WorldWideScience

Sample records for imaging cherenkov telescopes

  1. The first telescope of the HEGRA air Cherenkov imaging telescope array

    International Nuclear Information System (INIS)

    Mirzoyan, R.; Kankanian, R.; Krennrich, F.; Mueller, N.; Sander, H.; Sawallisch, P.; Aharonian, F.; Akhperjanian, A.; Beglarian, A.; Fernandez, J.; Fonseca, V.; Grewe, W.; Heusler, A.; Konopelko, A.K.; Lorenz, E.; Merck, M.; Plyasheshnikov, A.V.; Renker, D.; Samorski, M.; Sauerland, K.; Smarsch, E.; Stamm, W.; Ulrich, M.; Wiedner, C.A.; Wirth, H.

    1994-01-01

    In search of VHE γ ray emission from cosmic point sources a system of imaging Cherenkov telescopes is constructed at present on the Canarian island of La Palma; the first telescope has been operational since 1992. The Cherenkov light from air shower particles is collected by a 5 m 2 reflector. The camera at the focus contains 37 photomultipliers which sample the images of the Cherenkov flashes. The subsequent image analysis allows the discrimination of γ ray induced events from the much more abundant charged cosmic ray induced showers. The telescope has an effective energy threshold for γ showers of about 1.5 TeV. During the first year of operation a signal from the Crab nebula was detected. ((orig.))

  2. Muon imaging of volcanoes with Cherenkov telescopes

    Science.gov (United States)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    The quantitative understanding of the inner structure of a volcano is a key feature to model the processes leading to paroxysmal activity and, hence, to mitigate volcanic hazards. To pursue this aim, different geophysical techniques are utilized, that are sensitive to different properties of the rocks (elastic, electrical, density). In most cases, these techniques do not allow to achieve the spatial resolution needed to characterize the shallowest part of the plumbing system and may require dense measurements in active zones, implying a high level of risk. Volcano imaging through cosmic-ray muons is a promising technique that allows to overcome the above shortcomings. Muons constantly bombard the Earth's surface and can travel through large thicknesses of rock, with an energy loss depending on the amount of crossed matter. By measuring the absorption of muons through a solid body, one can deduce the density distribution inside the target. To date, muon imaging of volcanic structures has been mainly achieved with scintillation detectors. They are sensitive to noise sourced from (i) the accidental coincidence of vertical EM shower particles, (ii) the fake tracks initiated from horizontal high-energy electrons and low-energy muons (not crossing the target) and (iii) the flux of upward going muons. A possible alternative to scintillation detectors is given by Cherenkov telescopes. They exploit the Cherenkov light emitted when charged particles (like muons) travel through a dielectric medium, with velocity higher than the speed of light. Cherenkov detectors are not significantly affected by the above noise sources. Furthermore, contrarily to scintillator-based detectors, Cherenkov telescopes permit a measurement of the energy spectrum of the incident muon flux at the installation site, an issue that is indeed relevant for deducing the density distribution inside the target. In 2014, a prototype Cherenkov telescope was installed at the Astrophysical Observatory of Serra

  3. Wavelet imaging cleaning method for atmospheric Cherenkov telescopes

    Science.gov (United States)

    Lessard, R. W.; Cayón, L.; Sembroski, G. H.; Gaidos, J. A.

    2002-07-01

    We present a new method of image cleaning for imaging atmospheric Cherenkov telescopes. The method is based on the utilization of wavelets to identify noise pixels in images of gamma-ray and hadronic induced air showers. This method selects more signal pixels with Cherenkov photons than traditional image processing techniques. In addition, the method is equally efficient at rejecting pixels with noise alone. The inclusion of more signal pixels in an image of an air shower allows for a more accurate reconstruction, especially at lower gamma-ray energies that produce low levels of light. We present the results of Monte Carlo simulations of gamma-ray and hadronic air showers which show improved angular resolution using this cleaning procedure. Data from the Whipple Observatory's 10-m telescope are utilized to show the efficacy of the method for extracting a gamma-ray signal from the background of hadronic generated images.

  4. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  5. Volcanoes muon imaging using Cherenkov telescopes

    International Nuclear Information System (INIS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M.C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  6. FACT. Bokeh alignment for Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Sebastian Achim [ETH Zurich (Switzerland); Buss, Jens [TU Dortmund (Germany)

    2016-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need fast and large imaging optics to map the faint Cherenkov light emitted in cosmic ray air showers onto their image sensors. Segmented reflectors are inexpensive, lightweight and offer good image quality. However, alignment of the mirror facets remains a challenge. A good alignment is crucial in IACT observations to separate gamma rays from hadronic cosmic rays. We present a simple, yet extendable method, to align segmented reflectors using their Bokeh. Bokeh alignment does not need a star or good weather nights but can be done anytime, even during the day. Bokeh alignment optimizes the facet orientations by comparing the segmented reflector's Bokeh to a predefined template. The Bokeh is observed using the out of focus image of a nearby point like light source in a distance of about ten times the focal lengths. We introduce Bokeh alignment on segmented reflectors and present its use on the First Geiger-mode Avalanche Cherenkov Telescope (FACT) on Canary Island La Palma, as well as on the Cherenkov Telescope Array (CTA) Medium Size Telescope (MST) prototype in Berlin Adlershof.

  7. Looking inside volcanoes with the Imaging Atmospheric Cherenkov Telescopes

    Science.gov (United States)

    Del Santo, M.; Catalano, O.; Cusumano, G.; La Parola, V.; La Rosa, G.; Maccarone, M. C.; Mineo, T.; Sottile, G.; Carbone, D.; Zuccarello, L.; Pareschi, G.; Vercellone, S.

    2017-12-01

    Cherenkov light is emitted when charged particles travel through a dielectric medium with velocity higher than the speed of light in the medium. The ground-based Imaging Atmospheric Cherenkov Telescopes (IACT), dedicated to the very-high energy γ-ray Astrophysics, are based on the detection of the Cherenkov light produced by relativistic charged particles in a shower induced by TeV photons interacting with the Earth atmosphere. Usually, an IACT consists of a large segmented mirror which reflects the Cherenkov light onto an array of sensors, placed at the focal plane, equipped by fast electronics. Cherenkov light from muons is imaged by an IACT as a ring, when muon hits the mirror, or as an arc when the impact point is outside the mirror. The Cherenkov ring pattern contains information necessary to assess both direction and energy of the incident muon. Taking advantage of the muon detection capability of IACTs, we present a new application of the Cherenkov technique that can be used to perform the muon radiography of volcanoes. The quantitative understanding of the inner structure of a volcano is a key-point to monitor the stages of the volcano activity, to forecast the next eruptive style and, eventually, to mitigate volcanic hazards. Muon radiography shares the same principle as X-ray radiography: muons are attenuated by higher density regions inside the target so that, by measuring the differential attenuation of the muon flux along different directions, it is possible to determine the density distribution of the interior of a volcano. To date, muon imaging of volcanic structures has been mainly achieved with detectors made up of scintillator planes. The advantage of using Cherenkov telescopes is that they are negligibly affected by background noise and allow a consistently improved spatial resolution when compared to the majority of the current detectors.

  8. A G-APD based Camera for Imaging Atmospheric Cherenkov Telescopes

    International Nuclear Information System (INIS)

    Anderhub, H.; Backes, M.; Biland, A.; Boller, A.; Braun, I.; Bretz, T.; Commichau, S.; Commichau, V.; Dorner, D.; Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Koehne, J.-H.; Kraehenbuehl, T.; Kranich, D.; Lorenz, E.; Lustermann, W.; Mannheim, K.

    2011-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACT) for Gamma-ray astronomy are presently using photomultiplier tubes as photo sensors. Geiger-mode avalanche photodiodes (G-APD) promise an improvement in sensitivity and, important for this application, ease of construction, operation and ruggedness. G-APDs have proven many of their features in the laboratory, but a qualified assessment of their performance in an IACT camera is best undertaken with a prototype. This paper describes the design and construction of a full-scale camera based on G-APDs realized within the FACT project (First G-APD Cherenkov Telescope).

  9. Operating performance of the gamma-ray Cherenkov telescope: An end-to-end Schwarzschild–Couder telescope prototype for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Dournaux, J.L., E-mail: jean-laurent.dournaux@obspm.fr [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); De Franco, A. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Laporte, P. [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); White, R. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Greenshaw, T. [University of Liverpool, Oliver Lodge Laboratory, P.O. Box 147, Oxford Street, Liverpool L69 3BX (United Kingdom); Sol, H. [LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); Abchiche, A. [CNRS, Division technique DT-INSU, 1 Place Aristide Briand, 92190 Meudon (France); Allan, D. [Department of Physics and Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE (United Kingdom); Amans, J.P. [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); Armstrong, T.P. [Department of Physics and Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE (United Kingdom); Balzer, A.; Berge, D. [GRAPPA, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Boisson, C. [LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); and others

    2017-02-11

    The Cherenkov Telescope Array (CTA) consortium aims to build the next-generation ground-based very-high-energy gamma-ray observatory. The array will feature different sizes of telescopes allowing it to cover a wide gamma-ray energy band from about 20 GeV to above 100 TeV. The highest energies, above 5 TeV, will be covered by a large number of Small-Sized Telescopes (SSTs) with a field-of-view of around 9°. The Gamma-ray Cherenkov Telescope (GCT), based on Schwarzschild–Couder dual-mirror optics, is one of the three proposed SST designs. The GCT is described in this contribution and the first images of Cherenkov showers obtained using the telescope and its camera are presented. These were obtained in November 2015 in Meudon, France.

  10. The image camera of the 17 m diameter air Cherenkov telescope MAGIC

    CERN Document Server

    Ostankov, A P

    2001-01-01

    The image camera of the 17 m diameter MAGIC telescope, an air Cherenkov telescope currently under construction to be installed at the Canary island La Palma, is described. The main goal of the experiment is to cover the unexplored energy window from approx 10 to approx 300 GeV in gamma-ray astrophysics. In its first phase with a classical PMT camera the MAGIC telescope is expected to reach an energy threshold of approx 30 GeV. The operational conditions, the special characteristics of the developed PMTs and their use with light concentrators, the fast signal transfer scheme using analog optical links, the trigger and DAQ organization as well as image reconstruction strategy are described. The different paths being explored towards future camera improvements, in particular the constraints in using silicon avalanche photodiodes and GaAsP hybrid photodetectors in air Cherenkov telescopes are discussed.

  11. Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Otte, A N; Dickinson, H.; Funk, S.; Jogler, T.; Johnson, C.A.; Karn, P.; Meagher, K.; Naoya, H.; Nguyen, T.; Okumura, A.; Santander, M.; Sapozhnikov, L.; Stier, A.; Tajima, H.; Tibaldo, L.; Vandenbroucke, J.; Wakely, S.; Weinstein, A.; Williams, D.A.

    2015-01-01

    We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give ...

  12. FACT. Normalized and asynchronous mirror alignment for Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Sebastian Achim [ETH Zurich (Switzerland); Buss, Jens [TU Dortmund (Germany)

    2016-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need fast and large imaging optics to map the faint Cherenkov light emitted in cosmic ray air showers onto their image sensors. Segmented reflectors are inexpensive, lightweight and offer good image quality. However, alignment of the mirror facets remains a challenge. A good alignment is crucial in IACT observations to separate gamma rays from hadronic cosmic rays. We present a star tracking alignment method which is not restricted to clear nights. It normalizes the mirror facet reflections to be independent of the reference star or the cloud coverage. It records asynchronously of the telescope drive which makes the method easy to integrate in existing telescopes. It can be combined with remote facet actuation, but it does not need one to work. Furthermore, it can reconstruct all individual mirror facet point spread functions. We present the method and alignment results on the First Geiger-mode Photo Diode Avalanche Cherenkov Telescope (FACT) on the Canary Island of La Palma, Spain.

  13. The TACTIC atmospheric Cherenkov imaging telescope

    International Nuclear Information System (INIS)

    Koul, R.; Tickoo, A.K.; Kaul, S.K.; Kaul, S.R.; Kumar, N.; Yadav, K.K.; Bhatt, N.; Venugopal, K.; Goyal, H.C.; Kothari, M.; Chandra, P.; Rannot, R.C.; Dhar, V.K.; Koul, M.K.; Kaul, R.K.; Kotwal, S.; Chanchalani, K.; Thoudam, S.; Chouhan, N.; Sharma, M.; Bhattacharyya, S.; Sahayanathan, S.

    2007-01-01

    The TACTIC (TeV Atomospheric Cherenkov Telescope with Imaging Camera) γ-ray telescope, equipped with a light collector of area ∼9.5m 2 and a medium resolution imaging camera of 349 pixels, has been in operation at Mt. Abu, India, since 2001. This paper describes the main features of its various subsystems and its overall performance with regard to (a) tracking accuracy of its two-axes drive system, (b) spot size of the light collector, (c) back-end signal processing electronics and topological trigger generation scheme, (d) data acquisition and control system and (e) relative and absolute gain calibration methodology. Using a trigger field-of-view of 11x11 pixels (∼3.4 a tx3.4 a t), the telescope records a cosmic ray event rate of ∼2.5Hz at a typical zenith angle of 15 a t. Monte Carlo simulation results are also presented in the paper for comparing the expected performance of the telescope with actual observational results. The consistent detection of a steady signal from the Crab Nebula above ∼1.2TeV energy, at a sensitivity level of ∼5.0σ in ∼25h, along with excellent matching of its energy spectrum with that obtained by other groups, reassures that the performance of the TACTIC telescope is quite stable and reliable. Furthermore, encouraged by the detection of strong γ-ray signals from Mrk 501 (during 1997 and 2006 observations) and Mrk 421 (during 2001 and 2005-2006 observations), we believe that there is considerable scope for the TACTIC telescope to monitor similar TeV γ-ray emission activity from other active galactic nuclei on a long-term basis

  14. Mirror position determination for the alignment of Cherenkov Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Adam, J. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Ahnen, M.L. [ETH Zurich, Institute for Particle Physics Otto-Stern-Weg 5, 8093 Zurich (Switzerland); Baack, D. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Balbo, M. [University of Geneva, ISDC Data Center for Astrophysics Chemin Ecogia 16, 1290 Versoix (Switzerland); Bergmann, M. [Universität Würzburg, Institute for Theoretical Physics and Astrophysics Emil-Fischer-Str. 31, 97074 Würzburg (Germany); Biland, A. [ETH Zurich, Institute for Particle Physics Otto-Stern-Weg 5, 8093 Zurich (Switzerland); Blank, M. [Universität Würzburg, Institute for Theoretical Physics and Astrophysics Emil-Fischer-Str. 31, 97074 Würzburg (Germany); Bretz, T. [ETH Zurich, Institute for Particle Physics Otto-Stern-Weg 5, 8093 Zurich (Switzerland); RWTH Aachen (Germany); Bruegge, K.A.; Buss, J. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Dmytriiev, A. [University of Geneva, ISDC Data Center for Astrophysics Chemin Ecogia 16, 1290 Versoix (Switzerland); Domke, M. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Dorner, D. [Universität Würzburg, Institute for Theoretical Physics and Astrophysics Emil-Fischer-Str. 31, 97074 Würzburg (Germany); FAU Erlangen (Germany); Einecke, S. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Hempfling, C. [Universität Würzburg, Institute for Theoretical Physics and Astrophysics Emil-Fischer-Str. 31, 97074 Würzburg (Germany); and others

    2017-07-11

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures to map the faint Cherenkov light emitted in extensive air showers onto their image sensors. Segmented reflectors fulfill these needs using mass produced and light weight mirror facets. However, as the overall image is the sum of the individual mirror facet images, alignment is important. Here we present a method to determine the mirror facet positions on a segmented reflector in a very direct way. Our method reconstructs the mirror facet positions from photographs and a laser distance meter measurement which goes from the center of the image sensor plane to the center of each mirror facet. We use our method to both align the mirror facet positions and to feed the measured positions into our IACT simulation. We demonstrate our implementation on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).

  15. The development of simulation and atmospheric shower reconstruction tools for the study of future Cherenkov Imaging telescopes

    International Nuclear Information System (INIS)

    Sajjad, S.

    2007-09-01

    The future of ground based gamma-ray astronomy lies in large arrays of Imaging Atmospheric Cherenkov Telescopes with better capabilities: lower energy threshold, higher sensitivity, better resolution and background rejection. The design of IACT systems and the optimisation of their parameters requires an understanding of the atmospheric showers as well as dedicated tools for the simulation of telescope systems and the evaluation of their performance. The first part of this dissertation deals with atmospheric showers, the various properties of the Cherenkov light they emit and their simulation. The second part presents the tools we have developed for the simulation of imaging atmospheric Cherenkov telescopes and the characteristics of the shower images obtained by them. The third part of this thesis contains a presentation of the tools developed for the reconstruction of the source position in the sky, core position on the ground and energy of the gamma-rays as well as ideas for gamma-hadron separation. In the end, we use these tools to study two large arrays of telescopes at two altitudes and evaluate their performance for gamma-ray detection. (author)

  16. The GCT camera for the Cherenkov Telescope Array

    Science.gov (United States)

    Lapington, J. S.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Bose, R.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Buckley, J.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jankowsky, D.; Jegouzo, I.; Jogler, T.; Kawashima, T.; Kraus, M.; Laporte, P.; Leach, S.; Lefaucheur, J.; Markoff, S.; Melse, T.; Minaya, I. A.; Mohrmann, L.; Molyneux, P.; Moore, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayede, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Varner, G.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium

    2017-12-01

    The Gamma Cherenkov Telescope (GCT) is one of the designs proposed for the Small Sized Telescope (SST) section of the Cherenkov Telescope Array (CTA). The GCT uses dual-mirror optics, resulting in a compact telescope with good image quality and a large field of view with a smaller, more economical, camera than is achievable with conventional single mirror solutions. The photon counting GCT camera is designed to record the flashes of atmospheric Cherenkov light from gamma and cosmic ray initiated cascades, which last only a few tens of nanoseconds. The GCT optics require that the camera detectors follow a convex surface with a radius of curvature of 1 m and a diameter of 35 cm, which is approximated by tiling the focal plane with 32 modules. The first camera prototype is equipped with multi-anode photomultipliers, each comprising an 8×8 array of 6×6 mm2 pixels to provide the required angular scale, adding up to 2048 pixels in total. Detector signals are shaped, amplified and digitised by electronics based on custom ASICs that provide digitisation at 1 GSample/s. The camera is self-triggering, retaining images where the focal plane light distribution matches predefined spatial and temporal criteria. The electronics are housed in the liquid-cooled, sealed camera enclosure. LED flashers at the corners of the focal plane provide a calibration source via reflection from the secondary mirror. The first GCT camera prototype underwent preliminary laboratory tests last year. In November 2015, the camera was installed on a prototype GCT telescope (SST-GATE) in Paris and was used to successfully record the first Cherenkov light of any CTA prototype, and the first Cherenkov light seen with such a dual-mirror optical system. A second full-camera prototype based on Silicon Photomultipliers is under construction. Up to 35 GCTs are envisaged for CTA.

  17. Pattern recognition trigger electronics for an imaging atmospheric Cherenkov telescope

    International Nuclear Information System (INIS)

    Bradbury, S.M.; Rose, H.J.

    2002-01-01

    For imaging atmospheric Cherenkov telescopes, which aim to detect electromagnetic air showers with cameras consisting of several hundred photomultiplier pixels, the single pixel trigger rate is dominated by fluctuations in night sky brightness and by ion feedback in the photomultipliers. Pattern recognition trigger electronics may be used to reject night sky background images, thus reducing the data rate to a manageable level. The trigger system described here detects patterns of 2, 3 or 4 adjacent pixel signals within a 331 pixel camera and gives a positive trigger decision in 65 ns. The candidate pixel pattern is compared with the contents of a pre-programmed memory. With the trigger decision timing controlled by a fixed delay the time-jitter inherent in the use of programmable gate arrays is avoided. This system is now in routine operation at the Whipple 10 m Telescope

  18. Ground-based VHE γ ray astronomy with air Cherenkov imaging telescopes

    International Nuclear Information System (INIS)

    Mirzoyan, R.

    2000-01-01

    The history of astronomy has been one of the scientific discovery following immediately the introduction of new technology. In this report, we will review shortly the basic development of the atmospheric air Cherenkov light detection technique, particularly the imaging telescope technique, which in the last years led to the firm establishment of a new branch in experimental astronomy, namely ground-based very high-energy (VHE) γ ray astronomy. Milestones in the technology and in the analysis of imaging technique will be discussed. The design of the 17 m diameter MAGIC Telescope, being currently under construction, is based on the development of new technologies for all its major parts and sets new standards in the performance of the ground-based γ detectors. MAGIC is one of the next major steps in the development of the technique being the first instrument that will allow one to carry out measurements also in the not yet investigated energy gap i.e. between 10 and 300 GeV

  19. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    International Nuclear Information System (INIS)

    Chen, Y.T.; La Taille, C. de; Suomijärvi, T.; Cao, Z.; Deligny, O.; Dulucq, F.; Ge, M.M.; Lhenry-Yvon, I.; Martin-Chassard, G.; Nguyen Trung, T.; Wanlin, E.; Xiao, G.; Yin, L.Q.; Yun Ky, B.; Zhang, L.; Zhang, H.Y.; Zhang, S.S.; Zhu, Z.

    2015-01-01

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs

  20. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.T., E-mail: chenytao@ynu.edu.cn [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Yunnan University, 650091 Kunming (China); La Taille, C. de [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Suomijärvi, T. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Cao, Z. [Institute of High Energy Physics, 100049 Beijing (China); Deligny, O. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Dulucq, F. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Ge, M.M. [Yunnan University, 650091 Kunming (China); Lhenry-Yvon, I. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Martin-Chassard, G. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Nguyen Trung, T.; Wanlin, E. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Xiao, G.; Yin, L.Q. [Institute of High Energy Physics, 100049 Beijing (China); Yun Ky, B. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Zhang, L. [Yunnan University, 650091 Kunming (China); Zhang, H.Y. [Tsinghua University, 100084 Beijing (China); Zhang, S.S.; Zhu, Z. [Institute of High Energy Physics, 100049 Beijing (China)

    2015-09-21

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs.

  1. The Atmospheric Monitoring Strategy for the Cherenkov Telescope Array

    Science.gov (United States)

    Daniel, M. K.; CTA Consortium

    2015-04-01

    The Imaging Atmospheric Cherenkov Technique (IACT) is unusual in astronomy as the atmosphere actually forms an intrinsic part of the detector system, with telescopes indirectly detecting very high energy particles by the generation and transport of Cherenkov photons deep within the atmosphere. This means that accurate measurement, characterisation and monitoring of the atmosphere is at the very heart of successfully operating an IACT system. The Cherenkov Telescope Array (CTA) will be the next generation IACT observatory with an ambitious aim to improve the sensitivity of an order of magnitude over current facilities, along with corresponding improvements in angular and energy resolution and extended energy coverage, through an array of Large (23 m), Medium (12 m) and Small (4 m) sized telescopes spread over an area of order ~km2. Whole sky coverage will be achieved by operating at two sites: one in the northern hemisphere and one in the southern hemisphere. This proceedings will cover the characterisation of the candidate sites and the atmospheric calibration strategy. CTA will utilise a suite of instrumentation and analysis techniques for atmospheric modelling and monitoring regarding pointing forecasts, intelligent pointing selection for the observatory operations and for offline data correction.

  2. A generalized ray-tracing procedure for an atmospheric Cherenkov imaging telescope and optical characteristics of the TACTIC light collector

    International Nuclear Information System (INIS)

    Tickoo, A.K.; Suthar, R.L.; Koul, R.; Sapru, M.L.; Kumar, N.; Kaul, C.L.; Yadav, K.K.; Thoudam, S.; Kaul, S.K.; Venugopal, K.; Kothari, M.; Goyal, H.C.; Chandra, P.; Dhar, V.K.; Rannot, R.C.; Koul, M.K.; Kaul, S.R.

    2005-01-01

    A generalized ray-tracing procedure has been developed, which facilitates the design of a multimirror-based light collector used in atmospheric Cherenkov telescopes. This procedure has been employed to study the optical characteristics of the 3.5 m diameter light collector of the TACTIC Imaging telescope. Comparison of the measured point-spread function of the light collector with the simulated performance of ideal Davies-Cotton and paraboloid designs has been made to determine an optimum arrangement of the 34 spherical mirror facets used in the telescope to obtain the best possible point-spread function. A description of the ray-tracing subroutine used for processing CORSIKA-generated Cherenkov data, required for carrying out Monte-Carlo simulation studies, is also discussed in the paper

  3. INFN Camera demonstrator for the Cherenkov Telescope Array

    CERN Document Server

    Ambrosi, G; Aramo, C.; Bertucci, B.; Bissaldi, E.; Bitossi, M.; Brasolin, S.; Busetto, G.; Carosi, R.; Catalanotti, S.; Ciocci, M.A.; Consoletti, R.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Palma, F.; Desiante, R.; Di Girolamo, T.; Di Giulio, C.; Doro, M.; D'Urso, D.; Ferraro, G.; Ferrarotto, F.; Gargano, F.; Giglietto, N.; Giordano, F.; Giraudo, G.; Iacovacci, M.; Ionica, M.; Iori, M.; Longo, F.; Mariotti, M.; Mastroianni, S.; Minuti, M.; Morselli, A.; Paoletti, R.; Pauletta, G.; Rando, R.; Fernandez, G. Rodriguez; Rugliancich, A.; Simone, D.; Stella, C.; Tonachini, A.; Vallania, P.; Valore, L.; Vagelli, V.; Verzi, V.; Vigorito, C.

    2015-01-01

    The Cherenkov Telescope Array is a world-wide project for a new generation of ground-based Cherenkov telescopes of the Imaging class with the aim of exploring the highest energy region of the electromagnetic spectrum. With two planned arrays, one for each hemisphere, it will guarantee a good sky coverage in the energy range from a few tens of GeV to hundreds of TeV, with improved angular resolution and a sensitivity in the TeV energy region better by one order of magnitude than the currently operating arrays. In order to cover this wide energy range, three different telescope types are envisaged, with different mirror sizes and focal plane features. In particular, for the highest energies a possible design is a dual-mirror Schwarzschild-Couder optical scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based camera is being proposed as a solution to match the dimensions of the pixel (angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made by 9 Photo Sensor Modules (PSMs...

  4. Pre-selecting muon events in the camera server of the ASTRI telescopes for the Cherenkov Telescope Array

    Science.gov (United States)

    Maccarone, Maria C.; Mineo, Teresa; Capalbi, Milvia; Conforti, Vito; Coffaro, Martina

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground based observatories for very high energy gamma ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium, and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The telescopes will be equipped with cameras composed either of photomultipliers or silicon photomultipliers, and with different trigger and read-out electronics. In such a scenario, several different methods will be used for the telescopes' calibration. Nevertheless, the optical throughput of any CTA telescope, independently of its type, can be calibrated analyzing the characteristic image produced by local atmospheric highly energetic muons that induce the emission of Cherenkov light which is imaged as a ring onto the focal plane if their impact point is relatively close to the telescope optical axis. Large sized telescopes would be able to detect useful muon events under stereo coincidence and such stereo muon events will be directly addressed to the central CTA array data acquisition pipeline to be analyzed. For the medium and small sized telescopes, due to their smaller mirror area and large inter-telescope distance, the stereo coincidence rate will tend to zero; nevertheless, muon events will be detected by single telescopes that must therefore be able to identify them as possible useful calibration candidates, even if no stereo coincidence is available. This is the case for the ASTRI telescopes, proposed as pre-production units of the small size array of the CTA, which are able to detect muon events during regular data taking without requiring any dedicated trigger. We present two fast

  5. Studies on a silicon-photomultiplier-based camera for Imaging Atmospheric Cherenkov Telescopes

    Science.gov (United States)

    Arcaro, C.; Corti, D.; De Angelis, A.; Doro, M.; Manea, C.; Mariotti, M.; Rando, R.; Reichardt, I.; Tescaro, D.

    2017-12-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) represent a class of instruments which are dedicated to the ground-based observation of cosmic VHE gamma ray emission based on the detection of the Cherenkov radiation produced in the interaction of gamma rays with the Earth atmosphere. One of the key elements of such instruments is a pixelized focal-plane camera consisting of photodetectors. To date, photomultiplier tubes (PMTs) have been the common choice given their high photon detection efficiency (PDE) and fast time response. Recently, silicon photomultipliers (SiPMs) are emerging as an alternative. This rapidly evolving technology has strong potential to become superior to that based on PMTs in terms of PDE, which would further improve the sensitivity of IACTs, and see a price reduction per square millimeter of detector area. We are working to develop a SiPM-based module for the focal-plane cameras of the MAGIC telescopes to probe this technology for IACTs with large focal plane cameras of an area of few square meters. We will describe the solutions we are exploring in order to balance a competitive performance with a minimal impact on the overall MAGIC camera design using ray tracing simulations. We further present a comparative study of the overall light throughput based on Monte Carlo simulations and considering the properties of the major hardware elements of an IACT.

  6. Ground-based gamma-ray astronomy with Cherenkov telescopes

    International Nuclear Information System (INIS)

    Hinton, Jim

    2009-01-01

    Very high-energy (>100 GeV) γ-ray astronomy is emerging as an important discipline in both high-energy astrophysics and astro-particle physics. This field is currently dominated by imaging atmospheric-Cherenkov telescopes (IACTs) and arrays of these telescopes. Such arrays have achieved the best angular resolution and energy flux sensitivity in the γ-ray domain and are still far from the fundamental limits of the technique. Here, I will summarize some key aspects of this technique and go on to review the current status of the major instruments and to highlight selected recent results.

  7. The first GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    De Franco, A.; Allan, D.; Armstrong, T.; Ashton, T.; Balzer, A.; Berge, D.; Bose, R.; Brown, A.M.; Buckley, J.; Chadwick, P.M.; Cooke, P.; Cotter, G.; Daniel, M.K.; Funk, S.; Greenshaw, T.; Hinton, J.; Kraus, M.; Lapington, J.; Molyneux, P.; Moore, P.; Nolan, S.; Okumura, A.; Ross, D.; Rulten, C.; Schmoll, J.; Schoorlemmer, H.; Stephan, M.; Sutcliffe, P.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Varner, G.; Watson, J.; Zink, A.

    2015-01-01

    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\\deg} angular size, resulting in a field of view of ~9{\\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.

  8. Gamma ray astronomy with atmospheric Cherenkov telescopes: the future

    International Nuclear Information System (INIS)

    Krennrich, Frank

    2009-01-01

    Atmospheric Cherenkov telescopes have been key to the recent discoveries in teraelectronvolt (TeV) γ-ray astronomy. The detection of TeV γ rays from more than 90 galactic and extragalactic sources provides a wealth of data for probing physical phenomena that pertain to some of the big questions in astrophysics. These include the understanding of the origin of cosmic rays, unveiling the connection between relativistic jets and black holes, shedding light on dark matter and its relation to supersymmetric particles and estimating the brightness of cosmological diffuse radiation fields in the optical/infrared waveband. While these recent advances were made with instruments designed in the 1990s, the present paper is concerned with a next generation of imaging atmospheric Cherenkov telescopes (IACTs) that are currently in the conceptual planning stage. We discuss the basic ideas, the required technology and expected performance of a ≥1 square-kilometer array, which is poised to yield the most dramatic step yet to come in TeV astronomy.

  9. The Cherenkov Telescope Array For Very High-Energy Astrophysics

    Science.gov (United States)

    Kaaret, Philip

    2015-08-01

    The field of very high energy (VHE) astrophysics had been revolutionized by the results from ground-based gamma-ray telescopes, including the current imaging atmospheric Cherenkov telescope (IACT) arrays: HESS, MAGIC and VERITAS. A worldwide consortium of scientists from 29 countries has formed to propose the Cherenkov Telescope Array (CTA) that will capitalize on the power of this technique to greatly expand the scientific reach of ground-based gamma-ray telescopes. CTA science will include key topics such as the origin of cosmic rays and cosmic particle acceleration, understanding extreme environments in regions close to neutron stars and black holes, and exploring physics frontiers through, e.g., the search for WIMP dark matter, axion-like particles and Lorentz invariance violation. CTA is envisioned to consist of two large arrays of Cherenkov telescopes, one in the southern hemisphere and one in the north. Each array will contain telescopes of different sizes to provide a balance between cost and array performance over an energy range from below 100 GeV to above 100 TeV. Compared to the existing IACT arrays, CTA will have substantially better angular resolution and energy resolution, will cover a much wider energy range, and will have up to an order of magnitude better sensitivity. CTA will also be operated as an open observatory and high-level CTA data will be placed into the public domain; these aspects will enable broad participation in CTA science from the worldwide scientific community to fully capitalize on CTA's potential. This talk will: 1) review the scientific motivation and capabilities of CTA, 2) provide an overview of the technical design and the status of prototype development, and 3) summarize the current status of the project in terms of its proposed organization and timeline. The plans for access to CTA data and opportunities to propose for CTA observing time will be highlighed.Presented on behalf of the CTA Consortium.

  10. Using Deep Learning for Gamma Ray Source Detection at the First G-APD Cherenkov Telescope (FACT)

    Science.gov (United States)

    Bieker, Jacob

    2018-06-01

    Finding gamma-ray sources is of paramount importance for Imaging Air Cherenkov Telescopes (IACT). This study looks at using deep neural networks on data from the First G-APD Cherenkov Telescope (FACT) as a proof-of-concept of finding gamma-ray sources with deep learning for the upcoming Cherenkov Telescope Array (CTA). In this study, FACT’s individual photon level observation data from the last 5 years was used with convolutional neural networks to determine if one or more sources were present. The neural networks used various architectures to determine which architectures were most successful in finding sources. Neural networks offer a promising method for finding faint and extended gamma-ray sources for IACTs. With further improvement and modifications, they offer a compelling method for source detection for the next generation of IACTs.

  11. Development of a mid-sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.

    2012-06-28

    The Cherenkov Telescope Array (CTA) is a ground-based observatory for very high-energy (10 GeV to 100 TeV) gamma rays, planned for operation starting in 2018. It will be an array of dozens of optical telescopes, known as Atmospheric Cherenkov Telescopes (ACTs), of 8 m to 24 m diameter, deployed over an area of more than 1 square km, to detect flashes of Cherenkov light from showers initiated in the Earth's atmosphere by gamma rays. CTA will have improved angular resolution, a wider energy range, larger fields of view and an order of magnitude improvement in sensitivity over current ACT arrays such as H.E.S.S., MAGIC and VERITAS. Several institutions have proposed a research and development program to eventually contribute 36 medium-sized telescopes (9 m to 12 m diameter) to CTA to enhance and optimize its science performance. The program aims to construct a prototype of an innovative, Schwarzschild-Couder telescope (SCT) design that will allow much smaller and less expensive cameras and much larger fields of view than conventional Davies-Cotton designs, and will also include design and testing of camera electronics for the necessary advances in performance, reliability and cost. We report on the progress of the mid-sized SCT development program.

  12. NECTAr: New electronics for the Cherenkov Telescope Array

    International Nuclear Information System (INIS)

    Vorobiov, S.; Bolmont, J.; Corona, P.; Delagnes, E.; Feinstein, F.; Gascon, D.; Glicenstein, J.-F.; Naumann, C.L.; Nayman, P.; Sanuy, A.; Toussenel, F.; Vincent, P.

    2011-01-01

    The European astroparticle physics community aims to design and build the next generation array of Imaging Atmospheric Cherenkov Telescopes (IACTs), that will benefit from the experience of the existing H.E.S.S. and MAGIC detectors, and further expand the very-high energy astronomy domain. In order to gain an order of magnitude in sensitivity in the 10 GeV to >100TeV range, the Cherenkov Telescope Array (CTA) will employ 50-100 mirrors of various sizes equipped with 1000-4000 channels per camera, to be compared with the 6000 channels of the final H.E.S.S. array. A 3-year program, started in 2009, aims to build and test a demonstrator module of a generic CTA camera. We present here the NECTAr design of front-end electronics for the CTA, adapted to the trigger and data acquisition of a large IACTs array, with simple production and maintenance. Cost and camera performances are optimized by maximizing integration of the front-end electronics (amplifiers, fast analog samplers, ADCs) in an ASIC, achieving several GS/s and a few μs readout dead-time. We present preliminary results and extrapolated performances from Monte Carlo simulations.

  13. NECTAr: New electronics for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiov, S., E-mail: vorobiov@lpta.in2p3.f [LPTA, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France); Delagnes, E. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Feinstein, F. [LPTA, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Gascon, D. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Glicenstein, J.-F. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France); Sanuy, A. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Toussenel, F.; Vincent, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France)

    2011-05-21

    The European astroparticle physics community aims to design and build the next generation array of Imaging Atmospheric Cherenkov Telescopes (IACTs), that will benefit from the experience of the existing H.E.S.S. and MAGIC detectors, and further expand the very-high energy astronomy domain. In order to gain an order of magnitude in sensitivity in the 10 GeV to >100TeV range, the Cherenkov Telescope Array (CTA) will employ 50-100 mirrors of various sizes equipped with 1000-4000 channels per camera, to be compared with the 6000 channels of the final H.E.S.S. array. A 3-year program, started in 2009, aims to build and test a demonstrator module of a generic CTA camera. We present here the NECTAr design of front-end electronics for the CTA, adapted to the trigger and data acquisition of a large IACTs array, with simple production and maintenance. Cost and camera performances are optimized by maximizing integration of the front-end electronics (amplifiers, fast analog samplers, ADCs) in an ASIC, achieving several GS/s and a few {mu}s readout dead-time. We present preliminary results and extrapolated performances from Monte Carlo simulations.

  14. Information and Communications Technology (ICT) Infrastructure for the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gianotti, F.; Tacchini, A.; Leto, G.; Martinetti, E.; Bruno, P.; Bellassai, G.; Conforti, V.; Gallozzi, S.; Mastropietro, M.; Tanci, C.; Malaguti, G.; Trifoglio, M.

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground-based observatories for very high energy gamma-ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The Italian National Institute for Astrophysics (INAF) is developing the Cherenkov Small Size Telescope ASTRI SST- 2M end-to-end prototype telescope within the framework of the International Cherenkov Telescope Array (CTA) project. The ASTRI prototype has been installed at the INAF observing station located in Serra La Nave on Mt. Etna, Italy. Furthermore a mini-array, composed of nine of ASTRI telescopes, has been proposed to be installed at the Southern CTA site. Among the several different infrastructures belonging the ASTRI project, the Information and Communication Technology (ICT) equipment is dedicated to operations of computing and data storage, as well as the control of the entire telescope, and it is designed to achieve the maximum efficiency for all performance requirements. Thus a complete and stand-alone computer centre has been designed and implemented. The goal is to obtain optimal ICT equipment, with an adequate level of redundancy, that might be scaled up for the ASTRI mini-array, taking into account the necessary control, monitor and alarm system requirements. In this contribution we present the ICT equipment currently installed at the Serra La Nave observing station where the ASTRI SST-2M prototype will be operated. The computer centre and the control room are described with particular emphasis on the Local Area Network scheme, the computing and data storage system, and the

  15. Performance of a fast low noise front-end preamplifier for the MAGIC imaging Cherenkov telescope

    International Nuclear Information System (INIS)

    Blanch, O.; Blanchot, G.; Bosman, M.

    1999-01-01

    The observation of high energy cosmic gamma rays with an energy threshold of 15 GeV using the proposed MAGIC ground based air imaging Cherenkov telescope requires the development of new low noise fast preamplifiers for the camera photosensors. The speed and noise performance of a transimpedance preamplifier that resolves the multi photoelectron peaks from a hybrid photomultiplier with a peaking time below 7 ns is presented. The new front-end circuit is designed with RF low noise bipolar transistors and provides fast output pulses that allow for fast trigger settings

  16. Aplanatic telescopes based on Schwarzschild optical configuration: from grazing incidence Wolter-like x-ray optics to Cherenkov two-mirror normal incidence telescopes

    Science.gov (United States)

    Sironi, Giorgia

    2017-09-01

    At the beginning of XX century Karl Schwarzschild defined a method to design large-field aplanatic telescopes based on the use of two aspheric mirrors. The approach was then refined by Couder (1926) who, in order to correct for the astigmatic aberration, introduced a curvature of the focal plane. By the way, the realization of normal-incidence telescopes implementing the Schwarzschild aplanatic configuration has been historically limited by the lack of technological solutions to manufacture and test aspheric mirrors. On the other hand, the Schwarzschild solution was recovered for the realization of coma-free X-ray grazing incidence optics. Wolter-like grazing incidence systems are indeed free of spherical aberration, but still suffer from coma and higher order aberrations degrading the imaging capability for off-axis sources. The application of the Schwarzschild's solution to X-ray optics allowed Wolter to define an optical system that exactly obeys the Abbe sine condition, eliminating coma completely. Therefore these systems are named Wolter-Schwarzschild telescopes and have been used to implement wide-field X-ray telescopes like the ROSAT WFC and the SOHO X-ray telescope. Starting from this approach, a new class of X-ray optical system was proposed by Burrows, Burg and Giacconi assuming polynomials numerically optimized to get a flat field of view response and applied by Conconi to the wide field x-ray telescope (WFXT) design. The Schwarzschild-Couder solution has been recently re-discovered for the application to normal-incidence Cherenkov telescopes, thanks to the suggestion by Vassiliev and collaborators. The Italian Institute for Astrophysics (INAF) realized the first Cherenkov telescope based on the polynomial variation of the Schwarzschild configuration (the so-called ASTRI telescope). Its optical qualification was successfully completed in 2016, demonstrating the suitability of the Schwarzschild-like configuration for the Cherenkov astronomy requirements

  17. Prototype of a production system for Cherenkov Telescope Array with DIRAC

    CERN Document Server

    Arrabito, L; Haupt, A; Graciani Diaz, R; Stagni, F; Tsaregorodtsev, A

    2015-01-01

    The Cherenkov Telescope Array (CTA) — an array of many tens of Imaging Atmospheric Cherenkov Telescopes deployed on an unprecedented scale — is the next generation instrument in the field of very high energy gamma-ray astronomy. CTA will operate as an open observatory providing data products to the scientific community. An average data stream of about 10 GB/s for about 1000 hours of observation per year, thus producing several PB/year, is expected. Large CPU time is required for data-processing as well for massive Monte Carlo simulations needed for detector calibration purposes. The current CTA computing model is based on a distributed infrastructure for the archive and the data off-line processing. In order to manage the off-line data-processing in a distributed environment, CTA has evaluated the DIRAC (Distributed Infrastructure with Remote Agent Control) system, which is a general framework for the management of tasks over distributed heterogeneous computing environments. In particular, a production sy...

  18. NECTAR: New electronics for the Cherenkov Telescope Array

    Science.gov (United States)

    Naumann, Christopher Lindsay; Bolmont, J.; Corona, P.; Delagnes, E.; Dzahini, D.; Feinstein, F.; Gascon, D.; Glicenstein, J.-F.; Nayman, P.; Rarbi, F.; Ribo, M.; Sanuy, A.; Siero, X.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-12-01

    The international CTA consortium is currently in the preparatory phase for the development of the next-generation Cherenkov Telescope Array (CTA [1]), based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS. To achieve an unprecedented sensitivity and energy range for TeV gamma rays, a new kind of flexible and powerful yet inexpensive front-end hardware will be required for the order of 105 channels of photodetectors in up to 100 telescopes. One possible solution is the NECTAr (New Electronics for the Cherenkov Telescope Array) system, based on the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC for very fast readout performance and a significant reduction of the cost and the lower consumption per channel, while offering a high degree of flexibility both for the triggering and the readout of the telescope. The current status of its development is presented, along with newest results from measurements and simulation studies.

  19. Calibration strategies for the Cherenkov Telescope Array

    NARCIS (Netherlands)

    Gaug, M.; Berge, D.; Daniel, M.; Doro, M.; Förster, A.; Hofmann, W.; Maccarone, M.C.; Parsons, D.; de los Reyes Lopez, R.; van Eldik, C.

    2014-01-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration

  20. Gamma/hadron segregation for a ground based imaging atmospheric Cherenkov telescope using machine learning methods: Random Forest leads

    International Nuclear Information System (INIS)

    Sharma Mradul; Koul Maharaj Krishna; Mitra Abhas; Nayak Jitadeepa; Bose Smarajit

    2014-01-01

    A detailed case study of γ-hadron segregation for a ground based atmospheric Cherenkov telescope is presented. We have evaluated and compared various supervised machine learning methods such as the Random Forest method, Artificial Neural Network, Linear Discriminant method, Naive Bayes Classifiers, Support Vector Machines as well as the conventional dynamic supercut method by simulating triggering events with the Monte Carlo method and applied the results to a Cherenkov telescope. It is demonstrated that the Random Forest method is the most sensitive machine learning method for γ-hadron segregation. (research papers)

  1. Time and charge calibration of Cherenkov telescope data acquired by Domino Ring Sampler 4 chips

    Energy Technology Data Exchange (ETDEWEB)

    Hoerbe, Mario; Doert, Marlene [Ruhr-Universitaet Bochum (Germany); Bruegge, Kai; Buss, Jens; Bockermann, Christian; Egorov, Alexej [TU Dortmund (Germany)

    2016-07-01

    Very-high-energy gamma-ray astronomy aims to give an insight into the most energetic phenomena in our Universe. Earthbound Cherenkov telescopes can measure Cherenkov light emitted by atmospheric particle showers which are produced by incoming cosmic particles at high energies. Current Cherenkov telescopes, e.g. operated in the FACT and the MAGIC experiments, utilize Domino Ring Sampler 4 (DRS4) chips for recording signals at high speed coming from the telescopes' cameras. DRS4 chips will also be used in the cameras of the Large-Size telescopes of the projected Cherenkov Telescope Array (CTA). We aim at developing a software solution for the calibration of DRS4 data based on the streams-framework, a software tool for streaming analysis which has been developed within the Collaborative Research Center SFB 876. The objectives and the current status of the project are presented.

  2. On the possiblity of using vertically pointing Central Laser Facilities to calibrate the Cherenkov Telescope Array

    International Nuclear Information System (INIS)

    Gaug, Markus

    2014-01-01

    A Central Laser Facility is a system composed of a laser placed at a certain distance from a light-detector array, emitting fast light pulses, typically in the vertical direction, with the aim to calibrate that array. During calibration runs, all detectors are pointed towards the same portion of the laser beam at a given altitude. Central Laser Facilities are used for various currently operating ultra-high-energy cosmic ray and imaging atmospheric Cherenkov telescope arrays. In view of the future Cherenkov Telescope Array, a similar device could provide a fast calibration of the whole installation at different wavelengths. The relative precision (i.e. each individual telescope with respect to the rest of the array is expected) to be better than 5%, while an absolute calibration should reach a precisions of 6–11%, if certain design requirements are met. Additionally, a preciser monitoring of the sensitivity of each telescope can be made on time-scales of days to years

  3. Development of the optical system for the SST-1M telescope of the Cherenkov Telescope Array observatory

    CERN Document Server

    Ostrowski, Michael; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Niemiec, J.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Pueschel, E.; Rajda, P.; Rameez, M.; Schioppa, E. jr; Schovanek, P.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.; Barciński, T.; Karczewski, M.; Kukliński, J. Nicolau; Płatos, Ł.; Rataj, M.; Wawer, P.; Wawrzaszek, R.

    2016-01-01

    The prototype of a Davies-Cotton small size telescope (SST-1M) has been designed and developed by a consortium of Polish and Swiss institutions and proposed for the Cherenkov Telescope Array (CTA) observatory. The main purpose of the optical system is to focus the Cherenkov light emitted by extensive air showers in the atmosphere onto the focal plane detectors. The main component of the system is a dish consisting of 18 hexagonal mirrors with a total effective collection area of 6.47 m2 (including the shadowing and estimated mirror reflectivity). Such a solution was chosen taking into account the analysis of the Cherenkov light propagation and based on optical simulations. The proper curvature and stability of the dish is ensured by the mirror alignment system and the isostatic interface to the telescope structure. Here we present the design of the optical subsystem together with the performance measurements of its components.

  4. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: prototype technologies goals and strategies for the future SST

    Science.gov (United States)

    Marchiori, Gianpietro; Busatta, Andrea; Giacomel, Stefano; Folla, Ivan; Valsecchi, Marco; Canestrari, Rodolfo; Bonnoli, Giacomo; Cascone, Enrico; Conconi, Paolo; Fiorini, Mauro; Giro, Enrico; La Palombara, Nicola; Pareschi, Giovanni; Perri, Luca; Rodeghiero, Gabriele; Sironi, Giorgia; Stringhetti, Luca; Toso, Giorgio; Tosti, Gino; Pellicciari, Carlo

    2014-07-01

    The Cherenkov Telescope Array (CTA) observatory will represent the next generation of Imaging Atmospheric Cherenkov Telescope. Using a combination of large-, medium-, and small-scale telescopes (LST, MST, SST, respectively), it will explore the Very High Energy domain from a few tens of GeVup to about few hundreds of TeV with unprecedented sensitivity, angular resolution and imaging quality. In this framework, the Italian ASTRI program, led by the Italian National Institute of Astrophysics (INAF) developed a 4-meter class telescope, which will adopt an aplanatic, wide-field, double-reflection optical layout in a Schwarzschild- Couder configuration. Within this program INAF assigned to the consortium between Galbiati Group and EIE Group the construction, assembly and tests activities of the prototype named ASTRI SST-2M. On the basis of the lesson learnt from the prototype, other telescopes will be produced, starting from a re-design phase, in order to optimize performances and the overall costs and production schedule for the CTA-SST telescope. This paper will firstly give an overview of the concept for the SST prototype mount structure. In this contest, the technologies adopted for the design, manufacturing and tests of the entire system will be presented. Moreover, a specific focus on the challenges of the prototype and the strategies associated with it will be provided, in order to outline the near future performance goals for this type of Cherenkov telescopes employed for Gamma ray science.

  5. FACT-The first Cherenkov telescope using a G-APD camera for TeV gamma-ray astronomy

    International Nuclear Information System (INIS)

    Anderhub, H.; Backes, M.; Biland, A.; Boller, A.; Braun, I.; Bretz, T.; Commichau, S.; Commichau, V.; Domke, M.; Dorner, D.; Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Koehne, J.-H.; Kraehenbuehl, T.; Kranich, D.; Krumm, B.; Lorenz, E.

    2011-01-01

    Geiger-mode Avalanche Photodiodes (G-APD) bear the potential to significantly improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing an old IACT with a mirror area of 9.5 square meters and are constructing a new, fine-pixelized camera using novel G-APDs. The main goal is to evaluate the performance of a complete system by observing very high energy gamma-rays from the Crab Nebula. This is an important field test to check the feasibility of G-APD-based cameras to replace at some time the PMT-based cameras of planned future IACTs like AGIS and CTA. In this article, we present the basic design of such a camera as well as some important details.

  6. The Cherenkov Telescope Array production system for Monte Carlo simulations and analysis

    Science.gov (United States)

    Arrabito, L.; Bernloehr, K.; Bregeon, J.; Cumani, P.; Hassan, T.; Haupt, A.; Maier, G.; Moralejo, A.; Neyroud, N.; pre="for the"> CTA Consortium, DIRAC Consortium,

    2017-10-01

    The Cherenkov Telescope Array (CTA), an array of many tens of Imaging Atmospheric Cherenkov Telescopes deployed on an unprecedented scale, is the next-generation instrument in the field of very high energy gamma-ray astronomy. An average data stream of about 0.9 GB/s for about 1300 hours of observation per year is expected, therefore resulting in 4 PB of raw data per year and a total of 27 PB/year, including archive and data processing. The start of CTA operation is foreseen in 2018 and it will last about 30 years. The installation of the first telescopes in the two selected locations (Paranal, Chile and La Palma, Spain) will start in 2017. In order to select the best site candidate to host CTA telescopes (in the Northern and in the Southern hemispheres), massive Monte Carlo simulations have been performed since 2012. Once the two sites have been selected, we have started new Monte Carlo simulations to determine the optimal array layout with respect to the obtained sensitivity. Taking into account that CTA may be finally composed of 7 different telescope types coming in 3 different sizes, many different combinations of telescope position and multiplicity as a function of the telescope type have been proposed. This last Monte Carlo campaign represented a huge computational effort, since several hundreds of telescope positions have been simulated, while for future instrument response function simulations, only the operating telescopes will be considered. In particular, during the last 18 months, about 2 PB of Monte Carlo data have been produced and processed with different analysis chains, with a corresponding overall CPU consumption of about 125 M HS06 hours. In these proceedings, we describe the employed computing model, based on the use of grid resources, as well as the production system setup, which relies on the DIRAC interware. Finally, we present the envisaged evolutions of the CTA production system for the off-line data processing during CTA operations and

  7. 5@5 - A 5 GeV Energy Threshold Array of Imaging Atmospheric Cherenkov Telescopes at 5 km Altitude

    Science.gov (United States)

    Aharonian, F. A.; Konopelko, A. K.; Voelk, H. J.; Quintana, H.

    2000-10-01

    We discuss the concept and the performance of 5@5 - a stereoscopic array of several large imaging atmospheric Cherenkov telescopes installed at a very high mountain elevation of about 5 km a.s.l. or more - for the study of the gamma-ray sky at energies from several GeV to 100 GeV. With its capability to detect the ``standard'' EGRET sources with spectra extending up to 10 GeV in exposure times from 1 to 103 seconds, such a detector may serve as an ideal "Gamma-Ray Timing Explorer" for the study of transient non-thermal phenomena like gamma-radiation from AGN jets, synchrotron flares of microquasars, the high energy (GeV) counterparts of Gamma Ray Bursts, etc. Such an instrument would also allow detailed studies of the spectral characteristics of persistent gamma-ray sources like pulsars, supernova remnants, plerions, radiogalaxies, etc, in the energy region between 10 GeV and 100 GeV, where the capabilities of both the current space-based and ground-based gamma-ray projects are quite limited. The existing technological achievements in the design and construction of multi (1000) pixel, high resolution imagers, as well as of large, 20 m diameter class multi-mirror dishes with rather modest optical requirements, would allow the construction of the "5@5" in a foreseeable future. The Llano de Chajnantor (or the neighboring Cerro Toco) in the Atacama desert of Northern Chile seems an ideal site for such a ``post - CANGAROO/H.E.S.S./MAGIC/VERITAS'' era ground-based gamma-ray detector. The large flat area of that site, which was recently chosen for the installation of one of the most powerful future astronomical instruments - the Atacama Large Millimeter Array (ALMA) - could accomodate also an additional Cherenkov telescope array which requires a relatively compact area with a radius of about 100 m.

  8. The On-Site Analysis of the Cherenkov Telescope Array

    CERN Document Server

    Bulgarelli, Andrea; Zoli, Andrea; Aboudan, Alessio; Rodríguez-Vázquez, Juan José; De Cesare, Giovanni; De Rosa, Adriano; Maier, Gernot; Lyard, Etienne; Bastieri, Denis; Lombardi, Saverio; Tosti, Gino; Bergamaschi, Sonia; Beneventano, Domenico; Lamanna, Giovanni; Jacquemier, Jean; Kosack, Karl; Antonelli, Lucio Angelo; Boisson, Catherine; Borkowski, Jerzy; Buson, Sara; Carosi, Alessandro; Conforti, Vito; Colomé, Pep; Reyes, Raquel de los; Dumm, Jon; Evans, Phil; Fortson, Lucy; Fuessling, Matthias; Gotz, Diego; Graciani, Ricardo; Gianotti, Fulvio; Grandi, Paola; Hinton, Jim; Humensky, Brian; Inoue, Susumu; Knödlseder, Jürgen; Flour, Thierry Le; Lindemann, Rico; Malaguti, Giuseppe; Markoff, Sera; Marisaldi, Martino; Neyroud, Nadine; Nicastro, Luciano; Ohm, Stefan; Osborne, Julian; Oya, Igor; Rodriguez, Jerome; Rosen, Simon; Ribo, Marc; Tacchini, Alessandro; Schüssler, Fabian; Stolarczyk, Thierry; Torresi, Eleonora; Testa, Vincenzo; Wegner, Peter

    2015-01-01

    The Cherenkov Telescope Array (CTA) observatory will be one of the largest ground-based very high-energy gamma-ray observatories. The On-Site Analysis will be the first CTA scientific analysis of data acquired from the array of telescopes, in both northern and southern sites. The On-Site Analysis will have two pipelines: the Level-A pipeline (also known as Real-Time Analysis, RTA) and the level-B one. The RTA performs data quality monitoring and must be able to issue automated alerts on variable and transient astrophysical sources within 30 seconds from the last acquired Cherenkov event that contributes to the alert, with a sensitivity not worse than the one achieved by the final pipeline by more than a factor of 3. The Level-B Analysis has a better sensitivity (not be worse than the final one by a factor of 2) and the results should be available within 10 hours from the acquisition of the data: for this reason this analysis could be performed at the end of an observation or next morning. The latency (in part...

  9. Development of the quality control system of the readout electronics for the large size telescope of the Cherenkov Telescope Array observatory

    Energy Technology Data Exchange (ETDEWEB)

    Konno, Y.; Kubo, H.; Masuda, S. [Department of Physics, Graduate School of Science, Kyoto University, Kyoto (Japan); Paoletti, R.; Poulios, S. [SFTA Department, Physics Section, University of Siena and INFN, Siena (Italy); Rugliancich, A., E-mail: andrea.rugliancich@pi.infn.it [SFTA Department, Physics Section, University of Siena and INFN, Siena (Italy); Saito, T. [Department of Physics, Graduate School of Science, Kyoto University, Kyoto (Japan)

    2016-07-11

    The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards. - Highlights: • The Dragon Board is part of the DAQ of the LST Cherenkov telescope prototype. • We developed an automated quality control system for the Dragon Board. • We check pedestal, linearity, pulse shape and crosstalk values. • The quality control test can be performed on the production line.

  10. GRANITE- A steroscopic imaging Chernkov telescope system

    International Nuclear Information System (INIS)

    Shubnell, M.; Akerlof, C.W.; Cawley, M.F.; Chantell, M.; Fegan, D.J.; Fennell, S.; O'Flaherty, K.S.; Freeman, S.; Frishman, D.; Gaidos, J.A.; Hagan, J.; Harris, K.; Hillas, A.M.; Kerrick, A.D.; Lamb, R.C.; Lappin, T.; Lawrence, M.A.; Levy, H.; Lewis, D.A.; Meyer, D.I.; Mohanty, G.; Punch, M.; Reynolds, P.T.; Rovero, A.C.; Sembroski, G.; Weaverdyck, C.; Weekes, T.C.; Whitaker, T.; Wilson, C.

    1993-01-01

    A second 10 meter class imaging telescope was constructed on Mt. Hopkins, Arizona, the site of the original 10 meter Whipple Cherenkov telescope. The twin telescope system with a 140 meter base line will allow both a reduction in the energy threshold and an improvement in the rejection of the hardonic background. The new telescope started operation in December 1991. With the final completion of the first installation stage (GRANITE I) during spring 92, it is now operating simultaneously with the orginal reflector. We describe in this paper design and construction of the new instrument and demonstrate the capability of the experiment to record coincident events

  11. First data from IceAct, an imaging air Cherenkov telescope with SiPMs at the South Pole

    Energy Technology Data Exchange (ETDEWEB)

    Auffenberg, Jan; Bretz, Thomas; Hansmann, Bengt; Hansmann, Tim; Hebbeker, Thomas; Kemp, Julian; Middendorf, Lukas; Niggemann, Tim; Raedel, Leif; Schaufel, Merlin; Schumacher, Johannes; Stahlberg, Martin; Werhan, Ansgar; Wiebusch, Christopher [RWTH Aachen University (Germany)

    2016-07-01

    IceCube-Gen2 is planned to extend the IceCube Neutrino Observatory at the geographic South Pole. For neutrino astronomy, a large background-free sample of well-reconstructed astrophysical neutrinos is essential. The main background for this signal are muons and neutrinos which are produced in cosmic-ray air showers in the Earth's atmosphere. The coincident detection of these air showers by the surface detector IceTop has been proven to be a powerful veto for atmospheric neutrinos and muons in the field of view of the Southern Hemisphere. This motivates a large extension of IceTop to more efficiently detect cosmic rays, IceVeto. Part of these extension plans is an array of imaging air Cherenkov telescopes, IceAct. A first IceAct prototype is consisting of an SiPM camera and lens optics optimized for harsh environments. Compared to IceTop stations, these telescopes potentially lower the detection threshold for air showers at the cost of a lower duty cycle. We present first data, taken during the commissioning of an IceAct prototype in December 2015 at the South Pole.

  12. Simulated gamma-ray pulse profile of the Crab pulsar with the Cherenkov Telescope Array

    Science.gov (United States)

    Burtovoi, A.; Zampieri, L.

    2016-07-01

    We present simulations of the very high energy (VHE) gamma-ray light curve of the Crab pulsar as observed by the Cherenkov Telescope Array (CTA). The CTA pulse profile of the Crab pulsar is simulated with the specific goal of determining the accuracy of the position of the interpulse. We fit the pulse shape obtained by the Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) telescope with a three-Gaussian template and rescale it to account for the different CTA instrumental and observational configurations. Simulations are performed for different configurations of CTA and for the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) mini-array. The northern CTA configuration will provide an improvement of a factor of ˜3 in accuracy with an observing time comparable to that of MAGIC (73 h). Unless the VHE spectrum above 1 TeV behaves differently from what we presently know, unreasonably long observing times are required for a significant detection of the pulsations of the Crab pulsar with the high-energy-range sub-arrays. We also found that an independent VHE timing analysis is feasible with Large Size Telescopes. CTA will provide a significant improvement in determining the VHE pulse shape parameters necessary to constrain theoretical models of the gamma-ray emission of the Crab pulsar. One of such parameters is the shift in phase between peaks in the pulse profile at VHE and in other energy bands that, if detected, may point to different locations of the emission regions.

  13. Simulation studies of an air Cherenkov telescope, IceACT, for future IceCube surface extensions

    Energy Technology Data Exchange (ETDEWEB)

    Hansmann, Bengt; Auffenberg, Jan; Bekman, Ilja; Kemp, Julian; Roegen, Martin; Schaufel, Merlin; Stahlberg, Martin; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen, Aachen (Germany); Bretz, Thomas; Hebbeker, Thomas; Middendorf, Lukas; Niggemann, Tim; Schumacher, Johannes [III. Physikalisches Institut A, RWTH Aachen, Aachen (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceACT is a compact air Cherenkov telescope using silicon photomultipliers. The Fresnel lens based design has been adopted from the fluorescence telescope FAMOUS. The goal of IceACT is the efficient detection of cosmic ray induced air showers above the IceCube Neutrino Observatory at the geographic South Pole. This allows to distinguish cosmic ray induced muons and neutrinos in the southern sky from astrophysical neutrinos in the deep ice detector. This leads to an increase in low-background astrophysical neutrinos of several dozen events per year for a detection threshold of several 100 TeV cosmic ray primary energy. To determine the actual telescope performance, dedicated CORSIKA air shower simulations incorporating the full Cherenkov light information are performed.

  14. New electronics for the Cherenkov Telescope Array (NECTAr)

    International Nuclear Information System (INIS)

    Naumann, C.L.; Delagnes, E.; Bolmont, J.; Corona, P.; Dzahini, D.; Feinstein, F.; Gascón, D.; Glicenstein, J.-F.; Guilloux, F.; Nayman, P.; Rarbi, F.; Sanuy, A.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-01-01

    The international CTA consortium has recently entered into its preparatory phase towards the construction of the next-generation Cherenkov Telescope Array CTA. This experiment will be a successor, and based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS, and aims to significantly improve upon the sensitivity as well as the energy range of its highly successful predecessors. Construction is planned to begin by 2013, and when finished, CTA will be able to explore the highest-energy gamma ray sky in unprecedented detail. To achieve this increase in sensitivity and energy range, CTA will employ the order of 100 telescopes of three different sizes on two sites, with around 1000–4000 channels per camera, depending on the telescope size. To equip and reliably operate the order of 100000 channels of photodetectors (compared to 6000 of the H.E.S.S. array), a new kind of flexible and powerful yet inexpensive front-end hardware will be required. One possible solution is pursued by the NECTAr (New Electronics for the Cherenkov Telescope Array) project. Its main feature is the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC, which will allow very fast readout performances while significantly reducing the cost and the power consumption per channel. Also included is a low-cost FPGA for digital treatment and online data processing, as well as an Ethernet connection. Other priorities of NECTAr are the modularity of the system, a high degree of flexibility in the trigger system as well as the possibility of flexible readout modes to optimise the signal-to-noise ratio while at the same time allowing a significant reduction of data rates, both of which could improve the sensitivity of CTA compared to current detection systems. This paper gives an overview over the development work for the Nectar system, with particular focus on its main

  15. New electronics for the Cherenkov Telescope Array (NECTAr)

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, C.L., E-mail: christopher.naumann@lpnhe.in2p3.fr [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Delagnes, E. [IRFU, CEA/DSM, Saclay, Gif-sur-Yvette (France); Bolmont, J.; Corona, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Dzahini, D. [LPSC, Universite Joseph Fourier, INPG and IN2P3/CNRS, Grenoble (France); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Gascon, D. [ICC-UB, Universitat Barcelona (Spain); Glicenstein, J.-F.; Guilloux, F. [IRFU, CEA/DSM, Saclay, Gif-sur-Yvette (France); Nayman, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Rarbi, F. [LPSC, Universite Joseph Fourier, INPG and IN2P3/CNRS, Grenoble (France); Sanuy, A. [ICC-UB, Universitat Barcelona (Spain); Tavernet, J.-P.; Toussenel, F.; Vincent, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Vorobiov, S. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); DESY Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany)

    2012-12-11

    The international CTA consortium has recently entered into its preparatory phase towards the construction of the next-generation Cherenkov Telescope Array CTA. This experiment will be a successor, and based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS, and aims to significantly improve upon the sensitivity as well as the energy range of its highly successful predecessors. Construction is planned to begin by 2013, and when finished, CTA will be able to explore the highest-energy gamma ray sky in unprecedented detail. To achieve this increase in sensitivity and energy range, CTA will employ the order of 100 telescopes of three different sizes on two sites, with around 1000-4000 channels per camera, depending on the telescope size. To equip and reliably operate the order of 100000 channels of photodetectors (compared to 6000 of the H.E.S.S. array), a new kind of flexible and powerful yet inexpensive front-end hardware will be required. One possible solution is pursued by the NECTAr (New Electronics for the Cherenkov Telescope Array) project. Its main feature is the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC, which will allow very fast readout performances while significantly reducing the cost and the power consumption per channel. Also included is a low-cost FPGA for digital treatment and online data processing, as well as an Ethernet connection. Other priorities of NECTAr are the modularity of the system, a high degree of flexibility in the trigger system as well as the possibility of flexible readout modes to optimise the signal-to-noise ratio while at the same time allowing a significant reduction of data rates, both of which could improve the sensitivity of CTA compared to current detection systems. This paper gives an overview over the development work for the Nectar system, with particular focus on its main

  16. New electronics for the Cherenkov Telescope Array (NECTAr)

    Science.gov (United States)

    Naumann, C. L.; Delagnes, E.; Bolmont, J.; Corona, P.; Dzahini, D.; Feinstein, F.; Gascón, D.; Glicenstein, J.-F.; Guilloux, F.; Nayman, P.; Rarbi, F.; Sanuy, A.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-12-01

    The international CTA consortium has recently entered into its preparatory phase towards the construction of the next-generation Cherenkov Telescope Array CTA. This experiment will be a successor, and based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS, and aims to significantly improve upon the sensitivity as well as the energy range of its highly successful predecessors. Construction is planned to begin by 2013, and when finished, CTA will be able to explore the highest-energy gamma ray sky in unprecedented detail. To achieve this increase in sensitivity and energy range, CTA will employ the order of 100 telescopes of three different sizes on two sites, with around 1000-4000 channels per camera, depending on the telescope size. To equip and reliably operate the order of 100000 channels of photodetectors (compared to 6000 of the H.E.S.S. array), a new kind of flexible and powerful yet inexpensive front-end hardware will be required. One possible solution is pursued by the NECTAr (New Electronics for the Cherenkov Telescope Array) project. Its main feature is the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC, which will allow very fast readout performances while significantly reducing the cost and the power consumption per channel. Also included is a low-cost FPGA for digital treatment and online data processing, as well as an Ethernet connection. Other priorities of NECTAr are the modularity of the system, a high degree of flexibility in the trigger system as well as the possibility of flexible readout modes to optimise the signal-to-noise ratio while at the same time allowing a significant reduction of data rates, both of which could improve the sensitivity of CTA compared to current detection systems. This paper gives an overview over the development work for the Nectar system, with particular focus on its main

  17. Calibration strategies for the Cherenkov Telescope Array

    Science.gov (United States)

    Gaug, Markus; Berge, David; Daniel, Michael; Doro, Michele; Förster, Andreas; Hofmann, Werner; Maccarone, Maria C.; Parsons, Dan; de los Reyes Lopez, Raquel; van Eldik, Christopher

    2014-08-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the height-resolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum.

