; Huet, J.-M.; Hughes, G.; Hultquist, K.; Humensky, T. B.; Huppert, J.-F.; Ibarra, A.; Illa, J. M.; Ingjald, J.; Inoue, Y.; Inoue, S.; Ioka, K.; Jablonski, C.; Jacholkowska, A.; Janiak, M.; Jean, P.; Jensen, H.; Jogler, T.; Jung, I.; Kaaret, P.; Kabuki, S.; Kakuwa, J.; Kalkuhl, C.; Kankanyan, R.; Kapala, M.; Karastergiou, A.; Karczewski, M.; Karkar, S.; Karlsson, N.; Kasperek, J.; Katagiri, H.; Katarzyński, K.; Kawanaka, N.; Kȩdziora, B.; Kendziorra, E.; Khélifi, B.; Kieda, D.; Kifune, T.; Kihm, T.; Klepser, S.; Kluźniak, W.; Knapp, J.; Knappy, A. R.; Kneiske, T.; Knödlseder, J.; Köck, F.; Kodani, K.; Kohri, K.; Kokkotas, K.; Komin, N.; Konopelko, A.; Kosack, K.; Kossakowski, R.; Kostka, P.; Kotuła, J.; Kowal, G.; Kozioł, J.; Krähenbühl, T.; Krause, J.; Krawczynski, H.; Krennrich, F.; Kretzschmann, A.; Kubo, H.; Kudryavtsev, V. A.; Kushida, J.; La Barbera, N.; La Parola, V.; La Rosa, G.; López, A.; Lamanna, G.; Laporte, P.; Lavalley, C.; Le Flour, T.; Le Padellec, A.; Lenain, J.-P.; Lessio, L.; Lieunard, B.; Lindfors, E.; Liolios, A.; Lohse, T.; Lombardi, S.; Lopatin, A.; Lorenz, E.; Lubiński, P.; Luz, O.; Lyard, E.; Maccarone, M. C.; Maccarone, T.; Maier, G.; Majumdar, P.; Maltezos, S.; Małkiewicz, P.; Mañá, C.; Manalaysay, A.; Maneva, G.; Mangano, A.; Manigot, P.; Marín, J.; Mariotti, M.; Markoff, S.; Martínez, G.; Martínez, M.; Mastichiadis, A.; Matsumoto, H.; Mattiazzo, S.; Mazin, D.; McComb, T. J. L.; McCubbin, N.; McHardy, I.; Medina, C.; Melkumyan, D.; Mendes, A.; Mertsch, P.; Meucci, M.; Michałowski, J.; Micolon, P.; Mineo, T.; Mirabal, N.; Mirabel, F.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Moal, B.; Moderski, R.; Molinari, E.; Monteiro, I.; Moralejo, A.; Morello, C.; Mori, K.; Motta, G.; Mottez, F.; Moulin, E.; Mukherjee, R.; Munar, P.; Muraishi, H.; Murase, K.; Murphy, A. Stj.; Nagataki, S.; Naito, T.; Nakamori, T.; Nakayama, K.; Naumann, C.; Naumann, D.; Nayman, P.; Nedbal, D.; Niedźwiecki, A.; Niemiec, J.; Nikolaidis, A.; Nishijima, K.; Nolan, S. J.; Nowak, N.; O'Brien, P. T.; Ochoa, I.; Ohira, Y.; Ohishi, M.; Ohka, H.; Okumura, A.; Olivetto, C.; Ong, R. A.; Orito, R.; Orr, M.; Osborne, J. P.; Ostrowski, M.; Otero, L.; Otte, A. N.; Ovcharov, E.; Oya, I.; Oziȩbło, A.; Paiano, S.; Pallota, J.; Panazol, J. L.; Paneque, D.; Panter, M.; Paoletti, R.; Papyan, G.; Paredes, J. M.; Pareschi, G.; Parsons, R. D.; Paz Arribas, M.; Pedaletti, G.; Pepato, A.; Persic, M.; Petrucci, P. O.; Peyaud, B.; Piechocki, W.; Pita, S.; Pivato, G.; Płatos, Ł.; Platzer, R.; Pogosyan, L.; Pohl, M.; Pojmański, G.; Ponz, J. D.; Potter, W.; Prandini, E.; Preece, R.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quel, E.; Quirrenbach, A.; Rajda, P.; Rando, R.; Rataj, M.; Raue, M.; Reimann, C.; Reimann, O.; Reimer, A.; Reimer, O.; Renaud, M.; Renner, S.; Reymond, J.-M.; Rhode, W.; Ribó, M.; Ribordy, M.; Rico, J.; Rieger, F.; Ringegni, P.; Ripken, J.; Ristori, P.; Rivoire, S.; Rob, L.; Rodriguez, S.; Roeser, U.; Romano, P.; Romero, G. E.; Rosier-Lees, S.; Rovero, A. C.; Roy, F.; Royer, S.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Russo, F.; Ryde, F.; Sacco, B.; Saggion, A.; Sahakian, V.; Saito, K.; Saito, T.; Sakaki, N.; Salazar, E.; Salini, A.; Sánchez, F.; Sánchez Conde, M. Á.; Santangelo, A.; Santos, E. M.; Sanuy, A.; Sapozhnikov, L.; Sarkar, S.; Scalzotto, V.; Scapin, V.; Scarcioffolo, M.; Schanz, T.; Schlenstedt, S.; Schlickeiser, R.; Schmidt, T.; Schmoll, J.; Schroedter, M.; Schultz, C.; Schultze, J.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schweizer, T.; Seiradakis, J.; Selmane, S.; Seweryn, K.; Shayduk, M.; Shellard, R. C.; Shibata, T.; Sikora, M.; Silk, J.; Sillanpää, A.; Sitarek, J.; Skole, C.; Smith, N.; Sobczyńska, D.; Sofo Haro, M.; Sol, H.; Spanier, F.; Spiga, D.; Spyrou, S.; Stamatescu, V.; Stamerra, A.; Starling, R. L. C.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steiner, S.; Stergioulas, N.; Sternberger, R.; Stinzing, F.; Stodulski, M.; Straumann, U.; Suárez, A.; Suchenek, M.; Sugawara, R.; Sulanke, K. H.; Sun, S.; Supanitsky, A. D.; Sutcliffe, P.; Szanecki, M.; Szepieniec, T.; Szostek, A.; Szymkowiak, A.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, K.; Takalo, L.; Takami, H.; Talbot, R. G.; Tam, P. H.; Tanaka, M.; Tanimori, T.; Tavani, M.; Tavernet, J.-P.; Tchernin, C.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Tenzer, C.; Terada, Y.; Terrier, R.; Teshima, M.; Testa, V.; Tibaldo, L.; Tibolla, O.; Tluczykont, M.; Todero Peixoto, C. J.; Tokanai, F.; Tokarz, M.; Toma, K.; Torres, D. F.; Tosti, G.; Totani, T.; Toussenel, F.; Vallania, P.; Vallejo, G.; van der Walt, J.; van Eldik, C.; Vandenbroucke, J.; Vankov, H.; Vasileiadis, G.; Vassiliev, V. V.; Vegas, I.; Venter, L.; Vercellone, S.; Veyssiere, C.; Vialle, J. P.; Videla, M.; Vincent, P.; Vink, J.; Vlahakis, N.; Vlahos, L.; Vogler, P.; Vollhardt, A.; Volpe, F.; von Gunten, H. P.; Vorobiov, S.; Wagner, S.; Wagner, R. M.; Wagner, B.; Wakely, S. P.; Walter, P.; Walter, R.; Warwick, R.; Wawer, P.; Wawrzaszek, R.; Webb, N.; Wegner, P.; Weinstein, A.; Weitzel, Q.; Welsing, R.; Wetteskind, H.; White, R.; Wierzcholska, A.; Wilkinson, M. I.; Williams, D. A.; Winde, M.; Wischnewski, R.; Wiśniewski, Ł.; Wolczko, A.; Wood, M.; Xiong, Q.; Yamamoto, T.; Yamaoka, K.; Yamazaki, R.; Yanagita, S.; Yoffo, B.; Yonetani, M.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.; Zabalza, V.; Zagdański, A.; Zajczyk, A.; Zdziarski, A.; Zech, A.; Ziȩtara, K.; Ziółkowski, P.; Zitelli, V.; Zychowski, P.

    2011-12-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

  7. Design Concepts for the Cherenkov Telescope Array CTA: An Advanced Facility for Ground-Based High-Energy Gamma-Ray Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Actis, M

    2012-04-17

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

  8. DigiCam - Fully Digital Compact Read-out and Trigger Electronics for the SST-1M Telescope proposed for the Cherenkov Telescope Array

    CERN Document Server

    Rajda, P; Bilnik, W.; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Moderski, R.; Rameez, M.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Schioppa, E. jr; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Pujadas, I. Troyano; Walter, R.; Więcek, M.; Zagdański, A.; Żychowski, P.

    2016-01-01

    The SST-1M is one of three prototype small-sized telescope designs proposed for the Cherenkov Telescope Array, and is built by a consortium of Polish and Swiss institutions. The SST-1M will operate with DigiCam - an innovative, compact camera with fully digital read-out and trigger electronics. A high level of integration will be achieved by massively deploying state-of-the-art multi-gigabit transmission channels, beginning from the ADC flash converters, through the internal data and trigger signals transmission over backplanes and cables, to the camera's server link. Such an approach makes it possible to design the camera to fit the size and weight requirements of the SST-1M exactly, and provide low power consumption, high reliability and long lifetime. The structure of the digital electronics will be presented, along with main physical building blocks and the internal architecture of FPGA functional subsystems.

  9. Lunar imaging and ionospheric calibration for the Lunar Cherenkov technique

    NARCIS (Netherlands)

    McFadden, R.; Scholten, O.; Mevius, M.

    2013-01-01

    The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the iono

  10. Cherenkov detectors for spatial imaging applications using discrete-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Paul B.; Erickson, Anna S., E-mail: erickson@gatech.edu [Georgia Institute of Technology, Nuclear and Radiological Engineering, G.W. Woodruff School of Mechanical Engineering, 770 State St., Atlanta, Georgia 30332 (United States)

    2016-08-14

    Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.

  11. Cherenkov detectors for spatial imaging applications using discrete-energy photons

    Science.gov (United States)

    Rose, Paul B.; Erickson, Anna S.

    2016-08-01

    Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.

  12. The ICT monitoring system of the ASTRI SST-2M prototype proposed for the Cherenkov Telescope Array

    Science.gov (United States)

    Gianotti, F.; Bruno, P.; Tacchini, A.; Conforti, V.; Fioretti, V.; Tanci, C.; Grillo, A.; Leto, G.; Malaguti, G.; Trifoglio, M.

    2016-08-01

    In the framework of the international Cherenkov Telescope Array (CTA) observatory, the Italian National Institute for Astrophysics (INAF) has developed a dual mirror, small sized, telescope prototype (ASTRI SST-2M), installed in Italy at the INAF observing station located at Serra La Nave, Mt. Etna. The ASTRI SST-2M prototype is the basis of the ASTRI telescopes that will form the mini-array proposed to be installed at the CTA southern site during its preproduction phase. This contribution presents the solutions implemented to realize the monitoring system for the Information and Communication Technology (ICT) infrastructure of the ASTRI SST-2M prototype. The ASTRI ICT monitoring system has been implemented by integrating traditional tools used in computer centers, with specific custom tools which interface via Open Platform Communication Unified Architecture (OPC UA) to the Alma Common Software (ACS) that is used to operate the ASTRI SST-2M prototype. The traditional monitoring tools are based on Simple Network Management Protocol (SNMP) and commercial solutions and features embedded in the devices themselves. They generate alerts by email and SMS. The specific custom tools convert the SNMP protocol into the OPC UA protocol and implement an OPC UA server. The server interacts with an OPC UA client implemented in an ACS component that, through the ACS Notification Channel, sends monitor data and alerts to the central console of the ASTRI SST-2M prototype. The same approach has been proposed also for the monitoring of the CTA onsite ICT infrastructures.

  13. Glass mirrors by cold slumping to cover 100 m2 of the MAGIC II Cherenkov telescope reflecting surface

    Science.gov (United States)

    Pareschi, G.; Giro, E.; Banham, R.; Basso, S.; Bastieri, D.; Canestrari, R.; Ceppatelli, G.; Citterio, O.; Doro, M.; Ghigo, M.; Marioni, F.; Mariotti, M.; Salvati, M.; Sanvito, F.; Vernani, D.

    2008-07-01

    We report on the production and implementation of 100 square panels 1 m x 1 m, based on the innovative approach of cold slumping of thin glass sheets. The more than 100 segments will cover around one half of the 240 m-square reflecting surface of the MAGIC II, a clone of the atmospheric Cherenkov telescope MAGIC I (with a single-dish 17 m diameter mirror) which is already operating since late 2003 at La Palma. The MAGIC II telescope will be completed by the end of 2008 and will operate in stereoscopic mode with MAGIC I. While the central part of the of the reflector is composed of by diamond milled Aluminum of 1m2 area panels (following a design similar to that already used for MAGIC I), the outer coronas will be made of sandwiched glass segments. The glass panel production foresees the following steps: a) a thin glass sheet (1-2mm) is elastically deformed so as to retain the shape imparted by a master with convex profile - the radius of curvature is large, the sheet can be pressed against the master using vacuum suction -; b) on the deformed glass sheet a honeycomb structure that provides the needed rigidity is glued ; c) then a second glass sheet is glued on the top in order to obtain a sandwich; d) after on the concave side a reflecting coating (Aluminum) and a thin protective coating (Quartz) are deposited. The typical weight of each panel is about 12 kg and its resolution is better than 1 mrad at a level of diameter that contains the 90% of the energy reflected by the mirror; the areal cost of glass panels is ~2 k per 1m2. The technology based on cold slumping is a good candidate for the production of the primary mirrors of the telescopes forming the Cherenkov Telescope Array (CTA), the future large TeV observatory currently being studied in Europe. Details on the realization of MAGIC II new mirrors based on cold slumping glass will be presented.

  14. Monitor and control systems for the SLD Cherenkov Ring Imaging Detector

    Energy Technology Data Exchange (ETDEWEB)

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dunwoodie, W.; Fernandez, F.; Hallewell, G.; Kawahara, H.; Korff, P.; Kwon, Y.; Leith, D.; Muller, D.; Nagamine, T.; Pavel, T.; Rabinowitz, L.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va' Vra, J.; Williams, S.; Whitaker, J.; Wilson, R.J.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; McHugh, S.; Mathys, L.; Morriso

    1989-10-01

    To help ensure the stable long-term operation of a Cherenkov Ring Detector at high efficiency, a comprehensive monitor and control system is being developed. This system will continuously monitor and maintain the correct operating temperatures, and will provide an on-line monitor and maintain the correct operating temperatures, and will provide an on-line monitor of the pressures, flows, mixing, and purity of the various fluids. In addition the velocities and trajectories of Cherenkov photoelectrons drifting within the imaging chambers will be measured using a pulsed uv lamp and a fiberoptic light injection system. 9 refs., 6 figs.

  15. Prospects for PWNe and SNRs science with the ASTRI mini-array of pre-production small-sized telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Burtovoi, A; Giuliani, A; Bigongiari, C; Di Pierro, F; Stamerra, A

    2016-01-01

    The development and construction of the Cherenkov Telescope Array (CTA) opens up new opportunities for the study of very high energy (VHE, E>100 GeV) sources. As a part of CTA, the ASTRI project, led by INAF, has one of the main goals to develop one of the mini-arrays of CTA pre-production telescopes, proposed to be installed at the CTA southern site. Thanks to the innovative dual-mirror optical design of its small-sized telescopes, the ASTRI mini-array will be characterized by a large field of view, an excellent angular resolutioerrorn and a good sensitivity up to energies of several tens of TeV. Pulsar wind nebulae, along with Supernova Remnants, are among the most abundant sources that will be identified and investigated, with the ultimate goal to move significantly closer to an understanding of the origin of cosmic rays (CR). As part of the ongoing effort to investigate the scientific capabilities for both CTA as a whole and the ASTRI mini-array, we performed simulations of the Vela X region. We simulated...

  16. Electrostatic design of the barrel CRID (Cherenkov Ring Imaging Detector) and associated measurements

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H. (Tohoku Univ., Sendai (Japan). Dept. of Physics); Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; Muller, D.; Nagamine, T.; Pavel, T.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va' Vra, J. Williams, H. (Stanford Linear Accelerator Center, Menlo Park, CA (US

    1990-04-01

    We report on the electrostatic design and related measurements of the barrel Cherenkov Ring Imaging Detector for the Stanford Large Detector experiment at the Stanford Linear Accelerator Center Linear Collider. We include test results of photon feedback in TMAE-laden gas, distortion measurements in the drift boxes and corona measurements. 13 refs., 21 figs.

  17. Electrostatic design of the barrel CRID (Cherenkov Ring Imaging Detector) and associated measurements

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H. (Tohoku Univ., Sendai (Japan). Dept. of Physics); Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; Muller, D.; Nagamine, T.; Pavel, T.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va' Vra, J. Williams, H. (Stanford Linear Accelerator Center, Menlo Park, CA (US

    1990-04-01

    We report on the electrostatic design and related measurements of the barrel Cherenkov Ring Imaging Detector for the Stanford Large Detector experiment at the Stanford Linear Accelerator Center Linear Collider. We include test results of photon feedback in TMAE-laden gas, distortion measurements in the drift boxes and corona measurements. 13 refs., 21 figs.

  18. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M. -O.; Van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Perez, D. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; CruzTorres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C. T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; ElRifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Faerber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Torreira, A. Gallas; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Pardinas, J.; Garofoli, J.; Tico, J. Garra; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Goebel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Gandara, M. Grabalosa; Diaz, R. Graciani; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Gruenberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Maerki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Santos, D. Martinez; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; Mcnab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M. N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mueller, J.; Mueller, K.; Mueller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Olloqui, E. Picatoste; Pietrzyk, B.; Pilar, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Perez, P. Rodriguez; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Coutinho, R. Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Garcia, M. Ubeda; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Vazquez Regueiro, P.; Vazquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-01-01

    A search is performed for heavy long-lived charged particles using 3.0 fb(-1) of proton-proton collisions collected at root s = 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from

  19. The ASTRI Project: prototype status and future plans for a Cherenkov dual-mirror small-telescope array

    CERN Document Server

    Vercellone, S; Maccarone, M C; Di Pierro, F; Vallania, P; Bonnoli, G; Canestrari, R; Pareschi, G; Tosti, G

    2013-01-01

    ASTRI ("Astrofisica con Specchi a Tecnologia Replicante Italiana") is a flagship project of the Italian Ministry of Education, University and Research. Within this framework, INAF is currently developing a wide field of view (9.6 degrees in diameter) end-to-end prototype of the CTA small-size telescope (SST), devoted to the investigation of the energy range from a fraction of TeV up to tens of TeVs, and scheduled to start data acquisition in 2014. For the first time, a dual-mirror Schwarzschild-Couder optical design will be adopted on a Cherenkov telescope, in order to obtain a compact optical configuration. A second challenging, but innovative technical solution consists of a modular focal surface camera based on Silicon photo-multipliers with a logical pixel size of 6.2mm x 6.2mm. Here we describe the current status of the project, the expected performance, and its possible evolution in terms of an SST mini-array. This CTA-SST precursor, composed of a few SSTs and developed in collaboration with CTA interna...

  20. Mechanics and cooling system for the camera of the Large Size Telescopes of the Cherenkov Telescope Array (CTA)

    CERN Document Server

    Delgado, Carlos; Diaz, Carlos; Hamer, Noemi; Hideyuki, Ohoka; Mirzoyan, Razmik; Teshima, Masahiro; Wetteskind, Holger

    2013-01-01

    Mechanics of the camera for the large size telescopes of CTA must protect and provide a stable environment for its instrumentation. This is achieved by a stiff support structure enclosed in an air and water tight volume. The structure is specially devised to facilitate extracting the power dissipated by the focal plane electronics while keeping its weight small enough to guarantee an optimum load on the telescope structure. A heat extraction system is designed to keep the electronics temperature within its optimal operation range, stable in time and homogeneous along the camera volume, whereas it is decoupled from the temperature in the telescope environment. In this contribution, we present the details of this system as well as its verification based in finite element analysis computations and tested prototypes. Finally, issues related to the integration of the camera mechanics and electronics will be dealt with.

