WorldWideScience

Sample records for imaging agent 18f-fallypride

  1. Spinal cord dopamine D2/D3 receptors: in vivo and ex vivo imaging in the rat using 18F/11C-fallypride

    International Nuclear Information System (INIS)

    Kaur, Jasmeet; Khararjian, Armen; Coleman, Robert A.; Constantinescu, Cristian C.; Pan, Min-Liang; Mukherjee, Jogeshwar

    2014-01-01

    Objectives: The spinal cord is known to be innervated with dopaminergic cells with catecholaminergic projections arising from the medulla and pons and dopaminergic transmission in the spinal cord is vital for sensory and motor function. Our goal was to evaluate and compare the imaging capability of dopamine D2/D3 receptors in the rat spinal cord using PET ligands 18 F-fallypride and 11 C-fallypride. Methods: Male Sprague–Dawley rats were used in all in vitro and in vivo studies. Spinal cord and brain sections were used for in vitro autoradiography and ex vivo autoradiography. For in vivo studies animals received a 18 F-fallypride scan or a 11 C-fallypride PET scan. The spinal cord and the brain were then harvested, flash-frozen and imaged ex vivo. For in vivo analysis Logan plots with cerebellum as a reference was used to evaluate binding potentials (BP). Tissue ratios were used for ex vivo analysis. Drug effects were evaluated using clozapine, haloperidol and dopamine were evaluated on spinal cord sections in vitro. Results: In vitro studies showed 18 F-fallypride binding to superficial dorsal horn (SDH), dorsal horn (DH), ventral horn (VH) and the pars centralis (PC). In the cervical section, the greatest amount of binding appeared to be in the SDH. Ex vivo studies showed approximately 6% of 18 F-fallypride in SDH compared to that observed in the striatum. In vivo analysis of both 18 F-fallypride and 11 C-fallypride in the spinal cord were comparable to that in the extrastriatal regions. Haloperidol and clozapine displaced more than 75% of the 18 F-fallypride in spinal cord sections. Conclusions: Our studies showed 18 F-fallypride and 11 C-fallypride binding in the spinal cord in vitro and in vivo. The binding pattern correlates well with the known distribution of dopamine D2/D3 receptors in the spinal cord

  2. Evaluation of dopamine transporters and D2 receptors in hemiparkinsonian rat brains in vivo using consecutive PET scans of [18F]FPCIT and [18F]fallypride

    International Nuclear Information System (INIS)

    Choi, Jae Yong; Kim, Chul Hoon; Jeon, Tae Joo; Cho, Won Gil; Lee, Jin Suk; Lee, Soo Jin; Choi, Tae Hyun; Kim, Byoung Soo; Yi, Chi Hoon; Seo, Youngbeom; Yi, Dae Ik; Han, Sang Jin; Lee, Minkyung; Kim, Dong Goo; Lee, Jong Doo; An, Gwangil

    2012-01-01

    The aim of this study was to investigate dopaminergic function in unilaterally lesioned 6-OHDA rats by dual PET radioligands: [ 18 F]FPCIT (a dopamine transporter imaging radioligand) and [ 18 F]fallypride (a dopamine D2 receptors imaging radioligand). As a result, the brain uptake of [ 18 F]FPCIT was significantly reduced and that of [ 18 F]fallypride was increased in the ipsilateral striatum (lesion side) of the 6-OHDA rats. These findings implicated that dopamine transporter is down-regulated and dopamine D2 receptor is up-regulated in this hemiparkinsonian rat model. - Highlights: ► The dopaminergic integrity in unilateral 6-OHDA was evaluated by dual PET tracers. ► The brain uptake and BP ND of [ 18 F]FPCIT was greatly decreased. ► The brain uptake and BP ND [ 18 F]fallypride was slightly increased. ► DAT are down-regulated and D2R are up-regulated.

  3. A simple microfluidic platform for rapid and efficient production of the radiotracer [18F]fallypride.

    Science.gov (United States)

    Zhang, Xin; Liu, Fei; Knapp, Karla-Anne; Nickels, Michael L; Manning, H Charles; Bellan, Leon M

    2018-05-01

    Herein, we report the development of a simple, high-throughput and efficient microfluidic system for synthesizing radioactive [18F]fallypride, a PET imaging radiotracer widely used in medical research. The microfluidic chip contains all essential modules required for the synthesis and purification of radioactive fallypride. The radiochemical yield of the tracer is sufficient for multiple animal injections for preclinical imaging studies. To produce the on-chip concentration and purification columns, we employ a simple "trapping" mechanism by inserting rows of square pillars with predefined gaps near the outlet of microchannel. Microspheres with appropriate functionality are suspended in solution and loaded into the microchannels to form columns for radioactivity concentration and product purification. Instead of relying on complicated flow control elements (e.g., micromechanical valves requiring complex external pneumatic actuation), external valves are utilized to control transfer of the reagents between different modules. The on-chip ion exchange column can efficiently capture [18F]fluoride with negligible loss (∼98% trapping efficiency), and subsequently release a burst of concentrated [18F]fluoride to the reaction cavity. A thin layer of PDMS with a small hole in the center facilitates rapid and reliable water evaporation (with the aid of azeotropic distillation and nitrogen flow) while reducing fluoride loss. During the solvent exchange and fluorination reaction, the entire chip is uniformly heated to the desired temperature using a hot plate. All aspects of the [18F]fallypride synthesis were monitored by high-performance liquid chromatography (HPLC) analysis, resulting in labelling efficiency in fluorination reaction ranging from 67-87% (n = 5). Moreover, after isolating unreacted [18F]fluoride, remaining fallypride precursor, and various by-products via an on-chip purification column, the eluted [18F]fallypride is radiochemically pure and of a sufficient

  4. [18F]Fallypride: Metabolism studies and quantification of the radiotracer and its radiometabolites in plasma using a simple and rapid solid-phase extraction method

    International Nuclear Information System (INIS)

    Peyronneau, Marie-Anne; Saba, Wadad; Goutal, Sébastien; Kuhnast, Bertrand; Dollé, Frédéric; Bottlaender, Michel; Valette, Héric

    2013-01-01

    Introduction: [ 18 F]Fallypride, a fluorinated and substituted benzamide with high affinity for D 2 /D 3 receptors, is a useful PET radioligand for the study of striatal/extrastriatal areas. Since [ 18 F]fallypride is extensively metabolized in vivo and since PET examinations are long lasting in humans, the rapid measurement of the unchanged radiotracer in plasma is essential for the quantification of images. The present study aims: i) to evaluate if the radiometabolites of [ 18 F]fallypride cross the blood–brain barrier in rodents, ii) to identify these radiometabolites in baboon plasma and iii) to develop a rapid solid phase extraction method (SPE) suitable for human applications to quantify both [ 18 F]fallypride and its radiometabolites in plasma. Methods: The metabolites P450-dependant in rat and human liver microsomes were characterized by LC–MS–MS and compared to those detected in vivo. Sequential solvent elution on Oasis®-MCX-SPE cartridges was used to quantify [ 18 F]fallypride and its radiometabolites. Result: In rat microsomal incubations, five metabolites generated upon N/O-dealkylation or hydroxylation at the pyrrolidine and/or at the benzamide moiety were identified. No radiometabolite was detected in the rat brain. N-dealkylated and hydroxylated derivatives were detected in human microsomal incubations as well as in baboon plasma. The use of SPE (total recovery 100.2% ± 2.8%, extraction yield 95.5% ± 0.3%) allowed a complete separation of [ 18 F]fallypride from its radiometabolites in plasma and evaluate [ 18 F]fallypride at 150 min pi to be 22% ± 5% of plasma radioactivity. Conclusions: The major in vivo radiometabolites of [ 18 F]fallypride were produced by N-dealkylation and hydroxylation. Allowing the rapid analysis of multiple plasma samples, SPE is a method of choice for the determination of [ 18 F]fallypride until late images required for quantitative PET imaging in humans

  5. Positron emission tomography (PET) imaging of nicotine-induced dopamine release in squirrel monkeys using [18F]Fallypride.

    Science.gov (United States)

    Naylor, Jennifer E; Hiranita, Takato; Matazel, Katelin S; Zhang, Xuan; Paule, Merle G; Goodwin, Amy K

    2017-10-01

    Nicotine, the principal psychoactive tobacco constituent, is thought to produce its reinforcing effects via actions within the mesolimbic dopamine (DA) system. The objective of the current study was to examine the effect of nicotine on DA D 2 /D 3 receptor availability in the nonhuman primate brain with the use of the radioligand [ 18 F]fallypride and positron emission tomography (PET). Ten adult male squirrel monkeys were used in the current study. Each subject underwent two PET scans, one with an injection (IV) of saline and subsequently one with an injection of nicotine (0.032mg/kg). The DA D 2 /D 3 antagonist, [ 18 F]fallypride, was delivered IV at the beginning of each scan, and nicotine or saline was delivered at 45min into the scan. Regions of interest (ROI) were drawn on specific brain regions and these were used to quantify standard uptake values (SUVs). The SUV is defined as the average concentration of radioactivity in the ROI x body weight/injected dose. Using the cerebellum as a reference region, SUV ratios (SUV ROI /SUV cerebellum ) were calculated to compare saline and nicotine effects in each ROI. Two-way repeated ANOVA revealed a significant decrease of SUV ratios in both striatal and extrastriatal regions following an injection of nicotine during the PET scans. Like other drugs of abuse, these results indicate that nicotine administration may produce DA release, as suggested by the decrease in [ 18 F]fallypride signal in striatal regions. These findings from a nonhuman primate model provide further evidence that the mesolimbic DA system is affected by the use of products that contain nicotine. Published by Elsevier B.V.