  18. Commissioning and first tests of the MAGIC telescope

    Science.gov (United States)

    Baixeras, C.; Bastieri, D.; Bigongiari, C.; Blanch, O.; Blanchot, G.; Bock, R.; Bretz, T.; Chilingarian, A.; Coarasa, J. A.; Colombo, E.; Contreras, J. C.; Corti, D.; Cortina, J.; Domingo, C.; Domingo, E.; Ferenc, D.; Fernández, E.; Flix, J.; Fonseca, V.; Font, L.; Galante, N.; Gaug, M.; Garczarczyk, M.; Gebauer, J.; Giller, M.; Goebel, F.; Hengstebeck, T.; Jacone, P.; de Jager, O. C.; Kalekin, O.; Kestel, M.; Kneiske, T.; Laille, A.; López, M.; López, J.; Lorenz, E.; Mannheim, K.; Mariotti, M.; Martínez, M.; Mase, K.; Merck, M.; Meucci, M.; Miralles, L.; Mirzoyan, R.; Moralejo, A.; Wilhelmi, E. Oña; Orduña, R.; Paneque, D.; Paoletti, R.; Pascoli, D.; Pavel, N.; Pegna, R.; Peruzzo, L.; Piccioli, A.; Roberts, A.; Reyes, R.; Saggion, A.; Sánchez, A.; Sartori, P.; Scalzotto, V.; Schweizer, T.; Sillanpaa, A.; Sobczynska, D.; Stamerra, A.; Stepanian, A.; Stiehler, R.; Takalo, L.; Teshima, M.; Tonello, N.; Torres, A.; Turini, N.; Vitale, V.; Volkov, S.; Wagner, R. M.; Wibig, T.; Wittek, W.

    2004-02-01

    Major Atmospheric Gamma Imaging Cherenkov telescope is starting its operations with a set of engineering runs to tune the telescope subsystem elements to be ready for the first physics campaign. Many technical improvements have been developed and implemented in several elements of the telescope to reach the lowest energy threshold ever obtained by an Imaging Atmospheric Cherenkov Telescope. A general description of the telescope is presented. The commissioning of the telescope's elements is described and the expected performances are reviewed with the final detector set-up.

  19. NECTAr0, a new high speed digitizer ASIC for the Cherenkov telescope array

    International Nuclear Information System (INIS)

    Delagnes, E.; Glicenstein, J.F.; Guilloux, F.; Bolmont, J.; Corona, P.; Naumann, C.L.; Nayman, P.; Tavemet, J.P.; Toussenel, F.; Vincent, P.; Dzahini, D.; Rarbi, F.; Feinstein, F.; Vorobiov, S.; Gascon, D.; Sanuy, A.

    2011-01-01

    H.E.S.S. and MAGIC experiments have demonstrated the high level of maturity of Imaging Atmospheric Cherenkov Telescopes (IACTs) dedicated to very-high-energy gamma ray astronomy domain. The astro-particle physics community is preparing the next generation of instruments, with sensitivity improved by an order of magnitude in the 10 GeV to 100 TeV range. To reach this goal, the Cherenkov Telescope Array (CTA) will consist in an array of 50-100 dishes of various sizes and various spacing, each equipped with a camera, made of few thousands fast photo-detectors and its associated front-end electronics. The total number of electronics channels will be larger than 100,000 to be compared to the total of 6,000 channels of the 5-telescopes H.E.S.S.-I H.E.S.S.-II array. To decrease the overall CTA cost, a consequent effort should be done to lower the cost of the electronics while keeping performance at least as good as the one demonstrated on the current experiments and simplifying its maintenance. This will be allowed by mass production, use of standardized modules and integration of front-end functions in ASICs. The 3-year NECTAr program started in 2009 addresses these two topics. Its final aim is to develop and test a demonstrator module of a generic CTA camera. The paper is mainly focused on one of the main components of this module, the NECTAr ASIC which samples the photo-detector signal in a circular analog memory at several GSPS and digitizes it over 12 bits after having received an external trigger. (authors)

  20. FACT - Status and experience from five years of operation of the first G-APD Cherenkov Telescope

    Science.gov (United States)

    Neise, D.; Adam, J.; Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Brügge, K. A.; Buss, J.; Dmytriiev, A.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Linhoff, L.; Mannheim, K.; Müller, S.; Neronov, A.; Nöthe, M.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Walter, R.

    2017-12-01

    The First G-APD Cherenkov Telescope (FACT) demonstrates the usability of novel Geiger-mode operated Avalanche Photo Diodes (G-APD, often called SiPM) for Imaging Atmospheric Cherenkov Telescopes (IACT). The camera consists of 1440 pixels with dedicated electronics operating at 2 Giga samples per second. It is installed on the refurbished HEGRA telescope with a mirror area of ≈ 9.5m2 on the Canary Island La Palma. FACT is taking data almost every night since the camera was installed in October 2011. It was possible to improve the data taking efficiency to very high values due to the very stable and reliable operation. This also allows to operate FACT remotely without any need for operators on site. Even remote human intervention became less and less frequent over the years, allowing operation to become mostly automatic. FACT is monitoring the long-term behavior of some very-high energy variable extra-galactic sources with unparalleled sampling density as well as testing the behavior of the sensors under severe weather conditions. Due to the long exposure of FACT's G-APDs under strong moonlight conditions it was possible to evaluate the aging effects of G-APDs due to collected charge. No indication of aging was found. No external calibration device is needed to operate FACT since the properties of the sensors themselves allow for a high precision self-calibration of the camera.

  1. The readout and control system of the mid-size telescope prototype of the Cherenkov telescope array

    International Nuclear Information System (INIS)

    Oya, I; Anguner, O; Birsin, E; Schwanke, U; Behera, B; Melkumyan, D; Schmidt, T; Sternberger, R; Wegner, P; Wiesand, S; Fuessling, M

    2014-01-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  2. The readout and control system of the mid-size telescope prototype of the Cherenkov Telescope Array

    Science.gov (United States)

    Oya, I.; Anguner, O.; Behera, B.; Birsin, E.; Fuessling, M.; Melkumyan, D.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.; Cta Consortium,the

    2014-06-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  3. Primary gamma ray selection in a hybrid timing/imaging Cherenkov array

    Directory of Open Access Journals (Sweden)

    Postnikov E.B.

    2017-01-01

    Full Text Available This work is a methodical study on hybrid reconstruction techniques for hybrid imaging/timing Cherenkov observations. This type of hybrid array is to be realized at the gamma-observatory TAIGA intended for very high energy gamma-ray astronomy (> 30 TeV. It aims at combining the cost-effective timing-array technique with imaging telescopes. Hybrid operation of both of these techniques can lead to a relatively cheap way of development of a large area array. The joint approach of gamma event selection was investigated on both types of simulated data: the image parameters from the telescopes, and the shower parameters reconstructed from the timing array. The optimal set of imaging parameters and shower parameters to be combined is revealed. The cosmic ray background suppression factor depending on distance and energy is calculated. The optimal selection technique leads to cosmic ray background suppression of about 2 orders of magnitude on distances up to 450 m for energies greater than 50 TeV.

  4. Prospects for Gamma-Ray Burst detection by the Cherenkov Telescope Array

    Directory of Open Access Journals (Sweden)

    Bissaldi E.

    2017-01-01

    Full Text Available The Large Area Telescope (LAT on the Fermi satellite is expected to publish a catalogue with more than 100 Gamma-Ray Bursts (GRBs detected above 100 MeV thanks to a new detection algorithm and a new event reconstruction. This work aims at revising the prospects for GRB alerts with the Cherenkov Telescope Array (CTA based on the new LAT results. We start considering the simulation of the observations with the full CTA of two extremely bright events, the long GRB 130427A and the short GRB 090510, then we investigate how these GRBs would be observed by a particular configuration of the array with the telescopes pointing to different directions in what is called the “coupled divergent mode”.

  5. CTA-A project for a new generation of Cherenkov telescopes

    International Nuclear Information System (INIS)

    Doro, Michele

    2011-01-01

    Gamma-rays provide a powerful insight into the non-thermal universe and perhaps a unique probe for new physics beyond the standard model. Current experiments are already giving results in the physics of acceleration of cosmic rays in supernova remnants, pulsar and active galactic nuclei with a 100 sources detected at very-high-energies so far. Despite its relatively recent appearance, very high-energy gamma-ray astronomy has proven to have reached a mature technology with fast assembling, relatively cheap and reliable telescopes. The goal of future installation is to increase the sensitivity by a factor 10 compared to current installations, and enlarge the energy domain from few 10s of GeV to a 100 TeV. Gamma-ray spectra of astrophysical origin are rather soft thus hardly one single size telescope can cover more than 1.5 decades in energy, therefore an array of telescopes of 2-3 different sizes is required. Hereafter, we present design considerations for a Cherenkov Telescope Array (CTA), a project for a new generation of highly automated telescopes for gamma-ray astronomy. The status of the project, technical solutions and an insight in the involved physics will be presented.

  6. CELESTE an atmospheric Cherenkov telescope for high energy gamma astrophysics

    CERN Document Server

    Paré, E; Bazer-Bachi, R; Bergeret, H; Berny, F; Briand, N; Bruel, P; Cerutti, M; Collon, J; Cordier, A; Cornebise, P; Debiais, G; Dezalay, J P; Dumora, D; Durand, E; Eschstruth, P T; Espigat, P; Fabre, B; Fleury, P; Gilly, J; Gouillaud, J C; Gregory, C; Herault, N; Holder, J; Hrabovsky, M; Incerti, S; Jouenne, A; Kalt, L; Legallou, R; Lott, B; Lodygensky, O; Manigot, P; Manseri, H; Manitaz, H; Martin, M; Morano, R; Morineaud, G; Muenz, F; Musquere, A; Naurois, M D; Neveu, J; Noppe, J M; Olive, J F; Palatka, M; Pérez, A; Quebert, J; Rebii, A; Reposeur, T; Rob, L; Roy, P; Sans, J L; Sako, T; Schovanek, P; Smith, D A; Snabre, P; Villard, G

    2002-01-01

    CELESTE is an atmospheric Cherenkov telescope based on the sampling method which makes use of the de-commissioned THEMIS solar electrical plant in the French Pyrenees. A large (2000 m sup 2) mirror surface area from 40 independent heliostats followed by a secondary optic, a trigger system using analog summing techniques and signal digitization with 1 GHz flash ADCs make possible the detection of cosmic gamma-rays down to 30 GeV. This paper provides a detailed technical description of the CELESTE installation.

  7. FACT light collection - solid light concentrators in Cherenkov Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Isabel [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Collaboration: FACT-Collaboration

    2011-07-01

    Pixelized cameras of Imaging Atmospheric Cherenkov Telescopes use hollow light guides with reflective surfaces based on the Winston cone design. These cones minimize insensitive spaces between the photo sensors and shield the camera from stray background light by limiting the angular acceptance to the primary reflector area. FACT (First G-APD Cherenkov Telescope) will be the first IACT with Geiger-mode avalanche photodiodes as light sensors. Solid light concentrators complementing these sensors will be used instead of hollow Winston cones. We will present simulations and measurements of our light collector design, which was optimized for the requirements of the FACT telescope and detector, and discuss the specific differences to more traditional solutions.

  8. A major electronics upgrade for the H.E.S.S. Cherenkov telescopes 1-4

    CERN Document Server

    Giavitto, G; Balzer, A.; Berge, D.; Brun, F.; Chaminade, T.; Delagnes, E.; Fontaine, G.; Füßling, M.; Giebels, B.; Glicenstein, J.F.; Gräber, T.; Hinton, J.A.; Jahnke, A.; Klepser, S.; Kossatz, M.; Kretzschmann, A.; Lefranc, V.; Leich, H.; Lüdecke, H.; Manigot, P.; Marandon, V.; Moulin, E.; de, M.; Nayman, P.; Penno, M.; Ross, D.; Salek, D.; Schade, M.; Schwab, T.; Simoni, R.; Stegmann, C.; Thornhill, J.; Toussenel, F.

    2015-01-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of imaging atmospheric Cherenkov telescopes (IACTs) located in the Khomas Highland in Namibia. It consists of four 12-m telescopes (CT1-4), which started operations in 2003, and a 28-m diameter one (CT5), which was brought online in 2012. It is the only IACT system featuring telescopes of different sizes, which provides sensitivity for gamma rays across a very wide energy range, from ~30 GeV up to ~100 TeV. Since the camera electronics of CT1-4 are much older than the one of CT5, an upgrade is being carried out; first deployment was in 2015, full operation is planned for 2016. The goals of this upgrade are threefold: reducing the dead time of the cameras, improving the overall performance of the array and reducing the system failure rate related to aging. Upon completion, the upgrade will assure the continuous operation of H.E.S.S. at its full sensitivity until and possibly beyond the advent of CTA. In the design of the new components, several CTA con...

  9. Mechanical design of SST-GATE, a dual-mirror telescope for the Cherenkov Telescope Array

    Science.gov (United States)

    Dournaux, Jean-Laurent; Huet, Jean-Michel; Amans, Jean-Philippe; Dumas, Delphine; Laporte, Philippe; Sol, Hélène; Blake, Simon

    2014-07-01

    The Cherenkov Telescope Array (CTA) project aims to create the next generation Very High Energy (VHE) gamma-ray telescope array. It will be devoted to the observation of gamma rays over a wide band of energy, from a few tens of GeV to more than 100 TeV. Two sites are foreseen to view the whole sky where about 100 telescopes, composed of three different classes, related to the specific energy region to be investigated, will be installed. Among these, the Small Size class of Telescopes, SSTs, are devoted to the highest energy region, to beyond 100 TeV. Due to the large number of SSTs, their unit cost is an important parameter. At the Observatoire de Paris, we have designed a prototype of a Small Size Telescope named SST-GATE, based on the dual-mirror Schwarzschild-Couder optical formula, which has never before been implemented in the design of a telescope. Over the last two years, we developed a mechanical design for SST-GATE from the optical and preliminary mechanical designs made by the University of Durham. The integration of this telescope is currently in progress. Since the early stages of mechanical design of SST-GATE, finite element method has been used employing shape and topology optimization techniques to help design several elements of the telescope. This allowed optimization of the mechanical stiffness/mass ratio, leading to a lightweight and less expensive mechanical structure. These techniques and the resulting mechanical design are detailed in this paper. We will also describe the finite element analyses carried out to calculate the mechanical deformations and the stresses in the structure under observing and survival conditions.

  10. Development of the quality control system of the readout electronics for the large size telescope of the Cherenkov Telescope Array observatory

    Science.gov (United States)

    Konno, Y.; Kubo, H.; Masuda, S.; Paoletti, R.; Poulios, S.; Rugliancich, A.; Saito, T.

    2016-07-01

    The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards.

  11. Template analysis for the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Uta [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2016-07-01

    The MAGIC telescopes are two 17-m-diameter Imaging Air Cherenkov Telescopes located on the Canary island of La Palma. They record the Cherenkov light from air showers induced by very high energy photons. The current data analysis uses a parametrization of the two shower images (including Hillas parameters) to determine the characteristics of the primary particle. I am implementing an advanced analysis method that compares shower images on a pixel basis with template images based on Monte Carlo simulations. To reduce the simulation effort the templates contain only pure shower images that are convolved with the telescope response later in the analysis. The primary particle parameters are reconstructed by maximizing the likelihood of the template. By using all the information available in the shower images, the performance of MAGIC is expected to improve. In this presentation I will explain the general idea of a template-based analysis and show the first results of the implementation.

  12. Searches for dark matter self-annihilation signals from dwarf spheroidal galaxies and the Fornax galaxy cluster with imaging air Cherenkov telescopes

    International Nuclear Information System (INIS)

    Opitz, Bjoern Helmut Bastian

    2014-06-01

    Many astronomical observations indicate that dark matter pervades the universe and dominates the formation and dynamics of cosmic structures. Weakly interacting massive particles (WIMPs) with masses in the GeV to TeV range form a popular class of dark matter candidates. WIMP self-annihilation may lead to the production of γ-rays in the very high energy regime above 100 GeV, which is observable with imaging air Cherenkov telescopes (IACTs). For this thesis, observations of dwarf spheroidal galaxies (dSph) and the Fornax galaxy cluster with the Cherenkov telescope systems H.E.S.S., MAGIC and VERITAS were used to search for γ-ray signals of dark matter annihilations. The work consists of two parts: First, a likelihood-based statistical technique was introduced to combine published results of dSph observations with the different IACTs. The technique also accounts for uncertainties on the ''J factors'', which quantify the dark matter content of the dwarf galaxies. Secondly, H.E.S.S. observations of the Fornax cluster were analyzed. In this case, a collection of dark matter halo models was used for the J factor computation. In addition, possible signal enhancements from halo substructures were considered. None of the searches yielded a significant γ-ray signal. Therefore, the results were used to place upper limits on the thermally averaged dark matter self-annihilation cross-section left angle σν right angle. Different models for the final state of the annihilation process were considered. The cross-section limits range from left angle σν right angle UL ∝10 -19 cm 3 s -1 to left angle σν right angle UL ∝10 -25 cm 3 s -1 for dark matter particles masses between 100 GeV and 100 TeV. Some of the diverse model uncertainties causing this wide range of left angle σν right angle UL values were analyzed.

  13. Remote Cherenkov imaging-based quality assurance of a magnetic resonance image-guided radiotherapy system.

    Science.gov (United States)

    Andreozzi, Jacqueline M; Mooney, Karen E; Brůža, Petr; Curcuru, Austen; Gladstone, David J; Pogue, Brian W; Green, Olga

    2018-06-01

    Tools to perform regular quality assurance of magnetic resonance image-guided radiotherapy (MRIgRT) systems should ideally be independent of interference from the magnetic fields. Remotely acquired optical Cherenkov imaging-based dosimetry measurements in water were investigated for this purpose, comparing measures of dose accuracy, temporal dynamics, and overall integrated IMRT delivery. A 40 × 30.5 × 37.5 cm 3 water tank doped with 1 g/L of quinine sulfate was imaged using an intensified charge-coupled device (ICCD) to capture the Cherenkov emission while being irradiated by a commercial MRIgRT system (ViewRay™). The ICCD was placed down-bore at the end of the couch, 4 m from treatment isocenter and behind the 5-Gauss line of the 0.35-T MRI. After establishing optimal camera acquisition settings, square beams of increasing size (4.2 × 4.2 cm 2 , 10.5 × 10.5 cm 2 , and 14.7 × 14.7 cm 2 ) were imaged at 0.93 frames per second, from an individual cobalt-60 treatment head, to develop projection measures related to percent depth dose (PDD) curves and cross beam profiles (CPB). These Cherenkov-derived measurements were compared to ionization chamber (IC) and radiographic film dosimetry data, as well as simulation data from the treatment planning system (TPS). An intensity-modulated radiotherapy (IMRT) commissioning plan from AAPM TG-119 (C4:C-Shape) was also imaged at 2.1 frames per second, and the single linear sum image from 509 s of plan delivery was compared to the dose volume prediction generated by the TPS using gamma index analysis. Analysis of standardized test target images (1024 × 1024 pixels) yielded a pixel resolution of 0.37 mm/pixel. The beam width measured from the Cherenkov image-generated projection CBPs was within 1 mm accuracy when compared to film measurements for all beams. The 502 point measurements (i.e., pixels) of the Cherenkov image-based projection percent depth dose curves (pPDDs) were compared to p

  14. DIRC, the internally reflecting ring imaging Cherenkov detector for BABAR

    International Nuclear Information System (INIS)

    Adam, I.; Aston, D.

    1997-11-01

    The DIRC is a new type of Cherenkov imaging device that will be used for the first time in the BABAR detector at the asymmetric B-factory, PEP-II. It is based on total internal reflection and uses long, rectangular bars made from synthetic fused silica as Cherenkov radiator and light guide. The principles of the DIRC ring imaging Cherenkov technique are explained and results from the prototype program are presented. Its choice for the BABAR detector particle identification system is motivated, followed by a discussion of the quartz radiator properties and the detector design

  15. On the prospects of cross-calibrating the Cherenkov Telescope Array with an airborne calibration platform

    Science.gov (United States)

    Brown, Anthony M.

    2018-01-01

    Recent advances in unmanned aerial vehicle (UAV) technology have made UAVs an attractive possibility as an airborne calibration platform for astronomical facilities. This is especially true for arrays of telescopes spread over a large area such as the Cherenkov Telescope Array (CTA). In this paper, the feasibility of using UAVs to calibrate CTA is investigated. Assuming a UAV at 1km altitude above CTA, operating on astronomically clear nights with stratified, low atmospheric dust content, appropriate thermal protection for the calibration light source and an onboard photodiode to monitor its absolute light intensity, inter-calibration of CTA's telescopes of the same size class is found to be achievable with a 6 - 8 % uncertainty. For cross-calibration of different telescope size classes, a systematic uncertainty of 8 - 10 % is found to be achievable. Importantly, equipping the UAV with a multi-wavelength calibration light source affords us the ability to monitor the wavelength-dependent degradation of CTA telescopes' optical system, allowing us to not only maintain this 6 - 10 % uncertainty after the first few years of telescope deployment, but also to accurately account for the effect of multi-wavelength degradation on the cross-calibration of CTA by other techniques, namely with images of air showers and local muons. A UAV-based system thus provides CTA with several independent and complementary methods of cross-calibrating the optical throughput of individual telescopes. Furthermore, housing environmental sensors on the UAV system allows us to not only minimise the systematic uncertainty associated with the atmospheric transmission of the calibration signal, it also allows us to map the dust content above CTA as well as monitor the temperature, humidity and pressure profiles of the first kilometre of atmosphere above CTA with each UAV flight.

  16. Prototyping a 10Gigabit-Ethernet Event-Builder for a Cherenkov Telescope Array

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    We present the prototyping of a 10Gigabit-Ethernet based UDP data acquisition (DAQ) system that has been conceived in the context of the Array and Control group of CTA (Cherenkov Telescope Array). The CTA consortium plans to build the next generation ground-based gamma-ray instrument, with approximately 100 telescopes of at least three different sizes installed on two sites. The genuine camera dataflow amounts to 1.2 GByte/s per camera. We have conceived and built a prototype of a front-end event builder DAQ able to receive and compute such a data rate, allowing a more sustainable level for the central data logging of the site by data reduction. We took into account characteristics and constraints of several camera electronics projects in CTA, thus keeping a generic approach to all front-end types. The big number of telescopes and the remoteness of the array sites imply that any front-end element must be robust and self-healing to a large extent. The main difficulty is to combine very high performances with a...

  17. The History of Ground-Based Very High Energy Gamma-Ray Astrophysics with the Atmospheric Air Cherenkov Telescope Technique

    Energy Technology Data Exchange (ETDEWEB)

    Mirzoyan, Razmik

    2013-06-15

    In the recent two decades the ground-based technique of imaging atmosphericescopes has established itself as a powerful new discipline in science. As of today some ∼ 150 sources of gamma rays of very different types, of both galactic and extragalactic origin, have been discovered due to this technique. The study of these sources is providing clues to many basic questions in astrophysics, astro-particle physics, physics of cosmic rays and cosmology. The current generation of telescopes, despite the young age of the technique, offers a solid performance. The technique is still maturing, leading to the next generation large instrument known under the name Cherenkov Telescope Array. The latter's sensitivity will be an order of magnitude higher than that of the currently best instruments VERITAS, H.E.S.S. and MAGIC. This article is devoted to outlining the milestones in a long history that step-by-step have given shape to this technique and have brought about today's successful source marathon.

  18. Prototype of a production system for Cherenkov Telescope Array with DIRAC

    International Nuclear Information System (INIS)

    Arrabito, L; Bregeon, J; Haupt, A; Graciani Diaz, R; Stagni, F; Tsaregorodtsev, A

    2015-01-01

    The Cherenkov Telescope Array (CTA) — an array of many tens of Imaging Atmospheric Cherenkov Telescopes deployed on an unprecedented scale — is the next generation instrument in the field of very high energy gamma-ray astronomy. CTA will operate as an open observatory providing data products to the scientific community. An average data stream of about 10 GB/s for about 1000 hours of observation per year, thus producing several PB/year, is expected. Large CPU time is required for data-processing as well for massive Monte Carlo simulations needed for detector calibration purposes. The current CTA computing model is based on a distributed infrastructure for the archive and the data off-line processing. In order to manage the off-line data-processing in a distributed environment, CTA has evaluated the DIRAC (Distributed Infrastructure with Remote Agent Control) system, which is a general framework for the management of tasks over distributed heterogeneous computing environments. In particular, a production system prototype has been developed, based on the two main DIRAC components, i.e. the Workload Management and Data Management Systems. After three years of successful exploitation of this prototype, for simulations and analysis, we proved that DIRAC provides suitable functionalities needed for the CTA data processing. Based on these results, the CTA development plan aims to achieve an operational production system, based on the DIRAC Workload Management System, to be ready for the start of CTA operation phase in 2017-2018. One more important challenge consists of the development of a fully automatized execution of the CTA workflows. For this purpose, we have identified a third DIRAC component, the so-called Transformation System, which offers very interesting functionalities to achieve this automatisation. The Transformation System is a ’data-driven’ system, allowing to automatically trigger data-processing and data management operations according to pre

  19. γ astrophysics above 10-30 GeV with the MAGIC telescope

    International Nuclear Information System (INIS)

    Mirzoyan, Razmick

    1999-01-01

    The project on the 17 m oe telescope, dubbed MAGIC (Major Atmospheric Gamma Imaging Cherenkov Telescope), is dedicated for γ astrophysics in the energy range from 10-30 GeV till 50-100 TeV. MAGIC will for the first time allow to explore with very high sensitivity the energy range 10-300 GeV and to bridge the existing energy gap between satellite and ground-based air Cherenkov measurements. We believe MAGIC will serve as a prototype for future multi-telescope γ ray observatories

  20. Real-time data acquisition and control system for the 349-pixel TACTIC atmospheric Cherenkov imaging telescope

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, K.K.; Koul, R.; Kanda, A.; Kaul, S.R.; Tickoo, A.K. E-mail: aktickoo@apsara.barc.ernet.in; Rannot, R.C.; Chandra, P.; Bhatt, N.; Chouhan, N.; Venugopal, K.; Kothari, M.; Goyal, H.C.; Dhar, V.K.; Kaul, S.K

    2004-07-21

    An interrupt-based multinode data acquisition and control system has been developed for the imaging element of the TACTIC {gamma}-ray telescope. The system which has been designed around a 3-node network of PCs running the QNX real-time operating system, provides single-point control with elaborate GUI facilities for operating the multi-pixel camera of the telescope. In addition to acquiring data from the 349-pixel photomultiplier tube based imaging camera in real time, the system also provides continuous monitoring and control of several vital parameters of the telescope for ensuring the quality of the data. The paper describes the salient features of the hardware and software of the data acquisition and control system of the telescope.

  1. Redshift measurement of Fermi blazars for the Cherenkov telescope array

    Science.gov (United States)

    Pita, S.; Goldoni, P.; Boisson, C.; Cotter, G.; Lefaucheur, J.; Lenain, J.-P.; Lindfors, E.; Williams, D. A.

    2017-01-01

    Blazars are active galactic nuclei, and the most numerous High Energy (HE) and Very High Energy (VHE) γ-ray emitters. Their optical emission is often dominated by non-thermal, and, in the case of BL Lacs, featureless continuum radiation. This makes the determination of their redshift extremely difficult. Indeed, as of today only about 50% of γ-ray blazars have a measured spectroscopic redshift. The knowledge of redshift is fundamental because it allows the precise modeling of the VHE emission and also of its interaction with the extragalactic background light (EBL). The beginning of the Cherenkov Telescope Array (CTA) operations in the near future will allow the detection of several hundreds of new blazars. Using the Fermi catalogue of sources above 50 GeV (2FHL), we performed simulations which indicate that a significant fraction of the 2FHL blazars detectable by CTA will not have a measured redshift. As a matter of fact, the organization of observing campaigns to measure the redshift of these blazars has been recognized as a necessary support for the AGN Key Science Project of CTA. We are planning such an observing campaign. In order to optimize our chances of success, we will perform preliminary deep imaging observations aimed at detecting or setting upper limits to the host galaxy. We will then take spectra of the candidates with the brightest host galaxies. Taking advantage of the recent success of an X-shooter GTO observing campaign, these observations will be different with respect to previous ones due to the use of higher resolution spectrographs and of 8 meter class telescopes. We are starting to submit proposals for these observations. In this paper we briefly describe how candidates are selected and the corresponding observation program.

  2. Study of the photon flux from the night sky at La Palma and Namibia, in the wavelength region relevant for imaging atmospheric Cherenkov telescopes

    International Nuclear Information System (INIS)

    Preuss, S.; Hermann, G.; Hofmann, W.; Kohnle, A.

    2002-01-01

    The level of the night-sky background light at La Palma and Namibia was determined, with emphasis on the wavelength region and solid angle coverage relevant for the operation of imaging atmospheric Cherenkov telescopes. The dependence of the night-sky background light both on celestial coordinates (alt,az) and on galactic coordinates (b,l) was measured, with an angular resolution of about 1 deg. Average light levels near the zenith are similar in both locations -2.2x10 12 -2.6x10 12 photons sr -1 s -1 m -2 for 300 nm<λ<650 nm. With increasing zenith angle the level of background light increases at La Palma, whereas a constant level is measured in Namibia. Near the center of the Milky Way, background light levels are increased by a factor up to 4 and more. Also the level of light backscattered from the ground has been studied

  3. Characterization of EASIROC as front-end for the readout of the SiPM at the focal plane of the Cherenkov telescope ASTRI

    International Nuclear Information System (INIS)

    Impiombato, D.; Giarrusso, S.; Mineo, T.; Belluso, M.; Billotta, S.; Bonanno, G.; Catalano, O.; Grillo, A.; La Rosa, G.; Marano, D.; Sottile, G.

    2013-01-01

    The Extended Analogue Silicon Photo-multiplier Integrated Read Out Chip, EASIROC, is a chip proposed as front-end of the camera at the focal plane of the imaging Cherenkov ASTRI SST-2M telescope prototype. This paper presents the results of the measurements performed to characterize EASIROC in order to evaluate its compliance with the ASTRI SST-2M focal plane requirements. In particular, we investigated the trigger time walk and the jitter effects as a function of the pulse amplitude. The EASIROC output signal is found to vary linearly as a function of the input pulse amplitude with very low level of electronic noise and cross-talk (<1%). Our results show that it is suitable as front-end chip for the camera prototype, although, specific modifications are necessary to adopt the device in the final version of the telescope

  4. Cherenkov water detector NEVOD

    Science.gov (United States)

    Petrukhin, A. A.

    2015-05-01

    A unique multipurpose Cherenkov water detector, the NEVOD facility, uses quasispherical measuring modules to explore all the basic components of cosmic rays on Earth's surface, including neutrinos. Currently, the experimental complex includes the Cherenkov water detector, a calibration telescope system, and a coordinate detector. This paper traces the basic development stages of NEVOD, examines research directions, presents the results obtained, including the search for the solution to the 'muon puzzle', and discusses possible future development prospects.

  5. The Advanced Gamma-ray Imaging System (AGIS) Telescope Optical System Designs

    Science.gov (United States)

    Bugaev, V.; Buckley, J.; Diegel, S.; Falcone, A.; Fegan, S.; Finley, J.; Guarino, V.; Hanna, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Ramsey, B.; Romani, R.; Vassiliev, V.; Weekes, T.

    2008-12-01

    AGIS is a conceptual design for a future ground-based gamma-ray observatory operating in the energy range 25 GeV-100 TeV, which is based on an array of ~20-100 imaging atmospheric Cherenkov telescopes (IACTs). The desired improvement in sensitivity, angular resolution, and reliability of operation of AGIS imposes demanding technological and cost requirements on the design of the IACTs. We are considering several options for the optical system (OS) of the AGIS telescopes, which include the traditional Davies-Cotton design as well as novel two-mirror design. Emerging mirror production technologies based on replication processes such as cold and hot glass slumping, cured carbon fiber reinforced plastic (CFRP), and electroforming provide new opportunities for cost-effective solutions for the design of the OS.

  6. The Advanced Gamma-ray Imaging System (AGIS): Telescope Mechanical Designs

    Science.gov (United States)

    Guarino, V.; Buckley, J.; Byrum, K.; Falcone, A.; Fegan, S.; Finley, J.; Hanna, D.; Horan, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Wagner, R.; Woods, M.; Vassiliev, V.

    2008-04-01

    The concept of a future ground-based gamma-ray observatory, AGIS, in the energy range 40 GeV-100 TeV is based on an array of sim 100 imaging atmospheric Cherenkov telescopes (IACTs). The anticipated improvements of AGIS sensitivity, angular resolution and reliability of operation impose demanding technological and cost requirements on the design of IACTs. The relatively inexpensive Davies-Cotton telescope design has been used in ground-based gamma-ray astronomy for almost fifty years and is an excellent option. We are also exploring alternative designs and in this submission we focus on the recent mechanical design of a two-mirror telescope with a Schwarzschild-Couder (SC) optical system. The mechanical structure provides support points for mirrors and camera. The design was driven by the requirement of minimizing the deflections of the mirror support structures. The structure is also designed to be able to slew in elevation and azimuth at 10 degrees/sec.

  7. TU-AB-BRA-12: Quality Assurance of An Integrated Magnetic Resonance Image Guided Adaptive Radiotherapy Machine Using Cherenkov Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, J; Bruza, P; Saunders, S; Pogue, B [Dartmouth College, Hanover, NH (United States); Mooney, K; Curcuru, A; Green, O [Washington University School of Medicine, Saint Louis, MO (United States); Gladstone, D [Dartmouth-Hitchcock Med. Ctr., Lebanon, NH (Lebanon)

    2016-06-15

    Purpose: To investigate the viability of using Cherenkov imaging as a fast and robust method for quality assurance tests in the presence of a magnetic field, where other instruments can be limited. Methods: Water tank measurements were acquired from a clinically utilized adaptive magnetic resonance image guided radiation therapy (MR-IGRT) machine with three multileaf-collimator equipped 60Co sources. Cherenkov imaging used an intensified charge coupled device (ICCD) camera placed 3.5m from the treatment isocenter, looking down the bore of the 0.35T MRI into a water tank. Images were post-processed to make quantitative comparison between Cherenkov light intensity with both film and treatment planning system predictions, in terms of percent depth dose curves as well as lateral beam profile measurements. A TG-119 commissioning test plan (C4: C-Shape) was imaged in real-time at 6.33 frames per second to investigate the temporal and spatial resolution of the Cherenkov imaging technique. Results: A .33mm/pixel Cherenkov image resolution was achieved across 1024×1024 pixels in this setup. Analysis of the Cherenkov image of a 10.5×10.5cm treatment beam in the water tank successfully measured the beam width at the depth of maximum dose within 1.2% of the film measurement at the same point. The percent depth dose curve for the same beam was on average within 2% of ionization chamber measurements for corresponding depths between 3–100mm. Cherenkov video of the TG-119 test plan provided qualitative agreement with the treatment planning system dose predictions, and a novel temporal verification of the treatment. Conclusions: Cherenkov imaging was successfully used to make QA measurements of percent depth dose curves and cross beam profiles of MRI-IGRT radiotherapy machines after only several seconds of beam-on time and data capture; both curves were extracted from the same data set. Video-rate imaging of a dynamic treatment plan provided new information regarding temporal

  8. The Advanced Gamma-ray Imaging System (AGIS): Schwarzschild-Couder (SC) Telescope Mechanical and Optical System Design

    Science.gov (United States)

    Byrum, Karen L.; Vassiliev, V.; AGIS Collaboration

    2010-03-01

    AGIS is a concept for the next-generation ground-based gamma-ray observatory. It will be an array of 36 imaging atmospheric Cherenkov telescopes (IACTs) sensitive in the energy range from 50 GeV to 200 TeV. The required improvements in sensitivity, angular resolution, and reliability of operation relative to the present generation instruments imposes demanding technological and cost requirements on the design of AGIS telescopes. In this submission, we outline the status of the development of the optical and mechanical systems for a novel Schwarzschild-Couder two-mirror aplanatic telescope. This design can provide a field of view and angular resolution significantly better to those offered by the traditional Davies-Cotton optics utilized in present-day IACTs. Other benefits of the novel design include isochronous focusing and compatibility with cost-effective, high quantum efficiency image sensors such as multi-anode PMTs, silicon PMTs (SiPMs), or image intensifiers.

  9. Study of TeV range cosmic ray detection with Cherenkov imaging techniques

    International Nuclear Information System (INIS)

    Ansari, R.; Gaillard, J.M.; Parrour, G.

    1992-03-01

    The Monte Carlo study of cosmic ray detection in the TeV energy range has been triggered by the authors' interest in the ARTEMIS (Antimatter Research Through the Earth Moon Ion Spectrometer) proposal. The properties of cosmic ray showers detected by Cherenkov imaging in the visible domain are studied. The detection sensitivity and the accuracy of the reconstruction of the parent particle direction using Cherenkov imaging are discussed. The backbone of the study is the atmospheric shower Monte Carlo generator developed by A.M. Hillas. A comparison between nucleon and photon induced showers of Cherenkov detection is also included. (R.P.) 14 refs., 48 figs., 3 tabs

  10. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Allekotte, I.; Arnaldi, H.; Asorey, H.; Gomez Berisso, M.; Sofo Haro, M.; Cillis, A.; Rovero, A.C.; Supanitsky, A.D.; Actis, M.; Antico, F.; Bottani, A.; Ochoa, I.; Ringegni, P.; Vallejo, G.; De La Vega, G.; Etchegoyen, A.; Videla, M.; Gonzalez, F.; Pallota, J.; Quel, E.; Ristori, P.; Romero, G.E.; Suarez, A.; Papyan, G.; Pogosyan, L.; Sahakian, V.; Bissaldi, E.; Egberts, K.; Reimer, A.; Reimer, O.; Shellard, R.C.; Santos, E.M.; De Gouveia Dal Pino, E.M.; Kowal, G.; De Souza, V.; Todero Peixoto, C.J.; Maneva, G.; Temnikov, P.; Vankov, H.; Golev, V.; Ovcharov, E.; Bonev, T.; Dimitrov, D.; Hrupec, D.; Nedbal, D.; Rob, L.; Sillanpaa, A.; Takalo, L.; Beckmann, V.; Benallou, M.; Boutonnet, C.; Corlier, M.; Courty, B.; Djannati-Atai, A.; Dufour, C.; Gabici, S.; Guglielmi, L.; Olivetto, C.; Pita, S.; Punch, M.; Selmane, S.; Terrier, R.; Yoffo, B.; Brun, P.; Carton, P.H.; Cazaux, S.; Corpace, O.; Delagnes, E.; Disset, G.; Durand, D.; Glicenstein, J.F.; Guilloux, F.; Kosack, K.; Medina, C.; Micolon, P.; Mirabel, F.; Moulin, E.; Peyaud, B.; Reymond, J.M.; Veyssiere, C.

    2011-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA. (authors)

  11. The Advanced Gamma-ray Imaging System (AGIS): Telescope Optical System Designs

    Science.gov (United States)

    Vassiliev, Vladimir; Buckley, Jim; Falcone, Abe; Fegan, Steven; Finley, John; Gaurino, Victor; Hanna, David; Kaaret, Philip; Konopelko, Alex; Krawczynski, Henric; Romani, Roger; Weekes, Trevor

    2008-04-01

    AGIS is a conceptual design for a future ground-based gamma-ray observatory based on an array of ˜100 imaging atmospheric Cherenkov telescopes (IACTs) with a sensitivity to gamma-rays in the energy range 40 GeV-100 TeV. The anticipated improvement of AGIS sensitivity, angular resolution, and reliability of operation imposes demanding technological and cost requirements on the design of the IACTs. In this submission we focus on the optical system (OS) of the AGIS telescopes and consider options which include traditional Davies-Cotton and the other prime- focus telescope designs, as well as a novel two-mirror aplanatic OS originally proposed by Schwarzschild. Emerging new mirror production technologies based on replication processes such as cold and hot glass slumping, cured CFRP, and electroforming provide new opportunities for cost effective solutions for the design of the OS. We evaluate the capabilities of these mirror fabrication methods for the AGIS project.

  12. SU-G-IeP4-06: Feasibility of External Beam Treatment Field Verification Using Cherenkov Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Black, P; Na, Y; Wuu, C [Columbia University, New York, NY (United States)

    2016-06-15

    Purpose: Cherenkov light emission has been shown to correlate with ionizing radiation (IR) dose delivery in solid tissue. In order to properly correlate Cherenkov light images with real time dose delivery in a patient, we must account for geometric and intensity distortions arising from observation angle, as well as the effect of monitor units (MU) and field size on Cherenkov light emission. To test the feasibility of treatment field verification, we first focused on Cherenkov light emission efficiency based on MU and known field size (FS). Methods: Cherenkov light emission was captured using a PI-MAX4 intensified charge coupled device(ICCD) system (Princeton Instruments), positioned at a fixed angle of 40° relative to the beam central axis. A Varian TrueBeam linear accelerator (linac) was operated at 6MV and 600MU/min to deliver an Anterior-Posterior beam to a 5cm thick block phantom positioned at 100cm Source-to-Surface-Distance(SSD). FS of 10×10, 5×5, and 2×2cm{sup 2} were used. Before beam delivery projected light field images were acquired, ensuring that geometric distortions were consistent when measuring Cherenkov field discrepancies. Cherenkov image acquisition was triggered by linac target current. 500 frames were acquired for each FS. Composite images were created through summation of frames and background subtraction. MU per image was calculated based on linac pulse delay of 2.8ms. Cherenkov and projected light FS were evaluated using ImageJ software. Results: Mean Cherenkov FS discrepancies compared to light field were <0.5cm for 5.6, 2.8, and 8.6 MU for 10×10, 5×5, and 2×2cm{sup 2} FS, respectably. Discrepancies were reduced with increasing field size and MU. We predict a minimum of 100 frames is needed for reliable confirmation of delivered FS. Conclusion: Current discrepancies in Cherenkov field sizes are within a usable range to confirm treatment delivery in standard and respiratory gated clinical scenarios at MU levels appropriate to

  13. Cherenkov ring imaging using a television digitizer

    International Nuclear Information System (INIS)

    Charpak, G.; Peisert, A.; Sauli, F.; Cavestro, A.; Vascon, M.; Zanella, G.

    1981-01-01

    A Cherenkov ring imaging device using as photon detector a multistep spark chamber coupled to a television digitizer is described. Results of a test run using triethylamine as photo-ionizing vapour are presented, as well as preliminary results obtained with a new vapour having an extremely low ionization potential. (orig.)

  14. Effect of stars in the field of view of the VHE gamma-ray atmospheric Cherenkov telescope

    International Nuclear Information System (INIS)

    Badran, H.M.

    2004-01-01

    Very high energy gamma-ray astronomy in the energy range above 100 GeV has made dramatic progress through the development of imaging atmospheric Cherenkov telescopes (lACTs). The technique has been pivotal in the establishing the existence of a number of discrete gamma-ray sources. Normally due to the presence of stars in the field of view (FOV), a number of photomultiplier tubes (pmts) in the camera has to be turned off. This may have the effect of distorting some images that happens to be in that part of the camera. This may in turn affect the gamma-ray sensitivity of the telescope. The present study aims to shade some light on this possible effect. Experimental data on the extragalactic gamma-ray source Mrk 421 measured using the 10-m Whipple IACT were used for this purpose because of its relative dark FOV compared with other sources; e.g. the Crab nebula. To simulate the presence of star(s) in the FOV, the analysis program selects randomly a number of clusters of pmts to be turned off in the software. The pmts in each cluster have to be adjacent to each other (neighbors) and the selected clusters have to be separated from each other. The significance of the detected signal and the gamma-ray rate were then determined and compared with the original results. Clusters of 2, 3 and 4 pmts were used. The number of clusters was increased up to 12 clusters at various distances from the center of the FOV

  15. Cherenkov detectors for spatial imaging applications using discrete-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Paul B.; Erickson, Anna S., E-mail: erickson@gatech.edu [Georgia Institute of Technology, Nuclear and Radiological Engineering, G.W. Woodruff School of Mechanical Engineering, 770 State St., Atlanta, Georgia 30332 (United States)

    2016-08-14

    Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.

  16. UPPER LIMITS FROM FIVE YEARS OF BLAZAR OBSERVATIONS WITH THE VERITAS CHERENKOV TELESCOPES

    Energy Technology Data Exchange (ETDEWEB)

    Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Archer, A.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Biteau, J. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W.; Feng, Q.; Finley, J. P. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Fleischhack, H., E-mail: wystan.benbow@cfa.harvard.edu, E-mail: matteo.cerruti@lpnhe.in2p3.fr, E-mail: caajohns@ucsc.edu [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Collaboration: VERITAS collaboration; and others

    2016-06-01

    Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E > 100 GeV) γ -ray sources. In this work, we present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of ∼570 hr. The sample includes several unidentified Fermi -Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi -LAT catalog that are contained within the field of view of the VERITAS observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have spectroscopic distance estimates. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of four of them. For each of the blazars included in our sample, we provide the flux upper limit in the VERITAS energy band. We also study the properties of the significance distributions and we present the result of a stacked analysis of the data set, which shows a 4 σ excess.

  17. UPPER LIMITS FROM FIVE YEARS OF BLAZAR OBSERVATIONS WITH THE VERITAS CHERENKOV TELESCOPES

    International Nuclear Information System (INIS)

    Archambault, S.; Archer, A.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Cerruti, M.; Bird, R.; Biteau, J.; Buchovecky, M.; Byrum, K.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Feng, Q.; Finley, J. P.; Eisch, J. D.; Errando, M.; Falcone, A.; Fleischhack, H.

    2016-01-01

    Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E > 100 GeV) γ -ray sources. In this work, we present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of ∼570 hr. The sample includes several unidentified Fermi -Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi -LAT catalog that are contained within the field of view of the VERITAS observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have spectroscopic distance estimates. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of four of them. For each of the blazars included in our sample, we provide the flux upper limit in the VERITAS energy band. We also study the properties of the significance distributions and we present the result of a stacked analysis of the data set, which shows a 4 σ excess.

  18. The Timepix3 Telescope for LHCb Upgrade RD 1 measurements

    CERN Document Server

    Saunders, Daniel Martin

    2016-01-01

    The Timepix3 telescope is a high rate, data driven beam telescope created for LHCb upgrade studies, such as sensor performance for prototypes of the vertex locator (VELO) upgrade. When testing VELO prototypes the readout is identical to the telescope, and additionally, a simple way to integrate triggers from other detectors is also provided, allowing tracks to be synchronised offline with other devices under test. Examples of LHCb upgrade detectors which have been qualified with the Timepix3 telescope are the Upstream Tracker (UT), Scintillating Fibres (SciFi), Ring Imaging CHerenkov (RICH), and Time Of internally Reflected CHerenkov light (TORCH). The telescope was installed in the SPS North hall at CERN. It consists of 8 planes with 300 μ m p-on-n silicon sensors read out by Timepix3 ASICs. Tracks measured with the telescope have excellent temporal ( ∼ 1 ns) and spatial resolution ( 2 μ m). The telescope has been operated with a rate of tracks written to disk up to 5 MHz - limited only by conditions at ...

  19. MO-A-BRD-06: In Vivo Cherenkov Video Imaging to Verify Whole Breast Irradiation Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R; Glaser, A [Dartmouth College, Hanover, NH - New Hampshire (United States); Jarvis, L [Dartmouth-Hitchcock Medical Center, City Of Lebanon, New Hampshire (United States); Gladstone, D [Dartmouth-Hitchcock Medical Center, Hanover, City of Lebanon (Lebanon); Andreozzi, J; Hitchcock, W; Pogue, B [Dartmouth College, Hanover, NH (United States)

    2014-06-15

    Purpose: To show in vivo video imaging of Cherenkov emission (Cherenkoscopy) can be acquired in the clinical treatment room without affecting the normal process of external beam radiation therapy (EBRT). Applications of Cherenkoscopy, such as patient positioning, movement tracking, treatment monitoring and superficial dose estimation, were examined. Methods: In a phase 1 clinical trial, including 12 patients undergoing post-lumpectomy whole breast irradiation, Cherenkov emission was imaged with a time-gated ICCD camera synchronized to the radiation pulses, during 10 fractions of the treatment. Images from different treatment days were compared by calculating the 2-D correlations corresponding to the averaged image. An edge detection algorithm was utilized to highlight biological features, such as the blood vessels. Superficial dose deposited at the sampling depth were derived from the Eclipse treatment planning system (TPS) and compared with the Cherenkov images. Skin reactions were graded weekly according to the Common Toxicity Criteria and digital photographs were obtained for comparison. Results: Real time (fps = 4.8) imaging of Cherenkov emission was feasible and feasibility tests indicated that it could be improved to video rate (fps = 30) with system improvements. Dynamic field changes due to fast MLC motion were imaged in real time. The average 2-D correlation was about 0.99, suggesting the stability of this imaging technique and repeatability of patient positioning was outstanding. Edge enhanced images of blood vessels were observed, and could serve as unique biological markers for patient positioning and movement tracking (breathing). Small discrepancies exists between the Cherenkov images and the superficial dose predicted from the TPS but the former agreed better with actual skin reactions than did the latter. Conclusion: Real time Cherenkoscopy imaging during EBRT is a novel imaging tool that could be utilized for patient positioning, movement tracking

  20. Cherenkov imaging method for rapid optimization of clinical treatment geometry in total skin electron beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, Jacqueline M., E-mail: Jacqueline.M.Andreozzi.th@dartmouth.edu, E-mail: Lesley.A.Jarvis@hitchcock.org; Glaser, Adam K. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J.; Williams, Benjamin B.; Jarvis, Lesley A., E-mail: Jacqueline.M.Andreozzi.th@dartmouth.edu, E-mail: Lesley.A.Jarvis@hitchcock.org [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States); Pogue, Brian W. [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2016-02-15

    Purpose: A method was developed utilizing Cherenkov imaging for rapid and thorough determination of the two gantry angles that produce the most uniform treatment plane during dual-field total skin electron beam therapy (TSET). Methods: Cherenkov imaging was implemented to gather 2D measurements of relative surface dose from 6 MeV electron beams on a white polyethylene sheet. An intensified charge-coupled device camera time-gated to the Linac was used for Cherenkov emission imaging at sixty-two different gantry angles (1° increments, from 239.5° to 300.5°). Following a modified Stanford TSET technique, which uses two fields per patient position for full body coverage, composite images were created as the sum of two beam images on the sheet; each angle pair was evaluated for minimum variation across the patient region of interest. Cherenkov versus dose correlation was verified with ionization chamber measurements. The process was repeated at source to surface distance (SSD) = 441, 370.5, and 300 cm to determine optimal angle spread for varying room geometries. In addition, three patients receiving TSET using a modified Stanford six-dual field technique with 6 MeV electron beams at SSD = 441 cm were imaged during treatment. Results: As in previous studies, Cherenkov intensity was shown to directly correlate with dose for homogenous flat phantoms (R{sup 2} = 0.93), making Cherenkov imaging an appropriate candidate to assess and optimize TSET setup geometry. This method provided dense 2D images allowing 1891 possible treatment geometries to be comprehensively analyzed from one data set of 62 single images. Gantry angles historically used for TSET at their institution were 255.5° and 284.5° at SSD = 441 cm; however, the angles optimized for maximum homogeneity were found to be 252.5° and 287.5° (+6° increase in angle spread). Ionization chamber measurements confirmed improvement in dose homogeneity across the treatment field from a range of 24.4% at the initial

  1. Cherenkov radiation imaging of beta emitters: in vitro and in vivo results

    International Nuclear Information System (INIS)

    Spinelli, Antonello E.; Boschi, Federico; D'Ambrosio, Daniela; Calderan, Laura; Marengo, Mario; Fenzi, Alberto; Menegazzi, Marta; Sbarbati, Andrea; Del Vecchio, Antonella; Calandrino, Riccardo

    2011-01-01

    The main purpose of this work was to investigate both in vitro and in vivo Cherenkov radiation (CR) emission coming from 18 F and 32 P. The main difference between 18 F and 32 P is mainly the number of the emitted light photons, more precisely the same activity of 32 P emits more CR photons with respect to 18 F. In vitro results obtained by comparing beta counter measurements with photons average radiance showed that Cherenkov luminescence imaging (CLI) allows quantitative tracer activity measurements. In order to investigate in vivo the CLI approach, we studied an experimental xenograft tumor model of mammary carcinoma (BB1 tumor cells). Cherenkov in vivo dynamic whole body images of tumor bearing mice were acquired and the tumor tissue time activity curves reflected the well-known physiological accumulation of 18 F-FDG in malignant tissues with respect to normal tissues. The results presented here show that it is possible to use conventional optical imaging devices for in vitro or in vivo study of beta emitters.

  2. Cherenkov radiation imaging of beta emitters: in vitro and in vivo results

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Antonello E., E-mail: spinelli.antonello@hsr.it [Medical Physics Department, S. Raffaele Scientific Institute, Via Olgettina N. 60, Milan (Italy); Boschi, Federico [Department of Morphological-Biomedical Sciences, University of Verona, Strada Le Grazie N. 8, Verona (Italy); D' Ambrosio, Daniela [Medical Physics Department, S. Orsola-Malpighi University Hospital, via Massarenti N. 9, Bologna (Italy); Calderan, Laura [Department of Morphological-Biomedical Sciences, University of Verona, Strada Le Grazie N. 8, Verona (Italy); Marengo, Mario [Medical Physics Department, S. Orsola-Malpighi University Hospital, via Massarenti N. 9, Bologna (Italy); Fenzi, Alberto [Department of Morphological-Biomedical Sciences, University of Verona, Strada Le Grazie N. 8, Verona (Italy); Menegazzi, Marta [Department of Life and Reproduction Sciences, University of Verona, Strada Le Grazie N. 8, Verona (Italy); Sbarbati, Andrea [Department of Morphological-Biomedical Sciences, University of Verona, Strada Le Grazie N. 8, Verona (Italy); Del Vecchio, Antonella; Calandrino, Riccardo [Medical Physics Department, S. Raffaele Scientific Institute, Via Olgettina N. 60, Milan (Italy)

    2011-08-21

    The main purpose of this work was to investigate both in vitro and in vivo Cherenkov radiation (CR) emission coming from {sup 18}F and {sup 32}P. The main difference between {sup 18}F and {sup 32}P is mainly the number of the emitted light photons, more precisely the same activity of {sup 32}P emits more CR photons with respect to {sup 18}F. In vitro results obtained by comparing beta counter measurements with photons average radiance showed that Cherenkov luminescence imaging (CLI) allows quantitative tracer activity measurements. In order to investigate in vivo the CLI approach, we studied an experimental xenograft tumor model of mammary carcinoma (BB1 tumor cells). Cherenkov in vivo dynamic whole body images of tumor bearing mice were acquired and the tumor tissue time activity curves reflected the well-known physiological accumulation of {sup 18}F-FDG in malignant tissues with respect to normal tissues. The results presented here show that it is possible to use conventional optical imaging devices for in vitro or in vivo study of beta emitters.

  3. The ASTRI mini-array within the future Cherenkov Telescope Array

    Directory of Open Access Journals (Sweden)

    Vercellone Stefano

    2016-01-01

    Full Text Available The Cherenkov Telescope Array (CTA is a large collaborative effort aimed at the design and operation of an observatory dedicated to very high-energy gamma-ray astrophysics in the energy range from a few tens of GeV to above 100 TeV, which will yield about an order of magnitude improvement in sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS. Within this framework, the Italian National Institute for Astrophysics is leading the ASTRI project, whose main goals are the design and installation on Mt. Etna (Sicily of an end-to-end dual-mirror prototype of the CTA small size telescope (SST and the installation at the CTA Southern site of a dual-mirror SST mini-array composed of nine units with a relative distance of about 300 m. The innovative dual-mirror Schwarzschild-Couder optical solution adopted for the ASTRI Project allows us to substantially reduce the telescope plate-scale and, therefore, to adopt silicon photo-multipliers as light detectors. The ASTRI mini-array is a wider international effort. The mini-array, sensitive in the energy range 1–100 TeV and beyond with an angular resolution of a few arcmin and an energy resolution of about 10–15%, is well suited to study relatively bright sources (a few × 10−12 erg cm−2 s−1 at 10 TeV at very high energy. Prominent sources such as extreme blazars, nearby well-known BL Lac objects, Galactic pulsar wind nebulae, supernovae remnants, micro-quasars, and the Galactic Center can be observed in a previously unexplored energy range. The ASTRI mini-array will extend the current IACTs sensitivity well above a few tens of TeV and, at the same time, will allow us to compare our results on a few selected targets with those of current (HAWC and future high-altitude extensive air-shower detectors.

  4. Noise simulation and rejection for the DELPHI Barrel Ring Imaging Cherenkov detector

    International Nuclear Information System (INIS)

    Bloch, D.

    1996-01-01

    The performance of Ring Imaging Cherenkov detectors is severely affected by the background noise due to the necessity of detecting single electrons. Furthermore, in the majority of the existing RICHs, the charged particles to be identified also cross the sensitive area of the apparatus thus creating secondary effects. The different noise sources and the background behaviour have been studied for the DELPHI RICH in order to efficiently clean the Cherenkov rings from the background while preserving the majority of the signal. Particular care has been taken to optimize the parameters of the Cherenkov image ''cleaning'' for the gas and the liquid radiators separately. For Z 0 hadronic decays 70% background rejection has been achieved, whilst 85% of the signal has been retained. This paper also presents a simulation of the noise producing mechanisms where ionization electrons, δ-rays, feedback electrons created during avalanches and electronic noise are modeled according to the measured parameters. Good agreement between data and simulation has been achieved. (orig.)

  5. Characterization and commissioning of the SST-1M camera for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [Université Libre Bruxelles, Faculté des Sciences, Avenue Franklin Roosevelt 50, 1050 Brussels (Belgium); DPNC - Université de Genéve, 24 Quai Ernest Ansermet, Genéve (Switzerland); Department of Information Technologies, Jagiellonian University, ul. prof. Stanisława Łojasiewicza 11, 30–348 Kraków (Poland); Bilnik, W. [AGH University of Science and Technology, al.Mickiewicza 30, Kraków (Poland); Department of Information Technologies, Jagiellonian University, ul. prof. Stanisława Łojasiewicza 11, 30–348 Kraków (Poland); Błocki, J. [Instytut Fizyki Jadrowej im. H. Niewodniczańskiego Polskiej Akademii Nauk, ul. Radzikowskiego 152, 31–342 Kraków (Poland); Department of Information Technologies, Jagiellonian University, ul. prof. Stanisława Łojasiewicza 11, 30–348 Kraków (Poland); Bogacz, L. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30–244 Kraków (Poland); Department of Information Technologies, Jagiellonian University, ul. prof. Stanisława Łojasiewicza 11, 30–348 Kraków (Poland); and others

    2017-02-11

    The Cherenkov Telescope Array (CTA), the next generation very high energy gamma-rays observatory, will consist of three types of telescopes: large (LST), medium (MST) and small (SST) size telescopes. The SSTs are dedicated to the observation of gamma-rays with energy between a few TeV and a few hundreds of TeV. The SST array is expected to have 70 telescopes of different designs. The single-mirror small size telescope (SST-1 M) is one of the proposed telescope designs under consideration for the SST array. It will be equipped with a 4 m diameter segmented mirror dish and with an innovative camera based on silicon photomultipliers (SiPMs). The challenge is not only to build a telescope with exceptional performance but to do it foreseeing its mass production. To address both of these challenges, the camera adopts innovative solutions both for the optical system and readout. The Photo-Detection Plane (PDP) of the camera is composed of 1296 pixels, each made of a hollow, hexagonal light guide coupled to a hexagonal SiPM designed by the University of Geneva and Hamamatsu. As no commercial ASIC would satisfy the CTA requirements when coupled to such a large sensor, dedicated preamplifier electronics have been designed. The readout electronics also use an innovative approach in gamma-ray astronomy by adopting a fully digital approach. All signals coming from the PDP are digitized in a 250 MHz Fast ADC and stored in ring buffers waiting for a trigger decision to send them to the pre-processing server where calibration and higher level triggers will decide whether the data are stored. The latest generation of FPGAs is used to achieve high data rates and also to exploit all the flexibility of the system. As an example each event can be flagged according to its trigger pattern. All of these features have been demonstrated in laboratory measurements on realistic elements and the results of these measurements will be presented in this contribution.

  6. Application of Cherenkov light observation to reactor measurements (2). Design and trial fabrication of Cherenkov light estimation system

    International Nuclear Information System (INIS)

    Yamamoto, Keiichi; Takeuchi, Tomoaki; Tsuchiya, Kunihiko; Hayashi, Takayasu; Kosuge, Fumiaki; Sano, Tadafumi

    2015-11-01

    Development of the reactor measurement system was started to obtain the real-time in-core nuclear and thermal information, where the quantitative measurement of brightness of Cherenkov light was investigated. This report summarized the results of design and trial fabrication of the Cherenkov light estimation system from thermal power evaluation from Cherenkov light image emitted from the fuel elements. The developed Cherenkov light estimation system was verified with the Cherenkov light image emitted from the fuels in the core of Kyoto University Research Reactor (KUR). From the results, the thermal power of the fuel elements evaluated from the brightness of the Cherenkov light observed by a CCD camera was almost the same as that of thermal power calculated from SRAC code. On the other hand, the evaluation values of some fuel elements were different from the calculation values. This, it is necessary to improve the observation method of Cherenkov light in the reactor and the evaluation method of the brightness of Cherenkov light. (author)

  7. Measurement of aerogel performance for ring image Cherenkov detector of HERMES

    International Nuclear Information System (INIS)

    Kanesaka, Jiro; Zhang Linfeng; Sato, Fumiko; Suetsugu, Kentaro; Sakami, Yasuhiro; Shibata, Toshiaki

    1999-01-01

    The first experiment of ring image Cherenkov detector (RICH) used aerogel in the world was reported in this paper. We built RICH using aerogel as illuminant for HERMES. The refractive index and size of all aerogel tiles were measured in order to select them for construction of RICH. The select conditions of tile were 113.1 -4 , the dispersion of refractive index of aerogel tile, which condition was fitted to the accuracy of Cherenkov light emission angle of RICH. The mean thickness, transmission and reflection of tile, the thickness of corner of tile (thickness of surface), the refractive index dependence on position and temperature were measured. The effect of thickness of tile on the shift of Cherenkov emission angle was 6.1% the maximum value per one tile and 0.18% mean value of center. The effect of position dependence of refractive index on the Cherenkov light emission angle was agreed with the effect of dispersion of thickness of tile. The transmission and reflection of tile were almost same as the theoretical value. (S.Y.)

  8. First observation of Cherenkov ring images using hybrid photon detectors

    International Nuclear Information System (INIS)

    Albrecht, E.; Wilkinson, G.; Bibby, J.H.; Giles, R.; Harnew, N.; Smale, N.; Brook, N.H.; Halley, A.W.; O'Shea, V.; French, M.; Gibson, V.; Wotton, S.A.; Schomaker, R.

    1998-01-01

    A ring-imaging Cherenkov detector, equipped with hybrid photon detectors, has been operated in a charged-particle beam. Focussed ring images from various particle types were detected using silica aerogel, air and C 4 F 10 gas radiators. The detector, a prototype for the CERN LHC-B experiment, is described and first observations are reported. (orig.)