  1. Cherenkov imaging method for rapid optimization of clinical treatment geometry in total skin electron beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, Jacqueline M., E-mail: Jacqueline.M.Andreozzi.th@dartmouth.edu, E-mail: Lesley.A.Jarvis@hitchcock.org; Glaser, Adam K. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J.; Williams, Benjamin B.; Jarvis, Lesley A., E-mail: Jacqueline.M.Andreozzi.th@dartmouth.edu, E-mail: Lesley.A.Jarvis@hitchcock.org [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States); Pogue, Brian W. [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2016-02-15

    Purpose: A method was developed utilizing Cherenkov imaging for rapid and thorough determination of the two gantry angles that produce the most uniform treatment plane during dual-field total skin electron beam therapy (TSET). Methods: Cherenkov imaging was implemented to gather 2D measurements of relative surface dose from 6 MeV electron beams on a white polyethylene sheet. An intensified charge-coupled device camera time-gated to the Linac was used for Cherenkov emission imaging at sixty-two different gantry angles (1° increments, from 239.5° to 300.5°). Following a modified Stanford TSET technique, which uses two fields per patient position for full body coverage, composite images were created as the sum of two beam images on the sheet; each angle pair was evaluated for minimum variation across the patient region of interest. Cherenkov versus dose correlation was verified with ionization chamber measurements. The process was repeated at source to surface distance (SSD) = 441, 370.5, and 300 cm to determine optimal angle spread for varying room geometries. In addition, three patients receiving TSET using a modified Stanford six-dual field technique with 6 MeV electron beams at SSD = 441 cm were imaged during treatment. Results: As in previous studies, Cherenkov intensity was shown to directly correlate with dose for homogenous flat phantoms (R{sup 2} = 0.93), making Cherenkov imaging an appropriate candidate to assess and optimize TSET setup geometry. This method provided dense 2D images allowing 1891 possible treatment geometries to be comprehensively analyzed from one data set of 62 single images. Gantry angles historically used for TSET at their institution were 255.5° and 284.5° at SSD = 441 cm; however, the angles optimized for maximum homogeneity were found to be 252.5° and 287.5° (+6° increase in angle spread). Ionization chamber measurements confirmed improvement in dose homogeneity across the treatment field from a range of 24.4% at the initial

  2. The control, monitor, and alarm system for the ICT equipment of the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gianotti, Fulvio; Fioretti, Valentina; Tanci, Claudio; Conforti, Vito; Tacchini, Alessandro; Leto, Giuseppe; Gallozzi, Stefano; Bulgarelli, Andrea; Trifoglio, Massimo; Malaguti, Giuseppe; Zoli, Andrea

    2014-07-01

    ASTRI is an Italian flagship project whose first goal is the realization of an end-to-end telescope prototype, named ASTRI SST-2M, for the Cherenkov Telescope Array (CTA). The prototype will be installed in Italy during Fall 2014. A second goal will be the realization of the ASTRI/CTA mini-array which will be composed of seven SST-2M telescopes placed at the CTA Southern Site. The Information and Communication Technology (ICT) equipment necessary to drive the infrastructure for the ASTRI SST-2M prototype is being designed as a complete and stand-alone computer center. The design goal is to obtain basic ICT equipment that might be scaled, with a low level of redundancy, for the ASTRI/CTA mini-array, taking into account the necessary control, monitor and alarm system requirements. The ICT equipment envisaged at the Serra La Nave observing station in Italy, where the ASTRI SST-2M telescope prototype will operate, includes computers, servers and workstations, network devices, an uninterruptable power supply system, and air conditioning systems. Suitable hardware and software tools will allow the parameters related to the behavior and health of each item of equipment to be controlled and monitored. This paper presents the proposed architecture and technical solutions that integrate the ICT equipment in the framework of the Observatory Control System package of the ASTRI/CTA Mini- Array Software System, MASS, to allow their local and remote control and monitoring. An end-toend test case using an Internet Protocol thermometer is reported in detail.

  3. Active damping of the camera support mast of a Cherenkov Gamma-ray telescope

    Energy Technology Data Exchange (ETDEWEB)

    Smrz, M. [Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague (Czech Republic); Bastaits, R., E-mail: rbastait@ulb.ac.b [Active Structures Laboratory, Universite Libre de Bruxelles, CP. 165-42, 50 Av. F.D. Roosevelt, B-1050 Brussels (Belgium); Preumont, A., E-mail: andre.preumont@ulb.ac.b [Active Structures Laboratory, Universite Libre de Bruxelles, CP. 165-42, 50 Av. F.D. Roosevelt, B-1050 Brussels (Belgium)

    2011-04-11

    This paper explores the possibility of damping actively the camera support mast of Gamma-ray telescopes with a configuration similar to the MAGIC telescope, where the camera is supported by a curved mast and an array of cables. This is achieved by replacing a set of passive cables by a set of active ones, controlled by active tendons. Each active tendon consists of a displacement actuator collocated to a force sensor with independent force feedback control loops. The paper outlines the theory of decentralized active damping of cable-structures, points out the main design parameters, and evaluates the amount of damping that the control system can provide. The effect of the control on the wind response and on the transient response of the telescope is estimated.

  4. FlashCam: A fully digital camera for the Cherenkov Telescope Array

    CERN Document Server

    Pühlhofer, G; Eisenkolb, F; Florin, D; Föhr, C; Gadola, A; Hermann, G; Kalkuhl, C; Kasperek, J; Kihm, T; Koziol, J; Manalaysay, A; Marszalek, A; Rajda, P J; Romaszkan, W; Rupinski, M; Schanz, T; Steiner, S; Straumann, U; Tenzer, C; Vollhardt, A; Weitzel, Q; Winiarski, K; Zietara, K

    2013-01-01

    FlashCam is a Cherenkov camera development project centered around a fully digital trigger and readout scheme with smart, digital signal processing, and a "horizontal" architecture for the electromechanical implementation. The fully digital approach, based on commercial FADCs and FPGAs as key components, provides the option to easily implement different types of triggers as well as digitization and readout scenarios using identical hardware, by simply changing the firmware on the FPGAs. At the same time, a large dynamic range and high resolution of low-amplitude signals in a single readout channel per pixel is achieved using compression of high amplitude signals in the preamplifier and signal processing in the FPGA. The readout of the front-end modules into a camera server is Ethernet-based using standard Ethernet switches. In its current implementation, data transfer and backend processing rates of ~3.8 GBytes/sec have been achieved. Together with the dead-time-free front end event buffering on the FPGAs, th...

  5. Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Lesley A., E-mail: Lesley.a.jarvis@hitchcock.org [Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (United States); Norris Cotton Cancer Center at the Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire (United States); Gladstone, David J. [Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (United States); Norris Cotton Cancer Center at the Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Jiang, Shudong [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire (United States); Hitchcock, Whitney [Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (United States); Friedman, Oscar D.; Glaser, Adam K.; Jermyn, Michael [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire (United States); Pogue, Brian W. [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire (United States); Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire (United States)

    2014-07-01

    Purpose: To determine whether Cherenkov light imaging can visualize radiation therapy in real time during breast radiation therapy. Methods and Materials: An intensified charge-coupled device (CCD) camera was synchronized to the 3.25-μs radiation pulses of the clinical linear accelerator with the intensifier set × 100. Cherenkov images were acquired continuously (2.8 frames/s) during fractionated whole breast irradiation with each frame an accumulation of 100 radiation pulses (approximately 5 monitor units). Results: The first patient images ever created are used to illustrate that Cherenkov emission can be visualized as a video during conditions typical for breast radiation therapy, even with complex treatment plans, mixed energies, and modulated treatment fields. Images were generated correlating to the superficial dose received by the patient and potentially the location of the resulting skin reactions. Major blood vessels are visible in the image, providing the potential to use these as biological landmarks for improved geometric accuracy. The potential for this system to detect radiation therapy misadministrations, which can result from hardware malfunction or patient positioning setup errors during individual fractions, is shown. Conclusions: Cherenkoscopy is a unique method for visualizing surface dose resulting in real-time quality control. We propose that this system could detect radiation therapy errors in everyday clinical practice at a time when these errors can be corrected to result in improved safety and quality of radiation therapy.

  6. The Cherenkov Telescope Array: A Very-High-Energy Complement to Future High-Energy Space Missions

    Science.gov (United States)

    Williams, David A.; CTA Collaboration

    2017-01-01

    The Cherenkov Telescope Array (CTA) will be a new observatory for the study of very-high-energy gamma-ray sources, designed to achieve an order of magnitude improvement in sensitivity in the 30 GeV to 100 TeV energy band compared to currently operating instruments: VERITAS, MAGIC, and H.E.S.S. CTA will probe known sources with unprecedented sensitivity, angular resolution, and spectral coverage, while also detecting hundreds of new sources. CTA will provide access to data in this energy band to members of the wider astronomical community for the first time. The CTA Consortium will also conduct a number of Key Science Projects, including a Galactic Plane survey and a survey of one quarter of the extragalactic sky, creating legacy data sets that will also be available to the public. This presentation will highlight synergies between CTA and future high-energy missions in space. CTA is supported by the organizations listed at http://www.cta-observatory.org

  7. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, Jacqueline M., E-mail: Jacqueline.M.Andreozzi.th@dartmouth.edu; Glaser, Adam K. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Jarvis, Lesley A.; Gladstone, David J. [Department of Medicine, Geisel School of Medicine and Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States); Pogue, Brian W., E-mail: Brian.W.Pogue@dartmouth.edu [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2015-02-15

    Purpose: To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Methods: Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Results: Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary

  8. Pulsars at the Highest Energies: Questions for AGILE, Fermi (GLAST) and Atmospheric Cherenkov Telescopes

    Science.gov (United States)

    Thompson, D.J.

    2008-01-01

    Observational studies of gamma-ray pulsars languished in recent years, while theoretical studies made significant strides. Now, with new and improved gamma-ray telescopes coming online, opportunities present themselves for dramatic improvements in our understanding of these objects. The new facilities and better modeling of processes at work in high-energy pulsars should address a number of important open questions, some of which are summarized.

  9. Contributions to free-space optical communications: feasibility of utilizing Cherenkov telescopes as receivers and beam-wander correction in quantum communications

    CERN Document Server

    Carrasco-Casado, Alberto

    2015-01-01

    This thesis focuses on the two main applications where free-space optical communication (FSOC) can bring the most significant impact: interplanetary communications and quantum communications. Consequently, the dissertation is structured in two sections. In the first one, a novel proposal is suggested regarding to using Cherenkov telescopes as ground-station receivers. A feasibility study addresses the posibility of using the technology developed for the gamma-ray telescopes that will make up the Cherenkov Telescope Array (CTA) in the implementation of a new kind of ground station. Among the main advantages that these telescopes provide are the much larger apertures needed to overcome the power limitation that ground-based gamma-ray astronomy and deep-space optical communication both have. Also, the large number of big telescopes that will be built for CTA will make it possible to reduce unitary costs by economy-scale production. The second section of the thesis is framed in the field of free-space Quantum Key...

  10. Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Bourrion, O; Bernard, C; Bondoux, D; Bouly, J L; Bouvier, J; Boyer, B; Brinet, M; Buenerd, M; Damieux, G; Derome, L; Eraud, L; Foglio, R; Fombaron, D; Grondin, D; Marton, M; Pelissier, A [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53, rue des Martyrs, Grenoble (France); Lee, M H; Lutz, L [University of Maryland, College Park MD 20742 (United States); Menchaca-Rocha, A [Instituto de Fisica, UNAM, A.P. 20-364, 01000 Mexico DF (Mexico); Perie, J N, E-mail: olivier.bourrion@lpsc.in2p3.fr [Universite de Toulouse, INSA, UPS, Mines Albi, ISAE, ICA (Institut Clement Ader), 133, avenue de Rangueil, F-31077 Toulouse (France)

    2011-06-15

    A proximity focusing Cherenkov imager called CHERCAM, has been built for the charge measurement of nuclear cosmic rays with the CREAM instrument. It consists of a silica aerogel radiator plane across from a detector plane equipped with 1,600 1'' diameter photomultipliers. The two planes are separated by a ring expansion gap. The Cherenkov light yield is proportional to the charge squared of the incident particle. The expected relative light collection accuracy is in the few percents range. It leads to an expected single element separation over the range of nuclear charge Z of main interest 1 {<=} Z{approx}<26. CHERCAM is designed to fly with the CREAM balloon experiment. The design of the instrument and the implemented technical solutions allowing its safe operation in high altitude conditions (radiations, low pressure, cold) are presented.

  11. Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays

    CERN Document Server

    Bourrion, O; Bondoux, D; Bouly, J L; Bouvier, J; Boyer, B; Brinet, M; Buenerd, M; Damieux, G; Derome, L; Eraud, L; Foglio, R; Fombaron, D; Grondin, D; Lee, M H; Lutz, L; Marton, M; Menchaca-Rocha, A; Pelissier, A; Périé, J N; Putze, A; Roudier, S; Sallaz-Damaz, Y; Seo, E S; Scordilis, J P; Yoon, Y S

    2011-01-01

    A proximity focusing Cherenkov imager called CHERCAM, has been built for the charge measurement of nuclear cosmic rays with the CREAM instrument. It consists of a silica aerogel radiator plane across from a detector plane equipped with 1,600 1" diameter photomultipliers. The two planes are separated by a ring expansion gap. The Cherenkov light yield is proportional to the charge squared of the incident particle. The expected relative light collection accuracy is in the few percents range. It leads to an expected single element separation over the range of nuclear charge Z of main interest 1 < Z < 26. CHERCAM is designed to fly with the CREAM balloon experiment. The design of the instrument and the implemented technical solutions allowing its safe operation in high altitude conditions (radiations, low pressure, cold) are presented.

  12. Calibration of Cherenkov detectors for monoenergetic photon imaging in active interrogation applications

    Science.gov (United States)

    Rose, P. B.; Erickson, A. S.

    2015-11-01

    Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in 11B(d,n-γ)12C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example 232Th, show that calibration is possible as long as the energies of photons of interest are distinct.

  13. Creating a high-resolution picture of Cygnus with the Cherenkov Telescope Array

    CERN Document Server

    Weinstein, Amanda; Casanova, Sabrina; Di Girolamo, Tristano; Dyrda, Michael; Hahn, Joachim; Majumdar, Pratik; Rodriguez, Jerome; Tibaldo, Luigi

    2015-01-01

    The Cygnus region hosts one of the most remarkable star-forming regions in the Milky Way. Indeed, the total mass in molecular gas of the Cygnus X complex exceeds 10 times the total mass of all other nearby star-forming regions. Surveys at all wavelengths, from radio to gamma-rays, reveal that Cygnus contains such a wealth and variety of sources---supernova remnants (SNRs), pulsars, pulsar wind nebulae (PWNe), H II regions, Wolf-Rayet binaries, OB associations, microquasars, dense molecular clouds and superbubbles---as to practically be a galaxy in microcosm. The gamma-ray observations along reveal a wealth of intriguing sources at energies between 1 GeV and tens of TeV. However, a complete understanding of the physical phenomena producing this gamma-ray emission first requires us to disentangle overlapping sources and reconcile discordant pictures at different energies. This task is made more challenging by the limited angular resolution of instruments such as the Fermi Large Area Telescope, ARGO-YBJ, and HAW...

  14. Detection of Shielded Special Nuclear Material With a Cherenkov-Based Transmission Imaging System

    Science.gov (United States)

    Rose, Paul; Erickson, Anna; Mayer, Michael; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material, SSNM, while in transit, offers a unique challenge. Typical cargo imaging systems are Bremsstrahlung-based and cause an abundance of unnecessary signal in the detectors and doses to the cargo contents and surroundings. Active interrogation with dual monoenergetic photons can unveil the illicit material when coupled with a high-contrast imaging system while imparting significantly less dose to the contents. Cherenkov detectors offer speed, resilience, inherent energy threshold rejection, directionality and scalability beyond the capability of most scintillators. High energy resolution is not a priority when using two well separated gamma rays, 4.4 and 15.1 MeV, generated from low energy nuclear reactions such as 11B(d,n- γ)12C. These gamma rays offer a measure of the effective atomic number, Z, of the cargo by taking advantage of the large difference in photon interaction cross sections, Compton scattering and pair production. This imaging system will be coupled to neutron detectors to provide unique signature of SNM by monitoring delayed neutrons. Our experiments confirm that the Cherenkov imaging system can be used with the monoenergetic source to relate transmission and atomic number of the scanned material.

  15. Trends in the development of large area photon detectors for Cherenkov light imaging applications

    CERN Document Server

    Nappi, E

    2003-01-01

    Since the successful operations of hi-tech devices at OMEGA, DELPHI and SLD, the technique of Cherenkov light imaging has gone through an impressive and fruitful evolution driven by the conception of novel large area photon detectors. The well-assessed potentialities of thin CsI films, employed as reflective photoconverters in gas counters operated at atmospheric pressure, will be compared with the promising features of hybrid and multianode vacuum photomultipliers. Recently proposed single-photon gaseous detectors based on GEMs will also be reviewed.

  16. Indirect Dark Matter Searches with MAGIC Telescopes

    OpenAIRE

    Satalecka, Konstancja; MAGIC Collaboration

    2015-01-01

    In the last few years the indirect dark matter (DM) searches became a hot topic, with several experimental results showing hints of DM signal. The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes are two $17$\\,m diameter Cherenkov telescopes, located on the Canary island La Palma (Spain). MAGIC carries out a broad DM search program, including observations of dwarf galaxies, galaxy clusters and other DM dominated objects. In these proceedings recent MAGIC results from this field ar...

  17. Cherenkov radiation dosimetry in water tanks - video rate imaging, tomography and IMRT & VMAT plan verification

    Science.gov (United States)

    Pogue, Brian W.; Glaser, Adam K.; Zhang, Rongxiao; Gladstone, David J.

    2015-01-01

    This paper presents a survey of three types of imaging of radiation beams in water tanks for comparison to dose maps. The first was simple depth and lateral profile verification, showing excellent agreement between Cherenkov and planned dose, as predicted by the treatment planning system for a square 5cm beam. The second approach was 3D tomography of such beams, using a rotating water tank with camera attached, and using filtered backprojection for the recovery of the 3D volume. The final presentation was real time 2D imaging of IMRT or VMAT treatments in a water tank. In all cases the match to the treatment planning system was within what would be considered acceptable for clinical medical physics acceptance.

  18. Advances in vacuum ultraviolet detection with multistep gaseous detectors and application to Cherenkov ring imaging

    CERN Document Server

    Breskin, Amos; Charpak, Georges; Peisert, Anna; Policarpo, Armando; Sauli, Fabio

    1981-01-01

    The multistep avalanche chamber permits an efficient detection of VUV photons. In a two-step proportional mode charges higher than 1 pC are obtained from single electrons. By using as the final localization step a spark chamber viewed by a TV digitizer it is easy to have imaging of complex patterns. This is applied to Cherenkov ring imaging and (K, pi ) separation with 3 sigma up to 320 GeV is envisaged. The properties of various photoionizable vapours have been studied. By combining a scintillation xenon chamber with a photoionization wire chamber, a resolution of 8.3% (FWHM) has been obtained for 5.9 keV X- rays using tetrakis(dimethylamine)-ethylene vapour. (15 refs).

  19. Cherenkov imaging during volumetric modulated arc therapy for real-time radiation beam tracking and treatment response monitoring

    Science.gov (United States)

    Andreozzi, Jacqueline M.; Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-03-01

    External beam radiotherapy utilizes high energy radiation to target cancer with dynamic, patient-specific treatment plans. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high energy beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to track the radiation beam on the surface of the patient in real-time, even for complex cases such as volumetric modulated arc therapy (VMAT). Two patients undergoing VMAT of the head and neck were imaged and analyzed, and the viability of the system to provide clinical feedback was established.

  20. Imaging capabilities of the SODART telescopes

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Pedersen, Kristian

    1998-01-01

    The on- and off-axis imaging properties and effective area of the two SODART flight telescopes have been measured using the expanded beam X-ray facility at the Daresbury synchrotron. Following measurements have been done for both Flight Model 1 & 2, at three energies: 6.627 keV, 8.837 keV and 11...

  1. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H Philip

    2017-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  2. Software design and code generation for the engineering graphical user interface of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Tanci, Claudio; Tosti, Gino; Antolini, Elisa; Gambini, Giorgio F.; Bruno, Pietro; Canestrari, Rodolfo; Conforti, Vito; Lombardi, Saverio; Russo, Federico; Sangiorgi, Pierluca; Scuderi, Salvatore

    2016-08-01

    ASTRI is an on-going project developed in the framework of the Cherenkov Telescope Array (CTA). An end- to-end prototype of a dual-mirror small-size telescope (SST-2M) has been installed at the INAF observing station on Mt. Etna, Italy. The next step is the development of the ASTRI mini-array composed of nine ASTRI SST-2M telescopes proposed to be installed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort carried on by Italy, Brazil and South-Africa and led by the Italian National Institute of Astrophysics, INAF. To control the ASTRI telescopes, a specific ASTRI Mini-Array Software System (MASS) was designed using a scalable and distributed architecture to monitor all the hardware devices for the telescopes. Using code generation we built automatically from the ASTRI Interface Control Documents a set of communication libraries and extensive Graphical User Interfaces that provide full access to the capabilities offered by the telescope hardware subsystems for testing and maintenance. Leveraging these generated libraries and components we then implemented a human designed, integrated, Engineering GUI for MASS to perform the verification of the whole prototype and test shared services such as the alarms, configurations, control systems, and scientific on-line outcomes. In our experience the use of code generation dramatically reduced the amount of effort in development, integration and testing of the more basic software components and resulted in a fast software release life cycle. This approach could be valuable for the whole CTA project, characterized by a large diversity of hardware components.

  3. Strangeonium spectroscopy at 11 GeV/c and Cherenkov Ring Imaging at the SLD

    Energy Technology Data Exchange (ETDEWEB)

    Bienz, T.L.

    1990-07-01

    This thesis is divided into two sections, which describe portions of the data acquisition system and online software for the Cherenkov Ring Imaging Detector (CRID) for the SLD, and analyses of several low cross section strangeonium channels in data from the LASS spectrometer. The CRID section includes a description of the data acquisition system, determination of the preamplifier gain, and development of an online pulse finding algorithm based on deconvolution. Deconvolution uses knowledge of the preamplifier impulse response to aid in pulse finding. The algorithm is fast and shows good single pulse resolution and excellent double pulse resolution in preliminary tests. The strangeonium analyses are based on data from a 4.1 event/nanobarn exposure of the LASS spectrometer in K{sup {minus}}p interactions at 11 GeV/c, and include studies of {Lambda}{eta}{pi}{sup {plus}}{pi}{sup {minus}}, {Lambda}{Kappa}*{Kappa}*, and {Lambda}{phi}{phi}.