  6. Preliminary assessment of extrastriatal dopamine d-2 receptor binding in the rodent and nonhuman primate brains using the high affinity radioligand, {sup 18}F-fallypride

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Jogeshwar E-mail: jogeshwar-mukherjee@ketthealth.com; Yang, Z.-Y.; Brown, Terry; Lew, Robert; Wernick, Miles; Ouyang Xiaohu; Yasillo, Nicholas; Chen, C.-T.; Mintzer, Robert; Cooper, Malcolm

    1999-07-01

    We have identified the value of {sup 18}F-fallypride {l_brace}(S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[{sup 18}F]fluoropropyl)-2,3-dim= ethoxybenzamide{r_brace}, as a dopamine D-2 receptor radiotracer for the study of striatal and extrastriatal receptors. Fallypride exhibits high affinities for D-2 and D-3 subtypes and low affinity for D-4 ({sup 3}H-spiperone IC{sub 50}s: D-2=0.05 nM [rat striata], D-3=0.30 nM [SF9 cell lines, rat recombinant], and D-4=240 nM [CHO cell lines, human recombinant]). Biodistribution in the rat brain showed localization of {sup 18}F-fallypride in striata and extrastriatal regions such as the frontal cortex, parietal cortex, amygdala, hippocampus, thalamus, and hypothalamus. In vitro autoradiographic studies in sagittal slices of the rat brain showed localization of {sup 18}F-fallypride in striatal and several extrastriatal regions, including the medulla. Positron emission tomography (PET) experiments with {sup 18}F-fallypride in male rhesus monkeys were carried out in a PET VI scanner. In several PET experiments, apart from the specific binding seen in the striatum, specific binding of {sup 18}F-fallypride was also identified in extracellular regions (in a lower brain slice, possibly the thalamus). Specific binding in the extrastriata was, however, significantly lower compared with that observed in the striata of the monkeys (extrastriata/cerebellum = 2, striata/cerebellum = 10). Postmortem analysis of the monkey brain revealed significant {sup 18}F-fallypride binding in the striata, whereas binding was also observed in extrastriatal regions such as the thalamus, cortical areas, and brain stem.

  7. Automated synthesis of the estrogen receptors imaging agent 18F-FES

    International Nuclear Information System (INIS)

    Guo Shen; Chen Guobao; Dai Hongfeng; Lin Meifu; Chen Wenxin

    2011-01-01

    Objective: 18 F-16α-17β-fluoroestradiol ( 18 F-FES), an estrogen receptors imaging agent, is synthesized with Tracerlab FX FN system. Methods: 18 F-FES is obtained by two steps reactions, including the nucleophilic displacement reaction of no-carrier-added 18 F-fluoride with 3-O-methoxymethyl-16, 17-O-sulfuryl-16-epiesteriol, then the intermediate is evaporated and hydrolyzed with HCI and finally gives 18 F-FES. Results: The synthesis of 18 F-FES can be completed in about 80 min.The radiochemical yield and radio-chemical purity are about 10% and 95% respectively. Conclusion: The procedure of synthesis is simple and automatical. 18 F-FES has an extremely low toxicity, which suggests that 18 F-FES may be a safe, a nd effective estrogen receptors imaging agent. (authors)

  8. Study on folate receptor PET imaging agent 18F-flurophenethyl folate

    International Nuclear Information System (INIS)

    Guo Congying; Zhu Jianhua; Qian Jun; Yang Yang; Shen Haixing; Zhang Zhengwei

    2009-01-01

    This work is aimed at synthesizing an 18 F-labelled folate derivative that can be used as folate-receptor induced tumor PET imaging agent. Under the optimal reaction and testing specification formulated during the cold-labeling experiments, 18 F labeling of folic acid was achieved in three steps of 18 F pre-labeling,bromination and esterification. The receptor binding property of the newly-synthesized folate radio-derivative was studied through β-lactoglobulin binding test. Tumor-bearing nude mice injected with the new compound were used to study whether the derivative can accumulate within tumor issue. Preliminary studies in vitro and in vivo showed that this new PET agent still possessed receptor binding qualities of folic acid. 18 F-flurophenethyl folate remained good affinity and specificity with β-lactoglobulin. Accumulation of activities in tumor tissues was found in tumor-bearing nude mice. A new folate receptor ligand: 18 F-flurophenethyl folate was synthesized,with high yield and good stability. Since the pre-labeling method was used, the fluorine labeling was not directly imposed upon folic acid.In this way, the structure destruction, which happens in high temperature reaction of folic acid, can be avoided. The synthesized folate derivative remained the binding structural quality of folic acid and could bind with the folate-binding protein: β-lactoglobulin. Through the folate receptors located on tumor tissues, 18 F-flurophenethyl folate accumulated in the tumor tissue, exhibiting its potential as a tumor PET imaging agent. (authors)

  9. Evaluation of 18F-labeled icotinib derivatives as potential PET agents for tumor imaging

    International Nuclear Information System (INIS)

    Hongyu Ren; Hongyu Ning; Jin Chang; Mingxia Zhao; Yong He; Yan Chong; Chuanmin Qi

    2016-01-01

    In this study, three 18 F-labeled crown ether fused anilinoquinazoline derivatives ([ 18 F]11a-c) were synthesized and evaluated as potential tumor imaging probes. The biodistribution results of [ 18 F]11b were good. Compared with [ 18 F]-fludeoxyglucose and l-[ 18 F]-fluoroethyltyrosine in the same animal model, [ 18 F]11b had better tumor/brain, tumor/muscle, and tumor/blood uptake ratios. Overall, these results suggest that [ 18 F]11b is promising as a tumor imaging agent for positron emission tomography. (author)

  10. 18F-Labelled metomidate analogues as adrenocortical imaging agents

    International Nuclear Information System (INIS)

    Erlandsson, Maria; Karimi, Farhad; Lindhe, Orjan; Langstroem, Bengt

    2009-01-01

    Introduction: Two- and one-step syntheses of 18 F-labelled analogues of metomidate, such as 2-[ 18 F]fluoroethyl 1-[(1R)-1-phenylethyl]-1H-imidazole-5-carboxylate (1), 2-[ 18 F]fluoroethyl 1-[(1R)-1-(4-chlorophenyl)ethyl]-1H-imidazole-5-carboxylate (2), 2-[ 18 F]fluoroethyl 1-[(1R)-1-(4-bromophenyl)ethyl]-1H-imidazole-5-carboxylate (3), 3-[ 18 F]fluoropropyl 1-[(1R)-1-(4-bromophenyl)ethyl]-1H-imidazole-5-carboxylate (4) and 3-[ 18 F]fluoropropyl 1-[(1R)-1-phenylethyl]-1H-imidazole-5-carboxylate (5) are presented. Methods: Analogues 1-5 were prepared by a two-step reaction sequence that started with the synthesis of either 2-[ 18 F]fluoroethyl 4-methylbenzenesulfonate or 3-[ 18 F]fluoropropyl 4-methylbenzenesulfonate. These were used as 18 F-alkylating agents in the second step, in which they reacted with the ammonium salt of a 1-[(1R)-1-phenylethyl]-1H-imidazole-5-carboxylic acid. One-step-labelling syntheses of 1, 2 and 5 were also explored. Analogues 1-4 were biologically validated by frozen-section autoradiography and organ distribution. Metabolite analysis was performed for 2 and 3. Results: The radiochemical yield of the two-step synthesis was in the range of 10-29% and that of the one-step synthesis was 25-37%. Using microwave irradiation in the one-step synthesis of 1 and 2 increased the radiochemical yield to 46±3% and 79±30%, respectively. Conclusion: Both the frozen-section autoradiography and organ distribution results indicated that analogue 2 has a potential as an adrenocortical imaging agent, having the highest degree of specific adrenal binding and best ratio of adrenal to organ uptake among the compounds studied.

  11. Delta-9-tetrahydrocannabinol-induced dopamine release as a function of psychosis risk: 18F-fallypride positron emission tomography study.