  9. First observation of Cherenkov ring images using hybrid photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, E.; Wilkinson, G. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Barber, G.; Duane, A.; John, M.; Miller, D.G.; Websdale, D. [Imperial College of Science Technology and Medicine, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Bibby, J.H.; Giles, R.; Harnew, N.; Smale, N. [University of Oxford, Department of Nuclear Physics, Keble Road, Oxford OX1 3RH (United Kingdom); Brook, N.H.; Halley, A.W.; O`Shea, V. [University of Glasgow, Department of Physics, Glasgow G12 8QQ (United Kingdom); French, M. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Gibson, V.; Wotton, S.A. [University of Cambridge, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom); Schomaker, R. [Delft Electronic Products BV, 9300 AB Roden (Netherlands)

    1998-07-11

    A ring-imaging Cherenkov detector, equipped with hybrid photon detectors, has been operated in a charged-particle beam. Focussed ring images from various particle types were detected using silica aerogel, air and C{sub 4}F{sub 10} gas radiators. The detector, a prototype for the CERN LHC-B experiment, is described and first observations are reported. (orig.)

  10. Signal intensity analysis and optimization for in vivo imaging of Cherenkov and excited luminescence

    Science.gov (United States)

    LaRochelle, Ethan P. M.; Shell, Jennifer R.; Gunn, Jason R.; Davis, Scott C.; Pogue, Brian W.

    2018-04-01

    During external beam radiotherapy (EBRT), in vivo Cherenkov optical emissions can be used as a dosimetry tool or to excite luminescence, termed Cherenkov-excited luminescence (CEL) with microsecond-level time-gated cameras. The goal of this work was to develop a complete theoretical foundation for the detectable signal strength, in order to provide guidance on optimization of the limits of detection and how to optimize near real time imaging. The key parameters affecting photon production, propagation and detection were considered and experimental validation with both tissue phantoms and a murine model are shown. Both the theoretical analysis and experimental data indicate that the detection level is near a single photon-per-pixel for the detection geometry and frame rates commonly used, with the strongest factor being the signal decrease with the square of distance from tissue to camera. Experimental data demonstrates how the SNR improves with increasing integration time, but only up to the point where the dominance of camera read noise is overcome by stray photon noise that cannot be suppressed. For the current camera in a fixed geometry, the signal to background ratio limits the detection of light signals, and the observed in vivo Cherenkov emission is on the order of 100×  stronger than CEL signals. As a result, imaging signals from depths  <15 mm is reasonable for Cherenkov light, and depths  <3 mm is reasonable for CEL imaging. The current investigation modeled Cherenkov and CEL imaging of two oxygen sensing phosphorescent compounds, but the modularity of the code allows for easy comparison of different agents or alternative cameras, geometries or tissues.

  11. COLIBRI: partial camera readout and sliding trigger for the Cherenkov Telescope Array CTA

    International Nuclear Information System (INIS)

    Naumann, C L; Tejedor, L A; Martínez, G

    2013-01-01

    Plans for the future Cherenkov telescope array CTA include replacing the monolithic camera designs used in H.E.S.S. and MAGIC-I by one that is built up from a number of identical segments. These so-called clusters will be relatively autonomous, each containing its own triggering and readout hardware. While this choice was made for reasons of flexibility and ease of manufacture and maintenance, such a concept with semi-independent sub-units lends itself quite naturally to the possibility of new, and more flexible, readout modes. In all previously-used concepts, triggering and readout of the camera is centralised, with a single camera trigger per event that starts the readout of all pixels in the camera at the same time and within the same integration time window. The limitations of such a trigger system can reduce the performance of a large array such as CTA, due to the huge amount of useless data created by night-sky background if trigger thresholds are set low enough to achieve the desired 20 GeV energy threshold, and to image losses at high energies due to the rigid readout window. In this study, an alternative concept (''COLIBRI'' = Concept for an Optimised Local Image Building and Readout Infrastructure) is presented, where only those parts of the camera which are likely to actually contain image data (usually a small percentage of the total pixels) are read out. This leads to a significant reduction of the expected data rate and the dead-times incurred in the camera. Furthermore, the quasi-independence of the individual clusters can be used to read different parts of the camera at slightly different times, thus allowing the readout to follow the slow development of the shower image across the camera field of view. This concept of flexible, partial camera readout is presented in the following, together with a description of Monte-Carlo studies performed to evaluate its performance as well as a hardware implementation proposed for CTA.

  12. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging.

    Science.gov (United States)

    Andreozzi, Jacqueline M; Zhang, Rongxiao; Glaser, Adam K; Jarvis, Lesley A; Pogue, Brian W; Gladstone, David J

    2015-02-01

    To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary cost than the EM-ICCD. The

  13. Calibration of Cherenkov detectors for monoenergetic photon imaging in active interrogation applications

    Energy Technology Data Exchange (ETDEWEB)

    Rose, P.B., E-mail: prose6@gatech.edu; Erickson, A.S., E-mail: anna.erickson@me.gatech.edu

    2015-11-01

    Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in {sup 11}B(d,n-γ){sup 12}C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example {sup 232}Th, show that calibration is possible as long as the energies of photons of interest are distinct.

  14. Monitor and control systems for the SLD Cherenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Antilogus, P.; Aston, D.; Bienz, T.; Boston Univ., MA; California Univ., Santa Barbara, CA; California Univ., Santa Cruz, CA; Cincinnati Univ., OH; Rutgers--the State Univ., Piscataway, NJ; Tohoku Univ., Sendai

    1989-10-01

    To help ensure the stable long-term operation of a Cherenkov Ring Detector at high efficiency, a comprehensive monitor and control system is being developed. This system will continuously monitor and maintain the correct operating temperatures, and will provide an on-line monitor and maintain the correct operating temperatures, and will provide an on-line monitor of the pressures, flows, mixing, and purity of the various fluids. In addition the velocities and trajectories of Cherenkov photoelectrons drifting within the imaging chambers will be measured using a pulsed uv lamp and a fiberoptic light injection system. 9 refs., 6 figs

  15. Workshop on Non-Imaging Cherenkov at High Energy

    CERN Document Server

    2013-01-01

    The non-Imaging Cherenkov air shower measurement technique holds great promise in furthering our understanding the Knee-to-Ankle region of the cosmic ray spectrum. In particular, this technique offers a unique way to determine the evolution of the cosmic ray nuclear composition, and an example is given by the recent spectrum results of the Tunka Collaboration. With this in mind, we are organizing a workshop, to be held at the University of Utah, to bring together the various practitioners of this cosmic ray measurement technique to share simulations, analyses, detector designs, and past experimental results amongst the community. The workshop will also be in support of our effort, NICHE, to extend the reach of the TA/TALE detector systems down to the Knee. We anticipate that the workshop will result in a white paper on the scientific importance of these high-energy cosmic ray measurements and on using the Cherenkov technique to accomplish them. Our goal is to have contributions from members of the previous ge...

  16. Electronics for the camera of the First G-APD Cherenkov Telescope (FACT) for ground based gamma-ray astronomy

    International Nuclear Information System (INIS)

    Anderhub, H; Biland, A; Boller, A; Braun, I; Commichau, V; Djambazov, L; Dorner, D; Gendotti, A; Grimm, O; Gunten, H P von; Hildebrand, D; Horisberger, U; Huber, B; Kim, K-S; Krähenbühl, T; Backes, M; Köhne, J-H; Krumm, B; Bretz, T; Farnier, C

    2012-01-01

    Within the FACT project, we construct a new type of camera based on Geiger-mode avalanche photodiodes (G-APDs). Compared to photomultipliers, G-APDs are more robust, need a lower operation voltage and have the potential of higher photon-detection efficiency and lower cost, but were never fully tested in the harsh environments of Cherenkov telescopes. The FACT camera consists of 1440 G-APD pixels and readout channels, based on the DRS4 (Domino Ring Sampler) analog pipeline chip and commercial Ethernet components. Preamplifiers, trigger system, digitization, slow control and power converters are integrated into the camera.

  17. The control, monitor, and alarm system for the ICT equipment of the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gianotti, Fulvio; Fioretti, Valentina; Tanci, Claudio; Conforti, Vito; Tacchini, Alessandro; Leto, Giuseppe; Gallozzi, Stefano; Bulgarelli, Andrea; Trifoglio, Massimo; Malaguti, Giuseppe; Zoli, Andrea

    2014-07-01

    ASTRI is an Italian flagship project whose first goal is the realization of an end-to-end telescope prototype, named ASTRI SST-2M, for the Cherenkov Telescope Array (CTA). The prototype will be installed in Italy during Fall 2014. A second goal will be the realization of the ASTRI/CTA mini-array which will be composed of seven SST-2M telescopes placed at the CTA Southern Site. The Information and Communication Technology (ICT) equipment necessary to drive the infrastructure for the ASTRI SST-2M prototype is being designed as a complete and stand-alone computer center. The design goal is to obtain basic ICT equipment that might be scaled, with a low level of redundancy, for the ASTRI/CTA mini-array, taking into account the necessary control, monitor and alarm system requirements. The ICT equipment envisaged at the Serra La Nave observing station in Italy, where the ASTRI SST-2M telescope prototype will operate, includes computers, servers and workstations, network devices, an uninterruptable power supply system, and air conditioning systems. Suitable hardware and software tools will allow the parameters related to the behavior and health of each item of equipment to be controlled and monitored. This paper presents the proposed architecture and technical solutions that integrate the ICT equipment in the framework of the Observatory Control System package of the ASTRI/CTA Mini- Array Software System, MASS, to allow their local and remote control and monitoring. An end-toend test case using an Internet Protocol thermometer is reported in detail.

  18. High-Energy Astrophysics with the High Altitude Water Cherenkov (HAWC) Observatory

    Science.gov (United States)

    Pretz, John; HAWC Collaboration

    2013-04-01

    The High Altitude Water Cherenkov (HAWC) observatory, under construction at Sierra Negra in the state of Puebla, Mexico, consists of a 22500 square meter area of water Cherenkov detectors: water tanks instrumented with light-sensitive photomultiplier tubes. The experiment is used to detect energetic secondary particles reaching the ground when a 50 GeV to 100 TeV cosmic ray or gamma ray interacts in the atmosphere above the experiment. By timing the arrival of particles on the ground, the direction of the original primary particle may be resolved with an error of between 1.0 (50 GeV) and 0.1 (10 TeV) degrees. Gamma-ray primaries may be distinguished from cosmic ray background by identifying the penetrating particles characteristic of a hadronic particle shower. The instrument is 10% complete and is performing as expected, with 30% of the channels anticipated by the summer of 2013. HAWC will complement existing Imaging Atmospheric Cherenkov Telescopes and space-based gamma-ray telescopes with its extreme high-energy sensitivity and its large field-of-view. The observatory will be used to study particle acceleration in Pulsar Wind Nebulae, Supernova Remnants, Active Galactic Nuclei and Gamma-ray Bursts. Additionally, the instrument can be used to probe dark matter annihilation in halo and sub-halos of the galaxy. We will present the sensitivity of the HAWC instrument in the context of the main science objectives. We will also present the status of the deployment including first data from the instrument and prospects for the future.

  19. The Cherenkov Telescope Array Observatory: top level use cases

    Science.gov (United States)

    Bulgarelli, A.; Kosack, K.; Hinton, J.; Tosti, G.; Schwanke, U.; Schwarz, J.; Colomé, P.; Conforti, V.; Khelifi, B.; Goullon, J.; Ong, R.; Markoff, S.; Contreras, J. L.; Lucarelli, F.; Antonelli, L. A.; Bigongiari, C.; Boisson, C.; Bosnjak, Z.; Brau-Nogué, S.; Carosi, A.; Chen, A.; Cotter, G.; Covino, S.; Daniel, M.; De Cesare, G.; de Ona Wilhelmi, E.; Della Volpe, M.; Di Pierro, F.; Fioretti, V.; Füßling, M.; Garczarczyk, M.; Gaug, M.; Glicenstein, J. F.; Goldoni, P.; Götz, D.; Grandi, P.; Heller, M.; Hermann, G.; Inoue, S.; Knödlseder, J.; Lenain, J.-P.; Lindfors, E.; Lombardi, S.; Luque-Escamilla, P.; Maier, G.; Marisaldi, M.; Mundell, C.; Neyroud, N.; Noda, K.; O'Brien, P.; Petrucci, P. O.; Martí Ribas, J.; Ribó, M.; Rodriguez, J.; Romano, P.; Schmid, J.; Serre, N.; Sol, H.; Schussler, F.; Stamerra, A.; Stolarczyk, T.; Vandenbrouck, J.; Vercellone, S.; Vergani, S.; Zech, A.; Zoli, A.

    2016-08-01

    Today the scientific community is facing an increasing complexity of the scientific projects, from both a technological and a management point of view. The reason for this is in the advance of science itself, where new experiments with unprecedented levels of accuracy, precision and coverage (time and spatial) are realised. Astronomy is one of the fields of the physical sciences where a strong interaction between the scientists, the instrument and software developers is necessary to achieve the goals of any Big Science Project. The Cherenkov Telescope Array (CTA) will be the largest ground-based very high-energy gamma-ray observatory of the next decades. To achieve the full potential of the CTA Observatory, the system must be put into place to enable users to operate the telescopes productively. The software will cover all stages of the CTA system, from the preparation of the observing proposals to the final data reduction, and must also fit into the overall system. Scientists, engineers, operators and others will use the system to operate the Observatory, hence they should be involved in the design process from the beginning. We have organised a workgroup and a workflow for the definition of the CTA Top Level Use Cases in the context of the Requirement Management activities of the CTA Observatory. Scientists, instrument and software developers are collaborating and sharing information to provide a common and general understanding of the Observatory from a functional point of view. Scientists that will use the CTA Observatory will provide mainly Science Driven Use Cases, whereas software engineers will subsequently provide more detailed Use Cases, comments and feedbacks. The main purposes are to define observing modes and strategies, and to provide a framework for the flow down of the Use Cases and requirements to check missing requirements and the already developed Use-Case models at CTA sub-system level. Use Cases will also provide the basis for the definition of

  20. FACT. Multivariate extraction of muon ring images

    Energy Technology Data Exchange (ETDEWEB)

    Noethe, Maximilian; Temme, Fabian; Buss, Jens [Experimentelle Physik 5b, TU Dortmund, Dortmund (Germany); Collaboration: FACT-Collaboration

    2016-07-01

    In ground-based gamma-ray astronomy, muon ring images are an important event class for instrument calibration and monitoring of its properties. In this talk, a multivariate approach will be presented, that is well suited for real time extraction of muons from data streams of Imaging Atmospheric Cherenkov Telescopes (IACT). FACT, the First G-APD Cherenkov Telescope is located on the Canary Island of La Palma and is the first IACT to use Silicon Photomultipliers for detecting the Cherenkov photons of extensive air showers. In case of FACT, the extracted muon events are used to calculate the time resolution of the camera. In addition, the effect of the mirror alignment in May 2014 on properties of detected muons is investigated. Muon candidates are identified with a random forest classification algorithm. The performance of the classifier is evaluated for different sets of image parameters in order to compare the gain in performance with the computational costs of their calculation.

  1. Cherenkov Ring Imaging Detector front-end electronics

    International Nuclear Information System (INIS)

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Marshall, D.; Muller, D.; Nagamine, T.; Oxoby, G.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Suekane, F.; Toge, N.; Va'Vra, J.; Williams, S.; Wilson, R.J.; Whitaker, J.S.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Morrison, R.; Witherell, M.; Yellin, S.; Coyle, P.; Coyne, D.; Spencer, E.; d'Oliveira, A.; Johnson, R.A.; Martinez, J.; Nussbaum, M.; Santha, A.K.S.; Shoup, A.; Stockdale, I.; Jacques, P.; Plano, R.; Stamer, P.; Abe, K.; Hasegawa, K.; Yuta, H.

    1990-10-01

    The SLD Cherenkov Ring Imaging Detector use a proportional wire detector for which a single channel hybrid has been developed. It consists of a preamplifier, gain selectable amplifier, load driver amplifier, power switching, and precision calibrator. For this hybrid, a bipolar, semicustom integrated circuit has been designed which includes video operational amplifiers for two of the gain stages. This approach allows maximization of the detector volume, allows DC coupling, and enables gain selection. System tests show good noise performance, calibration precision, system linearity, and signal shape uniformity over the full dynamic range. 10 refs., 8 figs

  2. Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7−3946

    Energy Technology Data Exchange (ETDEWEB)

    Acero, F. [CEA/IRFU/SAp, CEA Saclay, Bat 709, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Aloisio, R.; Amato, E. [Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, I-50125 Firenze (Italy); Amans, J. [LUTH and GEPI, Observatoire de Paris, CNRS, PSL Research University, 5 place Jules Janssen, F-92190, Meudon (France); Antonelli, L. A. [INAF—Osservatorio Astronomico di Roma, Via di Frascati 33, I-00040, Monteporzio Catone (Italy); Aramo, C. [INFN Sezione di Napoli, Via Cintia, ed. G, I-80126 Napoli (Italy); Armstrong, T. [Department of Physics and Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE (United Kingdom); Arqueros, F.; Barrio, J. A. [Grupo de Altas Energías, Universidad Complutense de Madrid., Av Complutense s/n, E-28040 Madrid (Spain); Asano, K. [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5, Kashi-wanoha, Kashiwa, Chiba 277-8582 (Japan); Ashley, M. [School of Physics, University of New South Wales, Sydney NSW 2052 (Australia); Backes, M. [University of Namibia, Department of Physics, 340 Mandume Ndemufayo Ave., Pioneerspark Windhoek (Namibia); Balazs, C. [School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800 (Australia); Balzer, A. [Astronomical Institute Anton Pannekoek, University of Amsterdam, Science Park 904 1098 XH Amsterdam (Netherlands); Bamba, A. [Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Barkov, M. [Riken, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Benbow, W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02180 (United States); Bernlöhr, K., E-mail: sano@a.phys.nagoya-u.ac.jp, E-mail: nakamori@sci.kj.yamagata-u.ac.jp [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); and others

    2017-05-10

    We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7−3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H i emission. We present a series of simulated images of RX J1713.7−3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton , whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H i observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.

  3. Science with the ASTRI mini-array for the Cherenkov Telescope Array: blazars and fundamental physics

    Science.gov (United States)

    Bonnoli, Giacomo; Tavecchio, Fabrizio; Giuliani, Andrea; Bigongiari, Ciro; Di Pierro, Federico; Stamerra, Antonio; Pareschi, Giovanni; Vercellone, Stefano; ASTRI Collaboration; CTA Consortium

    2016-05-01

    ASTRI (“Astronomia a Specchi con Tecnologia Replicante Italiana”) is a flagship project of the Italian Ministry of Research (MIUR), devoted to the realization, operation and scientific validation of an end-to-end prototype for the Small Size Telescope (SST) envisaged to become part of the Cherenkov Telescope Array (CTA). The ASTRI SST-2M telescope prototype is characterized by a dual mirror, Schwarzschild-Couder optical design and a compact camera based on silicon photo-multipliers. It will be sensitive to multi-TeV very high energy (VHE) gamma rays up to 100 TeV, with a PSF ~ 6’ and a wide (9.6°) unaberrated optical field of view. Right after validation of the design in single-dish observations at the Serra La Nave site (Sicily, Italy) during 2015, the ASTRI collaboration will be able to start deployment, at the final CTA southern site, of the ASTRI mini-array, proposed to constitute the very first CTA precursor. Counting 9 ASTRI SST-2M telescopes, the ASTRI mini-array will overtake current IACT systems in differential sensitivity above 5 TeV, thus allowing unprecedented observations of known and predicted bright TeV emitters in this band, including some extragalactic sources such as extreme high-peaked BL Lacs with hard spectra. We exploited the ASTRI scientific simulator ASTRIsim in order to understand the feasibility of observations tackling blazar and cosmic ray physics, including discrimination of hadronic and leptonic scenarios for the VHE emission from BL Lac relativistic jets and indirect measurements of the intergalactic magnetic field and of the extragalactic background light. We selected favorable targets, outlining observation modes, exposure times, multi-wavelength coverage needed and the results expected. Moreover, the perspectives for observation of effects due to the existence of axion-like particles or to Lorentz invariance violations have been investigated.

  4. Status, performance and scientific highlights from the MAGIC telescope system

    Energy Technology Data Exchange (ETDEWEB)

    Doert, Marlene [Technische Universitaet Dortmund (Germany); Ruhr-Universitaet Bochum (Germany); Collaboration: MAGIC-Collaboration

    2015-07-01

    The MAGIC telescopes are a system of two 17 m Imaging Air Cherenkov Telescopes, which are located at 2200 m above sea level at the Roque de Los Muchachos Observatory on the Canary Island of La Palma. In this presentation, we report on recent scientific highlights gained from MAGIC observations in the galactic and the extragalactic regime. We also present the current status and performance of the MAGIC system after major hardware upgrades in the years 2011 to 2014 and give an overview of future plans.

  5. The forward ring imaging Cherenkov detector of DELPHI

    International Nuclear Information System (INIS)

    Adam, W.; Albrecht, E.; Ambec, I.; Augustinus, A.; Barnoux, C.; Bostjancic, B.; Botner, O.; Budziak, A.P.; Caloba, L.P.; Carecchio, P.; Cavalli, P.; Ceelie, L.; Cereseto, R.; Cerutti, G.; Dahl-Jensen, E.; Dam, P.; Damgaard, G.; Koning, N. de; De la Vega, A.S.; Dimitriou, N.; Dulinski, W.; Eek, L.O.; Ekeloef, T.; Erikson, J.; Florek, A.; Florek, B.; Fontanelli, F.; Fontenille, A.; Galuszka, K.; Garcia, J.; Gracco, V.; Hallgren, A.; Hao, W.; Henkes, T.; Isenhower, D.; Johansson, H.; Karvelas, E.; Kindblom, P.; Koene, B.; Korporaal, A.; Kostarakis, P.; Lenzen, G.; Lindqvist, L.E.; Lorenz, P.; Loukas, D.; Lund-Jensen, B.; Maltezos, A.; Markou, A.; Mattsson, L.; Medbo, J.; Michalowski, J.; Montano, F.; Nielsen, B.S.; Ostler, J.M.; Pakonski, K.; Perdikis, C.; Polok, G.; Robohm, A.; Sajot, G.; Sannino, M.; Saragas, E.; Schyns, E.; Squarcia, S.; Stavropoulos, G.; Stodulski, M.; Stopa, Z.; Thadome, J.; Theodosiou, G.E.; Traspedini, L.; Turala, M.; Ullaland, O.; Waerm, A.; Werner, J.; Xyroutsikos, S.; Zavrtanik, M.; Zevgolatakos, E.

    1994-01-01

    The Forward Ring Imaging Cherenkov detector of the DELPHI experiment at LEP provides hadron identification at polar angles 15 6 F 14 and a volume of gaseous C 4 F 10 , in combination provide coverage of momenta up to 40 GeV/c. A single array of photosensitive Time Projection Chambers registers the impact points of ultraviolet photons from both radiators. The design of the detector and of its readout system is described. First results obtained with a partly installed detector are reported. (orig.)

  6. Recent results from the DELPHI barrel ring imaging Cherenkov counter

    International Nuclear Information System (INIS)

    Anassontzis, E.G.; Ioannou, P.; Kalkanis, G.; Katsanevas, S.; Kontaxis, I.; Kourkoumelis, C.; Nounos, S.; Preve, P.; Resvanis, L.K.; Brunet, J.M.; Dolbeau, J.; Guglielmo, L.; Ledroit, F.; Poutot, D.; Tristram, G.

    1991-01-01

    The DELPHI detector, installed at LEP, is equipped with RICH (Ring Imaging Cherenkov) counters. The Barrel part incorporates a liquid (C 6 F 14 ) and a gaseous (C 5 F 12 ) radiator providing particle identification up to 20GeV/c. The Cherenkov protons of both radiators are detected by TPC-like photon detectors. The drift gas (75% CH 4 + 25% C 2 H 6 ) is doped with TMAE, but which the UV Cherenkov photons are converted into single free photo-electrons. These are drifted towards MWPC's at the end of the drift tubes and the space coordinates of the conversion point are determined. One half of the Barrel RICH is now equipped with drift tubes and has provided results from the liquid radiator since spring 1990. The gas radiator has been tested with C 2 F 6 as a preliminary filling since August 1990. The data obtained demonstrate the good particle identification potential. For the liquid radiator the number of detected photons per ring in hadron jets is N=8, whereas for muon pairs (single tracks) N=10 has been obtained. For the gas radiator 2.1 photons per track were observed, which demonstrates the good functioning of the focussing mirrors, as the C 2 F 6 this is close to the expected value

  7. Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time

    International Nuclear Information System (INIS)

    Jarvis, Lesley A.; Zhang, Rongxiao; Gladstone, David J.; Jiang, Shudong; Hitchcock, Whitney; Friedman, Oscar D.; Glaser, Adam K.; Jermyn, Michael; Pogue, Brian W.

    2014-01-01

    Purpose: To determine whether Cherenkov light imaging can visualize radiation therapy in real time during breast radiation therapy. Methods and Materials: An intensified charge-coupled device (CCD) camera was synchronized to the 3.25-μs radiation pulses of the clinical linear accelerator with the intensifier set × 100. Cherenkov images were acquired continuously (2.8 frames/s) during fractionated whole breast irradiation with each frame an accumulation of 100 radiation pulses (approximately 5 monitor units). Results: The first patient images ever created are used to illustrate that Cherenkov emission can be visualized as a video during conditions typical for breast radiation therapy, even with complex treatment plans, mixed energies, and modulated treatment fields. Images were generated correlating to the superficial dose received by the patient and potentially the location of the resulting skin reactions. Major blood vessels are visible in the image, providing the potential to use these as biological landmarks for improved geometric accuracy. The potential for this system to detect radiation therapy misadministrations, which can result from hardware malfunction or patient positioning setup errors during individual fractions, is shown. Conclusions: Cherenkoscopy is a unique method for visualizing surface dose resulting in real-time quality control. We propose that this system could detect radiation therapy errors in everyday clinical practice at a time when these errors can be corrected to result in improved safety and quality of radiation therapy

  8. Status of the new Sum-Trigger system for the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Garcia, Jezabel; Schweizer, Thomas; Nakajima, Daisuke [Max Planck Institute for Physics, Muenchen (Germany); Dazzi, Francesco [Dipartimento di Fisica dell' Universita di Udine (Italy); INFN, sez. di Trieste (Italy)

    2013-07-01

    MAGIC is a stereoscopic system of two 17 meters Imaging Air Cherenkov Telescopes for gamma-ray astronomy operating in stereo mode. The telescopes are located at about 2.200 metres above sea level in the Observatorio del Roque de los Muchachos (ORM), in the Canary island of La Palma. Lowering the energy threshold of Cherenkov Telescopes is crucial for the observation of Pulsars, High redshift AGNs and GRBs. The Sum-Trigger, based on the analogue sum of a patch of pixels has a lower threshold compared to conventional digital triggers. The Sum-Trigger principle has been proven experimentally in 2007 by decreasing the energy threshold of the first Magic telescope (Back then operating in mono mode) from 55 GeV down to 25 GeV. The first VHE detection for the Crab Pulsar was achieved due to this low threshold. After the upgrade of the MAGIC I and MAGIC II cameras and readout systems, we are planning to install a new Sum-Trigger system in both telescopes in Summer 2013. This trigger system will be operated for the first time in stereo mode. At the conference we report about the status and the performance of the new Sum-Trigger-II system.

  9. Modeling the Effects of Mirror Misalignment in a Ring Imaging Cherenkov Detector

    Science.gov (United States)

    Hitchcock, Tawanda; Harton, Austin; Garcia, Edmundo

    2012-03-01

    The Very High Momentum Particle Identification Detector (VHMPID) has been proposed for the ALICE experiment at the Large Hadron Collider (LHC). This detector upgrade is considered necessary to study jet-matter interaction at high energies. The VHMPID identifies charged hadrons in the 5 GeV/c to 25 GeV/c momentum range. The Cherenkov photons emitted in the VHMPID radiator are collected by spherical mirrors and focused onto a photo-detector plane forming a ring image. The radius of this ring is related to the Cherenkov angle, this information coupled with the particle momentum allows the particle identification. A major issue in the RICH detector is that environmental conditions can cause movements in mirror position. In addition, chromatic dispersion causes the refractive index to shift, altering the Cherenkov angle. We are modeling a twelve mirror RICH detector taking into account the effects of mirror misalignment and chromatic dispersion using a commercial optical software package. This will include quantifying the effects of both rotational and translational mirror misalignment for the initial assembly of the module and later on particle identification.

  10. MO-AB-BRA-08: Rapid Treatment Field Uniformity Optimization for Total Skin Electron Beam Therapy Using Cherenkov Imaging

    International Nuclear Information System (INIS)

    Andreozzi, J; Zhang, R; Glaser, A; Pogue, B; Jarvis, L; Williams, B; Gladstone, D

    2015-01-01

    Purpose: To evaluate treatment field heterogeneity resulting from gantry angle choice in total skin electron beam therapy (TSEBT) following a modified Stanford dual-field technique, and determine a relationship between source to surface distance (SSD) and optimized gantry angle spread. Methods: Cherenkov imaging was used to image 62 treatment fields on a sheet of 1.2m x 2.2m x 1.2cm polyethylene following standard TSEBT setup at our institution (6 MeV, 888 MU/min, no spoiler, SSD=441cm), where gantry angles spanned from 239.5° to 300.5° at 1° increments. Average Cherenkov intensity and coefficient of variation in the region of interest were compared for the set of composite Cherenkov images created by summing all unique combinations of angle pairs to simulate dual-field treatment. The angle pair which produced the lowest coefficient of variation was further studied using an ionization chamber. The experiment was repeated at SSD=300cm, and SSD=370.5cm. Cherenkov imaging was also implemented during TSEBT of three patients. Results: The most uniform treatment region from a symmetric angle spread was achieved using gantry angles +/−17.5° about the horizontal axis at SSD=441cm, +/−18.5° at SSD=370.5cm, and +/−19.5° at SSD=300cm. Ionization chamber measurements comparing the original treatment spread (+/−14.5°) and the optimized angle pair (+/−17.5°) at SSD=441cm showed no significant deviation (r=0.999) in percent depth dose curves, and chamber measurements from nine locations within the field showed an improvement in dose uniformity from 24.41% to 9.75%. Ionization chamber measurements correlated strongly (r=0.981) with Cherenkov intensity measured concurrently on the flat Plastic Water phantom. Patient images and TLD results also showed modest uniformity improvements. Conclusion: A decreasing linear relationship between optimal angle spread and SSD was observed. Cherenkov imaging offers a new method of rapidly analyzing and optimizing TSEBT setup

  11. Particle Identification in Cherenkov Detectors using Convolutional Neural Networks

    CERN Document Server

    Theodore, Tomalty

    2016-01-01

    Cherenkov detectors are used for charged particle identification. When a charged particle moves through a medium faster than light can propagate in that medium, Cherenkov radiation is released in the shape of a cone in the direction of movement. The interior of the Cherenkov detector is instrumented with PMTs to detect this Cherenkov light. Particles, then, can be identified by the shapes of the images on the detector walls.

  12. Extragalactic observations with the MAGIC telescopes

    International Nuclear Information System (INIS)

    Shore, S.N.

    2014-01-01

    The MAGIC imaging atmospheric Cherenkov telescopes, both as a single detector and now used in stereo mode, have been observing a variety of active galaxies and galactic clusters for almost a decade. This review provides a brief summary of some of the most recent results for blazars observed in the energy range > 50 GeV to tens of TeV. The very high energy emission observed with MAGIC is essential for disentangling the various contributions and timescales to the observed spectra and variability. (author)

  13. Quality Assurance of Pixel Hybrid Photon Detectors for the LHCb Ring Imaging Cherenkov Counters

    CERN Document Server

    Carson, Laurence

    Pion/kaon discrimination in the LHCb experiment will be provided by two Ring Imaging Cherenkov (RICH) counters. These use arrays of 484 Hybrid Photon Detectors (HPDs) to detect the Cherenkov photons emitted by charged particles traversing the RICH. The results from comprehensive quality assurance tests on the 550 HPDs manufactured for LHCb are described. Leakage currents, dead channel probabilities, dark count rates and ion feedback rates are reported. Furthermore, measurements carried out on a sample of tubes to determine the efficiency of the HPD pixel chip by measuring the summed analogue response from the backplane of the silicon sensor are described.

  14. CELESTE: an atmospheric Cherenkov telescope for high energy gamma astrophysics

    Czech Academy of Sciences Publication Activity Database

    Paré, E.; Balauge, B.; Bazer-Bachi, R.; Bergeret, H.; Berny, F.; Briand, N.; Bruel, P.; Cerutti, M.; Collon, J.; Cordier, A.; Cornbise, P.; Debiais, G.; Dezalay, J. P.; Dumora, D.; Durand, E.; Eschstruth, P.; Espigat, P.; Fabre, B.; Fleury, P.; Gilly, J.; Gouillaud, J. C.; Gregory, C.; Hérault, N.; Holder, J.; Hrabovský, Miroslav; Incerti, S.; Jouenne, A.; Kalt, L.; LeGallou, R.; Lott, B.; Manigot, P.; Neveu, J.; Olive, J. F.; Palatka, Miroslav; Perez, A.; Rebii, A.; Rob, L.; Sans, J. L.; Schovánek, Petr; Villard, G.

    2002-01-01

    Roč. 490, - (2002), s. 71-89 ISSN 0168-9002 R&D Projects: GA MŠk LN00A006 Institutional research plan: CEZ:AV0Z1010920 Keywords : gamma-ray astronopy * atmospheric Cherenkov detector Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.167, year: 2002

  15. Prospects for PWNe and SNRs science with the ASTRI mini-array of pre-production small-sized telescopes of the Cherenkov telescope array

    Science.gov (United States)

    Burtovoi, A.; Zampieri, L.; Giuliani, A.; Bigongiari, C.; Di Pierro, F.; Stamerra, A.

    2017-01-01

    The development and construction of the Cherenkov Telescope Array (CTA) opens up new opportunities for the study of very high energy (VHE, E > 100 GeV) sources. As a part of CTA, the ASTRI project, led by INAF, has one of the main goals to develop one of the mini-arrays of CTA pre-production telescopes, proposed to be installed at the CTA southern site. Thanks to the innovative dual-mirror optical design of its small-sized telescopes, the ASTRI mini-array will be characterized by a large field of view, an excellent angular resolution and a good sensitivity up to energies of several tens of TeV. Pulsar wind nebulae, along with Supernova Remnants, are among the most abundant sources that will be identified and investigated, with the ultimate goal to move significantly closer to an understanding of the origin of cosmic rays (CR). As part of the ongoing effort to investigate the scientific capabilities for both CTA as a whole and the ASTRI mini-array, we performed simulations of the Vela X region. We simulated its extended VHE γ-ray emission using the results of the detailed H.E.S.S. analysis of this source. We estimated the resolving capabilities of the diffuse emission and the detection significance of the pulsar with both CTA as a whole and the ASTRI mini-array. Moreover with these instruments it will be possible to observe the high-energy end of SNRs spectrum, searching for particles with energies near the cosmic-rays "knee" (E ˜ 1015 eV). We simulated a set of ASTRI mini-array observations for one young and an evolved SNRs in order to test the capabilities of this instrument to discover and study PeVatrons on the Galactic plane.

  16. Observations of VHE γ-Ray Sources with the MAGIC Telescope

    Science.gov (United States)

    Bartko, H.

    2008-10-01

    The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy γ-radiation in the energy band between about 50 GeV and 10 TeV. Since Autumn of 2004 MAGIC has been taking data routinely, observing various objects like supernova remnants (SNRs), γ-ray binaries, Pulsars, Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB). We briefly describe the observational strategy, the procedure implemented for the data analysis, and discuss the results for individual sources. An outlook to the construction of the second MAGIC telescope is given.

  17. G-APDs in Cherenkov astronomy: The FACT camera

    International Nuclear Information System (INIS)

    Krähenbühl, T.; Anderhub, H.; Backes, M.; Biland, A.; Boller, A.; Braun, I.; Bretz, T.; Commichau, V.; Djambazov, L.; Dorner, D.; Farnier, C.; Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Huber, B.; Kim, K.-S.; Köhne, J.-H.; Krumm, B.

    2012-01-01

    Geiger-mode avalanche photodiodes (G-APD, SiPM) are a much discussed alternative to photomultiplier tubes in Cherenkov astronomy. The First G-APD Cherenkov Telescope (FACT) collaboration builds a camera based on a hexagonal array of 1440 G-APDs and has now finalized its construction phase. A light-collecting solid PMMA cone is glued to each G-APD to eliminate dead space between the G-APDs by increasing the active area, and to restrict the light collection angle of the sensor to the reflector area in order to reduce the amount of background light. The processing of the signals is integrated in the camera and includes the digitization using the domino ring sampling chip DRS4.

  18. The fluid systems for the SLD Cherenkov ring imaging detector

    International Nuclear Information System (INIS)

    Abe, K.; Hasegawa, K.; Hasegawa, Y.; Iwasaki, Y.; Suekane, F.; Yuta, H.; Baird, K.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Word, G.; Bean, A.; Caldwell, D.O.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Yellin, S.; Ben-David, R.; Manly, S.; Snyder, J.; Turk, J.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Schneider, M.; Williams, D.A.; Coller, J.; Shank, J.T.; Whitaker, J.S.; d'Oliveira, A.; Johnson, R.A.; Martinez, J.; Nussbaum, M.; Santha, A.K.S.; Sokoloff, M.D.; Stockdale, I.; Wilson, R.J.

    1992-10-01

    We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C 2 H 6 + TMAE), radiator gas (C 5 F 12 + N 2 ) and radiator liquid (C 6 F 14 ). Measured critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported

  19. THGEM based photon detector for Cherenkov imaging applications

    CERN Document Server

    Alexeev, M; Bradamante, F; Bressan, A; Chiosso, M; Ciliberti, P; Croci, G; Colantoni, M L; Dalla Torre, S; Duarte Pinto, S; Denisov, O; Diaz, V; Ferrero, A; Finger, M; Finger, M Jr; Fischer, H; Giacomini, G; Giorgi, M; Gobbo, B; Heinsius, F H; Herrmann, F; Jahodova, V; Königsmann, K; Lauser, L; Levorato, S; Maggiora, A; Martin, A; Menon, G; Nerling, F; Panzieri, D; Pesaro, G; Polak, J; Rocco, E; Ropelewski, L; Sauli, F; Sbrizzai, G; Schiavon, P; Schill, C; Schopferer, S; Slunecka, M; Sozzi, F; Steiger, L; Sulc, M; Takekawa, S; Tessarotto, F; Wollny, H

    2010-01-01

    We are developing a single photon detector for Cherenkov imaging counters. This detector is based on the use of THGEM electron multipliers in a multilayer design. The major goals of our project are ion feedback suppression down to a few per cent, large gain, fast response, insensitivity to magnetic fields, and a large detector size. We report about the project status and perspectives. In particular, we present a systematic study of the THGEM response as a function of geometrical parameters, production techniques and the gas mixture composition. The first figures obtained from measuring the response of a CsI coated THGEM to single photons are presented.

  20. Photodetectors for the Advanced Gamma-ray Imaging System (AGIS)

    Science.gov (United States)

    Wagner, Robert G.; Advanced Gamma-ray Imaging System AGIS Collaboration

    2010-03-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation very high energy gamma-ray observatory. Design goals include an order of magnitude better sensitivity, better angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. Given the scale of AGIS, the camera must be reliable and cost effective. The Schwarzschild-Couder optical design yields a smaller plate scale than present-day Cherenkov telescopes, enabling the use of more compact, multi-pixel devices, including multianode photomultipliers or Geiger avalanche photodiodes. We present the conceptual design of the focal plane for the camera and results from testing candidate! focal plane sensors.

  1. Camera calibration strategy of the SST-1M prototype of the Cherenokov Telescope Array

    CERN Document Server

    Prandini, E; Lyard, E.; Schioppa, E. jr.; Neronov, A.; Bilnik, W.; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Moderski, R.; Montaruli, T.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Rameez, M.; Rajda, P.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Pujadas, I. Troyano; Walter, R.; Więcek, M.; Zagdański, A.; Ziętara, K.; Żychowski, P.

    2015-01-01

    The SST-1M telescope is one of the prototypes under construction proposed to be part of the future Cherenkov Telescope Array. It uses a standard Davis-Cotton design for the optics and telescope structure, with a dish diameter of 4 meters and a large field-of-view of 9 degrees. The innovative camera design is composed of a photo-detection plane with 1296 pixels including entrance window, light concentrators, Silicon Photomultipliers (SiPMs), and pre-amplifier stages together with a fully digital readout and trigger electronics, DigiCam. In this contribution we give a general description of the analysis chain designed for the SST-1M prototype. In particular we focus on the calibration strategy used to convert the SiPM signals registered by DigiCam to the quantities needed for Cherenkov image analysis. The calibration is based on an online feedback system to stabilize the gain of the SiPMs, as well as dedicated events (dark count, pedestal, and light flasher events) to be taken during the normal operation of the...

  2. A Cherenkov imager for the charge measurement of the elements of nuclear cosmic radiation

    International Nuclear Information System (INIS)

    Sallaz-Damaz, Y.

    2008-10-01

    A Cherenkov imager, CHERCAM (Cherenkov Camera) has been designed and built for the CREAM (Cosmic Ray Energetics and Mass) balloon-borne experiment. The instrument will perform charge measurements of nuclear cosmic-ray over a range extending from proton to iron in the energy domain from 10 10 to 10 15 eV. This work has focused on the development of CHERCAM by creating a simulation of the detector and on the aerogel plan characterization for the radiator. But it has also expanded on the technical aspects of the construction of the detector and its various tests, as well as the development of calibration software and data analysis. (author)

  3. Method of separation of air showers initiated by γ-quanta and protons using Cherenkov light angular characteristics in combination and angular resolution estimate for an array of several optical telescopes

    International Nuclear Information System (INIS)

    Anokhina, A.M.; Galkin, V.I.; Ivanenko, I.P.; Roganova, T.M.

    1990-01-01

    Computer simulation of optical characteristics of air showers was carried out. On the basis of multidimensional analysis of Cherenkov light angular distribution possibility is considered to distinguish γ-showers from proton showers. Also an estimate for angular resolution is given for an array of five optical telescopes situated at Mt.Aragats. 7 refs.; 10 figs.; 11 tabs

  4. A Cherenkov viewing device for used-fuel verification

    International Nuclear Information System (INIS)

    Attas, E.M.; Chen, J.D.; Young, G.J.

    1990-01-01

    A Cherenkov viewing device (CVD) has been developed to help verify declared inventories of used nuclear fuel stored in water bays. The device detects and amplifies the faint ultraviolet Cherenkov glow from the water surrounding the fuel, producing a real-time visible image on a phosphor screen. Quartz optics, a UV-pass filter and a microchannel-plate image-intensifier tube serve to form the image, which can be photographed or viewed directly through an eyepiece. Normal fuel bay lighting does not interfere with the Cherenkov light image. The CVD has been successfully used to detect anomalous PWR, BWR and CANDU (CANada Deuterium Uranium: registered trademark) fuel assemblies in the presence of normal-burnup assemblies stored in used-fuel bays. The latest version of the CVD, known as Mark IV, is being used by inspectors from the International Atomic Energy agency for verification of light-water power-reactor fuel. Its design and operation are described, together with plans for further enhancements of the instrumentation. (orig.)

  5. Physics and astrophysics with gamma-ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, J. [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2012-08-15

    In the past few years gamma-ray astronomy has entered a golden age. A modern suite of telescopes is now scanning the sky over both hemispheres and over six orders of magnitude in energy. At {approx}TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) has increased this number to nearly one hundred. With a large field of view and duty cycle, the Tibet and Milagro air shower detectors have demonstrated the promise of the direct particle detection technique for TeV gamma rays. At {approx}GeV energies, the Fermi Gamma-ray Space Telescope has increased the number of known sources by nearly an order of magnitude in its first year of operation. New classes of sources that were previously theorized to be gamma-ray emitters have now been confirmed observationally. Moreover, there have been surprise discoveries of GeV gamma-ray emission from source classes for which no theory predicted it was possible. In addition to elucidating the processes of high-energy astrophysics, gamma-ray telescopes are making essential contributions to fundamental physics topics including quantum gravity, gravitational waves, and dark matter. I summarize the current census of astrophysical gamma-ray sources, highlight some recent discoveries relevant to fundamental physics, and describe the synergetic connections between gamma-ray and neutrino astronomy. This is a brief overview intended in particular for particle physicists and neutrino astronomers, based on a presentation at the Neutrino 2010 conference in Athens, Greece. I focus in particular on results from Fermi (which was launched soon after Neutrino 2008), and conclude with a description of the next generation of instruments, namely HAWC and the Cherenkov Telescope Array.

  6. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Conde, Miguel A. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Cannoni, Mirco; Gómez, Mario E. [Dpto. Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva (Spain); Zandanel, Fabio; Prada, Francisco, E-mail: masc@stanford.edu, E-mail: mirco.cannoni@dfa.uhu.es, E-mail: fabio@iaa.es, E-mail: mario.gomez@dfa.uhu.es, E-mail: fprada@iaa.es [Instituto de Astrofísica de Andalucía (CSIC), E-18008, Granada (Spain)

    2011-12-01

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  7. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Conde, Miguel A.; /KIPAC, Menlo Park /SLAC /IAC, La Laguna /Laguna U., Tenerife; Cannoni, Mirco; /Huelva U.; Zandanel, Fabio; /IAA, Granada; Gomez, Mario E.; /Huelva U.; Prada, Francisco; /IAA, Granada

    2012-06-06

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  8. Status of the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Colin, Pierre; Carmona, Emiliano; Schweizer, Thomas; Sitarek, Julian [Max-Planck-Institut fuer Physik, Werner-Heisenberg Institut, Muenchen (Germany)

    2010-07-01

    MAGIC is a system of two 17-m Cherenkov telescopes located on La Palma (Canary islands),sensitive to gamma-rays above 30 GeV. It has been recently upgraded by a second telescope which strongly improves the sensitivity, particularly at low energy. Here we present the status of the MAGIC telescopes and an overview of the recent results obtained in single or stereoscopic mode. We also discuss the real performance of the new stereoscopic system based on Crab Nebula observations.

  9. Software design and code generation for the engineering graphical user interface of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Tanci, Claudio; Tosti, Gino; Antolini, Elisa; Gambini, Giorgio F.; Bruno, Pietro; Canestrari, Rodolfo; Conforti, Vito; Lombardi, Saverio; Russo, Federico; Sangiorgi, Pierluca; Scuderi, Salvatore

    2016-08-01

    ASTRI is an on-going project developed in the framework of the Cherenkov Telescope Array (CTA). An end- to-end prototype of a dual-mirror small-size telescope (SST-2M) has been installed at the INAF observing station on Mt. Etna, Italy. The next step is the development of the ASTRI mini-array composed of nine ASTRI SST-2M telescopes proposed to be installed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort carried on by Italy, Brazil and South-Africa and led by the Italian National Institute of Astrophysics, INAF. To control the ASTRI telescopes, a specific ASTRI Mini-Array Software System (MASS) was designed using a scalable and distributed architecture to monitor all the hardware devices for the telescopes. Using code generation we built automatically from the ASTRI Interface Control Documents a set of communication libraries and extensive Graphical User Interfaces that provide full access to the capabilities offered by the telescope hardware subsystems for testing and maintenance. Leveraging these generated libraries and components we then implemented a human designed, integrated, Engineering GUI for MASS to perform the verification of the whole prototype and test shared services such as the alarms, configurations, control systems, and scientific on-line outcomes. In our experience the use of code generation dramatically reduced the amount of effort in development, integration and testing of the more basic software components and resulted in a fast software release life cycle. This approach could be valuable for the whole CTA project, characterized by a large diversity of hardware components.

  10. Application of Cherenkov light observation to reactor measurements (3). Evaluation of spent fuel elements of LWRs with Cherenkov light estimation system

    International Nuclear Information System (INIS)

    Yamamoto, Keiichi; Takeuchi, Tomoaki; Tsuchiya, Kunihiko; Hayashi, Takayasu; Kosuge, Fumiaki

    2016-11-01

    Development of the reactor measurement system has been carried out to obtain the real-time in-core nuclear and thermal information, where the quantitative measurement of brightness of Cherenkov light was investigated. The system would be applied as a monitoring system in severe accidents and for the advanced operation management technology in existing LWRs. This report summarized the modification of Cherenkov light estimation system described JAEA-Testing 2015-001 and the result of the burn-up evaluation by Cherenkov light image emitted from spent fuel elements of LWRs with the modified system. (author)

  11. Astronomía gamma con telescopios Cherenkov: hacia un observatorio astronómico abierto a la comunidad

    Science.gov (United States)

    Rovero, A. C.

    Gamma-ray astronomy is opening the way to a universe far more energetic than anyone could have imagined half a century ago. The understanding of the processes of nature which carry a large portion of the energy in the universe, has astrophysical and cosmological implications. The next gen- eration of Cherenkov telescopes, an order of magnitude more sensitive and with higher resolution than the current systems, will mean a significant step forward for ground-based gamma-ray astronomy. This paper presents the current status of this field as well as the next generation of telescopes in this energy range, which are being designed for the first international observa- tory open to the astronomical community. The Cherenkov Telescope Array project and the Argentine sites proposed for the southern observatory are described in this paper. FULL TEXT IN SPANISH

  12. The cross-talk problem in SiPMs and their use as light sensors for imaging atmospheric Cherenkov telescopes

    International Nuclear Information System (INIS)

    Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kaplin, V.; Klemin, S.; Mirzoyan, R.; Popova, E.; Teshima, M.

    2009-01-01

    One of the major drawbacks of a SiPM is due to the so-called cross-talk effect. Often, one single photon in a chain reaction can generate more photons and thus can fire more than one micro-cell of a SiPM. This can be considered as a noise in the signal multiplication process and this degrades the signal/noise ratio. In self-trigger schemes this noise can be so high that it can make operating them difficult at low threshold settings. For the past few years, we have dwelt on this effect aiming to suppress it at the design stage. One can use (a) trenches around the micro-cells for suppressing the direct photon 'communication' channel and (b) the so-called double p-n junction for suppressing photon-induced charge 'communication' in neighbor pixels. The low cross-talk is mandatory, for example, for producing SiPM-based light sensor modules for the Imaging Atmospheric Cherenkov Technique projects for ground-based gamma-ray astrophysics. We produced and tested a few modules consisting of 4 SiPMs, each with a size of 5 mmx5 mm of custom production type. We report here on the main parameters of these units.

  13. Status and recent results of the MAGIC telescope system

    Energy Technology Data Exchange (ETDEWEB)

    Fruck, Christian [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2016-07-01

    MAGIC is an instrument for pointed ground-based observations of the gamma-ray sky in the 50 GeV to 80 TeV regime. The two 17 m diameter Imaging Air Cherenkov Telescopes are located on 2200 m a.s.l. at the Roque de los Muchachos Observatory on the Canary island La Palma. We will report the status and recent technical developments of the instrument, highlight the most important scientific results obtained with observations of Galactic and extragalactic objects, and will summarize future plans.

  14. Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays

    International Nuclear Information System (INIS)

    Bourrion, O; Bernard, C; Bondoux, D; Bouly, J L; Bouvier, J; Boyer, B; Brinet, M; Buenerd, M; Damieux, G; Derome, L; Eraud, L; Foglio, R; Fombaron, D; Grondin, D; Marton, M; Pelissier, A; Lee, M H; Lutz, L; Menchaca-Rocha, A; Perie, J N

    2011-01-01

    A proximity focusing Cherenkov imager called CHERCAM, has been built for the charge measurement of nuclear cosmic rays with the CREAM instrument. It consists of a silica aerogel radiator plane across from a detector plane equipped with 1,600 1'' diameter photomultipliers. The two planes are separated by a ring expansion gap. The Cherenkov light yield is proportional to the charge squared of the incident particle. The expected relative light collection accuracy is in the few percents range. It leads to an expected single element separation over the range of nuclear charge Z of main interest 1 ≤ Z∼<26. CHERCAM is designed to fly with the CREAM balloon experiment. The design of the instrument and the implemented technical solutions allowing its safe operation in high altitude conditions (radiations, low pressure, cold) are presented.

  15. The aerogel Ring Imaging Cherenkov system at the Belle II spectrometer

    Science.gov (United States)

    Pestotnik, R.; Adachi, I.; Dolenec, R.; Hataya, K.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kindo, H.; Kobayashi, T.; Korpar, S.; Križan, P.; Kumita, T.; Mrvar, M.; Nishida, S.; Ogawa, K.; Ogawa, S.; Šantelj, L.; Sumiyoshi, T.; Tabata, M.; Yonenaga, M.; Yusa, Y.

    2017-12-01

    In the forward end-cap of the Belle II spectrometer, a proximity focusing Ring Imaging Cherenkov counter with an aerogel radiator will be installed. The detector will occupy a limited space inside solenoid magnet with longitudinal field of 1.5 T. It will consist of a double layer aerogel radiator, an expansion volume and a photon detector. 420 Hamamatsu hybrid avalanche photo sensors with 144 channels each will be used to read out single Cherenkov photons with high efficiency. More than 60,000 analog signals will be digitized and processed in the front end electronics and send to the unified experiment data acquisition system. The detector components have been successfully produced and are now being installed in the spectrometer. Tested before on the bench, they are currently being installed in the mechanical frame. Part of the detector have been commissioned and connected to the acquisition system to register the cosmic ray particles. The first preliminary results are in accordance with previous expectations. We expect an excellent performance of the device which will allow at least a 4σ separation of pions from kaons in the experiment kinematic region from 0.5 GeV/c to 4 GeV/c.

  16. Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Bourrion, O; Bernard, C; Bondoux, D; Bouly, J L; Bouvier, J; Boyer, B; Brinet, M; Buenerd, M; Damieux, G; Derome, L; Eraud, L; Foglio, R; Fombaron, D; Grondin, D; Marton, M; Pelissier, A [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53, rue des Martyrs, Grenoble (France); Lee, M H; Lutz, L [University of Maryland, College Park MD 20742 (United States); Menchaca-Rocha, A [Instituto de Fisica, UNAM, A.P. 20-364, 01000 Mexico DF (Mexico); Perie, J N, E-mail: olivier.bourrion@lpsc.in2p3.fr [Universite de Toulouse, INSA, UPS, Mines Albi, ISAE, ICA (Institut Clement Ader), 133, avenue de Rangueil, F-31077 Toulouse (France)

    2011-06-15

    A proximity focusing Cherenkov imager called CHERCAM, has been built for the charge measurement of nuclear cosmic rays with the CREAM instrument. It consists of a silica aerogel radiator plane across from a detector plane equipped with 1,600 1'' diameter photomultipliers. The two planes are separated by a ring expansion gap. The Cherenkov light yield is proportional to the charge squared of the incident particle. The expected relative light collection accuracy is in the few percents range. It leads to an expected single element separation over the range of nuclear charge Z of main interest 1 {<=} Z{approx}<26. CHERCAM is designed to fly with the CREAM balloon experiment. The design of the instrument and the implemented technical solutions allowing its safe operation in high altitude conditions (radiations, low pressure, cold) are presented.

  17. Observation of Galactic Sources of Very High Energy γ-RAYS with the Magic Telescope

    Science.gov (United States)

    Bartko, H.

    The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200 m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy γ-radiation in the energy band between about 50 GeV and 10 TeV. Since the autumn of 2004 MAGIC has been taking data routinely, observing various objects, like supernova remnants (SNRs), γ-ray binaries, Pulsars, Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB). We briefly describe the observational strategy, the procedure implemented for the data analysis, and discuss the results of observations of Galactic Sources.

  18. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A., Jr.; Amato, S.; Amerio, S.; Amhis, Y.; Everse, LA; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J.E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M-O.; Van Beuzekom, Martin; Bien, A.; Bifani, S.; Bird, T.D.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Perez, D. H. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph; Chefdeville, M.; Chen, S.; Cheung, S-F.; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; CruzTorres, M.; Cunliffe, S.; Currie, C.R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; de Miranda, J. M.; Paula, L.E.; da-Silva, W.S.; De Simone, P.; Dean, C-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; ElRifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T. M.; Falabella, A.; Faerber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, Mark; Fontanelli, F.; Forty, R.; De Aguiar Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Torreira, A. Gallas; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Pardinas, J.; Garofoli, J.; Tico, J. Garra; Garrido, L.; Gascon, D.; Carvalho-Gaspar, M.; Gauld, Rhorry; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T. J.; Ghez, Ph; Gianelle, A.; Giani, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Goebel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.Q.; Gotti, C.; Gandara, M. Grabalosa; Diaz, R. Graciani; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Gruenberg, O.; Gui, B.; Gushchin, E.; Guz, Yu; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, H.M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D. E.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M. H.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.M.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G. D.; Lai, A.; Lambert, D.M.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T. E.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, S.C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Maerki, R.; Marks, J.; Martellotti, G.; Martinelli-Boneschi, F.; Santos, D. Martinez; Martinez-Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; Mcnab, A.; McNulty, R.; McSkelly, B.; Meadows, B. T.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M. N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mueller, J.; Mueller, Karl; Mueller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, E.A.; Owen, R.P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L.L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, D.A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Olloqui, E. Picatoste; Pietrzyk, B.; Pilar, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, M. E.; Price, J.D.; Prisciandaro, J.; Pritchard, C.A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, Y.W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M.; dos Reis, A. C.; Ricciardi, S.; Richards, Jennifer S; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, L.E.T.; Perez, P. Rodriguez; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, van Hapere; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, R. H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Coutinho, R. Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; de Souza, D.K.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson-Moore, P.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M. N.; Todd, Jim; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, N.T.M.T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Garcia, M. Ubeda; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Vazquez Regueiro, P.; Vazquez Sierra, C.; Vecchi, S.; Velthuis, M.J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, John; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M.P.; Williams, M.; Wilson, James F; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.J.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-01-01

    A search is performed for heavy long-lived charged particles using 3.0 fb(-1) of proton-proton collisions collected at √s = 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from

  19. TH-C-17A-05: Cherenkov Excited Phosphorescence Oxygen (CEPhOx) Imaging During Multi-Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R; Pogue, B [Dartmouth College, Hanover, NH (United States); Holt, R [Dartmouth College, Hanover, NH - New Hampshire (United States); Esipova, T; Vinogradov, S [University of Pennsylvania, Philadelphia, PA (United States); Gladstone, D [Dartmouth-Hitchcock Medical Center, Hanover, City of Lebanon (Lebanon)

    2014-06-15

    Purpose: Cherenkov radiation is created during external beam radiation therapy that can excite phosphorescence in tissue from oxygen-sensitive, bio-compatible probes. Utilizing the known spatial information of the treatment plan with directed multiple beam angles, Cherenkov Excited Phosphorescence Oxygen (CEPhOx) imaging was realized from the reconstructions of Cherenkov excited phosphorescence lifetime. Methods: Platinum(II)-G4 (PtG4) was used as the oxygen-sensitive phosphorescent probe and added to a oxygenated cylindrical liquid phantom with a oxygenated/deoxygenated cylindrical anomaly. Cherenkov excited phosphorescence was imaged using a time-gated ICCD camera temporallysynchronized to the LINAC pulse output. Lifetime reconstruction was carried out in NIRFAST software. Multiple angles of the incident radiation beam was combined with the location of the prescribed treatment volume (PTV) to improve the tomographic recovery as a function of location. The tissue partial pressure of oxygen (pO2) in the background and PTV was calculated based on the recovered lifetime distribution and Stern-Volmer equation. Additionally a simulation study was performed to examine the accuracy of this technique in the setting of a human brain tumor. Results: Region-based pO2 values in the oxygenated background and oxygenated/deoxygenated PTV were correctly recovered, with the deoxygenated anomaly (15.4 mmHg) easily distinguished from the oxygenated background (143 mmHg). The data acquisition time could be achieved within the normal irradiation time for a human fractionated plan. The simulations indicated that CEPhOx would be a sufficient to sample tumor pO2 sensing from tumors which are larger than 2cm in diameter or within 23mm depth from the surface. Conclusion: CEPhOx could be a novel imaging tool for pO2 assessment during external radiation beam therapy. It is minimally invasive and should work within the established treatment plan of radiation therapy with multiple beams in

  20. Quenching the scintillation in CF4 Cherenkov gas radiator

    International Nuclear Information System (INIS)

    Blake, T.; D'Ambrosio, C.; Easo, S.; Eisenhardt, S.; Fitzpatrick, C.; Forty, R.; Frei, C.; Gibson, V.; Gys, T.; Harnew, N.; Hunt, P.; Jones, C.R.; Lambert, R.W.; Matteuzzi, C.; Muheim, F.; Papanestis, A.; Perego, D.L.; Piedigrossi, D.; Plackett, R.; Powell, A.

    2015-01-01

    CF 4 is used as a Cherenkov gas radiator in one of the Ring Imaging Cherenkov detectors at the LHCb experiment at the CERN Large Hadron Collider. CF 4 is well known to have a high scintillation photon yield in the near and far VUV, UV and in the visible wavelength range. A large flux of scintillation photons in our photon detection acceptance between 200 and 800 nm could compromise the particle identification efficiency. We will show that this scintillation photon emission system can be effectively quenched, consistent with radiationless transitions, with no significant impact on the photons resulting from Cherenkov radiation

  1. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del [Department of Physics, University of Pisa, Pisa (Italy); INFN, section of Pisa, Pisa (Italy); Cherry, Simon R. [Department of Biomedical Engineering, University of California, Davis, CA (United States); Lehnert, Adrienne; Hunter, William C. J.; McDougald, Wendy; Miyaoka, Robert S.; Kinahan, Paul E. [Department of Radiology, University of Washington, Seattle, WA (United States)

    2015-11-16

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10–13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector’s dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could

  2. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study

    International Nuclear Information System (INIS)

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del; Cherry, Simon R.; Lehnert, Adrienne; Hunter, William C. J.; McDougald, Wendy; Miyaoka, Robert S.; Kinahan, Paul E.

    2015-01-01

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10–13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector’s dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could

  3. Deployment of a Pair of 3 M telescopes in Utah

    Energy Technology Data Exchange (ETDEWEB)

    Finnegan, G; Adams, B; Butler, K; Cardoza, J; Colin, P; Hui, C M; Kieda, D; Kirkwood, D; Kress, D; Kress, M; LeBohec, S; McGuire, C; Newbold, M; Nunez, P; Pham, K [University of Utah, Department of Physics, Salt Lake City, Utah 84112 (United States)

    2008-12-24

    Two 3 m telescopes are being installed in Grantsville Utah. They are intended for the testing of various approaches to the implementation of intensity interferometry using Cherenkov Telescopes in large arrays as receivers as well as for the testing of novel technology cameras and electronics for ground based gamma-ray astronomy.

  4. The Cherenkov Surface Detector of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Billoir, Pierre, E-mail: billoir@lpnhe.in2p3.fr [LPNHE, CNRS/IN2P3 and Univ. P. and M. Curie and Univ. D. Diderot, 4 place Jussieu 75272 Paris Cedex 05 (France); Observatorio Pierre Auger, av. San Martín Norte, 304 5613, Malargüe (Argentina)

    2014-12-01

    The Pierre Auger Observatory detects the atmospheric showers induced by cosmic rays of ultra-high energy (UHE). It is the first one to use the hybrid technique. A set of telescopes observes the fluorescence of the nitrogen molecules on clear moonless nights, giving access to the longitudinal profile of the shower. These telescopes surround a giant array of 1600 water Cherenkov tanks (covering more than 3000 km{sup 2}), which works continuously and samples the particles reaching the ground (mainly muons, photons and electrons/positrons); the light produced within the water is recorded into FADC (Fast Analog to Digital Convertes) traces. A subsample of hybrid events provides a cross calibration of the two components. We describe the structure of the Cherenkov detectors, their sensitivity to different particles and the information they can give on the direction of origin, the energy and the nature of the primary UHE object; we discuss also their discrimination power for rare events (UHE photons or neutrinos). To cope with the variability of weather conditions and the limitations of the communication system, the procedures for trigger and real time calibration have been shared between local processors and a central acquisition system. The overall system has been working almost continuously for 10 years, while being progressively completed and increased by the creation of a dense “infill” subarray. - Highlights: • The water Cherenkov technique is used in the Surface Detector of the Pierre Auger Observatory. • Cross-calibrated with the Fluorescence Detector, it provides a measurement of the primary energy. • The spectrum of the UHE cosmic rays exhibits clearly an “ankle” and a cutoff. • The muon observed muon content of the atmospheric showers is larger than expected from the models. • Stringent limits on the flux of UHE neutrinos and photons are obtained.

  5. Cherenkov rings from aerogel detected by four large-area hybrid photodiodes

    International Nuclear Information System (INIS)

    Bellunato, T.; Braem, A.; Buzykaev, A.R.; Calvi, M.; Chesi, E.; Danilyuk, A.F.; Easo, S.; Jolly, S.; Joram, C.; Kravchenko, E.A.; Liko, D.; Matteuzzi, C.; Musy, M.; Negri, P.; Neufeld, N.; Onuchin, A.P.; Seguinot, J.; Wotton, S.