  4. Novel large format sealed tube microchannel plate detectors for Cherenkov timing and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Siegmund, O.H.W., E-mail: ossy@ssl.berkeley.ed [Experimental Astrophysics Group, Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720 (United States); McPhate, J.B.; Vallerga, J.V.; Tremsin, A.S.; Jelinsky, S.R. [Experimental Astrophysics Group, Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720 (United States); Frisch, H.J. [Enrico Fermi Institute, 5640 S. Ellis Avenue, University of Chicago, Chicago, IL 60637 (United States)

    2011-05-21

    Large area (20x20 cm{sup 2}) sealed tube detectors using novel borosilicate glass microchannel plates, with bialkali photocathodes and strip-line readouts are being developed for Cherenkov light detection. Designs based on conventional sealed tubes with alumina brazed body construction and hot indium seals have been developed. Borosilicate glass substrates with 20 and 40 {mu}m holes have been processed using atomic layer deposition to produce functional microchannel plates. Initial results for these in a 33 mm format show gain, imaging performance, pulse shape and lifetime characteristics that are similar to standard glass microchannel plates. Large area (20x20 cm{sup 2}) borosilicate glass substrates with 20 {mu}m pores have also been made.

  5. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    Energy Technology Data Exchange (ETDEWEB)

    Aaij, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Adeva, B. [Universidad de Santiago de Compostela (Spain); Adinolfi, M. [Bristol Univ. (United Kingdom). H.H. Wills Physics Lab.; and others

    2015-12-15

    A search is performed for heavy long-lived charged particles using 3.0 fb{sup -1} of proton-proton collisions collected at √(s) = 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell-Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, 1.8 < η < 4.9. The mass-dependent cross-section upper limits are in the range 2-4 fb (at 95 % CL) for masses between 14 and 309 GeV/c{sup 2}. (orig.)

  6. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    Energy Technology Data Exchange (ETDEWEB)

    Aaij, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Adeva, B. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Adinolfi, M. [H.H. Wills Physics Laboratory, University of Bristol, Bristol (United Kingdom); Affolder, A. [Oliver Lodge Laboratory, University of Liverpool, Liverpool (United Kingdom); Ajaltouni, Z. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand (France); and others

    2015-12-15

    A search is performed for heavy long-lived charged particles using 3.0 fb{sup -1} of proton–proton collisions collected at √s= 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell–Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, 1.8<η<4.9. The mass-dependent cross-section upper limits are in the range 2–4 fb (at 95 % CL) for masses between 14 and 309 GeV /c{sup 2}.

  7. High Speed Telescopic Imaging of Sprites

    Science.gov (United States)

    McHarg, M. G.; Stenbaek-Nielsen, H. C.; Kanmae, T.; Haaland, R. K.

    2010-12-01

    A total of 21 sprite events were recorded at Langmuir Laboratory, New Mexico, during the nights of 14 and 15 July 2010 with a 500 mm focal length Takahashi Sky 90 telescope. The camera used was a Phantom 7.3 with a VideoScope image intensifier. The images were 512x256 pixels for a field of view of 1.3x0.6 degrees. The data were recorded at 16,000 frames per second (62 μs between images) and an integration time of 20 μs per image. Co-aligned with the telescope was a second similar high-speed camera, but with an 85 mm Nikon lens; this camera recorded at 10,000 frames per second with 100 μs exposure. The image format was also 512x256 pixels for a field of view of 7.3x3.7 degrees. The 21 events recorded include all basic sprite elements: Elve, sprite halos, C-sprites, carrot sprites, and large jellyfish sprites. We compare and contrast the spatial details seen in the different types of sprites, including streamer head size and the number of streamers subsequent to streamer head splitting. Telescopic high speed image of streamer tip splitting in sprites recorded at 07:06:09 UT on 15 July 2010.

  8. Adaptive Real Time Imaging Synthesis Telescopes

    CERN Document Server

    Wright, Melvyn

    2012-01-01

    The digital revolution is transforming astronomy from a data-starved to a data-submerged science. Instruments such as the Atacama Large Millimeter Array (ALMA), the Large Synoptic Survey Telescope (LSST), and the Square Kilometer Array (SKA) will measure their accumulated data in petabytes. The capacity to produce enormous volumes of data must be matched with the computing power to process that data and produce meaningful results. In addition to handling huge data rates, we need adaptive calibration and beamforming to handle atmospheric fluctuations and radio frequency interference, and to provide a user environment which makes the full power of large telescope arrays accessible to both expert and non-expert users. Delayed calibration and analysis limit the science which can be done. To make the best use of both telescope and human resources we must reduce the burden of data reduction. Our instrumentation comprises of a flexible correlator, beam former and imager with digital signal processing closely coupled...

  9. Characterization of a 6×6-mm{sup 2} 75-μm cell MPPC suitable for the Cherenkov Telescope Array project

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, G., E-mail: giuseppe.romeo@oact.inaf.it [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Bonanno, G.; Garozzo, S.; Grillo, A.; Marano, D.; Munari, M.; Timpanaro, M.C. [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Catalano, O.; Giarrusso, S.; Impiombato, D.; La Rosa, G.; Sottile, G. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo (Italy)

    2016-08-01

    This paper presents the latest characterization results of a novel Low Cross-Talk (LCT) large-area (6×6-mm{sup 2}) Multi-Pixel Photon Counter (MPPC) detector manufactured by Hamamatsu, belonging to the recent LCT5 family and achieving a fill-factor enhancement and cross-talk reduction. In addition, the newly adopted resin coating is demonstrated to yield improved photon detection capabilities in the 290–350 nm spectral range, making the new LCT MPPC particularly suitable for emerging applications like Cherenkov Telescopes. For a 3×3-mm{sup 2} version of the new MPPC under test, a comparative analysis of the large pixel pitch (75-µm) detector versus the smaller pixel pitch (50-µm) detector is also undertaken. Furthermore, measurements of the 6×6-mm{sup 2} MPPC response versus the angle of incidence are provided for the characterized device.

  10. Wideband pulse amplifier with 8 GHz GBW product in a 0.35 {mu}m CMOS technology for the integrated camera of the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Gascon, D; Sanuy, A; Ribo, M [Dept. AM i Dept.ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona, Marti i Franques 1, E08028, Barcelona (Spain); Delagnes, E; Glicenstein, J-F [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Sieiro, X [Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, E08028, Barcelona (Spain); Feinstein, F; Vorobiov, S [LPTA, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Nayman, P; Toussenel, F; Tavernet, J-P; Vincent, P, E-mail: gascon@ecm.ub.es [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France)

    2010-12-15

    A fully differential wideband amplifier for the camera of the Cherenkov Telescope Array (CTA) is presented. This amplifier would be part of a new ASIC, developed by the NECTAr collaboration, performing the digitization at 1 GS/s with a dynamic range of 16 bits. Input amplifiers must have a voltage gain up to 20 V/V and a bandwidth of 400 MHz. Being impossible to design a fully differential operational amplifier with an 8 GHz GBW product in a 0.35{mu}m CMOS technology, an alternative implementation based on HF linearised transconductors is explored. Test results show that the required GBW product is achieved, with a linearity error smaller than 1% for a differential output voltage range up to 1 Vpp, and smaller than 3% for 2 Vpp.

  11. Photomultiplier tube selection for the Wide Field of view Cherenkov/fluorescence Telescope Array of the Large High Altitude Air Shower Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Maomao, E-mail: gemaomao@ynu.edu.cn [Department of Physics, Yunnan University, Kunming 650091 (China); Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming 650091 (China); Zhang, Li, E-mail: lizhang@ynu.edu.cn [Department of Physics, Yunnan University, Kunming 650091 (China); Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming 650091 (China); Chen, Yingtao [Department of Physics, Yunnan University, Kunming 650091 (China); Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming 650091 (China); Cao, Zhen; Zhang, Shoushan; Wang, Chong; Bi, Baiyang [Institute of High Energy Physics, CAS, Beijing 100049 (China)

    2016-05-21

    For the purpose of selecting the most suitable photomultiplier tubes (PMTs) for the Wide Field of view Cherenkov/fluorescence Telescope Array (WFCTA), we have performed extensive tests on seven models of 25.4 mm PMTs: Hamamatsu R1924A and R7899, Beijing Hamamatsu CR303, CR332A and CR364, and HZC Photonics XP3102 and XP3182. A dedicated test system has been developed to measure the PMT characteristics such as single photo-electron spectrum, gain, linearity, and spatial uniformity of anode output. The XP3182 and CR364 (R7899) tubes both meet the pivotal requirement due to their superior pulse linearity. The PMT test system, techniques used for these measurements, and their results are also reported.

  12. Photomultiplier tube selection for the Wide Field of view Cherenkov/fluorescence Telescope Array of the Large High Altitude Air Shower Observatory

    Science.gov (United States)

    Ge, Maomao; Zhang, Li; Chen, Yingtao; Cao, Zhen; Zhang, Shoushan; Wang, Chong; Bi, Baiyang

    2016-05-01

    For the purpose of selecting the most suitable photomultiplier tubes (PMTs) for the Wide Field of view Cherenkov/fluorescence Telescope Array (WFCTA), we have performed extensive tests on seven models of 25.4 mm PMTs: Hamamatsu R1924A and R7899, Beijing Hamamatsu CR303, CR332A and CR364, and HZC Photonics XP3102 and XP3182. A dedicated test system has been developed to measure the PMT characteristics such as single photo-electron spectrum, gain, linearity, and spatial uniformity of anode output. The XP3182 and CR364 (R7899) tubes both meet the pivotal requirement due to their superior pulse linearity. The PMT test system, techniques used for these measurements, and their results are also reported.

  13. MO-AB-BRA-08: Rapid Treatment Field Uniformity Optimization for Total Skin Electron Beam Therapy Using Cherenkov Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, J; Zhang, R; Glaser, A; Pogue, B [Dartmouth College, Hanover, NH (United States); Jarvis, L [Dartmouth-Hitchcock Medical Center, City Of Lebanon, New Hampshire (United States); Williams, B [Dartmouth Hitchcock Medical Center, Lebanon, NH (Lebanon); Gladstone, D [Dartmouth Hitchcock-Medical Center, Hanover, NH (United States)

    2015-06-15

    Purpose: To evaluate treatment field heterogeneity resulting from gantry angle choice in total skin electron beam therapy (TSEBT) following a modified Stanford dual-field technique, and determine a relationship between source to surface distance (SSD) and optimized gantry angle spread. Methods: Cherenkov imaging was used to image 62 treatment fields on a sheet of 1.2m x 2.2m x 1.2cm polyethylene following standard TSEBT setup at our institution (6 MeV, 888 MU/min, no spoiler, SSD=441cm), where gantry angles spanned from 239.5° to 300.5° at 1° increments. Average Cherenkov intensity and coefficient of variation in the region of interest were compared for the set of composite Cherenkov images created by summing all unique combinations of angle pairs to simulate dual-field treatment. The angle pair which produced the lowest coefficient of variation was further studied using an ionization chamber. The experiment was repeated at SSD=300cm, and SSD=370.5cm. Cherenkov imaging was also implemented during TSEBT of three patients. Results: The most uniform treatment region from a symmetric angle spread was achieved using gantry angles +/−17.5° about the horizontal axis at SSD=441cm, +/−18.5° at SSD=370.5cm, and +/−19.5° at SSD=300cm. Ionization chamber measurements comparing the original treatment spread (+/−14.5°) and the optimized angle pair (+/−17.5°) at SSD=441cm showed no significant deviation (r=0.999) in percent depth dose curves, and chamber measurements from nine locations within the field showed an improvement in dose uniformity from 24.41% to 9.75%. Ionization chamber measurements correlated strongly (r=0.981) with Cherenkov intensity measured concurrently on the flat Plastic Water phantom. Patient images and TLD results also showed modest uniformity improvements. Conclusion: A decreasing linear relationship between optimal angle spread and SSD was observed. Cherenkov imaging offers a new method of rapidly analyzing and optimizing TSEBT setup

  14. Two-dimensional, single-photoelectron drift detector for Cherenkov ring imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barrelet, E.; Seguinot, J.; Urban, M.; Ypsilantis, T. (Ecole Polytechnique, 91 - Palaiseau (France)); Ekeloef, T. (European Organization for Nuclear Research, Geneva (Switzerland)); Lund-Jensen, B. (Uppsala Univ. (Sweden)); Tocqueville, J. (College de France, 75 - Paris)

    1982-09-15

    A detector capable of imaging single photoelectrons has been constructed and tested. UV photons (>=5.4 eV) are converted to electrons with high quantum efficiency by photoionization of a small admixture (approx. equal to 1 Torr) of an organic vapour TMAE in a predominantly methane drift and amplifying gas at atmospheric pressure. The produced photoelectrons drift in a uniform applied electric field to a picket fence of proportional wires where each electron is amplified, counted and timed. The two-dimensional source point of each photoelectron is uniquely determined by the hit wire address and the arrival time. The detector has been tested by measuring ionization electrons produced in the drift gas be relativistic charged particles. The limiting precision to which the electron source point can be determined has been measured to be 300 ..mu..m (r.m.s.) in the drift direction and 370 ..mu..m in the wire plane direction. Additional independent error sources due to electron diffusion in the drift gas have been measured to be proportional to the square root of the drift distance with a proportionality constant of 235 ..mu..m/cmsup(1/2) in both directions. Drift velocities of electrons in various predominantly methane gas mixtures have been measured as a function of the applied electric field. The utilization of such a two-dimensional single electron drift detector for Cherenkov ring imaging is presented with a discussion of the advantages and limitations of the drift method for imaging.

  15. The First VERITAS Telescope

    CERN Document Server

    Holder, J; Badran, H M; Blaylock, G; Bradbury, S M; Buckley, J H; Byrum, K L; Carter-Lewis, D A; Celik, O; Chow, Y C K; Cogan, P; Cui, W; Daniel, M K; De la Calle-Perez, I; Dowdall, C; Dowkontt, P; Duke, C; Falcone, A D; Fegan, S J; Finley, J P; Fortin, P; Fortson, L F; Gibbs, K; Gillanders, G; Glidewell, O J; Grube, J; Gutíerrez, K J; Gyuk, G; Hall, J; Hanna, D; Hays, E; Horan, D; Hughes, S B; Humensky, T B; Imran, A; Jung, I; Kaaret, Philip; Kenny, G E; Kieda, D; Kildea, J; Knapp, J; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Linton, E; Little, E K; Maier, G; Manseri, H; Milovanovic, A; Moriarty, P; Mukherjee, R; Ogden, P A; Ong, R A; Perkins, J S; Pizlo, F; Pohl, M; Quinn, J; Ragan, K; Reynolds, P T; Roache, E T; Rose, H J; Schroedter, M; Sembroski, G H; Sleege, G A; Steele, D; Swordy, S P; Syson, A; Toner, J A; Valcarcel, L; Vasilev, V V; Wagner, R; Wakely, S P; Weekes, T C; White, R J; Williams, D A

    2006-01-01

    The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV $\\gamma$-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.

  16. Mrk 421, Mrk 501, and 1ES 1426+428 at 100 GeV with the CELESTE Cherenkov Telescope

    CERN Document Server

    Smith, D A; Britto, R; Bruel, P; Gordo, J B; Dumora, D; Durand, E; Eschstruth, P; Espigat, P; Holder, J; Jacholkowska, A; Lavalle, J; Le Gallou, R; Lott, B; Manseri, H; Munz, F; Nuss, E; Piron, Frédéric; Reposeur, T; Sako, T

    2006-01-01

    We have measured the gamma-ray fluxes of the blazars Mrk 421 and Mrk 501 in the energy range between 50 and 350 GeV (1.2 to 8.3 x 10^25 Hz). The detector, called CELESTE, used first 40, then 53 heliostats of the former solar facility "Themis" in the French Pyrenees to collect Cherenkov light generated in atmospheric particle cascades. The signal from Mrk 421 is often strong. We compare its flux with previously published multi-wavelength studies and infer that we are straddling the high energy peak of the spectral energy distribution. The signal from Mrk 501 in 2000 was weak (3.4 sigma). We obtain an upper limit on the flux from 1ES 1426+428 of less than half that of the Crab flux near 100 GeV. The data analysis and understanding of systematic biases have improved compared to previous work, increasing the detector's sensitivity.

  17. Radiation length imaging with high resolution telescopes

    CERN Document Server

    Stolzenberg, U; Schwenker, B; Wieduwilt, P; Marinas, C; Lütticke, F

    2016-01-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length $X$/$X_0$ profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the $X$/$X_0$ imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of $X$/$X_0$ imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of ...

  18. A CMOS Integrating Amplifier for the PHENIX Ring Imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Wintenberg, A.L.; Jones, J.P. Jr.; Young, G.R. [Oak Ridge National Lab., TN (United States); Moscone, C.G. [Tennessee Univ., Knoxville, TN (United States)

    1997-11-01

    A CMOS integrating amplifier has been developed for use in the PHENIX Ring Imaging Cherenkov (RICH) detector. The amplifier, consisting of a charge-integrating amplifier followed by a variable gain amplifier (VGA), is an element of a photon measurement system comprising a photomultiplier tube, a wideband, gain of 10 amplifier, the integrating amplifier, and an analog memory followed by an ADC and double correlated sampling implemented in software. The integrating amplifier is designed for a nominal full scale input of 160 pC with a gain of 20 mV/pC and a dynamic range of 1000:1. The VGA is used for equalizing gains prior to forming analog sums for trigger purposes. The gain of the VGA is variable over a 3:1 range using a 5 bits digital control, and the risetime is held to approximately 20 ns using switched compensation in the VGA. Details of the design and results from several prototype devices fabricated in 1.2 {micro}m Orbit CMOS are presented. A complete noise analysis of the integrating amplifier and the correlated sampling process is included as well as a comparison of calculated, simulated and measured results.

  19. Photon Detectors for the Ring Imaging Cherenkov Counters of the LHCb Experiment

    CERN Document Server

    Plackett, R W R

    2006-01-01

    This thesis reports on the author’s contribution to the development of the Ring Imaging Cherenkov(RICH) detectors in the LHCb experiment due to take data at the CERN Large Hadron Collider in 2007. The first chapter summarises the physics to be explored by the LHCb experiment; measurements of CP violating asymmetries and a study of rare B decay modes. A brief overview of other experiments studying B-physics is presented. The experiment itself is then described, focussing on the RICH system used for particle identification, with particular emphasis on the photondetectors. The thesis then reports on the work done by the author on the design of the RICH1 Magnetic Shield, that allows the photon detectors to operate in the fringe field of the LHCb dipole magnet, while fulfilling the conflicting requirement to provide additional magnetic bending power to aid the LHCb charged particle trigger. The design of all of the many sections of the shield are described in depth and the results of finite element simulations p...

  20. Pixel hybrid photon detectors for the ring imaging Cherenkov detectors of LHCb

    CERN Document Server

    Somerville, L

    2005-01-01

    A Pixel Hybrid Photon Detector (pixel HPD) has been developed for the LHCb Ring Imaging Cherenkov (RICH) detectors. The pixel HPD is a vacuum tube with a multi-alkali photocathode, high-voltage cross- focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a CMOS readout chip; the readout chip is thus fully encapsulated in the device. The pixel HPD fulfils the stringent requirements for the RICH detectors of LHCb, combining single photon sensitivity, high signal-to-noise ratio and fast readout with an ~8cm diameter active area and an effective pixel size of 2.5mm 2.5mm at the photocathode. The performance and characteristics of two prototype pixel HPDs have been studied in laboratory measurements and in recent beam tests. The results of all measurements agree with expectations and fulfil the LHCb RICH requirements. In readiness for production of the ~500pixel HPDs for the RICH detectors, a test programme was designed and implemented to ensure component quality control at eac...

  1. Photon Detectors for the Ring Imaging Cherenkov Counters of the LHCb Experiment

    CERN Document Server

    Plackett, R W R

    2006-01-01

    This thesis reports on the author’s contribution to the development of the Ring Imaging Cherenkov(RICH) detectors in the LHCb experiment due to take data at the CERN Large Hadron Collider in 2007. The first chapter summarises the physics to be explored by the LHCb experiment; measurements of CP violating asymmetries and a study of rare B decay modes. A brief overview of other experiments studying B-physics is presented. The experiment itself is then described, focussing on the RICH system used for particle identification, with particular emphasis on the photondetectors. The thesis then reports on the work done by the author on the design of the RICH1 Magnetic Shield, that allows the photon detectors to operate in the fringe field of the LHCb dipole magnet, while fulfilling the conflicting requirement to provide additional magnetic bending power to aid the LHCb charged particle trigger. The design of all of the many sections of the shield are described in depth and the results of finite element simulations p...

  2. The Ring Imaging Cherenkov detector of the AMS experiment: test beam results with a prototype

    CERN Document Server

    Arruda, Luísa; Goncalves, Patrícia; Pereira, Rui

    2008-01-01

    The Alpha Magnetic Spectrometer (AMS) to be installed on the International Space Station (ISS) will be equipped with a proximity Ring Imaging Cherenkov (RICH) detector for measuring the velocity and electric charge of the charged cosmic particles. This detector will contribute to the high level of redundancy required for AMS as well as to the rejection of albedo particles. Charge separation up to iron and a velocity resolution of the order of 0.1% for singly charged particles are expected. A RICH protoptype consisting of a detection matrix with 96 photomultiplier units, a segment of a conical mirror and samples of the radiator materials was built and its performance was evaluated. Results from the last test beam performed with ion fragments resulting from the collision of a 158 GeV/c/nucleon primary beam of indium ions (CERN SPS) on a lead target are reported. The large amount of collected data allowed to test and characterize different aerogel samples and the sodium fluoride radiator. In addition, the reflec...

  3. FACT light collection - solid light concentrators in Cherenkov Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Isabel [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Collaboration: FACT-Collaboration

    2011-07-01

    Pixelized cameras of Imaging Atmospheric Cherenkov Telescopes use hollow light guides with reflective surfaces based on the Winston cone design. These cones minimize insensitive spaces between the photo sensors and shield the camera from stray background light by limiting the angular acceptance to the primary reflector area. FACT (First G-APD Cherenkov Telescope) will be the first IACT with Geiger-mode avalanche photodiodes as light sensors. Solid light concentrators complementing these sensors will be used instead of hollow Winston cones. We will present simulations and measurements of our light collector design, which was optimized for the requirements of the FACT telescope and detector, and discuss the specific differences to more traditional solutions.