    Directory of Open Access Journals (Sweden)

    Rebecca Kuepper

    Full Text Available Cannabis use is associated with psychosis, particularly in those with expression of, or vulnerability for, psychotic illness. The biological underpinnings of these differential associations, however, remain largely unknown. We used Positron Emission Tomography and (18F-fallypride to test the hypothesis that genetic risk for psychosis is expressed by differential induction of dopamine release by Δ(9-THC (delta-9-tetrahydrocannabinol, the main psychoactive ingredient of cannabis. In a single dynamic PET scanning session, striatal dopamine release after pulmonary administration of Δ(9-THC was measured in 9 healthy cannabis users (average risk psychotic disorder, 8 patients with psychotic disorder (high risk psychotic disorder and 7 un-related first-degree relatives (intermediate risk psychotic disorder. PET data were analyzed applying the linear extension of the simplified reference region model (LSRRM, which accounts for time-dependent changes in (18F-fallypride displacement. Voxel-based statistical maps, representing specific D2/3 binding changes, were computed to localize areas with increased ligand displacement after Δ(9-THC administration, reflecting dopamine release. While Δ(9-THC was not associated with dopamine release in the control group, significant ligand displacement induced by Δ(9-THC in striatal subregions, indicative of dopamine release, was detected in both patients and relatives. This was most pronounced in caudate nucleus. This is the first study to demonstrate differential sensitivity to Δ(9-THC in terms of increased endogenous dopamine release in individuals at risk for psychosis.

  12. {sup 18}F-Labelled metomidate analogues as adrenocortical imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, Maria; Karimi, Farhad [Department of Biochemistry and Organic Chemistry, Uppsala University, Box 576, S-751 23 Uppsala (Sweden); Lindhe, Orjan [Uppsala Imanet, GE Healthcare, Box 967, S-751 09 Uppsala (Sweden); Langstroem, Bengt [Department of Biochemistry and Organic Chemistry, Uppsala University, Box 576, S-751 23 Uppsala (Sweden)], E-mail: bengt.langstrom@biorg.uu.se

    2009-05-15

    Introduction: Two- and one-step syntheses of {sup 18}F-labelled analogues of metomidate, such as 2-[{sup 18}F]fluoroethyl 1-[(1R)-1-phenylethyl]-1H-imidazole-5-carboxylate (1), 2-[{sup 18}F]fluoroethyl 1-[(1R)-1-(4-chlorophenyl)ethyl]-1H-imidazole-5-carboxylate (2), 2-[{sup 18}F]fluoroethyl 1-[(1R)-1-(4-bromophenyl)ethyl]-1H-imidazole-5-carboxylate (3), 3-[{sup 18}F]fluoropropyl 1-[(1R)-1-(4-bromophenyl)ethyl]-1H-imidazole-5-carboxylate (4) and 3-[{sup 18}F]fluoropropyl 1-[(1R)-1-phenylethyl]-1H-imidazole-5-carboxylate (5) are presented. Methods: Analogues 1-5 were prepared by a two-step reaction sequence that started with the synthesis of either 2-[{sup 18}F]fluoroethyl 4-methylbenzenesulfonate or 3-[{sup 18}F]fluoropropyl 4-methylbenzenesulfonate. These were used as {sup 18}F-alkylating agents in the second step, in which they reacted with the ammonium salt of a 1-[(1R)-1-phenylethyl]-1H-imidazole-5-carboxylic acid. One-step-labelling syntheses of 1, 2 and 5 were also explored. Analogues 1-4 were biologically validated by frozen-section autoradiography and organ distribution. Metabolite analysis was performed for 2 and 3. Results: The radiochemical yield of the two-step synthesis was in the range of 10-29% and that of the one-step synthesis was 25-37%. Using microwave irradiation in the one-step synthesis of 1 and 2 increased the radiochemical yield to 46{+-}3% and 79{+-}30%, respectively. Conclusion: Both the frozen-section autoradiography and organ distribution results indicated that analogue 2 has a potential as an adrenocortical imaging agent, having the highest degree of specific adrenal binding and best ratio of adrenal to organ uptake among the compounds studied.

  13. Synthesis, biological evaluation, and baboon PET imaging of the potential adrenal imaging agent cholesteryl-p-[18f]fluorobenzoate

    International Nuclear Information System (INIS)

    Jonson, Stephanie D.; Welch, Michael J.

    1999-01-01

    Cholesteryl-p-[ 18 F]fluorobenzoate ([ 18 F]CFB) was investigated as a potential adrenal positron emission tomography (PET) imaging agent for the diagnostic imaging of adrenal disorders. We describe the synthesis, biodistribution, adrenal autoradiography, and baboon PET imaging of [ 18 F]CFB. The synthesis of [ 18 F]CFB was facilitated by the use of a specially designed microwave cavity that was instrumental in effecting 70-83% incorporation of fluorine-18 in 60 s via [ 18 F]fluoro-for-nitro exchange. Tissue distribution studies in mature female Sprague-Dawley rats showed good accumulation of [ 18 F]CFB in the steroid-secreting tissues, adrenals and ovaries, at 1 h postinjection. The effectiveness of [ 18 F]CFB to accumulate in diseased adrenals was shown through biodistribution studies in hypolipidemic rats, which showed a greater than threefold increase in adrenal uptake at 1 h and increased adrenal/liver and adrenal/kidney ratios. Analysis of the metabolites at 1 h in the blood, adrenals, spleen, and ovaries of hypolipidemic and control rats showed the intact tracer representing greater than 86%, 93%, 92%, and 82% of the accumulated activity, respectively. [ 18 F]CFB was confirmed to selectively accumulate in the adrenal cortex versus the adrenal medulla by autoradiography. Normal baboon PET imaging with [ 18 F]CFB effectively showed adrenal localization as early as 15 min after injection of the tracer, with enhanced adrenal contrast seen at 60-70 min. These results suggest that [ 18 F]CFB may be useful as an adrenal PET imaging agent for assessing adrenal disorders

  14. Synthesis, biological evaluation, and baboon PET imaging of the potential adrenal imaging agent cholesteryl-p-[{sup 18}f]fluorobenzoate

    Energy Technology Data Exchange (ETDEWEB)

    Jonson, Stephanie D.; Welch, Michael J. E-mail: welch@mirlink.wustl.edu

    1999-01-01

    Cholesteryl-p-[{sup 18}F]fluorobenzoate ([{sup 18}F]CFB) was investigated as a potential adrenal positron emission tomography (PET) imaging agent for the diagnostic imaging of adrenal disorders. We describe the synthesis, biodistribution, adrenal autoradiography, and baboon PET imaging of [{sup 18}F]CFB. The synthesis of [{sup 18}F]CFB was facilitated by the use of a specially designed microwave cavity that was instrumental in effecting 70-83% incorporation of fluorine-18 in 60 s via [{sup 18}F]fluoro-for-nitro exchange. Tissue distribution studies in mature female Sprague-Dawley rats showed good accumulation of [{sup 18}F]CFB in the steroid-secreting tissues, adrenals and ovaries, at 1 h postinjection. The effectiveness of [{sup 18}F]CFB to accumulate in diseased adrenals was shown through biodistribution studies in hypolipidemic rats, which showed a greater than threefold increase in adrenal uptake at 1 h and increased adrenal/liver and adrenal/kidney ratios. Analysis of the metabolites at 1 h in the blood, adrenals, spleen, and ovaries of hypolipidemic and control rats showed the intact tracer representing greater than 86%, 93%, 92%, and 82% of the accumulated activity, respectively. [{sup 18}F]CFB was confirmed to selectively accumulate in the adrenal cortex versus the adrenal medulla by autoradiography. Normal baboon PET imaging with [{sup 18}F]CFB effectively showed adrenal localization as early as 15 min after injection of the tracer, with enhanced adrenal contrast seen at 60-70 min. These results suggest that [{sup 18}F]CFB may be useful as an adrenal PET imaging agent for assessing adrenal disorders.

  15. [18F]fallypride characterization of striatal and extrastriatal D2/3 receptors in Parkinson's disease.

    Science.gov (United States)

    Stark, Adam J; Smith, Christopher T; Petersen, Kalen J; Trujillo, Paula; van Wouwe, Nelleke C; Donahue, Manus J; Kessler, Robert M; Deutch, Ariel Y; Zald, David H; Claassen, Daniel O

    2018-01-01

    Parkinson's disease (PD) is characterized by widespread degeneration of monoaminergic (especially dopaminergic) networks, manifesting with a number of both motor and non-motor symptoms. Regional alterations to dopamine D 2/3 receptors in PD patients are documented in striatal and some extrastriatal areas, and medications that target D 2/3 receptors can improve motor and non-motor symptoms. However, data regarding the combined pattern of D 2/3 receptor binding in both striatal and extrastriatal regions in PD are limited. We studied 35 PD patients off-medication and 31 age- and sex-matched healthy controls (HCs) using PET imaging with [ 18 F]fallypride, a high affinity D 2/3 receptor ligand, to measure striatal and extrastriatal D 2/3 nondisplaceable binding potential (BP ND ). PD patients completed PET imaging in the off medication state, and motor severity was concurrently assessed. Voxel-wise evaluation between groups revealed significant BP ND reductions in PD patients in striatal and several extrastriatal regions, including the locus coeruleus and mesotemporal cortex. A region-of-interest (ROI) based approach quantified differences in dopamine D 2/3 receptors, where reduced BP ND was noted in the globus pallidus, caudate, amygdala, hippocampus, ventral midbrain, and thalamus of PD patients relative to HC subjects. Motor severity positively correlated with D 2/3 receptor density in the putamen and globus pallidus. These findings support the hypothesis that abnormal D 2/3 expression occurs in regions related to both the motor and non-motor symptoms of PD, including areas richly invested with noradrenergic neurons.