    2003-01-01

    We report on the results obtained using thick samples of silica aerogel as radiators for a Ring Imaging Cherenkov counter. Four large-diameter hybrid photodiodes with 2048 channels have been used as photon detectors. Pions and protons with momenta ranging from 6 to 10 GeV/c were separated and identified. The number of photoelectrons and the radius of the Cherenkov rings together with the Cherenkov angle resolution were measured. A comparison with a simulation program based on GEANT4 is discussed

  6. Multi-anode photon-multiplier readout electronics for the LHCb ring imaging Cherenkov detectors

    CERN Document Server

    Smale, N J

    2004-01-01

    A readout system for the Ring Imaging CHerenkov (RICH) detectors of the LHCb experiment has been developed. Two detector technologies for the measurement of Cherenkov photons are considered, the Multi-Anode Photo-Multiplier Tube (MAPMT) and the Hybrid Photon Detector (HPD), both of which meet the RICH requirements. The properties of the MAPMT are evaluated using a controlled single-photon source; a pixel-to-pixel gain variation of ~3 and a typical signal to noise of ~20 is measured. The relative tube efficiency is found to be reduced by ~26 % due to the detailed focusing structure of the MAPMT device. A radiation hard application-specific integrated circuit (ASIC) chip, the Beetle1.2MA0, has been developed to capture and store signals from a pair of MAPMTs. The Beetle1.2MA0 is built on the architecture of the Beetle family that was designed for silicon strip detectors, the difference being a modified front-end amplifier. The 128 input-channels of the Beetle1.2MA0 have a charge-sensitive pre-amplifier followed...

  7. The Tunka-133 EAS Cherenkov light array: Status of 2011

    International Nuclear Information System (INIS)

    Berezhnev, S.F.; Besson, D.; Budnev, N.M.; Chiavassa, A.; Chvalaev, O.A.; Gress, O.A.; Dyachok, A.N.; Epimakhov, S.N.; Haungs, A.; Karpov, N.I.; Kalmykov, N.N.; Konstantinov, E.N.; Korobchenko, A.V.; Korosteleva, E.E.; Kozhin, V.A.; Kuzmichev, L.A.; Lubsandorzhiev, B.K.; Lubsandorzhiev, N.B.; Mirgazov, R.R.; Panasyuk, M.I.

    2012-01-01

    A new EAS Cherenkov light array, Tunka-133, with ∼1km 2 geometrical area has been installed at the Tunka Valley (50 km from Lake Baikal) in 2009. The array permits a detailed study of cosmic ray energy spectrum and mass composition in the energy range 10 16 –10 18 eV with a uniform method. We describe the array construction, DAQ and methods of the array calibration. The method of energy reconstruction and absolute calibration of measurements are discussed. The analysis of spatial and time structure of EAS Cherenkov light allows to estimate the depth of the EAS maximum X max . The results on the all particles energy spectrum and the mean depth of the EAS maximum X max vs. primary energy derived from the data of two winter seasons (2009–2011) are presented. Preliminary results of joint operation of the Cherenkov array with antennas for the detection of EAS radio signals are shown. Plans for future upgrades – deployment of remote clusters, radioantennas and a scintillator detector network and a prototype of the HiSCORE gamma-telescope – are discussed.

  8. Towards a network of atmospheric Cherenkov detectors 7

    International Nuclear Information System (INIS)

    Robin, M.; Weekes, T.C.; Mori, M.; Mariotti, M.; Hofmann, W.; Aharonian, F.; Sinitsyna, V.; Smith, D.; Marleau, P.; Sinnis, G.; Volk, H.; Jager, O. de; Harding, A.; Coppi, P.; Dermer, C.; Goldwurm, A.; Paul, J.; Puhlhofer, G.; Bernardini, E.; Swordy, S.; Yoshikoshi, T.; Punch, M.

    2005-01-01

    This document gathers the papers and transparencies presented at the conference. The main part of the conference was organized into 6 sessions: 1) the review of present experiments (Veritas, Cangaroo-3, Magic, Hess-1, Shalon, Cactus, Cygnus-X-3...), 2) calibration and analysis techniques in VHE (very high energy) astrophysics, 3) multi-wavelength observations and phenomenology of sources, 4) the future of ground-based VHE astronomy, 5) developments in instrumentation for Cherenkov telescopes, and 6) the evolution of the field and its link with mainstream astrophysics

  9. Towards a network of atmospheric Cherenkov detectors 7

    Energy Technology Data Exchange (ETDEWEB)

    Robin, M. [Ecole Polytechnique, 91 - Palaiseau (France); Weekes, T.C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Mori, M. [Tokyo Univ., Institute for Cosmic Ray Research (Japan); Mariotti, M. [Padova Univ., INFN (Italy); Hofmann, W.; Aharonian, F. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Sinitsyna, V. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Smith, D. [Centre d' Etudes Nucleaires de Bordeaux Gradignan, 33 - Gradignan (France); Marleau, P. [California Univ., Davis, CA (United States); Sinnis, G. [Los Alamos National Lab., NM (United States); Volk, H. [Max-Planck-Institut fur Kernphysik (Germany); Jager, O. de [South Africa Univ., North-West (South Africa); Harding, A. [NASA Goddard Space Flight Center (United States); Coppi, P. [Yale Univ., New Haven, CT (United States); Dermer, C. [Naval Research Laboratory (United States); Goldwurm, A.; Paul, J. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Puhlhofer, G. [Landessternwarte Heidelberg (Germany); Bernardini, E. [DESy-Zeuthen (Germany); Swordy, S. [Chicago Univ., IL (United States); Yoshikoshi, T. [Tokyo Univ., Tanashi (Japan). Inst. for Cosmic Ray Research; Teshima, M. [Max-Planck-Institute for Physics, Munich (Germany); Punch, M. [Astrophysique et Cosmologie (APC), College de France, 75 - Paris (France)

    2005-07-01

    This document gathers the papers and transparencies presented at the conference. The main part of the conference was organized into 6 sessions: 1) the review of present experiments (Veritas, Cangaroo-3, Magic, Hess-1, Shalon, Cactus, Cygnus-X-3...), 2) calibration and analysis techniques in VHE (very high energy) astrophysics, 3) multi-wavelength observations and phenomenology of sources, 4) the future of ground-based VHE astronomy, 5) developments in instrumentation for Cherenkov telescopes, and 6) the evolution of the field and its link with mainstream astrophysics.

  10. FACT. New image parameters based on the watershed-algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Linhoff, Lena; Bruegge, Kai Arno; Buss, Jens [TU Dortmund (Germany). Experimentelle Physik 5b; Collaboration: FACT-Collaboration

    2016-07-01

    FACT, the First G-APD Cherenkov Telescope, is the first imaging atmospheric Cherenkov telescope that is using Geiger-mode avalanche photodiodes (G-APDs) as photo sensors. The raw data produced by this telescope are processed in an analysis chain, which leads to a classification of the primary particle that induce a shower and to an estimation of its energy. One important step in this analysis chain is the parameter extraction from shower images. By the application of a watershed algorithm to the camera image, new parameters are computed. Perceiving the brightness of a pixel as height, a set of pixels can be seen as 'landscape' with hills and valleys. A watershed algorithm groups all pixels to a cluster that belongs to the same hill. From the emerging segmented image, one can find new parameters for later analysis steps, e.g. number of clusters, their shape and containing photon charge. For FACT data, the FellWalker algorithm was chosen from the class of watershed algorithms, because it was designed to work on discrete distributions, in this case the pixels of a camera image. The FellWalker algorithm is implemented in FACT-tools, which provides the low level analysis framework for FACT. This talk will focus on the computation of new, FellWalker based, image parameters, which can be used for the gamma-hadron separation. Additionally, their distributions concerning real and Monte Carlo Data are compared.

  11. Novel optical scanning cryptography using Fresnel telescope imaging.

    Science.gov (United States)

    Yan, Aimin; Sun, Jianfeng; Hu, Zhijuan; Zhang, Jingtao; Liu, Liren

    2015-07-13

    We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results.

  12. The HERMES dual-radiator ring imaging Cherenkov detector

    CERN Document Server

    Akopov, N; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van De Kerckhove, K; Van De Vyver, R; Yoneyama, S; Zhang, L F; Zohrabyan, H G

    2002-01-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  13. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H Philip

    2017-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  14. Habitable exoplanet imager optical telescope concept design

    Science.gov (United States)

    Stahl, H. Philip

    2017-09-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sunlike stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirroranastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  15. The Cherenkov Surface Detector of the Pierre Auger Observatory

    Science.gov (United States)

    Billoir, Pierre

    2014-12-01

    The Pierre Auger Observatory detects the atmospheric showers induced by cosmic rays of ultra-high energy (UHE). It is the first one to use the hybrid technique. A set of telescopes observes the fluorescence of the nitrogen molecules on clear moonless nights, giving access to the longitudinal profile of the shower. These telescopes surround a giant array of 1600 water Cherenkov tanks (covering more than 3000 km2), which works continuously and samples the particles reaching the ground (mainly muons, photons and electrons/positrons); the light produced within the water is recorded into FADC (Fast Analog to Digital Convertes) traces. A subsample of hybrid events provides a cross calibration of the two components. We describe the structure of the Cherenkov detectors, their sensitivity to different particles and the information they can give on the direction of origin, the energy and the nature of the primary UHE object; we discuss also their discrimination power for rare events (UHE photons or neutrinos). To cope with the variability of weather conditions and the limitations of the communication system, the procedures for trigger and real time calibration have been shared between local processors and a central acquisition system. The overall system has been working almost continuously for 10 years, while being progressively completed and increased by the creation of a dense "infill" subarray.

  16. The use of an ultra-violet camera in the atmospheric Cherenkov technique

    International Nuclear Information System (INIS)

    Urban, M.; Fleury, P.; Kerrick, A.D.; Pare, E.; Vacanti, G.

    1996-01-01

    The atmospheric Cherenkov technique for gamma ray astronomy is shown to be feasible using an ultraviolet (UV) camera on moon-lit-nights. The Whipple telescope has been used as the reflector and the CRab Nebula as the standard gamma ray beam. Our energy threshold is 1.2 TeV which is compared to 0.4 TeV in the visible. (orig.)

  17. Visual sensations during megavoltage radiotherapy to the orbit attributable to Cherenkov radiation

    International Nuclear Information System (INIS)

    Newman, Francis; Asadi-Zeydabadi, Masoud; Durairaj, Vikram D.; Ding Meisong; Stuhr, Kelly; Kavanagh, Brian

    2008-01-01

    During megavoltage photon and electron beam radiotherapy treatment involving the eye, patients commonly report visual sensations; 'nerve stimulation' is the conventional explanation. We propose that the phenomenon can be attributed to Cherenkov radiation inside the eye. The threshold electron energy for Cherenkov radiation in water is 260 keV. The human retina is able to perceive approximately 5-14 visible photons in 0.001 s. A single 500 keV electron traversing 1 mm of water will induce nearly 15 Cherenkov visible range photons. We propose that a portal image involving the eye will produce sufficient Cherenkov radiation to be detected by the retina

  18. Characterization of a 6×6-mm{sup 2} 75-μm cell MPPC suitable for the Cherenkov Telescope Array project

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, G., E-mail: giuseppe.romeo@oact.inaf.it [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Bonanno, G.; Garozzo, S.; Grillo, A.; Marano, D.; Munari, M.; Timpanaro, M.C. [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Catalano, O.; Giarrusso, S.; Impiombato, D.; La Rosa, G.; Sottile, G. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo (Italy)

    2016-08-01

    This paper presents the latest characterization results of a novel Low Cross-Talk (LCT) large-area (6×6-mm{sup 2}) Multi-Pixel Photon Counter (MPPC) detector manufactured by Hamamatsu, belonging to the recent LCT5 family and achieving a fill-factor enhancement and cross-talk reduction. In addition, the newly adopted resin coating is demonstrated to yield improved photon detection capabilities in the 290–350 nm spectral range, making the new LCT MPPC particularly suitable for emerging applications like Cherenkov Telescopes. For a 3×3-mm{sup 2} version of the new MPPC under test, a comparative analysis of the large pixel pitch (75-µm) detector versus the smaller pixel pitch (50-µm) detector is also undertaken. Furthermore, measurements of the 6×6-mm{sup 2} MPPC response versus the angle of incidence are provided for the characterized device.

  19. Photon detection in ring imaging Cherenkov counters

    International Nuclear Information System (INIS)

    Jansen, H.

    1988-01-01

    One of the parts of DELPHI (a detector at the CERN LEP) is the barrel-RICH which uses Cherenkov radiation to determine the velocity of charged particles; together with the measured momentum this information yields the mass of each particle. The performance of the photon detector, which determines to a large extent the analyzing power of the barrel-RICH, is studied. 98 refs.; 40 figs.; 6 tabs

  20. Quenching the scintillation in CF{sub 4} Cherenkov gas radiator

    Energy Technology Data Exchange (ETDEWEB)

    Blake, T. [Department of Physics, University of Warwick, Coventry (United Kingdom); D' Ambrosio, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Easo, S. [STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Eisenhardt, S. [School of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Fitzpatrick, C. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Forty, R.; Frei, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Gibson, V. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Gys, T. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Harnew, N.; Hunt, P. [Department of Physics, University of Oxford, Oxford (United Kingdom); Jones, C.R. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Lambert, R.W. [Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam (Netherlands); Matteuzzi, C. [Sezione INFN di Milano Bicocca, Milano (Italy); Muheim, F. [School of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Papanestis, A., E-mail: antonis.papanestis@stfc.ac.uk [STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Perego, D.L. [Sezione INFN di Milano Bicocca, Milano (Italy); Università di Milano Bicocca, Milano (Italy); Piedigrossi, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Plackett, R. [Imperial College London, London (United Kingdom); Powell, A. [Department of Physics, University of Oxford, Oxford (United Kingdom); and others

    2015-08-11

    CF{sub 4} is used as a Cherenkov gas radiator in one of the Ring Imaging Cherenkov detectors at the LHCb experiment at the CERN Large Hadron Collider. CF{sub 4} is well known to have a high scintillation photon yield in the near and far VUV, UV and in the visible wavelength range. A large flux of scintillation photons in our photon detection acceptance between 200 and 800 nm could compromise the particle identification efficiency. We will show that this scintillation photon emission system can be effectively quenched, consistent with radiationless transitions, with no significant impact on the photons resulting from Cherenkov radiation.

  1. Programmable trigger for electron pairs in ring image Cherenkov counters

    International Nuclear Information System (INIS)

    Glab, J.; Baur, R.; Manner, R.

    1990-01-01

    This paper describes a programmable trigger processor for the recognition of Cherenkov rings in a RICH counter. It identifies open electron pairs and suppresses close conversion and Dalitz pairs within 20 μs. More generally, the system can be used for correlating pixel images with pattern masks in order to locate all relatively well defined patterns of a certain type. The trigger processor consists of a systolic processor array of 160 x 176, i.e., 28,160 identical processing elements (PEs) that filter out open electron pairs, and a pseudo adder array that determines whether there was at least one such pair. The processor array is assembled of 20 x 22 VLSI chips containing 8 x 8 PEs each. The semi-custom chip has been developed in 2 μ CMOS standard cell technology

  2. Trends in the development of large area photon detectors for Cherenkov light imaging applications

    CERN Document Server

    Nappi, E

    2003-01-01

    Since the successful operations of hi-tech devices at OMEGA, DELPHI and SLD, the technique of Cherenkov light imaging has gone through an impressive and fruitful evolution driven by the conception of novel large area photon detectors. The well-assessed potentialities of thin CsI films, employed as reflective photoconverters in gas counters operated at atmospheric pressure, will be compared with the promising features of hybrid and multianode vacuum photomultipliers. Recently proposed single-photon gaseous detectors based on GEMs will also be reviewed.

  3. TARGET: A multi-channel digitizer chip for very-high-energy gamma-ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Bechtol, K.; Funk, S.; /Stanford U., HEPL /KIPAC, Menlo Park; Okumura, A.; /JAXA, Sagamihara /Stanford U., HEPL /KIPAC, Menlo Park; Ruckman, L.; /Hawaii U.; Simons, A.; Tajima, H.; Vandenbroucke, J.; /Stanford U., HEPL /KIPAC, Menlo Park; Varner, G.; /Hawaii U.

    2011-08-11

    The next-generation very-high-energy (VHE) gamma-ray observatory, the Cherenkov Telescope Array, will feature dozens of imaging atmospheric Cherenkov telescopes (IACTs), each with thousands of pixels of photosensors. To be affordable and reliable, reading out such a mega-channel array requires event recording technology that is highly integrated and modular, with a low cost per channel. We present the design and performance of a chip targeted to this application: the TeV Array Readout with GSa/s sampling and Event Trigger (TARGET). This application-specific integrated circuit (ASIC) has 16 parallel input channels, a 4096-sample buffer for each channel, adjustable input termination, self-trigger functionality, and tight window-selected readout. We report the performance of TARGET in terms of sampling frequency, power consumption, dynamic range, current-mode gain, analog bandwidth, and cross talk. The large number of channels per chip allows a low cost per channel ($10 to $20 including front-end and back-end electronics but not including photosensors) to be achieved with a TARGET-based IACT readout system. In addition to basic performance parameters of the TARGET chip itself, we present a camera module prototype as well as a second-generation chip (TARGET 2), both of which have been produced.

  4. The positioning system of the ANTARES Neutrino Telescope

    NARCIS (Netherlands)

    Adrián-Martínez, S.; Kooijman, P.|info:eu-repo/dai/nl/068449542; Zúñiga, J.

    2012-01-01

    The ANTARES neutrino telescope, located 40 km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475 m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged

  5. Discovery of high energy electrons in the radiation belt by devices with gas Cherenkov counters

    International Nuclear Information System (INIS)

    Kirillov-Ugryumov, V.G.; Galper, A.M.; Dmitrenko, V.V.

    1986-01-01

    A detailed study of the trapped electrons was undertaken with Bulgary-1300 satellite, the orbit altitude and the inclination being proportional900 km and 81 0 , respectively. The instrument axis in this case was perpendicular to the orbit plane. A scintillation-Cherenkov telescope, Electron, with parameters similar to that of Elena was used. (orig./HSI)

  6. Modular focusing ring imaging Cherenkov detector for electron-ion collider experiments

    Science.gov (United States)

    Wong, C. P.; Alfred, M.; Allison, L.; Awadi, M.; Azmoun, B.; Barbosa, F.; Barion, L.; Bennett, J.; Brooks, W.; Butler, C.; Cao, T.; Chiu, M.; Cisbani, E.; Contalbrigo, M.; Datta, A.; Del Dotto, A.; Demarteau, M.; Durham, J. M.; Dzhygadlo, R.; Elder, T.; Fields, D.; Furletova, Y.; Gleason, C.; Grosse-Perdekamp, M.; Harris, J.; Haseler, T. O. S.; He, X.; van Hecke, H.; Horn, T.; Hruschka, A.; Huang, J.; Hyde, C.; Ilieva, Y.; Kalicy, G.; Kimball, M.; Kistenev, E.; Kulinich, Y.; Liu, M.; Majka, R.; McKisson, J.; Mendez, R.; Nadel-Turonski, P.; Park, K.; Peters, K.; Rao, T.; Pisani, R.; Qiang, Y.; Rescia, S.; Rossi, P.; Sarajlic, O.; Sarsour, M.; Schwarz, C.; Schwiening, J.; da Silva, C. L.; Smirnov, N.; Stien, H. D.; Stevens, J.; Sukhanov, A.; Syed, S.; Tate, A. C.; Toh, J.; Towell, C. L.; Towell, R. S.; Tsang, T.; Turisini, M.; Wagner, R.; Wang, J.; Woody, C.; Xi, W.; Xie, J.; Zhao, Z. W.; Zihlmann, B.; Zorn, C.

    2017-11-01

    A powerful new electron-ioncollider (EIC) has been recommended in the 2015 Long Range Plan for Nuclear Science for probing the partonic structure inside nucleons and nuclei with unprecedented precision and versatility [1]. EIC detectors are currently under development [2], all of which require hadron identification over a broad kinematic range. A prototype ring imaging Cherenkov detector has been developed for hadron identification in the momentum range from 3 GeV/c to 10 GeV/c. The key feature of this new detector is a compact and modular design, achieved by using aerogel as radiator and a Fresnel lens for ring focusing. In this paper, the results from a beam test of a prototype device at Fermilab are reported.

  7. Semi-intelligent trigger-generation scheme for Cherenkov light imaging cameras

    International Nuclear Information System (INIS)

    Bhat, C.L.; Tickoo, A.K.; Koul, R.; Kaul, I.K.

    1994-01-01

    We propose here an improved trigger-generation scheme for TeV gamma-ray imaging telescopes. Based on a memory-based Majority Coincidence Circuit, this scheme involves deriving two-or three-pixel nearest-neighbour coincidences as against the conventional approach of generating prompt coincidences using any two photomultiplier detector pixels of an imaging-camera. As such, the new method can discriminate better against shot-noise-generated triggers and, to a significant extent, also against cosmic-ray and local-muon-generated background events, without compromising on the telescope response to events of γ-ray origin. An optional feature of the proposed scheme is that a suitably scaled-up value of the chance-trigger rate can be independently derived, thereby making it possible to use this parameter reliably for keeping a log of the ''health'' of the experimental system. (orig.)

  8. Semi-intelligent trigger-generation scheme for Cherenkov light imaging cameras

    Science.gov (United States)

    Bhat, C. L.; Tickoo, A. K.; Koul, R.; Kaul, I. K.

    1994-02-01

    We propose here an improved trigger-generation scheme for TeV gamma-ray imaging telescopes. Based on a memory-based Majority Coincidence Circuit, this scheme involves deriving two- or three-pixel nearest-neighbour coincidences as against the conventional approach of generating prompt coincidences using any two photomultiplier detector pixels of an imaging-camera. As such, the new method can discriminate better against shot-noise-generated triggers and, to a significant extent, also against cosmic-ray and local-muon-generated background events, without compromising on the telescope response to events of γ-ray origin. An optional feature of the proposed scheme is that a suitably scaled-up value of the chance-trigger rate can be independently derived, thereby making it possible to use this parameter reliably for keeping a log of the ``health'' of the experimental system.

  9. The MAGIC gamma-ray telescope: status and first results

    International Nuclear Information System (INIS)

    Fernandez, Enrique

    2006-01-01

    MAGIC, a 17 m diameter Cherenkov telescope for gamma ray astronomy, has recently been commissioned at the Roque de los Muchachos site in the Island of La Palma, of the Canary Islands. The telescope was proposed in 1998 with the goal of lowering the threshold of observation of gamma rays by ground detectors to 20-30 GeV energies. This paper describes its main design features, its physics objectives and its first operations

  10. Simulation based evaluation of the designs of the Advanced Gamma-ray Imageing System (AGIS)

    Science.gov (United States)

    Bugaev, Slava; Buckley, James; Digel, Seth; Funk, Stephen; Konopelko, Alex; Krawczynski, Henric; Lebohec, Steohan; Maier, Gernot; Vassiliev, Vladimir

    2009-05-01

    The AGIS project under design study, is a large array of imaging atmospheric Cherenkov telescopes for gamma-rays astronomy between 40GeV and 100 TeV. In this paper we present the ongoing simulation effort to model the considered design approaches as a function of the main parameters such as array geometry, telescope optics and camera design in such a way the gamma ray observation capabilities can be optimized against the overall project cost.

  11. The positioning system of the ANTARES Neutrino Telescope

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhoefer, A.; Ernenwein, J. -P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. -L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefevre, D.; Le Van Suu, A.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Niess, V.; Palioselitis, D.; Pavalas, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Real, D.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Samtleben, D. F. E.; Schoeck, F.; Schuller, J. -P.; Schuessler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sanchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zuniga, J.

    The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary

  12. The positioning system of the ANTARES Neutrino Telescope

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Ageron, M.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A.C.A.; Astraatmadja, T.; Aubert, J.J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M.C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; De Bonis, G.; Decowski, M.P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhofer, A.; Ernenwein, J.P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J.P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Herold, B.; Hossl, J.; Hsu, C.C.; De Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefevre, D.; Le Van Suu, A.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J.A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Niess, V.; Palioselitis, D.; Pavalas, G.E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Real, D.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G.V.; Salesa, F.; Samtleben, D.F.E.; Schock, F.; Schuller, J.P.; Schussler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, T.; Sanchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J.D.; Zuniga, J.

    2012-01-01

    The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary

  13. Study of a Cherenkov TOF-PET module

    Science.gov (United States)

    Korpar, S.; Dolenec, R.; Križan, P.; Pestotnik, R.; Stanovnik, A.

    2013-12-01

    An apparatus, consisting of two PbF2 crystals, each coupled to a multichannel plate photomultiplier (MCP-PMT), has been constructed in order to measure the time-of-flight (TOF) of the two 511 keV annihilation photons produced in positron emission tomography (PET). Excellent timing is achieved by detecting the prompt Cherenkov photons produced by the absorption of the 511 keV gamma photons. The present work describes the measurement and image reconstruction of two 22Na point sources. In addition, the influence of the radiator thickness and the Cherenkov light absorption cut-off of the crystal on the efficiency and the timing resolution have been studied by Monte Carlo simulation.

  14. Hard X-ray imaging with a slat collimated telescope

    International Nuclear Information System (INIS)

    Lu Zhuguo; Kotov, Yu.D.; Suslov, A.Yu.

    1995-01-01

    Imaging experiments with a slat collimated hard X-ray telescope are described in this paper demonstrating the feasibility of the direct demodulation imaging method used in hard X-ray scanning modulation experiments. On 25 September 1993 an X-ray raster scan observation of Cyg X-1 was performed in a balloon flight with the hard X-ray telescope HAPI-4. An experiment to image radioactive X-ray sources was performed in the laboratory before. In both experiments the expected X-ray images were obtained, confirming the imaging capability of this method. (orig.)

  15. Wideband pulse amplifier with 8 GHz GBW product in a 0.35 {mu}m CMOS technology for the integrated camera of the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Gascon, D; Sanuy, A; Ribo, M [Dept. AM i Dept.ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona, Marti i Franques 1, E08028, Barcelona (Spain); Delagnes, E; Glicenstein, J-F [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Sieiro, X [Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, E08028, Barcelona (Spain); Feinstein, F; Vorobiov, S [LPTA, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Nayman, P; Toussenel, F; Tavernet, J-P; Vincent, P, E-mail: gascon@ecm.ub.es [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France)

    2010-12-15

    A fully differential wideband amplifier for the camera of the Cherenkov Telescope Array (CTA) is presented. This amplifier would be part of a new ASIC, developed by the NECTAr collaboration, performing the digitization at 1 GS/s with a dynamic range of 16 bits. Input amplifiers must have a voltage gain up to 20 V/V and a bandwidth of 400 MHz. Being impossible to design a fully differential operational amplifier with an 8 GHz GBW product in a 0.35{mu}m CMOS technology, an alternative implementation based on HF linearised transconductors is explored. Test results show that the required GBW product is achieved, with a linearity error smaller than 1% for a differential output voltage range up to 1 Vpp, and smaller than 3% for 2 Vpp.

  16. Wideband pulse amplifier with 8 GHz GBW product in a 0.35 μm CMOS technology for the integrated camera of the Cherenkov Telescope Array

    International Nuclear Information System (INIS)

    Gascon, D; Sanuy, A; Ribo, M; Delagnes, E; Glicenstein, J-F; Sieiro, X; Feinstein, F; Vorobiov, S; Nayman, P; Toussenel, F; Tavernet, J-P; Vincent, P

    2010-01-01

    A fully differential wideband amplifier for the camera of the Cherenkov Telescope Array (CTA) is presented. This amplifier would be part of a new ASIC, developed by the NECTAr collaboration, performing the digitization at 1 GS/s with a dynamic range of 16 bits. Input amplifiers must have a voltage gain up to 20 V/V and a bandwidth of 400 MHz. Being impossible to design a fully differential operational amplifier with an 8 GHz GBW product in a 0.35μm CMOS technology, an alternative implementation based on HF linearised transconductors is explored. Test results show that the required GBW product is achieved, with a linearity error smaller than 1% for a differential output voltage range up to 1 Vpp, and smaller than 3% for 2 Vpp.

  17. Prospects for γ-ray imaging telescopes

    International Nuclear Information System (INIS)

    Carter, J.N.; Dean, A.J.; Ramsden, D.

    1981-01-01

    Apart from the requirement for a new, high angular-resolution gamma-ray telescope for the more precise location of known COS-B gamma-ray sources, there is also a need for another instrument that can be used in a search for the gamma-ray emission from specific X-ray-emitting objects. If there is to be any hope of relating gamma ray emission to specific candidate X-ray objects, then an angular resolution of typically a few minutes of arc is required to resolve adjacent sources in crowded regions of the sky such as the galactic centre. Efforts to improve the angular resolution of track-chamber telescopes are compared. For energies close to 1 MeV telescopes have either used collimators to restrict the field of view or have made use of the kinematics of the Compton scattering process to determine the direction of the incident photon. The use of coded aperture techniques in high angular resolution X-ray astronomy telescopes is reviewed. A practical telescope for astronomy at high energies described by Carter is mentioned. At low energies an imaging telescope could be constructed by making use of position-sensitive detectors initially developed for use in medical physics. Such a telescope is outlined in general terms and its benefits and uses given. (U.K.)

  18. Camera Concepts for the Advanced Gamma-Ray Imaging System (AGIS)

    Science.gov (United States)

    Nepomuk Otte, Adam

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. The incorporation of trigger electronics and signal digitization into the camera are under study. Given the size of AGIS, the camera must be reliable, robust, and cost effective. We are investigating several directions that include innovative technologies such as Geiger-mode avalanche-photodiodes as a possible detector and switched capacitor arrays for the digitization.

  19. Progress in Cherenkov femtosecond fiber lasers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2016-01-01

    systems are highlighted—dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40% conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond......We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems—broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser...... Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuumbased...

  20. The Cherenkov Bremsstrahlung

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1995-01-01

    The vanishing of the 'retardation factor' leads to a significant growth of the intensity of the electromagnetic field 'velocity part' of the moving charge. The Cherenkov radiation is its physical consequence. The same reason also conditions the growth of another term: the 'acceleration part' of the field which gives rise to the 'Cherenkov Bremsstrahlung'. 4 refs

  1. Optical telescopes for COMPASS RICH1 up-grade

    CERN Document Server

    Sulc, M; Alekseev, M; Angerer, H; Appolonio, M; Birsa, R; Bordalo, P; Bradamante, F; Bressan, A; Busso, L; Chiosso, V M; Ciliberti, P; Colantoni, M L; Costa, S; Dibiase, N; Dafni, T; Dalla Torre, S; Diaz, V; Duic, V; Delagnes, E; Deschamps, H; Eyrich, W; Faso, D; Ferrero, A; Finger, M; Finger, M Jr; Fischer, H; Gerassimov, S; Giorgi, M; Gobbo, B; Hagemann, R; von Harrach, D; Heinsius, F H; Joosten, R; Ketzer, B; Königsmann, K; Kolosov, V N; Konorov, I; Kramer, D; Kunne, F; Levorato, S; Maggiora, A; Magnon, A; Mann, A; Martin, A; Menon, G; Mutter, A; Nähle, O; Neyret, D; Nerling, F; Pagano, P; Paul, S; Panebianco, S; Panzieri, D; Pesaro, G; Pizzolotto, C; Polak, J; Rebourgeard, P; Rocco, E; Robinet, F; Schiavon, P; Schill, C; Schoenmeier, P; Silva, L; Slunecka, M; Steiger, L; Sozzi, F; Svec, M; Tessarotto, F; Teufel, A; Wollny, H

    2006-01-01

    The central photon detection area of the Ring Imaging Cherenkov detector at COMPASS, a particle physics experiment at CERN SPS dedicated to hadron physics, has been upgraded from the previous system formed by wire chambers with CsI layers to a very fast UV extended multi anode photo multiplier tube array (MAPMT), including 576 tubes. The active area covered by the MAPMTs is 7.3 times smaller than the one previously equipped with CsI photocathodes, so 576 optical concentrators transforming the image from the old system focal plane to the new photocathode plane were needed. The telescope system formed by two fused silica lenses was designed, produced and assembled. The first prismatic plano-convex field lens is placed in the focal plane of the RICH mirrors. The second condenser lens is off centered and tilted and has one aspherical surface. All lenses have antireflection coating.

  2. Cherenkov radiation

    International Nuclear Information System (INIS)

    Hubert, P.

    1955-01-01

    When the radioactivity has been discovered, it was observed by researchers that different materials as mineral salts or solutions were emitting a weak light when submitted to radioactivity beams. At the beginning it has been thought that it was fluorescent light. In 1934, Cherenkov, a russian physicist, worked on the luminescence of uranyl salts solutions caused by gamma radiation and observed a very weak light was emitted by pure liquid. After further studies, he concluded that this phenomena was different from fluorescence. Since then, it has been called Cherenkov effect. This blue light emission is produced when charged particles are going through a transparent medium with an upper velocity than light velocity. This can happen only in medium with large refractive index as water or glass. It also presents its different properties discovered afterwards. The different applications of the Cherenkov radiation are discussed as counting techniques for radiation detectors or comic ray detectors. (M.P.)

  3. Advances in vacuum ultraviolet detection with multistep gaseous detectors and application to Cherenkov ring imaging

    CERN Document Server

    Breskin, Amos; Charpak, Georges; Peisert, Anna; Policarpo, Armando; Sauli, Fabio

    1981-01-01

    The multistep avalanche chamber permits an efficient detection of VUV photons. In a two-step proportional mode charges higher than 1 pC are obtained from single electrons. By using as the final localization step a spark chamber viewed by a TV digitizer it is easy to have imaging of complex patterns. This is applied to Cherenkov ring imaging and (K, pi ) separation with 3 sigma up to 320 GeV is envisaged. The properties of various photoionizable vapours have been studied. By combining a scintillation xenon chamber with a photoionization wire chamber, a resolution of 8.3% (FWHM) has been obtained for 5.9 keV X- rays using tetrakis(dimethylamine)-ethylene vapour. (15 refs).

  4. Cherenkov radiation in vacuum. 1

    International Nuclear Information System (INIS)

    Kozik, B.

    1985-01-01

    After discussing some historical aspects of the Cherenkov effect from electrodynamic and quantum theoretical points of view a methodically clear and simple theory of the Cherenkov effect is presented in which an arbitrary shaped rigid charge distribution is considered and which is based only on essential knowledge of Fourier transformations and cylindric functions. The Cherenkov effect is derived as a consequence of the structure of the potentials and the influence of the geometric shape of the charge distribution on the spectral distribution of the radiation intensity is taken into account in a general form. The educational value of such a representation of the Cherenkov effect in textbooks is emphasized

  5. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  6. Real-time Cherenkov emission portal imaging during CyberKnife® radiotherapy

    International Nuclear Information System (INIS)

    Roussakis, Yiannis; Mason, Suzannah; Dehghani, Hamid; Zhang, Rongxiao; Heyes, Geoff; Webster, Gareth; Green, Stuart; Pogue, Brian

    2015-01-01

    The feasibility of real-time portal imaging during radiation therapy, through the Cherenkov emission (CE) effect is investigated via a medical linear accelerator (CyberKnife ® ) irradiating a partially-filled water tank with a 60 mm circular beam. A graticule of lead/plywood and a number of tissue equivalent materials were alternatively placed at the beam entrance face while the induced CE at the exit face was imaged using a gated electron-multiplying-intensified-charged-coupled device (emICCD) for both stationary and dynamic scenarios. This was replicated on an Elekta Synergy ® linear accelerator with portal images acquired using the iViewGT ™ system. Profiles across the acquired portal images were analysed to reveal the potential resolution and contrast limits of this novel CE based portal imaging technique and compared against the current standard. The CE resolution study revealed that using the lead/plywood graticule, separations down to 3.4  ±  0.5 mm can be resolved. A 28 mm thick tissue-equivalent rod with electron density of 1.69 relative to water demonstrated a CE contrast of 15% through air and 14% through water sections, as compared to a corresponding contrast of 19% and 12% using the iViewGT ™ system. For dynamic scenarios, video rate imaging with 30 frames per second was achieved. It is demonstrated that CE-based portal imaging is feasible to identify both stationary and dynamic objects within a CyberKnife ® radiotherapy treatment field. (note)

  7. Strange meson spectroscopy in K[omega] and K[phi] at 11 GeV/c and Cherenkov ring imaging at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Youngjoon.

    1993-01-01

    This thesis consists of two independent parts; development of Cherenkov Ring Imaging Detector (CRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. Part 1: The CRID system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e[sup +]e[sup [minus

  8. The Advanced Gamma-ray Imaging System (AGIS): A Nanosecond Time Scale Stereoscopic Array Trigger System.

    Science.gov (United States)

    Krennrich, Frank; Buckley, J.; Byrum, K.; Dawson, J.; Drake, G.; Horan, D.; Krawzcynski, H.; Schroedter, M.

    2008-04-01

    Imaging atmospheric Cherenkov telescope arrays (VERITAS, HESS) have shown unprecedented background suppression capabilities for reducing cosmic-ray induced air showers, muons and night sky background fluctuations. Next-generation arrays with on the order of 100 telescopes offer larger collection areas, provide the possibility to see the air shower from more view points on the ground, have the potential to improve the sensitivity and give additional background suppression. Here we discuss the design of a fast array trigger system that has the potential to perform a real time image analysis allowing substantially improved background rate suppression at the trigger level.

  9. Evaluation of the optical cross talk level in the SiPMs adopted in ASTRI SST-2M Cherenkov Camera using EASIROC front-end electronics

    International Nuclear Information System (INIS)

    Impiombato, D; Giarrusso, S; Mineo, T; Agnetta, G; Biondo, B; Catalano, O; Gargano, C; Rosa, G La; Russo, F; Sottile, G; Belluso, M; Billotta, S; Bonanno, G; Garozzo, S; Marano, D; Romeo, G

    2014-01-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana), is a flagship project of the Italian Ministry of Education, University and Research whose main goal is the design and construction of an end-to-end prototype of the Small Size of Telescopes of the Cherenkov Telescope Array. The prototype, named ASTRI SST-2M, will adopt a wide field dual mirror optical system in a Schwarzschild-Couder configuration to explore the VHE range of the electromagnetic spectrum. The camera at the focal plane is based on Silicon Photo-Multipliers detectors which is an innovative solution for the detection astronomical Cherenkov light. This contribution reports some preliminary results on the evaluation of the optical cross talk level among the SiPM pixels foreseen for the ASTRI SST-2M camera

  10. Cherenkov angle and charge reconstruction with the RICH detector of the AMS experiment

    CERN Document Server

    Barão, F; Borges, J; Gonçalves, P; Pimenta, M; Pérez, I

    2003-01-01

    The Alpha Magnetic Spectrometer experiment to be installed on the International Space Station will be equipped with a proximity focusing Ring Imaging Cherenkov (RICH) detector, for measurements of particle electric charge and velocity. In this note, two possible methods for reconstructing the Cherenkov angle and the electric charge with the RICH are discussed. A Likelihood method for the Cherenkov angle reconstruction was applied leading to a velocity determination for protons with a resolution of around 0.1%. The existence of a large fraction of background photons which can vary from event to event implied a charge reconstruction method based on an overall efficiency estimation on an event-by-event basis.

  11. Lunar imaging and ionospheric calibration for the Lunar Cherenkov technique

    NARCIS (Netherlands)

    McFadden, R.; Scholten, O.; Mevius, M.

    2013-01-01

    The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the

  12. WE-AB-BRB-04: Cherenkov Imaging for Radiation Therapy Dose Verification On Patients

    Energy Technology Data Exchange (ETDEWEB)

    Pogue, B. [Dartmouth College (United States)

    2016-06-15

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558

  13. WE-AB-BRB-04: Cherenkov Imaging for Radiation Therapy Dose Verification On Patients

    International Nuclear Information System (INIS)

    Pogue, B.

    2016-01-01

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558

  14. Astronomers Make First Images With Space Radio Telescope

    Science.gov (United States)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  15. The Advanced Gamma-ray Imageing System (AGIS): Simulation Design Studies

    Science.gov (United States)

    Bugaev, V.; Buckley, J.; Digel, S.; Fegan, S.; Funk, S.; Konopelko, A.; Krawczynski, H.; Lebohec, S.; Maier, G.; Vassiliev, V.

    2008-04-01

    We present design studies for AGIS, a proposed array of ˜100 imaging atmospheric Cherenkov telescopes for gamma-rays astronomy in the 40GeV to 100 TeV energy regime. We describe optimization studies for the array configuration, pixel size and field of view aimed at achieving the best sensitivity over the entire energy range and best angular resolution for a fixed project total cost.

  16. In-orbit Calibrations of the Ultraviolet Imaging Telescope

    Science.gov (United States)

    Tandon, S. N.; Subramaniam, Annapurni; Girish, V.; Postma, J.; Sankarasubramanian, K.; Sriram, S.; Stalin, C. S.; Mondal, C.; Sahu, S.; Joseph, P.; Hutchings, J.; Ghosh, S. K.; Barve, I. V.; George, K.; Kamath, P. U.; Kathiravan, S.; Kumar, A.; Lancelot, J. P.; Leahy, D.; Mahesh, P. K.; Mohan, R.; Nagabhushana, S.; Pati, A. K.; Kameswara Rao, N.; Sreedhar, Y. H.; Sreekumar, P.

    2017-09-01

    The Ultra-Violet Imaging Telescope (UVIT) is one of the payloads in ASTROSAT, the first Indian Space Observatory. The UVIT instrument has two 375 mm telescopes: one for the far-ultraviolet (FUV) channel (1300-1800 Å), and the other for the near-ultraviolet (NUV) channel (2000-3000 Å) and the visible (VIS) channel (3200-5500 Å). UVIT is primarily designed for simultaneous imaging in the two ultraviolet channels with spatial resolution better than 1.″8, along with provisions for slit-less spectroscopy in the NUV and FUV channels. The results of in-orbit calibrations of UVIT are presented in this paper.

  17. An experimental study on cyclotron-Cherenkov radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C Y; Masuzaki, M; Yoshida, H; Toyosugi, N; Kamada, K; Ando, R [Kanazawa Univ. (Japan). Department of Physics

    1997-12-31

    Dielectric-loaded cylindrical waveguide configurations with an injected electron beam in which the growth rate of the cyclotron-Cherenkov instability surpasses that of the Cherenkov instability were sought by numerical treatment, and one configuration of this kind was found. This configuration consists of a metallic core and an outer metallic cylinder with a dielectric liner on the inner surface. Based on the calculations, an experimental device was designed and assembled to investigate experimentally radiation due to the cyclotron-Cherenkov instability. Beam propagation in the dielectric-loaded coaxial waveguide and microwave radiation due to the cyclotron-Cherenkov instability and the Cherenkov instability were studied. (author). 6 figs., 10 refs.

  18. Performance of a C4F8O gas radiator ring imaging Cherenkov detector using multi-anode photomultiplier tubes

    International Nuclear Information System (INIS)

    Artuso, M.; Boulahouache, C.; Blusk, S.; Butt, J.; Dorjkhaidav, O.; Menaa, N.; Mountain, R.; Muramatsu, H.; Nandakumar, R.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J.C.; Zhang, K.

    2006-01-01

    We report on tests of a novel ring imaging Cherenkov (RICH) detection system consisting of a 3-m-long gaseous C 4 F 8 O radiator, a focusing mirror, and a photon detector array based on Hamamatsu multi-anode photomultiplier tubes. This system was developed to identify charged particles in the momentum range from 3 to 70GeV/c for the BTeV experiment

  19. The Cherenkov Radiation for Non-Trivial Systems; La Radiacion Cherenkov en Sistemas No Triviales

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.

    2002-07-01

    The charge pathways and the dielectric properties of the medium are two essential aspects to be considered in the study of the emission of Cherenkov radiation. We described the evolution of the Cherenkov wavefront when the charges follow circular or helical pathways. Also we derive expressions for the refractive Index in different transparent media (solid, liquid or gas), focusing our attention on optically active plasmas. The optical analogies between the plasma and the birefringent crystals is studied in detail. Finally, we list some examples of plasmas, which can be considered emitters of Cherenkov radiation. (Author) 52 refs.

  20. WE-AB-303-04: A Tissue Model of Cherenkov Emission From the Skin Surface During Megavoltage X-Ray Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, A. N.; Loyalka, S. K. [University of Missouri, Columbia, MO (United States); Izaguirre, E. W. [University of Missouri, Columbia, MO (United States); Baylor Scott & White Health, Temple, TX (United States)

    2015-06-15

    Purpose: To develop a tissue model of Cherenkov radiation emitted from the skin surface during external beam radiotherapy. Imaging Cherenkov radiation emitted from human skin allows visualization of the beam position and potentially surface dose estimates, and our goal is to characterize the optical properties of these emissions. Methods: We developed a Monte Carlo model of Cherenkov radiation generated in a semi-infinite tissue slab by megavoltage x-ray beams with optical transmission properties determined by a two-layered skin model. We separate the skin into a dermal and an epidermal layer in our model, where distinct molecular absorbers modify the Cherenkov intensity spectrum in each layer while we approximate the scattering properties with Mie and Rayleigh scattering from the highly structured molecular organization found in human skin. Results: We report on the estimated distributions of the Cherenkov wavelength spectrum, emission angles, and surface distribution for the modeled irradiated skin surface. The expected intensity distribution of Cherenkov radiation emitted from skin shows a distinct intensity peak around 475 nm, the blue region of the visible spectrum, between a pair of optical absorption bands in hemoglobin and a broad plateau beginning near 600 nm and extending to at least 700 nm where melanin and hemoglobin absorption are both low. We also find that the Cherenkov intensity decreases with increasing angle from the surface normal, the majority being emitted within 20 degrees of the surface normal. Conclusion: Our estimate of the spectral distribution of Cherenkov radiation emitted from skin indicates an advantage to using imaging devices with long wavelength spectral responsivity. We also expect the most efficient imaging to be near the surface normal where the intensity is greatest; although for contoured surfaces, the relative intensity across the surface may appear to vary due to decreasing Cherenkov intensity with increased angle from the

  1. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    Science.gov (United States)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  2. Very-high-energy gamma-ray observations of the Type Ia Supernova SN 2014J with the MAGIC telescopes

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.

    2017-06-01

    Context. In this work we present data from observations with the MAGIC telescopes of SN 2014J detected on January 21 2014, the closest Type Ia supernova since Imaging Air Cherenkov Telescopes started to operate. Aims: We aim to probe the possibility of very-high-energy (VHE; E ≥ 100 GeV) gamma rays produced in the early stages of Type Ia supernova explosions. Methods: We performed follow-up observations after this supernova (SN) explosion for five days, between January 27 and February 2 2014. We searched for gamma-ray signals in the energy range between 100 GeV and several TeV from the location of SN 2014J using data from a total of 5.5 h of observations. Prospects for observing gamma rays of hadronic origin from SN 2014J in the near future are also being addressed. Results: No significant excess was detected from the direction of SN 2014J. Upper limits at 95% confidence level on the integral flux, assuming a power-law spectrum, dF/dE ∝ E- Γ, with a spectral index of Γ = 2.6, for energies higher than 300 GeV and 700 GeV, are established at 1.3 × 10-12 and 4.1 × 10-13 photons cm-2 s-1, respectively. Conclusions: For the first time, upper limits on the VHE emission of a Type Ia supernova are established. The energy fraction isotropically emitted into TeV gamma rays during the first 10 days after the supernova explosion for energies greater than 300 GeV is limited to 10-6 of the total available energy budget ( 1051 erg). Within the assumed theoretical scenario, the MAGIC upper limits on the VHE emission suggest that SN 2014J will not be detectable in the future by any current or planned generation of Imaging Atmospheric Cherenkov Telescopes.

  3. In-orbit Calibrations of the Ultraviolet Imaging Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, S. N. [Inter-University Center for Astronomy and Astrophysics, Pune (India); Subramaniam, Annapurni; Sankarasubramanian, K.; Sriram, S.; Stalin, C. S.; Mondal, C.; Sahu, S.; Joseph, P.; Barve, I. V.; George, K.; Kamath, P. U.; Kathiravan, S.; Kumar, A.; Lancelot, J. P.; Mahesh, P. K. [Indian Institute of Astrophysics, Koramangala II Block, Bangalore-560034 (India); Girish, V. [ISRO Satellite Centre, HAL Airport Road, Bangalore 560017 (India); Postma, J.; Leahy, D. [University of Calgary, 2500 University Drive NW, Calgary, Alberta Canada (Canada); Hutchings, J. [National Research Council of Canada, Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Ghosh, S. K., E-mail: purni@iiap.res.in [National Centre for Radio Astrophysics, Pune (India); and others

    2017-09-01

    The Ultra-Violet Imaging Telescope (UVIT) is one of the payloads in ASTROSAT, the first Indian Space Observatory. The UVIT instrument has two 375 mm telescopes: one for the far-ultraviolet (FUV) channel (1300–1800 Å), and the other for the near-ultraviolet (NUV) channel (2000–3000 Å) and the visible (VIS) channel (3200–5500 Å). UVIT is primarily designed for simultaneous imaging in the two ultraviolet channels with spatial resolution better than 1.″8, along with provisions for slit-less spectroscopy in the NUV and FUV channels. The results of in-orbit calibrations of UVIT are presented in this paper.

  4. Université de Genève | Particle Physics Colloquium | 30 April

    CERN Multimedia

    2014-01-01

    Astronomical imaging a thousand times sharper than Hubble: optical interferometry with the Cherenkov Telescope Array, Prof. Dainis Dravins, Lund Observatory.   Wednesday 30 April 2014, 11:15 a.m. Science III, Auditoire 1S081 Boulevard d’Yvoy, 1211 Genève 4 Abstract: Much of the progress in astronomy is led by improved imaging. In the optical, one tantalizing threshold will be two-dimensional imaging of stellar surfaces. With typical sizes of a few milliarcseconds, bright stars require interferometry over kilometer-long baselines. Although several concepts for such interferometer complexes on the ground and in space have been proposed, their realization is not imminent. However, the availability of large optical flux collectors (air Cherenkov telescopes, in particular CTA – the Cherenkov Telescope Array – primarily erected for gamma-ray studies) enable a revival of the quantum-optical method of intensity interferometry, once developed for astronomy but re...

  5. Possible GRB Observation with the MAGIC Telescope

    Science.gov (United States)

    Bastieri, D.; Bigongiari, C.; Mariotti, M.; Peruzzo, L.; Saggion, A.

    2001-08-01

    The MAGIC Telescope, with its reflecting parabolic dish of 17 m of diameter and its careful design of a robust, lightweight, alto-azimuthal mount, is an ideal detector for GRB phenomena. The telescope is an air Cherenkov telescope that, even in the first phase, equipped with standard PMTs, can reach an energy threshold below 30 GeV. The threshold is going to drop well below 10 GeV in the envisaged second phase, when chamber PMTs will be substituted by high quantum efficiency APDs. The telescope can promptly respond to GRB alerts coming, for instance, from GCN, and can reposition itself in less than 30 seconds, 20 seconds being the time to turn half a round for the azimuth bearing. In this report, the effective area of the detector as a function of energy and zenith angle is taken into account, in order to evaluate the expected yearly occurrence and the response to different kinds of GRBs.

  6. Asymmetric Cherenkov acoustic reverse in topological insulators

    Science.gov (United States)

    Smirnov, Sergey

    2014-09-01

    A general phenomenon of the Cherenkov radiation known in optics or acoustics of conventional materials is a formation of a forward cone of, respectively, photons or phonons emitted by a particle accelerated above the speed of light or sound in those materials. Here we suggest three-dimensional topological insulators as a unique platform to fundamentally explore and practically exploit the acoustic aspect of the Cherenkov effect. We demonstrate that by applying an in-plane magnetic field to a surface of a three-dimensional topological insulator one may suppress the forward Cherenkov sound up to zero at a critical magnetic field. Above the critical field the Cherenkov sound acquires pure backward nature with the polar distribution differing from the forward one generated below the critical field. Potential applications of this asymmetric Cherenkov reverse are in the design of low energy electronic devices such as acoustic ratchets or, in general, in low power design of electronic circuits with a magnetic field control of the direction and magnitude of the Cherenkov dissipation.

  7. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, M., E-mail: contalbrigo@fe.infn.it

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to −25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  8. A detailed study of FDIRC prototype with waveform digitizing electronics in cosmic ray telescope using 3D tracks

    Science.gov (United States)

    Nishimura, K.; Dey, B.; Aston, D.; Leith, D. W. G. S.; Ratcliff, B.; Roberts, D.; Ruckman, L.; Shtol, D.; Varner, G. S.; Va'vra, J.

    2013-02-01

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from 384 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of ∼2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with ∼1.5 mrad angular resolution and muon energy of Emuon> 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of reconstruction ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  9. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks

    International Nuclear Information System (INIS)

    Nishimura, K.; Dey, B.; Aston, D.; Leith, D.W.G.S.; Ratcliff, B.; Roberts, D.; Ruckman, L.; Shtol, D.; Varner, G.S.; Va'vra, J.

    2012-01-01

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from ∼450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of ∼2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with ∼1.5 mrad angular resolution and muon energy of E muon > 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  10. An innovative telescope control system architecture for SST-GATE telescopes at the CTA Observatory

    Science.gov (United States)

    Fasola, Gilles; Mignot, Shan; Laporte, Philippe; Abchiche, Abdel; Buchholtz, Gilles; Jégouzo, Isabelle

    2014-07-01

    SST-GATE (Small Size Telescope - GAmma-ray Telescope Elements) is a 4-metre telescope designed as a prototype for the Small Size Telescopes (SST) of the Cherenkov Telescope Array (CTA), a major facility for the very high energy gamma-ray astronomy of the next three decades. In this 100-telescope array there will be 70 SSTs, involving a design with an industrial view aiming at long-term service, low maintenance effort and reduced costs. More than a prototype, SST-GATE is also a fully functional telescope that shall be usable by scientists and students at the Observatoire de Meudon for 30 years. The Telescope Control System (TCS) is designed to work either as an element of a large array driven by an array controller or in a stand-alone mode with a remote workstation. Hence it is built to be autonomous with versatile interfacing; as an example, pointing and tracking —the main functions of the telescope— are managed onboard, including astronomical transformations, geometrical transformations (e.g. telescope bending model) and drive control. The core hardware is a CompactRIO (cRIO) featuring a real-time operating system and an FPGA. In this paper, we present an overview of the current status of the TCS. We especially focus on three items: the pointing computation implemented in the FPGA of the cRIO —using CORDIC algorithms— since it enables an optimisation of the hardware resources; data flow management based on OPCUA with its specific implementation on the cRIO; and the use of an EtherCAT field-bus for its ability to provide real-time data exchanges with the sensors and actuators distributed throughout the telescope.

  11. Simulation of the Simbol-X telescope: imaging performance of a deformable x-ray telescope

    Science.gov (United States)

    Chauvin, Maxime; Roques, Jean-Pierre

    2009-08-01

    We have developed a simulation tool for a Wolter I telescope subject to deformations. The aim is to understand and predict the behavior of Simbol-X and other future missions (NuSTAR, Astro-H, IXO, ...). Our code, based on Monte-Carlo ray-tracing, computes the full photon trajectories up to the detector plane, along with the deformations. The degradation of the imaging system is corrected using metrology. This tool allows to perform many analyzes in order to optimize the configuration of any of these telescopes.

  12. Technical Note: On maximizing Cherenkov emissions from medical linear accelerators.

    Science.gov (United States)

    Shrock, Zachary; Yoon, Suk W; Gunasingha, Rathnayaka; Oldham, Mark; Adamson, Justus

    2018-04-19

    Cherenkov light during MV radiotherapy has recently found imaging and therapeutic applications but is challenged by relatively low fluence. Our purpose is to investigate the feasibility of increasing Cherenkov light production during MV radiotherapy by increasing photon energy and applying specialized beam-hardening filtration. GAMOS 5.0.0, a GEANT4-based framework for Monte Carlo simulations, was used to model standard clinical linear accelerator primary photon beams. The photon source was incident upon a 17.8 cm 3 cubic water phantom with a 94 cm source to surface distance. Dose and Cherenkov production was determined at depths of 3-9 cm. Filtration was simulated 15 cm below the photon beam source. Filter materials included aluminum, iron, and copper with thicknesses of 2-20 cm. Histories used depended on the level of attenuation from the filter, ranging from 100 million to 2 billion. Comparing average dose per history also allowed for evaluation of dose-rate reduction for different filters. Overall, increasing photon beam energy is more effective at improving Cherenkov production per unit dose than is filtration, with a standard 18 MV beam yielding 3.3-4.0× more photons than 6 MV. Introducing an aluminum filter into an unfiltered 2400 cGy/min 10 MV beam increases the Cherenkov production by 1.6-1.7×, while maintaining a clinical dose rate of 300 cGy/min, compared to increases of ~1.5× for iron and copper. Aluminum was also more effective than the standard flattening filter, with the increase over the unfiltered beam being 1.4-1.5× (maintaining 600 cGy/min dose rate) vs 1.3-1.4× for the standard flattening filter. Applying a 10 cm aluminum filter to a standard 18 MV, photon beam increased the Cherenkov production per unit dose to 3.9-4.3× beyond that of 6 MV (vs 3.3-4.0× for 18 MV with no aluminum filter). Through a combination of increasing photon energy and applying specialized beam-hardening filtration, the amount of Cherenkov photons per

  13. Characterization of Multianode Photomultiplier Tubes for a Cherenkov Detector

    Science.gov (United States)

    Benninghoff, Morgen; Turisini, Matteo; Kim, Andrey; Benmokhtar, Fatiha; Kubarovsky, Valery; Duquesne University Collaboration; Jefferson Lab Collaboration

    2017-09-01

    In the Fall of 2017, Jefferson Lab's CLAS12 (CEBAF Large Acceptance Spectrometer) detector is expecting the addition of a RICH (ring imaging Cherenkov) detector which will allow enhanced particle identification in the momentum range of 3 to 8 GeV/c. RICH detectors measure the velocity of charged particles through the detection of produced Cherenkov radiation and the reconstruction of the angle of emission. The emitted Cherenkov photons are detected by a triangular-shaped grid of 391 multianode photomultiplier tubes (MAPMTs) made by Hamamatsu. The custom readout electronics consist of MAROC (multianode read out chip) boards controlled by FPGA (Field Programmable Gate Array) boards, and adapters used to connect the MAROC boards and MAPMTs. The focus of this project is the characterization of the MAPMTs with the new front end electronics. To perform these tests, a black box setup with a picosecond diode laser was constructed with low and high voltage supplies. A highly automated procedure was developed to acquire data at different combinations of high voltage values, light intensities and readout electronics settings. Future work involves using the collected data in calibration procedures and analyzing that data to resolve the best location for each MAPMT. SULI, NSF.

  14. Validation of a new background discrimination method for the TACTIC TeV γ-ray telescope with Markarian 421 data

    International Nuclear Information System (INIS)

    Sharma, Mradul; Nayak, J.; Koul, M.K.; Bose, S.; Mitra, Abhas; Dhar, V.K.; Tickoo, A.K.; Koul, R.

    2015-01-01

    This paper describes the validation of a new background discrimination method based on Random Forest technique by re-analysing the Markarian 421 (Mrk 421) observations performed by the TACTIC (TeV Atmospheric Cherenkov Telescope with Imaging Camera) γ-ray telescope. The Random Forest technique is a flexible multivariate method which combines Bagging and Random Split Selection to construct a large collection of decision trees and then combines them to construct a common classifier. Markarian 421 in a high state was observed by TACTIC during December 07, 2005–April 30, 2006 for 202 h. Previous analysis of this data led to a detection of flaring activity from the source at Energy >1TeV. Within this data set, a spell of 97 h revealed strong detection of a γ-ray signal with daily flux of >1 Crab unit on several days. Here we re-analyze this spell as well as the data from the entire observation period with the Random Forest method. Application of this method led to an improvement in the signal detection strength by ∼26% along with a ∼18% increase in detected γ rays compared to the conventional Dynamic Supercuts method. The resultant differential spectrum obtained is represented by a power law with an exponential cut off Γ=−2.51±0.10 and E 0 =4.71±2.20TeV. Such a spectrum is consistent with previously reported results and justifies the use of Random Forest method for analyzing data from atmospheric Cherenkov telescopes

  15. Validation of a new background discrimination method for the TACTIC TeV γ-ray telescope with Markarian 421 data

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mradul, E-mail: mradul@barc.gov.in [Astrophysical Sciences Division, Bhabha Atomic Research Centre, Mumbai (India); Nayak, J. [The Bayesian and Interdisciplinary Research Unit, Indian Statistical Institute, Kolkata (India); Koul, M.K. [Astrophysical Sciences Division, Bhabha Atomic Research Centre, Mumbai (India); Bose, S. [The Bayesian and Interdisciplinary Research Unit, Indian Statistical Institute, Kolkata (India); Mitra, Abhas; Dhar, V.K.; Tickoo, A.K.; Koul, R. [Astrophysical Sciences Division, Bhabha Atomic Research Centre, Mumbai (India)

    2015-01-11

    This paper describes the validation of a new background discrimination method based on Random Forest technique by re-analysing the Markarian 421 (Mrk 421) observations performed by the TACTIC (TeV Atmospheric Cherenkov Telescope with Imaging Camera) γ-ray telescope. The Random Forest technique is a flexible multivariate method which combines Bagging and Random Split Selection to construct a large collection of decision trees and then combines them to construct a common classifier. Markarian 421 in a high state was observed by TACTIC during December 07, 2005–April 30, 2006 for 202 h. Previous analysis of this data led to a detection of flaring activity from the source at Energy >1TeV. Within this data set, a spell of 97 h revealed strong detection of a γ-ray signal with daily flux of >1 Crab unit on several days. Here we re-analyze this spell as well as the data from the entire observation period with the Random Forest method. Application of this method led to an improvement in the signal detection strength by ∼26% along with a ∼18% increase in detected γ rays compared to the conventional Dynamic Supercuts method. The resultant differential spectrum obtained is represented by a power law with an exponential cut off Γ=−2.51±0.10 and E{sub 0}=4.71±2.20TeV. Such a spectrum is consistent with previously reported results and justifies the use of Random Forest method for analyzing data from atmospheric Cherenkov telescopes.

  16. The Advanced Gamma-Ray Imaging System (AGIS)

    Science.gov (United States)

    Otte, Nepomuk

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation of imag-ing atmospheric Cherenkov telescope arrays. It has the goal of providing an order of magnitude increase in sensitivity for Very High Energy Gamma-ray ( 100 GeV to 100 TeV) astronomy compared to currently operating arrays such as CANGAROO, HESS, MAGIC, and VERITAS. After an overview of the science such an array would enable, we discuss the development of the components of the telescope system that are required to achieve the sensitivity goal. AGIS stresses improvements in several areas of IACT technology including component reliability as well as exploring cost reduction possibilities in order to achieve its goal. We discuss alterna-tives for the telescopes and positioners: a novel Schwarzschild-Couder telescope offering a wide field of view with a relatively smaller plate scale, and possibilities for rapid slewing in order to address the search for and/or study of Gamma-ray Bursts in the VHE gamma-ray regime. We also discuss options for a high pixel count camera system providing the necessary finer solid angle per pixel and possibilities for a fast topological trigger that would offer improved realtime background rejection and lower energy thresholds.

  17. The Advanced Gamma-ray Imaging System (AGIS) - Camera Electronics Development

    Science.gov (United States)

    Tajima, Hiroyasu; Bechtol, K.; Buehler, R.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Hanna, D.; Horan, D.; Humensky, B.; Karlsson, N.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Mukherjee, R.; Ong, R.; Otte, N.; Quinn, J.; Schroedter, M.; Swordy, S.; Wagner, R.; Wakely, S.; Weinstein, A.; Williams, D.; Camera Working Group; AGIS Collaboration

    2010-03-01

    AGIS, a next-generation imaging atmospheric Cherenkov telescope (IACT) array, aims to achieve a sensitivity level of about one milliCrab for gamma-ray observations in the energy band of 50 GeV to 100 TeV. Achieving this level of performance will require on the order of 50 telescopes with perhaps as many as 1M total electronics channels. The larger scale of AGIS requires a very different approach from the currently operating IACTs, with lower-cost and lower-power electronics incorporated into camera modules designed for high reliability and easy maintenance. Here we present the concept and development status of the AGIS camera electronics.

  18. Velocity determination of neutron-rich projectile fragments with a ring-imaging Cherenkov detector

    International Nuclear Information System (INIS)

    Zeitelhack, K.

    1992-11-01

    For the velocity determination of relativistic heavy ions (A>100) in the energy range 300A.MeV ≤ E kin ≤ 2A.GeV a highly resolving, compact ring-imaging Cherenkov counter with large dynamical measurement range was developed. The Cherenkov light cone emitted in the flight of a relativistic heavy ion by a liquid layer (C 6 F 14 ) is focused on the entrance window of a one-dimensional position-resolving VUV-sensitive photon detector. This gas detector is operated at atmospheric pressure with a mixture of 90% methane and 10% isobutane with 0.04% TMAE as photosensitive admixture. For 725A.MeV 129 Xe ions a velocity resolution Δβ/β=1.8.10 -3 and a nuclear charge-number resolution ΔZ/Z=5.1.10 -2 was reached. The over the photon energy range 5.4 eV ≤ E γ ≤ 7.2 eV averaged detection efficiency of the detector system was determined to ε tot =2.8%>. At the 0deg magnet spectrometer Fragmentseparator of the GSI Darmstadt the RICH detector was for the first time applied for the identification of nuclear charge number and mass of heavy relativistic projectile fragments. In the experiment the production cross sections of very neutron-rich nuclei by fragmentation of 136 Xe projectiles in the reaction 76A.MeV 136 Xe on 27 Al were determined. From the measured production erates for the production of the double-magic nucleus 132 Zn in this reaction a cross section of σ=(0.4± 0.3 0.6 ) μbarn can be extrapolated. (orig./HSI) [de

  19. Recent results on galactic sources with MAGIC telescope

    International Nuclear Information System (INIS)

    De los Reyes, R.

    2009-01-01

    Located at the Canary island of La Palma, the single-dish MAGIC telescope currently has the lowest energy threshold achieved by any Cherenkov telescope, which can be as low as 25 GeV. In the last two years, the MAGIC telescope has detected a significant amount of galactic sources that emit at very high energies (up to several TeV). Here we present the most recent results that have yielded important scientific highlights in astrophysics, which include the first detection of gamma-ray emission from a pulsar, an X-ray binary system and a stellar-mass black hole. We also make a review of the latest results of the MAGIC observations on galactic sources, which will include also γ-ray unidentified sources (TeV J2032+4130), the Galactic Centre, X-ray binaries (LSI +61 303), pulsars (Crab pulsar) and SNRs (IC443).