  4. Automatic guiding of the primary image of solar Gregory telescopes

    NARCIS (Netherlands)

    Küveler, G.; Wiehr, E.; Thomas, D.; Harzer, M.; Bianda, M.; Epple, A.; Sütterlin, P.; Weisshaar, E.

    1998-01-01

    The primary image reflected from the field-stop of solar Gregory telescopes is used for automatic guiding. This new system avoids temporal varying influences from the bending of the telescope tube by the main mirror's gravity and from offsets between the telescope and a separate guiding refractor.

  5. ASTRI SST-2M prototype and mini-array data reconstruction and scientific analysis software in the framework of the Cherenkov Telescope Array

    Science.gov (United States)

    Lombardi, Saverio; Antonelli, Lucio A.; Bastieri, Denis; Donnarumma, Imma; Lucarelli, Fabrizio; Madonna, Alberto; Mastropietro, Michele

    2016-07-01

    In the framework of the international Cherenkov Telescope Array (CTA) gamma-ray observatory, the Italian National Institute for Astrophysics (INAF) is developing a dual-mirror, small-sized, end-to-end prototype (ASTRI SST-2M), inaugurated on September 2014 at Mt. Etna (Italy), and a mini-array composed of nine ASTRI telescopes, proposed to be installed at the southern CTA site. The ASTRI mini-array is a collaborative effort led by INAF and carried out by institutes from Italy, Brazil, and South-Africa. The project is also including the full data handling chain from raw data up to final scientific products. To this end, a dedicated software for the online/ on-site/off-site data reconstruction and scientific analysis is under development for both the ASTRI SST-2M prototype and mini-array. The software is designed following a modular approach in which each single component and the entire pipeline are developed in compliance with the CTA requirements. Data reduction is conceived to be run on parallel computing architectures, as multi-core CPUs and graphic accelerators (GPUs), and new hardware architectures based on low-power consumption processors (e.g. ARM). The software components are coded in C++/Python/CUDA and wrapped by efficient pipelines written in Python. The final scientific products are then achieved by means of either science tools currently being used in the CTA Consortium (e.g. ctools) or specifically developed ones. In this contribution, we present the framework and the main software components of the ASTRI SST-2M prototype and mini-array data reconstruction and scientific analysis software package, and report the status of its development.

  6. Measurement of charged hadron spectra at the Z{sup 0} with Cherenkov ring imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pavel, Tomas Josef [Stanford Univ., CA (United States)

    1997-08-01

    This dissertation attempts to probe hadronization, the process by which the fundamental quarks described by quantum chromodynamics produce the jets of hadrons that the author observed in experiments. The measurements are made using e+e- collisions at the SLAC Linear Collider (SLC), operating at the Z0 resonance with the SLC Large Detector (SLD), and the unique capabilities of the SLC/SLD facility are exploited. First, the spectra of charged hadrons (π±, K±, and p/$\\bar{p}$) are measured. This is accomplished with the SLD Cherenkov Ring Imaging Detector (CRID), one of a first generation of devices that have been developed for efficient particle identification over a wide momentum range. The use of the CRID is central to this dissertation, and its design and performance are described in detail here. The measured spectra agree with other measurements at the Z0 and extend the momentum coverage. Next, the excellent spatial resolution of the SLD tracking systems, along with the small and stable beam spots of the SLC, is employed to identify jets produced from heavy b or c quarks and to separate them from the remaining light-quark (uds) jets. This removes the effects of heavy quark fragmentation and decays of heavy-quark hadrons from the study of hadronization. The first measurements of particle spectra in light-quark jets are then presented. Finally, the highly-polarized incident electron beam of the SLC, together with the electroweak asymmetries of the quarks, is exploited to separate quark and antiquark jets. Significant differences in quark-antiquark production of protons and of kaons are observed at high momenta. This signal suggests a leading particle effect, where the particles containing the primary quark of a jet are more likely to populate the high-momentum phase space than are other hadrons.

  7. Wavelet Analysis of Space Solar Telescope Images

    Institute of Scientific and Technical Information of China (English)

    Xi-An Zhu; Sheng-Zhen Jin; Jing-Yu Wang; Shu-Nian Ning

    2003-01-01

    The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day,SST acquires 50 GB of data (after processing) but only 10GB can be transmitted to the ground because of limited time of satellite passage and limited channel volume.Therefore, the data must be compressed before transmission. Wavelets analysis is a new technique developed over the last 10 years, with great potential of application.We start with a brief introduction to the essential principles of wavelet analysis,and then describe the main idea of embedded zerotree wavelet coding, used for compressing the SST images. The results show that this coding is adequate for the job.

  8. Design, optimization and characterization of the light concentrators of the single-mirror small size telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Aguilar, J A; Boccone, V; Cadoux, F; Christov, A; della Volpe, D; Montaruli, T; Platos, L; Rameez, M

    2014-01-01

    The focal-plane camera of $\\gamma$-ray telescopes frequently uses light concentrators in front of light sensors. The purpose of these concentrators is to increase the effective area of the camera as well as to reduce the stray light coming at large incident angles. These light concentrators are usually based on the Winston cone design. In this contribution we present the design of an hexagonal hollow light concentrator with a lateral profile optimized using a cubic B\\'ezier function to achieve a higher collection efficiency in the angular region of interest. The design presented here is optimized for a Davies-Cotton telescope with primary mirror of about 4 meters of diameter and focal length of 5.6 m. The described concentrators are part of an innovative camera made up of silicon-photomultipliers sensors, although a similar approach can be used for other sizes of single-mirror telescopes with different camera sensors, including photomultipliers. The challenge of our approach is to achieve a cost-effective des...

  9. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, Marco [INFN, Ferrara, Italy

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to –25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  10. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, M., E-mail: contalbrigo@fe.infn.it

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to −25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  11. Imaging Atmospheric Cerenkov Telescopes Techniques and Results

    CERN Document Server

    Bradbury, S M

    2001-01-01

    The hunt for cosmic TeV particle accelerators is prospering through Imaging Atmospheric Cerenkov Telescopes. We face challenges such as low light levels and MHz trigger rates, and the need to distinguish between particle air showers stemming from primary gamma rays and those due to the hadronic cosmic ray background. Our test beam is provided by the Crab Nebula, a steady accelerator of particles to energies beyond 20 TeV. Highly variable gamma-ray emission, coincident with flares at longer wavelengths, is revealing the particle acceleration mechanisms at work in the relativistic jets of Active Galaxies. These 200 GeV to 20 TeV photons propagating over cosmological distances allow us to place a limit on the infra-red background linked to galaxy formation and, some speculate, to the decay of massive relic neutrinos. Gamma rays produced in neutralino annihilation or the evaporation of primordial black holes may also be detectable. These phenomena and a zoo of astrophysical objects will be the targets of the next...

  12. Novel optical scanning cryptography using Fresnel telescope imaging.

    Science.gov (United States)

    Yan, Aimin; Sun, Jianfeng; Hu, Zhijuan; Zhang, Jingtao; Liu, Liren

    2015-07-13

    We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results.

  13. AGN sudies above 1.5 TeV with the HEGRA $5 m^2$ Cherenkov Telescope (Sources observed Mkn 421, Mkn 501, MS 0116+319, PKS 2209+236, NGC 315 and W Comae)

    CERN Document Server

    Petry, D; Konopelko, A K; Kranich, D; Raubenheimer, B C

    1997-01-01

    The HEGRA 5 m^2 air Cherenkov telescope (CT1) was used to search for gamma-ray emission above 1.5 TeV from a series of low redshift AGN (Mkn 421, Mkn 501, MS 0116+319, PKS 2209+236, NGC 315 and W Comae). Here we present results from a total of 383 hours of ON-source observations at zenith angles up to 35$^\\circ$ made between February 1996 and April 1997 showing positive detections of Mkn 421 and Mkn 501 and upper limits on the other objects' emission. More recent results from observations of Mkn 421 und Mkn 501 will be added at the conference.

  14. Strange meson spectroscopy in K[omega] and K[phi] at 11 GeV/c and Cherenkov ring imaging at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Youngjoon.

    1993-01-01

    This thesis consists of two independent parts; development of Cherenkov Ring Imaging Detector (CRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. Part 1: The CRID system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e[sup +]e[sup [minus

  15. A World-Wide Network of Robotic Imaging Telescopes

    Science.gov (United States)

    McGruder, C., III; Barnaby, D.; Carini, M.; Gelderman, R.; Hackney, K.; Hackney, R.; Marchenko, S.; Scott, R.; Yan, Li; Chen, Wen-Ping

    The long-term monitoring of AGNs and massive stars, the search for extrasolar planets via the transit method and the detection of unpredictable transient events such as gamma-ray bursts require continuous observations by a world-wide network of telescopes. Two telescopes of this network are located in the USA (Kitt Peak and Kentucky). Western Kentucky University (USA) along with National Central University (Taiwan) and Yunnan Observatory (China) plan to place a fully robotic imaging telescope at Gao Meigu in Li Jiang, China.

  16. Galileo's Instruments of Credit Telescopes, Images, Secrecy

    CERN Document Server

    Biagioli, Mario

    2006-01-01

    In six short years, Galileo Galilei went from being a somewhat obscure mathematics professor running a student boarding house in Padua to a star in the court of Florence to the recipient of dangerous attention from the Inquisition for his support of Copernicanism. In that brief period, Galileo made a series of astronomical discoveries that reshaped the debate over the physical nature of the heavens: he deeply modified the practices and status of astronomy with the introduction of the telescope and pictorial evidence, proposed a radical reconfiguration of the relationship between theology and a

  17. Upgrade of the MAGIC telescopes

    CERN Document Server

    Mazin, Daniel; Garczarczyk, Markus; Giavitto, Gianluca; Sitarek, Julian

    2014-01-01

    The MAGIC telescopes are two Imaging Atmospheric Cherenkov Telescopes (IACTs) located on the Canary island of La Palma. With 17m diameter mirror dishes and ultra-fast electronics, they provide an energy threshold as low as 50 GeV for observations at low zenith angles. The first MAGIC telescope was taken in operation in 2004 whereas the second one joined in 2009. In 2011 we started a major upgrade program to improve and to unify the stereoscopic system of the two similar but at that time different telescopes. Here we report on the upgrade of the readout electronics and digital trigger of the two telescopes, the upgrade of the camera of the MAGIC I telescope as well as the commissioning of the system after this major upgrade.

  18. Atmospheric Monitoring for the MAGIC Telescopes

    CERN Document Server

    Gaug, M; Dorner, D; Doro, M; Font, Ll; Fruck, C; Garczarczyk, M; Garrido, D; Hrupec, D; Hose, J; López-Oramas, A; Maneva, G; Martinez, M; Mirzoyan, R; Temnikov, P; Zanin, R

    2014-01-01

    The monitoring of the atmosphere is very relevant for Imaging Atmospheric Cherenkov Telescopes. Adverse weather conditions (strong wind, high humidity, etc.) may damage the telescopes and must therefore be monitored continuously to guarantee a safe operation, and the presence of clouds and aerosols affects the transmission of the Cherenkov light and consequently the performance of the telescopes. The ATmospheric CAlibration (ATCA) technical working group of the MAGIC collaboration aims to cover all aspects related to atmosphere monitoring and calibration. In this paper we give an overview of the ATCA goals and activities, which include the set-up and maintenance of appropriate instrumentation, proper analysis of its data, the realization of MC studies, and the correction of real data taken under non-optimal atmospheric conditions. The final goal is to reduce the systematic uncertainties in the determination of the $\\gamma$-ray flux and energy, and to increase the duty cycle of the telescopes by establishing o...

  19. Fundamental Imaging Limits of Radio Telescope Arrays

    CERN Document Server

    Wijnholds, Stefan J; 10.1109/JSTSP.2008.2004216

    2010-01-01

    The fidelity of radio astronomical images is generally assessed by practical experience, i.e. using rules of thumb, although some aspects and cases have been treated rigorously. In this paper we present a mathematical framework capable of describing the fundamental limits of radio astronomical imaging problems. Although the data model assumes a single snapshot observation, i.e. variations in time and frequency are not considered, this framework is sufficiently general to allow extension to synthesis observations. Using tools from statistical signal processing and linear algebra, we discuss the tractability of the imaging and deconvolution problem, the redistribution of noise in the map by the imaging and deconvolution process, the covariance of the image values due to propagation of calibration errors and thermal noise and the upper limit on the number of sources tractable by self calibration. The combination of covariance of the image values and the number of tractable sources determines the effective noise ...

  20. In-orbit Calibrations of the Ultraviolet Imaging Telescope

    Science.gov (United States)

    Tandon, S. N.; Subramaniam, Annapurni; Girish, V.; Postma, J.; Sankarasubramanian, K.; Sriram, S.; Stalin, C. S.; Mondal, C.; Sahu, S.; Joseph, P.; Hutchings, J.; Ghosh, S. K.; Barve, I. V.; George, K.; Kamath, P. U.; Kathiravan, S.; Kumar, A.; Lancelot, J. P.; Leahy, D.; Mahesh, P. K.; Mohan, R.; Nagabhushana, S.; Pati, A. K.; Kameswara Rao, N.; Sreedhar, Y. H.; Sreekumar, P.

    2017-09-01

    The Ultra-Violet Imaging Telescope (UVIT) is one of the payloads in ASTROSAT, the first Indian Space Observatory. The UVIT instrument has two 375 mm telescopes: one for the far-ultraviolet (FUV) channel (1300–1800 Å), and the other for the near-ultraviolet (NUV) channel (2000–3000 Å) and the visible (VIS) channel (3200–5500 Å). UVIT is primarily designed for simultaneous imaging in the two ultraviolet channels with spatial resolution better than 1.″8, along with provisions for slit-less spectroscopy in the NUV and FUV channels. The results of in-orbit calibrations of UVIT are presented in this paper.

  1. QUEST: wide angle Cherenkov light measurements at EAS-TOP

    Science.gov (United States)

    EAS-Top Collaboration; Korosteleva, E. E.; Kuzmichev, L. A.; Prosin, V. V.; Lubsandorzhiev, B. K.

    Wide angle Cherenkov light detectors based upon the QUASAR-370 photo-multipliers have been installed on five Cherenkov telescopes of the EAS-TOP array to study the energy spectrum and composition of primary cosmic rays around the knee . The energy threshold of quasars array was close to that of EAS-TOP electromagnetic detectors array. The first results of joint analysis of Cherenkov and electromagnetic data together with the adequate CORSIKA simulation results are discussed.

  2. Particle Identification in Cherenkov Detectors using Convolutional Neural Networks

    CERN Document Server

    Theodore, Tomalty

    2016-01-01

    Cherenkov detectors are used for charged particle identification. When a charged particle moves through a medium faster than light can propagate in that medium, Cherenkov radiation is released in the shape of a cone in the direction of movement. The interior of the Cherenkov detector is instrumented with PMTs to detect this Cherenkov light. Particles, then, can be identified by the shapes of the images on the detector walls.

  3. Development of a Low Cost Telescope System for VHE Astronomy

    Science.gov (United States)

    Querrard, Rodney; Perkins, Jeremy S.

    2017-01-01

    Ground based gamma-ray astronomy has progressed dramatically over the past 40 years. Currently there are 176 confirmed sources detected above 100 GeV ranging from Supernova Remnants (SNR) to Active Galaxies and other objects The next generation of Imaging Air Cherenkov Telescopes (IACT) is currently being developed. The CTA, or Cherenkov Telescope Array, will be a ground-breaking facility made up of a few dozen telescopes of multiple sizes with a sensitivity an order of magnitude greater than the current generation. Nevertheless, an opportunity will remain for smaller, less-expensive instruments to make important contributions to the field of Cherenkov Imaging astronomy.We are investigating an approach that will use an inexpensive array of ground based telescopes built from commercial-off-the-shelf (COTS) products. This array will be capable of studying supernova remnants, gamma-ray-burst afterglows, and active galactic nuclei as well as other sources above 2 TeV at a cost which is much lower than larger facilities like the CTA. We are developing a single prototype telescope that will be installed at the Goddard Geophysical and Astronomical Observatory in Greenbelt, MD. We discuss issues arising from and technical solutions to challenges of using COTS components whose primary purpose is not astronomy for this application. We detail progress in the telescope development and outline future work to complete the prototype and to duplicate it for creation of a low-cost Cherenkov array.

  4. Parallel Image Reconstruction for New Vacuum Solar Telescope

    Science.gov (United States)

    Li, Xue-Bao; Wang, Feng; Xiang, Yong Yuan; Zheng, Yan Fang; Liu, Ying Bo; Deng, Hui; Ji, Kai Fan

    2014-04-01

    Many advanced ground-based solar telescopes improve the spatial resolution of observation images using an adaptive optics (AO) system. As any AO correction remains only partial, it is necessary to use post-processing image reconstruction techniques such as speckle masking or shift-and-add (SAA) to reconstruct a high-spatial-resolution image from atmospherically degraded solar images. In the New Vacuum Solar Telescope (NVST), the spatial resolution in solar images is improved by frame selection and SAA. In order to overcome the burden of massive speckle data processing, we investigate the possibility of using the speckle reconstruction program in a real-time application at the telescope site. The code has been written in the C programming language and optimized for parallel processing in a multi-processor environment. We analyze the scalability of the code to identify possible bottlenecks, and we conclude that the presented code is capable of being run in real-time reconstruction applications at NVST and future large aperture solar telescopes if care is taken that the multi-processor environment has low latencies between the computation nodes.

  5. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H. Philip

    2017-01-01

    Habitable Exoplanet Imaging Mission (HabEx) is a concept for a mission to directly image and characterize planetary systems around Sun-like stars. In addition to the search for life on Earth-like exoplanets, HabEx will enable a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. HabEx is one of four mission concepts currently being studied for the 2020 Astrophysics Decadal Survey.

  6. Imaging the gamma-ray sky with Compton telescopes

    Energy Technology Data Exchange (ETDEWEB)

    von Ballmoos, P.; Diehl, R.; Schoenfelder, V. (Max-Planck-Institut fuer Physik and Astrophysik, Garching (DE). Inst. fuer. Extraterrestrische Physik); von Ballmoos, P. (New Hampshire Univ., Durham (UK). Space Science Center); von Ballmoos, P. (Toulouse-3 Univ., 31 (FR). Centre d' Etude spatiale des Rayonnements)

    1989-09-01

    Compton telescopes can overcome the difficulties that so far delayed mapping of the low energy gamma ray sky. Since these instruments are ideally matched to the MeV energy range they have a unique potential to produce images of it. However, the multi-coincidence nature of photon detection results in complex data analysis. This paper describes the imaging characteristics of Compton telescopes, and it presents an algorithm for the generation of skymaps which has been successfully applied to data from different Compton telescopes. The algorithm generates maps of likelihood ratios by taking advantage of background symmetries of the instrument and its environment. The resulting skymaps have been found to indicate source positions reliably.

  7. Particle Identification with the Cherenkov imaging technique using MPGD based Photon Detectors for Physics at COMPASS Experiment at CERN

    CERN Document Server

    AUTHOR|(CDS)2070220; Martin, Anna

    A novel technology for the detection of single photons has been developed and implemented in 2016 in the Ring Imaging Cherenkov (RICH) detector of the COMPASS Experiment at CERN SPS. Some basic knowledge in the field of particle identification and RICH counters, Micro Pattern Gaseous Detectors (MPGDs) in general and their development for photon detection applications are provided. The characteristics of the COMPASS setup are summarized and the COMPAS RICH-1 detector is described and shown to provide hadron identification in the momentum range between 3 and 55 GeV/c. The THGEM technology is discussed illustrating their characterization as gas multipliers and as reflective photocathodes: large gains and efficient photodetection collections are achieved when using optimized parameters and conditions (hole diameter = THGEM thickness = 0.4 mm; hole pitch = 0.8 mm and no rim; CH4-rich gas mixtures and electric field values > 1 kV/cm at the CsI surface). The intense R\\&D program leading to the choice of a hybrid...

  8. Using All Sky Imaging to Improve Telescope Scheduling

    Science.gov (United States)

    Cole, Gary M.

    2017-06-01

    Automated scheduling makes it possible for a small telescope to observe a large number of targets in a single night. But when used in areas which have less-than-perfect sky conditions such automation can lead to large numbers of observations of clouds and haze. This paper describes the development of a "sky-aware" telescope automation system that integrates the data flow from an SBIG AllSky340c camera with an enhanced dispatch scheduler to make optimum use of the available observing conditions for two highly instrumented backyard telescopes. Using the minute by minute time series image stream and a self maintained reference database, the software maintains a file of sky brightness, transparency, stability, and forecasted visibility at several hundred grid positions. The scheduling software uses this information in real time to exclude targets obscured by clouds and select the best observing task, taking into account the requirements and limits of each instrument.

  9. Imaging telescope-spectrometer for infrared sky surveys

    Science.gov (United States)

    Maslov, Igor A.; Sholomitskii, Gennadii B.; Kuznetsov, Arkadii E.; Patrashin, Michail A.; Olejnikov, Leonid S.

    1995-06-01

    A new type of imaging telescope-spectrometer for surviving the sky aboard a satellite is described. A static Michelson interferometer in front of an objective with 2D-arrays in its focal plane is capable of providing interferograms both for point and extended sources. As an example, the telescope-spectrometer based on the 15-cm telescope of the IKON project and a plane-parallel Ge plate as a beamsplitter may have approximately equals 30 cm(superscript -1 spectral resolution in the range 3 - 20 micrometers . For higher resolution, such an objective interferometer has advantage over a dispersion spectrometer in the signal-to-noise ratio and is free from the disadvantage of an objective prism not providing spectra of extended sources.