  16. Biodistribution and PET imaging of [18F]-fluoroadenosine derivatives

    International Nuclear Information System (INIS)

    Alauddin, Mian M.; Shahinian, Antranik; Park, Ryan; Tohme, Michael; Fissekis, John D.; Conti, Peter S.

    2007-01-01

    Introduction: Many fluorinated analogues of adenosine nucleoside have been synthesized and studied as potential antitumor and antiviral agents. Earlier, we reported radiosynthesis of 2'-deoxy-2'-[ 18 F]fluoro-1-β-D-arabinofuranosyl-adenine ([ 18 F]-FAA) and 3'-deoxy-3'-[ 18 F]fluoro-1-β-D-xylofuranosyl-adenine ([ 18 F]FXA). Now, we report their in vivo studies including blood clearance, biodistribution and micro-PET imaging in tumor-bearing nude mice. Methods: Tumors were grown in 6-week-old athymic nude mice (Harlan, Indianapolis, IN, USA) by inoculation of HT-29 cells, wild-type cells in the left flank and transduced cells with HSV-tk on the right flank. When the tumor was about 1 cm in size, animals were injected with these radiotracers for in vivo studies, including blood clearance, micro-PET imaging and biodistribution. Results: Uptake of [ 18 F]FAA in tumor was 3.3-fold higher than blood, with highest uptake in the spleen. Maximum uptake of [ 18 F]FXA was observed in the heart compared to other organs. There was no tumor uptake of [ 18 F]FXA. Biodistribution results were supported by micro-PET images, which also showed very high uptake of [ 18 F]FAA in spleen and visualization of tumors, and high uptake of [ 18 F]FXA in the heart. Conclusion: These results suggest that [ 18 F]FAA may be useful for tumor imaging, while [ 18 F]FXA may have potential as a heart imaging agent with PET

  17. Preparation of a dopamine transporter imaging agent 18F-FP-β-CIT and its biodistribution in rat brain

    International Nuclear Information System (INIS)

    Chen Zhengping; Wu Chunying; Li Xiaomin; Zhang Tongxing; Wang Songpei; Lu Chunxiong; Fu Ronggeng; Zhang Zhengwei; Guan Yihui

    2003-01-01

    Objective: To develop a simple and easy protocol of preparing 18 F-N-3-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) nortropane (FP-β-CIT) as a dopamine transporter imaging agent, and to study the distribution of this agent in rat brain. Methods: 18 F-FP-β-CIT was prepared by direct reaction in CH 3 CN between K 18 F and the labeling precursor, N-(3-(mesyloxy) propyl )-2β-carbomethoxy-3β-(4-iodophenyl) nortropane (MsOP-CIT), in which Kryptofix 222 was used as phase transfer catalyst. 18 F-FP-β-CIT was purified through a Sep-Pak SiO 2 cartridge and eluted with ethyl ether. The purified 18 F-FP-β-CIT was injected into the rat's tail vein. These rats were sacrificed by cervical dislocation at different time points (5, 30, 60, 120, 180 min) after injection. The brain tissue of interest was removed, weighed, and radiocounted. Results: The radiochemical purity of 18 F-FP-β-CIT was over 95%, and the radiochemical yield from starting 18 F-fluoride was about 10%. 18 F-FP-β-CIT was absorbed rapidly in rat brain and was cleaned gradually (1.49, 0.59, 0.31, 0.21, 0.17%ID at 5, 30, 60, 120, 180 min, respectively). Radiouptake of striatum was more than that of other tissues and was cleaned slower than in other tissues at 60 min. Ratios of radiouptake of striatum /cerebellum were 1.75, 3.38, 3.73, 3.71 and 3.20 at 5, 30, 60, 120, 180 min, respectively. Conclusions: 18 F-FP-β-CIT is synthesized by a one-step protocol in which the preparative high performance liquid chromatography is not necessary in purifying procedure. The dominant distribution of 18 F-FP-β-CIT in rat striatum indicates that it is a potential dopamine transporter imaging agent

  18. Synthesis and biological evaluation of [18F]tetrafluoroborate: a PET imaging agent for thyroid disease and reporter gene imaging of the sodium/iodide symporter

    International Nuclear Information System (INIS)

    Jauregui-Osoro, Maite; Sunassee, Kavitha; Weeks, Amanda J.; Berry, David J.; Paul, Rowena L.; Cleij, Marcel; O'Doherty, Michael J.; Marsden, Paul K.; Szanda, Istvan; Blower, Philip J.; Banga, Jasvinder Paul; Clarke, Susan E.M.; Ballinger, James R.; Cheng, Sheue-Yann

    2010-01-01

    The human sodium/iodide symporter (hNIS) is a well-established target in thyroid disease and reporter gene imaging using gamma emitters 123 I-iodide, 131 I-iodide and 99m Tc-pertechnetate. However, no PET imaging agent is routinely available. The aim of this study was to prepare and evaluate 18 F-labelled tetrafluoroborate ([ 18 F]TFB) for PET imaging of hNIS. [ 18 F]TFB was prepared by isotopic exchange of BF 4 - with [ 18 F]fluoride in hot hydrochloric acid and purified using an alumina column. Its identity, purity and stability in serum were determined by HPLC, thin-layer chromatography (TLC) and mass spectrometry. Its interaction with NIS was assessed in vitro using FRTL-5 rat thyroid cells, with and without stimulation by thyroid-stimulating hormone (TSH), in the presence and absence of perchlorate. Biodistribution and PET imaging studies were performed using BALB/c mice, with and without perchlorate inhibition. [ 18 F]TFB was readily prepared with specific activity of 10 GBq/mg. It showed rapid accumulation in FRTL-5 cells that was stimulated by TSH and inhibited by perchlorate, and rapid specific accumulation in vivo in thyroid (SUV = 72 after 1 h) and stomach that was inhibited 95% by perchlorate. [ 18 F]TFB is an easily prepared PET imaging agent for rodent NIS and should be evaluated for hNIS PET imaging in humans. (orig.)

  19. Synthesis of 18F labeled clotrimazole derivatives as a potential PET imaging agent

    International Nuclear Information System (INIS)

    Jung, Soon Jae; Kim, In Jong; Park, Jeong Hoon; Lee, Heung Nae; Kim, Sang Wook; Hur, Min Goo; Choi, Sang Moo; Yang, Seung Dae; Yu, Kook Hyun

    2010-01-01

    Clotrimazole [1- -1H-imidazole, CLT] has been reported to inhibit the proliferation of vascular endothelial and act as an in vitro anti-VEGF drug. It is also shown to inhibit angiogenesis in an animal model. The radioisotope labeled clotrimazole derivative can be utilized to monitor the physiologic processes of cancer. In this study, we synthesized [ 18 F]fluoride labeled clotrimazole derivatives as a new tumor imaging agent for PET. The references were prepared by a refluxing with clotrimazole and an excess of fluoroalkyltosylate in acetonitrile for 36 h and clotrimazole reacted with ditosylalkane to give precursors. [ 18 ]Fluoride labeled reaction was performed with precursor in Kryptofix[2.2.2]/K 2 CO 3 for 10 min at 80 .deg. C. The radiolabeling mixture was passed through a silica Sep-Pak cartridge to remove 18 F - . The [ 18 ]F-clotrimazole derivatives were synthesized with a 20 ∼ 25% yield. In the radiofluoriantion step, we used acetonitrile and DMSO as a solvent and observed a higher at the acetonitrile (25%) reaction compared with the DMSO reaction (5%)

  20. [18F]fluoromethylated phenyl-pyrroles and 7-azaindole analog as potential dopamine D4 receptor imaging agents

    International Nuclear Information System (INIS)

    Ji, D. Y.; Oh, S. Z.; Choi, Y. S.; Lee, K. C.; Kim, S. E.; Choi, Y.; Lee, K. H.; Kim, B. T.