  20. On Cherenkov light production by irradiated nuclear fuel rods

    International Nuclear Information System (INIS)

    Branger, E.; Grape, S.; Svärd, S. Jacobsson; Jansson, P.; Sundén, E. Andersson

    2017-01-01

    Safeguards verification of irradiated nuclear fuel assemblies in wet storage is frequently done by measuring the Cherenkov light in the surrounding water produced due to radioactive decays of fission products in the fuel. This paper accounts for the physical processes behind the Cherenkov light production caused by a single fuel rod in wet storage, and simulations are presented that investigate to what extent various properties of the rod affect the Cherenkov light production. The results show that the fuel properties have a noticeable effect on the Cherenkov light production, and thus that the prediction models for Cherenkov light production which are used in the safeguards verifications could potentially be improved by considering these properties. It is concluded that the dominating source of the Cherenkov light is gamma-ray interactions with electrons in the surrounding water. Electrons created from beta decay may also exit the fuel and produce Cherenkov light, and e.g. Y-90 was identified as a possible contributor to significant levels of the measurable Cherenkov light in long-cooled fuel. The results also show that the cylindrical, elongated fuel rod geometry results in a non-isotropic Cherenkov light production, and the light component parallel to the rod's axis exhibits a dependence on gamma-ray energy that differs from the total intensity, which is of importance since the typical safeguards measurement situation observes the vertical light component. It is also concluded that the radial distributions of the radiation sources in a fuel rod will affect the Cherenkov light production.

  1. On the fine structure of the Vavilov-Cherenkov radiation

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Kartavenko, V.G.; Zrelov, V.P.

    2003-01-01

    The aim of this paper is to study the fine structure of the Cherenkov rings. We analyze Zrelov's experiments in which the Cherenkov radiation was detected without using the special focusing devices. The broad Cherenkov ring was observed in the plane perpendicular to the motion axis. Using the exact and approximate formulae, we investigate how a charge uniformly moving in a medium radiates in a finite space interval. The formulae obtained describe the radiation intensity in the whole space interval, inside and outside the Cherenkov ring. In the plane perpendicular to the motion axis, the radiation fills mainly the finite ring. Its width, proportional to the motion interval, and the energy released in this ring do not depend on the position of the observation plane. Outside the Cherenkov ring, the radiation intensity suddenly drops. Inside it, the radiation intensity exhibits small oscillations which are due to the interference of the Vavilov-Cherenkov radiation and bremsstrahlung. The increase in the radiation intensity at the ends of the Cherenkov ring is associated with the shock waves arising at the beginning and the end of the charge motion and at the moments when the charge velocity coincides with the light velocity in a medium. For the chosen motion interval, the well-known Tamm formula does not describe the radiation intensity inside the Cherenkov ring for any position of the observation plane. Outside the Cherenkov ring, the Tamm formula is valid only at very large observation distances. Theoretical calculations are in satisfactory agreement with experimental data. Thus, the combined experimental and theoretical study of the unfocused Cherenkov rings allows one to obtain information on the physical processes accompanying the Cherenkov radiation (bremsstrahlung, transition of the light velocity barrier, etc.)

  2. Atmospheric Monitoring at the Site of the MAGIC Telescopes

    Directory of Open Access Journals (Sweden)

    Will Martin

    2017-01-01

    Full Text Available The MAGIC telescopes in La Palma, Canary Islands, measure the Cherenkov light emitted by gamma ray-induced extended air showers in the atmosphere. The good knowledge of the atmospheric parameters is important, both for the correct and safe operations of the telescopes, but also for subsequent data analysis. A weather station measures the state variables of the atmosphere, temperature, humidity and wind, an elastic Lidar system and an infrared pyrometer determine the optical transmission of the atmosphere. Using an AllSky camera, the cloud cover can be estimated. The measured values are completed by data from global atmospheric models based on numeric weather forecasts.

  3. Performance of aerogel as Cherenkov radiator

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Matteuzzi, C.; Musy, M.; Negri, P.; Braem, A.; Chesi, E.; Hansen, C.; Liko, D.; Joram, C.; Neufeld, N.; Seguinot, J.; Weilhammer, P.; Buzykaev, A.R.; Kravchenko, E.A.; Onuchin, A.P.; Danilyuk, A.F.; Easo, S.; Wotton, S.; Jolly, S.

    2004-01-01

    Aerogel with index of refraction around 1.03 has been studied as Cherenkov radiator in a test at CERN PS using a π - and a mixed π + /p beam of momenta between 6 and 10 GeV/c. The Cherenkov photons were detected by means of four large HPD tubes designed and constructed at CERN. Results on the photoelectron yield, the Cherenkov angle and its resolution, and the π/p separation are obtained. The performances measured demonstrate that a RICH with aerogel is a viable detector for experiments with high multiplicity of particles in the final state

  4. ARTIP: Automated Radio Telescope Image Processing Pipeline

    Science.gov (United States)

    Sharma, Ravi; Gyanchandani, Dolly; Kulkarni, Sarang; Gupta, Neeraj; Pathak, Vineet; Pande, Arti; Joshi, Unmesh

    2018-02-01

    The Automated Radio Telescope Image Processing Pipeline (ARTIP) automates the entire process of flagging, calibrating, and imaging for radio-interferometric data. ARTIP starts with raw data, i.e. a measurement set and goes through multiple stages, such as flux calibration, bandpass calibration, phase calibration, and imaging to generate continuum and spectral line images. Each stage can also be run independently. The pipeline provides continuous feedback to the user through various messages, charts and logs. It is written using standard python libraries and the CASA package. The pipeline can deal with datasets with multiple spectral windows and also multiple target sources which may have arbitrary combinations of flux/bandpass/phase calibrators.

  5. Analysis of Cherenkov counter efficiencies for E691

    International Nuclear Information System (INIS)

    Cremaldi, L.; Elliott, J.; Gibney, M.; Nauenberg, U.

    1985-01-01

    A program is outlined which simulates Cherenkov counters. The program can compute the effect of the magnetic field on the efficiencies of Cherenkov counters. It also tells what cone to mirror distance gives the highest collection efficiency and at which target position should the laser be placed to represent the direction of the actual Cherenkov light the mirror sees

  6. Novel optical designs for consumer astronomical telescopes and their application to professional imaging

    Science.gov (United States)

    Wise, Peter; Hodgson, Alan

    2006-06-01

    Since the launch of the Hubble Space Telescope there has been widespread popular interest in astronomy. A further series of events, most notably the recent Deep Impact mission and Mars oppositions have served to fuel further interest. As a result more and more amateurs are coming into astronomy as a practical hobby. At the same time more sophisticated optical equipment is becoming available as the price to performance ratio become more favourable. As a result larger and better optical telescopes are now in use by amateurs. We also have the explosive growth in digital imaging technologies. In addition to displacing photographic film as the preferred image capture modality it has made the capture of high quality astronomical imagery more accessible to a wider segment of the astronomy community. However, this customer requirement has also had an impact on telescope design. There has become a greater imperative for wide flat image fields in these telescopes to take advantage of the ongoing advances in CCD imaging technology. As a result of these market drivers designers of consumer astronomical telescopes are now producing state of the art designs that result in wide, flat fields with optimal spatial and chromatic aberrations. Whilst some of these designs are not scalable to the larger apertures required for professional ground and airborne telescope use there are some that are eminently suited to make this transition.

  7. Performance of the MAGIC telescopes under moonlight

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Griffiths, S.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rugliancich, A.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.

    2017-09-01

    MAGIC, a system of two imaging atmospheric Cherenkov telescopes, achieves its best performance under dark conditions, i.e. in absence of moonlight or twilight. Since operating the telescopes only during dark time would severely limit the duty cycle, observations are also performed when the Moon is present in the sky. Here we develop a dedicated Moon-adapted analysis to characterize the performance of MAGIC under moonlight. We evaluate energy threshold, angular resolution and sensitivity of MAGIC under different background light levels, based on Crab Nebula observations and tuned Monte Carlo simulations. This study includes observations taken under non-standard hardware configurations, such as reducing the camera photomultiplier tubes gain by a factor ∼1.7 (reduced HV settings) with respect to standard settings (nominal HV) or using UV-pass filters to strongly reduce the amount of moonlight reaching the cameras of the telescopes. The Crab Nebula spectrum is correctly reconstructed in all the studied illumination levels, that reach up to 30 times brighter than under dark conditions. The main effect of moonlight is an increase in the analysis energy threshold and in the systematic uncertainties on the flux normalization. The sensitivity degradation is constrained to be below 10%, within 15-30% and between 60 and 80% for nominal HV, reduced HV and UV-pass filter observations, respectively. No worsening of the angular resolution was found. Thanks to observations during moonlight, the maximal duty cycle of MAGIC can be increased from ∼18%, under dark nights only, to up to ∼40% in total with only moderate performance degradation.

  8. Application of Cherenkov light observation to reactor measurements (1). Estimation of reactor power from Cherenkov light intensity

    International Nuclear Information System (INIS)

    Yamamoto, Keiichi; Takeuchi, Tomoaki; Kimura, Nobuaki; Ohtsuka, Noriaki; Tsuchiya, Kunihiko; Sano, Tadafumi; Nakajima, Ken; Homma, Ryohei; Kosuge, Fumiaki

    2015-01-01

    Development of the reactor measurement system was started to obtain the real-time in-core nuclear and thermal information, where the quantitative measurement of brightness of Cherenkov light was investigated. The system would be applied as a monitoring system in severe accidents and for the advanced operation management technology in existing LWRs. The calculation and the observation were performed to obtain the quantity of the Cherenkov light caused by the gamma and beta rays emitted from the fuels in the core of Kyoto University Research Reactor. The results indicate that the real-time reactor power can be estimated from the brightness of the Cherenkov light observed by a CCD camera. This method can also work for the estimation of the burn-up of spent fuels at commercial reactors. Since the observed brightness value of the Cherenkov light was influenced by the camera position, the optical observation method should be improved to achieve high accuracy observation. (author)

  9. All-fiber femtosecond Cherenkov radiation source

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe

    2012-01-01

    -conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580–630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such an all-fiber Cherenkov radiation source is promising for practical applications in biophotonics...

  10. The Advanced Gamma-ray Imaging System (AGIS): Real Time Stereoscopic Array Trigger

    Science.gov (United States)

    Byrum, K.; Anderson, J.; Buckley, J.; Cundiff, T.; Dawson, J.; Drake, G.; Duke, C.; Haberichter, B.; Krawzcynski, H.; Krennrich, F.; Madhavan, A.; Schroedter, M.; Smith, A.

    2009-05-01

    Future large arrays of Imaging Atmospheric Cherenkov telescopes (IACTs) such as AGIS and CTA are conceived to comprise of 50 - 100 individual telescopes each having a camera with 10**3 to 10**4 pixels. To maximize the capabilities of such IACT arrays with a low energy threshold, a wide field of view and a low background rate, a sophisticated array trigger is required. We describe the design of a stereoscopic array trigger that calculates image parameters and then correlates them across a subset of telescopes. Fast Field Programmable Gate Array technology allows to use lookup tables at the array trigger level to form a real-time pattern recognition trigger tht capitalizes on the multiple view points of the shower at different shower core distances. A proof of principle system is currently under construction. It is based on 400 MHz FPGAs and the goal is for camera trigger rates of up to 10 MHz and a tunable cosmic-ray background suppression at the array level.

  11. Prototype study of the Cherenkov imager of the AMS experiment

    International Nuclear Information System (INIS)

    Aguayo, P.; Aguilar-Benitez, M.; Arruda, L.; Barao, F.; Barreira, G.; Barrau, A.; Baret, B.; Belmont, E.; Berdugo, J.; Boudoul, G.; Borges, J.; Buenerd, M.; Casadei, D.; Casaus, J.; Delgado, C.; Diaz, C.; Derome, L.; Eraud, L.; Gallin-Martel, L.; Giovacchini, F.; Goncalves, P.; Lanciotti, E.; Laurenti, G.; Malinine, A.; Mana, C.; Marin, J.; Martinez, G.; Menchaca-Rocha, A.; Palomares, C.; Pereira, R.; Pimenta, M.; Protasov, K.; Sanchez, E.; Seo, E.-S.; Sevilla, I.; Torrento, A.; Vargas-Trevino, M.; Veziant, O.

    2006-01-01

    The AMS experiment includes a Cherenkov imager for mass and charge identification of charged cosmic rays. A second generation prototype has been constructed and its performances evaluated both with cosmic ray particles and with beam ions. In-beam tests have been performed using secondary nuclei from the fragmentation of 20GeV/c per nucleon Pb ions and 158GeV/c per nucleon In from the CERN SPS in 2002 and 2003. Partial results are reported. The performances of the prototype for the velocity and the charge measurements have been studied over the range of ion charge Z-bar 30. A sample of candidate silica aerogel radiators for the flight model of the detector has been tested. The measured velocity resolution of the detector was found to scale with Z -1 as expected, with a value σ(β)/β∼0.7-110 -3 for singly charged particles and an asymptotic limit in Z of 0.4-0.6x10 -4 . The measured charge resolution obtained for the n=1.05 aerogel radiator material selected for the flight model of the detector is σ(Z)=0.18 (statistical) -bar 0.015 (systematic), ensuring a good charge separation up to the iron element, for the prototype in the reported experimental conditions

  12. Characteristics of a gamma telescope on the ''Kosmos-561'' satellite

    International Nuclear Information System (INIS)

    Bokov, V.L.; Kruglov, E.M.

    1981-01-01

    The results of calculations of gamma telescope characteristics intended for investigating cosmic γ radiation at E>=100 MeV in the ''Cosmos 561'' artificial Earth satellite, using the Monte Carlo method, are presented. The gamma spectrometer contains a lead converter, scintillation deteectors of polysterene, a unit of spark chambers and a Cherenkov detector of lead glass. The dependence of the device effective area and angular resolution on γ quanta energy is calculated. The relative radiation pattern of the device is given. The given integral characteristics of the gamma telescope for a γ quanta flux with an exponential spectrum are the following: the effective geometrical factor and effective device area depending on the spectrum index. The calibration gamma telescope curve is plotted according to the electron mean free path distribution [ru

  13. A large area plastic Cherenkov detector

    International Nuclear Information System (INIS)

    Bernabei, R.; Bidoli, V.; Zorzi, G. de; Biagio, A. di

    1978-01-01

    A large area Cherenkov counter has been built up using as a radiator a sheet of Pilot 425 plastic, (180x20)cm 2 x2.5 cm. Experimental tests performed with a pion beam in order to measure the average number of photoelectrons collected by photomultipliers and the scintillation to Cherenkov light ratio. (Auth.)

  14. Measurement of radionuclides in the environment via Cherenkov radiation

    International Nuclear Information System (INIS)

    Ross, H.H.

    1987-01-01

    The author has developed an alternate approach to the measurement of some beta-emitting nuclides that utilizes the luminescence generated by the Cherenkov process. The luminescence, now known as Cherenkov radiation, was shown to be generated when a charged particle passes through a transparent medium at a speed that exceeds the phase velocity of light in the same medium. Cherenkov emission is different from most other luminescence processes in that it is a purely physical phenomenon. One consequence of this is that Cherenkov systems are free of chemical quenching effects. Conventional methods of analysis for environmental levels of beta-emitting radionuclides are often tedious, time-consuming, and expensive. The Cherenkov method is fast, requires very little operator attention, and is much less expensive to perform

  15. Strangeonium spectroscopy at 11 GeV/c and Cherenkov Ring Imaging at the SLD

    International Nuclear Information System (INIS)

    Bienz, T.L.

    1990-07-01

    This thesis is divided into two sections, which describe portions of the data acquisition system and online software for the Cherenkov Ring Imaging Detector (CRID) for the SLD, and analyses of several low cross section strangeonium channels in data from the LASS spectrometer. The CRID section includes a description of the data acquisition system, determination of the preamplifier gain, and development of an online pulse finding algorithm based on deconvolution. Deconvolution uses knowledge of the preamplifier impulse response to aid in pulse finding. The algorithm is fast and shows good single pulse resolution and excellent double pulse resolution in preliminary tests. The strangeonium analyses are based on data from a 4.1 event/nanobarn exposure of the LASS spectrometer in K - p interactions at 11 GeV/c, and include studies of Ληπ + π - , ΛΚ*Κ*, and Λφφ

  16. Optical fiber Cherenkov detector for beam current monitoring

    International Nuclear Information System (INIS)

    Pishchulin, I.V.; Solov'ev, N.G.; Romashkin, O.B.

    1991-01-01

    The results obtained in calculation of an optical fiber Cherenkov detector for accelerated beam current monitoring are presented. The technique of beam parameters monitoring is based on Cherenkov radiation excitation by accelerated electrons in the optical fiber. The formulas for calculations of optical power and time dependence of Cherenkov radiation pulse are given. The detector sensitivity and time resolution dependence on the fiber material characteristics are investigated. Parameters of a 10μm one-mode quartz optical fiber detector for the free electron laser photoinjector are calculated. The structure of a monitoring system with the optical fiber Cherenkov detector is considered. Possible applications of this technique are discussed and some recommendations are given

  17. A CMOS Integrating Amplifier for the PHENIX Ring Imaging Cherenkov detector

    International Nuclear Information System (INIS)

    Wintenberg, A.L.; Jones, J.P. Jr.; Young, G.R.; Moscone, C.G.

    1997-11-01

    A CMOS integrating amplifier has been developed for use in the PHENIX Ring Imaging Cherenkov (RICH) detector. The amplifier, consisting of a charge-integrating amplifier followed by a variable gain amplifier (VGA), is an element of a photon measurement system comprising a photomultiplier tube, a wideband, gain of 10 amplifier, the integrating amplifier, and an analog memory followed by an ADC and double correlated sampling implemented in software. The integrating amplifier is designed for a nominal full scale input of 160 pC with a gain of 20 mV/pC and a dynamic range of 1000:1. The VGA is used for equalizing gains prior to forming analog sums for trigger purposes. The gain of the VGA is variable over a 3:1 range using a 5 bits digital control, and the risetime is held to approximately 20 ns using switched compensation in the VGA. Details of the design and results from several prototype devices fabricated in 1.2 microm Orbit CMOS are presented. A complete noise analysis of the integrating amplifier and the correlated sampling process is included as well as a comparison of calculated, simulated and measured results

  18. A CMOS Integrating Amplifier for the PHENIX Ring Imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Wintenberg, A.L.; Jones, J.P. Jr.; Young, G.R. [Oak Ridge National Lab., TN (United States); Moscone, C.G. [Tennessee Univ., Knoxville, TN (United States)

    1997-11-01

    A CMOS integrating amplifier has been developed for use in the PHENIX Ring Imaging Cherenkov (RICH) detector. The amplifier, consisting of a charge-integrating amplifier followed by a variable gain amplifier (VGA), is an element of a photon measurement system comprising a photomultiplier tube, a wideband, gain of 10 amplifier, the integrating amplifier, and an analog memory followed by an ADC and double correlated sampling implemented in software. The integrating amplifier is designed for a nominal full scale input of 160 pC with a gain of 20 mV/pC and a dynamic range of 1000:1. The VGA is used for equalizing gains prior to forming analog sums for trigger purposes. The gain of the VGA is variable over a 3:1 range using a 5 bits digital control, and the risetime is held to approximately 20 ns using switched compensation in the VGA. Details of the design and results from several prototype devices fabricated in 1.2 {micro}m Orbit CMOS are presented. A complete noise analysis of the integrating amplifier and the correlated sampling process is included as well as a comparison of calculated, simulated and measured results.

  19. Photon counting with a FDIRC Cherenkov prototype readout by SiPM arrays

    Energy Technology Data Exchange (ETDEWEB)

    Marrocchesi, P.S., E-mail: marrocchesi@pi.infn.it [Department of Physical Sciences, Earth and Environment, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Bagliesi, M.G. [Department of Physical Sciences, Earth and Environment, Via Roma 56, I-53100 Siena (Italy); Basti, A. [Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Bigongiari, G.; Bonechi, S.; Brogi, P. [Department of Physical Sciences, Earth and Environment, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Checchia, C.; Collazuol, G. [Department of Physics and Astronomy, University of Padova, Padova, Italy, and INFN-Padova, 35131 Padova (Italy); Maestro, P. [Department of Physical Sciences, Earth and Environment, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Morsani, F. [INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Piemonte, C. [Fondazione Bruno Kessler (FBK), I-38122 Trento (Italy); Stolzi, F.; Suh, J.E; Sulaj, A. [Department of Physical Sciences, Earth and Environment, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy)

    2017-02-11

    A prototype of a Focused Internal Reflection Cherenkov, equipped with 16 arrays of NUV-SiPM, was tested at CERN SPS in March 2015 with beams of relativistic ions at 13, 19 and 30 GeV/n obtained from fragmentation of an Ar primary beam. The detector, designed to identify cosmic nuclei, features a Fused Silica radiator bar optically connected to a cylindrical mirror of the same material and an imaging focal plane of dimensions ∼4 cm×3 cm covered with a total of 1024 SiPM photosensors. Thanks to the outstanding performance of the SiPM arrays, the detector could be operated in photon counting mode as a fully digital device. The Cherenkov pattern was recorded together with the total number of detected photoelectrons increasing as Z{sup 2} as a function of the atomic number Z of the beam particle. In this paper, we report on the characterization and test of the SiPM arrays and the performance of the Cherenkov prototype for the charge identification of the beam particles.

  20. Spontaneous emission in Cherenkov FEL devices

    International Nuclear Information System (INIS)

    Ciocci, F.; Dattoli, G.; Doria, A.; Schettini, G.; Torre, A.; Walsh, J.E.

    1987-01-01

    The main features of the spectral characteristics of the spontaneously emitted Cherenkov light in circular and rectangular wave-guides filled with dielectric are discussed. The characteristics of the radiation emitted by an electron beam moving near and parallel to the surface of a dielectric slab are also analysed. Finally, the relevance of these results to a possible FEL-Cherenkov operation is briefly discussed

  1. The Cherenkov Radiation for Non-Trivial Systems

    International Nuclear Information System (INIS)

    Grau Carles, A.

    2002-01-01

    The charge pathways and the dielectric properties of the medium are two essential aspects to be considered in the study of the emission of Cherenkov radiation. We described the evolution of the Cherenkov wavefront when the charges follow circular or helical pathways. Also we derive expressions for the refractive Index in different transparent media (solid, liquid or gas), focusing our attention on optically active plasmas. The optical analogies between the plasma and the birefringent crystals is studied in detail. Finally, we list some examples of plasmas, which can be considered emitters of Cherenkov radiation. (Author) 52 refs

  2. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casanova Mohr, R; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M N; Mitzel, D S; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Müller, J; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schune, M H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Sterpka, F; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Trabelsi, K; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wiedner, D; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L

    A search is performed for heavy long-lived charged particles using 3.0 [Formula: see text] of proton-proton collisions collected at [Formula: see text][Formula: see text] 7 and 8  TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell-Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, [Formula: see text]. The mass-dependent cross-section upper limits are in the range 2-4 fb (at 95 % CL) for masses between 14 and 309 [Formula: see text].

  3. Next-generation Event Horizon Telescope developments: new stations for enhanced imaging

    Science.gov (United States)

    Palumbo, Daniel; Johnson, Michael; Doeleman, Sheperd; Chael, Andrew; Bouman, Katherine

    2018-01-01

    The Event Horizon Telescope (EHT) is a multinational Very Long Baseline Interferometry (VLBI) network of dishes joined to resolve general relativistic behavior near a supermassive black hole. The imaging quality of the EHT is largely dependent upon the sensitivity and spatial frequency coverage of the many baselines between its constituent telescopes. The EHT already contains many highly sensitive dishes, including the crucial Atacama Large Millimeter/Submillimeter Array (ALMA), making it viable to add smaller, cheaper telescopes to the array, greatly improving future capabilities of the EHT. We develop tools for optimizing the positions of new dishes in planned arrays. We also explore the feasibility of adding small orbiting dishes to the EHT, and develop orbital optimization tools for space-based VLBI imaging. Unlike the Millimetron mission planned to be at L2, we specifically treat near-earth orbiters, and find rapid filling of spatial frequency coverage across a large range of baseline lengths. Finally, we demonstrate significant improvement in image quality when adding small dishes to planned arrays in simulated observations.

  4. Charged particle identification: Cherenkov counters at ISABELLE

    International Nuclear Information System (INIS)

    Etkin, A.; Kostoulas, I.; Leith, D.W.G.S.; Thun, R.

    1977-01-01

    A brief summary is given of a study of Cherenkov counters for ISABELLE. The study was certainy not exhaustive and was meant primarily to suggest future detector development. A substantial research effort is needed in order to insure that Cherenkov counters utilizing photoionization are fully exploited

  5. Aerogel as Cherenkov radiator for RICH detectors

    International Nuclear Information System (INIS)

    Bellunato, T.; Braem, A.; Buzykaev, A.R.; Calvi, M.; Chesi, E.; Danilyuk, A.F.; Easo, S.; Hansen, C.; Jolly, S.; Joram, C.; Kravchenko, E.A.; Liko, D.; Matteuzzi, C.; Musy, M.; Negri, P.; Neufeld, N.; Onuchin, A.P.; Seguinot, J.; Weilhammer, P.; Wotton, S.

    2003-01-01

    We present here the results obtained using silica aerogel as Cherenkov radiator for the separation and identification of particles in the momentum range from 6 to 10 GeV/c. Photoelectron yield and Cherenkov ring resolution were studied under different experimental conditions and compared to the simulation

  6. Cherenkov radiation; La radiation Cerenkov

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    When the radioactivity has been discovered, it was observed by researchers that different materials as mineral salts or solutions were emitting a weak light when submitted to radioactivity beams. At the beginning it has been thought that it was fluorescent light. In 1934, Cherenkov, a russian physicist, worked on the luminescence of uranyl salts solutions caused by gamma radiation and observed a very weak light was emitted by pure liquid. After further studies, he concluded that this phenomena was different from fluorescence. Since then, it has been called Cherenkov effect. This blue light emission is produced when charged particles are going through a transparent medium with an upper velocity than light velocity. This can happen only in medium with large refractive index as water or glass. It also presents its different properties discovered afterwards. The different applications of the Cherenkov radiation are discussed as counting techniques for radiation detectors or comic ray detectors. (M.P.)

  7. The Advanced Gamma-ray Imaging System (AGIS): Topological Array Trigger

    Science.gov (United States)

    Smith, Andrew W.

    2010-03-01

    AGIS is a concept for the next-generation ground-based gamma-ray observatory. It will be an array of 36 imaging atmospheric Cherenkov telescopes (IACTs) sensitive in the energy range from 50 GeV to 200 TeV. The required improvements in sensitivity, angular resolution, and reliability of operation relative to the present generation instruments imposes demanding technological and cost requirements on the design of the telescopes and on the triggering and readout systems for AGIS. To maximize the capabilities of large arrays of IACTs with a low energy threshold, a wide field of view and a low background rate, a sophisticated array trigger is required. We outline the status of the development of a stereoscopic array trigger that calculates image parameters and correlates them across a subset of telescopes. Field Programmable Gate Arrays (FPGAs) implement the real-time pattern recognition to suppress cosmic rays and night-sky background events. A proof of principle system is being developed to run at camera trigger rates up to 10MHz and array-level rates up to 10kHz.

  8. Beam test of Cherenkov counter prototype for ZDF setup

    International Nuclear Information System (INIS)

    Kacharava, A.K.; Macharashvili, G.G.; Nioradze, M.S.; Komarov, V.I.; Sopov, V.S.; Chernyshev, V.P.

    1995-01-01

    We describe a Cherenkov counter of total internal reflection for particle separation in the momentum range where all types of particles radiate Cherenkov light. The Cherenkov counter prototype with the lucite radiator was tested on the secondary beam of the ITEP (Moscow) accelerator. Dependence of the photomultiplier pulse height on the particle entrance angle was clearly observed. 4 refs., 4 figs

  9. A programmable systolic array correlator as a trigger processor for electron pairs in rich (ring image Cherenkov) counters

    Science.gov (United States)

    Männer, R.

    1989-12-01

    This paper describes a systolic array processor for a ring image Cherenkov counter which is capable of identifying pairs of electron circles with a known radius and a certain minimum distance within 15 μs. The processor is a very flexible and fast device. It consists of 128 x 128 processing elements (PEs), where one PE is assigned to each pixel of the image. All PEs run synchronously at 40 MHz. The identification of electron circles is done by correlating the detector image with the proper circle circumference. Circle centers are found by peak detection in the correlation result. A second correlation with a circle disc allows circles of closed electron pairs to be rejected. The trigger decision is generated if a pseudo adder detects at least two remaining circles. The device is controlled by a freely programmable sequencer. A VLSI chip containing 8 x 8 PEs is being developed using a VENUS design system and will be produced in 2μ CMOS technology.

  10. A programmable systolic array correlator as a trigger processor for electron pairs in RICH (ring image Cherenkov) counters

    International Nuclear Information System (INIS)

    Maenner, R.

    1989-01-01

    This paper describes a systolic array processor for a ring image Cherenkov counter which is capable of identifying pairs of electron circles with a known radius and a certain minimum distance within 15 μs. The processor is a very flexible and fast device. It consists of 128x128 processing elements (PEs), where one PE is assigned to each pixel of the image. All PEs run synchronously at 40 MHz. The identification of electron circles is done by correlating the detector image with the proper circle circumference. Circle centers are found by peak detection in the correlation result. A second correlation with a circle disc allows circles of closed electron pairs to be rejected. The trigger decision is generated if a pseudo adder detects at least two remaining circles. The device is controlled by a freely programmable sequencer. A VLSI chip containing 8x8 PEs is being developed using a VENUS design system and will be produced in 2μ CMOS technology. (orig.)

  11. MuSICa image slicer prototype at 1.5-m GREGOR solar telescope

    Science.gov (United States)

    Calcines, A.; López, R. L.; Collados, M.; Vega Reyes, N.

    2014-07-01

    Integral Field Spectroscopy is an innovative technique that is being implemented in the state-of-the-art instruments of the largest night-time telescopes, however, it is still a novelty for solar instrumentation. A new concept of image slicer, called MuSICa (Multi-Slit Image slicer based on collimator-Camera), has been designed for the integral field spectrograph of the 4-m European Solar Telescope. This communication presents an image slicer prototype of MuSICa for GRIS, the spectrograph of the 1.5-m GREGOR solar telescope located at the Observatory of El Teide. MuSICa at GRIS reorganizes a 2-D field of view of 24.5 arcsec into a slit of 0.367 arcsec width by 66.76 arcsec length distributed horizontally. It will operate together with the TIP-II polarimeter to offer high resolution integral field spectropolarimetry. It will also have a bidimensional field of view scanning system to cover a field of view up to 1 by 1 arcmin.

  12. Space telescope design to directly image the habitable zone of Alpha Centauri

    Science.gov (United States)

    Bendek, Eduardo A.; Belikov, Ruslan; Lozi, Julien; Thomas, Sandrine; Males, Jared; Weston, Sasha; McElwain, Michael

    2015-09-01

    The scientific interest in directly imaging and identifying Earth-like planets within the Habitable Zone (HZ) around nearby stars is driving the design of specialized direct imaging missions such as ACESAT, EXO-C, EXO-S and AFTA-C. The inner edge of Alpha Cen A and B Habitable Zone is found at exceptionally large angular separations of 0.7" and 0.4" respectively. This enables direct imaging of the system with a 0.3m class telescope. Contrast ratios on the order of 1010 are needed to image Earth-brightness planets. Low-resolution (5-band) spectra of all planets may allow establishing the presence and amount of an atmosphere. This star system configuration is optimal for a specialized small, and stable space telescope that can achieve high-contrast but has limited resolution. This paper describes an innovative instrument design and a mission concept based on a full Silicon Carbide off-axis telescope, which has a Phase Induced Amplitude Apodization coronagraph embedded in the telescope. This architecture maximizes stability and throughput. A Multi-Star Wave Front algorithm is implemented to drive a deformable mirror controlling simultaneously diffracted light from the on-axis and binary companion star. The instrument has a Focal Plane Occulter to reject starlight into a highprecision pointing control camera. Finally we utilize a Orbital Differential Imaging (ODI) post-processing method that takes advantage of a highly stable environment (Earth-trailing orbit) and a continuous sequence of images spanning 2 years, to reduce the final noise floor in post processing to ~2e-11 levels, enabling high confidence and at least 90% completeness detections of Earth-like planets.

  13. Detection of magnetic monopoles in the future neutrino telescope Antares and characterization of the photomultiplier pulse treatment; Etude de la detection de monopoles magnetiques au sein du futur telescope a neutrinos antares et caracterisation des performances du traitement des impulsions des photomultiplicateurs

    Energy Technology Data Exchange (ETDEWEB)

    Ricol, J.St

    2002-10-01

    Grand unified theories (GUT) involve phase transitions in the early universe, that could create topological defects, like magnetic monopoles. Monopoles main characteristics are shown and in particular energy losses and flux limits. High energy neutrino telescopes offer a new opportunity for magnetic monopole search. The study of the photomultiplier pulse treatment by the Antares detector front-end electronics indicates that this one is well adapted to the telescope needs. The pulses detailed analysis has allowed to obtain a time measurement precision lower than 0.6 ns and electronic noise and saturation have no relevant effect on the telescope performances. Relativistic monopoles generate a large amount of light, that leads to an effective area for the Antares detector of about 0.06 km{sup 2} for velocities {beta}{sub mon} = 0.6 and 0.35 km{sup 2} for velocities {beta}{sub mon} {approx} 1. Monopole track are well reconstructed and the velocity determination is made with an error lower than few percents, which represents a decisive result for the background rejection, caused by high energy muons with a velocity {beta}{sub {mu}} {approx} 1. The very dispersive light emission of monopoles below the Cherenkov limit, 0.6 {approx}< {beta}{sub mon} {<=} 0.74, via the delta-rays produced by ionisation, does not allow an accurate expecting signal and the bad reconstructed muons rejection must be improved. Above the Cherenkov limit, {beta}{sub mon} {>=} 0.8, bad reconstructed events can be rejected from the Cherenkov emission parametrisation. A magnetic monopole signal can then clearly be distinguished from background. (author)

  14. Searching for gamma-ray counterparts to gravitational waves from merging binary neutron stars with the Cherenkov Telescope Array

    Science.gov (United States)

    Patricelli, B.; Stamerra, A.; Razzano, M.; Pian, E.; Cella, G.

    2018-05-01

    The merger of binary neutron star (BNS) systems are predicted to be progenitors of short gamma-ray bursts (GRBs); the definitive probe of this association came with the recent detection of gravitational waves (GWs) from a BNS merger by Advanced LIGO and Advanced Virgo (GW170817), in coincidence with the short GRB 170817A observed by Fermi-GBM and INTEGRAL. Short GRBs are also expected to emit very-high energy (VHE, > 10S0 GeV) photons and VHE electromagnetic (EM) upper limits have been set with observations performed by ground-based gamma-ray detectors and during the intense EM follow-up campaign associated with GW170817/GRB 170817A. In the next years, the searches for VHE EM counterparts will become more effective thanks to the Cherenkov Telescope Array (CTA): this instrument will be fundamental for the EM follow-up of transient GW events at VHE, owing to its unprecedented sensitivity, rapid response (few tens of seconds) and capability to monitor large sky areas via survey-mode operation. We present a comprehensive study on the prospects for joint GW and VHE EM observations of merging BNSs with Advanced LIGO, Advanced Virgo and CTA, based on detailed simulations of the multi-messenger emission and detection. We propose a new observational strategy optimized on the prior assumptions about the EM emission. The method can be further generalized to include other electromagnetic emission models. According to this study CTA will cover most of the region of the GW skymap for the intermediate and most energetic on-axis GRBs associated to the GW event. We estimate the expected joint GW and VHE EM detection rates and we found this rate goes from 0.08 up to 0.5 events per year for the most energetic EM sources.

  15. Development of a 144-channel Hybrid Avalanche Photo-Detector for Belle II ring-imaging Cherenkov counter with an aerogel radiator

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, S., E-mail: shohei.nishida@kek.jp [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Adachi, I. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hamada, N. [Toho University, Funabashi (Japan); Hara, K. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Iijima, T. [Nagoya University, Nagoya (Japan); Iwata, S.; Kakuno, H. [Tokyo Metropolitan University, Hachioji (Japan); Kawai, H. [Chiba University, Chiba (Japan); Korpar, S.; Krizan, P. [Jozef Stefan Institute, Ljubljana (Slovenia); Ogawa, S. [Toho University, Funabashi (Japan); Pestotnik, R.; Ŝantelj, L.; Seljak, A. [Jozef Stefan Institute, Ljubljana (Slovenia); Sumiyoshi, T. [Tokyo Metropolitan University, Hachioji (Japan); Tabata, M. [Chiba University, Chiba (Japan); Tahirovic, E. [Jozef Stefan Institute, Ljubljana (Slovenia); Yoshida, K. [Tokyo Metropolitan University, Hachioji (Japan); Yusa, Y. [Niigata University, Niigata (Japan)

    2015-07-01

    The Belle II detector, a follow up of the very successful Belle experiment, is under construction at the SuperKEKB electron–positron collider at KEK in Japan. For the PID system in the forward region of the spectrometer, a proximity-focusing ring-imaging Cherenkov counter with an aerogel radiator is being developed. For the position sensitive photon sensor, a 144-channel Hybrid Avalanche Photo-Detector has been developed with Hamamatsu Photonics K.K. In this report, we describe the specification of the Hybrid Avalanche Photo-Detector and the status of the mass production.

  16. Hartmann test of the COMPASS RICH-1 optical telescopes

    CERN Document Server

    Polak, J; Alekseev, M; Angerer, H; Apollonio, M; Birsa, R; Bordalo, P; Bradamante, F; Bressan, A; Busso, L; Chiosso, V M; Ciliberti, P; Colantoni, M L; Costa, S; Dibiase, N; Dafni, T; Dalla Torre, S; Diaz, V; Duic, V; Delagnes, E; Deschamps, H; Eyrich, W; Faso, D; Ferrero, A; Finger, M; Finger, M Jr; Fischer, H; Gerassimov, S; Giorgi, M; Gobbo, B; Hagemann, R; von Harrach, D; Heinsius, F H; Joosten, R; Ketzer, B; Königsmann, K; Kolosov, V N; Konorov, I; Kramer, D; Kunne, F; Levorato, S; Maggiora, A; Magnon, A; Mann, A; Martin, A; Rebourgeard, P; Mutter, A; Nähle, O; Neyret, D; Nerling, F; Pagano, P; Paul, S; Panebianco, S; Panzieri, D; Pesaro, G; Pizzolotto, C; Menon, G; Rocco, E; Robinet, F; Schiavon, P; Schill, C; Schoenmeier, P; Silva, L; Slunecka, M; Steiger, L; Sozzi, F; Sulc, M; Svec, M; Tessarotto, F; Teufel, A; Wollny, H

    2008-01-01

    The central region of COMPASS RICH-1 has been equipped with a new photon detection system based on MultiAnode PhotoMultiplier Tubes (MAPMT). The Cherenkov photons are focused by an array of 576 fused silica telescopes onto 576 MAPMTs. The quality and positioning of all optical components have been tested by Hartmann method. The validation procedures are described. The quality of the optical concentrators was checked and alignment corrections were made. The upgraded detector showed excellent performances during 2006 data taking.

  17. Studies of runaway electrons via Cherenkov effect in tokamaks

    Science.gov (United States)

    Zebrowski, J.; Jakubowski, L.; Rabinski, M.; Sadowski, M. J.; Jakubowski, M. J.; Kwiatkowski, R.; Malinowski, K.; Mirowski, R.; Mlynar, J.; Ficker, O.; Weinzettl, V.; Causa, F.; COMPASS; FTU Teams

    2018-01-01

    The paper concerns measurements of runaway electrons (REs) which are generated during discharges in tokamaks. The control of REs is an important task in experimental studies within the ITER-physics program. The NCBJ team proposed to study REs by means of Cherenkov-type detectors several years ago. The Cherenkov radiation, induced by REs in appropriate radiators, makes it possible to identify fast electron beams and to determine their spatial- and temporal-characteristics. The results of recent experimental studies of REs, performed in two tokamaks - COMPASS in Prague and FTU in Frascati, are summarized and discussed in this paper. Examples of the electron-induced signals, as recorded at different experimental conditions and scenarios, are presented. Measurements performed with a three-channel Cherenkov-probe in COMPASS showed that the first fast electron peaks can be observed already during the current ramp-up phase. A strong dependence of RE-signals on the radial position of the Cherenkov probe was observed. The most distinct electron peaks were recorded during the plasma disruption. The Cherenkov signals confirmed the appearance of post-disruptive RE beams in circular-plasma discharges with massive Ar-puffing. During experiments at FTU a clear correlation between the Cherenkov detector signals and the rotation of magnetic islands was identified.

  18. Direct imaging of extra-solar planetary systems with the Circumstellar Imaging Telescope (CIT)

    International Nuclear Information System (INIS)

    Terrile, R.J.

    1988-01-01

    In a joint study conducted by the Jet Propulsion Laboratory and the Perkin-Elmer Corporation it was found that an earth orbital, 1.5 meter diameter low scattered light coronagraphic telescope can achieve a broad range of scientific objectives including the direct detection of Jupiter-sized planets around the nearby stars. Recent major advances in the understanding of coronagraphic performance and in the field of super smooth mirror fabrication allow such an instrument to be designed and built within current technology. Such a project, called the Circumstellar Imaging Telescope (CIT), is currently being proposed. 10 references

  19. Strategy implementation for the CTA Atmospheric monitoring program

    Directory of Open Access Journals (Sweden)

    Doro Michele

    2015-01-01

    Full Text Available The Cherenkov Telescope Array (CTA is the next generation facility of Imaging Atmospheric Cherenkov Telescopes. It reaches unprecedented sensitivity and energy resolution in very-high-energy gamma-ray astronomy. CTA detects Cherenkov light emitted within an atmospheric shower of particles initiated by cosmic-gamma rays or cosmic rays entering the Earth's atmosphere. From the combination of images the Cherenkov light produces in the telescopes, one is able to infer the primary particle energy and direction. A correct energy estimation can be thus performed only if the local atmosphere is well characterized. The atmosphere not only affects the shower development itself, but also the Cherenkov photon transmission from the emission point in the particle shower, at about 10–20 km above the ground, to the detector. Cherenkov light on the ground is peaked in the UV-blue region, and therefore molecular and aerosol extinction phenomena are important. The goal of CTA is to control systematics in energy reconstruction to better than 10%. For this reason, a careful and continuous monitoring and characterization of the atmosphere is required. In addition, CTA will be operated as an observatory, with data made public along with appropriate analysis tools. High-level data quality can only be ensured if the atmospheric properties are consistently and continuously taken into account. In this contribution, we concentrate on discussing the implementation strategy for the various atmospheric monitoring instruments currently under discussion in CTA. These includes Raman lidars and ceilometers, stellar photometers and others available both from commercial providers and public research centers.

  20. Cherenkov and scintillation light separation in organic liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D. [University of California, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Yeh, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-12-15

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ{sub r} = 0.72 ± 0.33 ns. (orig.)

  1. Cherenkov and scintillation light separation in organic liquid scintillators

    International Nuclear Information System (INIS)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D.; Yeh, M.

    2017-01-01

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ r = 0.72 ± 0.33 ns. (orig.)

  2. Cherenkov TOF PET with silicon photomultipliers

    Science.gov (United States)

    Dolenec, R.; Korpar, S.; Križan, P.; Pestotnik, R.

    2015-12-01

    As previously demonstrated, an excellent timing resolution below 100 ps FWHM is possible in time-of-flight positron emission tomography (TOF PET) if the detection method is based on the principle of detecting photons of Cherenkov light, produced in a suitable material and detected by microchannel plate photomultipliers (MCP PMTs). In this work, the silicon photomultipliers (SiPMs) were tested for the first time as the photodetectors in Cherenkov TOF PET. The high photon detection efficiency (PDE) of SiPMs led to a large improvement in detection efficiency. On the other hand, the time response of currently available SiPMs is not as good as that of MCP PMTs. The SiPM dark counts introduce a new source of random coincidences in Cherenkov method, which would be overwhelming with present SiPM technology at room temperature. When the apparatus was cooled, its performance significantly improved.

  3. Estimation of primary cosmic ray characteristics with the help of EAS Cherenkov light

    International Nuclear Information System (INIS)

    Aleksandrov, L.; Brankova, M.; Kirov, I.; Mishev, A.; Stamenov, J.; Ushev, S.; Mavrodiev, S.

    1999-01-01

    A new method of estimating primary cosmic ray characteristics based on the registration and analysis of EAS Cherenkov light is proposed. The nature, energy and arrival direction of primaries are obtained as a solution of a nonlinear inverse problem. The applied mathematical model is created by analyzing 'Hotovo' telescope experimental data. The behaviour of model parameters is studied using CORSIKA code for the primary energy interval 30 GeV-3 TeV. This method could be applied successfully for a different kind of detector displacements of EAS arrays. Moreover, it is shown that the shower parameter estimation could be obtained more effectively and precisely in the case of detectors displacement according to a Spiral

  4. Massive Cherenkov neutrino facilities?their evolution, their future: Twenty-five years at these International Neutrino Conferences

    International Nuclear Information System (INIS)

    Sulak, Lawrence R.

    2005-01-01

    This review traces the evolution of massive water Cherenkov tracking calorimeters. Pioneering concepts, first presented in this conference a quarter of a century ago, have led to 1) IMB, the first large detector (10kT), which was designed primarily to search for proton decay, and secondarily to be sensitive to supernova neutrinos and atmospheric oscillations, and 2) Dumand, an attempt to initiate the search for TeV astrophysical neutrinos with a prototype for a 1 km 3 telescope. The concepts and initial work on IMB influenced subsequent detectors: Kamiokande, Super-K, SNO, and, in part, Kamland. These detectors have to their credit the elucidation of the physics of atmospheric, solar, reactor and supernova neutrinos. With the advent of the K2K beam, controlled accelerator neutrinos confirm the atmospheric studies. The path breaking developments of Dumand now are incorporated in the high-volume Amanda and Antares detectors, as well as their sequels, IceCube and the proposed Cubic Kilometer detector. The future (ultimate?) facilities have new physics challenges: A high-resolution megaton detector, eventually coupled with an intense accelerator neutrino source, is critical for precision studies of neutrino oscillation parameters and for the potential discovery of CP violation in the lepton sector. The Gigaton TeV neutrino telescopes (IceCube and Cubic Kilometer) seek to open high-energy neutrino astronomy, still an elusive goal. (Amanda, IceCube, and UNO, as well as Minos, Icarus and other large neutrino facilities using non-Cherenkov technologies, are treated in other contributions to this volume.)

  5. Vavilov-Cherenkov and Synchrotron Radiation Foundations and Applications

    CERN Document Server

    Afanasiev, G. N

    2005-01-01

    The theory of the Vavilov-Cherenkov radiation observed by Cherenkov in 1934 was created by Tamm, Frank and Ginsburg who associated the observed blue light with the uniform charge motion of a charge at a velocity greater than the velocity of light in the medium. On the other hand, Vavilov, Cherenkov's teacher, attributed the observed blue light to the deceleration of electrons. This has given rise to the appearance of papers in which the radiation of a charge uniformly moving in a finite space interval was related to the Bremsstrahlung arising at the end points of the motion interval. This monograph is intended for students of the third year and higher, for postgraduates, for professional scientists (both experimentalists and theoreticians) dealing with Vavilov-Cherenkov and synchrotron radiation. An acquaintance with the three volumes of the Landau and Lifshitz course (Quantum Mechanics, Classical Field Theory and Macroscopic Electrodynamics) is sufficient for understanding the text.

  6. Design and construction of the front-end electronics data acquisition for the SLD CRID [Cherenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Hoeflich, J.; McShurley, D.; Marshall, D.; Oxoby, G.; Shapiro, S.; Stiles, P.; Spencer, E.

    1990-10-01

    We describe the front-end electronics for the Cherenkov Ring Imaging Detector (CRID) of the SLD at the Stanford Linear Accelerator Center. The design philosophy and implementation are discussed with emphasis on the low-noise hybrid amplifiers, signal processing and data acquisition electronics. The system receives signals from a highly efficient single-photo electron detector. These signals are shaped and amplified before being stored in an analog memory and processed by a digitizing system. The data from several ADCs are multiplexed and transmitted via fiber optics to the SLD FASTBUS system. We highlight the technologies used, as well as the space, power dissipation, and environmental constraints imposed on the system. 16 refs., 10 figs

  7. Generation and propagation of synchro - Cherenkov radiation

    International Nuclear Information System (INIS)

    Heintzmann, H.; Novello, M.; Schruefer, E.

    1981-01-01

    Particles moving along the magnetic field lines emit under favorable conditions Cherenkov radiation in a cold, rarefied plasma. A peculiar phenomenon occurs for curved magnetic fields: in for example a toroidal magnetic field the radiation spirals inward and approaches a resonance. Both the generation and the study of the propagation of these Cherenkov modes appear to be within reach of present technology. (Author) [pt

  8. Search for magnetic monopoles with the neutrino telescope ANTARES

    International Nuclear Information System (INIS)

    Picot-Clemente, N.

    2010-01-01

    The ANTARES neutrino telescope is located at a 2500 meters depth, and is composed of an array of 900 photomultipliers installed for the detection of Cherenkov light emitted by neutrino-induced muons, after having interacted with matter, and in order to reconstruct their directions. However, besides of being capable of detecting high energy neutrinos, neutrino telescopes could measure the incoming flux of magnetic monopoles in the detector. In this work, were first presented the different methods used in order to calibrate the photomultipliers, which are the heart of a neutrino telescope. The possibility of detecting magnetic monopoles with ANTARES was then discussed, and a first analysis optimised for the search for high velocity magnetic monopoles showed the great sensitivity offered by the telescope. Finally, a track reconstruction algorithm was modified, and a new analysis this time sensitive over a wider range of velocities was performed. After the application of the last analysis on the data taken in 2008 with the ANTARES telescope, new upper limits on the upward going magnetic monopole flux, of masses lower than 10 14 GeV were obtained, and are the best experimental constraints on their flux for the velocity region β ∼ [0.65, 0.995]. (author)

  9. Cherenkov Water Detectors in Particle Physics and Cosmic Rays

    Science.gov (United States)

    Petrukhin, A. A.; Yashin, I. I.

    2017-12-01

    Among various types of Cherenkov detectors (solid, liquid and gaseous) created for different studies, the most impressive development was gained by water detectors: from the first detector with a volume of several liters in which the Cherenkov radiation was discovered, to the IceCube detector with a volume of one cubic kilometer. The review of the development of Cherenkov water detectors for various purposes and having different locations - ground-based, underground and underwater-is presented in the paper. The prospects of their further development are also discussed.

  10. Using All-Sky Imaging to Improve Telescope Scheduling (Abstract)

    Science.gov (United States)

    Cole, G. M.

    2017-12-01

    (Abstract only) Automated scheduling makes it possible for a small telescope to observe a large number of targets in a single night. But when used in areas which have less-than-perfect sky conditions such automation can lead to large numbers of observations of clouds and haze. This paper describes the development of a "sky-aware" telescope automation system that integrates the data flow from an SBIG AllSky340c camera with an enhanced dispatch scheduler to make optimum use of the available observing conditions for two highly instrumented backyard telescopes. Using the minute-by-minute time series image stream and a self-maintained reference database, the software maintains a file of sky brightness, transparency, stability, and forecasted visibility at several hundred grid positions. The scheduling software uses this information in real time to exclude targets obscured by clouds and select the best observing task, taking into account the requirements and limits of each instrument.

  11. Tests of a prototype multiplexed fiber-optic ultra-fast FADC data acquisition system for the MAGIC telescope

    International Nuclear Information System (INIS)

    Bartko, H.; Goebel, F.; Mirzoyan, R.; Pimpl, W.; Teshima, M.

    2005-01-01

    Ground-based Atmospheric Air Cherenkov Telescopes (ACTs) are successfully used to observe very high energy (VHE) gamma rays from celestial objects. The light of the night sky (LONS) is a strong background for these telescopes. The gamma ray pulses being very short, an ultra-fast read-out of an ACT can minimize the influence of the LONS. This allows one to lower the so-called tail cuts of the shower image and the analysis energy threshold. It could also help to suppress other unwanted backgrounds. Fast 'flash' analog-to-digital converters (FADCs) with GSamples/s are available commercially; they are, however, very expensive and power consuming. Here we present a novel technique of Fiber-Optic Multiplexing which uses a single 2 GSamples/s FADC to digitize 16 read-out channels consecutively. The analog signals are delayed by using optical fibers. The multiplexed (MUX) FADC read-out reduces the cost by about 85% compared to using one ultra-fast FADC per read-out channel. Two prototype multiplexers, each digitizing data from 16 channels, were built and tested. The ultra-fast read-out system will be described and the test results will be reported. The new system will be implemented for the read-out of the 17 m diameter MAGIC telescope camera

  12. Low-Noise Operation of All-Fiber Femtosecond Cherenkov Laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Villanueva Ibáñez, Guillermo Eduardo; Lægsgaard, Jesper

    2013-01-01

    We investigate the noise properties of a femtosecond all-fiber Cherenkov radiation source with emission wavelength around 600 nm, based on an Yb-fiber laser and a highly-nonlinear photonic crystal fiber. A relative intensity noise as low as - 103 dBc/Hz, corresponding to 2.48 % pulse-to-pulse...... fluctuation in energy, was observed at the Cherenkov radiation output power of 4.3 mW, or 150 pJ pulse energy. This pulse-to-pulse fluctuation is at least 10.6 dB lower compared to spectrally-sliced supercontinuum sources traditionally used for ultrafast fiberbased generation at visible wavelengths. Low noise...... makes allfiber Cherenkov sources promising for biophotonics applications such as multi-photon microscopy, where minimum pulse-to-pulse energy fluctuation is required. We present the dependency of the noise figure on both the Cherenkov radiation output power and its spectrum....

  13. Cherenkov light imaging tests with state-of-the-art solid state photon counter for the CLAS12 RICH detector

    Science.gov (United States)

    Balossino, Ilaria; Barion, L.; Contalbrigo, M.; Lenisa, P.; Lucherini, V.; Malaguti, R.; Mirazita, M.; Movsisyan, A.; Squerzanti, S.; Turisini, M.

    2017-12-01

    A large area ring-imaging Cherenkov detector will be operated for hadron identification in the 3 GeV / c to 8 GeV / c momentum range at the CLAS12 experiment at the upgraded continuous electron beam accelerator facility of Jefferson Lab. The detector, consisting of aerogel radiator, composite mirrors and photon counters, will be built with a hybrid optics design to allow the detection of Cherenkov light for both forward and large angle hadron tracks. The active area has to be densely packed and highly segmented, covering about 1m2 with pixels of 6mm2 , and to allow a time resolution of 1 ns. A technology that can offer a cost-effective solution and low material budget could be Silicon Photomultipliers (SiPM) thanks to their high gain at low bias voltage, fast timing, good single-photoelectron resolution and insensitivity to magnetic fields. An investigation is ongoing on samples of 3 × 3mm2 SiPM of different micro-cell size to assess the single photon detection capability in the presence of high dark count rate due to thermal generation effects, after-pulses or optical cross-talk and to study the response to the moderate radiation damage expected at CLAS12. In this work, a brief review of the latest and most interesting results from these studies will be shown.

  14. The Calibration Units of the KM3NeT neutrino telescope

    Science.gov (United States)

    Baret, B.; Keller, P.; Clark, M. Lindsey

    2016-04-01

    KM3NeT is a network of deep-sea neutrino telescopes to be deployed in the Mediterranean Sea that will perform neutrino astronomy and oscillation studies. It consists of three-dimensional arrays of thousands of optical modules that detect the Cherenkov light induced by charged particles resulting from the interaction of a neutrino with the surrounding medium. The performance of the neutrino telescope relies on the precise timing and positioning calibration of the detector elements. Other environmental conditions which may affect light and sound transmission, such as water temperature and salinity, must also be continuously monitored. This contribution describes the technical design of the first Calibration Unit, to be deployed on the French site as part of KM3NeT Phase 1.

  15. The camera of the fifth H.E.S.S. telescope. Part I: System description

    Energy Technology Data Exchange (ETDEWEB)

    Bolmont, J., E-mail: bolmont@in2p3.fr [LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252 Paris Cedex 5 (France); Corona, P.; Gauron, P.; Ghislain, P.; Goffin, C.; Guevara Riveros, L.; Huppert, J.-F.; Martineau-Huynh, O.; Nayman, P.; Parraud, J.-M.; Tavernet, J.-P.; Toussenel, F.; Vincent, D.; Vincent, P. [LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252 Paris Cedex 5 (France); Bertoli, W.; Espigat, P.; Punch, M. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France); Besin, D.; Delagnes, E.; Glicenstein, J.-F. [CEA Saclay, DSM/IRFU, F-91191 Gif-Sur-Yvette Cedex (France); and others

    2014-10-11

    In July 2012, as the four ground-based gamma-ray telescopes of the H.E.S.S. (High Energy Stereoscopic System) array reached their tenth year of operation in Khomas Highlands, Namibia, a fifth telescope took its first data as part of the system. This new Cherenkov detector, comprising a 614.5 m{sup 2} reflector with a highly pixelized camera in its focal plane, improves the sensitivity of the current array by a factor two and extends its energy domain down to a few tens of GeV. The present part I of the paper gives a detailed description of the fifth H.E.S.S. telescope's camera, presenting the details of both the hardware and the software, emphasizing the main improvements as compared to previous H.E.S.S. camera technology.

  16. Performance of a prototype water Cherenkov detector for LHAASO project

    International Nuclear Information System (INIS)

    An, Q.; Bai, Y.X.; Bi, X.J.; Cao, Z.; Cao, Zhe; Chang, J.F.; Chen, G.; Chen, L.H.; Chen, M.J.; Chen, T.L.; Chen, Y.T.; Cui, S.W.; Dai, B.Z.; Danzengluobu; Feng, C.F.; Gao, B.; Gu, M.H.; Hao, X.J.; He, H.H.; Hu, H.B.

    2011-01-01

    A large high-altitude air shower observatory is to be built at Yang-Ba-Jing, Tibet, China. One of its main purposes is to survey the northern sky for very-high-energy (above 100 GeV) gamma ray sources via its ground-based water Cherenkov detector array. To gain full knowledge of water Cherenkov technique in detecting air showers, a prototype water Cherenkov detector is built at the Institute of High Energy Physics, Beijing. The performance of the prototype water Cherenkov detector is studied by measuring its response to cosmic muons. The results are compared with those from a full Monte Carlo simulation to provide a series of information regarding the prototype detector in guiding electronics design and detector optimization.

  17. Wide-Field Imaging Telescope-0 (WIT0) with automatic observing system

    Science.gov (United States)

    Ji, Tae-Geun; Byeon, Seoyeon; Lee, Hye-In; Park, Woojin; Lee, Sang-Yun; Hwang, Sungyong; Choi, Changsu; Gibson, Coyne Andrew; Kuehne, John W.; Prochaska, Travis; Marshall, Jennifer L.; Im, Myungshin; Pak, Soojong

    2018-01-01

    We introduce Wide-Field Imaging Telescope-0 (WIT0), with an automatic observing system. It is developed for monitoring the variabilities of many sources at a time, e.g. young stellar objects and active galactic nuclei. It can also find the locations of transient sources such as a supernova or gamma-ray bursts. In 2017 February, we installed the wide-field 10-inch telescope (Takahashi CCA-250) as a piggyback system on the 30-inch telescope at the McDonald Observatory in Texas, US. The 10-inch telescope has a 2.35 × 2.35 deg field-of-view with a 4k × 4k CCD Camera (FLI ML16803). To improve the observational efficiency of the system, we developed a new automatic observing software, KAOS30 (KHU Automatic Observing Software for McDonald 30-inch telescope), which was developed by Visual C++ on the basis of a windows operating system. The software consists of four control packages: the Telescope Control Package (TCP), the Data Acquisition Package (DAP), the Auto Focus Package (AFP), and the Script Mode Package (SMP). Since it also supports the instruments that are using the ASCOM driver, the additional hardware installations become quite simplified. We commissioned KAOS30 in 2017 August and are in the process of testing. Based on the WIT0 experiences, we will extend KAOS30 to control multiple telescopes in future projects.

  18. CLASSiC: Cherenkov light detection with silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, Oscar [Physics Dept., University of Florence, Via Sansone 1, 50019, Sesto Fiorentino (Italy); INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Albergo, Sebastiano [Physics Dept., University of Catania, Via Santa Sofia 64, 95123 Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy); D' Alessandro, Raffaello [Physics Dept., University of Florence, Via Sansone 1, 50019, Sesto Fiorentino (Italy); INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Lenzi, Piergiulio [INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Sciuto, Antonella [CNR-IMM, VIII Strada 5, Zona Industriale, Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy); Starodubtsev, Oleksandr [INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Tricomi, Alessia [Physics Dept., University of Catania, Via Santa Sofia 64, 95123 Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy)

    2017-02-11

    We present the CLASSiC R&D for the development of a silicon carbide (SiC) based avalanche photodiode for the detection of Cherenkov light. SiC is a wide-bandgap semiconductor material, which can be used to make photodetectors that are insensitive to visible light. A SiC based light detection device has a peak sensitivity in the deep UV, making it ideal for Cherenkov light. Moreover, the visible blindness allows such a device to disentangle Cherenkov light and scintillation light in all those materials that scintillate above 400 nm. Within CLASSiC, we aim at developing a device with single photon sensitivity, having in mind two main applications. One is the use of the SiC APD in a new generation ToF PET scanner concept, using the Cherenov light emitted by the electrons following 511 keV gamma ray absorption as a time-stamp. Cherenkov is intrinsically faster than scintillation and could provide an unprecedentedly precise time-stamp. The second application concerns the use of SiC APD in a dual readout crystal based hadronic calorimeter, where the Cherenkov component is used to measure the electromagnetic fraction on an event by event basis. We will report on our progress towards the realization of the SiC APD devices, the strategies that are being pursued toward the realization of these devices and the preliminary results on prototypes in terms of spectral response, quantum efficiency, noise figures and multiplication.

  19. An iterative method for the analysis of Cherenkov rings in the HERA-B RICH

    International Nuclear Information System (INIS)

    Staric, M.; Krizan, P.

    1999-01-01

    A new method is presented for the analysis of data recorded with a Ring Imaging Cherenkov (RICH) counter. The method, an iterative sorting of hits on the photon detector, is particularly useful for events where rings overlap considerably. The algorithm was tested on simulated data for the HERA-B experiment

  20. FACT. Streamed data analysis and online application of machine learning models

    Energy Technology Data Exchange (ETDEWEB)

    Bruegge, Kai Arno; Buss, Jens [Technische Universitaet Dortmund (Germany). Astroteilchenphysik; Collaboration: FACT-Collaboration

    2016-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) like FACT produce a continuous flow of data during measurements. Analyzing the data in near real time is essential for monitoring sources. One major task of a monitoring system is to detect changes in the gamma-ray flux of a source, and to alert other experiments if some predefined limit is reached. In order to calculate the flux of an observed source, it is necessary to run an entire data analysis process including calibration, image cleaning, parameterization, signal-background separation and flux estimation. Software built on top of a data streaming framework has been implemented for FACT and generalized to work with the data acquisition framework of the Cherenkov Telescope Array (CTA). We present how the streams-framework is used to apply supervised machine learning models to an online data stream from the telescope.

  1. Ultra-high energy gamma-ray astronomy. From Tunka-HiSCORE to TAIGA

    Energy Technology Data Exchange (ETDEWEB)

    Tluczykont, Martin [Hamburg Univ., Institut fuer Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg (Germany); Collaboration: TAIGA collaboration

    2015-07-01

    In the past 3 years, the Tunka-HiSCORE collaboration has installed HiSCORE timing air Cherenkov detectors in the Tunka valley in Siberia. Since October 2013, a 9-station prototype array is in operation. These activities have merged into the recently founded TAIGA collaboration, which is currently building a non-imaging air Cherenkov array consisting today of 29 stations, which will be upgraded to 1 square-km. Furthermore, the deployment of a 4m diameter imaging air Cherenkov telescope is planned within 2015. Our aim is to combine the timing and imaging techniques on a large scale in order to optimize the air Cherenkov detection technique for energies above 10 TeV and up to several 100 TeV. Simulations show a clear potential of the planned hybrid event reconstruction. The status of our experiment and our future plans are presented.

  2. First observation of Cherenkov rings with a large area CsI-TGEM-based RICH prototype

    CERN Document Server

    Peskov, V; Di Mauro, A; Martinengo, P; Mayani, D; Molnar, L; Nappi, E; Paic, G; Smirnov, N; Anand, H; Shukla, I

    2012-01-01

    We have built a RICH detector prototype consisting of a liquid C6F14 radiator and six triple Thick Gaseous Electron Multipliers (TGEMs), each of them having an active area of 10x10 cm2. One triple TGEM has been placed behind the liquid radiator in order to detect the beam particles, whereas the other five have been positioned around the central one at a distance to collect the Cherenkov photons. The upstream electrode of each of the TGEM stacks has been coated with a 0.4 micron thick CsI layer. In this paper, we will present the results from a series of laboratory tests with this prototype carried out using UV light, 6 keV photons from 55Fe and electrons from 90Sr as well as recent results of tests with a beam of charged pions where for the first time Cherenkov Ring images have been successfully recorded with TGEM photodetectors. The achieved results prove the feasibility of building a large area Cherenkov detector consisting of a matrix of TGEMs.

  3. Science with the Advanced Gamma Ray Imaging System (AGIS)

    Science.gov (United States)

    Coppi, Paolo

    2009-05-01

    We present the scientific drivers for the Advanced Gamma Ray Imaging System (AGIS), a concept for the next-generation ground- based gamma-ray experiment, comprised of an array of ˜100 imaging atmospheric Cherenkov telescopes. Design requirements for AGIS include achieving a sensitivity an order of magnitude better than the current generation of space or ground-based instruments in the energy range of 40 GeV to ˜100 TeV. We present here an overview of the scientific goals of AGIS, including the prospects for understanding VHE phenomena in the vicinity of accreting black holes, particle acceleration in a variety of astrophysical environments, indirect detection of dark matter, study of cosmological background radiation fields, and particle physics beyond the standard model.