  10. Pupil geometry and pupil re-imaging in telescope arrays

    Science.gov (United States)

    Traub, Wesley A.

    1990-01-01

    This paper considers the issues of lateral and longitudinal pupil geometry in ground-based telescope arrays, such as IOTA. In particular, it is considered whether or not pupil re-imaging is required before beam combination. By considering the paths of rays through the system, an expression is derived for the optical path errors in the combined wavefront as a function of array dimensions, telescope magnification factor, viewing angle, and field-of-view. By examining this expression for the two cases of pupil-plane and image-plane combination, operational limits can be found for any array. As a particular example, it is shown that for IOTA no pupil re-imaging optics will be needed.

  11. Tests & Calibration on Ultra Violet Imaging Telescope (UVIT)

    CERN Document Server

    Kumar, Amit; Kamath, P U; Postma, Joe; Kathiravan, S; Mahesh, P K; S, Nagbhushana; Navalgund, K H; Rajkumar, N; Rao, M N; Sarma, K S; Sriram, S; Stalin, C S; Tandon, S N

    2012-01-01

    Ultra Violet Imaging Telescope on ASTROSAT Satellite mission is a suite of Far Ultra Violet (FUV; 130 to 180 nm), Near Ultra Violet (NUV; 200 to 300 nm) and Visible band (VIS; 320 to 550nm) imagers. ASTROSAT is a first multi wavelength mission of INDIA. UVIT will image the selected regions of the sky simultaneously in three channels & observe young stars, galaxies, bright UV Sources. FOV in each of the 3 channels is about 28 arc-minute. Targeted angular resolution in the resulting UV images is better than 1.8 arc-second (better than 2.0 arc-second for the visible channel). Two identical co-aligned telescopes (T1, T2) of Ritchey-Chretien configuration (Primary mirror of 375 mm diameter) collect the celestial radiation and feed to the detector system via a selectable filter on a filter wheel mechanism; gratings are available in the filter wheels of FUV and NUV channels for slit-less low resolution spectroscopy. The detector system for each of the 3 channels is generically identical. One telescope images in ...

  12. Space Telescope Sensitivity and Controls for Exoplanet Imaging

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark

    2012-01-01

    Herein we address design considerations and outline requirements for space telescopes with capabilities for high contrast imaging of exoplanets. The approach taken is to identify the span of potentially detectable Earth-sized terrestrial planets in the habitable zone of the nearest stars within 30 parsecs and estimate their inner working angles, flux ratios, SNR, sensitivities, wavefront error requirements and sensing and control times parametrically versus aperture size. We consider 1, 2, 4, 8 and 16-meter diameter telescope apertures. The achievable science, range of telescope architectures, and the coronagraphic approach are all active areas of research and are all subject to change in a rapidly evolving field. Thus, presented is a snapshot of our current understanding with the goal of limiting the choices to those that appear currently technically feasible. We describe the top-level metrics of inner working angle, contrast and photometric throughput and explore how they are related to the range of target stars. A critical point is that for each telescope architecture and coronagraphic choice the telescope stability requirements have differing impacts on the design for open versus closed-loop sensing and control.

  13. The image slicer for the Subaru Telescope High Dispersion Spectrograph

    CERN Document Server

    Tajitsu, Akito; Yamamuro, Tomoyasu

    2012-01-01

    We report on the design, manufacturing, and performance of the image slicer for the High Dispersion Spectrograph (HDS) on the Subaru Telescope. This instrument is a Bowen-Walraven type image slicer providing five 0.3 arcsec x 1.5 arcsec images with a resolving power of R= 110,000. The resulting resolving power and line profiles are investigated in detail, including estimates of the defocusing effect on the resolving power. The throughput in the wavelength range from 400 to 700 nm is higher than 80%, thereby improving the efficiency of the spectrograph by a factor of 1.8 for 0.7 arcsec seeing.

  14. Hundred metre virtual telescope captures unique detailed colour image

    Science.gov (United States)

    2009-02-01

    A team of French astronomers has captured one of the sharpest colour images ever made. They observed the star T Leporis, which appears, on the sky, as small as a two-storey house on the Moon [1]. The image was taken with ESO's Very Large Telescope Interferometer (VLTI), emulating a virtual telescope about 100 metres across and reveals a spherical molecular shell around an aged star. ESO PR Photo 06a/09 The star T Leporis as seen with VLTI ESO PR Photo 06b/09 The star T Leporis to scale ESO PR Photo 06c/09 A virtual 100-metre telescope ESO PR Photo 06d/09 The orbit of Theta1 Orionis C ESO PR Video 06a/09 Zoom-in onto T Leporis "This is one of the first images made using near-infrared interferometry," says lead author Jean-Baptiste Le Bouquin. Interferometry is a technique that combines the light from several telescopes, resulting in a vision as sharp as that of a giant telescope with a diameter equal to the largest separation between the telescopes used. Achieving this requires the VLTI system components to be positioned to an accuracy of a fraction of a micrometre over about 100 metres and maintained so throughout the observations -- a formidable technical challenge. When doing interferometry, astronomers must often content themselves with fringes, the characteristic pattern of dark and bright lines produced when two beams of light combine, from which they can model the physical properties of the object studied. But, if an object is observed on several runs with different combinations and configurations of telescopes, it is possible to put these results together to reconstruct an image of the object. This is what has now been done with ESO's VLTI, using the 1.8-metre Auxiliary Telescopes. "We were able to construct an amazing image, and reveal the onion-like structure of the atmosphere of a giant star at a late stage of its life for the first time," says Antoine Mérand, member of the team. "Numerical models and indirect data have allowed us to imagine the

  15. Removing the Fringes from Space Telescope Imaging Spectrograph Slitless Spectra

    Science.gov (United States)

    Malumuth, Eliot M.; Hill, Robert S.; Gull, Ted; Woodgate, Bruce E.; Bowers, Charles W.; Kimble, Randy A.; Lindler, Don; Plait, Phil; Blouke, Morley

    2003-02-01

    Using what is known about the physical and chemical structure of the CCD detector on the Space Telescope Imaging Spectrograph (STIS) and over 50 calibration images taken with different wavelength mappings onto the detector, we have devised a model function that allows us to predict the fringing of any spectral image taken with the STIS CCD. This function is especially useful for spectra taken without a slit with the G750L grating. The STIS parallel observing program uses this ``slitless spectroscopy'' mode extensively. The arbitrary mapping of wavelength versus position that results from each source's chance position in the field renders direct calibration of the fringe amplitudes in this mode impossible. However, we find that correcting observed data using our semiempirical fringing model produces a substantial reduction in the fringe amplitudes. Tests using the flux calibration white dwarf standard G191-B2B show that we can reduce the fringe amplitude in the 9000-10000 Å region from about 20% peak to peak (10% rms) to about 4% peak to peak (2% rms) using the model, while a standard calibration using a ``fringe flat'' reduces the fringe amplitudes to 3.3% peak to peak (1.7% rms). The same technique is applicable to other astronomical CCDs. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Funding of this activity was through the Space Telescope Imaging Spectrograph Guaranteed Time Observations.

  16. Astronomers Make First Images With Space Radio Telescope

    Science.gov (United States)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  17. Development of a 144-channel Hybrid Avalanche Photo-Detector for Belle II ring-imaging Cherenkov counter with an aerogel radiator

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, S., E-mail: shohei.nishida@kek.jp [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Adachi, I. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hamada, N. [Toho University, Funabashi (Japan); Hara, K. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Iijima, T. [Nagoya University, Nagoya (Japan); Iwata, S.; Kakuno, H. [Tokyo Metropolitan University, Hachioji (Japan); Kawai, H. [Chiba University, Chiba (Japan); Korpar, S.; Krizan, P. [Jozef Stefan Institute, Ljubljana (Slovenia); Ogawa, S. [Toho University, Funabashi (Japan); Pestotnik, R.; Ŝantelj, L.; Seljak, A. [Jozef Stefan Institute, Ljubljana (Slovenia); Sumiyoshi, T. [Tokyo Metropolitan University, Hachioji (Japan); Tabata, M. [Chiba University, Chiba (Japan); Tahirovic, E. [Jozef Stefan Institute, Ljubljana (Slovenia); Yoshida, K. [Tokyo Metropolitan University, Hachioji (Japan); Yusa, Y. [Niigata University, Niigata (Japan)

    2015-07-01

    The Belle II detector, a follow up of the very successful Belle experiment, is under construction at the SuperKEKB electron–positron collider at KEK in Japan. For the PID system in the forward region of the spectrometer, a proximity-focusing ring-imaging Cherenkov counter with an aerogel radiator is being developed. For the position sensitive photon sensor, a 144-channel Hybrid Avalanche Photo-Detector has been developed with Hamamatsu Photonics K.K. In this report, we describe the specification of the Hybrid Avalanche Photo-Detector and the status of the mass production.

  18. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casanova Mohr, Raimon; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Sterpka, Christopher Francis; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wiedner, Dirk; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang

    2015-01-01

    A search is performed for heavy long-lived charged particles using 3.0 fb$^{-1}$ of pp collisions collected at $\\sqrt{s}$= 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkovdetectors to distinguish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell-Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, $1.8 < \\eta < 4.9$. The mass-dependent cross-section upper limits are in the range 2-4 fb (at 95\\% CL) for masses between 124 and 309 GeV/c$^2$.

  19. Radiation length imaging with high-resolution telescopes

    Science.gov (United States)

    Stolzenberg, U.; Frey, A.; Schwenker, B.; Wieduwilt, P.; Marinas, C.; Lütticke, F.

    2017-02-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length X/X0 profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the X/X0 imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of X/X0 imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of 100 million tracks at 4 GeV has been collected, which is sufficient to resolve complex material profiles on the 30 μm scale.

  20. Telescope polarization and image quality: Lyot coronagraph performance

    Science.gov (United States)

    Breckinridge, J. B.; Chipman, R. A.

    2016-07-01

    In this paper we apply a vector representation of physical optics, sometimes called polarization aberration theory to study image formation in astronomical telescopes and instruments. We describe image formation in-terms of interferometry and use the Fresnel polarization equations to show how light, upon propagation through an optical system become partially polarized. We make the observation that orthogonally polarized light does not interfere to form an intensity image. We show how the two polarization aberrations (diattenuation and and retardance) distort the system PSF, decrease transmittance, and increase unwanted background above that predicted using the nonphysical scalar models. We apply the polarization aberration theory (PolAbT) described earlier (Breckinridge, Lam and Chipman, 2015, PASP 127, 445-468) to the fore-optics of the system designed for AFTA-WFIRST- CGI to obtain a performance estimate. Analysis of the open-literature design using PolAbT leads us to estimate that the WFIRST-CGI contrast will be in the 10-5 regime at the occulting mask. Much above the levels predicted by others (Krist, Nemati and Mennesson, 2016, JATIS 2, 011003). Remind the reader: 1. Polarizers are operators, not filters in the same sense as colored filters, 2. Adaptive optics does not correct polarization aberrations, 3. Calculations of both diattenuation and retardance are needed to model real-world telescope/coronagraph systems.

  1. Fast Imaging Solar Spectrograph System in New Solar Telescope

    Science.gov (United States)

    Park, Y.-D.; Kim, Y. H.; Chae, J.; Goode, P. R.; Cho, K. S.; Park, H. M.; Nah, J. K.; Jang, B. H.

    2010-12-01

    In 2004, Big Bear Solar Observatory in California, USA launched a project for construction of the world's largest aperture solar telescope (D = 1.6m) called New Solar Telescope(NST). University of Hawaii (UH) and Korea Astronomy and Space Science Institute(KASI) partly collaborate on the project. NST is a designed off-axis parabolic Gregorian reflector with very high spatial resolution(0.07 arcsec at 5000A) and is equipped with several scientific instruments such as Visible Imaging Magnetograph (VIM), InfraRed Imaging Magnetograph IRIM), and so on. Since these scientific instruments are focused on studies of the solar photosphere, we need a post-focus instrument for the NST to study the fine structures and dynamic patterns of the solar chromosphere and low Transition Region (TR) layer, including filaments/prominences, spicules, jets, micro flares, etc. For this reason, we developed and installed a fast imaging solar spectrograph(FISS) system on the NST withadvantages of achieving compact design with high spectral resolution and small aberration as well as recording many solar spectral lines in a single and/or dual band mode. FISS was installed in May, 2010 and now we carry out a test observation. In this talk, we introduce the FISS system and the results of the test observation after FISS installation.

  2. The Brazilian Tunable Filter Imager for the SOAR telescope

    CERN Document Server

    de Oliveira, Cláudia Mendes; Quint, Bruno; Andrade, Denis; Ferrari, Fabricio; Laporte, Rene; Ramos, Giseli de A; Guzman, Christian Dani; Cavalcanti, Luiz; de Calasans, Alvaro; Fernandez, Javier Ramirez; Castañeda, Edna Carolina Gutierrez; Jones, Damien; Fontes, Fernando Luis; Molina, Ana Maria; Fialho, Fábio; Plana, Henri; Jablonski, Francisco J; Reitano, Luiz; Daigle, Olivier; Scarano, Sergio; Amram, Philippe; Balard, Philippe; Gach, Jean-Luc; Carignan, Claude

    2013-01-01

    This paper presents a new Tunable Filter Instrument for the SOAR telescope. The Brazilian Tunable Filter Imager (BTFI) is a versatile, new technology, tunable optical imager to be used in seeing-limited mode and at higher spatial fidelity using the SAM Ground-Layer Adaptive Optics facility at the SOAR telescope. The instrument opens important new science capabilities for the SOAR community, from studies of the centers of nearby galaxies and the insterstellar medium to statistical cosmological investigations. The BTFI takes advantage of three new technologies. The imaging Bragg Tunable Filter concept utilizes Volume Phase Holographic Gratings in a double-pass configuration, as a tunable filter, while a new Fabry-Perot (FP) concept involves technologies which allow a single FP etalon to act over a large range of interference orders and spectral resolutions. Both technologies will be in the same instrument. Spectral resolutions spanning the range between 25 and 30,000 can be achieved through the use of iBTF at l...

  3. First Avalanche-photodiode camera test (FACT): A novel camera using G-APDs for the observation of very high-energy {gamma}-rays with Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Braun, I. [ETH Zurich, CH-8093 Zurich (Switzerland); Commichau, S.C. [ETH Zurich, CH-8093 Zurich (Switzerland)], E-mail: commichau@phys.ethz.ch; Rissi, M. [ETH Zurich, CH-8093 Zurich (Switzerland); Backes, M. [Dortmund University of Technology, D-44221 Dortmund (Germany); Biland, A. [ETH Zurich, CH-8093 Zurich (Switzerland); Bretz, T. [University of Wuerzburg, D-97074 Wuerzburg (Germany); Britvitch, I.; Commichau, V.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Kranich, D. [ETH Zurich, CH-8093 Zurich (Switzerland); Lorenz, E. [ETH Zurich, CH-8093 Zurich (Switzerland); Max-Planck-Institut fuer Physik, D-80805 Muenchen (Germany); Lustermann, W. [ETH Zurich, CH-8093 Zurich (Switzerland); Mannheim, K. [University of Wuerzburg, D-97074 Wuerzburg (Germany); Neise, D. [Dortmund University of Technology, D-44221 Dortmund (Germany); Pauss, F. [ETH Zurich, CH-8093 Zurich (Switzerland); Pohl, M. [University of Geneva, CH-1211 Geneva (Switzerland); Renker, D. [Paul Scherrer Institut (PSI) Villigen, CH-5232 Villigen (Switzerland); Rhode, W. [Dortmund University of Technology, D-44221 Dortmund (Germany)] (and others)

    2009-10-21

    We present a project for a novel camera using Geiger-mode Avalanche Photodiodes (G-APDs), to be installed in a small telescope (former HEGRA CT3) on the MAGIC site in La Palma (Canary Island, Spain). This novel type of semiconductor photon detector provides several superior features compared to conventional photomultiplier tubes (PMTs). The most promising one is a much higher Photon Detection Efficiency.

  4. Measurement of Cosmic Shear with the Space Telescope Imaging Spectrograph

    Science.gov (United States)

    Rhodes, Jason; Refregier, Alexandre; Collins, Nicholas R.; Gardner, Jonathan P.; Groth, Edward J.; Hill, Robert S.

    2004-04-01

    Weak lensing by large-scale structure allows a direct measure of the dark matter distribution. We have used parallel images taken with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope to measure weak lensing, or cosmic shear. We measure the shapes of 26,036 galaxies in 1292 STIS fields and measure the shear variance at a scale of 0.51m. The charge transfer efficiency (CTE) of STIS has degraded over time and introduces a spurious ellipticity into galaxy shapes during the readout process. We correct for this effect as a function of signal-to-noise ratio and CCD position. We further show that the detected cosmic shear signal is nearly constant in time over the approximately 4 yr of observation. We detect cosmic shear at the 5.1 σ level, and our measurement of the shear variance is consistent with theoretical predictions in a ΛCDM universe. This provides a measure of the normalization of the mass power spectrum σ8=(1.02+/-0.16)(0.3/Ωm)0.46(0.21/Γ)0.18. The 1 σ error includes noise, cosmic variance, systematics, and the redshift uncertainty of the source galaxies. This is consistent with previous cosmic shear measurements, but tends to favor those with a high value of σ8. It is also consistent with the recent determination of σ8 from the Wilkinson Microwave Anisotropy Probe (WMAP) experiment.

  5. Long term performance evaluation of the TACTIC imaging telescope using ∼400 h Crab Nebula observation during 2003–2010

    Indian Academy of Sciences (India)

    A K Tickoo; R Koul; R C Rannot; K K Yadav; P Chandra; V K Dhar; M K Koul; M Kothari; N K Agarwal; A Goyal; H C Goyal; S Kotwal; N Kumar; P Marandi; K Venugopal; K Chanchalani; N Bhatt; S Bhattacharyya; C Borwankar; N Chouhan; S R Kaul; A K Mitra; S Sahaynathan; M Sharma; K K Singh; C K Bhat

    2014-03-01

    The TeV atmospheric Cherenkov telescope with imaging camera (TACTIC) -ray telescope has been in operation at Mt. Abu, India since 2001 to study TeV -ray emission from celestial sources. During the last 10 years, apart from consistently detecting a steady signal from the Crab Nebula above ∼1.2 TeV energy, at a sensitivity level of ∼5.0 in ∼25 h, the telescope has also detected flaring activity from Mrk 421 and Mrk 501 on several occasions. Although we used Crab Nebula data partially, in some of the reported results, primarily for testing the validity of the full data analysis chain, the main aim of this work is to study the long term performance of the TACTIC telescope by using consolidated data collected between 2003 and 2010. The total on-source data, comprising ∼402 h, yields an excess of ∼(3742±192) -ray events with a statistical significance of ∼19.9 . The off-source data, comprising ∼107 h of observation, is found to be consistent with a no-emission hypothesis, as expected. The resulting -ray rate for the onsource data is determined to be ∼(9.31±0.48) h-1. A power law fit (d/d = $f_0E^{−}$) with $f_0 \\tilde (2.66 ± 0.29) × 10^{−11}$ cm-2 s-1 TeV-1 and $ \\tilde$ 2.56 ± 0.10 is found to provide reasonable fit to the inferred differential spectrum within statistical uncertainties. The spectrum matches reasonably well with that obtained by other groups. A brief summary of the improvements in the various subsystems of the telescope carried out recently, which has resulted in a substantial improvement in its detection sensitivity (viz., ∼5 in an observation period of ∼13 h as compared to ∼25 h earlier) are also presented in this paper. Encouraged by the detection of strong -ray signals from Mrk 501 and Mrk 421 on several occasions, there is considerable scope for the TACTIC telescope to monitor similar TeV -ray emission activity from other active galactic nuclei on a long-term basis.

  6. The Non-Imaging CHErenkov Array (NICHE): A TA/TALE extension to measure the flux and composition of Very-High Energy Cosmic Rays

    Science.gov (United States)

    Bergman, Douglas; Krizmanic, John; Sokolsky, Pierre

    2013-04-01

    Co-sited with TA/TALE, the Non-Imaging CHErenkov Array (NICHE) will measure the flux and nuclear composition of cosmic rays from below 10^16 eV to over 10^18 eV in its initial deployment. Furthermore, the low-energy reach can be lowered below the cosmic ray knee via counter redeployment or additional counters. NICHE uses easily deployable detectors to measure the amplitude and time-spread of the air-shower Cherenkov signal to achieve an event-by-event measurement of Xmax and energy, each with excellent resolution. NICHE will have sufficient area and angular acceptance to have significant overlap with the TA/TALE detectors to allow for energy cross-calibration. Simulated NICHE performance has shown that the array has the ability to distinguish between several different composition models as well as measure the end of Galactic cosmic ray spectrum. In this talk, the NICHE design, array performance, and status will be discussed as well as NICHE's ability to measure the cosmic ray nuclear composition as a function of energy.

  7. Satellite Imaging with Adaptive Optics on a 1 M Telescope

    Science.gov (United States)

    Bennet, F.; Price, I.; Rigaut, F.; Copeland, M.