    1997-01-01

    An association between the dopamine D 4 receptor and schizophrenia was recently suggested and the D 4 receptor antagonists may thus have potential in elucidating the role of the receptor in schizophrenic patients. The purpose of this study was to develop some of these antagonists as potential dopamine D 4 receptor imaging agents for PET. We have prepared 1-(3-[ 18 F]fluoromethylphenyl)-3-([4-(pyridin-2-yl)piperazin-1-yl)methyl) pyrrole (1), 1-(3-[ 18 F]fluoromethylphenyl)-3-([4-(pyridin-2-yl)piperazin-1-yl)methyl) pyrrole (2), and 3-([4-(4-[ 18 F]fluoro methylbenzyl)piperazin-1-yl)methyl)-1H-pyrrolo(2,3,-b)pyridine (3) as potential imaging agents for the dopamine D 4 receptor for PET. The compounds [ 18 F]1 and [ 18 F]2 were prepared by coupling of (3-[ 18 F]fluoromethylphenyl)-pyrrol-1- yl-3-aldehyde and the piperazine moiety in the presence of NaBH 3 CN. The [ 18 F]fluorinated aldehyde was obtained in 60-85% yield by the displacement of the corresponding mesylate with F-18-(THF, 90 .deg. C, 5 min). HPLC purification (Alltech Econosil C-18 columm, 250 x 10 mm, 35: 65 = 0.1M NH 4 CI 2 H : CH 3 OH, 4 ml/min, t R =26.6 min) gave the [ 18 F]1 and [ 18 F]2 in 7-12% yield. In the case of azaindole 3, a methlene link was inserted between the piperazinyl and a fluoromethyl phenyl group. Radiochemical synthesis of the [ 18 F]3 was carried out by coupling of the piperazne moiety and [ 18 F]fluoromethylbenzyl mesylate in the presence of NEt 3 (3:1-CH 3 CN: DMF, 120 .deg. C, 30 min). Purification was carried out by HPLC using a C-18 column (Alltech Econosil, 50 x 10 mm, 100% 0.1M NH 4 CO 2 H for 5 min followed by 40:60=0.1 M NH 4 CO 2 H : MeOH, 4 ml/min t R =28.7 min). The time of synthesis including HPLC purification was 100 min. The overall yield of [ 18 F]3 was 10-15% with a radiochemical purity better than 97% and a specific activity greater than 1000 ci/mmol

  1. An improved synthesis of 4-[18F]-ADAM, a potent serotonin transporter imaging agent

    International Nuclear Information System (INIS)

    Huang, Y.-Y.; Huang, W.-S.; Chu, T.-C.; Shiue, C.-Y.

    2009-01-01

    An improved synthesis of N,N-dimethyl-2-(2-amino-4-[ 18 F]fluorophenylthio)benzylamine (4-[ 18 F]-ADAM, 2) as a potent serotonin transporter (SERT) imaging agent is described. Molecular orbital (MO) calculation predicts that N,N-dimethyl-2- (2-nitro-4-trimethylammoniumtrifluoromethanesulfonylphenylthio)benzamide (8) is probably a better precursor than N,N-dimethyl-2-(2,4-dinitrophenylthio)benzylamine (1) for preparing 2. Radioligand 2 was synthesized by the reaction of either precursor 1 or precursor 8 with K[ 18 F]/K 2.2.2 at 120 deg. C followed by reduction with BH 3 at 80 deg. C. The radiochemical yield (EOB) of 2 synthesized from precursor 1 and 8 was 5.7±2.4% (n=6) and 14.8±4.0% (n=5), respectively, in a synthesis time of 120 min from EOB. The specific activity of 2 was 3 Ci/μmol or 111 GBq/μmol (EOB). Thus, this new synthetic method has significantly improved the radiochemical yield of 4-[ 18 F]-ADAM and makes this radioligand more accessible to PET Centers without a cyclotron.

  2. Synthesis and biological evaluation of [{sup 18}F]tetrafluoroborate: a PET imaging agent for thyroid disease and reporter gene imaging of the sodium/iodide symporter

    Energy Technology Data Exchange (ETDEWEB)

    Jauregui-Osoro, Maite; Sunassee, Kavitha; Weeks, Amanda J.; Berry, David J.; Paul, Rowena L.; Cleij, Marcel; O' Doherty, Michael J.; Marsden, Paul K.; Szanda, Istvan; Blower, Philip J. [King' s College London, Division of Imaging Sciences, London (United Kingdom); Banga, Jasvinder Paul [King' s College London, Division of Cell and Gene Based Therapy, London (United Kingdom); Clarke, Susan E.M.; Ballinger, James R. [Guy' s and St Thomas' NHS Trust, Department of Nuclear Medicine, London (United Kingdom); Cheng, Sheue-Yann [National Cancer Institute, Laboratory of Molecular Biology, Bethesda (United States)

    2010-11-15

    The human sodium/iodide symporter (hNIS) is a well-established target in thyroid disease and reporter gene imaging using gamma emitters {sup 123}I-iodide, {sup 131}I-iodide and {sup 99m}Tc-pertechnetate. However, no PET imaging agent is routinely available. The aim of this study was to prepare and evaluate {sup 18}F-labelled tetrafluoroborate ([{sup 18}F]TFB) for PET imaging of hNIS. [{sup 18}F]TFB was prepared by isotopic exchange of BF{sub 4} {sup -} with [{sup 18}F]fluoride in hot hydrochloric acid and purified using an alumina column. Its identity, purity and stability in serum were determined by HPLC, thin-layer chromatography (TLC) and mass spectrometry. Its interaction with NIS was assessed in vitro using FRTL-5 rat thyroid cells, with and without stimulation by thyroid-stimulating hormone (TSH), in the presence and absence of perchlorate. Biodistribution and PET imaging studies were performed using BALB/c mice, with and without perchlorate inhibition. [{sup 18}F]TFB was readily prepared with specific activity of 10 GBq/mg. It showed rapid accumulation in FRTL-5 cells that was stimulated by TSH and inhibited by perchlorate, and rapid specific accumulation in vivo in thyroid (SUV = 72 after 1 h) and stomach that was inhibited 95% by perchlorate. [{sup 18}F]TFB is an easily prepared PET imaging agent for rodent NIS and should be evaluated for hNIS PET imaging in humans. (orig.)

  3. Synthesis and quality control of 18F-β-FP-CIT as a dopamine transporter imaging agent

    International Nuclear Information System (INIS)

    Tang Ganghua; Tang Xiaolan; Wang Mingfang; Huang Zuhan

    2002-01-01

    Objective: To develop 18 F-N-3-fluoropropyl-2-β-carbomethoxy-3-β-(4-iodophenyl) nortropane ( 18 F-β-FP-CIT) as dopamine transporter imaging agent. Methods: The labelling of 18 F-β-FP-CIT was performed via a two-step synthesis. The 18 F-fluoropropyl bromide was prepared through a nucleophilic substitution by the use of the aminopolyether potassium complex (K/K222) +18 F - as a phase-transfer reagent, and then by N-fluoroalkylation of 2-β-carbomethoxy-3-β-(4-iodophenyl) nortropane (nor-β-CIT) with 18 F-fluoropropyl bromide the 18 F-β-FP-CIT was formed. Contents and analytical methods of quality control for 18 F-β-FP-CIT were investigated and the main quality criteria were achieved through strict control of the determining parameters by standard procedures. Results: The mean overall radiochemical yield from starting 18 F-fluoride was about 8%, the total radiochemical synthesis time was about 90-110 min, and the radiochemical purity was better than 99% by HPLC and TLC. Tests on sterility and apyrogenicity of 18 F-β-FP-CIT obtained by standard procedures were negative, and tests on other main quality criteria met the requirements of the local pharmacopoeia. Conclusion: 18 F-β-FP-CIT injection can be used in the animal and human PET study

  4. Novel synthesis and initial preclinical evaluation of (18)F-[FDG] labeled rhodamine: a potential PET myocardial perfusion imaging agent.

    Science.gov (United States)

    AlJammaz, Ibrahim; Al-Otaibi, Basim; AlHindas, Hussein; Okarvi, Subhani M

    2015-10-01

    Myocardial perfusion imaging is one of the most commonly performed investigations in nuclear medicine studies. Due to the clinical importance of [(18)F]-fluoro-2-deoxy-D-glucose ([(18)F]-FDG) and its availability in almost every PET center, a new radiofluorinated [(18)F]-FDG-rhodamine conjugate was synthesized using [(18)F]-FDG as a prosthetic group. In a convenient and simple one-step radiosynthesis, [(18)F]-FDG-rhodamine conjugate was prepared in quantitative radiochemical yields, with total synthesis time of nearly 20 min and radiochemical purity of greater than 98%, without the need for HPLC purification, which make these approaches amenable for automation. Biodistribution studies in normal rats at 60 min post-injection demonstrated a high uptake in the heart (>11% ID/g) and favorable pharmacokinetics. Additionally, [(18)F]-FDG-rhodamine showed an extraction value of 27.63%±5.12% in rat hearts. These results demonstrate that [(18)F]-FDG-rhodamine conjugate may be useful as an imaging agent for the positron emission tomography evaluation of myocardial perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Preparation and biological evaluation of 18F-MPPF as a 5-HT1A imaging agent

    International Nuclear Information System (INIS)

    Wu Chunying; Lin Xiangtong; Zhang Zhengwei; Liu Ping; Xue Fangping; Lu Chunxiong; Zou Meifen; Chen Zhengping; Jiang Quanfu; Fu Ronggeng; Wang Songpei; Zhang Tongxing; Li Xiaomin; Zhu Junqing