  4. Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope

    CERN Document Server

    Adrián-Martínez, S.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Flaminio, V.; Folger, F.; Fusco, L.A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Gómez-González, J.P.; Graf, K.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C.W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Neff, M.; Nezri, E.; Păvălaş, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D.F.E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of $\\sim$10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for ph...

  5. A Topological Array Trigger for AGIS, the Advanced Gamma ray Imaging System

    Science.gov (United States)

    Krennrich, F.; Anderson, J.; Buckley, J.; Byrum, K.; Dawson, J.; Drake, G.; Haberichter, W.; Imran, A.; Krawczynski, H.; Kreps, A.; Schroedter, M.; Smith, A.

    2008-12-01

    Next generation ground based γ-ray observatories such as AGIS1 and CTA2 are expected to cover a 1 km2 area with 50-100 imaging atmospheric Cherenkov telescopes. The stereoscopic view ol air showers using multiple view points raises the possibility to use a topological array trigger that adds substantial flexibility, new background suppression capabilities and a reduced energy threshold. In this paper we report on the concept and technical implementation of a fast topological trigger system, that makes use of real time image processing of individual camera patterns and their combination in a stereoscopic array analysis. A prototype system is currently under construction and we discuss the design and hardware of this topological array trigger system.

  6. The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs

    Science.gov (United States)

    Tajima, H.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Williams, D.

    2008-04-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off in the studies of these design concepts.

  7. JUDE: An Ultraviolet Imaging Telescope pipeline

    Science.gov (United States)

    Murthy, J.; Rahna, P. T.; Sutaria, F.; Safonova, M.; Gudennavar, S. B.; Bubbly, S. G.

    2017-07-01

    The Ultraviolet Imaging Telescope (UVIT) was launched as part of the multi-wavelength Indian AstroSat mission on 28 September, 2015 into a low Earth orbit. A 6-month performance verification (PV) phase ended in March 2016, and the instrument is now in the general observing phase. UVIT operates in three channels: visible, near-ultraviolet (NUV) and far-ultraviolet (FUV), each with a choice of broad and narrow band filters, and has NUV and FUV gratings for low-resolution spectroscopy. We have written a software package (JUDE) to convert the Level 1 data from UVIT into scientifically useful photon lists and images. The routines are written in the GNU Data Language (GDL) and are compatible with the IDL software package. We use these programs in our own scientific work, and will continue to update the programs as we gain better understanding of the UVIT instrument and its performance. We have released JUDE under an Apache License.

  8. Seismic Imager Space Telescope

    Science.gov (United States)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; hide

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  9. CHERENKOV RADIATION DETECTOR

    African Journals Online (AJOL)

    ES Obe

    1981-03-01

    Mar 1, 1981 ... to measure the Cherenkov angles for natural radioactivity from sources as. Cs137 ... at 435 Mev in their proton-proton ..... (ii) Use is made of Table 5A Jelley ..... charge and rest mass in units of electron rest mass is shown in the table ... Proton e+. 1836. 322. Neutron. 0. 1839. 325. Alpha e2+. 7344. 1600.

  10. Newton's Telescope in Print: the Role of Images in the Reception of Newton's Instrument

    NARCIS (Netherlands)

    Dupré, Sven

    2008-01-01

    While Newton tried to make his telescope into a proof of the supremacy of his theory of colours over older theories, his instrument was welcomed as a way to shorten telescopes, not as a way to solve the problem of chromatic aberration. This paper argues that the image published together with the

  11. Update on the Status of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope

    Science.gov (United States)

    Hernandez, Svea; Aloisi, A.; Bostroem, K. A.; Cox, C.; Debes, J. H.; DiFelice, A.; Roman-Duval, J.; Hodge, P.; Holland, S.; Lindsay, K.; Lockwood, S. A.; Mason, E.; Oliveira, C. M.; Penton, S. V.; Proffitt, C. R.; Sonnentrucker, P.; Taylor, J. M.; Wheeler, T.

    2013-06-01

    The Space Telescope Imaging Spectrograph (STIS) has been on orbit for approximately 16 years as one of the 2nd generation instruments on the Hubble Space Telescope (HST). Its operations were interrupted by an electronics failure in 2004, but STIS was successfully repaired in May 2009 during Service Mission 4 (SM4) allowing it to resume science observations. The Instrument team continues to monitor its performance and work towards improving the quality of its products. Here we present updated information on the status of the FUV and NUV MAMA and the CCD detectors onboard STIS and describe recent changes to the STIS calibration pipeline. We also discuss the status of efforts to apply a pixel-based correction for charge transfer inefficiency (CTI) effects to STIS CCD data. These techniques show promise for ameliorating the effects of ongoing radiation damage on the quality of STIS CCD data.

  12. EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    Science.gov (United States)

    Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.

    1988-01-01

    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.

  13. R and D in photosensors and data acquisition systems for a new generation of Cosmic Ray Cherenkov and Fluorescence Imaging focal planes

    International Nuclear Information System (INIS)

    Assis, Pedro; Brogueira, Pedro; Catalano, Osvaldo; Ferreira, Miguel; Lorenz, Eckart; Mendes, Luís; Pimenta, Mário; Rodrigues, Pedro; Schweizer, Thomas

    2012-01-01

    In this work we present the design, first prototypes and experimental R and D activities on the development of novel imaging cameras for Imaging Atmospheric Cherenkov and Fluorescence Telescopes. The baseline solution for the focal plane is based on a photosensor architecture instrumented with Silicon Photomultipliers (SiPMs). To decrease the trigger threshold and improve the signal-to-noise ratio for low-energy events, the Photon Counting technique is used. For very bright events the conventional Charge Integration approach is retained. The large number of channels requires a compact and modular design with minimal cabling and distance between the photosensors and the frontend. Other design requirements are an efficient light concentration system treated with an anti-reflective coating, a liquid cooling system able to keep the SiPMs at a temperature of −20°C to −10°C, a low-power frontend electronics down to 1 kW/m 2 and an easy field maintenance, high reliability data acquisition and trigger system. In the baseline design, the data acquisition system is partitioned in on-board frontend and off-detector high-level trigger electronics. Extensive use of mixed-signal ASICs and low-power FPGAs for early data reduction (Level 1 trigger), compatible with a liquid cooling sub-system for temperature control is adopted. The off-detector data acquisition and higher trigger (Level 2 and Level 3) architecture is based on the VME64X standard. The boards are connected by multi-Gbps optical links to the focal plane camera. Trigger primitives are sent asynchronously to the trigger boards via data links running at their own clocks. Data and slow-control data streams are also sent over the same links with the parallel VME64X backplane kept for trigger board configuration, slow-control and final data readout. Each 8-slot 6U crate can process up to about 3.6×10 4 SiPM channels.

  14. R and D in photosensors and data acquisition systems for a new generation of Cosmic Ray Cherenkov and Fluorescence Imaging focal planes

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Pedro [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); Brogueira, Pedro [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); IST, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Catalano, Osvaldo [IASF-Palermo, 1, Via Ugo La Malfa 153, 90146 Palermo (Italy); Ferreira, Miguel [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); Lorenz, Eckart [MPI, Max-Planck-Institute for Physics, D-80805 Muenchen (Germany); Mendes, Luis [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); Pimenta, Mario [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); IST, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Rodrigues, Pedro, E-mail: psilva@lip.pt [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); Schweizer, Thomas [LIP, Avenida Elias Garcia 14-1, 1000-149 Lisboa (Portugal); MPI, Max-Planck-Institute for Physics, D-80805 Muenchen (Germany)

    2012-12-11

    In this work we present the design, first prototypes and experimental R and D activities on the development of novel imaging cameras for Imaging Atmospheric Cherenkov and Fluorescence Telescopes. The baseline solution for the focal plane is based on a photosensor architecture instrumented with Silicon Photomultipliers (SiPMs). To decrease the trigger threshold and improve the signal-to-noise ratio for low-energy events, the Photon Counting technique is used. For very bright events the conventional Charge Integration approach is retained. The large number of channels requires a compact and modular design with minimal cabling and distance between the photosensors and the frontend. Other design requirements are an efficient light concentration system treated with an anti-reflective coating, a liquid cooling system able to keep the SiPMs at a temperature of -20 Degree-Sign C to -10 Degree-Sign C, a low-power frontend electronics down to 1 kW/m{sup 2} and an easy field maintenance, high reliability data acquisition and trigger system. In the baseline design, the data acquisition system is partitioned in on-board frontend and off-detector high-level trigger electronics. Extensive use of mixed-signal ASICs and low-power FPGAs for early data reduction (Level 1 trigger), compatible with a liquid cooling sub-system for temperature control is adopted. The off-detector data acquisition and higher trigger (Level 2 and Level 3) architecture is based on the VME64X standard. The boards are connected by multi-Gbps optical links to the focal plane camera. Trigger primitives are sent asynchronously to the trigger boards via data links running at their own clocks. Data and slow-control data streams are also sent over the same links with the parallel VME64X backplane kept for trigger board configuration, slow-control and final data readout. Each 8-slot 6U crate can process up to about 3.6 Multiplication-Sign 10{sup 4} SiPM channels.

  15. Muon Telescope (MuTe): A first study using Geant4

    Science.gov (United States)

    Asorey, H.; Balaguera-Rojas, A.; Calderon-Ardila, R.; Núñez, L. A.; Sanabria-Gómez, J. D.; Súarez-Durán, M.; Tapia, A.

    2017-07-01

    Muon tomography is based on recording the difference of absorption of muons by matter, as ordinary radiography does for using X-rays. The interaction of cosmic rays with the atmosphere produces extensive air showers which provides an abundant source for atmospheric muons, benefiting various applications of muon tomography, particularly the study of the inner structure of volcanoes. The MuTe (for Muon Telescope) is a hybrid detector composed of scintillation bars and a water Cherenkov detector designed to measure cosmic muon flux crossing volcanic edifices. This detector consists of two scintillator plates (1.44 m2 with 30 x 30 pixels), with a maximum distance of 2.0m of separation. In this work we report the first simulation of the MuTe using GEANT4 -set of simulation tools, based in C++ - that provides information about the interaction between radiation and matter. This computational tool allows us to know the energy deposited by the muons and modeling the response of the scintillators and the water cherenkov detector to the passage of radiation which is crucial to compare to our data analysis.

  16. Cherenkov Radiation Control via Self-accelerating Wave-packets.

    Science.gov (United States)

    Hu, Yi; Li, Zhili; Wetzel, Benjamin; Morandotti, Roberto; Chen, Zhigang; Xu, Jingjun

    2017-08-18

    Cherenkov radiation is a ubiquitous phenomenon in nature. It describes electromagnetic radiation from a charged particle moving in a medium with a uniform velocity larger than the phase velocity of light in the same medium. Such a picture is typically adopted in the investigation of traditional Cherenkov radiation as well as its counterparts in different branches of physics, including nonlinear optics, spintronics and plasmonics. In these cases, the radiation emitted spreads along a "cone", making it impractical for most applications. Here, we employ a self-accelerating optical pump wave-packet to demonstrate controlled shaping of one type of generalized Cherenkov radiation - dispersive waves in optical fibers. We show that, by tuning the parameters of the wave-packet, the emitted waves can be judiciously compressed and focused at desired locations, paving the way to such control in any physical system.

  17. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    Science.gov (United States)

    Wagner, R. G.; Byrum, K.; Drake, G.; Funk, S.; Otte, N.; Smith, A.; Tajima, H.; Williams, D.

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. It is being designed to achieve a significant improvement in sensitivity compared to current Imaging Air Cherenkov Telescope (IACT) Arrays. One of the main requirements in order that AGIS fulfills this goal will be to achieve higher angular resolution than current IACTs. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, i.e. two to three times smaller than for current IACT cameras. Here we present results from testing of alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs).

  18. Efficient Mosaicking of Spitzer Space Telescope Images

    Science.gov (United States)

    Jacob, Joseph; Makovoz, David; Eisenhardt, Peter

    2007-01-01

    A parallel version of the MOPEX software, which generates mosaics of infrared astronomical images acquired by the Spitzer Space Telescope, extends the capabilities of the prior serial version. In the parallel version, both the input image space and the output mosaic space are divided among the available parallel processors. This is the only software that performs the point-source detection and the rejection of spurious imaging effects of cosmic rays required by Spitzer scientists. This software includes components that implement outlier-detection algorithms that can be fine-tuned for a particular set of image data by use of a number of adjustable parameters. This software has been used to construct a mosaic of the Spitzer Infrared Array Camera Shallow Survey, which comprises more than 17,000 exposures in four wavelength bands from 3.6 to 8 m and spans a solid angle of about 9 square degrees. When this software was executed on 32 nodes of the 1,024-processor Cosmos cluster computer at NASA s Jet Propulsion Laboratory, a speedup of 8.3 was achieved over the serial version of MOPEX. The performance is expected to improve dramatically once a true parallel file system is installed on Cosmos.

  19. Cherenkov and scintillation light separation on the CheSS experiment

    Science.gov (United States)

    Caravaca, Javier; Land, Benjamin; Descamps, Freija; Orebi Gann, Gabriel D.

    2016-09-01

    Separation of the scintillation and Cherenkov light produced in liquid scintillators enables outstanding capabilities for future particle detectors, the most relevant being: particle directionality information in a low energy threshold detector and improved particle identification. The CheSS experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in liquid scintillator using two techniques: based on the photon density and using the photon hit time information. A charged particle ionizing a scintillation medium produces a prompt Cherenkov cone and late isotropic scintillation light, typically delayed by several ns. The fast response of our PMTs and DAQ provides a precision well below the ns level, making possible the time separation. Furthermore, the usage of the new developed water-based liquid scintillators (WbLS) enhances the separation since it allows tuning of the Cherenkov/Scintillation ratio. Latest results on the separation for pure liquid scintillators and WbLS will be presented.

  20. Comparison of wavefront control algorithms and first results on the high-contrast imager for complex aperture telescopes (hicat) testbed

    Science.gov (United States)

    Leboulleux, L.; N'Diaye, M.; Mazoyer, J.; Pueyo, L.; Perrin, M.; Egron, S.; Choquet, E.; Sauvage, J.-F.; Fusco, T.; Soummer, R.

    2017-09-01

    The next generation of space telescopes for direct imaging and spectroscopy of exoplanets includes telescopes with a monolithic mirror, such as the Wide Field Infrared Survey Telescope (WFIRST) [1] and Large Ultra-Violet Optical Infrared (LUVOIR) telescopes with segmented primary mirror, like ATLAST [2, 3] or HDST [4].

  1. Optical imaging of gamma-ray bursts with the LONEOS telescope

    International Nuclear Information System (INIS)

    Wagner, R.M.; Bowell, E.; Koehn, B.W.; Cook, K.H.; Howell, S.B.; Shrader, C.R.; Starrfield, S.G.; Stubbs, C.W.

    1998-01-01

    The optical identification of gamma-ray bursts discovered and localized by BACODINE/LOCBURST using the Lowell Observatory Near-Earth Object Search (LONEOS) 58-cm Schmidt-type telescope and mosaic CCD camera is described. In its final form, LONEOS images 10 square degrees of the sky (3.2 degree x3.2 degree) to ∼22nd mag (2σ) in a 5 minute integration. Identification of optical transients will be based on variability by comparison with subsequent images or previous scans of the region. To date, optical images have been obtained of three BATSE triggers processed by LOCBURST for development and evaluation purposes. copyright 1998 American Institute of Physics

  2. First-light instrument for the 3.6-m Devasthal Optical Telescope: 4Kx4K CCD Imager

    Science.gov (United States)

    Pandey, Shashi Bhushan; Yadav, Rama Kant Singh; Nanjappa, Nandish; Yadav, Shobhit; Reddy, Bheemireddy Krishna; Sahu, Sanjit; Srinivasan, Ramaiyengar

    2018-04-01

    As a part of in-house instrument developmental activity at ARIES, the 4Kx4K CCD Imager is designed and developed as a first-light instrument for the axial port of the 3.6-m Devasthal Optical Telescope (DOT). The f/9 beam of the telescope having a plate-scale of 6.4"/mm is utilized to conduct deeper photom-etry within the central 10' field of view. The pixel size of the blue-enhanced liquid nitrogen cooled STA4150 4Kx4K CCD chip is 15 μm, with options to select gain and speed values to utilize the dynamic range. Using the Imager, it is planned to image the central 6.5'x6.5' field of view of the telescope for various science goals by getting deeper images in several broad-band filters for point sources and objects with low surface brightness. The fully assembled Imager along with automated filter wheels having Bessel UBV RI and SDSS ugriz filters was tested in late 2015 at the axial port of the 3.6-m DOT. This instrument was finally mounted at the axial port of the 3.6-m DOT on 30 March 2016 when the telescope was technically activated jointly by the Prime Ministers of India and Belgium. It is expected to serve as a general purpose multi-band deep imaging instrument for a variety of science goals including studies of cosmic transients, active galaxies, star clusters and optical monitoring of X-ray sources discovered by the newly launched Indian space-mission called ASTROSAT, and follow-up of radio bright objects discovered by the Giant Meterwave Radio Telescope.

  3. The KM3NeT deep-sea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Margiotta, Annarita

    2014-12-01

    KM3NeT is a deep-sea research infrastructure being constructed in the Mediterranean Sea. It will host the next generation Cherenkov neutrino telescope and nodes for a deep sea multidisciplinary observatory, providing oceanographers, marine biologists, and geophysicists with real time measurements. The neutrino telescope will complement IceCube in its field of view and exceed it substantially in sensitivity. Its main goal is the detection of high energy neutrinos of astrophysical origin. The detector will have a modular structure with six building blocks, each consisting of about 100 Detection Units (DUs). Each DU will be equipped with 18 multi-PMT digital optical modules. The first phase of construction has started and shore and deep-sea infrastructures hosting the future KM3NeT detector are being prepared in offshore Toulon, France and offshore Capo Passero on Sicily, Italy. The technological solutions for the neutrino detector of KM3NeT and the expected performance of the neutrino telescope are presented and discussed. - Highlights: • A deep-sea research infrastructure is being built in the Mediterranean Sea. • It will host a km{sup 3}-size neutrino telescope and a deep-sea multidisciplinary observatory. • The main goal of the neutrino telescope is the search for Galactic neutrino sources. • A major innovation is adopted in the design of the optical module. • 31 3 in. photomultiplier tubes (PMTs) will be hosted in the same glass sphere.

  4. Silica aerogel Cherenkov counter for the KEK B-factory experiment

    CERN Document Server

    Sumiyoshi, T; Enomoto, R; Iijima, T; Suda, R; Leonidopoulos, C; Marlow, D R; Prebys, E; Kawabata, R; Kawai, H; Ooba, T; Nanao, M; Suzuki, K; Ogawa, S; Murakami, A; Khan, M H R

    1999-01-01

    Low-refractive-index silica aerogel is a convenient radiator for threshold-type Cherenkov counters, which are used for particle identification in high-energy physics experiments. For the BELLE detector at the KEK B-Factory we have produced about 2 m sup 3 of hydrophobic silica aerogels of n=1.01-1.03 using a new production method. The particle identification capability of the aerogel Cherenkov counters was tested and 3 sigma pion/proton separation has been achieved at 3.5 GeV/c. Radiation hardness of the aerogels was confirmed up to 9.8 Mrad. The Aerogel Cherenkov counter system (ACC) was successfully installed in the BELLE just before this conference.

  5. In-beam test of a DIRC Cherenkov radiator with SiPM

    International Nuclear Information System (INIS)

    Kroeck, B.; Hayrapetyan, A.; Foehl, K.; Merle, O.; Dueren, M.; Roy, B.J.; Peters, K.

    2009-01-01

    One of the crucial points for any high energy physics experiment is to obtain a good pion/kaon separation i.e. particle identification (PID). For particles in minimum ionising range, the conventional methods of PID using energy loss and time of flight become insufficient. In such a situation, the measurement of velocity of particles using Cherenkov radiation is an effective tool for PID in combination with momentum information from a tracking detector. The PANDA experiment at FAIR/ GSI plans to use a novel technique for PID with detection of internally reflected Cherenkov (DIRC) light. DIRC uses, in contrast to the conventional gas Cherenkov detectors, a solid radiator and total internal reflection to guide Cherenkov photons onto a detection plane where it will be detected by advanced photon counters. A SiPM is a very new generation photon counter that has several advantages over conventional PMTs. Several prototype Cherenkov detectors with different readout systems are being developed for R and D studies. One such prototype detector with Geiger-APD readout has been built at Giessen and was tested in-beam at GSI. The present report provides details of the very first test measurement

  6. Probing the Diffuse Optical-IR Background with TeV Blazars Detected with the MAGIC Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Prandini, Elisa [Dipartimento di Fisica e Astronomia “G. Galilei”, University of Padova, Padua (Italy); Domínguez, Alberto [Departamento de Física Atómica, Universidad Complutense, Madrid (Spain); Fallah Ramazani, Vandad [Tuorla observatory, University of Turku, Turku (Finland); Hassan, Tarek [IFAE, The Barcelona Institute of Science and Technology, Bellaterra (Spain); Mazin, Daniel [Max Planck Institute for Physics, Munich (Germany); Institute for Cosmic Ray Research, University of Tokyo, Tokyo (Japan); Moralejo, Abelardo [IFAE, The Barcelona Institute of Science and Technology, Bellaterra (Spain); Nievas Rosillo, Mireia [Departamento de Física Atómica, Universidad Complutense, Madrid (Spain); Vanzo, Gaia; Vazquez Acosta, Monica, E-mail: prandini@pd.infn.it [Instituto de Astrofísica de Canarias, Tenerife (Spain); Departamento de Astrofisica, Universidad de La Laguna, Tenerife (Spain)

    2017-11-22

    Blazars are radio loud quasars whose jet points toward the observer. The observed emission is mostly non-thermal, dominated by the jet emission, and in some cases extends up to the very high energy gamma rays (VHE; E > 100 GeV). To date, more than 60 blazars have been detected at VHE mainly with ground-based imaging atmospheric Cherenkov telescopes (IACTs) such as MAGIC, H.E.S.S., and VERITAS. Energetic photons from a blazar may interact with the diffuse optical and IR background (the extragalactic background light, EBL) leaving an imprint on the blazar energy spectrum. This effect can be used to constrain the EBL, with basic assumptions on the intrinsic energy spectrum. Current generation of IACTs is providing valuable measurements of the EBL density and energy spectrum from optical to infrared frequencies. In this contribution, we present the latest results obtained with the data taken with the MAGIC telescopes: using 32 spectra from 12 blazars, the scale factor of the optical density predicted by the EBL model from Domínguez et al. (2011) is constrained to be 0.95 (+0.11, −0.12){sub stat} (+0.16, −0.07){sub sys}, where a value of 1 means the perfect match with the model.

  7. Probing the Diffuse Optical-IR Background with TeV Blazars Detected with the MAGIC Telescopes

    Directory of Open Access Journals (Sweden)

    Elisa Prandini

    2017-11-01

    Full Text Available Blazars are radio loud quasars whose jet points toward the observer. The observed emission is mostly non-thermal, dominated by the jet emission, and in some cases extends up to the very high energy gamma rays (VHE; E > 100 GeV. To date, more than 60 blazars have been detected at VHE mainly with ground-based imaging atmospheric Cherenkov telescopes (IACTs such as MAGIC, H.E.S.S., and VERITAS. Energetic photons from a blazar may interact with the diffuse optical and IR background (the extragalactic background light, EBL leaving an imprint on the blazar energy spectrum. This effect can be used to constrain the EBL, with basic assumptions on the intrinsic energy spectrum. Current generation of IACTs is providing valuable measurements of the EBL density and energy spectrum from optical to infrared frequencies. In this contribution, we present the latest results obtained with the data taken with the MAGIC telescopes: using 32 spectra from 12 blazars, the scale factor of the optical density predicted by the EBL model from Domínguez et al. (2011 is constrained to be 0.95 (+0.11, −0.12stat (+0.16, −0.07sys, where a value of 1 means the perfect match with the model.

  8. Color quench correction for low level Cherenkov counting.

    Science.gov (United States)

    Tsroya, S; Pelled, O; German, U; Marco, R; Katorza, E; Alfassi, Z B

    2009-05-01

    The Cherenkov counting efficiency varies strongly with color quenching, thus correction curves must be used to obtain correct results. The external (152)Eu source of a Quantulus 1220 liquid scintillation counting (LSC) system was used to obtain a quench indicative parameter based on spectra area ratio. A color quench correction curve for aqueous samples containing (90)Sr/(90)Y was prepared. The main advantage of this method over the common spectra indicators is its usefulness also for low level Cherenkov counting.

  9. The Cherenkov correlated timing detector: beam test results from quartz and acrylic bars

    International Nuclear Information System (INIS)

    Kichimi, H.; Sugaya, Y.; Yamaguchi, H.; Yoshimura, Y.; Kanda, S.; Olsen, S.; Ueno, K.; Varner, G.; Bergfeld, T.; Bialek, J.; Lorenc, J.; Palmer, M.; Rudnick, G.; Selen, M.; Auran, T.; Boyer, V.; Honscheid, K.; Tamura, N.; Yoshimura, K.; Lu, C.; Marlow, D.; Mindas, C.; Prebys, E.; Asai, M.; Kimura, A.; Hayashi, S.

    1996-01-01

    Several prototypes of a Cherenkov correlated timing (CCT) detector have been tested at the KEK-PS test beam line. We describe the results for Cherenkov light yields and timing characteristics from quartz and acrylic bar prototypes. A Cherenkov angle resolution is found to be 15 mrad at a propagation distance of 100 cm with a 2 cm thick quartz bar prototype. (orig.)

  10. Characterization and performance of the ASIC (CITIROC) front-end of the ASTRI camera

    Energy Technology Data Exchange (ETDEWEB)

    Impiombato, D., E-mail: Domenico.Impiombato@iasf-palermo.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Giarrusso, S., E-mail: Giarrusso@iasf-palermo.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T., E-mail: Mineo@iasf-palermo.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Catalano, O., E-mail: Catalano@iasf-palermo.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Gargano, C.; La Rosa, G.; Russo, F.; Sottile, G. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Billotta, S.; Bonanno, G.; Garozzo, S.; Grillo, A.; Marano, D.; Romeo, G. [INAF, Osservatorio Astrofisico di Catania, via S. Sofia 78, I-95123 Catania (Italy)

    2015-09-11

    The Cherenkov Imaging Telescope Integrated Read Out Chip, CITIROC, is a chip adopted as the front-end of the camera at the focal plane of the imaging Cherenkov ASTRI dual-mirror small size telescope (ASTRI SST-2M) prototype. This paper presents the results of the measurements performed to characterize CITIROC tailored for the ASTRI SST-2M focal plane requirements. In particular, we investigated the trigger linearity and efficiency, as a function of the pulse amplitude. Moreover, we tested its response by performing a set of measurements using a silicon photomultiplier (SiPM) in dark conditions and under light pulse illumination. The CITIROC output signal is found to vary linearly as a function of the input pulse amplitude. Our results show that it is suitable for the ASTRI SST-2M camera.

  11. Characterization and performance of the ASIC (CITIROC) front-end of the ASTRI camera

    International Nuclear Information System (INIS)

    Impiombato, D.; Giarrusso, S.; Mineo, T.; Catalano, O.; Gargano, C.; La Rosa, G.; Russo, F.; Sottile, G.; Billotta, S.; Bonanno, G.; Garozzo, S.; Grillo, A.; Marano, D.; Romeo, G.

    2015-01-01

    The Cherenkov Imaging Telescope Integrated Read Out Chip, CITIROC, is a chip adopted as the front-end of the camera at the focal plane of the imaging Cherenkov ASTRI dual-mirror small size telescope (ASTRI SST-2M) prototype. This paper presents the results of the measurements performed to characterize CITIROC tailored for the ASTRI SST-2M focal plane requirements. In particular, we investigated the trigger linearity and efficiency, as a function of the pulse amplitude. Moreover, we tested its response by performing a set of measurements using a silicon photomultiplier (SiPM) in dark conditions and under light pulse illumination. The CITIROC output signal is found to vary linearly as a function of the input pulse amplitude. Our results show that it is suitable for the ASTRI SST-2M camera

  12. Large Water Cherenkov Detectors - Technical Issues -

    CERN Document Server

    Aihara, H

    2010-01-01

    We address technical issues and challenges to construct a one-megaton scale water Cherenkov detector for neutrino detection. Studies presented here are mostly based on preliminary work for Hyper Kamiokande project.

  13. High-contrast imager for Complex Aperture Telescopes (HiCAT): testbed design and coronagraph developments

    Science.gov (United States)

    N'Diaye, Mamadou; Choquet, E.; Pueyo, L.; Elliot, E.; Perrin, M. D.; Wallace, J.; Anderson, R. E.; Carlotti, A.; Groff, T. D.; Hartig, G. F.; Kasdin, J.; Lajoie, C.; Levecq, O.; Long, C.; Macintosh, B.; Mawet, D.; Norman, C. A.; Shaklan, S.; Sheckells, M.; Sivaramakrishnan, A.; Soummer, R.

    2014-01-01

    We present a new high-contrast imaging testbed designed to provide complete solutions for wavefront sensing and control and starlight suppression with complex aperture telescopes (NASA APRA; Soummer PI). This includes geometries with central obstruction, support structures, and/or primary mirror segmentation. Complex aperture telescopes are often associated with large telescope designs, which are considered for future space missions. However, these designs makes high-contrast imaging challenging because of additional diffraction features in the point spread function. We present a novel optimization approach for the testbed optical and opto-mechanical design that minimizes the impact of both phase and amplitude errors from the wave propagation of testbed optics surface errors. This design approach allows us to define the specification for the bench optics, which we then compare to the manufactured parts. We discuss the testbed alignment and first results. We also present our coronagraph design for different testbed pupil shapes (AFTA or ATLAST), which involves a new method for the optimization of Apodized Pupil Lyot Coronagraphs (APLC).

  14. Scientific Performance Analysis of the SYZ Telescope Design versus the RC Telescope Design

    Science.gov (United States)

    Ma, Donglin; Cai, Zheng

    2018-02-01

    Recently, Su et al. propose an innovative design, referred as the “SYZ” design, for China’s new project of a 12 m optical-infrared telescope. The SYZ telescope design consists of three aspheric mirrors with non-zero power, including a relay mirror below the primary mirror. SYZ design yields a good imaging quality and has a relatively flat field curvature at Nasmyth focus. To evaluate the science-compatibility of this three-mirror telescope, in this paper, we thoroughly compare the performance of SYZ design with that of Ritchey–Chrétien (RC) design, a conventional two-mirror telescope design. Further, we propose the Observing Information Throughput (OIT) as a metric for quantitatively evaluating the telescopes’ science performance. We find that although a SYZ telescope yields a superb imaging quality over a large field of view, a two-mirror (RC) telescope design holds a higher overall throughput, a better diffraction-limited imaging quality in the central field of view (FOV < 5‧) which is better for the performance of extreme Adaptive Optics (AO), and a generally better scientific performance with a higher OIT value. D. Ma & Z. Cai contributed equally to this paper.

  15. Image defects from surface and alignment errors in grazing incidence telescopes

    Science.gov (United States)

    Saha, Timo T.

    1989-01-01

    The rigid body motions and low frequency surface errors of grazing incidence Wolter telescopes are studied. The analysis is based on surface error descriptors proposed by Paul Glenn. In his analysis, the alignment and surface errors are expressed in terms of Legendre-Fourier polynomials. Individual terms in the expression correspond to rigid body motions (decenter and tilt) and low spatial frequency surface errors of mirrors. With the help of the Legendre-Fourier polynomials and the geometry of grazing incidence telescopes, exact and approximated first order equations are derived in this paper for the components of the ray intercepts at the image plane. These equations are then used to calculate the sensitivities of Wolter type I and II telescopes for the rigid body motions and surface deformations. The rms spot diameters calculated from this theory and OSAC ray tracing code agree very well. This theory also provides a tool to predict how rigid body motions and surface errors of the mirrors compensate each other.

  16. Calibration Efforts and Unique Capabilities of the HST Space Telescope Imaging Spectrograph

    Science.gov (United States)

    Monroe, TalaWanda R.; Proffitt, Charles R.; Welty, Daniel; Branton, Doug; Carlberg, Joleen K.; debes, John Henry; Lockwood, Sean; Riley, Allyssa; Sohn, Sangmo Tony; Sonnentrucker, Paule G.; Walborn, Nolan R.; Jedrzejewski, Robert I.

    2018-01-01

    The Space Telescope Imaging Spectrograph (STIS) continues to offer the astronomy community the ability to carry out innovative UV and optical spectroscopic and imaging studies, two decades after its deployment on the Hubble Space Telescope (HST). Most notably, STIS provides spectroscopy in the FUV and NUV, including high spectral resolution echelle modes, imaging in the FUV, optical spectroscopy, and coronagraphic capabilities. Additionally, spatial scanning on the CCD with the long-slits is now possible to enable very high S/N spectroscopic observations without saturation while mitigating telluric and fringing concerns in the far red and near-IR. This new mode may especially benefit the diffuse interstellar bands and exoplanet transiting communities. We present recent calibration efforts for the instrument, including work to optimize the calibration of the echelle spectroscopic modes by improving the flux agreement of overlapping spectral orders affected by changes in the grating blaze function since HST Servicing Mission 4. We also discuss considerations to maintain the wavelength precision of the spectroscopic modes, and the current capabilities of CCD spectroscopic spatial trails.

  17. Light-weight spherical mirrors for Cherenkov detectors

    CERN Document Server

    Cisbani, E; Colilli, S; Crateri, R; Cusanno, F; De Leo, R; Fratoni, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Iodice, M; Iommi, R; Lagamba, L; Lucentini, M; Mostarda, A; Nappi, E; Pierangeli, L; Santavenere, F; Urciuoli, G M; Vernin, P

    2003-01-01

    Light-weight spherical mirrors have been appositely designed and built for the gas threshold Cherenkov detectors of the two Hall A spectrometers. The mirrors are made of a 1 mm thick aluminized plexiglass sheet, reinforced by a rigid backing consisting of a phenolic honeycomb sandwiched between two carbon fiber mats epoxy glued. The produced mirrors have a thickness equivalent to 0.55% of radiation length, and an optical slope error of about 5.5 mrad. These characteristics make these mirrors suitable for the implementation in Cherenkov threshold detectors. Ways to improve the mirror features are also discussed in view of their possible employment in RICH detectors.

  18. Development of an underwater Cherenkov detector to reveal sources of technogenic radionuclides

    International Nuclear Information System (INIS)

    Chernyaev, A.M.; Gaponov, I.A.; Lapushkina, L.V.

    1999-01-01

    The major difference of the Cherenkov underwater detector from a scintillation detector is that its operation does not require a primary transducer (scintillator). Detected particle energy conversion into a light flash occurs directly in sea water (radiator) due to the Cherenkov effect. Consequently, photoreceiver of the underwater Cherenkov detector registers light from radiator of actually infinite volume. The circumstance is of principle importance, as it permits attaining the utmost sensitivity in case of the minimal overall dimensions and weight of detecting equipment

  19. On the kinematics of the two-photon Cherenkov effect

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Stepanovskij, Yu.P.

    2003-01-01

    We study the kinematics of the two-photon Cherenkov effect. In the general case, the emission angles of two photons satisfy certain inequalities and the corresponding radiation intensities are rather diffused. In special cases, when the above inequalities reduce to equalities, the emission angles of two photons are fixed and the corresponding radiation intensities should have sharp maxima at these angles. This makes easier the experimental study of the two-photon Cherenkov effect

  20. Hubble Space Telescope STIS observations of GRB 000301C: CCD imaging and near-ultraviolet MAMA spectroscopy

    DEFF Research Database (Denmark)

    Smette, A.; Fruchter, A.S.; Gull, T.R.

    2001-01-01

    We present Space Telescope Imaging Spectrograph observations of the optical transient (OT) counterpart of the c-ray burster GRB 000301C obtained 5 days after the burst, on 2000 March 6. CCD clear-aperture imaging reveals a R similar or equal to 21.50 +/- 0.15 source with no apparent host galaxy...... Telescope images appear to lie on the stellar field of a host galaxy, and as the large H I column density measured here and in later ground-based observations is unlikely on a random line of sight, we believe we are probably seeing absorption from H I in the host galaxy. In any case, this represents...

  1. The large binocular telescope.

    Science.gov (United States)

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010.

  2. Status report on CLUE

    International Nuclear Information System (INIS)

    Alexandreas, D.; Bartoli, B.; Bedeschi, F.; Bertolucci, E.; Bigongiari, C.; Biral, R.; Busetto, G.; Centro, S.; Chiarelli, G.; Cocca, E.; Cresti, M.; Liello, F.; Mariotti, M.; Marsella, G.; Menzione, A.; O'Connor, D.J.; Nicoletto, M.; Paoletti, R.; Peruzzo, L.; Pesci, A.; Pugno, R.; Saggion, A.; Sartori, G.; Sbarra, C.; Scribano, A.; Smith, D.A.; Turini, N.; Zettti, F.

    1995-01-01

    The CLUE experiment uses a new cosmic ray detector array planned to operate for the next decade. It utilises a MWPC chambers sensitive to UV, to image Cherenkov radiation produced in cosmic ray showers. This approach is unique in that the instrument is insensitive to skylight backgrounds, has a threshold similar to that of visible Cherenkov experiments but a longer duty cycle. These features make possible a class of interesting cosmic ray physics experiments. The CLUE experiment has started operation with two of the ten telescopes that are foreseen for its beginning. These telescopes are at present at Roque de Los Muchachos in the Canary Islands, in the same site as the HEGRA experiment. A description of the telescopes is given and some data on the tests performed are presented. (orig.)

  3. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    Energy Technology Data Exchange (ETDEWEB)

    An, Q. [University of Science and Technology of China, Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Bai, Y.X.; Bi, X.J.; Cao, Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chang, J.F. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Chen, G.; Chen, M.J. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, S.M. [Tsinghua University, Beijing 100084 (China); Chen, S.Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, T.L. [University of Tibet, Lhasa 851600 (China); Chen, X. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Y.T. [University of Yunnan, Kunming 650091 (China); Cui, S.W. [Normal University of Hebei, Shijiazhuang 050016 (China); Dai, B.Z. [University of Yunnan, Kunming 650091 (China); Du, Q. [Tsinghua University, Beijing 100084 (China); Danzengluobu [University of Tibet, Lhasa 851600 (China); Feng, C.F. [University of Shandong, Jinan 250100 (China); Feng, S.H.; Gao, B. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Gao, S.Q. [National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); and others

    2013-10-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given. -- Highlights: • The technique of the water Cherenkov array is studied. • Engineering issues of the water Cherenkov array are investigated. • The PMTs and electronics of the water Cherenkov array are tested. • Some key parameters of the water Cherenkov array are measured.

  4. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    International Nuclear Information System (INIS)

    An, Q.; Bai, Y.X.; Bi, X.J.; Cao, Z.; Chang, J.F.; Chen, G.; Chen, M.J.; Chen, S.M.; Chen, S.Z.; Chen, T.L.; Chen, X.; Chen, Y.T.; Cui, S.W.; Dai, B.Z.; Du, Q.; Danzengluobu; Feng, C.F.; Feng, S.H.; Gao, B.; Gao, S.Q.

    2013-01-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given. -- Highlights: • The technique of the water Cherenkov array is studied. • Engineering issues of the water Cherenkov array are investigated. • The PMTs and electronics of the water Cherenkov array are tested. • Some key parameters of the water Cherenkov array are measured

  5. The performance of silicon photomultipliers in Cherenkov TOF PET

    International Nuclear Information System (INIS)

    Dolenec, Rok; Korpar, Samo; Krizan, Peter; Pestotink, Rok

    2015-01-01

    In time-of-flight positron emission tomography (TOF PET) one of the main factors limiting the time resolution is the time evolution of the scintillation process. This can be avoided by using exclusively the Cherenkov light produced in a suitable material. Sub 100 ps FWHM timing has already been experimentally demonstrated but with a drawback of relatively low detection efficiency due to the photodetectors used. In this work silicon photomultipliers (SiPMs) are considered as a photodetector in Cherenkov TOF PET. The detection efficiency can be significantly improved by using SiPMs, however, at room temperature the SiPM dark counts introduce a significant source of fake coincidences. SiPM samples from different producers were tested in a simple back-to-back setup in combination with lead fluoride Cherenkov radiators. Results for coincidence timing, detection efficiency and effects of dark counts at different temperatures and SiPM overvoltages are presented.

  6. BGO as a hybrid scintillator / Cherenkov radiator for cost-effective time-of-flight PET

    Science.gov (United States)

    Brunner, S. E.; Schaart, D. R.

    2017-06-01

    Due to detector developments in the last decade, the time-of-flight (TOF) method is now commonly used to improve the quality of positron emission tomography (PET) images. Clinical TOF-PET systems based on L(Y)SO:Ce crystals and silicon photomultipliers (SiPMs) with coincidence resolving times (CRT) between 325 ps and 400 ps FWHM have recently been developed. Before the introduction of L(Y)SO:Ce, BGO was used in many PET systems. In addition to a lower price, BGO offers a superior attenuation coefficient and a higher photoelectric fraction than L(Y)SO:Ce. However, BGO is generally considered an inferior TOF-PET scintillator. In recent years, TOF-PET detectors based on the Cherenkov effect have been proposed. However, the low Cherenkov photon yield in the order of  ˜10 photons per event complicates energy discrimination-a severe disadvantage in clinical PET. The optical characteristics of BGO, in particular its high transparency down to 310 nm and its high refractive index of  ˜2.15, are expected to make it a good Cherenkov radiator. Here, we study the feasibility of combining event timing based on Cherenkov emission with energy discrimination based on scintillation in BGO, as a potential approach towards a cost-effective TOF-PET detector. Rise time measurements were performed using a time-correlated single photon counting (TCSPC) setup implemented on a digital photon counter (DPC) array, revealing a prompt luminescent component likely to be due to Cherenkov emission. Coincidence timing measurements were performed using BGO crystals with a cross-section of 3 mm  ×  3 mm and five different lengths between 3 mm and 20 mm, coupled to DPC arrays. Non-Gaussian coincidence spectra with a FWHM of 200 ps were obtained with the 27 mm3 BGO cubes, while FWHM values as good as 330 ps were achieved with the 20 mm long crystals. The FWHM value was found to improve with decreasing temperature, while the FWTM value showed the opposite trend.

  7. BGO as a hybrid scintillator / Cherenkov radiator for cost-effective time-of-flight PET.

    Science.gov (United States)

    Brunner, S E; Schaart, D R

    2017-06-07

    Due to detector developments in the last decade, the time-of-flight (TOF) method is now commonly used to improve the quality of positron emission tomography (PET) images. Clinical TOF-PET systems based on L(Y)SO:Ce crystals and silicon photomultipliers (SiPMs) with coincidence resolving times (CRT) between 325 ps and 400 ps FWHM have recently been developed. Before the introduction of L(Y)SO:Ce, BGO was used in many PET systems. In addition to a lower price, BGO offers a superior attenuation coefficient and a higher photoelectric fraction than L(Y)SO:Ce. However, BGO is generally considered an inferior TOF-PET scintillator. In recent years, TOF-PET detectors based on the Cherenkov effect have been proposed. However, the low Cherenkov photon yield in the order of  ∼10 photons per event complicates energy discrimination-a severe disadvantage in clinical PET. The optical characteristics of BGO, in particular its high transparency down to 310 nm and its high refractive index of  ∼2.15, are expected to make it a good Cherenkov radiator. Here, we study the feasibility of combining event timing based on Cherenkov emission with energy discrimination based on scintillation in BGO, as a potential approach towards a cost-effective TOF-PET detector. Rise time measurements were performed using a time-correlated single photon counting (TCSPC) setup implemented on a digital photon counter (DPC) array, revealing a prompt luminescent component likely to be due to Cherenkov emission. Coincidence timing measurements were performed using BGO crystals with a cross-section of 3 mm  ×  3 mm and five different lengths between 3 mm and 20 mm, coupled to DPC arrays. Non-Gaussian coincidence spectra with a FWHM of 200 ps were obtained with the 27 mm 3 BGO cubes, while FWHM values as good as 330 ps were achieved with the 20 mm long crystals. The FWHM value was found to improve with decreasing temperature, while the FWTM value showed the opposite

  8. FACT. Energy spectrum of the Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Temme, Fabian; Einecke, Sabrina; Buss, Jens [TU Dortmund, Experimental Physics 5, Otto-Hahn-Str.4, 44221 Dortmund (Germany); Collaboration: FACT-Collaboration

    2016-07-01

    The First G-APD Cherenkov Telescope is the first Imaging Air Cherenkov Telescope which uses silicon photon detectors (G-APDs aka SiPM) as photo sensors. With more than four years of operation, FACT proved an application of SiPMs is suitable for the field of ground-based gamma-ray astronomy. Due to the stable flux at TeV energies, the Crab Nebula is handled as a ''standard candle'' in Cherenkov astronomy. The analysis of its energy spectrum and comparison with other experiments, allows to evaluate the performance of FACT. A modern analysis chain, based on data stream handling and multivariate analysis methods was developed in close cooperation with the department of computer science at the TU Dortmund. In this talk, this analysis chain and its application are presented. Further to this, results, including the energy spectrum of the Crab Nebula, measured with FACT, are shown.

  9. Real-time track-less Cherenkov ring fitting trigger system based on Graphics Processing Units

    Science.gov (United States)

    Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Cotta Ramusino, A.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Gianoli, A.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2017-12-01

    The parallel computing power of commercial Graphics Processing Units (GPUs) is exploited to perform real-time ring fitting at the lowest trigger level using information coming from the Ring Imaging Cherenkov (RICH) detector of the NA62 experiment at CERN. To this purpose, direct GPU communication with a custom FPGA-based board has been used to reduce the data transmission latency. The GPU-based trigger system is currently integrated in the experimental setup of the RICH detector of the NA62 experiment, in order to reconstruct ring-shaped hit patterns. The ring-fitting algorithm running on GPU is fed with raw RICH data only, with no information coming from other detectors, and is able to provide more complex trigger primitives with respect to the simple photodetector hit multiplicity, resulting in a higher selection efficiency. The performance of the system for multi-ring Cherenkov online reconstruction obtained during the NA62 physics run is presented.

  10. Research on mutual influence of Cherenkov-type probes within the ISTTOK tokamak chamber

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L., E-mail: lech.jakubowski@ncbj.gov.pl [National Centre for Nuclear Research (NCBJ), 05-400 Otwock (Poland); Plyusnin, V.V. [Association Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Malinowski, K.; Sadowski, M.J.; Zebrowski, J.; Rabinski, M. [National Centre for Nuclear Research (NCBJ), 05-400 Otwock (Poland); Fernandes, H.; Silva, C.; Figueiredo, H. [Association Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, M.J. [National Centre for Nuclear Research (NCBJ), 05-400 Otwock (Poland)

    2014-12-11

    The paper describes an influence of a Cherenkov-type probe, which is used for measurements of fast electron streams inside the ISTTOK chamber, on other probes and behaviour of a plasma ring. The reported study shows that such a probe situated near the plasma column has a strong influence on signals from another Cherenkov probe, and can cause a considerable reduction of electron-induced signals. This effect does not depend on positions of the probes in relation to the limiter. Measurements of hard X-ray (HXR) emission show that the deeply immersed Cherenkov probe can also influence on the limiter . Under specific experimental conditions such a Cherenkov probe can play the role of a new limiter and change the plasma configuration.

  11. Status, first results and prospects for MAGIC

    International Nuclear Information System (INIS)

    Rico, Javier

    2006-01-01

    MAGIC is the world-largest Imaging Air Cherenkov Telescope (IACT) for Very High Energy (VHE) γ-ray astronomy and operates in the range from ∼50 GeV to ∼10 TeV. In this paper we will briefly summarize the status of the project, including the construction of a second (MAGIC-II) telescope, and review the results obtained from the first observations

  12. First studies of 500-nm Cherenkov radiation from 255-MeV electrons in a diamond crystal

    Energy Technology Data Exchange (ETDEWEB)

    Takabayashi, Y., E-mail: takabayashi@saga-ls.jp [SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan); Fiks, E.I. [National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Pivovarov, Yu.L. [National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); National Research Tomsk State University, 634050 Tomsk (Russian Federation)

    2015-06-12

    The first experiment on Cherenkov light from 255-MeV electrons passing through a 50-μm-thick diamond crystal in a special geometry allowing extraction of 500-nm Cherenkov light at a right angle with respect to the electron beam direction has been performed at the injector linac of SAGA Light Source accelerator facility. The dependence of 500-nm Cherenkov light intensity (separated by a band-pass filter) on the crystal rotation angle was measured by a CCD detector. The experimentally obtained rocking curve with an intense maximum is theoretically explained as the projector effect of Cherenkov light deflected by the exit surface of the crystal. The width of the rocking curve is explained by the convolution of the standard Tamm–Frank angular distribution of Cherenkov radiation with chromatic aberration, the multiple scattering of electrons in a crystal, and initial electron beam angular divergence. In addition, it is found that the Cherenkov light intensity did not change under the (220) planar channeling condition, which is consistent with a recent theory. - Highlights: • Cherenkov light from 255-MeV electrons in a diamond crystal has been investigated. • The Cherenkov light from channeled electrons has been observed for the first time. • The experimental results are in good agreement with theory.

  13. The Advanced Gamma-ray Imaging System (AGIS): Focal Plane Detectors

    Science.gov (United States)

    Mukherjee, Reshmi; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Tajima, H.; Wagner, B.; Williams, D.

    2008-04-01

    Report of the Focal Plane Instrumentation Working Group, AGIS collaboration: The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. One of the main requirements for AGIS will be to achieve higher angular resolution than current imaging atmospheric Cherenkov telescopes (IACTs). Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, below that of current IACTs. Reducing the cost per channel and improving reliability and modularity are other important considerations. Here we present several alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs) and summarize results from feasibility testing by various AGIS photodetector group members.

  14. New air Cherenkov light detectors to study mass composition of cosmic rays with energies above knee region

    Energy Technology Data Exchange (ETDEWEB)

    Tsunesada, Yoshiki, E-mail: tsunesada@cr.phys.titech.ac.jp [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550 Japan (Japan); Katsuya, Ryoichi, E-mail: katsuya@cr.phys.titech.ac.jp [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550 Japan (Japan); Mitsumori, Yu; Nakayama, Keisuke; Kakimoto, Fumio; Tokuno, Hisao [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550 Japan (Japan); Tajima, Norio [RIKEN, Wako, Saitama 351-0198 (Japan); Miranda, Pedro; Salinas, Juan; Tavera, Wilfredo [Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz (Bolivia, Plurinational State of)

    2014-11-01

    We have installed a hybrid detection system for air showers generated by cosmic rays with energies greater than 3×10{sup 15}eV at Mount Chacaltaya (5200 m above the sea level), in order to study the mass composition of cosmic rays above the knee region. This detection system comprises an air shower array with 49 scintillation counters in an area of 500 m×650 m, and seven new Cherenkov light detectors installed in a radial direction from the center of the air shower array with a separation of 50 m. It is known that the longitudinal development of a particle cascade in the atmosphere strongly depends on the type of the primary nucleus, and an air shower initiated by a heavier nucleus develops faster than that by a lighter primary of the same energy, because of the differences in the interaction cross-section and the energy per nucleon. This can be measured by detecting the Cherenkov radiation emitted from charged particles in air showers at higher altitudes. In this paper we describe the design and performance of our new non-imaging Cherenkov light detectors at Mount Chacaltaya that are operated in conjunction with the air shower array. The arrival directions and energies of air showers are determined by the shower array, and information about the primary masses is obtained from the Cherenkov light data including the time profiles and lateral distributions. The detector consists of photomultiplier tube (PMT), high-speed ADCs, other control modules, and data storage device. The Cherenkov light signals from an air shower are typically 10–100 ns long, and the waveforms are digitized with a sampling frequency of 1 GHz and recorded in situ without long-distance analog signal transfers. All the Cherenkov light detectors record their time-series data by receiving a triggering signal transmitted from the trigger module of the air shower array, which is fired by a coincidence of shower signals in four neighboring scintillation counters. The optical characteristics of the

  15. Development of a liquid xenon Compton telescope dedicated to functional medical imaging

    International Nuclear Information System (INIS)

    Grignon, C.

    2007-12-01

    Functional imaging is a technique used to locate in three dimensions the position of a radiotracer previously injected in a patient. The two main modalities used for a clinical application to detect tumors, the SPECT and the PET, use solid scintillators as a detection medium. The objective of this thesis was to investigate the possibility of using liquid xenon in order to benefit from the intrinsic properties of this medium in functional imaging. The feasibility study of such a device has been performed by taking into account the technical difficulties specific to the liquid xenon. First of all, simulations of a liquid xenon PET has been performed using Monte-Carlo methods. The results obtained with a large liquid xenon volume are promising : we can expect a reduction of the injected activity of radiotracer, an improvement of the spatial resolution of the image and a parallax free camera. The second part of the thesis was focused on the development of a new concept of medical imaging, the three gamma imaging, based on the use of a new emitter: the 44 scandium. Associated to a classical PET camera, the Compton telescope is used to infer the incoming direction of the third gamma ray by triangulation. Therefore, it is possible to reconstruct the position of each emitter in three dimensions. This work convinced the scientific community to support the construction and characterization of a liquid xenon Compton telescope. The first camera dedicated to small animal imaging should then be operational in 2009. (author)

  16. An anti-Cherenkov photomultiplier tube

    International Nuclear Information System (INIS)

    Selove, W.; Cormell, L.R.; Dris, M.; Kononenko, W.; Robinson, B.; Yost, B.T.

    1982-01-01

    We have designed a special photomultiplier tube (PMT), with very much reduced sensitivity to Cherenkov light produced in the end window. These PMTs have been produced for us by EMI, and have been used in a modular calorimeter array. The design eliminates a 'hot-spot' problem which was of intolerable magnitude in our application. (orig.)

  17. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water.

    Science.gov (United States)

    Glaser, Adam K; Andreozzi, Jacqueline M; Zhang, Rongxiao; Pogue, Brian W; Gladstone, David J

    2015-07-01

    To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp-Davis-Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm(3) volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%-99% pass fraction depending on the chosen threshold dose. The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  18. Instrumentation for the observation of atmospheric parameters, relevant for IACTs, for site-search and correction of the energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Fruck, Christian; Hose, Juergen; Engelhardt, Toni; Mirzoyan, Razmik; Schweizer, Thomas; Teshima, Masahiro [Max Plank Institut fuer Physik, Muenchen (Germany)

    2010-07-01

    The atmospheric conditions have impact on the measured data by imaging atmospheric Cherenkov telescopes (IACT). Cherenkov light from air showers traverses 5-25 km distance in the atmosphere before reaching the telescopes. This light becomes attenuated because of absorption by oxigen and ozone as well as because of the Rayleigh and the Mie scatterings. The latter is the variable component in the atmosphere that depends on the momentary distribution of aerosols, their size and types and distribution heights. We have developed a micro-LIDAR system for parametrising these losses and plan to locate it next to the MAGIC telescopes for simultaneous operation. This shall allow us to improve the energy resolution of the telescopes for the data taken at non-ideal weather conditions. Also, we are working on developing diverse instrumentation for paramerising the atmosphere and for the searching proper sites for the CTA project. In our presentation we plan to report about the above-mentioned activities.

  19. The Advanced Gamma-ray Imaging System (AGIS): Extragalactic Science

    Science.gov (United States)

    Coppi, Paolo S.; Extragalactic Science Working Group; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a proposed next-generation array of Cherenkov telescopes, will provide an unprecedented view of the high energy universe. We discuss how AGIS, with its larger effective area, improved angular resolution, lower threshold, and an order of magnitude increase in sensitivity, impacts the extragalactic science possible in the very high energy domain. Likely source classes detectable by AGIS include AGN, GRBs, clusters, star-forming galaxies, and possibly the cascade radiation surrounding powerful cosmic accelerators. AGIS should see many of the sources discovered by Fermi. With its better sensitivity and angular resolution, AGIS then becomes a key instrument for identifying and characterizing Fermi survey sources, the majority of which will have limited Fermi photon statistics and localizations.

  20. SU-F-J-56: The Connection Between Cherenkov Light Emission and Radiation Absorbed Dose in Proton Irradiated Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Darafsheh, A; Kassaee, A; Finlay, J [University of Pennsylvania, Philadelphia, PA (United States); Taleei, R [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Range verification in proton therapy is of great importance. Cherenkov light follows the photon and electron energy deposition in water phantom. The purpose of this study is to investigate the connection between Cherenkov light generation and radiation absorbed dose in a water phantom irradiated with proton beams. Methods: Monte Carlo simulation was performed by employing FLUKA Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and Cherenkov radiation in water phantoms. The simulations were performed for proton beams with energies in the range 50–600 MeV to cover a wide range of proton energies. Results: The mechanism of Cherenkov light production depends on the initial energy of protons. For proton energy with 50–400 MeV energy that is below the threshold (∼483 MeV in water) for Cherenkov light production directly from incident protons, Cherenkov light is produced mainly from the secondary electrons liberated as a result of columbic interactions with the incident protons. For proton beams with energy above 500 MeV, in the initial depth that incident protons have higher energy than the Cherenkov light production threshold, the light has higher intensity. As the slowing down process results in lower energy protons in larger depths in the water phantom, there is a knee point in the Cherenkov light curve vs. depth due to switching the Cherenkov light production mechanism from primary protons to secondary electrons. At the end of the depth dose curve the Cherenkov light intensity does not follow the dose peak because of the lack of high energy protons to produce Cherenkov light either directly or through secondary electrons. Conclusion: In contrast to photon and electron beams, Cherenkov light generation induced by proton beams does not follow the proton energy deposition specially close to the end of the proton range near the Bragg peak.

  1. Static telescope aberration measurement using lucky imaging techniques

    Science.gov (United States)

    López-Marrero, Marcos; Rodríguez-Ramos, Luis Fernando; Marichal-Hernández, José Gil; Rodríguez-Ramos, José Manuel

    2012-07-01

    A procedure has been developed to compute static aberrations once the telescope PSF has been measured with the lucky imaging technique, using a nearby star close to the object of interest as the point source to probe the optical system. This PSF is iteratively turned into a phase map at the pupil using the Gerchberg-Saxton algorithm and then converted to the appropriate actuation information for a deformable mirror having low actuator number but large stroke capability. The main advantage of this procedure is related with the capability of correcting static aberration at the specific pointing direction and without the need of a wavefront sensor.

  2. The control system of the 12-m medium-size telescope prototype: a test-ground for the CTA array control

    Science.gov (United States)

    Oya, I.; Anguner, E. A.; Behera, B.; Birsin, E.; Fuessling, M.; Lindemann, R.; Melkumyan, D.; Schlenstedt, S.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.

    2014-07-01

    The Cherenkov Telescope Array (CTA) will be the next generation ground-based very-high energy -ray observatory. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different sizes and types and in addition numerous auxiliary devices. In order to provide a test-ground for the CTA array control, the steering software of the 12-m medium size telescope (MST) prototype deployed in Berlin has been implemented using the tools and design concepts under consideration to be used for the control of the CTA array. The prototype control system is implemented based on the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) control middleware, with components implemented in Java, C++ and Python. The interfacing to the hardware is standardized via the Object Linking and Embedding for Process Control Unified Architecture (OPC UA). In order to access the OPC UA servers from the ACS framework in a common way, a library has been developed that allows to tie the OPC UA server nodes, methods and events to the equivalents in ACS components. The front-end of the archive system is able to identify the deployed components and to perform the sampling of the monitoring points of each component following time and value change triggers according to the selected configurations. The back-end of the archive system of the prototype is composed by two different databases: MySQL and MongoDB. MySQL has been selected as storage of the system configurations, while MongoDB is used to have an efficient storage of device monitoring data, CCD images, logging and alarm information. In this contribution, the details and conclusions on the implementation of the control software of the MST prototype are presented.

  3. Investigating the Cherenkov light lateral distribution function for primary proton and iron nuclei in extensive air showers

    International Nuclear Information System (INIS)

    Al-Rubaiee, A.A.; Hashim, U.; Al-Douri, Y.

    2015-01-01

    The lateral distribution function (LDF) of Cherenkov radiation in extensive air showers (EAS) was simulated by CORSIKA program for the conditions of Yakutsk Cherenkov array at high energy range (10 13 -10 16 eV) for two primary particles (p and Fe) for different zenith angles. Using Breit-Wigner function for analyzing Cherenkov light LDF, a parameterization of Cherenkov light LDF was reconstructed by depending on CORSIKA simulation as a function of primary energy. The comparison between the estimated Cherenkov light LDF and the LDF that was measured on the Yakutsk EAS array gives the ability of particle identification that initiated the shower and determination of particle's energy around the knee region. The extrapolation of approximated Cherenkov light LDF for energies 20 and 30 PeV was obtained for primary particles (p and Fe)

  4. Cherenkov-type diagnostics of fast electrons beams escaping from MCF facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L.; Malinowski, K.; Mirowski, R.; Rabinski, M.; Sadowski, M.J.; Zebrowski, J. [Institute for Nuclear Studies - IPJ, 05-400 Otwock-Swierk (Poland)

    2011-07-01

    The paper presents the feasibility study, the measuring system and the first experimental results of a new method developed for direct detection of high-energy (super-thermal, ripple-born and runaway) electrons generated in magnetic confinement fusion (MCF) facilities. The technique in question is based on registration of the Cherenkov radiation, emitted by energetic electrons, moving through a transparent medium (radiator) with a velocity higher than the velocity of light in this material. The main aim of our studies was to develop a diagnostic technique applicable for measurements of fast electron beams within MCF devices. The IPJ team proposed Cherenkov-type probes because of their high spatial- and temporal-resolutions. The most important results of applications of the presented Cherenkov-type diagnostics have proved that the one- and four-channel versions of the detecting head are useful for studies of the fast (ripple-born and runaway) electrons in different MCF experiments. Experience collected during the described studies allows to introduce some changes in the radiator configuration and to modify the Cherenkov probe design. This document is composed of a paper followed by a poster

  5. Extra Solar Planetary Imaging Coronagraph and Science Requirements for the James Webb Telescope Observatory

    Science.gov (United States)

    Clampin, Mark

    2004-01-01

    1) Extra solar planetary imaging coronagraph. Direct detection and characterization of Jovian planets, and other gas giants, in orbit around nearby stars is a necessary precursor to Terrestrial Planet Finder 0 in order to estimate the probability of Terrestrial planets in our stellar neighborhood. Ground based indirect methods are biased towards large close in Jovian planets in solar systems unlikely io harbor Earthlike planets. Thus to estimate the relative abundances of terrestrial planets and to determine optimal observing strategies for TPF a pathfinder mission would be desired. The Extra-Solar Planetary Imaging Coronagraph (EPIC) is such a pathfinder mission. Upto 83 stellar systems are accessible with a 1.5 meter unobscured telescope and coronagraph combination located at the Earth-Sun L2 point. Incorporating radiometric and angular resolution considerations show that Jovians could be directly detected (5 sigma) in the 0.5 - 1.0 micron band outside of an inner working distance of 5/D with integration times of -10 - 100 hours per observation. The primary considerations for a planet imager are optical wavefront quality due to manufacturing, alignment, structural and thermal considerations. pointing stability and control, and manufacturability of coronagraphic masks and stops to increase the planetary-to- stellar contrast and mitigate against straylight. Previously proposed coronagraphic concepts are driven to extreme tolerances. however. we have developed and studied a mission, telescope and coronagraphic detection concept, which is achievable in the time frame of a Discovery class NASA mission. 2) Science requirements for the James Webb Space Telescope observatory. The James Webb Space Observatory (JWST) is an infrared observatory, which will be launched in 201 1 to an orbit at L2. JWST is a segmented, 18 mirror segment telescope with a diameter of 6.5 meters, and a clear aperture of 25 mA2. The telescope is designed to conduct imaging and spectroscopic

  6. Hubble Space Telescope Image of Omega Nebula

    Science.gov (United States)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  7. PPO-ethanol system as wavelength shifter for the Cherenkov counting technique using a liquid scintillation counter

    International Nuclear Information System (INIS)

    Takiue, M.; Fujii, H.; Ishikawa, H.

    1984-01-01

    2,5-diphenyloxazole (PPO) has been proposed as a wavelength shifter for Cherenkov counting. Since PPO is not incorporated with water, we have introduced the fluor into water in the form of micelle using a PPO-ethanol system. This technique makes it possible to obtain a high Cherenkov counting efficiency under stable sample conditions, attributed to the proper spectrometric features of the PPO. The 32 P Cherenkov counting efficiency (68.4%) obtained from this technique is 1.62 times as large as that measured with a conventional Cherenkov technique. (orig.)

  8. Measurable difference in Cherenkov light between gamma and hadron induced EAS

    Energy Technology Data Exchange (ETDEWEB)

    Cabot, H.; Meynadier, Ch. [Universite de Perpignan, Groupe de Physique Fondamentale, Perpignan (France); Sobczynska, D. [Experimental Physics Department, University of Lodz, Lodz (Poland); Szabelska, B. [Soltan Institute for Nuclear Studies, Lodz (Poland); Szabelski, J. [Universite de Perpignan, Groupe de Physique Fondamentale, Perpignan (France)]|[Soltan Institute for Nuclear Studies, Lodz (Poland); Wibig, T. [Experimental Physics Department, University of Lodz, Lodz (Poland)

    1997-12-31

    We describe the possibly measurable difference in the Cherenkov light component of EAS induced by en electromagnetic particle (i.e. e{sup +}, e{sup -} or {gamma}) and induced by a hadron (i.e. proton or heavier nuclei) in TeV range. The method can be applied in experiments which use wavefront sampling method of EAS Cherenkov light detection (e.g. THEMISTOCLE, ASGAT). (author) 16 refs, 9 figs

  9. Cherenkov radiation in a plasma-filled, dielectric coaxial waveguide

    International Nuclear Information System (INIS)

    Wu Jianqiang

    2004-01-01

    Using the self-consistent linear field theory, Cherenkov radiation excitated by the beam-wave interaction of a thin annular relativistic electron beam in a plasma-filled, dielectric coaxial cylindrical waveguide was analyzed. The dispersion equation of the interaction, the synchronized condition and the wave growth rate were derived. The energy exchange between the wave and the electron beam in the presence of background plasma was discussed, and the effects of plasma density on the dispersion characteristics, the wave growth rate and the beam-wave energy exchange were calculated and discussed. It was clear that the Cherenkov radiation results from the coupling between the slow TM mode propagated along the waveguide and the negative-energy space-charge mode propagated along the beam, and the coupling strength is proportional to the beam density. It was theoretically demonstrated that due to the background plasma, the plasma-filled coaxial cylindrical Cherenkov maser could operate at higher frequency, get higher wave growth rate, or have higher beam current at the same operating frequency, leading to higher microwave output power. (authors)

  10. Extensive air showers and diffused Cherenkov light detection: The ULTRA experiment

    International Nuclear Information System (INIS)

    Agnetta, G.; Assis, P.; Biondo, B.