    2016-09-01

    The Research School of Astronomy and Astrophysics at the Mount Stromlo Observatory in Canberra, Australia, have been developing adaptive optic (AO) systems for space situational awareness applications. We report on the development and demonstration of an AO system for satellite imaging using a 1 m telescope. The system uses the orbiting object as a natural guide star to measure atmospheric turbulence, and a deformable mirror to provide an optical correction. The AO system utilised modern, high speed and low noise EMCCD technology on both the wavefront sensor and imaging camera to achieve high performance, achieving a Strehl ratio in excess of 30% at 870 nm. Images are post processed with lucky imaging algorithms to further improve the final image quality. We demonstrate the AO system on stellar targets and Iridium satellites, achieving a near diffraction limited full width at half maximum. A specialised realtime controller allows our system to achieve a bandwidth above 100 Hz, with the wavefront sensor and control loop running at 2 kHz. The AO systems we are developing show how ground-based optical sensors can be used to manage the space environment. AO imaging systems can be used for satellite surveillance, while laser ranging can be used to determine precise orbital data used in the critical conjunction analysis required to maintain a safe space environment. We have focused on making this system compact, expandable, and versatile. We are continuing to develop this platform for other space situational awareness applications such as geosynchronous satellite astrometry, space debris characterisation, satellite imaging, and ground-to-space laser communication.

  8. Imaging Simulations for DESTINY, the Dark Energy Space Telescope

    Science.gov (United States)

    Lauer, T. R.; DESTINY Science Team

    2004-12-01

    We describe a mission concept for a 1.8-meter near-infrared (NIR) grism-mode space telescope optimized to return richly sampled Hubble diagrams of Type Ia and Type II supernovae (SNe) over the redshift range 0.5 the Universe as a function of time, and characterizing the nature of dark energy. The central concept for our proposed Dark Energy Space Telescope (DESTINY) is an all-grism NIR survey camera. SNe will be discovered by repeated imaging of an area located at the north ecliptic pole. Grism spectra with resolving power l/Dl = R * 100 will provide broad-band spectrophotometry, redshifts, SNe classification, as well as valuable time-resolved diagnostic data for understanding the SN explosion physics. Our approach features only a single mode of operation, a single detector technology, and a single instrument. Although grism spectroscopy is slow compared to SN detection in any single broad-band filter for photometry, or to conventional slit spectra for spectral diagnostics, the multiplex advantage of observing a large field-of-view over a full octave in wavelength simultaneously makes this approach highly competitive. In this poster we present exposure simulations to demonstrate the efficiency of the DESTINY approach.

  9. TH-C-17A-03: Dynamic Visualization and Dosimetry of IMRT and VMAT Treatment Plans by Video-Rate Imaging of Cherenkov Radiation in Pure Water

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, A; Andreozzi, J; Davis, S [Thayer School of Engineering, Dartmouth College, NH (United States); Zhang, R [Department of Physics and Astronomy, Dartmouth College, Hanover, NH (United States); Fox, C; Gladstone, D [Dartmouth Hitchcock Medical Center, Lebanon, NH (Lebanon); Pogue, B [Thayer School of Engineering, Dartmouth College, NH (United States); Department of Physics and Astronomy, Dartmouth College, Hanover, NH (United States)

    2014-06-15

    Purpose: A novel optical dosimetry technique for the QA and verification of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) radiotherapy plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: An intensified CCD camera (ICCD) was used to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank. The ICCD acquisition was gated to the Linac, operated for single pulse imaging, and binned to a resolution of 512×512 pixels. The resulting videos were analyzed temporally for regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR) and summed to obtain an overall light distribution, which was compared to the expected dose distribution from the TPS using a gammaindex analysis. Results: The chosen camera settings resulted in data at 23.5 frames per second. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.2% and 95.6% agreement between the light distribution and expected TPS dose distribution based upon a 3% / 3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans respectively. Conclusion: The results from this initial study demonstrate the first documented use of Cherenkov radiation for optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications. NIH R01CA109558 and R21EB017559.

  10. Imaging properties of Wolter I type x-ray telescopes.

    Science.gov (United States)

    Werner, W

    1977-03-01

    By ray-tracing methods we have investigated various configurations of Wolter I type x-ray telescopes. For the criterion of image quality the shape of the line spread function has been chosen. The angular resolution we find herewith in a large region of the basic parameters appears to be more than three times higher than results from the rms blur circle criterion. We have concluded that in most cases of practical interest the paraboloid-hyperboloid combination has to be preferred to the Schwarzschild system. In all cases it is possible to find a solution giving an extra improvement of the angular resolution with a factor between,2 and 4 when we describe the mirror shapes with polynomials.

  11. Moon-based Epoch of Reionization Imaging Telescope (MERIT)

    Science.gov (United States)

    Jones, D. L.; MacDowall, R. J.; Bale, S. D.; Demaio, L.; Kasper, J. C.; Weiler, K. W.

    2005-05-01

    Radio observations of emission and absorption from neutral Hydrogen during the Epoch of Reionization (EoR) can reveal how structure leading to the first stars, galaxies, and black holes formed in the intergalactic medium between redshifts of about 6 and at least 20. Ground-based low frequency radio arrays are under construction (LOFAR, PAST) or development (LWA, MWA) to detect and eventually image the EoR signal. The Moon-based Epoch of Reionization Imaging Telescope (MERIT) is a mission concept that is intended to extend ground-based observations of the EoR to the highest possible dynamic range and image fidelity. This can be accomplished by locating the MERIT array on the far side of the moon. The array is composed of 10-12 radial arms, each 1-2 km in length. Each arm has several hundred dipole antennas and feedlines printed on a very thin sheet of kapton with a total mass of about 300 kg. This provides a convenient way to deploy thousands of individual antennas, and a centrally condensed distribution of array baselines. The lunar farside provides shielding from terrestrial natural and technological radio interference, shielding (half the time) from strong solar radio emissions, and freedom from the corrupting influence of Earth's ionosphere. Various options for array deployment and data transmission to Earth will be described is this paper. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  12. FNIT: the fast neutron imaging telescope for SNM detection

    Science.gov (United States)

    Bravar, Ulisse; Bruillard, Paul J.; Flückiger, Erwin O.; Macri, John R.; McConnell, Mark L.; Moser, Michael R.; Ryan, James M.

    2006-05-01

    We report on recent progress in the development of the Fast Neutron Imaging Telescope (FNIT), a detector with both imaging and energy measurement capabilities, sensitive to neutrons in the 2-20 MeV range. FNIT was initially conceived to study solar neutrons as a candidate design for the Solar Sentinels program under formulation at NASA. This instrument is now being configured to locate fission neutron sources for homeland security purposes. By accurately identifying the position of the neutron source with imaging techniques and reconstructing the energy spectrum of fission neutrons, FNIT can locate problematic amounts of Special Nuclear Material (SNM), including heavily shielded and masked samples. The detection principle is based on multiple elastic neutron-proton (n-p) scatterings in organic scintillators. By reconstructing the n-p event locations and sequence and measuring the recoil proton energies, the direction and energy spectrum of the primary neutron flux can be determined and neutron point sources identified. The performance of FNIT is being evaluated through a series of Monte Carlo simulations and lab tests of detector prototypes. The Science Model One (SM1) of this instrument was recently assembled and is presently undergoing performance testing.

  13. The Advanced Gamma-ray Imaging System (AGIS): Schwarzschild-Couder (SC) Telescope Mechanical and Optical System Design

    Science.gov (United States)

    Guarino, V.; Vassiliev, V.; Buckley, J.; Byrum, K.; Falcone, A.; Fegan, S.; Finley, J.; Hanna, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Romani, R.; Wagner, R.; Woods, M.

    2009-05-01

    The concept of a future ground-based gamma-ray observatory, AGIS, in the energy range 20 GeV to 200 TeV is based on an array of 50-100 imaging atmospheric Cherenkov telescopes (IACTs). The anticipated improvement of AGIS sensitivity, angular resolution, and reliability of operation imposes demanding technological and cost requirements on the design of IACTs. In this submission, we focus on the optical and mechanical systems for a novel Schwarzschild-Couder two-mirror aplanatic optical system originally proposed by Schwarzschild. Emerging new mirror production technologies based on replication processes, such as cold and hot glass slumping, cured CFRP, and electroforming, provide new opportunities for cost effective solutions for the design of the optical system. We explore capabilities of these mirror fabrication methods for the AGIS project and alignment methods for optical systems. We also study a mechanical structure which will provide support points for mirrors and camera design driven by the requirement of minimizing the deflections of the mirror support structures.

  14. Diseño de montura Davies-Cotton de telescopio Cherenkov de 6m de diámetro para el proyecto CTA

    Science.gov (United States)

    Actis, M.; Ringegni, P.; Antico, F.; Bottani, A.; Vallejo, G.; Ochoa, I.; Marconi, D.; Supanitsky, A. D.; Rovero, A. C.

    For the next generation of ground-based instruments for the observation of gamma-rays, the construction of 6 m diameter Cherenkov telescopes is foreseen. We have proposed a design of Davies-Cotton mount for such a telescope, within Cherenkov Telescope Array specifications, and evaluated its mechanical and optical performance. FULL TEXT IN SPANISH

  15. SHIELD: Distance Estimates from Hubble Space Telescope Imaging

    Science.gov (United States)

    Cave, Ian; Cannon, J. M.; Larson, E.; Marshall, M.; Moody, S.; Adams, E. A.; Dolphin, A. E.; Elson, E. C.; Giovanelli, R.; Haynes, M. P.; McQuinn, K. B.; Ott, J.; Saintonge, A.; Salzer, J. J.; Skillman, E. D.

    2013-01-01

    The Survey of HI in Extremely Low-mass Dwarfs (SHIELD) is an ongoing study of twelve galaxies with HI masses between 106 and 107 Solar masses, detected by the Arecibo Legacy Fast ALFA (ALFALFA) survey. Here we present new Hubble Space Telescope (HST) imaging of the SHIELD galaxies. The primary goal is to determine the distance of each galaxy. We apply two techniques to measure the apparent magnitude of the tip of the red giant branch (TRGB) feature in the HST color magnitude diagrams. First, a custom designed edge detection filter was written to determine the TRGB magnitude based on a user-selected region of the color magnitude diagram. Second, we apply the maximum likelihood technique implemented in the "TRGBtool" software package (Makarov et al. 2006). In addition to the distances based on the TRGB feature, we also use the MATCH software (Dolphin 2002) to determine the best-fit distance based on the overall CMD morphology. We compare these distance estimates for all members of the SHIELD galaxies, and present a final table of distances that is used in each of the companion SHIELD presentations.

  16. Particle identification by Cherenkov and transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, R.S.

    1980-09-01

    The Cherenkov counter has a role as a particle identifier for velocities which are too high for Time-of-Flight to be used, and too low for transition radiation detectors to give a useable signal. In beam lines the compensated differential counter is capable of giving the best resolution, but at high momenta the restriction on the spread of particle directions gives unacceptable limits on the beam acceptance. The transition radiation detectors being developed to identify hadrons at relatively low momentum do not have this restriction and might be used instead. For particles produced in an interaction, the ring imaging type of Cherenkov should give the best coverage for multiparticle events, but a threshold counter is much simpler, cheaper and faster where it can give adequate separation. Again at high values of ..gamma.. the resolution of Cherenkov counters will fail and some form of transition radiation detector will be necessary.

  17. An Experiment to Demonstrate Cherenkov / Scintillation Signal Separation

    CERN Document Server

    Caravaca, J; Land, B J; Wallig, J; Yeh, M; Gann, G D Orebi

    2016-01-01

    The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. The CHESS (CHErenkov / Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. This paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstruct Cherenkov rings is demonstrated in a water target, and a time precision of 338 +/- 12 ps FWHM is achieved. Monte Carlo based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 +/- 1% and 81 +/- 1...

  18. Cherenkov radiation in moving medium

    OpenAIRE

    2010-01-01

    Cherenkov radiation in uniformly moving homogenous isotropic medium without dispersion is studied. Formula for the spectrum of Cherenkov radiation of fermion was derived for the case when the speed of the medium is less than the speed of light in this medium at rest. The properties of Cherenkov spectrum are investigated.

  19. Wavelength-shifted Cherenkov radiators

    Science.gov (United States)

    Krider, E. P.; Jacobson, V. L.; Pifer, A. E.; Polakos, P. A.; Kurz, R. J.

    1976-01-01

    The scintillation and Cherenkov responses of plastic Cherenkov radiators containing different wavelength-shifting fluors in varying concentrations have been studied in beams of low energy protons and pions. For cosmic ray applications, where large Cherenkov to scintillation ratios are desired, the optimum fluor concentrations are 0.000025 by weight or less.

  20. Newton's Telescope in Print: the Role of Images in the Reception of Newton's Instrument

    NARCIS (Netherlands)

    Dupré, Sven

    2008-01-01

    While Newton tried to make his telescope into a proof of the supremacy of his theory of colours over older theories, his instrument was welcomed as a way to shorten telescopes, not as a way to solve the problem of chromatic aberration. This paper argues that the image published together with the rep

  1. Optical and radiographical characterization of silica aerogel for Cherenkov radiator

    CERN Document Server

    Tabata, Makoto; Hatakeyama, Yoshikiyo; Kawai, Hideyuki; Morita, Takeshi; Nishikawa, Keiko

    2012-01-01

    We present optical and X-ray radiographical characterization of silica aerogels with refractive index from 1.05 to 1.07 for a Cherenkov radiator. A novel pin-drying method enables us to produce highly transparent hydrophobic aerogels with high refractive index by shrinking wet-gels. In order to investigate the uniformity in the density (i.e., refractive index) of an individual aerogel monolith, we use the laser Fraunhofer method, an X-ray absorption technique, and Cherenkov imaging by a ring imaging Cherenkov detector in a beam test. We observed an increase in density at the edge of the aerogel tiles, produced by pin-drying.

  2. Distance determinations to shield galaxies from Hubble space telescope imaging

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Cannon, John M.; Cave, Ian [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Haynes, Martha P.; Adams, Elizabeth; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Elson, Ed C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Ott, Juërgen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Saintonge, Amélie, E-mail: kmcquinn@astro.umn.edu [Max-Planck-Institute for Astrophysics, D-85741 Garching (Germany)

    2014-04-10

    The Survey of H I in Extremely Low-mass Dwarf (SHIELD) galaxies is an ongoing multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies. The galaxies were selected from the first ∼10% of the H I Arecibo Legacy Fast ALFA (ALFALFA) survey based on their inferred low H I mass and low baryonic mass, and all systems have recent star formation. Thus, the SHIELD sample probes the faint end of the galaxy luminosity function for star-forming galaxies. Here, we measure the distances to the 12 SHIELD galaxies to be between 5 and 12 Mpc by applying the tip of the red giant method to the resolved stellar populations imaged by the Hubble Space Telescope. Based on these distances, the H I masses in the sample range from 4 × 10{sup 6} to 6 × 10{sup 7} M {sub ☉}, with a median H I mass of 1 × 10{sup 7} M {sub ☉}. The tip of the red giant branch distances are up to 73% farther than flow-model estimates in the ALFALFA catalog. Because of the relatively large uncertainties of flow-model distances, we are biased toward selecting galaxies from the ALFALFA catalog where the flow model underestimates the true distances. The measured distances allow for an assessment of the native environments around the sample members. Five of the galaxies are part of the NGC 672 and NGC 784 groups, which together constitute a single structure. One galaxy is part of a larger linear ensemble of nine systems that stretches 1.6 Mpc from end to end. Three galaxies reside in regions with 1-9 neighbors, and four galaxies are truly isolated with no known system identified within a radius of 1 Mpc.

  3. Spartan Infrared Camera, a High-Resolution Imager for the SOAR Telescope: Design, Tests, and On-Telescope Performance

    Science.gov (United States)

    Loh, Edwin D.; Biel, Jason D.; Davis, Michael W.; Laporte, René; Loh, Owen Y.; Verhanovitz, Nathan J.

    2012-04-01

    The Spartan Infrared Camera provides tip-tilt corrected imaging for the SOAR Telescope in the 900-2500 nm spectral range with four 2048 × 2048 HAWAII-2 detectors. The camera has two plate scales: high-resolution () for future diffraction-limited sampling in the H and K bands and wide-field () to cover a 5‧ × 5‧ field, over which tip-tilt correction is substantial. The design is described in detail. Except for CaF2 field-flattening lenses, the optics are aluminum mirrors to thermally match the aluminum cryogenic-optical box in which the optics mount. The design minimizes the tilt of the optics as the instrument rotates on the Nasmyth port of the telescope. Two components of the gravitational torque on an optic are eliminated by symmetry, and the third component is minimized by balancing the optic. The optics (including the off-axis aspherical mirrors) were aligned with precise metrology. For the detector assembly, Henein pivots are used to provide frictionless, thermally compliant, lubricant-free, and thermally conducting rotation of the detectors. The heat load is 14 W for an ambient temperature of 10°C. Cooling down takes 40 hr. An activated-charcoal getter controls permeation through the large Viton O-ring for at least nine months. We present maps of the image distortion, which amount to tens of pixels at the greatest. The wavelength of the narrowband filters shift with position in the sky. The measured Strehl ratio of the camera itself is 0.81-0.84 at λ1650 nm. The width of the best K-band image was 260 mas in unexceptional seeing measured after tuning the telescope and before moving the telescope. Since images are normally taken after pointing the telescope to a different field, this supports the idea that the image quality could be improved by better control of the focus and the shape of the primary mirror. The instrument has proved to be capable of producing images that can be stitched together to measure faint, extended features and to produce

  4. Gemini Planet Imager integration to the Gemini South telescope software environment

    CERN Document Server

    Rantakyrö, Fredrik T; Chilcote, Jeffrey; Dunn, Jennifer; Goodsell, Stephen; Hibon, Pascale; Macintosh, Bruce; Quiroz, Carlos; Perrin, Marshall D; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Serio, Andrew; Winge, Claudia; Galvez, Ramon; Gausachs, Gaston; Hardie, Kayla; Hartung, Markus; Luhrs, Javier; Poyneer, Lisa; Thomas, Sandrine

    2014-01-01

    The Gemini Planet Imager is an extreme AO instrument with an integral field spectrograph (IFS) operating in Y, J, H, and K bands. Both the Gemini telescope and the GPI instrument are very complex systems. Our goal is that the combined telescope and instrument system may be run by one observer operating the instrument, and one operator controlling the telescope and the acquisition of light to the instrument. This requires a smooth integration between the two systems and easily operated control interfaces. We discuss the definition of the software and hardware interfaces, their implementation and testing, and the integration of the instrument with the telescope environment.

  5. Improved sensitivity of H.E.S.S.-II through the fifth telescope focus system

    CERN Document Server

    Krayzel, F; Brunetti, L; Dubois, J -M; Fiasson, A; Journet, L; Lamanna, G; Leflour, T; Lieunard, B; Monteiro, I; Rosier-Lees, S

    2013-01-01

    The Imaging Atmospheric Cherenkov Telescope (IACT) works by imaging the very short flash of Cherenkov radiation generated by the cascade of relativistic charged particles produced when a TeV gamma ray strikes the atmosphere. This energetic air shower is initiated at an altitude of 10-30 km depending on the energy and the arrival direction of the primary gamma ray. Whether the best image of the shower is obtained by focusing the telescope at infinity and measuring the Cherenkov photon angles or focusing on the central region of the shower is a not obvious question. This is particularly true for large size IACT for which the depth of the field is much smaller. We address this issue in particular with the fifth telescope (CT5) of the High Energy Stereoscopic System (H.E.S.S.); a 28 m dish large size telescope recently entered in operation and sensitive to an energy threshold of tens of GeVs. CT5 is equipped with a focus system, its working principle and the expected effect of focusing depth on the telescope sens...

  6. The Timepix3 Telescope for LHCb Upgrade RD 1 measurements

    CERN Document Server

    Saunders, Daniel Martin

    2016-01-01

    The Timepix3 telescope is a high rate, data driven beam telescope created for LHCb upgrade studies, such as sensor performance for prototypes of the vertex locator (VELO) upgrade. When testing VELO prototypes the readout is identical to the telescope, and additionally, a simple way to integrate triggers from other detectors is also provided, allowing tracks to be synchronised offline with other devices under test. Examples of LHCb upgrade detectors which have been qualified with the Timepix3 telescope are the Upstream Tracker (UT), Scintillating Fibres (SciFi), Ring Imaging CHerenkov (RICH), and Time Of internally Reflected CHerenkov light (TORCH). The telescope was installed in the SPS North hall at CERN. It consists of 8 planes with 300 μ m p-on-n silicon sensors read out by Timepix3 ASICs. Tracks measured with the telescope have excellent temporal ( ∼ 1 ns) and spatial resolution ( 2 μ m). The telescope has been operated with a rate of tracks written to disk up to 5 MHz - limited only by conditions at ...

  7. US Participation in the Solar Orbiter Multi Element Telescope for Imaging and Spectroscopy (METIS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Multi Element Telescope for Imaging and Spectroscopy, METIS, investigation has been conceived to perform off-limb and near-Sun coronagraphy and is motivated by...

  8. Single-Grid-Pair Fourier Telescope for Imaging in Hard-X Rays and gamma Rays

    Science.gov (United States)

    Campbell, Jonathan

    2008-01-01

    This instrument, a proposed Fourier telescope for imaging in hard-x rays and gamma rays, would contain only one pair of grids made of an appropriate radiation-absorpting/ scattering material, in contradistinction to multiple pairs of such as grids in prior Fourier x- and gamma-ray telescopes. This instrument would also include a relatively coarse gridlike image detector appropriate to the radiant flux to be imaged. Notwithstanding the smaller number of grids and the relative coarseness of the imaging detector, the images produced by the proposed instrument would be of higher quality.

  9. FACT. Multivariate extraction of muon ring images

    Energy Technology Data Exchange (ETDEWEB)

    Noethe, Maximilian; Temme, Fabian; Buss, Jens [Experimentelle Physik 5b, TU Dortmund, Dortmund (Germany); Collaboration: FACT-Collaboration

    2016-07-01

    In ground-based gamma-ray astronomy, muon ring images are an important event class for instrument calibration and monitoring of its properties. In this talk, a multivariate approach will be presented, that is well suited for real time extraction of muons from data streams of Imaging Atmospheric Cherenkov Telescopes (IACT). FACT, the First G-APD Cherenkov Telescope is located on the Canary Island of La Palma and is the first IACT to use Silicon Photomultipliers for detecting the Cherenkov photons of extensive air showers. In case of FACT, the extracted muon events are used to calculate the time resolution of the camera. In addition, the effect of the mirror alignment in May 2014 on properties of detected muons is investigated. Muon candidates are identified with a random forest classification algorithm. The performance of the classifier is evaluated for different sets of image parameters in order to compare the gain in performance with the computational costs of their calculation.