    2004-01-01

    Objective: To develop and evaluate 4- 18 F-fluoro-N-2-[1-(2-methoxyphenyl)-1-piperazinyl] ethyl-N-2-pyridinyl-benzamide ( 18 F-MPPF) as a 5-hydroxytryptamine (5-HT 1A ) imaging agent. Methods: Nucleophilic substitution of fluoro replacement reaction was proceeding in dimethyl sulfoxide (DMSO) solution by oil-bath heating. Radiochemical purity (RCP) was determined by high pressure liquid chromatography (HPLC). Biological evaluations were performed in rats and mice. Results: RCP determined by HPLC was over 95% and were stable within 3 h. Biodistribution studies in rats showed that the initial uptake of 18 F-MPPF in the brain was high [(0.621±0.010)%ID/organ at 2 min]. The specific binding [(T/CB)-1] in hippocampus reaches its peak value of 2.70 at 30 min postinjection. (T/CB)-1 in hippocampus were significantly reduced to 0.89, 0.74 and 1.93 by pretreatment with 8-hydroxy-2-N, N-(di-n-propyl) aminotetralin (8-OH-DPAT), 4-(2'-methoxy-phenyl)-1-{2'-[n-(2 ) -pyridinyl]-cyclohexanecarboxamido}-ethyl piperazine (WAY100635) and spiperone at 30 min postinjection, respectively. The rat brain autoradiography and analysis showed that there was high 131 I-4-(2'-methoxy-phenyl)-1-{2'-[n-(2 ) -pyridinyl]-p-iodobenzamido}-ethyl piperazine (MPPI) uptake in hippocampus, the hippocampus/cerebellum ratio was significantly reduced from 13.98±0.87 to 1.96±0.46 by pretreatment with 8-OH-DPAT at 30 min postinjection. Conclusions: 18 F-MPPF can be specifically accumulated in hippocampus. It suggests that 18 F-MPPF might be a useful imaging agent for the studies of localization, function and modulation of 5-HT 1A receptor in the brain

  6. Fluorinated benzamide neuroleptics--III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[{sup 18}F]fluoropropyl)-2,3- dimethoxybenzamide as an improved dopamine D-2 receptor tracer

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Jogeshwar; Zhiying, Yang; Das, Malay K; Brown, Terry

    1995-04-01

    We have prepared five new analogs (n-propyl, iso-propyl, allyl, n-butyl, and iso-butyl) of the dopamine D-2 receptor antagonist, FPMB which result from modifications of the ethyl group at the pyrrolidine nitrogen in FPMB. As expected, all new derivatives showed higher apparent lipophilicity (log k{sub w}), with iso-butyl being the most lipophilic (log k{sub w} = 2.52), followed by the allyl derivative (log k{sub w} = 2.43). The allyl group showed the largest increase in affinity (from 0.26 nM for the ethyl substituent to 0.03 nM for the allyl substituent, almost 10-fold), followed by the n-propyl substituent which showed approximately five-fold better affinity than did the ethyl substituent. Radiosynthesis of S-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[{sup 18}F]fluoropropyl)-2,3-dimethoxybenzamide ([{sup 18}F]fallypride) was carried out by nucleophilic substitution reaction of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-tosyloxypropyl)-2,3- dimethoxybenzamide with no carrier added {sup 18}F{sup -}. [{sup 18}F]Fallypride was obtained in approximately 20-40% yields (EOS/EOB, decay corrected) in specific activities of 900-1700 Ci/mmol after reverse phase HPLC purification in 60 min from EOB. High striatal uptake (upto 2.5% injected dose/g) of [{sup 18}F]fallypride in rats was observed with striatal/cerebellar ratios of 17, 42, 63 and 122 at 30, 60, 90 and 120 min post-injection, respectively. PET experiments with [{sup 18}F]fallypride in a cebus monkey showed a brain uptake of 0.10% injected dose/cc. In rhesus monkeys [{sup 18}F]fallypride showed rapid specific uptake in the striata (0.04-0.06% injected dose/cc) with striata/cerebellum ratios of approx. 3.0 at 14 min, 5.0 at 35 min and 8 at 70 min post-injection. Specifically bound [{sup 18}F]fallypride was displaced with haloperidol (1 mg/kg) with a half-life of 18 min in the rhesus monkey.

  7. Synthesis, uptake mechanism characterization and biological evaluation of {sup 18}F labeled fluoroalkyl phenylalanine analogs as potential PET imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Wang Limin [Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104 (United States); Qu Wenchao; Lieberman, Brian P.; Ploessl, Karl [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kung, Hank F., E-mail: kunghf@gmail.co [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2011-01-15

    Introduction: Amino acids based tracers represent a promising class of tumor metabolic imaging agents with successful clinical applications. Two new phenylalanine derivatives, p-(2-[{sup 18}F]fluoroethyl)-L-phenylalanine (FEP, [{sup 18}F]2) and p-(3-[{sup 18}F]fluoropropyl)-L-phenylalanine (FPP, [{sup 18}F]3) were synthesized and evaluated in comparison to clinically utilized O-(2-[{sup 18}F]fluoroethyl)-L-tyrosine (FET, [{sup 18}F]1). Methods: FEP ([{sup 18}F]2) and FPP ([{sup 18}F]3) were successfully synthesized by a rapid and efficient two-step nucleophilic fluorination of tosylate precursors and deprotection reaction. In vitro cell uptake studies were carried out in 9L glioma cells. In vivo studies, 9L tumor xenografts were implanted in Fisher 344 rats. Results: FEP ([{sup 18}F]2) and FPP ([{sup 18}F]3) could be efficiently labeled within 90 min with good enantiomeric purity (>95%), good yield (11-37%) and high specific activity (21-69 GBq/{mu}mol). Cell uptake studies showed FEP had higher uptake than FPP as well as reference ligand FET ([{sup 18}F]1). Uptake mechanism studies suggested that FEP is a selective substrate for system L and prefers its subtype LAT1. In vivo biodistribution studies demonstrated FEP had specific accumulation in tumor cells and tumor to background ratio reached 1.45 at 60 min. Small animal positron emission tomography (PET) imaging studies showed FEP was comparable to FET for imaging rats bearing 9L tumor model. FEP had high uptake in 9L tumor compared to surrounding tissue and was quickly excreted through urinary tract. Conclusion: Biological evaluations indicate that FEP ([{sup 18}F]2) is a potential useful tracer for tumor imaging with PET.

  8. An improved synthesis of 4-[{sup 18}F]-ADAM, a potent serotonin transporter imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.-Y. [PET Center, Department of Nuclear Medicine, Tri-Service General Hospital 325 Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan (China); Department of Biomedical Engineering and Environmental Sciences, National Thising Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Huang, W.-S. [PET Center, Department of Nuclear Medicine, Tri-Service General Hospital 325 Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan (China); Chu, T.-C. [Department of Biomedical Engineering and Environmental Sciences, National Thising Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Shiue, C.-Y. [PET Center, Department of Nuclear Medicine, Tri-Service General Hospital 325 Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan (China)], E-mail: shiue@ndmctsgh.edu.tw

    2009-06-15

    An improved synthesis of N,N-dimethyl-2-(2-amino-4-[{sup 18}F]fluorophenylthio)benzylamine (4-[{sup 18}F]-ADAM, 2) as a potent serotonin transporter (SERT) imaging agent is described. Molecular orbital (MO) calculation predicts that N,N-dimethyl-2- (2-nitro-4-trimethylammoniumtrifluoromethanesulfonylphenylthio)benzamide (8) is probably a better precursor than N,N-dimethyl-2-(2,4-dinitrophenylthio)benzylamine (1) for preparing 2. Radioligand 2 was synthesized by the reaction of either precursor 1 or precursor 8 with K[{sup 18}F]/K{sub 2.2.2} at 120 deg. C followed by reduction with BH{sub 3} at 80 deg. C. The radiochemical yield (EOB) of 2 synthesized from precursor 1 and 8 was 5.7{+-}2.4% (n=6) and 14.8{+-}4.0% (n=5), respectively, in a synthesis time of 120 min from EOB. The specific activity of 2 was 3 Ci/{mu}mol or 111 GBq/{mu}mol (EOB). Thus, this new synthetic method has significantly improved the radiochemical yield of 4-[{sup 18}F]-ADAM and makes this radioligand more accessible to PET Centers without a cyclotron.