    2007-01-01

    The Uv Light Transmission and Reflection in the Atmosphere (ULTRA) experiment has been designed to provide quantitative measurements of the backscattered Cherenkov signal associated to the Extensive Air Showers (EAS) at the impact point on the Earth surface. The knowledge of such information will test the possibility to detect the diffused Cherenkov light spot from space within the Ultra high-energy cosmic ray observation. The Cherenkov signal is necessary to give an absolute reference for the track, allowing the measurement of the shower maximum and easing the separation between neutrino and hadronic showers. In this paper we discuss the experimental set-up with detailed information on the detection method; the in situ and laboratory calibrations; the simulation of the expected detector response and finally the preliminary results on the detector performance

  11. Conceptual history of the Vavilov-Cherenkov radiation

    International Nuclear Information System (INIS)

    Frank, I.M.

    1984-01-01

    The evolution of ideas on the nature of the Vavilov-Cherenkov radiation is discussed. The period between Vavilov's ideas, advanced in 1934, and the formulation of a quantitative theory of the phenomenon in 1937 is surveyed

  12. Particle Identification with the Cherenkov imaging technique using MPGD based Photon Detectors for Physics at COMPASS Experiment at CERN

    CERN Document Server

    AUTHOR|(CDS)2070220; Martin, Anna

    A novel technology for the detection of single photons has been developed and implemented in 2016 in the Ring Imaging Cherenkov (RICH) detector of the COMPASS Experiment at CERN SPS. Some basic knowledge in the field of particle identification and RICH counters, Micro Pattern Gaseous Detectors (MPGDs) in general and their development for photon detection applications are provided. The characteristics of the COMPASS setup are summarized and the COMPAS RICH-1 detector is described and shown to provide hadron identification in the momentum range between 3 and 55 GeV/c. The THGEM technology is discussed illustrating their characterization as gas multipliers and as reflective photocathodes: large gains and efficient photodetection collections are achieved when using optimized parameters and conditions (hole diameter = THGEM thickness = 0.4 mm; hole pitch = 0.8 mm and no rim; CH4-rich gas mixtures and electric field values > 1 kV/cm at the CsI surface). The intense R\\&D program leading to the choice of a hybrid...

  13. Theoretical study of Cherenkov radiation emission in anisotropic uniaxial crystals

    Energy Technology Data Exchange (ETDEWEB)

    Delbart, A; Derre, J

    1996-04-01

    A theoretical review of the Cherenkov radiation emission in uniaxial crystals is presented. The formalism of C. Muzicar in terms of energetic properties of the emitted waves are corrected. This formalism is used to simulate the Cherenkov radiation emission in a strongly birefringent sodium nitrate crystal (NaNO{sub 3}) and to investigate the consequences of the slight anisotropy of sapphire (Al{sub 2}O{sub 3}) on the design of the Optical Trigger. (author). 12 refs. Submitted to Physical Review, D (US).

  14. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...

  15. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. IV. Measurement for Sculptor

    Science.gov (United States)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2006-03-01

    This article presents a measurement of the proper motion of the Sculptor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope using the Space Telescope Imaging Spectrograph in the imaging mode. Each of two distinct fields contains a quasi-stellar object that serves as the ``reference point.'' The measured proper motion of Sculptor, expressed in the equatorial coordinate system, is (μα, μδ)=(9+/-13, 2+/-13) mas century-1. Removing the contributions from the motion of the Sun and the motion of the local standard of rest produces the proper motion in the Galactic rest frame: (μGrfα, μGrfδ)=(-23+/-13, 45+/-13) mas century-1. The implied space velocity with respect to the Galactic center has a radial component of Vr=79+/-6 km s-1 and a tangential component of Vt=198+/-50 km s-1. Integrating the motion of Sculptor in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 68 (31, 83) and 122 (97, 313) kpc, respectively, where the values in the parentheses represent the 95% confidence interval derived from Monte Carlo experiments. The eccentricity of the orbit is 0.29 (0.26, 0.60), and the orbital period is 2.2 (1.5, 4.9) Gyr. Sculptor is on a polar orbit around the Milky Way: the angle of inclination is 86° (83°, 90°). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  16. THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH HUBBLE SPACE TELESCOPE/SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Thomas M.; Aigrain, Suzanne; Barstow, Joanna K. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Pont, Frederic; Sing, David K. [School of Physics, University of Exeter, EX4 4QL Exeter (United Kingdom); Desert, Jean-Michel; Knutson, Heather A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Gibson, Neale [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Heng, Kevin [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Lecavelier des Etangs, Alain, E-mail: tom.evans@astro.ox.ac.uk [Institut d' Astrophysique de Paris, UMR7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France)

    2013-08-01

    We present a secondary eclipse observation for the hot Jupiter HD 189733b across the wavelength range 290-570 nm made using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. We measure geometric albedos of A{sub g} = 0.40 {+-} 0.12 across 290-450 nm and A{sub g} < 0.12 across 450-570 nm at 1{sigma} confidence. The albedo decrease toward longer wavelengths is also apparent when using six wavelength bins over the same wavelength range. This can be interpreted as evidence for optically thick reflective clouds on the dayside hemisphere with sodium absorption suppressing the scattered light signal beyond {approx}450 nm. Our best-fit albedo values imply that HD 189733b would appear a deep blue color at visible wavelengths.

  17. US Participation in the Solar Orbiter Multi Element Telescope for Imaging and Spectroscopy (METIS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Multi Element Telescope for Imaging and Spectroscopy, METIS, investigation has been conceived to perform off-limb and near-Sun coronagraphy and is motivated by...

  18. Neutrino superluminality without Cherenkov-like processes in Finslerian special relativity

    International Nuclear Information System (INIS)

    Chang Zhe; Li Xin; Wang Sai

    2012-01-01

    Recently, Cohen and Glashow [A.G. Cohen, S.L. Glashow, Phys. Rev. Lett. 107 (2011) 181803] pointed out that the superluminal neutrinos reported by the OPERA would lose their energy rapidly via the Cherenkov-like process. The Cherenkov-like process for the superluminal particles would be forbidden if the principle of special relativity holds in any frame instead violated with a preferred frame. We have proposed that the Finslerian special relativity could account for the data of the neutrino superluminality ( (arXiv:1110.6673 [hep-ph])). The Finslerian special relativity preserves the principle of special relativity and involves a preferred direction while consists with the causality. In this Letter, we prove that the energy-momentum conservation is preserved and the energy-momentum is well defined in Finslerian special relativity. The Cherenkov-like process is forbidden in the Finslerian special relativity. Thus, the superluminal neutrinos would not lose energy in their distant propagation.

  19. Part I. A study of the decays D → Kππeν and D → K*πeν. Part II. SLD Cherenkov Ring Imaging Detector development

    International Nuclear Information System (INIS)

    Huber, J.S.

    1992-01-01

    A thesis in two independent halves. Part I. A search for the exclusive semileptonic decay modes D + → bar K ππ + ν e and D + → bar K * πe + ν e are presented using data from the Fermi-lab photoproduction experiment E691. With good sensitivity, the author observes no signals in the channels D + → K - π + π degrees e + ν e and D + → bar K degrees π + π - e + ν e , and set upper limits that represent only a small fraction of the inclusive semileptonic branching ration. The experiment was conducted at the Fermi-lab tagged Photon Laboratory, using a large acceptance spectrometer with silicon microvertex detector to extract a large, clean charm sample. Part II. The physics, design, and results of the Stanford Large Detector (SLD) Cherenkov Ring Imaging Detector (CRID) are described. The physics motivation and performance for the SLD CRID, the principles of Cherenkov detection, and a description of the SLD CRID are combined with a detailed description of the production and testing of the mirrors. In addition, results from the engineering run and cosmic ray tests demonstrate the current status of the system

  20. HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wardle, John F. C. [Brandeis University, Physics Department, Waltham, MA 02454 (United States); Bouman, Katherine L., E-mail: achael@cfa.harvard.edu [Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139 (United States)

    2016-09-20

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previous work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.

  1. THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY: STACKED IMAGES AND CATALOGS

    International Nuclear Information System (INIS)

    Gwyn, Stephen D. J.

    2012-01-01

    This paper describes the image stacks and catalogs of the Canada-France-Hawaii Telescope Legacy Survey produced using the MegaPipe data pipeline at the Canadian Astronomy Data Centre. The Legacy Survey is divided into two parts. The Deep Survey consists of four fields each of 1 deg 2 , with magnitude limits (50% completeness for point sources) of u = 27.5, g = 27.9, r = 27.7, i = 27.4, and z = 26.2. It contains 1.6 × 10 6 sources. The Wide Survey consists of 150 deg 2 split over four fields, with magnitude limits of u = 26.0, g = 26.5, r = 25.9, i = 25.7, and z = 24.6. It contains 3 × 10 7 sources. This paper describes the calibration, image stacking, and catalog generation process. The images and catalogs are available on the web through several interfaces: normal image and text file catalog downloads, a 'Google Sky' interface, an image cutout service, and a catalog database query service.

  2. The nonlinear CWFA [Cherenkov Wakefield Accelerator

    International Nuclear Information System (INIS)

    Schoessow, P.

    1989-01-01

    The possible use of nonlinear media to enhance the performance of the Cherenkov Wakefield Accelerator (CWFA) is considered. Numerical experiments have been performed using a new wakefield code which demonstrate larger gradients and transformer ratios in the nonlinear CWFA than are obtained in the linear case. 7 refs., 3 figs

  3. Nanobeacon: A low cost time calibration instrument for the KM3NeT neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, David [IFIC. Instituto de Física Corpuscular, CSIC-Universidad de Valencia, C/Catedrático José Beltrán, 2. 46980 Paterna (Spain); Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT collaboration aims at the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean Sea consisting of a matrix of pressure resistant glass spheres holding each one a set (31) of small area photomultipliers. The main goal of the telescope is to observe cosmic neutrinos through the Cherenkov light induced in sea water by charged particles produced in neutrino interactions with the surrounding medium. A relative time calibration between photomultipliers of the order of 1 ns is required to achieve an optimal performance. Due to the high volume to be covered by KM3NeT, a cost reduction of the different systems is a priority. To this end a very low price calibration device, the so called Nanobeacon, has been designed and developed. At present one of such devices has already been integrated successfully at the KM3NeT telescope and eight of them in the Nemo Tower Phase II. In this article the main properties and operation of this device are described.

  4. A new concept of imaging system: telescope windows

    Science.gov (United States)

    Bourgenot, Cyril; Cowie, Euan; Young, Laura; Love, Gordon; Girkin, John; Courtial, Johannes

    2018-02-01

    A Telescope window is a novel concept of transformation-optics consisting of an array of micro-telescopes, in our configuration, of a Galilean type. When the array is considered as one multifaceted device, it acts as a traditional Galilean telescope with distinctive and attractive properties such as compactness and modularity. Each lenslet, can in principle, be independently designed for a specific optical function. In this paper, we report on the design, manufacture and prototyping, by diamond precision machining, of 2 concepts of telescope windows, and discuss both their performances and limitations with a view to use them as potential low vision aid devices to support patients with macular degeneration.

  5. Reconstruction algorithms in the Super-Kamiokande large water Cherenkov detector

    CERN Document Server

    Shiozawa, M

    1999-01-01

    The Super-Kamiokande experiment, using a large underground water Cherenkov detector, has started its operation since first April, 1996. One of the main physics goals of this experiment is to measure the atmospheric neutrinos. Proton decay search is also an important topic. For these analyses, all measurement of physical quantities of an event such as vertex position, the number of Cherenkov rings, momentum, particle type and the number of decay electrons, is automatically performed by reconstruction algorithms. We attain enough quality of the analyses using these algorithms and several impressive results have been addressed.

  6. Reconstruction algorithms in the Super-Kamiokande large water Cherenkov detector

    International Nuclear Information System (INIS)

    Shiozawa, M.

    1999-01-01

    The Super-Kamiokande experiment, using a large underground water Cherenkov detector, has started its operation since first April, 1996. One of the main physics goals of this experiment is to measure the atmospheric neutrinos. Proton decay search is also an important topic. For these analyses, all measurement of physical quantities of an event such as vertex position, the number of Cherenkov rings, momentum, particle type and the number of decay electrons, is automatically performed by reconstruction algorithms. We attain enough quality of the analyses using these algorithms and several impressive results have been addressed

  7. Observing the Sun with Coronado telescopes telescopes

    CERN Document Server

    Pugh, Philip

    2007-01-01

    The Sun provides amateur astronomers with one of the few opportunities for daytime astronomy. In order to see the major features of our nearest star, special telescopes that have a very narrow visible bandwidth are essential. The bandwidth has to be as narrow as 1 A- 10-10 m (1 Angstrom) and centred on the absorption line of neutral hydrogen. This makes many major features of the Suna (TM)s chromosphere visible to the observer. Such narrow-band "Fabry-Perot etalon filters" are high technology, and until the introduction of the Coronado range of solar telescopes, were too expensive for amateur use. The entry-level Coronado telescope, the PST (Personal Solar Telescope) costs under 500. Solar prominences (vast columns of plasma, best seen at the edge of the solar disk), filaments, flares, sunspots, plage and active regions are all visible and can be imaged to produce spectacular solar photographs. Philip Pugh has assembled a team of contributors who show just how much solar work can be done with Coronado telesco...

  8. Design of a general purpose data collection module for the NuTel telescope

    International Nuclear Information System (INIS)

    Velikzhanin, Y.S.; Chi, Y.; Hou, W.S.; Hsu, C.C.; Shiu, J.G.; Ueno, K.; Wang, M.Z.; Yeh, P.

    2005-01-01

    We have developed a Data Collection Module (DCM) to digitize, store and select data from the NuTel telescope, which observes Cherenkov photons from near horizontal air showers. Multi-anode photo-multiplier tubes (MAPMT) are used as photon-sensitive devices. DCM processes 32 input signals from the charge-sensitive pre-amplifiers located close to the MAPMT. The module design uses 40-MHz 10-bit pipeline ADCs and medium-size FPGAs. A programmable gain/attenuation control x0.5-2 is applied to each channel before the ADC providing a comfortable operation with a multi-channel system using MAPMT as photon-sensitive device because the gain of MAPMT fluctuates from channel to channel as 1:3. DCM has a flexible on-board trigger inside FPGA firmware. The system design is made in 32-bit 33-MHz cPCI. Thirty-two DCMs housed in two crates process signals from the two telescopes of 512 channels each looking to the same direction for coincidence

  9. Achromatic shearing phase sensor for generating images indicative of measure(s) of alignment between segments of a segmented telescope's mirrors

    Science.gov (United States)

    Stahl, H. Philip (Inventor); Walker, Chanda Bartlett (Inventor)

    2006-01-01

    An achromatic shearing phase sensor generates an image indicative of at least one measure of alignment between two segments of a segmented telescope's mirrors. An optical grating receives at least a portion of irradiance originating at the segmented telescope in the form of a collimated beam and the collimated beam into a plurality of diffraction orders. Focusing optics separate and focus the diffraction orders. Filtering optics then filter the diffraction orders to generate a resultant set of diffraction orders that are modified. Imaging optics combine portions of the resultant set of diffraction orders to generate an interference pattern that is ultimately imaged by an imager.

  10. GRMHD Simulations of Visibility Amplitude Variability for Event Horizon Telescope Images of Sgr A*

    Science.gov (United States)

    Medeiros, Lia; Chan, Chi-kwan; Özel, Feryal; Psaltis, Dimitrios; Kim, Junhan; Marrone, Daniel P.; Sa¸dowski, Aleksander

    2018-04-01

    The Event Horizon Telescope will generate horizon scale images of the black hole in the center of the Milky Way, Sgr A*. Image reconstruction using interferometric visibilities rests on the assumption of a stationary image. We explore the limitations of this assumption using high-cadence disk- and jet-dominated GRMHD simulations of Sgr A*. We also employ analytic models that capture the basic characteristics of the images to understand the origin of the variability in the simulated visibility amplitudes. We find that, in all simulations, the visibility amplitudes for baselines oriented parallel and perpendicular to the spin axis of the black hole follow general trends that do not depend strongly on accretion-flow properties. This suggests that fitting Event Horizon Telescope observations with simple geometric models may lead to a reasonably accurate determination of the orientation of the black hole on the plane of the sky. However, in the disk-dominated models, the locations and depths of the minima in the visibility amplitudes are highly variable and are not related simply to the size of the black hole shadow. This suggests that using time-independent models to infer additional black hole parameters, such as the shadow size or the spin magnitude, will be severely affected by the variability of the accretion flow.

  11. Development of aerogel Cherenkov detectors at Novosibirsk

    International Nuclear Information System (INIS)

    Barnyakov, A.Yu.; Barnyakov, M.Yu.; Baehr, J.; Bellunato, T.; Beloborodov, K.I.; Bobrovnikov, V.S.; Buzykaev, A.R.; Calvi, M.; Danilyuk, A.F.; Djordjadze, V.; Golubev, V.B.; Kononov, S.A.; Kravchenko, E.A.; Lipka, D.; Matteuzzi, C.; Musy, M.; Onuchin, A.P.; Perego, D.; Rodiakin, V.A.; Savinov, G.A.; Serednyakov, S.I.; Shamov, A.G.; Stephan, F.; Tayursky, V.A.; Vorobiov, A.I.

    2005-01-01

    The development of aerogel Cherenkov counters with the light collection using a wavelength shifter is described. 80 counters of this type are working in the KEDR detector. A project of similar counters for the SND detector based on 'heavy' aerogel with n=1.13 has been developed. Aerogel with a refractive index of 1.006-1.13 and dimensions of blocks up to 200x200x50mm 3 is produced by the Novosibirsk group for use in Cherenkov counters of different types. The Novosibirsk group is participating in the development of LHCb RICH as well as a beam diagnostics for a photo-injector test facility at DESY-Zeuthen. Recently we started development of RICH based on focusing aerogel (FARICH) for the endcap of the SuperBaBar. For the first time in the world the focusing aerogel with layers of different refractive indices has been produced

  12. Adaptation of Dunn Solar Telescope for Jovian Doppler spectro imaging

    Science.gov (United States)

    Underwood, Thomas A.; Voelz, David; Schmider, François-Xavier; Jackiewicz, Jason; Dejonghe, Julien; Bresson, Yves; Hull, Robert; Goncalves, Ivan; Gualme, Patrick; Morand, Frédéric; Preis, Olivier

    2017-09-01

    This paper describes instrumentation used to adapt the Dunn Solar Telescope (DST) located on Sacramento Peak in Sunspot, NM for observations using the Doppler Spectro Imager (DSI). The DSI is based on a Mach-Zehnder interferometer and measures the Doppler shift of solar lines allowing for the study of atmospheric dynamics of giant planets and the detection of their acoustic oscillations. The instrumentation is being designed and built through a collaborative effort between a French team from the Observatoire de la Cote d'Azur (OCA) that designed the DSI and a US team at New Mexico State University (NMSU). There are four major components that couple the DSI to the DST: a guider/tracker, fast steering mirror (FSM), pupil stabilizer and transfer optics. The guider/tracker processes digital video to centroid-track the planet and outputs voltages to the DST's heliostat controls. The FSM removes wavefront tip/tilt components primarily due to turbulence and the pupil stabilizer removes any slow pupil "wander" introduced by the telescope's heliostat/turret arrangement. The light received at a science port of the DST is sent through the correction and stabilization components and into the DSI. The FSM and transfer optics designs are being provided by the OCA team and serve much the same functions as they do for other telescopes at which DSI observations have been conducted. The pupil stabilization and guider are new and are required to address characteristics of the DST.

  13. Stereo-scopy of {gamma}-ray air showers with the H.E.S.S. telescopes: first images of the supernova remnants at TeV; Stereoscopie de gerbes de {gamma} avec les telescopes H.E.S.S.: premieres images de vestiges de supernovae au TeV

    Energy Technology Data Exchange (ETDEWEB)

    Lemoine-Goumard, Marianne [Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2006-05-15

    The H.E.S.S. (High Energy Stereoscopic System) experiment in gamma-ray Astronomy consists of four imaging atmospheric Cherenkov telescopes devoted to the observation of the gamma-ray sky in the energy domain above 100 GeV and extending up to several tens of TeV. This thesis presents a new reconstruction method of gamma-ray induced air showers which takes full advantage of the stereo-scopy and of the fine-grain imaging of the H.E.S.S. cameras. This new method provides an angular resolution better than 0.1 angle, an energy resolution of about 15% at zenith and a very efficient hadronic rejection based on a cut on the lateral spread of the electromagnetic shower which does not depend on simulations. A new background subtraction method, well adapted to the study of extended sources, was also developed. No assumption, either on the distribution of gamma-rays in the field of view, or on the distribution of hadrons are necessary. It provides two sky maps obtained from a maximum likelihood fit: one for {gamma}-rays and the other for hadrons. These two analysis methods were applied to the study of the shell-type supernova remnants RX J1713.7-3946 and RX J0852.0-4622 (Vela Junior), allowing for the first time to resolve their morphology in the gamma-ray domain. The study of these sources should answer the question: 'can shell-type supernova remnants accelerate cosmic-rays up to the knee (5 x 10{sup 15} eV)?'. A morphological and spectral study of these sources combined with a comparison of a simple model of emission processes (from electrons and protons accelerated in supernova remnants) provides some constraints on the parameters of the leptonic process. Nevertheless, this scenario cannot be excluded. The different results obtained are discussed and compared with a third shell-type supernova remnant observed by H.E.S.S. but not detected: SN 1006. (author)

  14. Image processing improvement for optical observations of space debris with the TAROT telescopes

    Science.gov (United States)

    Thiebaut, C.; Theron, S.; Richard, P.; Blanchet, G.; Klotz, A.; Boër, M.

    2016-07-01

    CNES is involved in the Inter-Agency Space Debris Coordination Committee (IADC) and is observing space debris with two robotic ground based fully automated telescopes called TAROT and operated by the CNRS. An image processing algorithm devoted to debris detection in geostationary orbit is implemented in the standard pipeline. Nevertheless, this algorithm is unable to deal with debris tracking mode images, this mode being the preferred one for debris detectability. We present an algorithm improvement for this mode and give results in terms of false detection rate.

  15. Cherenkov Radiation from a Pseudospark-sourced Electron Beam

    International Nuclear Information System (INIS)

    Phelps, A.D.R.; Yin, H.; Cross, A.W.; He, W.; Ronald, K.

    2003-01-01

    Electron beam generation from a multi-gap pseudospark discharge was investigated. A pseudospark-sourced electron beam has two phases, an initial hollow cathode phase (HCP) beam followed by a conductive phase (CP) beam. The beam brightness was measured by a field-free collimator to be 109 and 1011 Am-2rad-2 for the hollow cathode phase (HCP) beam and the conductive phase (CP) beam respectively. The initial HCP beam from an eight-gap pseudospark discharge was applied in a Cherenkov interaction between the electron beam and the TM01 mode of a 60-cm long alumina-lined waveguide. It was found experimentally that significant microwave radiation was generated only when the dielectric was present in the interaction space. If there was no dielectric in the cylindrical waveguide, then a very small background microwave output was detected even when the guide B-field was absent. This demonstrated, in conjunction with the observation that the microwave output signal was independent of the guide magnetic field over the range 0.13 to 0.26 T, that the radiation from the experiment was due to the Cherenkov interaction mechanism. In addition, two components of the microwave pulse were observed corresponding to the two energy components of the electron beam during the pseudospark discharge breakdown. These results demonstrated that the microwave radiation was generated by Cherenkov amplification of the broadband emission from the pseudospark discharge itself. A background signal level of around 100 W was measured in the frequency range 20 - 50 GHz with a percentage of (2.7 ± 0.6)% in the frequency range 25.5 - 28.6 GHz, when the dielectric lining was removed from the maser. The frequency of the microwave output after the Cherenkov maser interaction was measured to be mainly around 25.5 GHz and the dominating mode was identified as being TM01. The duration of the microwave pulse was approximately 80 ns, with a peak power of around 2 ± 0.2 kW. The gain of this amplifier was measured

  16. A quartz Cherenkov detector for polarimetry at the ILC

    International Nuclear Information System (INIS)

    Vauth, Annika

    2014-09-01

    At the proposed International Linear Collider (ILC), the use of polarised electron and positron beams is a key ingredient of the physics program. A measurement of the polarisation with a yet unprecedented precision of δP / P =0.25% is required. To achieve this, Compton polarimeter measurements in front of and behind the collision point are foreseen. In this thesis, a novel concept for a detector for ILC polarimetry is introduced to eliminate one of the dominating systematics limiting the previous best measurement of beam polarisation: a detector using quartz as Cherenkov medium could increase the tolerance against non-linear photodetector responses. The high refractive index of quartz results in a higher Cherenkov light yield compared to conventional Cherenkov gases. This could allow single-peak resolution in the Cherenkov photon spectra produced by the Compton electrons at the polarimeters. The detailed simulation studies presented in this work imply that such single-peak resolution is possible. Considerations for the choice of a suitable detector geometry are discussed. A four-channel prototype has been constructed and successfully operated in a first testbeam campaign at the DESY testbeam, confirming simulation predictions. Although further studies have to be considered to quantify all aspects of the detector response, the findings of the analysis of the data from the first testbeam are promising with regards to reaching the desired light yield. In the final part of this thesis, the application of a detector concept allowing single-peak resolution to the polarisation measurement at the ILC is examined. Two of the main sources of systematic uncertainties on the polarimeter measurements are detector non-linearities and misalignments. The performance of the suggested quartz detector concept in Monte Carlo studies promises a control of these systematics which meets the precision requirements for ILC polarimetry.

  17. Cherenkov radiation as a means of radio isotope diagnosis of eyeball tumors

    International Nuclear Information System (INIS)

    Moshnikov, O.S.; Kolesnichenko, V.N.

    1986-01-01

    Radiophosphorus indication of eye new-growths can be accomplished through registration of beta-particle or Cherenkov radiation. In both cases the criterion for the conclusion to be drawn from the experimental results is the relative increment of the count rate. The article analyses the specific features of the equipment aimed at recording Cherenkov radiation in the process of radiophosphorus studied in ophthalmology, and discusses the method for these studies. (orig.)

  18. The Preflight Photometric Calibration of the Extreme-Ultraviolet Imaging Telescope EIT

    Science.gov (United States)

    Dere, K. P.; Moses, J. D.; Delaboudiniere, J. -P.; Brunaud, J.; Carabetian, C.; Hochedez, J. -F.; Song, X. Y.; Catura, R. C.; Clette, F.; Defise, J. -M.

    2000-01-01

    This paper presents the preflight photometric calibration of the Extreme-ultraviolet Imaging Telescope (EIT) aboard the Solar and Heliospheric Observatory (SOHO). The EIT consists of a Ritchey-Chretien telescope with multilayer coatings applied to four quadrants of the primary and secondary mirrors, several filters and a backside-thinned CCD detector. The quadrants of the EIT optics were used to observe the Sun in 4 wavelength bands that peak near 171, 195, 284, and 304 . Before the launch of SOHO, the EIT mirror reflectivities, the filter transmissivities and the CCD quantum efficiency were measured and these values are described here. The instrumental throughput in terms of an effective area is presented for each of the various mirror quadrant and filter wheel combinations. The response to a coronal plasma as a function of temperature is also determined and the expected count rates are compared to the count rates observed in a coronal hole, the quiet Sun and an active region.

  19. All-fiber femtosecond Cherenkov laser at visible wavelengths

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe Visbech

    2013-01-01

    -matching condition [1]. The resonant ultrafast wave conversion via the fiber-optic CR mechanism is instrumental for applications in biophotonics such as bio-imaging and microscopy [2]. In this work, we demonstrate a highly-stable all-fiber, fully monolithic CR system based on an Yb-fiber femtosecond laser, producing...... to be as low as -103 dBc/Hz. This is 2 orders of magnitudes lower noise as compared to spectrally-sliced supercontinuum, which is the current standard of ultrafast fiber-optic generation at visible wavelength. The layout of the laser system is shown in Fig. 1(a). The system consists of two parts: an all-fiber......Fiber-optic Cherenkov radiation (CR), also known as dispersive wave generation or non-solitonic radiation, is produced in small-core photonic crystal fibers (PCF) when a soliton perturbed by fiber higher-order dispersion co-propagates with a dispersive wave fulfilling a certain phase...

  20. High speed decision electronics combined to a beam Cherenkov counter

    International Nuclear Information System (INIS)

    Sghaier, H.

    1993-01-01

    The Hypolit detector for identification of particles in high energy physics using the Cherenkov radiation, is based on an intensifier tube coupled to photomultipliers via a fiber-optic matrix. Cherenkov photons are focused into a ring; particle identification consists in calculating the ring radius. A fast and high level electronic system is associated to Hypolit. Besides deriving the radius, it allows a background rejection and achieves a momentum correction. This on line tagging contributes to build the WA89 trigger. Tuning is controlled with a micro-computer which makes the access to the heart of the system friendly-user

  1. A new approach to the theory of Cherenkov radiation based on relativistic generalization of the Landau criterion

    International Nuclear Information System (INIS)

    Chefranov, S.G.

    2004-01-01

    Relativistic generalization of the Landau criterion is obtained which, in contrast to the classical Tamm-Frank and Ginzburg theories, determines the primary energy mechanism of emission of nonbremsstrahlung Cherenkov radiation. It is shown that Cherenkov radiation may correspond to a threshold energetically favorable conversion of the condensate (ultimately long-wavelength) elementary Bose perturbations of a medium into transverse Cherenkov photons emitted by the medium proper during its interaction with a sufficiently fast charged particle. The threshold conditions of emission are determined for a medium with an arbitrary refractive index n, including the case of isotropic plasma with n < 1 for which the classical theory of Cherenkov radiation prohibits such direct and effective nonbremsstrahlung emission of these particular transverse high-frequency electromagnetic waves. It is established that these conditions of emission agree with the data of well-known experiments on the threshold for observation of Cherenkov radiation, whereas the classical theory only corresponds to the conditions of observation of the interference maximum of this radiation. The possibility of direct effective emission of nonbremsstrahlung Cherenkov radiation, not taken into account in the classical theory, is considered for many observed astrophysical phenomena (type III solar radio bursts, particle acceleration by radiation, etc.)

  2. Effect of wavelength shifters on water Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Badino, G; Galeotti, P; Periale, L; Saavedra, O; Turtelli, A [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale)

    1981-06-15

    We report the results of a test showing that concentrations of approx. equal to 2 mg/l of wavelength shifter in water give almost the maximum efficiency of detection without losing the directionality of Cherenkov light.

  3. Stray light characteristics of the diffractive telescope system

    Science.gov (United States)

    Liu, Dun; Wang, Lihua; Yang, Wei; Wu, Shibin; Fan, Bin; Wu, Fan

    2018-02-01

    Diffractive telescope technology is an innovation solution in construction of large light-weight space telescope. However, the nondesign orders of diffractive optical elements (DOEs) may affect the imaging performance as stray light. To study the stray light characteristics of a diffractive telescope, a prototype was developed and its stray light analysis model was established. The stray light characteristics including ghost, point source transmittance, and veiling glare index (VGI) were analyzed. During the star imaging test of the prototype, the ghost images appeared around the star image as the exposure time of the charge-coupled device improving, consistent with the simulation results. The test result of VGI was 67.11%, slightly higher than the calculated value 57.88%. The study shows that the same order diffraction of the diffractive primary lens and correcting DOE is the main factor that causes ghost images. The stray light sources outside the field of view can illuminate the image plane through nondesign orders diffraction of the primary lens and contributes to more than 90% of the stray light flux on the image plane. In summary, it is expected that these works will provide some guidance for optimizing the imaging performance of diffractive telescopes.

  4. Gamma astronomy above 30 GeV. A new method for identifying cosmic gamma rays from the ground based detector Celeste; Astronomie gamma au-dessus de 30 GeV. Une nouvelle methode d'identification des rayons gamma cosmiques a partir du sol avec le detecteur CELESTE

    Energy Technology Data Exchange (ETDEWEB)

    Manseri, H

    2004-03-15

    Celeste is an atmospheric Cherenkov telescope based on the reconversion of the Themis solar facility, located in the Eastern Pyrenees. The mirrors, named heliostats, recover the Cherenkov light emitted by the electromagnetic shower created by gamma-rays in the atmosphere. The Celeste experiment was designed during the 90's to cover the 30-300 GeV energy range and to fill the gap between satellites and imaging atmospheric Cherenkov telescopes. In 2000, we attained our goal with the detection of the Crab Nebula and those of the active galactic nucleus Markarian 421. This thesis presents the work accomplished since then to improve the sensitivity of our instrument by studying the detector and by developing a new analysis. Despite the very bad weather conditions, a new detection of the Crab Nebula is presented here which validates the principle of the new analysis. This manuscript ends with the study of the data sample taken on two Active Galactic Nuclei, the blazars Markarian 421 and 1ES1426+428. (author)

  5. Open principle for large high-resolution solar telescopes

    NARCIS (Netherlands)

    Hammerschlag, R.H.; Bettonvil, F.C.M.; Jägers, A.P.L.; Sliepen, G.

    2009-01-01

    Vacuum solar telescopes solve the problem of image deterioration inside the telescope due to refractive index fluctuations of the air heated by the solar light. However, such telescopes have a practical diameter limit somewhat over 1 m. The Dutch Open Telescope (DOT) was the pioneering demonstrator

  6. Strange meson spectroscopy in Kω and KΦ at 11 GeV/c and Cherenkov ring imaging at SLD

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Youngjoon [Stanford Univ., CA (United States)

    1993-01-01

    This thesis consists of two independent parts; development of Cherenkov Ring Imaging Detector (CRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. Part 1: The CRID system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e+e- collisions at √s = mZ0. By measuring the angles of emission of the Cherenkov photons inside liquid and gaseous radiators, {pi}/K/p separation will be achieved up to ~30 GeV/c. The signals from CRID are read in three coordinates, one of which is measured by charge-division technique. To obtain a ~1% spatial resolution in the charge-division, low-noise CRID preamplifier prototypes were developed and tested resulting in <1000 electrons noise for an average photoelectron signal with 2 x 105 gain. To help ensure the long-term stability of CRID operation at high efficiency, a comprehensive monitoring and control system was developed. Part 2: Results from the partial wave analysis of strange meson final states in the reactions K-p → K-ωp and K-p → $\\bar{K}$0Φn are presented. The analyses are based on data from a 4.1 event/nb exposure of the LASS spectrometer in K-p interactions at 11 GeV/c. The data sample of K-ωp final state contains {approximately}105 events. From the partial wave analysis, resonance structures of JP= 2-, 3- and 2+ amplitudes are observed in the Kω system. The analysis of 2- amplitudes provides an evidence for two strange meson states in the mass region around 1.75 GeV/c2. The appropriate branching fractions are calculated and compared with the SU(3) predictions. The partial wave analysis of $\\bar{K}$0Φ system favors JP = 1- and 2+ states in the 1.9--2.0 GeV/c2 region.

  7. Simulation studies for optimizing the trigger generation criteria for the TACTIC telescope

    International Nuclear Information System (INIS)

    Koul, M.K.; Tickoo, A.K.; Dhar, V.K.; Venugopal, K.; Chanchalani, K.; Rannot, R.C.; Yadav, K.K.; Chandra, P.; Kothari, M.; Koul, R.

    2011-01-01

    In this paper, we present the results of Monte Carlo simulations of γ-ray and cosmic-ray proton induced extensive air showers as detected by the TACTIC atmospheric Cherenkov imaging telescope for optimizing its trigger field of view and topological trigger generation scheme. The simulation study has been carried out at several zenith angles. The topological trigger generation uses a coincidence of two or three nearest neighbor pixels for producing an event trigger. The results of this study suggest that a trigger field of 11x11 pixels (∼3.4 0 x3.4 0 ) is quite optimum for achieving maximum effective collection area for γ-rays from a point source. With regard to optimization of topological trigger generation, it is found that both two and three nearest neighbor pixels yield nearly similar results up to a zenith angle of 25 0 with a threshold energy of ∼1.5TeV for γ-rays. Beyond zenith angle of 25 0 , the results suggest that a two-pixel nearest neighbor trigger should be preferred. Comparison of the simulated integral rates has also been made with corresponding measured values for validating the predictions of the Monte Carlo simulations, especially the effective collection area, so that energy spectra of sources (or flux upper limits in case of no detection) can be determined reliably. Reasonably good matching of the measured trigger rates (on the basis of ∼207h of data collected with the telescope in NN-2 and NN-3 trigger configurations) with that obtained from simulations reassures that the procedure followed by us in estimating the threshold energy and detection rates is quite reliable. - Highlights: → Optimization of the trigger field of view and topological trigger generation for the TACTIC telescope. → Monte Carlo simulations of extensive air showers carried out using CORSIKA code. → Trigger generation with two or three nearest neighbor pixels yield similar results up to a zenith angle of 25 deg. → Reasonably good matching of measured trigger

  8. Relevance of axionlike particles for very-high-energy astrophysics

    International Nuclear Information System (INIS)

    De Angelis, Alessandro; Galanti, Giorgio; Roncadelli, Marco

    2011-01-01

    Several extensions of the standard model and, in particular, superstring theories suggest the existence of axionlike particles (ALPs), which are very light spin-zero bosons with a two-photon coupling. As a consequence, photon-ALP oscillations occur in the presence of an external magnetic field, and ALPs can lead to observable effects on the measured photon spectrum of astrophysical sources. An intriguing situation arises when blazars are observed in the very-high-energy (VHE) band--namely, above 100 GeV--as it is the case with the presently operating Imaging Atmospheric Cherenkov Telescopes H.E.S.S, Major Atmospheric Gamma Imaging Cherenkov telescope, Collaboration of Australia and Nippon for a Gamma Ray Observatory in the Outback III, and VERITAS. The extragalactic background light produced by galaxies during cosmic evolution gives rise to a source dimming which becomes important in the VHE band and increases with energy, since hard photons from a blazar scatter off soft extragalactic background light photons thereby disappearing into e + e - pairs. This dimming can be considerably reduced by photon-ALP oscillations, and since they are energy independent the resulting blazar spectra become harder than expected. We consider throughout a scenario first proposed by De Angelis, Roncadelli, and Mansutti in which the above strategy is implemented with photon-ALP oscillations triggered by large-scale magnetic fields, and we systematically investigate its implications for VHE blazars. We find that for ALPs lighter than 5·10 -10 eV the photon survival probability is larger than predicted by conventional physics above a few hundred GeV. Specifically, a boost factor of 10 can easily occur for sources at large distance and large energy, e.g. at 8 TeV for the blazar 1ES 0347-121 at redshift z=0.188. This is a clear-cut prediction which can be tested with the planned Cherenkov Telescope Array and the High Altitude Water Cherenkov Experiment (HAWC) water Cherenkov

  9. A quartz Cherenkov detector for Compton-polarimetry at future e+e- colliders

    International Nuclear Information System (INIS)

    List, Jenny; Vauth, Annika; Vormwald, Benedikt; Hamburg Univ.

    2015-02-01

    Precision polarimetry is essential for future e + e - colliders and requires Compton polarimeters designed for negligible statistical uncertainties. In this paper, we discuss the design and construction of a quartz Cherenkov detector for such Compton polarimeters. The detector concept has been developed with regard to the main systematic uncertainties of the polarisation measurements, namely the linearity of the detector response and detector alignment. Simulation studies presented here imply that the light yield reachable by using quartz as Cherenkov medium allows to resolve in the Cherenkov photon spectra individual peaks corresponding to different numbers of Compton electrons. The benefits of the application of a detector with such single-peak resolution to the polarisation measurement are shown for the example of the upstream polarimeters foreseen at the International Linear Collider. Results of a first testbeam campaign with a four-channel prototype confirming simulation predictions for single electrons are presented.

  10. Development of a composite large-size SiPM (assembled matrix) based modular detector cluster for MAGIC

    Science.gov (United States)

    Hahn, A.; Mazin, D.; Bangale, P.; Dettlaff, A.; Fink, D.; Grundner, F.; Haberer, W.; Maier, R.; Mirzoyan, R.; Podkladkin, S.; Teshima, M.; Wetteskind, H.

    2017-02-01

    The MAGIC collaboration operates two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) on the Canary Island of La Palma. Each of the two telescopes is currently equipped with a photomultiplier tube (PMT) based imaging camera. Due to the advances in the development of Silicon Photomultipliers (SiPMs), they are becoming a widely used alternative to PMTs in many research fields including gamma-ray astronomy. Within the Otto-Hahn group at the Max Planck Institute for Physics, Munich, we are developing a SiPM based detector module for a possible upgrade of the MAGIC cameras and also for future experiments as, e.g., the Large Size Telescopes (LST) of the Cherenkov Telescope Array (CTA). Because of the small size of individual SiPM sensors (6 mm×6 mm) with respect to the 1-inch diameter PMTs currently used in MAGIC, we use a custom-made matrix of SiPMs to cover the same detection area. We developed an electronic circuit to actively sum up and amplify the SiPM signals. Existing non-imaging hexagonal light concentrators (Winston cones) used in MAGIC have been modified for the angular acceptance of the SiPMs by using C++ based ray tracing simulations. The first prototype based detector module includes seven channels and was installed into the MAGIC camera in May 2015. We present the results of the first prototype and its performance as well as the status of the project and discuss its challenges.

  11. How to Directly Image a Habitable Planet Around Alpha Centauri with a 30-45 cm Space Telescope

    Science.gov (United States)

    Belikov, Ruslan; Bendek, Eduardo; Thomas, Sandrine; Males, Jared

    2015-01-01

    Several mission concepts are being studied to directly image planets around nearby stars. It is commonly thought that directly imaging a potentially habitable exoplanet around a Sun-like star requires space telescopes with apertures of at least 1m. A notable exception to this is Alpha Centauri (A and B), which is an extreme outlier among FGKM stars in terms of apparent habitable zone size: the habitable zones are approximately 3x wider in apparent size than around any other FGKM star. This enables a approximately 30-45cm visible light space telescope equipped with a modern high performance coronagraph or star shade to resolve the habitable zone at high contrast and directly image any potentially habitable planet that may exist in the system. The raw contrast requirements for such an instrument can be relaxed to 1e-8 if the mission spends 2 years collecting tens of thousands of images on the same target, enabling a factor of 500-1000 speckle suppression in post processing using a new technique called Orbital Difference Imaging (ODI). The raw light leak from both stars is controllable with a special wave front control algorithm known as Multi-Star Wave front Control (MSWC), which independently suppresses diffraction and aberrations from both stars using independent modes on the deformable mirror. This paper will present an analysis of the challenges involved with direct imaging of Alpha Centauri with a small telescope and how the above technologies are used together to solve them. We also show an example of a small coronagraphic mission concepts to take advantage of this opportunity called "ACESat: Alpha Centauri Exoplanet Satellite" submitted to NASA's small Explorer (SMEX) program in December of 2014.

  12. Silica aerogel threshold Cherenkov counters for the JLab Hall A spectrometers: improvements and proposed modifications

    CERN Document Server

    Lagamba, L; Colilli, S; Crateri, R; De Leo, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Iodice, M; Iommi, R; Leone, A; Lucentini, M; Mostarda, A; Nappi, E; Perrino, R; Pierangeli, L; Santavenere, F; Urciuoli, G M

    2001-01-01

    Recently approved experiments at Jefferson Lab Hall A require a clean kaon identification in a large electron, pion, and proton background environment. To this end, improved performance is required of the silica aerogel threshold Cherenkov counters installed in the focal plane of the two Hall A spectrometers. In this paper we propose two strategies to improve the performance of the Cherenkov counters which presently use a hydrophilic aerogel radiator, and convey Cherenkov photons towards the photomultipliers by means of mirrors with a parabolic shape in one direction and flat in the other. The first strategy is aerogel baking. In the second strategy we propose a modification of the counter geometry by replacing the mirrors with a planar diffusing surface and by displacing in a different way the photomultipliers. Tests at CERN with a 5 GeV/c multiparticle beam revealed that both the strategies are able to increase significantly the number of the detected Cherenkov photons and, therefore, the detector performan...

  13. Observation of Cherenkov rings using a low-pressure parallel-plate chamber and a solid cesium-iodide photocathode

    International Nuclear Information System (INIS)

    Lockyer, N.S.; Millan, J.E.; Lu, C.; McDonald, K.T.; Lopez, A.

    1993-01-01

    We have observed Cherenkov rings from minimum-ionizing particles using a low-pressure, parallel-plate pad-chamber with a cesium-iodide solid photocathode. This detector is blind to minimum-ionizing particles, and sensitive to Cherenkov photons of wavelengths 170-210 nm. An average of 5 photoelectrons per Cherenkov ring were detected using a 2-cm-thick radiator of liquid C 6 F 14 . This paper reports on the chamber construction, photocathode preparation and testbeam results. (orig.)

  14. PROMPT: Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Reichart, D.; Nysewander, M.; Moran, J. [North Carolina Univ., Chapel Hill (United States). Department of Physics and Astronomy] (and others)

    2005-07-15

    Funded by $1.2M in grants and donations, we are now building PROMPT at CTIO. When completed in late 2005, PROMPT will consist of six 0.41-meter diameter Ritchey-Chretien telescopes on rapidly slewing mounts that respond to GRB alerts within seconds, when the afterglow is potentially extremely bright. Each mirror and camera coating is being optimized for a different wavelength range and function, including a NIR imager, two red-optimized imager, a blue-optimized imager, an UV-optimized imager, and an optical polarimeter. PROMPT will be able to identify high-redshift events by dropout and distinguish these events from the similar signatures of extinction. In this way, PROMPT will act a distance-finder scope for spectroscopic follow up on the larger 4.1-meter diameter SOAR telescope, which is also located at CTIO. When not chasing GRBs, PROMPT serves broader educational objectives across the state of north Carolina. Enclosure construction and the first two telescopes are now complete and functioning: PROMPT observed Swift's first GRB in December 2004. We upgrade from two to four telescope in February 2005 and from four to six telescopes in mid-2005.

  15. Development of a research reactor power measurement system using Cherenkov radiation

    Energy Technology Data Exchange (ETDEWEB)

    Salles, Brício M.; Mesquita, Amir Z., E-mail: briciomares@hotmail.com, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    Nuclear research reactors are usually located in open pools, to allow visibility to the core and bluish luminosity of Cherenkov radiation. Usually the thermal power released in these reactors is monitored by chambers that measure the neutron flux, as it is proportional to the power. There are other methods used for power measurement, such as monitoring the core temperature and the energy balance in the heat exchanger. The brightness of Cherenkov's radiation is caused by the emission of visible electromagnetic radiation (in the blue band) by charged particles that pass through an insulating medium (water in nuclear research reactors) at a speed higher than that of light in this medium. This effect was characterized by Pavel Cherenkov, which earned him the Nobel Prize for Physics in 1958. The project's objective is to develop an innovative and alternative method for monitoring the power of nuclear research reactors. It will be performed by analyzing and monitoring the intensity of luminosity generated by Cherenkov radiation in the reactor core. This method will be valid for powers up to 250 kW, since above that value the luminosity saturates, as determined by previous studies. The reactor that will be used to test the method is the TRIGA, located at Nuclear Technology Development Center (CDTN), which currently has a maximum operating power of 250 kW. This project complies with International Atomic Energy Agency (IAEA) recommendations on reactor safety. It will give more redundancy and diversification in this measure and will not interfere with its operation. (author)

  16. Development of a research reactor power measurement system using Cherenkov radiation

    International Nuclear Information System (INIS)

    Salles, Brício M.; Mesquita, Amir Z.

    2017-01-01

    Nuclear research reactors are usually located in open pools, to allow visibility to the core and bluish luminosity of Cherenkov radiation. Usually the thermal power released in these reactors is monitored by chambers that measure the neutron flux, as it is proportional to the power. There are other methods used for power measurement, such as monitoring the core temperature and the energy balance in the heat exchanger. The brightness of Cherenkov's radiation is caused by the emission of visible electromagnetic radiation (in the blue band) by charged particles that pass through an insulating medium (water in nuclear research reactors) at a speed higher than that of light in this medium. This effect was characterized by Pavel Cherenkov, which earned him the Nobel Prize for Physics in 1958. The project's objective is to develop an innovative and alternative method for monitoring the power of nuclear research reactors. It will be performed by analyzing and monitoring the intensity of luminosity generated by Cherenkov radiation in the reactor core. This method will be valid for powers up to 250 kW, since above that value the luminosity saturates, as determined by previous studies. The reactor that will be used to test the method is the TRIGA, located at Nuclear Technology Development Center (CDTN), which currently has a maximum operating power of 250 kW. This project complies with International Atomic Energy Agency (IAEA) recommendations on reactor safety. It will give more redundancy and diversification in this measure and will not interfere with its operation. (author)

  17. Development of aerogel Cherenkov counters at Novosibirsk

    International Nuclear Information System (INIS)

    Barnyakov, A.Yu.; Barnyakov, M.Yu.; Baehr, J.; Bellunato, T.; Beloborodov, K.I.; Bobrovnikov, V.S.; Buzykaev, A.R.; Calvi, M.; Danilyuk, A.F.; Djordjadze, V.; Golubev, V.B.; Kononov, S.A.; Kravchenko, E.A.; Lipka, D.; Matteuzzi, C.; Musy, M.; Onuchin, A.P.; Perego, D.; Rodiakin, V.A.; Savinov, G.A.; Serednyakov, S.I.; Shamov, A.G.; Stephan, F.; Tayursky, V.A.; Vorobiov, A.I.

    2006-01-01

    The work on aerogel Cherenkov counters was started in Novosibirsk in 1986. Production of aerogels with refractive indices of 1.006-1.13 and thicknesses of blocks up to 50mm was developed. The light absorption length at 400nm is 5-7m, the scattering length is 4-5cm. By these parameters, the Novosibirsk aerogel is one of the best in the world. The ASHIPH Cherenkov counters with light collection on wavelength shifters have been developed. The ASHIPH system of the KEDR detector contains 1000l of aerogel. The π/K separation is 4.5σ. A project of ASHIPH counters for the SND detector has been developed. Aerogel RICH for LHCb gives a possibility to identify hadrons in the momentum range of 2-10GeV/c. The Novosibirsk group is developing an aerogel RICH for the endcap for the SuperBaBar project. Calculations performed by a group of physicists from Novosibirsk and DESY-Zeuthen have shown that aerogel radiators enable to achieve time resolution up to 20fs

  18. Lee Sang Gak Telescope (LSGT): A Remotely Operated Robotic Telescope for Education and Research at Seoul National University

    Science.gov (United States)

    Im, Myungshin; Choi, Changsu; Kim, Kihyun

    2015-08-01

    We introduce the Lee Sang Gak Telescope (LSGT), a remotely operated, robotic 0.43-meter telescope. The telescope was installed at the Siding Spring Observatory, Australia, in 2014 October, to secure regular and exclusive access to the dark sky and excellent atmospheric conditions in the southern hemisphere from the Seoul National University (SNU) campus. Here, we describe the LSGT system and its performance, present example images from early observations, and discuss a future plan to upgrade the system. The use of the telescope includes (i) long-term monitoring observations of nearby galaxies, active galactic nuclei, and supernovae; (ii) rapid follow-up observations of transients such as gamma-ray bursts and gravitational wave sources; and (iii) observations for educational activities at SNU. Based on observations performed so far, we find that the telescope is capable of providing images to a depth of R=21.5 mag (point source detection) at 5-σ with 15 min total integration time under good obs-erving conditions.

  19. Characterization benches for neutrino telescope Optical Modules at the APC laboratory

    Science.gov (United States)

    Avgitas, Theodore; Creusot, Alexandre; Kouchner, Antoine

    2016-04-01

    As has been demonstrated by the first generation of neutrino telescopes Antares and IceCube, precise knowledge of the photon detection efficiency of optical modules is of fundamental importance for the understanding of the instrument and accurate event reconstruction. Dedicated test benches have been developed to measure all related quantities for the Digital Optical Modules of the KM3NeT neutrino telescope being currently deployed in the Mediterranean sea. The first bench is a black box with robotic arms equipped with a calibrated single photon source or laser which enable a precise mapping of the detection efficiency at arbitrary incident angles as well as precise measurements of the time delays induced by the photodetection chain. These measurement can be incorporated and compared to full GEANT MonteCarlo simulations of the optical modules. The second bench is a 2 m×2 m ×2 m water tank equipped with muon hodoscopes on top and bottom. It enables to study and measure the angular dependence of the DOM's detection efficiency of the Cherenkov light produced in water by relativistic muons, thus reproducing in situ detection conditions. We describe these two benches and present their first results and status.

  20. Design and construction of a Cherenkov detector for Compton polarimetry at the ILC

    International Nuclear Information System (INIS)

    Bartels, Christoph

    2010-11-01

    This paper describes the design and construction of a Cherenkov detector conceived with regard to high energy Compton polarimeters for the International Linear Collider, where beam diagnostic systems of unprecedented precision must complement the interaction region detectors to pursue an ambitious physics programme. Besides the design of the Cherenkov detector, detailed simulation studies and first testbeam results are presented. Good agreement of beam data with expectations from Monte Carlo simulations is observed. (orig.)

  1. Design and construction of a Cherenkov detector for Compton polarimetry at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Christoph [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Ebert, Joachim; Hartin, Anthony; Helebrant, Christian; Kaefer, Daniela; List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    This paper describes the design and construction of a Cherenkov detector conceived with regard to high energy Compton polarimeters for the International Linear Collider, where beam diagnostic systems of unprecedented precision must complement the interaction region detectors to pursue an ambitious physics programme. Besides the design of the Cherenkov detector, detailed simulation studies and first testbeam results are presented. Good agreement of beam data with expectations from Monte Carlo simulations is observed. (orig.)

  2. Very-high-energy gamma-ray observations of pulsar wind nebulae and cataclysmic variable stars with MAGIC and development of trigger systems for IACTs

    Science.gov (United States)

    Lopez-Coto, Ruben

    2015-07-01

    The history of astronomy is as ancient as the reach of our written records. All the human civilizations have been interested in the study and interpretation of the night sky and its objects and phenomena. These observations were performed with the naked eye until the beginning of the 17th century, when Galileo Galilei started to use an instrument recently developed called telescope. Since then, the range of accessible wavelengths has been increasing, with a burst in the 20th century with the developing of instruments to observe them: antennas (radio and submillimeter), telescopes (optical, IR) and satellites (UV, X-rays and soft gamma rays). The last wavelength range accessed was the Very-High-Energy (VHE) gamma rays. At this range fluxes are so low that it is not possible to use space-based instruments with typical collection areas of O(1) m2. We must resort to the imaging atmospheric Cherenkov technique, which is based on the detection of the flashes of Cherenkov light that VHE gamma rays produce when they interact with the Earth's atmosphere. The field is very young, with the first source discovered in 1989 by the pioneering Whipple telescope. It is very dynamic with more than 150 sources detected to date, most of them by MAGIC, HESS and VERITAS, that make up the current generation of instruments. Finally, the field is also very promising, with the preparation of a next generation of imaging atmospheric Cherenkov telescopes: CTA, that is expected to start full operation in 2020. The work presented in this thesis comprises my efforts to take the ground-based γ-ray astronomy one step forward. Part I of the thesis is an introduction to the non- thermal universe, the imaging atmospheric Cherenkov technique and the Imaging Atmospheric Cherenkov Telescopes (IACTs) MAGIC and CTA. Part II deals with several ways to reduce the trigger threshold of IACTs. This includes the simula- tion, characterization and test of an analog trigger especially designed to achieve the

  3. Hubble Space Telescope, Faint Object Camera

    Science.gov (United States)

    1981-01-01

    This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  4. A study of the sensitivity of an imaging telescope (GRITS) for high energy gamma-ray astronomy. Final report

    International Nuclear Information System (INIS)

    Yearian, M.R.

    1990-08-01

    When a gamma-ray telescope is placed in Earth orbit, it is bombarded by a flux of cosmic protons much greater than the flux of interesting gammas. These protons can interact in the telescope's thermal shielding to produce detectable gamma rays, most of which are vetoed. Since the proton flux is so high, the unvetoed gamma rays constitute a significant background relative to some weak sources. This background increases the observing time required to pinpoint some sources and entirely obscures other sources. Although recent telescopes have been designed to minimize this background, its strength and spectral characteristics were not previously calculated in detail. Monte Carlo calculations are presented which characterize the strength, spectrum and other features of the cosmic proton background using FLUKA, a hadronic cascade program. Several gamma-ray telescopes, including SAS-2, EGRET and the Gamma Ray Imaging Telescope System (GRITS), are analyzed, and their proton-induced backgrounds are characterized. In all cases, the backgrounds are either shown to be low relative to interesting signals or suggestions are made which would reduce the background sufficiently to leave the telescope unimpaired. In addition, several limiting cases are examined for comparison to previous estimates and calibration measurements

  5. Spectrometer of Cherenkov radiation rings with hodoscopic photomultipliers

    International Nuclear Information System (INIS)

    Abramov, V.V.; Alekseev, A.V.; Baldin, B.Yu.

    1983-01-01

    Characteristics of SKOCH Cherenkov radiation ring spectrometer intended for identification of π- and K-mesons and protons in a wide divergent beam in the pulse range of 5.5-30 GeV/s are investigated. The spectrometer detecting system is based on using the hodoscopic photoelectron multipliers (HPEM). The HPEM specific feature is that they have an extended cathode and permit to determine the coordinate of an incident photon by measuring the time of photoelectron drift to a dinode system. The spectrometer has been tested at the FODS facility in the secondary particle beam with angular divergence equal to 16x6 mrad and aperture of 400x200 mm in the pulse range of 6-20 GeV/s. The range of Cherenkov radiation angle detection is 40-100 mrad which corresponds to the particle velocity range of 0.996-1. The angular and radial aperture is 30 mrad, the diameter is 420 mm. The obtained velocity resolution is 6x10 -5

  6. A Cherenkov-emission Microwave Source*

    Science.gov (United States)

    Lai, C. H.; Yoshii, J.; Katsouleas, T.; Hairapetian1, G.; Joshi, C.; Mori, W.

    1996-11-01

    In an unmagnetized plasma, there is no Cherenkov emission because the phase velocity vf of light is greater than c. In a magnetized plasma, the situation is completely changed. There is a rich variety of plasma modes with phase velocities vf 2 c which can couple to a fast particle. In the magnetized plasma, a fast particle, a particle beam, or even a short laser pulse excites a Cherenkov wake that has both electrostatic and electromagnetic components. Preliminary simulations indicate that at the vacuum/plasma boundary, the wake couples to a vacuum microwave with an amplitude equal to the electromagnetic component in the plasma. For a weakly magnetized plasma, the amplitude of the out-coupled radiation is approximately wc/wp times the amplitude of the wake excited in the plasma by the beam, and the frequency is approximately wp. Since plasma wakes as high as a few GeV/m are produced in current experiments, the potential for a high-power (i.e., GWatt) coherent microwave to THz source exists. In this talk, a brief overview of the scaling laws will be presented, followed by 1-D and 2-D PIC simulations. Prospects for a tuneable microwave source experiment based on this mechanism at the UCLA plasma wakefield accelerator facility will be discussed. *Work supported by AFOSR Grant #F4 96200-95-0248 and DOE Grant # DE-FG03-92ER40745. 1Now at Hughes Research Laboratories, Malibu, CA 90265

  7. Development of Camera Electronics for the Advanced Gamma-ray Imaging System (AGIS)

    Science.gov (United States)

    Tajima, Hiroyasu

    2009-05-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. We have developed test systems for some of these concepts and are testing their performance. Here we present test results of the test systems.

  8. Evaluation of new 5 inch photomultiplier for use in threshold Cherenkov detectors with aerogel radiator

    International Nuclear Information System (INIS)

    Wojtsekhowski, B.; Zorn, C.; Flyckt, S.O.

    2000-01-01

    A cost effective alternative to UV-sensitive 5 inch PMTs often used with threshold Aerogel Cherenkov detectors has been developed and tested. The photomultiplier -XP4572-is a variation of the Photonis XP4512 glass window tube with improved electron collection efficiency. Fast timing and high gain were only moderately compromised. The effective quantum efficiency has been measured as twice that of a Burle 8854 Quantacon when exposed to a Cherenkov spectrum generated by Ru-106 electrons (les;3.54 MeV) through 1 cm of high index, high transparency Matsushita Electric aerogel (n=1.05). This new phototube is being installed in an aerogel-based Cherenkov detector for Hall A at Jefferson Lab

  9. Performance study of wavelength shifting acrylic plastic for Cherenkov light detection

    Energy Technology Data Exchange (ETDEWEB)

    Beckford, B., E-mail: beckford@aps.org [American Physical Society, One Physics Ellipse, College Park, MD 20740 (United States); De la Puente, A. [TRIUMF Laboratory, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3 (Canada); Fujii, Y.; Hashimoto, O.; Kaneta, M.; Kanda, H.; Maeda, K.; Matsumura, A.; Nakamura, S.N. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Perez, N.; Reinhold, J. [Department of Physics, Florida International University, Miami, FL 33199 (United States); Tang, L. [Department of Physics, Hampton University, Hampton, VA 23668 (United States); Tsukada, K. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)

    2014-01-21

    The collection efficiency for Cherenkov light incident on a wavelength shifting plate (WLS) has been determined during a beam test at the Proton Synchrotron facility located in the National Laboratory for High Energy Physics (KEK), Tsukuba, Japan. The experiment was conducted in order to determine the detector's response to photoelectrons converted from photons produced by a fused silica radiator; this allows for an approximation of the detector's quality. The yield of the photoelectrons produced through internally generated Cherenkov light as well as light incident from the radiator was measured as a function of the momentum of the incident hadron beam. The yield is proportional to sin{sup 2}θ{sub c}, where θ{sub c} is the opening angle of the Cherenkov light created. Based on estimations and results from similar conducted tests, where the collection efficiency was roughly 39%, the experimental result was expected to be around 40% for internally produced light from the WLS. The results of the experiment determined the photon collection response efficiency of the WLS to be roughly 62% for photons created in a fused silica radiator and 41% for light created in the WLS.

  10. The positioning system of the ANTARES Neutrino Telescope

    Science.gov (United States)

    Adrián-Martínez, S.; Ageron, M.; Aguilar, J. A.; Samarai, I. Al; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Le Van Suu, A.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Niess, V.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Real, D.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Samtleben, D. F. E.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-08-01

    The ANTARES neutrino telescope, located 40 km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475 m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10 cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described.

  11. The positioning system of the ANTARES Neutrino Telescope

    International Nuclear Information System (INIS)

    Adrián-Martínez, S; Ardid, M; Ageron, M; Samarai, I Al; Aubert, J-J; Bertin, V; Aguilar, J A; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Jesus, A C Assis; Astraatmadja, T; Baret, B; Basa, S; Biagi, S

    2012-01-01

    The ANTARES neutrino telescope, located 40 km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475 m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10 cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described.

  12. SU-F-T-684: Analysis of Cherenkov Excitation in Tissue and the Feasibility of Cherenkov Excited Photodynamic Therapy

    International Nuclear Information System (INIS)

    Saunders, Sara L; Andreozzi, Jacqueline M; Pogue, Brian W; Glaser, Adam K

    2016-01-01

    Purpose: The irradiation of photodynamic agents with radiotherapy beams has been demonstrated to enhance tumor killing in various studies, and one proposed mechanism is the optical fluence of Cherenkov emission activating the photosensitizer. This mechanism is explored in Monte Carlo simulations of fluence as well as laboratory measurements of fluence and radical oxygen species. Methods: Simulations were completed using GAMOS/GEANT4 with a 6 MV photon beam in tissue. The effects of blood vessel diameter, blood oxygen saturation, and beam size were examined, recording spectral fluence. Experiments were carried out in solutions of photosensitizer and phantoms. Results: Cherenkov produced by a 100×100um"2 6 MV beam resulted in fluence of less than 1 nJ/cm"2/Gy per 1 nm wavelength. At this microscopic level, differences in absorption of blood and water in the tissue affected the fluence spectrum, but variation in blood oxygenation had little effect. Light in tissue resulting from larger (10mm ×10mm) 6 MV beams had greater fluence due to light transport and elastic scattering of optical photons, but this transport process also resulted in higher absorption shifts. Therefore, the spectrum produced by a microscopic beam was weighted more heavily in UV/blue wavelengths than the spectrum at the macroscopic level. At the macroscopic level, the total fluence available for absorption by Verteporfin (BPD) in tissue approached uJ/cm"2 for a high radiation dose, indicating that photodynamic activation seems unlikely. Tissue phantom confirmation of these light levels supported this observation, and photosensitization measurements with a radical oxygen species reporter are ongoing. Conclusion: Simulations demonstrated that fluence produced by Cherenkov in tissue by 6 MV photon beams at typical radiotherapy doses appears insufficient to activate photosensitizers to the level required for threshold effects, yet this disagrees with published biological experiments. Experimental

  13. SU-F-T-684: Analysis of Cherenkov Excitation in Tissue and the Feasibility of Cherenkov Excited Photodynamic Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Sara L; Andreozzi, Jacqueline M; Pogue, Brian W [Dartmouth College, Hanover, NH (United States); Glaser, Adam K [University of Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: The irradiation of photodynamic agents with radiotherapy beams has been demonstrated to enhance tumor killing in various studies, and one proposed mechanism is the optical fluence of Cherenkov emission activating the photosensitizer. This mechanism is explored in Monte Carlo simulations of fluence as well as laboratory measurements of fluence and radical oxygen species. Methods: Simulations were completed using GAMOS/GEANT4 with a 6 MV photon beam in tissue. The effects of blood vessel diameter, blood oxygen saturation, and beam size were examined, recording spectral fluence. Experiments were carried out in solutions of photosensitizer and phantoms. Results: Cherenkov produced by a 100×100um{sup 2} 6 MV beam resulted in fluence of less than 1 nJ/cm{sup 2}/Gy per 1 nm wavelength. At this microscopic level, differences in absorption of blood and water in the tissue affected the fluence spectrum, but variation in blood oxygenation had little effect. Light in tissue resulting from larger (10mm ×10mm) 6 MV beams had greater fluence due to light transport and elastic scattering of optical photons, but this transport process also resulted in higher absorption shifts. Therefore, the spectrum produced by a microscopic beam was weighted more heavily in UV/blue wavelengths than the spectrum at the macroscopic level. At the macroscopic level, the total fluence available for absorption by Verteporfin (BPD) in tissue approached uJ/cm{sup 2} for a high radiation dose, indicating that photodynamic activation seems unlikely. Tissue phantom confirmation of these light levels supported this observation, and photosensitization measurements with a radical oxygen species reporter are ongoing. Conclusion: Simulations demonstrated that fluence produced by Cherenkov in tissue by 6 MV photon beams at typical radiotherapy doses appears insufficient to activate photosensitizers to the level required for threshold effects, yet this disagrees with published biological experiments

  14. Stability and behavior of the outer array of small water Cherenkov detectors, outriggers, in the HAWC observatory

    OpenAIRE

    Capistrán, T.; Torres, I.; Moreno, E.; collaboration, for the HAWC

    2017-01-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is used for detecting TeV gamma rays. HAWC is operating at 4,100 meters above level sea on the slope of the Sierra Negra Volcano in the State of Puebla, Mexico, and consists of an array of 300 water Cherenkov detectors (WCDs) covering an area of 22,000 $m^2$. Each WCD is equipped with four photomultiplier tubes (PMTs) to detect Cherenkov emission in the water from secondary particles of extensive air-shower (EAS) that are produced in the in...