  10. Strange meson spectroscopy in K{omega} and K{phi} at 11 GeV/c and Cherenkov ring imaging at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Youngjoon

    1993-01-01

    This thesis consists of two independent parts; development of Cherenkov Ring Imaging Detector (CRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. Part 1: The CRID system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e{sup +}e{sup {minus}} collisions at {radical}s = m{sub Z{sup 0}}. By measuring the angles of emission of the Cherenkov photons inside liquid and gaseous radiators, {pi}/K/p separation will be achieved up to {approximately}30 GeV/c. The signals from CRID are read in three coordinates, one of which is measured by charge-division technique. To obtain a {approximately}1% spatial resolution in the charge-division, low-noise CRID preamplifier prototypes were developed and tested resulting in <1000 electrons noise for an average photoelectron signal with 2 {times} 10{sup 5} gain. To help ensure the long-term stability of CRID operation at high efficiency, a comprehensive monitoring and control system was developed. Part 2: Results from the partial wave analysis of strange meson final states in the reactions K{sup {minus}}p {yields} K{sup {minus}}{omega}p and K{sup {minus}}p {yields} {bar K}{sup 0}{phi}n are presented. The analyses are based on data from a 4.1 event/nb exposure of the LASS spectrometer in K{sup {minus}}p interactions at 11 GeV/c. The data sample of K{sup {minus}}{omega}p final state contains {approximately}10{sup 5} events. From the partial wave analysis, resonance structures of J{sup P} = 2{sup {minus}}, 3{sup {minus}} and 2{sup +} amplitudes are observed in the K{omega} system. The analysis of 2{sup {minus}} amplitudes provides an evidence for two strange meson states in the mass region around 1.75 GeV/c{sup 2}. The appropriate branching fractions are calculated and compared with the SU(3) predictions. The partial wave analysis of {bar K}{sup 0}{phi} system favors J{sup P} = 1{sup {minus}} and 2{sup +} states in the 1.9--2.0 GeV/c{sup 2} region.

  11. Imaging extrasolar planets with the European Extremely Large Telescope

    Directory of Open Access Journals (Sweden)

    Jolissaint L.

    2011-07-01

    Full Text Available The European Extremely Large Telescope (E-ELT is the most ambitious of the ELTs being planned. With a diameter of 42 m and being fully adaptive from the start, the E-ELT will be more than one hundred times more sensitive than the present-day largest optical telescopes. Discovering and characterising planets around other stars will be one of the most important aspects of the E-ELT science programme. We model an extreme adaptive optics instrument on the E-ELT. The resulting contrast curves translate to the detectability of exoplanets.

  12. Cameras a Million Miles Apart: Stereoscopic Imaging Potential with the Hubble and James Webb Space Telescopes

    CERN Document Server

    Green, Joel D; Stansberry, John A; Meinke, Bonnie

    2016-01-01

    The two most powerful optical/IR telescopes in history -- NASA's Hubble and James Webb Space Telescopes -- will be in space at the same time. We have a unique opportunity to leverage the 1.5 million kilometer separation between the two telescopic nodal points to obtain simultaneously captured stereoscopic images of asteroids, comets, moons and planets in our Solar System. Given the recent resurgence in stereo-3D movies and the recent emergence of VR-enabled mobile devices, these stereoscopic images provide a unique opportunity to engage the public with unprecedented views of various Solar System objects. Here, we present the technical requirements for acquiring stereoscopic images of Solar System objects, given the constraints of the telescopic equipment and the orbits of the target objects, and we present a handful of examples.

  13. Geiger-mode avalanche photodiodes for Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Renker, D [Paul Scherrer Institue, 5232 Villigen PSI (Switzerland)], E-mail: dieter.renker@psi.ch

    2010-01-15

    Semiconductor photo sensors have in comparison with other detectors used in the ring image Cherenkov (RICH) and in the internally reflected Cherenkov light (DIRC) technique, photomultipier tubes and their derivates, a number of advantages: they have high photon detection efficiency ( {approx} 50%), are insensitive to magnetic fields, operate at low voltages and allow a compact, light and robust design. Specially the relatively new Geiger-mode avalanche photodiode (also called silicon photomultiplier) is a promising candidate for a detector of Cherenkov photons. The state of the development and the problems of this device will be described.

  14. Cross calibration of the H.E.S.S. telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Jankowsky, David; Jung-Richardt, Ira [ECAP, Universitaet Erlangen-Nuernberg (Germany)

    2016-07-01

    The H.E.S.S. experiment consists of five imaging atmospheric Cherenkov telescopes. Four smaller, identical ones have a mirror area of 108 m{sup 2} and a larger one that has a mirror area of 614 m{sup 2}. To guarantee high quality data and the best possible physical output it is essential that all data are well understood. This talk presents a possible method to check the responses of such mixed telescope systems: the inter and cross calibration. The main idea behind this calibration is to compare the reconstructed image amplitudes (number of measured photo electrons) or energies of the individual telescopes pairwise and to search for differences in the responses. To illustrate the usability of the methods and their implications on data taking without systematical effects from the telescope array, this talk shows results which were obtained with the help of Monte Carlo simulations.

  15. Novel optical designs for consumer astronomical telescopes and their application to professional imaging

    Science.gov (United States)

    Wise, Peter; Hodgson, Alan

    2006-06-01

    Since the launch of the Hubble Space Telescope there has been widespread popular interest in astronomy. A further series of events, most notably the recent Deep Impact mission and Mars oppositions have served to fuel further interest. As a result more and more amateurs are coming into astronomy as a practical hobby. At the same time more sophisticated optical equipment is becoming available as the price to performance ratio become more favourable. As a result larger and better optical telescopes are now in use by amateurs. We also have the explosive growth in digital imaging technologies. In addition to displacing photographic film as the preferred image capture modality it has made the capture of high quality astronomical imagery more accessible to a wider segment of the astronomy community. However, this customer requirement has also had an impact on telescope design. There has become a greater imperative for wide flat image fields in these telescopes to take advantage of the ongoing advances in CCD imaging technology. As a result of these market drivers designers of consumer astronomical telescopes are now producing state of the art designs that result in wide, flat fields with optimal spatial and chromatic aberrations. Whilst some of these designs are not scalable to the larger apertures required for professional ground and airborne telescope use there are some that are eminently suited to make this transition.

  16. Simulation of the imaging quality of ground-based telescopes affected by atmospheric disturbances

    Science.gov (United States)

    Ren, Yubin; Kou, Songfeng; Gu, Bozhong

    2014-08-01

    Ground-based telescope imaging model is developed in this paper, the relationship between the atmospheric disturbances and the ground-based telescope image quality is studied. Simulation of the wave-front distortions caused by atmospheric turbulences has long been an important method in the study of the propagation of light through the atmosphere. The phase of the starlight wave-front is changed over time, but in an appropriate short exposure time, the atmospheric disturbances can be considered as "frozen". In accordance with Kolmogorov turbulence theory, simulating atmospheric disturbances of image model based on the phase screen distorted by atmospheric turbulences is achieved by the fast Fourier transform (FFT). Geiger mode avalanche photodiode array (APD arrays) model is used for atmospheric wave-front detection, the image is achieved by inversion method of photon counting after the target starlight goes through phase screens and ground-based telescopes. Ground-based telescope imaging model is established in this paper can accurately achieve the relationship between the quality of telescope imaging and monolayer or multilayer atmosphere disturbances, and it is great significance for the wave-front detection and optical correction in a Multi-conjugate Adaptive Optics system (MCAO).

  17. Stokes imaging polarimetry using image restoration at the Swedish 1-m Solar Telescope

    CERN Document Server

    van Noort, M J

    2008-01-01

    Aims: We aim to achieve high spatial resolution as well as high polarimetric sensitivity, using an earth-based 1m-class solar telescope, for the study of magnetic fine structure on the Sun. Methods: We use a setup with 3 high-speed, low-noise cameras to construct datasets with interleaved polarimetric states, particularly suitable for Multi-Object Multi-Frame Blind Deconvolution image restorations. We discuss the polarimetric calibration routine as well as various potential sources of error in the results. Results: We obtained near diffraction limited images, with a noise level of approximately 10^(-3) I(cont). We confirm that dark-cores have a weaker magnetic field and at a lower inclination angle with respect to the solar surface than the edges of the penumbral filament. We show that the magnetic field strength in faculae-striations is significantly lower than in other nearby parts of the faculae.

  18. Simulation of Astronomical Images from Optical Survey Telescopes using a Comprehensive Photon Monte Carlo Approach

    CERN Document Server

    Peterson, J R; Kahn, S M; Rasmussen, A P; Peng, E; Ahmad, Z; Bankert, J; Chang, C; Claver, C; Gilmore, D K; Grace, E; Hannel, M; Hodge, M; Lorenz, S; Lupu, A; Meert, A; Nagarajan, S; Todd, N; Winans, A; Young, M

    2015-01-01

    We present a comprehensive methodology for the simulation of astronomical images from optical survey telescopes. We use a photon Monte Carlo approach to construct images by sampling photons from models of astronomical source populations, and then simulating those photons through the system as they interact with the atmosphere, telescope, and camera. We demonstrate that all physical effects for optical light that determine the shapes, locations, and brightnesses of individual stars and galaxies can be accurately represented in this formalism. By using large scale grid computing, modern processors, and an efficient implementation that can produce 400,000 photons/second, we demonstrate that even very large optical surveys can be now be simulated. We demonstrate that we are able to: 1) construct kilometer scale phase screens necessary for wide-field telescopes, 2) reproduce atmospheric point-spread-function moments using a fast novel hybrid geometric/Fourier technique for non-diffraction limited telescopes, 3) ac...

  19. Sensitivity estimate of the MACE gamma ray telescope

    Science.gov (United States)

    Sharma, Mradul; Chinmay, B.; Bhatt, Nilay; Bhattacharyya, Subir; Bose, S.; Mitra, Abhas; Koul, R.; Tickoo, A. K.; Rannot, Ramesh C.

    2017-04-01

    The MACE (Major Atmospheric Cherenkov Experiment) is a 21 m diameter γ-ray telescope which is presently being installed at Hanle in Ladakh, India (32° 46 ‧ 46″ N, 78° 58 ‧ 35″ E) at an altitude of 4270 m a.s.l. Once operational, it will become the highest altitude very high energy (VHE) γ-ray telescope in the world based on Imaging Atmospheric Cherenkov Technique (IACT). In the present work, we discuss the sensitivity estimate of the MACE telescope by using a substantially large Monte Carlo simulation database at 5° zenith angle. The sensitivity of MACE telescope is estimated by carrying out the γ-hadron segregation using the Random Forest method. It is estimated that the MACE telescope will have an analysis energy threshold of 38 GeV for image intensities above 50 photoelectrons. The integral sensitivity for point like sources with Crab Nebula-like spectrum above 38 GeV is ∼ 2.7 % of Crab Nebula flux at 5 σ statistical significance level in 50 h of observation.

  20. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  1. The Development of the Detector and Imaging Systems of the Masco Telescope

    Science.gov (United States)

    Damico, Flavio

    1997-08-01

    In this thesis the detector and imaging systems of the MASCO telescope are described. MASCO is a gamma-ray imaging telescope with both high angular resolution and sensitivity. Conceived to be able to individually study sources in crowded fields, MASCO is an ideal mission to map sky regions like the Galactic Center. A revision of recent observational results obtained with imaging telescopes of this particular region is presented. Also presented is the sensitivity of the telescope for pulsed gamma-ray sources, taking GX 1+4 as an example. MASCO employs the coded-aperture imaging technique, and will be the first telescope to use a new type of mask patterns, the modified uniformly redundant arrays (MURAs). The coded-aperture imaging technique is reviewed and interesting properties of the MURAs discussed. This work gives two original contributions for MURA based coded mask telescopes: an empirical rule that says which MURA pattern is convenient to build a mask when we want to make observations with the mask-antimask method and the definition of the rotation center of a MURA pattern. MASCO uses a large number of scintillation detectors. The main detector of the experiment is a 41 cm diameter and 5 cm thick inorganic NaI(Tl) scintillation detector in an Anger Camera configuration, with approximately 10% energy resolution in 662 keV. Organic scintillation detectors are used to minimize the telescope background. and large volume scintillation detectors were built for the first time in Brazil. MASCO uses 12 of these scintillation detectors and the fabrication process are discussed together with tests for 2 different types of these detectors. MASCO shall have an angular resolution of 14 min in a 14 deg field-of-view and 20 micro-s of temporal resolution. A simulated image of the Galactic Center region in the 50-150 keV energy band is presented in order to show the imaging capabilities of the telescope. Preliminary tests results obtained with the detector and imaging systems

  2. High Resolution Imaging of Satellites with Ground-Based 10-m Astronomical Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C

    2007-01-04

    High resolution imaging of artificial satellites can play an important role in current and future space endeavors. One such use is acquiring detailed images that can be used to identify or confirm damage and aid repair plans. It is shown that a 10-m astronomical telescope equipped with an adaptive optics system (AO) to correct for atmospheric turbulence using a natural guide star can acquire high resolution images of satellites in low-orbits using a fast shutter and a near-infrared camera even if the telescope is not capable of tracking satellites. With the telescope pointing towards the satellite projected orbit and less than 30 arcsec away from a guide star, multiple images of the satellite are acquired on the detector using the fast shutter. Images can then be shifted and coadded by post processing to increase the satellite signal to noise ratio. Using the Keck telescope typical Strehl ratio and anisoplanatism angle as well as a simple diffusion/reflection model for a satellite 400 km away observed near Zenith at sunset or sunrise, it is expected that such system will produced > 10{sigma} K-band images at a resolution of 10 cm inside a 60 arcsec diameter field of view. If implemented, such camera could deliver the highest resolution satellite images ever acquired from the ground.

  3. High Resolution Imaging of Satellites with Ground-Based 10-m Astronomical Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C

    2007-01-04

    High resolution imaging of artificial satellites can play an important role in current and future space endeavors. One such use is acquiring detailed images that can be used to identify or confirm damage and aid repair plans. It is shown that a 10-m astronomical telescope equipped with an adaptive optics system (AO) to correct for atmospheric turbulence using a natural guide star can acquire high resolution images of satellites in low-orbits using a fast shutter and a near-infrared camera even if the telescope is not capable of tracking satellites. With the telescope pointing towards the satellite projected orbit and less than 30 arcsec away from a guide star, multiple images of the satellite are acquired on the detector using the fast shutter. Images can then be shifted and coadded by post processing to increase the satellite signal to noise ratio. Using the Keck telescope typical Strehl ratio and anisoplanatism angle as well as a simple diffusion/reflection model for a satellite 400 km away observed near Zenith at sunset or sunrise, it is expected that such system will produced > 10{sigma} K-band images at a resolution of 10 cm inside a 60 arcsec diameter field of view. If implemented, such camera could deliver the highest resolution satellite images ever acquired from the ground.

  4. High Resolution Linear Polarimetric Imaging for the Event Horizon Telescope

    CERN Document Server

    Chael, Andrew A; Narayan, Ramesh; Doeleman, Sheperd S; Wardle, John F C; Bouman, Katherine L

    2016-01-01

    Images of the linear polarization of synchrotron radiation around Active Galactic Nuclei (AGN) identify their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest resolution polarimetric images of AGN are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previous work, our polarimetric MEM algorithm combines a Stokes I imager that uses only bispectrum measurements that are immune to atmospheric phase corruption with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7- and 3-mm wavelength quasar observat...

  5. Photosensitive gas detectors for the ring-imaging Cherenkov (RICH) technique and the DELPHI barrel RICH prototype

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R.; Berst, J.D.; Christophel, E.; Guyonnet, J.L.; Baillon, P.; Bosteels, M.; Passardi, G.; Besch, H.J.; Seguinot, J.; Tocqueville, J.

    1986-12-01

    After a short introduction to the ring-imaging technique, the principal types of photosensitive gas detectors are discussed. In the second part, status and results of the DELPHI barrel RICH prototype are presented. A short description of a possible very fast RICH for future hadron colliders is given.

  6. Constraints on Lorentz violation from gravitational Cherenkov radiation

    CERN Document Server

    Kostelecky, Alan

    2015-01-01

    Limits on gravitational Cherenkov radiation by cosmic rays are obtained and used to constrain coefficients for Lorentz violation in the gravity sector associated with operators of even mass dimensions, including orientation-dependent effects. We use existing data from cosmic-ray telescopes to obtain conservative two-sided constraints on 80 distinct Lorentz-violating operators of dimensions four, six, and eight, along with conservative one-sided constraints on three others. Existing limits on the nine minimal operators at dimension four are improved by factors of up to a billion, while 74 of our explicit limits represent stringent first constraints on nonminimal operators. Prospects are discussed for future analyses incorporating effects of Lorentz violation in the matter sector, the role of gravitational Cherenkov radiation by high-energy photons, data from gravitational-wave observatories, the tired-light effect, and electromagnetic Cherenkov radiation by gravitons.

  7. In-orbit focal adjustment of the AKARI telescope with IRC images

    CERN Document Server

    Kaneda, H; Onaka, T; Wada, T; Ita, Y; Sakon, I; Takagi, T

    2007-01-01

    AKARI currently in space carries onboard a cryogenically-cooled lightweight telescope with silicon carbide mirrors. The wavefront error of the AKARI telescope obtained in laboratory measurements at 9 K showed that expected in-orbit imaging performance was diffraction-limited at a wavelength of 6.2 um. The AKARI telescope has a function of focus adjustment by shifting the secondary mirror in parallel to the optical axis. On the 4th day after the jettison of the cryostat aperture lid in the orbit, we observed a star with the InfraRed Camera (IRC) onboard AKARI. Since the initial star images observed in the near-infrared (IR) bands were significantly blurred, we twice moved the secondary mirror for the focal adjustment based on the results of model analyses as well as data analyses of the near-IR images. In consequence, we have successfully adjusted the focus of the telescope. The in-orbit imaging performance thus obtained for the AKARI telescope is diffraction-limited at a wavelength of 7.3 um, slightly degrade...

  8. High-contrast imager for Complex Aperture Telescopes (HiCAT): 1. Testbed design

    CERN Document Server

    N'Diaye, Mamadou; Pueyo, Laurent; Elliot, Erin; Perrin, Marshall D; Wallace, J Kent; Groff, Tyler; Carlotti, Alexis; Mawet, Dimitri; Sheckells, Matt; Shaklan, Stuart; Macintosh, Bruce; Kasdin, N Jeremy; Soummer, Rémi

    2014-01-01

    Searching for nearby habitable worlds with direct imaging and spectroscopy will require a telescope large enough to provide angular resolution and sensitivity to planets around a significant sample of stars. Segmented telescopes are a compelling option to obtain such large apertures. However, these telescope designs have a complex geometry (central obstruction, support structures, segmentation) that makes high-contrast imaging more challenging. We are developing a new high-contrast imaging testbed at STScI to provide an integrated solution for wavefront control and starlight suppression on complex aperture geometries. We present our approach for the testbed optical design, which defines the surface requirements for each mirror to minimize the amplitude-induced errors from the propagation of out-of-pupil surfaces. Our approach guarantees that the testbed will not be limited by these Fresnel propagation effects, but only by the aperture geometry. This approach involves iterations between classical ray-tracing o...

  9. AOLI: Near-diffraction limited imaging in the visible on large ground-based telescopes

    CERN Document Server

    Mackay, Craig; King, David; Labadie, Lucas; Antolin, Marta Puga; Garrido, Antonio; Colodro-Conde, Carlos; Lopez, Roberto; Muthusubramanian, Balaji; Oscoz, Alejandro; Rodriguez-Ramos, Jose; Rodriquez-Ramos, Luis; Fernandez-Valdivia, Jose; Velasco, Sergio

    2016-01-01

    The combination of Lucky Imaging with a low order adaptive optics system was demonstrated very successfully on the Palomar 5m telescope nearly 10 years ago. It is still the only system to give such high-resolution images in the visible or near infrared on ground-based telescope of faint astronomical targets. The development of AOLI for deployment initially on the WHT 4.2 m telescope in La Palma, Canary Islands, will be described in this paper. In particular, we will look at the design and status of our low order curvature wavefront sensor which has been somewhat simplified to make it more efficient, ensuring coverage over much of the sky with natural guide stars as reference object. AOLI uses optically butted electron multiplying CCDs to give an imaging array of 2000 x 2000 pixels.

  10. Imaging performance and tests of soft x-ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Spiller, E.; McCorkle, R.; Wilczynski, J. (International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center); Golub, L.; Nystrom, G. (Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (USA)); Takacz, P.Z. (Brookhaven National Lab., Upton, NY (USA)); Welch, C. (Lockheed Missile and Space Co., Las Cruces, NM (USA))

    1990-08-01

    Photos obtained during 5 min. of observation time from the flight of our 10 in. normal incidence soft x-ray ({lambda} = 63.5{Angstrom}) telescope on September 11, 1989 are analyzed and the data are compared to the results expected from tests of the mirror surfaces. These tests cover a range of spatial periods from 25 cm to 1{Angstrom}. The photos demonstrate a reduction in the scattering of the multilayer mirror compared to a single surface for scattering angles above 1 arcmin, corresponding to surface irregularities with spatial periods below 10 {mu}m. Our results are used to predict the possible performance of future flights. Sounding rocket observations might be able to reach a resolution around 0.1 arcsec. Higher resolutions will require flights of longer durations and improvements in mirror testing for the largest spatial periods. 21 refs., 7 figs., 1 tab.