  9. Biodistribution and micro PET imaging of 18F-FECNT as a dopamine transporter imaging agent

    International Nuclear Information System (INIS)

    Chen Zhengping; Wang Songpei; Li Xiaomin; Liu Chunyi; Tang Jie; Lu Chunxiong; Pan Donghui; Xu Yuping; Yang Ming; Jiang Quanfu; Huang Hongbo; Zhou Xingqing

    2009-01-01

    Objective: 2β-carbomethoxy-3β-(4-corophenyl)-8-(2- 18 F-fluoroethyl) nortropane ( 18 F-FECNT) is a recently developed dopamine transporter (DAT) imaging agent. The aim of this study was to evaluate its brain biodistribution and to assess its usefulness in quantitation of DAT density in normal and hemiparkinsonian rats. Methods: Six groups of mice (5 mice each group) received 18 F-FECNT were sacrificed at indicated time post injection. Different brain regions (cortex, hippocampus, striatum, cerebellum) were removed, weighed, and countered. DAT blocking effect was investigated in mice pretreated with 2β-Carbomethoxy-3β-(4-fluorphenyl)tropane (β-CFT) at before 18 F-FECNT injection. MicroPET scans were performed in beth normal and unilaterally 6-hydroxydopamine-lesioned rats. Results: The brain uptake of 18 F-FECNT was 2.22, 1.20, 1.02, 0.78, 0.71, and 0.67 percent injection dose (%ID) at 5, 15, 30, 60, 120, and 180 min post injection. Radioactivity concentration of the striatum, the target region, was the highest in the brain regions and decreased quickly from 5 to 60 min and reached to background at 120 min of post injection. The striatum/cerebellum ratio was 2.56, 3.47, 2.78, 1.63, 0.97, and 0.88 at 5, 15, 30, 60, 120, and 180 min, respectively, post injection. The selective striatum uptake of 1 '8F-FECNT decreased dramatically to the background when the DAT was blocked with β-CFT. The striatum of normal rats in micro-PET exhibited symmetrical (left/right = 1.00 ± 0.05) and the highest uptake of radioactivity (striatum/cerebellum =2.18 ± 0. 16 at 5- 125 min, n =3). As for the hemiparkinsonian rats, nonsymmetrical [unlesioned striatum/cerebellum vs lesioned striatum/cerebellum = 2.01 ± 0.23 (n = 3) vs 1.04 ± 0. 05] and the high-est uptake of radioactivity were also noted. Conclusions: The results suggest that 18 F-FECNT rapidly pas-ses through blood-brain barrier and locates in stiatal region with high affinity and selectivity to DAT. It is a potential

  10. Radiosynthesis of [{sup 18}F]fluoromethyldeoxyspergualin for molecular imaging of heat shock proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pradip; Li, King C. [Department of Radiology, Nuclear Medicine Division, Methodist Hospital Research Institute, Weill Cornell Medical College, 6565 Fannin Street, MB1-066, Houston, TX 77030 (United States); Lee, Daniel Y., E-mail: dlee@tmhs.or [Department of Radiology, Nuclear Medicine Division, Methodist Hospital Research Institute, Weill Cornell Medical College, 6565 Fannin Street, MB1-066, Houston, TX 77030 (United States)

    2011-03-15

    To probe the in vivo role of stress response factors in normal physiology and in solid tumors we have designed a stable {sup 18}F-labeled molecular imaging agent based on a ligand for heat shock protein 70 (HSP70). We describe the synthesis of [{sup 18}F] fluorodeoxymethylspergualin ([{sup 18}F]MeDSG) as a new radiopharmaceutical probe using a prosthetic group, [{sup 18}F]SFB, for efficient and rapid radiolabeling. Ongoing molecular imaging studies are under way to detect HSP70 expression in tumors by positron emission tomography.

  11. [18F]fallypride-PET/CT Analysis of the Dopamine D₂/D₃ Receptor in the Hemiparkinsonian Rat Brain Following Intrastriatal Botulinum Neurotoxin A Injection.

    Science.gov (United States)

    Mann, Teresa; Kurth, Jens; Hawlitschka, Alexander; Stenzel, Jan; Lindner, Tobias; Polei, Stefan; Hohn, Alexander; Krause, Bernd J; Wree, Andreas

    2018-03-06

    Intrastriatal injection of botulinum neurotoxin A (BoNT-A) results in improved motor behavior of hemiparkinsonian (hemi-PD) rats, an animal model for Parkinson's disease. The caudate-putamen (CPu), as the main input nucleus of the basal ganglia loop, is fundamentally involved in motor function and directly interacts with the dopaminergic system. To determine receptor-mediated explanations for the BoNT-A effect, we analyzed the dopamine D₂/D₃ receptor (D₂/D₃R) in the CPu of 6-hydroxydopamine (6-OHDA)-induced hemi-PD rats by [ 18 F]fallypride-PET/CT scans one, three, and six months post-BoNT-A or -sham-BoNT-A injection. Male Wistar rats were assigned to three different groups: controls, sham-injected hemi-PD rats, and BoNT-A-injected hemi-PD rats. Disease-specific motor impairment was verified by apomorphine and amphetamine rotation testing. Animal-specific magnetic resonance imaging was performed for co-registration and anatomical reference. PET quantification was achieved using PMOD software with the simplified reference tissue model 2. Hemi-PD rats exhibited a constant increase of 23% in D₂/D₃R availability in the CPu, which was almost normalized by intrastriatal application of BoNT-A. Importantly, the BoNT-A effect on striatal D₂/D₃R significantly correlated with behavioral results in the apomorphine rotation test. Our results suggest a therapeutic effect of BoNT-A on the impaired motor behavior of hemi-PD rats by reducing interhemispheric changes of striatal D₂/D₃R.

  12. Comparison in animal models of 18F-spiroperidol and 18F-haloperidol: potential agents for imaging the dopamine receptor

    International Nuclear Information System (INIS)

    Welch, M.J.; Kilbourn, M.R.; Mathias, C.J.; Mintun, M.A.; Raichle, M.E.

    1983-01-01

    Fluorine-18-labeled haloperidol and spiroperidol have been prepared by an exchange reaction using the corresponding non-labeled compound or the nitro analog. Studies in rats have shown that the distribution of labeled spiroperidol has a high striatum to cerebellum ratio which is not observed with haloperidol. A ratio of 10.66 +/- 1.6 is obtained two hours after administration of the 18 F-spiroperidol. When 18 F-spiroperidol was administered to a baboon and tomographic images obtained, the dopamine receptor rich areas were clearly visualized two hours after administration

  13. Development of (F-18)-Labeled Amyloid Imaging Agents for PET

    International Nuclear Information System (INIS)

    Mathis, C.A.

    2007-01-01

    The applicant proposes to design and synthesize a series of fluorine-18-labeled radiopharmaceuticals to be used as amyloid imaging agents for positron emission tomography (PET). The investigators will conduct comprehensive iterative in vitro and in vivo studies based upon well defined acceptance criteria in order to identify lead agents suitable for human studies. The long term goals are to apply the selected radiotracers as potential diagnostic agents of Alzheimer's disease (AD), as surrogate markers of amyloid in the brain to determine the efficacy of anti-amyloid therapeutic drugs, and as tools to help address basic scientific questions regarding the progression of the neuropathology of AD, such as testing the 'amyloid cascade hypothesis' which holds that amyloid accumulation is the primary cause of AD.

  14. Synthesis of [18F] labeled tetraphenylphosphonium derivatives as a novel myocardial perfusion agent for PET

    International Nuclear Information System (INIS)

    Kim, Dong Yeon; Bom, Hee Seung; Min, Jung Joon; Yu, Kook Hyun

    2007-01-01

    Lipophilic cations including phosphonium salts penetrate the hydrophobic barriers of the plasma and mitochondrial membranes and accumulate in mitochondria in response to the negative inner transmembrane potentials. The development of radiolabeled phosphonium cations as a noninvasive imaging agent may serve as a new molecular 'voltage sensor' probe to investigate the role of mitochondria in the pathophysiology and diagnosis of cancer. Besides, the tetraphenylphosphonium (TPP) salts has been known to be accumulated in cancer cells as well as in cardiomyocytes especially, [18F]labeled tetraphenylphosphonium derivativesare thought to have a potential to be utilized as a novel myocardial or cancer imaging agent for PET. We have synthesized a reference compound fluoroalkyl triphenylphosphonium (n=5, 6, 7, 8) and a labeled compound, [18F]fluoroalkyl triphenylphosphonium (n=5, 6, 7, 8), which via two step nucleophilic substitution of no-carrier-added F-18 fluoride with the precurso in the presence of Kryptofix-2.2.2 and K2CO3. The reference compound fluoroalkyl triphenylphosphonium (n=5, 6, 7, 8) were synthesized in 79∼82% yield and the labeled compound were synthesized in 20∼25% yield respectively. The tetraphenylphosphonium (TPP) salts exhibited accumulation in cancer as well as heart. Therefore, [18F] radiolabeled tetraphenylphosphonium derivatives are thought to have a potential being utilized as a novel PET molecular probe for imaging cancer and myocardium. Thus, the development of [18F] radiolabeled tetraphenylphosphonium derivatives as a noninvasive imaging agent may serve as a new molecular voltage sensor probe to investigate the role of mitochondria in the diagnosis and treatment of ischemic heart disease and cancer

  15. Synthesis and comparative biological evaluation of L- and D-isomers of {sup 18}F-labeled fluoroalkyl phenylalanine derivatives as tumor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Wang Limin [Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104 (United States); Lieberman, Brian P.; Ploessl, Karl; Qu Wenchao [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kung, Hank F., E-mail: kunghf@gmail.co [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2011-04-15