  15. The Cherenkov correlated timing detector: materials, geometry and timing constraints

    International Nuclear Information System (INIS)

    Aronstein, D.; Bergfeld, T.; Horton, D.; Palmer, M.; Selen, M.; Thayer, G.; Boyer, V.; Honscheid, K.; Kichimi, H.; Sugaya, Y.; Yamaguchi, H.; Yoshimura, Y.; Kanda, S.; Olsen, S.; Ueno, K.; Tamura, N.; Yoshimura, K.; Lu, C.; Marlow, D.; Mindas, C.; Prebys, E.; Pomianowski, P.

    1996-01-01

    The key parameters of Cherenkov correlated timing (CCT) detectors are discussed. Measurements of radiator geometry, optical properties of radiator and coupling materials, and photon detector timing performance are presented. (orig.)

  16. Hubble Space Telescope Image, Supernova Remnant Cassiopeia A

    Science.gov (United States)

    2000-01-01

    The colorful streamers that float across the sky in this photo taken by NASA's Hubble Space Telescope (HST) were created by the universe's biggest firecracker, the titanic supernova explosion of a massive star. The light from the exploding star reached Earth 320 years ago, nearly a century before the United States celebrated its birth with a bang. The dead star's shredded remains are called Cassiopeia A, or 'Cas A' for short. Cas A is the youngest known supernova remnant in our Milky Way Galaxy and resides 10,000 light-years away in the constellation Cassiopeia, so the star actually blew up 10,000 years before the light reached Earth in the late 1600s. This HST image of Cas A shows for the first time that the debris is arranged into thousands of small, cooling knots of gas. This material eventually will be recycled into building new generations of stars and planets. Our own Sun and planets are constructed from the debris of supernovae that exploded billions of years ago. This photo shows the upper rim of the super nova remnant's expanding shell. Near the top of the image are dozens of tiny clumps of matter. Each small clump, originally just a small fragment of the star, is tens of times larger than the diameter of our solar system. The colors highlight parts of the debris where chemical elements are glowing. The dark blue fragments, for example, are richest in oxygen; the red material is rich in sulfur. The images were taken with the Wide Field and Planetary Camera 2 in January 2000 and January 2002. Image Credit: NASA and HST team (Stoics/AURA). Acknowledgment: R. Fesen (Darmouth) and J. Morse ( Univ. of Colorado).

  17. Maintenance and testing of anodized aluminum mirrors on the Whipple 10 m Whipple Telescope

    Science.gov (United States)

    Badran, H. M.; Weekes, T. C.

    2001-08-01

    Threshold energy sensitivity depends not only on the high reflectivity of the mirrors used in atmospheric Cherenkov telescopes but also on the maintenance of this reflectivity over months/years. The successful application of a mirror maintenance technique depends on the type of mirror coating and the contamination that must be removed. The uncovered mirrors in use on the 10-m Whipple gamma-ray telescope are anodized aluminum mirrors. A standard cleaning technique for such mirrors is not available. With the aim of extending the life of the aluminum coating exposed to the Mt ˙Hopkins environment, several cleaning procedures were tested on mirrors that had been exposed for three years. Evaluation of the most effective cleaners is presented. Preliminary results are also presented from a long-term experiment using newly coated mirrors at the proposed VERITAS site and at the current 10 m site. This experiment is designed to reveal the rates at which the reflectance degrades as a function of time, depth of anodization, storage direction, degree of covering, and maintenance procedures.

  18. The central pixel of the MAGIC telescope for optical observations

    Science.gov (United States)

    Lucarelli, F.; Barrio, J. A.; Antoranz, P.; Asensio, M.; Camara, M.; Contreras, J. L.; Fonseca, M. V.; Lopez, M.; Miranda, J. M.; Oya, I.; Reyes, R. De Los; Firpo, R.; Sidro, N.; Goebel, F.; Lorenz, E.; Otte, N.

    2008-05-01

    The MAGIC telescope has been designed for the observation of Cherenkov light generated in Extensive Air Showers initiated by cosmic particles. However, its 17 m diameter mirror and optical design makes the telescope suitable for direct optical observations as well. In this paper, we report about the development of a system based on the use of a dedicated photo-multiplier (PMT) for optical observations. This PMT is installed in the centre of the MAGIC camera (the so-called central pixel). An electro-to-optical system has been developed in order to transmit the PMT output signal by an optical fibre to the counting room, where it is digitized and stored for off-line analysis. The performance of the system using the optical pulsation of the Crab nebula as calibration source is presented. The time required for a 5σ detection of the Crab pulsar in the optical band is less than 20 s. The central pixel will be mainly used to perform simultaneous observations of the Crab pulsar both in the optical and γ-ray regimes. It will also allow for periodic testing of the precision of the MAGIC timing system using the Crab rotational optical pulses as a very precise timing reference.

  19. A telescope with augmented reality functions

    Science.gov (United States)

    Hou, Qichao; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian

    2016-10-01

    This study introduces a telescope with virtual reality (VR) and augmented reality (AR) functions. In this telescope, information on the micro-display screen is integrated to the reticule of telescope through a beam splitter and is then received by the observer. The design and analysis of telescope optical system with AR and VR ability is accomplished and the opto-mechanical structure is designed. Finally, a proof-of-concept prototype is fabricated and demonstrated. The telescope has an exit pupil diameter of 6 mm at an eye relief of 19 mm, 6° field of view, 5 to 8 times visual magnification , and a 30° field of view of the virtual image.

  20. Cherenkov detectors and a new effective-mass spectrometer method

    Czech Academy of Sciences Publication Activity Database

    Hladký, Jan

    2006-01-01

    Roč. 75, - (2006), s. 854-855 ISSN 0969-806X Institutional research plan: CEZ:AV0Z10100502 Keywords : Cherenkov radiation * spectrometer * effective mass method Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.868, year: 2006

  1. LUCID A Cherenkov Tube Based Detector for Monitoring the ATLAS Experiment Luminosity

    CERN Document Server

    Sbrizzi, A

    2007-01-01

    The LUCID (LUminosity Cherenkov Integrating Detector) apparatus is composed by two symmetric arms deployed at about 17 m from the ATLAS interaction point. The purpose of this detector, which will be installed in january 2008, is to monitor the luminosity delivered by the LHC machine to the ATLAS experiment. An absolute luminosity calibration is needed and it will be provided by a Roman Pot type detector with the two arms placed at about 240 m from the interaction point. Each arm of the LUCID detector is based on an aluminum vessel containing 20 Cherenkov tubes, 15 mm diameter and 1500 mm length, filled with C4F10 radiator gas at 1.5 bar. The Cherenkov light generated by charged particles above the threshold is collected by photomultiplier tubes (PMT) directly placed at the tubes end. The challenging aspect of this detector is its readout in an environment characterized by the high dose of radiation (about 0.7 Mrad/year at 10^33cm^2 s^-1) it must withstand. In order to fulfill these radiation hardness requirem...

  2. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, L.; Zebrowski, J.; Malinowski, K.; Rabinski, M.; Sadowski, M. J. [National Centre for Nuclear Research (NCBJ), 7 Andrzeja Soltana Str., 05-400 Otwock (Poland)

    2012-08-15

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.

  3. Using frequency response functions to manage image degradation from equipment vibration in the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, providing a significant increase in the resolution of solar data available to the scientific community. Vibration mitigation is critical in long focal-length telescopes such as the Inouye Solar Telescope, especially when adaptive optics are employed to correct for atmospheric seeing. For this reason, a vibration error budget has been implemented. Initially, the FRFs for the various mounting points of ancillary equipment were estimated using the finite element analysis (FEA) of the telescope structures. FEA analysis is well documented and understood; the focus of this paper is on the methods involved in estimating a set of experimental (measured) transfer functions of the as-built telescope structure for the purpose of vibration management. Techniques to measure low-frequency single-input-single-output (SISO) frequency response functions (FRF) between vibration source locations and image motion on the focal plane are described. The measurement equipment includes an instrumented inertial-mass shaker capable of operation down to 4 Hz along with seismic accelerometers. The measurement of vibration at frequencies below 10 Hz with good signal-to-noise ratio (SNR) requires several noise reduction techniques including high-performance windows, noise-averaging, tracking filters, and spectral estimation. These signal-processing techniques are described in detail.

  4. Stereo-scopy of γ-ray air showers with the H.E.S.S. telescopes: first images of the supernova remnants at TeV

    International Nuclear Information System (INIS)

    Lemoine-Goumard, Marianne

    2006-05-01

    The H.E.S.S. (High Energy Stereoscopic System) experiment in gamma-ray Astronomy consists of four imaging atmospheric Cherenkov telescopes devoted to the observation of the gamma-ray sky in the energy domain above 100 GeV and extending up to several tens of TeV. This thesis presents a new reconstruction method of gamma-ray induced air showers which takes full advantage of the stereo-scopy and of the fine-grain imaging of the H.E.S.S. cameras. This new method provides an angular resolution better than 0.1 angle, an energy resolution of about 15% at zenith and a very efficient hadronic rejection based on a cut on the lateral spread of the electromagnetic shower which does not depend on simulations. A new background subtraction method, well adapted to the study of extended sources, was also developed. No assumption, either on the distribution of gamma-rays in the field of view, or on the distribution of hadrons are necessary. It provides two sky maps obtained from a maximum likelihood fit: one for γ-rays and the other for hadrons. These two analysis methods were applied to the study of the shell-type supernova remnants RX J1713.7-3946 and RX J0852.0-4622 (Vela Junior), allowing for the first time to resolve their morphology in the gamma-ray domain. The study of these sources should answer the question: 'can shell-type supernova remnants accelerate cosmic-rays up to the knee (5 x 10 15 eV)?'. A morphological and spectral study of these sources combined with a comparison of a simple model of emission processes (from electrons and protons accelerated in supernova remnants) provides some constraints on the parameters of the leptonic process. Nevertheless, this scenario cannot be excluded. The different results obtained are discussed and compared with a third shell-type supernova remnant observed by H.E.S.S. but not detected: SN 1006. (author)

  5. Design and end-to-end modelling of a deployable telescope

    Science.gov (United States)

    Dolkens, Dennis; Kuiper, Hans

    2017-09-01

    Deployable optics have the potential of revolutionizing the field of high resolution Earth Observation. By offering the same resolutions as a conventional telescope, while using a much smaller launch volume and mass, the costs of high resolution image data can be brought down drastically. In addition, the technology will ultimately enable resolutions that are currently unattainable due to limitations imposed by the size of launcher fairings. To explore the possibilities and system complexities of a deployable telescope, a concept study was done to design a competitive deployable imager. A deployable telescope was designed for a ground sampling distance of 25 cm from an orbital altitude of 550 km. It offers an angular field of view of 0.6° and has a panchromatic channel as well as four multispectral bands in the visible and near infrared spectrum. The optical design of the telescope is based on an off-axis Korsch Three Mirror Anastigmat. A freeform tertiary mirror is used to ensure a diffraction limited image quality for all channels, while maintaining a compact design. The segmented primary mirror consists of four tapered aperture segments, which can be folded down during launch, while the secondary mirror is mounted on a deployable boom. In its stowed configuration, the telescope fits within a quarter of the volume of a conventional telescope reaching the same resolution. To reach a diffraction limited performance while operating in orbit, the relative position of each individual mirror segment must be controlled to a fraction of a wavelength. Reaching such tolerances with deployable telescope challenging, due to inherent uncertainties in the deployment mechanisms. Adding to the complexity is the fact that the telescope will be operating in a Low Earth Orbit (LEO) where it will be exposed to very dynamic thermal conditions. Therefore, the telescope will be equipped with a robust calibration system. Actuators underneath the primary mirror will be controlled using

  6. Ultracompact Blue Dwarf Galaxies: Hubble Space Telescope Imaging and Stellar Population Analysis

    Science.gov (United States)

    Corbin, Michael R.; Vacca, William D.; Cid Fernandes, Roberto; Hibbard, John E.; Somerville, Rachel S.; Windhorst, Rogier A.

    2006-11-01

    We present deep Hubble Space Telescope (HST) Advanced Camera for Surveys/High Resolution Channel U-, narrow-V-, and I-band images of nine ``ultracompact'' blue dwarf galaxies (UCBDs) selected from the Sloan Digital Sky Survey (SDSS). We define UCBDs as local (zPOX 186, but the structure of several of them suggests that their current star formation has been triggered by the collisions/mergers of smaller clumps of stars. In one case, HS 0822+3542, the images resolve what may be two small (~100 pc) components that have recently collided, supporting this interpretation. In six of the objects much of the star formation is concentrated in young massive clusters, contributing to their compactness in ground-based images. The evidence that the galaxies consist mainly of ~10 Gyr old stars establishes that they are not protogalaxies, forming their first generation of stars. Their low metallicities are more likely to be the result of the escape of supernova ejecta, rather than youth.

  7. TORCH—a Cherenkov based time-of-flight detector

    Energy Technology Data Exchange (ETDEWEB)

    Dijk, M.W.U. van, E-mail: m.vandijk@bristol.ac.uk [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Brook, N.H. [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Castillo García, L. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Laboratory for High Energy Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Cowie, E.N.; Cussans, D. [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); D' Ambrosio, C. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Fopma, J. [Denys Wilkinson Laboratory, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Forty, R.; Frei, C. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Gao, R. [Denys Wilkinson Laboratory, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Gys, T. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Harnew, N.; Keri, T. [Denys Wilkinson Laboratory, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Piedigrossi, D. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland)

    2014-12-01

    TORCH is an innovative high-precision time-of-flight system to provide particle identification in the difficult intermediate momentum region up to 10 GeV/c. It is also suitable for large-area applications. The detector provides a time-of-flight measurement from the imaging of Cherenkov photons emitted in a 1 cm thick quartz radiator. The photons propagate by total internal reflection to the edge of the quartz plate and are then focused onto an array of photon detectors at the periphery. A time-of-flight resolution of about 10–15 ps per incident charged particle needs to be achieved to allow a three sigma kaon-pion separation up to 10 GeV/c momentum for the TORCH located 9.5 m from the interaction point. Given ∼30 detected photons per incident charged particle, this requires measuring the time-of-arrival of individual photons to about 70 ps. This paper will describe the design of a TORCH prototype involving a number of ground-breaking and challenging techniques.

  8. Undergraduate Education with the WIYN 0.9-m Telescope

    Science.gov (United States)

    Pilachowski, Catherine A.

    2017-01-01

    Several models have been explored at Indiana University Bloomington for undergraduate student engagement in astronomy using the WIYN 0.9-m telescope at Kitt Peak. These models include individual student research projects using the telescope, student observations as part of an observational techniques course for majors, and enrichment activities for non-science majors in general education courses. Where possible, we arrange for students to travel to the telescope. More often, we are able to use simple online tools such as Skype and VNC viewers to give students an authentic observing experience. Experiences with the telescope motivate students to learn basic content in astronomy, including the celestial sphere, the electromagnetic spectrum, telescopes and detectors, the variety of astronomical objects, date reduction processes, image analysis, and color image creation and appreciation. The WIYN 0.9-m telescope is an essential tool for our program at all levels of undergraduate education

  9. Test of aerogel as Cherenkov radiator

    CERN Document Server

    Alemi, M; Calvi, M; Matteuzzi, C; Negri, P; Paganoni, M; Liko, D; Neufeld, N; Chesi, Enrico Guido; Joram, C; Séguinot, Jacques; Ypsilantis, Thomas

    2001-01-01

    Two different stacks of aerogel were tested in a pion/proton beam of momentum between 3 and 10 GeV/c. The optical characteristics of the aerogel samples were different: one sample was hygroscopic while the other was hydrophobic. Two HPD tubes were used as photodetectors, and different thicknesses of the stacks were used, in order to determine the photoelectron yield, the Cherenkov angle and its precision. Pion/proton separation has been demonstrated at momenta up to 10 GeV/c.

  10. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation.

    Science.gov (United States)

    Lin, Huiyun; Zhang, Rongxiao; Gunn, Jason R; Esipova, Tatiana V; Vinogradov, Sergei; Gladstone, David J; Jarvis, Lesley A; Pogue, Brian W

    2016-05-21

    Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600-900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5

  11. Realisation and tests of a compressed gas Cherenkov counter. Study of the pollution of a beam (1961); Realisation et essais d'un compteur cherenkov a gaz comprime etude de la pollution d'un faisceau (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Duboc, J; Banaigs, J; Detoeuf, J F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The realisation of a compressed as Cherenkov counter permits the study of the pollution of a beam of {pi} mesons with momentum varying from 220 to 11000 MeV/c. (authors) [French] La realisation d'un compteur Cherenkov a gaz sous pression permet l'etude de la pollution d'un faisceau de mesons {pi} d'impulsions comprise entre 220 et 1100 MeV/c. (auteurs)

  12. Mobile Tracking Systems Using Meter Class Reflective Telescopes

    Science.gov (United States)

    Sturzenbecher, K.; Ehrhorn, B.

    This paper is a discussion on the use of large reflective telescopes on mobile tracking systems with modern instrument control systems. Large optics can be defined as reflective telescopes with an aperture of at least 20 inches in diameter. New carbon composite construction techniques allow for larger, stronger, and lighter telescopes ranging from 240 pounds for a 20 inch, to 800 pounds for a 32 inch, making them ideal for mobile tracking systems. These telescopes have better light gathering capability and produce larger images with greater detail at a longer range than conventional refractive lenses. In a mobile configuration these systems provide the ability to move the observation platform to the optimal location anywhere in the world. Mounting and systems integration - We will discuss how large telescopes can be physically fit to the mobile tracking system and the integration with the tracking systems' digital control system. We will highlight the remote control capabilities. We will discuss special calibration techniques available in a modern instrument control system such as star calibration, calibration of sensors. Tracking Performance - We will discuss the impact of using large telescopes on the performance of the mobile tracking system. We will highlight the capabilities for auto-tracking and sidereal rate tracking in a mobile mount. Large optics performance - We will discuss the advantages of two-mirror Ritchey-Chrétien reflective optics which offer in-focus imaging across the spectrum, from visible to Long Wave Infrared. These zero expansion optics won't lose figure or focus during temperature changes. And the carbon composite telescope tube is thermally inert. The primary mirror is a modern lightweight "dish" mirror for low thermal mass and is center supported/self balancing. Applications - We will discuss Visible - IR Imaging requirements, Optical Rangefinders, and capabilities for special filters to increase resolution in difficult conditions such as

  13. Measurement of high-energy electrons by means of a Cherenkov detector in ISTTOK tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L., E-mail: lech.Jjakubowski@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Zebrowski, J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Plyusnin, V.V. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049 - 001 Lisboa (Portugal); Malinowski, K.; Sadowski, M.J.; Rabinski, M. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Fernandes, H.; Silva, C.; Duarte, P. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049 - 001 Lisboa (Portugal)

    2010-10-15

    The paper concerns detectors of the Cherenkov radiation which can be used to measure high-energy electrons escaping from short-living plasma. Such detectors have high temporal (about 1 ns) and spatial (about 1 mm) resolution. The paper describes a Cherenkov-type detector which was designed, manufactured and installed in the ISTTOK tokamak in order to measure fast runaway electrons. The radiator of that detector was made of an aluminium nitride (AlN) tablet with a light-tight filter on its front surface. Cherenkov signals from the radiator were transmitted through an optical cable to a fast photomultiplier. It made possible to perform direct measurements of the runaway electrons of energy above 80 keV. The measured energy values and spatial characteristics of the recorded electrons appeared to be consistent with results of numerical modelling of the runaway electron generation process in the ISTTOK tokamak.

  14. Real-time image parameterization in high energy gamma-ray astronomy using transputers

    International Nuclear Information System (INIS)

    Punch, M.; Fegan, D.J.

    1991-01-01

    Recently, significant advances in Very-High-Energy gamma-ray astronomy have been made by parameterization of the Cherenkov images arising from gamma-ray initiated showers in the Earth's atmosphere. A prototype system to evaluate the use of Transputers as a parallel-processing elements for real-time analysis of data from a Cherenkov imaging camera is described in this paper. The operation of and benefits resulting from such a system are described, and the viability of an applicaiton of the prototype system is discussed

  15. Development of a liquid xenon Compton telescope dedicated to functional medical imaging; Etude et developpement d'un telescope compton au xenon liquide dedie a l'imagerie medicale fonctionnelle

    Energy Technology Data Exchange (ETDEWEB)

    Grignon, C

    2007-12-15

    Functional imaging is a technique used to locate in three dimensions the position of a radiotracer previously injected in a patient. The two main modalities used for a clinical application to detect tumors, the SPECT and the PET, use solid scintillators as a detection medium. The objective of this thesis was to investigate the possibility of using liquid xenon in order to benefit from the intrinsic properties of this medium in functional imaging. The feasibility study of such a device has been performed by taking into account the technical difficulties specific to the liquid xenon. First of all, simulations of a liquid xenon PET has been performed using Monte-Carlo methods. The results obtained with a large liquid xenon volume are promising : we can expect a reduction of the injected activity of radiotracer, an improvement of the spatial resolution of the image and a parallax free camera. The second part of the thesis was focused on the development of a new concept of medical imaging, the three gamma imaging, based on the use of a new emitter: the 44 scandium. Associated to a classical PET camera, the Compton telescope is used to infer the incoming direction of the third gamma ray by triangulation. Therefore, it is possible to reconstruct the position of each emitter in three dimensions. This work convinced the scientific community to support the construction and characterization of a liquid xenon Compton telescope. The first camera dedicated to small animal imaging should then be operational in 2009. (author)

  16. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images

    Science.gov (United States)

    Barrett, Todd K.; Sandler, David G.

    1993-01-01

    An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 micron rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.

  17. Wide Field Infrared Survey Telescope [WFIRST]: telescope design and simulated performance

    Science.gov (United States)

    Goullioud, R.; Content, D. A.; Kuan, G. M.; Moore, J. D.; Chang, Z.; Sunada, E. T.; Villalvazo, J.; Hawk, J. P.; Armani, N. V.; Johnson, E. L.; Powell, C. A.

    2012-09-01

    The Wide Field Infrared Survey Telescope (WFIRST) mission concept was ranked first in new space astrophysics missions by the Astro2010 Decadal Survey, incorporating the Joint Dark Energy Mission payload concept and multiple science white papers. This mission is based on a space telescope at L2 studying exoplanets [via gravitational microlensing], probing dark energy, and surveying the near infrared sky. Since the release of the Astro2010 Decadal Survey, the team has been working with the WFIRST Science Definition Team to refine mission and payload concepts. We present the current interim reference mission point design of the payload, based on the use of a 1.3m unobscured aperture three mirror anastigmat form, with focal imaging and slit-less spectroscopy science channels. We also present the first results of Structural/Thermal/Optical performance modeling of the telescope point design.

  18. Initial results of the mexican participation in the Alpha Magnetic Spectrometer Project

    International Nuclear Information System (INIS)

    Belmont M, E.; Menchaca R, A.; Sandoval, A.; Alfaro, R.; Martinez D, A.; Grabski, V.

    2007-01-01

    Mexico is part of the AMS (Alpha Magnetic Spectrometer) project, consisting of several radiation detectors integrated in a single telescope to be sent to the outer space in search of antimatter. One of those detectors is a RICH (Ring Imaging Cherenkov), where the cosmic particle's speed is calculated from the Cherenkov light-rings observed. The IF-UNAM group works in characterizing the silica aerogel used as luminous element in this detector. Because the spectrometer will be in orbit for several years, some particular studies are necessary. Our group works on possible ageing mechanisms, showing that the main threat to this material is contamination rather than thermal, or vacuum, shocks. (Author)

  19. Astroclimatic characterization of Vallecitos: a candidate site for the Cherenkov Telescope Array at San Pedro Mártir

    Czech Academy of Sciences Publication Activity Database

    Tovmassian, G.; Hernandez, M.-S.; Ochoa, J.L.; Ernenwein, J.-P.; Mandát, D.; Pech, M.; Frayn, I.P.; Colorado, E.; Murillo, J.M.; Ceseña, U.; Garcia, B.; Lee, W.H.; Bulik, T.; Garczarczyk, M.; Fruck, C.; Costantini, H.; Cieslar, M.; Aune, T.; Vincent, S.; Carr, J.; Serre, N.; Janeček, Petr; Haefner, D.

    2016-01-01

    Roč. 128, č. 961 (2016), 1-13, č. článku 035004. ISSN 0004-6280 R&D Projects: GA MŠk LG14019; GA MŠk LE13012; GA MŠk LM2015046 Institutional support: RVO:68378271 Keywords : high energy gama rays * Cherencov telescopes * site characterization Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.446, year: 2016

  20. Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation.

    Science.gov (United States)

    Suizu, Koji; Koketsu, Kaoru; Shibuya, Takayuki; Tsutsui, Toshihiro; Akiba, Takuya; Kawase, Kodo

    2009-04-13

    Terahertz (THz) wave generation based on nonlinear frequency conversion is promising way for realizing a tunable monochromatic bright THz-wave source. Such a development of efficient and wide tunable THz-wave source depends on discovery of novel brilliant nonlinear crystal. Important factors of a nonlinear crystal for THz-wave generation are, 1. High nonlinearity and 2. Good transparency at THz frequency region. Unfortunately, many nonlinear crystals have strong absorption at THz frequency region. The fact limits efficient and wide tunable THz-wave generation. Here, we show that Cherenkov radiation with waveguide structure is an effective strategy for achieving efficient and extremely wide tunable THz-wave source. We fabricated MgO-doped lithium niobate slab waveguide with 3.8 microm of thickness and demonstrated difference frequency generation of THz-wave generation with Cherenkov phase matching. Extremely frequency-widened THz-wave generation, from 0.1 to 7.2 THz, without no structural dips successfully obtained. The tuning frequency range of waveguided Cherenkov radiation source was extremely widened compare to that of injection seeded-Terahertz Parametric Generator. The tuning range obtained in this work for THz-wave generation using lithium niobate crystal was the widest value in our knowledge. The highest THz-wave energy obtained was about 3.2 pJ, and the energy conversion efficiency was about 10(-5) %. The method can be easily applied for many conventional nonlinear crystals, results in realizing simple, reasonable, compact, high efficient and ultra broad band THz-wave sources.

  1. Hubble Space Telescope via the Web

    Science.gov (United States)

    O'Dea, Christopher P.

    The Space Telescope Science Institute (STScI) makes available a wide variety of information concerning the Hubble Space Telescope (HST) via the Space Telescope Electronic Information Service (STEIS). STEIS is accessible via anonymous ftp, gopher, WAIS, and WWW. The information on STEIS includes how to propose for time on the HST, the current status of HST, reports on the scientific instruments, the observing schedule, data reduction software, calibration files, and a set of publicly available images in JPEG, GIF and TIFF format. STEIS serves both the astronomical community as well as the larger Internet community. WWW is currently the most widely used interface to STEIS. Future developments on STEIS are expected to include larger amounts of hypertext, especially HST images and educational material of interest to students, educators, and the general public, and the ability to query proposal status.

  2. Cherenkov light as a source of photochemical reactions in irradiated solutions of nitrile of malachite green

    Energy Technology Data Exchange (ETDEWEB)

    Stuglik, Z; Grodkowski, J

    1986-10-01

    Experimental data on photochemical activity of Cherenkov light are presented. Malachite green leucocyanide was used to detect the photochemical effects. The G value of Cherenkov light from the region 200-330 nm (number of quanta formed per 100 eV absorbed energy of ionizing radiation) in ethanol was estimated to be in the range of 0.0027-0.049. 14 references.

  3. Cherenkov light as a source of photochemical reactions in irradiated solutions of nitrile of malachite green

    International Nuclear Information System (INIS)

    Stuglik, Z.; Grodkowski, J.

    1986-01-01

    Experimental data on photochemical activity of Cherenkov light are presented. Malachite green leucocyanide was used to detect the photochemical effects. The G value of Cherenkov light from the region 200-330 nm (number of quanta formed per 100 eV absorbed energy of ionizing radiation) in ethanol was estimated to be in the range of 0.0027-0.049. (author)

  4. Proxy magnetometry with the Dutch Open Telescope

    NARCIS (Netherlands)

    Rutten, R.J.; Hammerschlag, R.H.; Sütterlin, P.; Bettonvil, F.C.M.

    1999-01-01

    Superb movies from the Dutch Open Telescope (DOT) on La Palma have proven the validity of the open concept of this innovative telescope for high-resolution imaging of the solar atmosphere. A five- camera speckle-burst registration system is being installed that should permit consistent and

  5. Chromospheric telescope of Baikal Astrophysical Observatory. New light

    Directory of Open Access Journals (Sweden)

    Skomorovsky V.I.

    2016-06-01

    Full Text Available A chromospheric telescope is an important instrument for synoptic observations and solar research. After several decades of observations with the chromospheric telescope at the Baikal Astrophysical Observatory, a need arose to improve the characteristics of this telescope and filter. A new reimaging lens to produce full-disk solar images 18 mm in diameter at the CCD camera Hamamatsu C-124 with a 36×24 mm detector (4000×2672 pixels was designed and manufactured to replace the out-of-operation 50×50 mm Princeton Instruments camera. A contrast interference blocking filter and new calcite and quartz crystal plates were made and installed instead of damaged ones in the Hα birefringent filter (BF, manufactured by Bernhard Hallе Nachfl. The optical immersion in the filter was changed. All telescope optics was cleaned and adjusted. We describe for the first time the design features and their related BF passband tuning. The wavefront interferograms of optical elements and telescope as a whole show that the wavefront distortion of the optical path is within 0.25 λ. The BF and prefilter spectral parameters provide high-contrast monochromatic images. Besides, we give examples of solar chromospheric images in the Hα line core and wing.

  6. Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; McEvoy, A. M.; Young, C. S.; Hamilton, C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Schwellenbach, D. D.; Malone, R. M.; Kaufman, M. I.; Smith, A. S. [National Security Technologies, LLC, Los Alamos, New Mexico 87544 (United States)

    2016-11-15

    An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus—intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO{sub 2} clusters to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1–3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold.

  7. Technology Development for AGIS (Advanced Gamma-ray Imaging System).

    Science.gov (United States)

    Krennrich, Frank

    2008-04-01

    Next-generation arrays of atmospheric Cherenkov telescopes are at the conceptual planning stage and each could consist of on the order of 100 telescopes. The two currently-discussed projects AGIS in the US and CTA in Europe, have the potential to achieve an order of magnitude better sensitivity for Very High Energy (VHE) gamma-ray observations over state-to-the-art observatories. These projects require a substantial increase in scale from existing 4-telescope arrays such as VERITAS and HESS. The optimization of a large array requires exploring cost reduction and research and development for the individual elements while maximizing their performance as an array. In this context, the technology development program for AGIS will be discussed. This includes developing new optical designs, evaluating new types of photodetectors, developing fast trigger systems, integrating fast digitizers into highly-pixilated cameras, and reliability engineering of the individual components.

  8. Data analysis for solar neutrinos observed by water Cherenkov detectors{sup *}

    Energy Technology Data Exchange (ETDEWEB)

    Koshio, Yusuke [Okayama University, Okayama (Japan)

    2016-04-15

    A method of analyzing solar neutrino measurements using water-based Cherenkov detectors is presented. The basic detection principle is that the Cherenkov photons produced by charged particles via neutrino interaction are observed by photomultiplier tubes. A large amount of light or heavy water is used as a medium. The first detector to successfully measure solar neutrinos was Kamiokande in the 1980's. The next-generation detectors, i.e., Super-Kamiokande and the Sudbury Neutrino Observatory (SNO), commenced operation from the mid-1990's. These detectors have been playing the critical role of solving the solar neutrino problem and determining the neutrino oscillation parameters over the last decades. The future prospects of solar neutrino analysis using this technique are also described. (orig.)

  9. Extension of Cherenkov Light LDF Parametrization for Tunka and ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The Cherenkov light Lateral Distribution Function (LDF) from particles initiated Extensive Air Showers (EAS) with ultrahigh energies ( > 1016 eV) was simulated using CORSIKA program for configuration of Tunka and Yakutsk EAS arrays for different primary particles (p, Fe and O2) and different zenith ...

  10. Muon-track studies in a water Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Etchegoyen, A. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina)]. E-mail: etchegoy@tandar.cnea.gov.ar; Bauleo, P. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Bertou, X. [Enrico Fermfi Institute, University of Chicago, 5640 S. Ellis, Chicago, IL 60637 (United States); Bonifazi, C.B. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Filevich, A. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Medina, M.C. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Melo, D.G. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Rovero, A.C. [Instituto de Astronomia y Fisica del Espacio, CC 67, Suc. 28 (1428) Buenos Aires (Argentina); Supanitsky, A.D. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Tamashiro, A. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina)

    2005-06-21

    Background muons may be used in cosmic ray experiments to understand the response of a given detector system and to lay the basis for the further theoretical and simulation work needed in the analysis of air showers. Experiments were performed using a water Cherenkov detector at the Tandar Laboratory. Monte Carlo and semi-analytical calculations were compared to the data.

  11. Hartman Testing of X-Ray Telescopes

    Science.gov (United States)

    Saha, Timo T.; Biskasch, Michael; Zhang, William W.

    2013-01-01

    Hartmann testing of x-ray telescopes is a simple test method to retrieve and analyze alignment errors and low-order circumferential errors of x-ray telescopes and their components. A narrow slit is scanned along the circumference of the telescope in front of the mirror and the centroids of the images are calculated. From the centroid data, alignment errors, radius variation errors, and cone-angle variation errors can be calculated. Mean cone angle, mean radial height (average radius), and the focal length of the telescope can also be estimated if the centroid data is measured at multiple focal plane locations. In this paper we present the basic equations that are used in the analysis process. These equations can be applied to full circumference or segmented x-ray telescopes. We use the Optical Surface Analysis Code (OSAC) to model a segmented x-ray telescope and show that the derived equations and accompanying analysis retrieves the alignment errors and low order circumferential errors accurately.

  12. Flight performance of an advanced CZT imaging detector in a balloon-borne wide-field hard X-ray telescope-ProtoEXIST1

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J., E-mail: jaesub@head.cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Allen, B.; Grindlay, J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Barthelemy, S.; Baker, R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Garson, A.; Krawczynski, H. [Washington University in St. Louis and the McDonnell Center for the Space Sciences, St. Louis, MO 63130 (United States); Apple, J.; Cleveland, W.H. [NASA Marshall Space Flight Center and Universities Space Research Association, Huntsville, AL 35812 (United States)

    2011-10-21

    We successfully carried out the first high-altitude balloon flight of a wide-field hard X-ray coded-aperture telescope ProtoEXIST1, which was launched from the Columbia Scientific Balloon Facility at Ft. Sumner, New Mexico on October 9, 2009. ProtoEXIST1 is the first implementation of an advanced CdZnTe (CZT) imaging detector in our ongoing program to establish the technology required for next generation wide-field hard X-ray telescopes such as the High Energy Telescope (HET) in the Energetic X-ray Imaging Survey Telescope (EXIST). The CZT detector plane in ProtoEXIST1 consists of an 8x8 array of closely tiled 2 cmx2 cmx0.5 cm thick pixellated CZT crystals, each with 8x8 pixels, mounted on a set of readout electronics boards and covering a 256 cm{sup 2} active area with 2.5 mm pixels. A tungsten mask, mounted at 90 cm above the detector provides shadowgrams of X-ray sources in the 30-600 keV band for imaging, allowing a fully coded field of view of 9{sup o}x9{sup o} (and 19{sup o}x19{sup o} for 50% coding fraction) with an angular resolution of 20'. In order to reduce the background radiation, the detector is surrounded by semi-graded (Pb/Sn/Cu) passive shields on the four sides all the way to the mask. On the back side, a 26 cmx26 cmx2 cm CsI(Na) active shield provides signals to tag charged particle induced events as well as {>=}100keV background photons from below. The flight duration was only about 7.5 h due to strong winds (60 knots) at float altitude (38-39 km). Throughout the flight, the CZT detector performed excellently. The telescope observed Cyg X-1, a bright black hole binary system, for {approx}1h at the end of the flight. Despite a few problems with the pointing and aspect systems that caused the telescope to track about 6.4{sup o} off the target, the analysis of the Cyg X-1 data revealed an X-ray source at 7.2{sigma} in the 30-100 keV energy band at the expected location from the optical images taken by the onboard daytime star camera. The

  13. Measuring the attenuation length of water in the CHIPS-M water Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Amat, F.; Bizouard, P. [Aix Marseille University Saint-Jerome, 13013 Marseille (France); Bryant, J. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Carroll, T.J.; Rijck, S. De [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Germani, S. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Joyce, T. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Kriesten, B. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Marshak, M.; Meier, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Nelson, J.K. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Perch, A.J.; Pfützner, M.M. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Salazar, R. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Thomas, J., E-mail: jennifer.thomas@ucl.ac.uk [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Trokan-Tenorio, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Vahle, P. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Wade, R. [Avenir Consulting, Abingdon, Oxfordshire (United Kingdom); Wendt, C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Whitehead, L.H. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); and others

    2017-02-01

    The water at the proposed site of the CHIPS water Cherenkov detector has been studied to measure its attenuation length for Cherenkov light as a function of filtering time. A scaled model of the CHIPS detector filled with water from the Wentworth 2W pit, proposed site of the CHIPS deployment, in conjunction with a 3.2 m vertical column filled with this water, was used to study the transmission of 405 nm laser light. Results consistent with attenuation lengths of up to 100 m were observed for this wavelength with filtration and UV sterilization alone.

  14. Relay telescope for high power laser alignment system

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2006-09-19

    A laser system includes an optical path having an intracavity relay telescope with a telescope focal point for imaging an output of the gain medium between an image location at or near the gain medium and an image location at or near an output coupler for the laser system. A kinematic mount is provided within a vacuum chamber, and adapted to secure beam baffles near the telescope focal point. An access port on the vacuum chamber is adapted for allowing insertion and removal of the beam baffles. A first baffle formed using an alignment pinhole aperture is used during alignment of the laser system. A second tapered baffle replaces the alignment aperture during operation and acts as a far-field baffle in which off angle beams strike the baffle a grazing angle of incidence, reducing fluence levels at the impact areas.

  15. Development of an underwater high sensitivity Cherenkov detector: Sea Urchin

    International Nuclear Information System (INIS)

    Camerini, U.; McGibney, D.; Roberts, A.

    1982-01-01

    The need for a high gain, high sensitivity Cherenkov light sensor to be used in a deep underwater muon and neutrino detector (DUMAND) array has led to the design of the Sea Urchin detector. In this design a spherical photocathode PMTis optically coupled through a glass hemisphere to a large number of glass spines, each of which is filled with a wavelength-shifting (WLS) solution of a high quantum efficiency phosphor. The Cherenkov radiation is absorbed in the spine, isotropically re-radiated at a longer wavelength, and a fraction of the fluorescent light is internally reflected in the spine, and guided to the photomultiplier concentrically located in the glass hemisphere. Experiments measuring the optical characteristics of the spines and computer programs simulating light transformation and detection cross sections are described. Overall optical gains in the range 5-10 are achieved. The WLS solution is inexpensive, and may have other applications. (orig.)

  16. Instrumentation for comparing night sky quality and atmospheric conditions of CTA site candidates

    International Nuclear Information System (INIS)

    Fruck, C.; Schweizer, T.; Häfner, D.; Lorentz, E.; Teshima, M.; Gaug, M.; Ernenwein, J.-P.; Costantini, H.; Mandát, D.; Pech, M.; Bulik, T.; Cieslar, M.; Dominik, M.; Ebr, J.; Garczarczyk, M.; Pareschi, G.; Puerto-Giménez, I.

    2015-01-01

    Many atmospheric and climatic criteria have to be taken into account for the selection of a suitable site for the next generation of imaging air-shower Cherenkov telescopes, the ''Cherenkov Telescope Array'' CTA. Such data are not available with sufficient precision, thus a comparison of the proposed sites and final decision based on a comprehensive characterization is impossible. Identical cross-calibrated instruments have been developed which allow for precise comparison between sites, the cross-validation of existing data, and the ground-validation of satellite data. The site characterization work package of the CTA consortium opted to construct and deploy 9 copies of an autonomous multi-purpose weather sensor, incorporating an infrared cloud sensor, a newly developed sensor for measuring the light of the night sky, and an All-Sky-Camera, the whole referred to as Autonomous Tool for Measuring Observatory Site COnditions PrEcisely (ATMOSCOPE). We present here the hardware that was combined into the ATMOSCOPE and characterize its performance

  17. NESTOR - Neutrino Extended Submarine Telescope with Oceanographic Research

    CERN Multimedia

    2002-01-01

    {\\bf NESTOR} is a deep-sea neutrino telescope that is being deployed in the Mediterranean off the south-west coast of the Peleponnese in Greece. Neutrinos, when they interact in the earth below or in the seawater around the detector, produce muons that can be observed by the Cherenkov radiation, which they emit. At an operating depth of 4000 metres, the detector is effectively shielded from muons produced in atmospheric interactions. {\\bf The site:} A major feature of the Ionian Sea floor is the Hellenic Trench, the deepest in the Mediterranean, which in places exceeds 5000 meters. It runs close to the western coast of the Peleponnese and is protected on its western side by the submarine Eastern Mediterranean Ridge. It is far from big city pollution or the effluent of major river systems flowing into the Mediterranean and is protected from deep-water perturbations.\\\\ The NESTOR site is located on a broad plateau some 8 $\\times$ 9 kilometres in area on the eastern side of the Hellenic Trench at a mean depth of...

  18. The application of two-dimensional imaging to very high energy gamma ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1992-05-01

    A technique has been developed to distinguish air showers generated by gamma rays from those generated by hadronic cosmic rays. The method involves the registration of the Cherenkov light images by a large aperture multi-phototube telescope at the Whipple Observatory in southern Arizona. The energy threshold is 0.4 TeV. The efficacy of the technique has been demonstrated by the detection of a signal from the Crab Nebula, a supernova remnant. The physics of shower development at TeV energies is demonstrated to be what is expected, and no support is found for the detection of anomalous signals from binary sources. The sensitivity of the technique is such that a five sigma gamma-ray signal from the Crab can be detected in just an hour of observation. Further improvements in the technique are under way; in particular, a second large aperture camera is now operated in conjunction with the original camera to give stereoscopic images of showers. When completed, this system will give a flux sensitivity a factor of ten below that now available

  19. Stability and linearity control of spectrometric channels of the Cherenkov counters using controllable units

    International Nuclear Information System (INIS)

    Kollar, D.; Kollarova, L.; Khorvat, P.

    1976-01-01

    A system is elaborated to control stability and linearity of the Cherenkov counter spectrometric channels in an experiment on a magnetic monopole search. Linearity of a light characteristic of a photoelectric multiplier is checked with the help of the calibrated light-strikings of light emitting diodes with flare intensity adjusted by controlling generator voltage across the mercury body. A program algorithm is presented for checking stability and linearity of the Cherenkov counter spectrometric channels which helps to consider the fatigue effects of the photoelectric multiplier resulting from the considerable loads

  20. Review of recent progress in the development of Cerenkov Ring Imaging Detectors

    International Nuclear Information System (INIS)

    Leith, D.W.G.S.

    1985-11-01

    The principle behind the Cherenkov Ring Imaging Detectors (CRIDs) involves focussing the Cherenkov light, emitted by a relativistic charged particle in passing through a radiator medium, onto a high efficiency photocathode which can be in turn read out with good spatial resolution, to localize the point of origin of the photoelectrons. This information permits the reconstruction of the circle of Cherenkov light for each particle above threshold, and hence the determination of the Cherenkov angle to an accuracy of a few percent. The groups currently working on these detectors are discussed, the status of these projects is examined, and progress is reported on the R and D on two 4-pi devices being prepared for physics at the Z 0 . The activities are being done at Fermilab, CERN, and SLAC. 8 refs., 32 figs

  1. Telescopes and Techniques

    CERN Document Server

    Kitchin, C R

    2013-01-01

    Telescopes and Techniques has proved itself in its first two editions, having become probably one of the most widely used astronomy texts, both for amateur astronomers and astronomy and astrophysics undergraduates. Both earlier editions of the book were widely used for introductory practical astronomy courses in many universities. In this Third Edition the author guides the reader through the mathematics, physics and practical techniques needed to use today's telescopes (from the smaller models to the larger instruments installed in many colleges) and how to find objects in the sky. Most of the physics and engineering involved is described fully and requires little prior knowledge or experience. Both visual and electronic imaging techniques are covered, together with an introduction to how data (measurements) should be processed and analyzed. A simple introduction to radio telescopes is also included. Brief coverage of the more advanced topics of photometry and spectroscopy are included, but mainly to enable ...

  2. The upgrade of the H.E.S.S. cameras

    Science.gov (United States)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gerard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-Francois; Gräber, Tobias; Hinton, Jim; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; Naurois, Mathieu de; Nayman, Patrick; Ohm, Stefan; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, Francois

    2017-12-01

    The High Energy Stereoscopic System (HESS) is an array of imaging atmospheric Cherenkov telescopes (IACTs) located in the Khomas highland in Namibia. It was built to detect Very High Energy (VHE > 100 GeV) cosmic gamma rays. Since 2003, HESS has discovered the majority of the known astrophysical VHE gamma-ray sources, opening a new observational window on the extreme non-thermal processes at work in our universe. HESS consists of four 12-m diameter Cherenkov telescopes (CT1-4), which started data taking in 2002, and a larger 28-m telescope (CT5), built in 2012, which lowers the energy threshold of the array to 30 GeV . The cameras of CT1-4 are currently undergoing an extensive upgrade, with the goals of reducing their failure rate, reducing their readout dead time and improving the overall performance of the array. The entire camera electronics has been renewed from ground-up, as well as the power, ventilation and pneumatics systems, and the control and data acquisition software. Only the PMTs and their HV supplies have been kept from the original cameras. Novel technical solutions have been introduced, which will find their way into some of the Cherenkov cameras foreseen for the next-generation Cherenkov Telescope Array (CTA) observatory. In particular, the camera readout system is the first large-scale system based on the analog memory chip NECTAr, which was designed for CTA cameras. The camera control subsystems and the control software framework also pursue an innovative design, exploiting cutting-edge hardware and software solutions which excel in performance, robustness and flexibility. The CT1 camera has been upgraded in July 2015 and is currently taking data; CT2-4 have been upgraded in fall 2016. Together they will assure continuous operation of HESS at its full sensitivity until and possibly beyond the advent of CTA. This contribution describes the design, the testing and the in-lab and on-site performance of all components of the newly upgraded HESS

  3. Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin

    2011-01-01

    When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons radiate Cherenkov (dispersive) waves in the λ = 2...

  4. MAGIC: First Observational Results and Perspectives for Future Developments

    Science.gov (United States)

    Hengstebeck, T.; Kalekin, O.; Merck, M.; Mirzoyan, R.; Pavel, N.; Schweizer, T.; Shayduk, M.; MAGIC Collaboration

    The MAGIC (Major Atmospheric Gamma Imaging Cherenkov) telescope was designed to close the energy gap (~ 10-250 GeV) between ground based and satellite gamma detectors. It is situated on the Roque de los Muchachos, La Palma, Canary Islands at altitude of 2200 m. The main subjects of the investigations with the telescope are: Gamma Ray Bursts, Supernova Remnants, Plerions, Pulsars, Active Galactic Nuclei (AGNs), unidentied EGRET sources, Dark matter and Quantum gravity. More details about physics with a low threshold gamma ray telescope one can nd in [2]. The telescope hardware installation was nished in October 2003. Since that time the observations of the dierent classes of objects have been carried out but the experiment is still in the commission phase.

  5. Experimental development of a liquid xenon Compton telescope for functional medical imaging

    International Nuclear Information System (INIS)

    Oger, Tugdual

    2012-01-01

    imaging is a new nuclear medical imaging technique which has been suggested by Subatech laboratory. This technique involves locating three-dimensional position of the decay of an innovative radioisotope (β + ,γ) emitter, the 44 Sc. The principle consist in the detection of two photons of 511 keV gamma rays from the decay of the positron, provided by a PET ring detector, associated to the detection of the third photon by a Liquid xenon Compton telescope. The energy deposited in the interaction between the photon and xenon and its position are identified by measuring the ionization signal with a Micromegas chamber (Micro-Mesh Gaseous Structure), while the trigger and time measurement of the interaction are provided by the detection of the scintillation signal. The principle of the TPC is thus used to Compton imaging. In order to demonstrate experimentally the feasibility of imaging 3γ, a small prototype, XEMIS (Xenon Medical Imaging System) was developed. This thesis is an important step towards the proof of feasibility. In this work are exposed the characterization of the detector response for a beam of 511 keV gamma rays and the analysis of data derived from it. The measurement of energy and time resolutions will be presented, as well as the purity of the liquid xenon. (author) [fr

  6. Imaging monolithic silicon detector telescopes

    International Nuclear Information System (INIS)

    Amorini, F.; Sipala, V.; Cardella, G.; Boiano, C.; Carbone, B.; Cosentino, L.; Costa, E.; Di Pietro, A.; Emanuele, U.; Fallica, G.; Figuera, P.; Finocchiaro, P.; La Guidara, E.; Marchetta, C.; Pappalardo, A.; Piazza, A.; Randazzo, N.; Rizzo, F.; Russo, G.V.; Russotto, P.

    2008-01-01

    We show the results of some test beams performed on a new monolithic strip silicon detector telescope developed in collaboration with the INFN and ST-microelectronics. Using an appropriate design, the induction on the ΔE stages, generated by the charge released in the E stage, was used to obtain the position of the detected particle. The position measurement, together with the low threshold for particle charge identification, allows the new detector to be used for a large variety of applications due to its sensitivity of only a few microns measured in both directions

  7. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    Science.gov (United States)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-06-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  8. Results from the FDIRC prototype

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, D.A., E-mail: roberts@umd.edu [University of Maryland, College Park, MD 20742 (United States); Arnaud, N. [Laboratoire de l’Accélérateur Linéaire, Centre Scientifique d’Orsay, F-91898 Orsay Cedex (France); Dey, B. [University of California, Riverside, CA 92521 (United States); Borsato, M. [Laboratoire de l’Accélérateur Linéaire, Centre Scientifique d’Orsay, F-91898 Orsay Cedex (France); Leith, D.W.G.S.; Nishimura, K.; Ratcliff, B.N. [SLAC, Stanford University, Palo Alto, CA 94309 (United States); Varner, G. [University of Hawaii, Honolulu, HI 96822 (United States); Va’vra, J. [SLAC, Stanford University, Palo Alto, CA 94309 (United States)

    2014-12-01

    We present results from a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC). This detector was designed as a prototype of the particle identification system for the SuperB experiment, and comprises 1/12 of the SuperB barrel azimuthal coverage with partial electronics implementation. The prototype was tested in the SLAC Cosmic Ray Telescope (CRT) which provides 3-D muon tracking with an angular resolution of ∼1.5 mrad, track position resolution of 5–6 mm, start time resolution of 70 ps, and a muon low-energy cutoff of ∼2 GeV provided by an iron range stack. The quartz focusing photon camera couples to a full-size BaBar DIRC bar box and is read out by 12 Hamamatsu H8500 MaPMTs providing 768 pixels. We used IRS2 waveform digitizing electronics to read out the MaPMTs. We present several results from our on-going development activities that demonstrate that the new optics design works very well, including: (a) single photon Cherenkov angle resolutions with and without chromatic corrections, (b) S/N ratio between the Cherenkov peak and background, which consists primarily of ambiguities in possible photon paths to a given pixel, (c) dTOP=TOP{sub measured}–TOP{sub expected} resolutions, and (d) performance of the detector in the presence of high-rate backgrounds. We also describe data analysis methods and point out limits of the present performance. - Highlights: • We present results from a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC). • The prototype was tested in the SLAC Cosmic Ray Telescope (CRT) which provides 3-D muon tracking. • We present several results from our on-going development activities that demonstrate that new optics design works very well. • We describe data analysis methods and point out limits of the present performance.

  9. Development of a liquid xenon Compton telescope dedicated to functional medical imaging; Etude et developpement d'un telescope compton au xenon liquide dedie a l'imagerie medicale fonctionnelle

    Energy Technology Data Exchange (ETDEWEB)

    Grignon, C

    2007-12-15

    Functional imaging is a technique used to locate in three dimensions the position of a radiotracer previously injected in a patient. The two main modalities used for a clinical application to detect tumors, the SPECT and the PET, use solid scintillators as a detection medium. The objective of this thesis was to investigate the possibility of using liquid xenon in order to benefit from the intrinsic properties of this medium in functional imaging. The feasibility study of such a device has been performed by taking into account the technical difficulties specific to the liquid xenon. First of all, simulations of a liquid xenon PET has been performed using Monte-Carlo methods. The results obtained with a large liquid xenon volume are promising : we can expect a reduction of the injected activity of radiotracer, an improvement of the spatial resolution of the image and a parallax free camera. The second part of the thesis was focused on the development of a new concept of medical imaging, the three gamma imaging, based on the use of a new emitter: the 44 scandium. Associated to a classical PET camera, the Compton telescope is used to infer the incoming direction of the third gamma ray by triangulation. Therefore, it is possible to reconstruct the position of each emitter in three dimensions. This work convinced the scientific community to support the construction and characterization of a liquid xenon Compton telescope. The first camera dedicated to small animal imaging should then be operational in 2009. (author)

  10. Technical aspects of the Space Telescope Imaging Spectrograph Repair (STIS-R)

    Science.gov (United States)

    Rinehart, S. A.; Domber, J.; Faulkner, T.; Gull, T.; Kimble, R.; Klappenberger, M.; Leckrone, D.; Niedner, M.; Proffitt, C.; Smith, H.; Woodgate, B.

    2008-07-01

    In August 2004, the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) ceased operation due to a failure of the 5V mechanism power converter in the Side 2 Low Voltage Power Supply (LVPS2). The failure precluded movement of any STIS mechanism and, because of the earlier (2001) loss of the Side 1 electronics chain, left the instrument shuttered and in safe mode after 7.5 years of science operations. A team was assembled to analyze the fault and to determine if STIS repair (STIS-R) was feasible. The team conclusively pinpointed the Side 2 failure to the 5V mechanism converter, and began studying EVA techniques for opening STIS during Servicing Mission 4 (SM4) to replace the failed LVPS2 board. The restoration of STIS functionality via surgical repair by astronauts has by now reached a mature and final design state, and will, along with a similar repair procedure for the Advanced Camera for Surveys (ACS), represent a first for Hubble servicing. STIS-R will restore full scientific functionality of the spectrograph on Side 2, while Side 1 will remain inoperative. Because of the high degree of complementarity between STIS and the new Cosmic Origins Spectrograph (COS, to be installed during SM4)), successful repair of the older spectrograph is an important scientific objective. In this presentation, we focus on the technical aspects associated with STIS-R.

  11. Observe gamma rays to find out how the universe works

    International Nuclear Information System (INIS)

    Tapia, R.

    2015-01-01

    Each hemisphere of the Earth will host one of the two venues of the future network of telescopes Cherenkov (cta, Cherenkov telescope array) designed with the aim of covering all outer space and in stereo, a technique that allows us to reconstruct efficiently the properties of spatial events. Thanks to telescopes with which will be equipped with - greater sensitivity than the current - will be possible to study in detail one of the most powerful radiation of the Universe, gamma rays. Spain has been chosen to host the North Observatory on roque of the boys, on the island of Palma, facilities that will be form das by 20 telescopes. (Author)

  12. Observe gamma rays to find out how the universe works; Observar rayos gamma para saber como funciona El universo

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, R.

    2015-07-01

    Each hemisphere of the Earth will host one of the two venues of the future network of telescopes Cherenkov (cta, Cherenkov telescope array) designed with the aim of covering all outer space and in stereo, a technique that allows us to reconstruct efficiently the properties of spatial events. Thanks to telescopes with which will be equipped with - greater sensitivity than the current - will be possible to study in detail one of the most powerful radiation of the Universe, gamma rays. Spain has been chosen to host the North Observatory on roque of the boys, on the island of Palma, facilities that will be form das by 20 telescopes. (Author)

  13. Hubble Space Telescope Imaging of the Mass-losing Supergiant VY Canis Majoris

    Science.gov (United States)

    Kastner, Joel H.; Weintraub, David A.

    1998-04-01

    The highly luminous M supergiant VY CMa is a massive star that appears to be in its final death throes, losing mass at high rate en route to exploding as a supernova. Subarcsecond-resolution optical images of VY CMa, obtained with the Faint Object Camera (FOC) aboard the Hubble Space Telescope, vividly demonstrate that mass loss from VY CMa is highly anisotropic. In the FOC images, the optical ``star'' VY CMa constitutes the bright, well-resolved core of an elongated reflection nebula. The imaged nebula is ~3" (~4500 AU) in extent and is clumpy and highly asymmetric. The images indicate that the bright core, which lies near one edge of the nebula, is pure scattered starlight. We conclude that at optical wavelengths VY CMa is obscured from view along our line of sight by its own dusty envelope. The presence of the extended reflection nebula then suggests that this envelope is highly flattened and/or that the star is surrounded by a massive circumstellar disk. Such axisymmetric circumstellar density structure should have profound effects on post-red supergiant mass loss from VY CMa and, ultimately, on the shaping of the remnant of the supernova that will terminate its post-main-sequence evolution.

  14. Dark matter signals from Draco and Willman 1: prospects for MAGIC II and CTA

    Science.gov (United States)

    Bringmann, Torsten; Doro, Michele; Fornasa, Mattia

    2009-01-01

    The next generation of ground-based Imaging Air Cherenkov Telescopes will play an important role in indirect dark matter searches. In this article, we consider two particularly promising candidate sources for dark matter annihilation signals, the nearby dwarf galaxies Draco and Willman 1, and study the prospects of detecting such a signal for the soon-operating MAGIC II telescope system as well as for the planned installation of CTA, taking special care of describing the experimental features that affect the detectional prospects. For the first time in such studies, we fully take into account the effect of internal bremsstrahlung, which has recently been shown to considerably enhance, in some cases, the gamma-ray flux in the high energies domain where Atmospheric Cherenkov Telescopes operate, thus leading to significantly harder annihilation spectra than traditionally considered. While the detection of the spectral features introduced by internal bremsstrahlung would constitute a smoking gun signature for dark matter annihilation, we find that for most models the overall flux still remains at a level that will be challenging to detect, unless one adopts somewhat favorable descriptions of the smooth dark matter distribution in the dwarfs.

  15. The Advanced Gamma-ray Imaging System (AGIS): Next-generation Cherenkov telescopes array.

    Science.gov (United States)

    Vassiliev, Vladimir; AGIS Collaboration

    2010-03-01

    AGIS is a concept for a next-generation ground-based gamma-ray observatory in the energy range from 50 GeV to 200 TeV. AGIS is being designed to have significantly improved sensitivity, angular resolution, and reliability of operation relative to the present generation instruments such as VERITAS and H.E.S.S. The novel technologies of AGIS are expected to enable great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way (e.g. SNR, X-ray binaries, dense molecular clouds) and outside the Galaxy (e.g. AGN, GRBs, galaxy clusters, and star-forming galaxies). AGIS will complement and extend the results now being obtained in the GeV range with the Fermi mission providing wide energy coverage, superior angular resolution, and sensitivity to variability on short time scales. AGIS will be a key instrument for identifying and characterizing Fermi LAT sources. In this submission we outline the status of the development of AGIS project, design concept, and principal technologies. As illustrations of the scientific capabilities of AGIS, we review its potential to indirectly search for dark matter and measure cosmological magnetic fields.

  16. Parametric Cherenkov radiation (development of idea)

    International Nuclear Information System (INIS)

    Buts, V.A.

    2004-01-01

    Some physical results of researches about charged particles radiation in mediums with a periodic heterogeneity and in periodic potential are reported. The development of ideas Parametric Cherenkov Radiation has shown, that in mediums, which have even a weak degree of a periodic heterogeneity of an permittivity or potential, the nonrelativistic oscillators can radiated as relativistic. They effectively radiate the high numbers of harmonics. In particular, in the carried out experiments the ultra-violet radiation was excited at action on a crystal of intensive ten-centimetric radiation. These results give the reasons to hope for making of nonrelativistic lasers on free electrons

  17. Large-area atmospheric Cherenkov detectors for high-energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Ong, R.A.

    1996-01-01

    This paper describes the development of new ground-based gamma-ray detectors to explore the energy region between 20 and 200 GeV. This region in energy is interesting because it is currently unexplored by any experiment. The proposed detectors use the atmospheric Cherenkov technique, in which Cherenkov radiation produced in the gamma-ray air showers is detected using mirrors and light-sensitive devices. The important feature of the proposed experiments is the use of large mirror collection areas, which should allow for a significant improvement (i.e. reduction) in energy threshold over existing experiments. Large mirror areas are available for relatively low cost at central tower solar power plants, and there are two groups developing gamma-ray experiments using solar heliostat arrays. This paper summarizes the progress in the design of experiments using this novel approach

  18. Cherenkov radiation-based three-dimensional position-sensitive PET detector: A Monte Carlo study.

    Science.gov (United States)

    Ota, Ryosuke; Yamada, Ryoko; Moriya, Takahiro; Hasegawa, Tomoyuki

    2018-05-01

    Cherenkov radiation has recently received attention due to its prompt emission phenomenon, which has the potential to improve the timing performance of radiation detectors dedicated to positron emission tomography (PET). In this study, a Cherenkov-based three-dimensional (3D) position-sensitive radiation detector was proposed, which is composed of a monolithic lead fluoride (PbF 2 ) crystal and a photodetector array of which the signals can be readout independently. Monte Carlo simulations were performed to estimate the performance of the proposed detector. The position- and time resolution were evaluated under various practical conditions. The radiator size and various properties of the photodetector, e.g., readout pitch and single photon timing resolution (SPTR), were parameterized. The single photon time response of the photodetector was assumed to be a single Gaussian for the simplification. The photo detection efficiency of the photodetector was ideally 100% for all wavelengths. Compton scattering was included in simulations, but partly analyzed. To estimate the position at which a γ-ray interacted in the Cherenkov radiator, the center-of-gravity (COG) method was employed. In addition, to estimate the depth-of-interaction (DOI) principal component analysis (PCA), which is a multivariate analysis method and has been used to identify the patterns in data, was employed. The time-space distribution of Cherenkov photons was quantified to perform PCA. To evaluate coincidence time resolution (CTR), the time difference of two independent γ-ray events was calculated. The detection time was defined as the first photon time after the SPTR of the photodetector was taken into account. The position resolution on the photodetector plane could be estimated with high accuracy, by using a small number of Cherenkov photons. Moreover, PCA showed an ability to estimate the DOI. The position resolution heavily depends on the pitch of the photodetector array and the radiator

  19. A flat array large telescope concept for use on the moon, earth, and in space

    Science.gov (United States)

    Woodgate, Bruce E.

    1991-01-01

    An astronomical optical telescope concept is described which can provide very large collecting areas, of order 1000 sq m. This is an order of magnitude larger than the new generation of telescopes now being designed and built. Multiple gimballed flat mirrors direct the beams from a celestial source into a single telescope of the same aperture as each flat mirror. Multiple images of the same source are formed at the telescope focal plane. A beam combiner collects these images and superimposes them into a single image, onto a detector or spectrograph aperture. This telescope could be used on the earth, the moon, or in space.

  20. Measuring the emulsion stability in Cherenkov radiation with insignificant modification of a liquid scintillation spectrometer

    International Nuclear Information System (INIS)

    Wiechen, A.; Lorenzen, P.Ch.; Reimerdes, E.H.

    1984-01-01

    A method is described by which the stability of emulsions can be measured by a modified liquid scintillation counter. The 226 Ra external standard source of a commercially available equipment, fixed in the measuring position, is used for the production of Cherenkov radiation in a sample of an emulsion. This Cherenkov radiation is absorbed by the sample due to its turbidity. The turbidity of emulsions follows a typical course with time designated as creaming-up-curve. These curves can be registered automatically in digital form. (author)