  11. Integrated opto-dynamic modeling of the 4m DAG telescope image quality performance

    Science.gov (United States)

    Zago, Lorenzo; Guex, Benjamin; Yesilyaprak, Cahit; Yerli, Sinan K.; Keskin, Onur

    2016-08-01

    The Turkish DAG 4-m telescope is currently through the final design stage. It is to be located on a 3170 m mountain top in Eastern Anatolia. The telescope will be a state-of-the art device, alt-az mount with active primary and adjustable secondary and tertiary mirrors. Its optics design is specially aimed at being compatible with advance adaptive optics instrumentation. The ultimate performance of such a telescope results of multiple concurrent effects from many different components and active functions of the complex system. The paper presents a comprehensive integrated (end-to-end) model of the telescope, comprising in one computational sequence all structural, electrodynamics and oactive optics performance that produce the image quality at the focal plane. The model is entirely programmed in Matlab/Simulink and comprises a finite element model of structure and mirrors, dynamics modal reduction, deformation analyses of structural and optical elements, active optics feedback control in the Zernike modal space.

  12. Nonlinear research of an image motion stabilization system embedded in a space land-survey telescope

    Science.gov (United States)

    Somov, Yevgeny; Butyrin, Sergey; Siguerdidjane, Houria

    2017-01-01

    We consider an image motion stabilization system embedded into a space telescope for a scanning optoelectronic observation of terrestrial targets. Developed model of this system is presented taking into account physical hysteresis of piezo-ceramic driver and a time delay at a forming of digital control. We have presented elaborated algorithms for discrete filtering and digital control, obtained results on analysis of the image motion velocity oscillations in the telescope focal plane, and also methods for terrestrial and in-flight verification of the system.

  13. Characteristics of Cherenkov Radiation in Naturally Occuring Ice

    CERN Document Server

    Mikkelsen, R E; Uggerhøj, U I; Klein, S R

    2016-01-01

    We revisit the theory of Cherenkov radiation in uniaxial crystals. Historically, a number of flawed attempts have been made at explaining this radiation phenomenon and a consistent error-free description is nowhere available. We apply our calculation to a large modern day telescope - IceCube. Being located at the Antarctica, this detector makes use of the naturally occuring ice as a medium to generate Cherenkov radiation. However, due to the high pressure at the depth of the detector site, large volumes of hexagonal ice crystals are formed. We calculate how this affects the Cherenkov radiation yield and angular dependence. We conclude that the effect is small, at most about a percent, and would only be relevant in future high precision instruments like e.g. Precision IceCube Next Generation Upgrade (PINGU). For radio-Cherenkov experiments which use the presence of a clear Cherenkov cone to determine the arrival direction, any variation in emission angle will directly and linearly translate into a change in ap...

  14. An efficient feedback calibration algorithm for direct imaging radio telescopes

    Science.gov (United States)

    Beardsley, Adam P.; Thyagarajan, Nithyanandan; Bowman, Judd D.; Morales, Miguel F.

    2017-10-01

    We present the E-field Parallel Imaging Calibration (EPICal) algorithm, which addresses the need for a fast calibration method for direct imaging radio astronomy correlators. Direct imaging involves a spatial fast Fourier transform of antenna signals, alleviating an O(Na ^2) computational bottleneck typical in radio correlators, and yielding a more gentle O(Ng log _2 Ng) scaling, where Na is the number of antennas in the array and Ng is the number of gridpoints in the imaging analysis. This can save orders of magnitude in computation cost for next generation arrays consisting of hundreds or thousands of antennas. However, because antenna signals are mixed in the imaging correlator without creating visibilities, gain correction must be applied prior to imaging, rather than on visibilities post-correlation. We develop the EPICal algorithm to form gain solutions quickly and without ever forming visibilities. This method scales as the number of antennas, and produces results comparable to those from visibilities. We use simulations to demonstrate the EPICal technique and study the noise properties of our gain solutions, showing they are similar to visibility-based solutions in realistic situations. By applying EPICal to 2 s of Long Wavelength Array data, we achieve a 65 per cent dynamic range improvement compared to uncalibrated images, showing this algorithm is a promising solution for next generation instruments.

  15. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the WIYN Telescope

    Science.gov (United States)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve diffraction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, effectively 'freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the diffraction limit of the telescope. These new instruments are based on the successful performance and design of the Differential Speckle Survey Instrument (DSSI).The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA, K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide-field mode and standard SDSS filters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations will remain around 13-14th at WIYN and 16-17th at Gemini, while wide-field, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  16. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study.

    Science.gov (United States)

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del; Cherry, Simon R; Lehnert, Adrienne; Hunter, William C J; McDougald, Wendy; Miyaoka, Robert S; Kinahan, Paul E

    2015-12-01

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10-13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector's dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could be

  17. Nuclei of nearby disk galaxies .1. A Hubble Space Telescope imaging survey

    NARCIS (Netherlands)

    Phillips, AC; Illingworth, GD; MacKenty, JW; Franx, M

    We present deconvolved images of the central regions of 20 nearby disk galaxies, obtained with the original Planetary Camera of the Hubble Space Telescope. The galaxies span a range in Hubble type from SO to Sm. We have measured surface brightness profiles, and inverted these to estimate

  18. An Atlas of Hubble Space Telescope Spectra and Images of Nearby Spiral Galaxies

    Science.gov (United States)

    Hughes, M. A.; Alonso-Herrero, A.; Axon, D.; Scarlata, C.; Atkinson, J.; Batcheldor, D.; Binney, J.; Capetti, A.; Carollo, C. M.; Dressel, L.; Gerssen, J.; Macchetto, D.; Maciejewski, W.; Marconi, A.; Merrifield, M.; Ruiz, M.; Sparks, W.; Stiavelli, M.; Tsvetanov, Z.; van der Marel, R.

    2003-08-01

    We have observed 54 nearby spiral galaxies with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope to obtain optical long-slit spectra of nuclear gas disks and STIS optical (~R band) images of the central 5''×5'' of the galaxies. These spectra are being used to determine the velocity field of nuclear disks and hence to detect the presence of central massive black holes. Here we present the spectra for the successful observations. Dust obscuration can be significant at optical wavelengths, and so we also combine the STIS images with archival Near-Infrared Camera and Multi-Object Spectrometer H-band images to produce color maps to investigate the morphology of gas and dust in the central regions. We find a great variety in the different morphologies, from smooth distributions to well-defined nuclear spirals and dust lanes. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  19. Space telescope design to directly image the habitable zone of Alpha Centauri

    CERN Document Server

    Bendek, Eduardo; Lozi, Julien; Thomas, Sandrine; Males, Jared; Weston, Sasha; McElwain, Michael

    2015-01-01

    The scientific interest in directly image and identifying Earth-like planets within the Habitable Zone (HZ) around nearby stars is driving the design of specialized direct imaging mission such as ACESAT, EXO-C, EXO-S and AFTA-C. The inner edge of Alpha Cen A and B Habitable Zone is found at exceptionally large angular separations of 0.7 and 0.4 arcseconds respectively. This enables direct imaging of the system with a 0.3m class telescope. Contrast ratios in the order of 1e-10 are needed to image Earth-brightness planets. Low-resolution (5-band) spectra of all planets, will allow establishing the presence and amount of an atmosphere. This star system configuration is optimal for a specialized small, and stable space telescope, that can achieve high-contrast but has limited resolution. This paper describes an innovative instrument design and a mission concept based on a full Silicon Carbide off-axis telescope, which has a Phase Induce Amplitude Apodization coronagraph embedded in the telescope. This architectur...

  20. Data Mining for Double Stars on VLT Survey Telescope Image Archive

    Science.gov (United States)

    Curelaru, Lucian

    2017-04-01

    The article presents a set of methods and tools used to identify and measure double stars on already existing images produced by the ESO VLT Survey Telescope in Paranal Chile. A precision analysis and a first set of measurements are included.

  1. DEEP HUBBLE SPACE TELESCOPE IMAGING IN NGC 6397: STELLAR DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Heyl, J. S.; Richer, H.; Woodley, K. A. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Anderson, J.; Dotter, A.; Kalirai, J. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Fahlman, G.; Stetson, P. [Herzberg Institute for Astrophysics, National Research Council, Victoria, BC (Canada); Hurley, J. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia); Rich, R. M. [Division of Astronomy, University of California, Los Angeles, CA 90095-1562 (United States); Shara, M.; Zurek, D. [American Museum of Natural History, New York, NY 10024-5192 (United States)

    2012-12-10

    Multi-epoch observations with the Advanced Camera for Surveys on the Hubble Space Telescope provide a unique and comprehensive probe of stellar dynamics within NGC 6397. We are able to confront analytic models of the globular cluster with the observed stellar proper motions. The measured proper motions probe well along the main sequence from 0.8 to below 0.1 M{sub Sun} as well as white dwarfs younger than 1 Gyr. The observed field lies just beyond the half-light radius where standard models of globular cluster dynamics (e.g., based on a lowered Maxwellian phase-space distribution) make very robust predictions for the stellar proper motions as a function of mass. The observed proper motions show no evidence for anisotropy in the velocity distribution; furthermore, the observations agree in detail with a straightforward model of the stellar distribution function. We do not find any evidence that the young white dwarfs have received a natal kick in contradiction with earlier results. Using the observed proper motions of the main-sequence stars, we obtain a kinematic estimate of the distance to NGC 6397 of 2.2{sup +0.5}{sub -0.7} kpc and a mass of the cluster of 1.1 {+-} 0.1 Multiplication-Sign 10{sup 5} M{sub Sun} at the photometric distance of 2.53 kpc. One of the main-sequence stars appears to travel on a trajectory that will escape the cluster, yielding an estimate of the evaporation timescale, over which the number of stars in the cluster decreases by a factor of e, of about 3 Gyr. The proper motions of the youngest white dwarfs appear to resemble those of the most massive main-sequence stars, providing the first direct constraint on the relaxation time of the stars in a globular cluster of greater than or about 0.7 Gyr.

  2. EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    Science.gov (United States)

    Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.

    1988-01-01

    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.

  3. The SWAP EUV Imaging Telescope Part I: Instrument Overview and Pre-Flight Testing

    CERN Document Server

    Seaton, D B; Nicula, B; Halain, J -P; De Groof, A; Thibert, T; Bloomfield, D S; Raftery, C L; Gallagher, P T; Auchère, F; Defise, J -M; D'Huys, E; Lecat, J -H; Mazy, E; Rochus, P; Rossi, L; Schühle, U; Slemzin, V; Yalim, M S; Zender, J

    2012-01-01

    The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV solar telescope on board ESA's Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm and provides images of the low solar corona over a 54x54 arcmin field-of-view with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is designed to monitor all space-weather-relevant events and features in the low solar corona. Given the limited resources of the PROBA2 microsatellite, the SWAP telescope is designed with various innovative technologies, including an off-axis optical design and a CMOS-APS detector. This article provides reference documentation for users of the SWAP image data.

  4. First Images of a Three-layer Compton Telescope Prototype for Treatment Monitoring in Hadron Therapy

    Directory of Open Access Journals (Sweden)

    Gabriela eLlosa

    2016-02-01

    Full Text Available A Compton telescope for dose monitoring in hadron therapy is under development at IFIC. The system consists of three layers of LaBr3 crystals coupled to silicon photomultiplier arrays. Na-22 sources have been successfully imaged reconstructing the data with an ML-EM code. Calibration and temperature stabilization are necessary for the prototype operation at low coincidence rates. A spatial resolution of 7.8 mm FWHM has been obtained in the first imaging tests.

  5. First Images of a Three-Layer Compton Telescope Prototype for Treatment Monitoring in Hadron Therapy.

    Science.gov (United States)

    Llosá, Gabriela; Trovato, Marco; Barrio, John; Etxebeste, Ane; Muñoz, Enrique; Lacasta, Carlos; Oliver, Josep F; Rafecas, Magdalena; Solaz, Carles; Solevi, Paola

    2016-01-01

    A Compton telescope for dose monitoring in hadron therapy is under development at IFIC. The system consists of three layers of LaBr3 crystals coupled to silicon photomultiplier arrays. (22)Na sources have been successfully imaged reconstructing the data with an ML-EM code. Calibration and temperature stabilization are necessary for the prototype operation at low coincidence rates. A spatial resolution of 7.8 mm FWHM has been obtained in the first imaging tests.

  6. First Images of a Three-Layer Compton Telescope Prototype for Treatment Monitoring in Hadron Therapy

    OpenAIRE

    Gabriela eLlosa; Marco eTrovato; John eBarrio; Ane eEtxebeste; Enrique eMunoz; Carlos eLacasta; Oliver, Josep F.; Magdalena eRafecas; Carles eSolaz; Paola eSolevi

    2016-01-01

    A Compton telescope for dose monitoring in hadron therapy is under development at IFIC. The system consists of three layers of LaBr3 crystals coupled to silicon photomultiplier arrays. Na-22 sources have been successfully imaged reconstructing the data with an ML-EM code. Calibration and temperature stabilization are necessary for the prototype operation at low coincidence rates. A spatial resolution of 7.8 mm FWHM has been obtained in the first imaging tests.

  7. High-resolution imaging of the Pluto-Charon system with the Faint Object Camera of the Hubble Space Telescope

    Science.gov (United States)

    Albrecht, R.; Barbieri, C.; Adorf, H.-M.; Corrain, G.; Gemmo, A.; Greenfield, P.; Hainaut, O.; Hook, R. N.; Tholen, D. J.; Blades, J. C.

    1994-01-01

    Images of the Pluto-Charon system were obtained with the Faint Object Camera (FOC) of the Hubble Space Telescope (HST) after the refurbishment of the telescope. The images are of superb quality, allowing the determination of radii, fluxes, and albedos. Attempts were made to improve the resolution of the already diffraction limited images by image restoration. These yielded indications of surface albedo distributions qualitatively consistent with models derived from observations of Pluto-Charon mutual eclipses.

  8. Hubble Space Telescope WFPC-2 Imaging of Cassiopeia A

    CERN Document Server

    Fesen, R A; Chevalier, R A; Borkowski, K J; Gerardy, C L; Lawrence, S S; Van den Bergh, S; Fesen, Robert A.; Morse, Jon A.; Chevalier, Roger A.; Borkowski, Kazimierz J.; Gerardy, Christopher L.; Lawrence, Stephen S.; Bergh, Sidney van den

    2001-01-01

    The young SNR Cassiopeia A was imaged with WFPC-2 through four filters selected to capture the complete velocity range of the remnant's main shell in several important emission lines. Primary lines detected were [O III] 4959,5007, [N II] 6583, [S II] 6716,6731 + [O II] 7319,7330 + [O I] 6300,6364, and [S III] 9069,9532. About 3/4th of the remnant's main shell was imaged in all four filters. Considerable detail is observed in the reverse-shocked ejecta with typical knot scale lengths of 0.2"-0.4" (1 - 2 x 10^16 cm). Both bright and faint emission features appear highly clumped. Large differences in [S III] and [O III] line intensities indicating chemical abundance differences are also seen, particularly in knots located along the bright northern limb and near the base of the northeast jet. A line of curved overlapping filament in the remnant's northwestern rim appears to mark the location of the remnant's reverse shock front in this region. Finger-like ejecta structures elsewhere suggest cases where the revers...

  9. SIMULATION OF ASTRONOMICAL IMAGES FROM OPTICAL SURVEY TELESCOPES USING A COMPREHENSIVE PHOTON MONTE CARLO APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J. R.; Peng, E.; Ahmad, Z.; Bankert, J.; Grace, E.; Hannel, M.; Hodge, M.; Lorenz, S.; Lupu, A.; Meert, A.; Nagarajan, S.; Todd, N.; Winans, A.; Young, M. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Jernigan, J. G. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Kahn, S. M.; Rasmussen, A. P.; Chang, C.; Gilmore, D. K. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Claver, C., E-mail: peters11@purdue.edu [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States)

    2015-05-15

    We present a comprehensive methodology for the simulation of astronomical images from optical survey telescopes. We use a photon Monte Carlo approach to construct images by sampling photons from models of astronomical source populations, and then simulating those photons through the system as they interact with the atmosphere, telescope, and camera. We demonstrate that all physical effects for optical light that determine the shapes, locations, and brightnesses of individual stars and galaxies can be accurately represented in this formalism. By using large scale grid computing, modern processors, and an efficient implementation that can produce 400,000 photons s{sup −1}, we demonstrate that even very large optical surveys can be now be simulated. We demonstrate that we are able to (1) construct kilometer scale phase screens necessary for wide-field telescopes, (2) reproduce atmospheric point-spread function moments using a fast novel hybrid geometric/Fourier technique for non-diffraction limited telescopes, (3) accurately reproduce the expected spot diagrams for complex aspheric optical designs, and (4) recover system effective area predicted from analytic photometry integrals. This new code, the Photon Simulator (PhoSim), is publicly available. We have implemented the Large Synoptic Survey Telescope design, and it can be extended to other telescopes. We expect that because of the comprehensive physics implemented in PhoSim, it will be used by the community to plan future observations, interpret detailed existing observations, and quantify systematics related to various astronomical measurements. Future development and validation by comparisons with real data will continue to improve the fidelity and usability of the code.

  10. Space Telescope Design to Directly Image the Habitable Zone of Alpha Centauri

    Science.gov (United States)

    Bendek, Eduardo A.; Belikov, Ruslan; Lozi, Julien; Thomas, Sandrine; Males, Jared; Weston, Sasha; McElwain, Michael

    2015-01-01

    The scientific interest in directly imaging and identifying Earth-like planets within the Habitable Zone (HZ) around nearby stars is driving the design of specialized direct imaging missions such as ACESAT, EXO-C, EXO-S and AFTA-C. The inner edge of Alpha Cen A&B Habitable Zone is found at exceptionally large angular separations of 0.7" and 0.4" respectively. This enables direct imaging of the system with a 0.3m class telescope. Contrast ratios on the order of 10(exp 10) are needed to image Earth-brightness planets. Low-resolution (5-band) spectra of all planets may allow establishing the presence and amount of an atmosphere. This star system configuration is optimal for a specialized small, and stable space telescope that can achieve high-contrast but has limited resolution. This paper describes an innovative instrument design and a mission concept based on a full Silicon Carbide off-axis telescope, which has a Phase Induced Amplitude Apodization coronagraph embedded in the telescope. This architecture maximizes stability and throughput. A Multi-Star Wave Front algorithm is implemented to drive a deformable mirror controlling simultaneously diffracted light from the on-axis and binary companion star. The instrument has a Focal Plane Occulter to reject starlight into a high precision pointing control camera. Finally we utilize a Orbital Differential Imaging (ODI) post-processing method that takes advantage of a highly stable environment (Earth-trailing orbit) and a continuous sequence of images spanning 2 years, to reduce the final noise floor in post processing to approximately 2e-11 levels, enabling high confidence and at least 90% completeness detections of Earth-like planets.

  11. Space Telescope Design to Directly Image the Habitable Zone of Alpha Centauri

    Science.gov (United States)

    Bendek, Eduardo A.; Belikov, Ruslan; Lozi, Julien; Thomas, Sandrine; Males, Jared; Weston, Sasha; McElwain, Michael

    2015-01-01

    The scientific interest in directly imaging and identifying Earth-like planets within the Habitable Zone (HZ) around nearby stars is driving the design of specialized direct imaging missions such as ACESAT, EXO-C, EXO-S and AFTA-C. The inner edge of Alpha Cen A&B Habitable Zone is found at exceptionally large angular separations of 0.7" and 0.4" respectively. This enables direct imaging of the system with a 0.3m class telescope. Contrast ratios on the order of 10(exp 10) are needed to image Earth-brightness planets. Low-resolution (5-band) spectra of all planets may allow establishing the presence and amount of an atmosphere. This star system configuration is optimal for a specialized small, and stable space telescope that can achieve high-contrast but has limited resolution. This paper describes an innovative instrument design and a mission concept based on a full Silicon Carbide off-axis telescope, which has a Phase Induced Amplitude Apodization coronagraph embedded in the telescope. This architecture maximizes stability and throughput. A Multi-Star Wave Front algorithm is implemented to drive a deformable mirror controlling simultaneously diffracted light from the on-axis and binary companion star. The instrument has a Focal Plane Occulter to reject starlight into a high precision pointing control camera. Finally we utilize a Orbital Differential Imaging (ODI) post-processing method that takes advantage of a highly stable environment (Earth-trailing orbit) and a continuous sequence of images spanning 2 years, to reduce the final noise floor in post processing to approximately 2e-11 levels, enabling high confidence and at least 90% completeness detections of Earth-like planets.

  12. Hubble space telescope planetary camera images of NGC 1316

    CERN Document Server

    Shaya, E J; Currie, D G; Faber, S M; Ajhar, E A; Lauer, T R; Groth, E J; Grillmair, C J; Lynds, C R; O'Neil, E J; Shaya, Edward J; Dowling, Daniel M; Currie, Douglas G; Ajhar, Edward A; Lauer, Tod R; Groth, Edward J; Grillmair, Carl J; Lynds, C Roger; O'Neil, Earl J

    1996-01-01

    We present HST Planetary Camera V and I~band images of the central region of the peculiar giant elliptical galaxy NGC~1316. The inner profile is well fit by a nonisothermal core model with a core radius of 0.41" +/- 0.02" (34 pc). At an assumed distance of 16.9 Mpc, the deprojected luminosity density reaches \\sim 2.0 \\times 10^3 L_{\\sun} pc^{-3}. Outside the inner two or three arcseconds, a constant mass-to-light ratio of \\sim 2.2 \\pm 0.2 is found to fit the observed line width measurements. The line width measurements of the center indicate the existence of either a central dark object of mass 2 \