    Introduction: L-Amino acid-based tracers have established their important role as tumor metabolic imaging agents. Recently, a number of studies demonstrated that D-amino acids may have improved imaging properties than their corresponding L-isomers. We synthesized and evaluated the D-isomer of a new phenylalanine derivative, p-(2-[{sup 18}F]fluoroethyl)-phenylalanine ([{sup 18}F]FEP), in comparison to its L-isomer and previously reported the L- and D-isomers of O-(2-[{sup 18}F]fluoroethyl)-tyrosine ([{sup 18}F]FET). Methods: L- and D-Isomers of [{sup 18}F]FET and [{sup 18}F]FEP were successfully synthesized via a rapid and efficient two-step nucleophilic fluorination and deprotection reaction. In vitro studies were carried out in 9L glioma cells. In in vivo studies, Fisher 344 rats bearing the 9L tumor model were used. Results: L- and D-Isomers of {sup 18}F-fluoroalkyl tyrosine and phenylalanine derivatives were efficiently labeled with high enantiomeric purity (>95%), good yield (11-45%) and high specific activity (21-75 GBq/{mu}mol). D-[{sup 18}F]FEP showed a similar linear time-dependent uptake as D-[{sup 18}F]FET, while their corresponding L-isomers had much faster and higher uptake (4.3- to 16.0-fold at maximum uptake). The maximum uptake of the new compounds, L- and D-[{sup 18}F]FEP, was 1.4- and 5.2-fold of that reported for L- and D-[{sup 18}F]FET, respectively. Transport characterization studies indicated that both L- and D-[{sup 18}F]FEP were selective substrates for system L. While L-[{sup 18}F]FEP exhibited preference towards one subtype of system L, LAT1, D-[{sup 18}F]FEP did not exhibit the same preference. Small animal PET imaging studies showed that both L- and D-[{sup 18}F]FEP had higher uptake in 9L tumor compared to surrounding tissues, but D-isomer had lower tumor-to-muscle ratio in comparison with its L-isomer. Conclusion: Both L- and D-[{sup 18}F]FEP are substrates for system L amino acid transporter with different preference toward its

  16. Dose-on-demand production of diverse 18F-radiotracers for preclinical applications using a continuous flow microfluidic system.

    Science.gov (United States)

    Matesic, Lidia; Kallinen, Annukka; Greguric, Ivan; Pascali, Giancarlo

    2017-09-01

    The production of 18 F-radiotracers using continuous flow microfluidics is under-utilized due to perceived equipment limitations. We describe the dose-on-demand principle, whereby the back-to-back production of multiple, diverse 18 F-radiotracers can be prepared on the same day, on the same microfluidic system using the same batch of [ 18 F]fluoride, the same microreactor, the same HPLC column and SPE cartridge to obtain a useful production yield. [ 18 F]MEL050, [ 18 F]Fallypride and [ 18 F]PBR111 were radiolabeled with [ 18 F]fluoride using the Advion NanoTek Microfluidic Synthesis System. The outlet of the microreactor was connected to an automated HPLC injector and following the collection of the product, SPE reformulation produced the 18 F-radiotracer in productions for [ 18 F]MEL050 and [ 18 F]Fallypride were performed at total flow rates of 20μL/min, resulting in 40±13% and 25±13% RCY respectively. [ 18 F]PBR111 was performed at 200μL/min to obtain 27±8% RCY. Molar activities for each 18 F-radiotracer were >100GBq/μmol and radiochemical purities were >97%, implying that the cleaning procedure was effective. Using the same initial solution of [ 18 F]fluoride, microreactor, HPLC column and SPE cartridge, three diverse 18 F-radiotracers could be produced in yields sufficient for preclinical studies in a back-to-back fashion using a microfluidic system with no detectable cross-contamination. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  17. Nicotinic α4β2 receptor imaging agents. Part III. Synthesis and biological evaluation of 3-(2-(S)-azetidinylmethoxy)-5-(3′-18F-fluoropropyl)pyridine (18F-nifzetidine)

    International Nuclear Information System (INIS)

    Pichika, Rama; Easwaramoorthy, Balu; Christian, Bradley T.; Shi, Bingzhi; Narayanan, Tanjore K.; Collins, Daphne; Mukherjee, Jogeshwar

    2011-01-01

    Thalamic and extrathalamic nicotinic α4β2 receptors found in the brain have been implicated in Alzheimer's disease, Parkinson's disease, substance abuse and other disorders. We report here the development of 3-(2-(S)-azetidinylmethoxy)-5-(3′-fluoropropyl)pyridine (nifzetidine) as a new putative high-affinity antagonist for nicotinic α4β2 receptors. Nifzetidine in rat brain homogenate assays containing α4β2 sites labeled with 3 H-cytisine exhibited a binding affinity: Ki=0.67 nM. The fluorine-18 analog, 3-(2-(S)-azetidinylmethoxy)-5-(3′- 18 F-fluoropropyl)pyridine ( 18 F-nifzetidine), was synthesized in 20%–40% yield, and apparent specific activity was estimated to be above 2 Ci/μmol. Rat brain slices indicated selective binding of 18 F-nifzetidine to thalamus, subiculum, striata, cortex and other regions consistent with α4β2 receptor distribution. This selective binding was displaced >85% by 150 μM nicotine. Positron emission tomography (PET) imaging studies of 18 F-nifzetidine in anesthetized rhesus monkey showed slow uptake in the various brain regions. Retention of 18 F-nifzetidine was maximal in the thalamus and lateral geniculate followed by regions of the temporal and frontal cortex. Cerebellum showed the least uptake. Thalamus to cerebellum ratio was about 2.3 at 180 min postinjection and continued to rise. 18 F-Nifzetidine shows promise as a new PET imaging agent for α4β2 nAChR. However, the slow kinetics suggests a need for >3-h PET scans for quantitative studies of the α4β2 nAChRs.

  18. Evaluation of Prostate Cancer Bone Metastases with 18F-NaF and 18F-Fluorocholine PET/CT.

    Science.gov (United States)

    Beheshti, Mohsen; Rezaee, Alireza; Geinitz, Hans; Loidl, Wolfgang; Pirich, Christian; Langsteger, Werner

    2016-10-01

    18 F-fluorocholine is a specific promising agent for imaging tumor cell proliferation, particularly in prostate cancer, using PET/CT. It is a beneficial tool in the early detection of marrow-based metastases because it excludes distant metastases and evaluates the response to hormone therapy. In addition, 18 F-fluorocholine has the potential to differentiate between degenerative and malignant osseous abnormalities because degenerative changes are not choline-avid; however, the agent may accumulate in recent traumatic bony lesions. On the other hand, 18 F-NaF PET/CT can indicate increased bone turnover and is generally used in the assessment of primary and secondary osseous malignancies, the evaluation of response to treatment, and the clarification of abnormalities on other imaging modalities or clinical data. 18 F-NaF PET/CT is a highly sensitive method in the evaluation of bone metastases from prostate cancer, but it has problematic specificity, mainly because of tracer accumulation in degenerative and inflammatory bone diseases. In summary, 18 F-NaF PET/CT is a highly sensitive method, but 18 F-fluorocholine PET/CT can detect early bone marrow metastases and provide greater specificity in the detection of bone metastases in patients with prostate cancer. However, the difference seems not to be significant. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. Multimodality Molecular Imaging of [18F]-Fluorinated Carboplatin Derivative Encapsulated in [111In]-Labeled Liposomes

    Science.gov (United States)

    Lamichhane, Narottam

    Platinum based chemotherapy is amongst the mainstream DNA-damaging agents used in clinical cancer therapy today. Agents such as cisplatin, carboplatin are clinically prescribed for the treatment of solid tumors either as single agents, in combination, or as part of multi-modality treatment strategy. Despite the potent anti-tumor activity of these drugs, overall effectiveness is still hampered by inadequate delivery and retention of drug in tumor and unwanted normal tissue toxicity, induced by non-selective accumulation of drug in normal cells and tissues. Utilizing molecular imaging and nanoparticle technologies, this thesis aims to contribute to better understanding of how to improve the profile of platinum based therapy. By developing a novel fluorinated derivative of carboplatin, incorporating a Flourine-18 (18F) moiety as an inherent part of the molecule, quantitative measures of drug concentration in tumors and normal tissues can be directly determined in vivo and within the intact individual environment. A potential impact of this knowledge will be helpful in predicting the overall response of individual patients to the treatment. Specifically, the aim of this project, therefore, is the development of a fluorinated carboplatin drug derivative with an inherent positron emission tomography (PET) imaging capability, so that the accumulation of the drug in the tumor and normal organs can be studied during the course of therapy . A secondary objective of this research is to develop a proof of concept for simultaneous imaging of a PET radiolabeled drug with a SPECT radiolabeled liposomal formulation, enabling thereby bi-modal imaging of drug and delivery vehicle in vivo. The approach is challenging because it involves development in PET radiochemistry, PET and SPECT imaging, drug liposomal encapsulation, and a dual-modal imaging of radiolabeled drug and radiolabeled vehicle. The principal development is the synthesis of fluorinated carboplatin 19F-FCP using 2

  20. Semi-automated preparation of the dopamine transporter ligand [18F]FECNT for human PET imaging studies

    International Nuclear Information System (INIS)

    Voll, Ronald J.; McConathy, Jonathan; Waldrep, Michael S.; Crowe, Ronald J.; Goodman, Mark M.

    2005-01-01

    The fluorine-18 labeled dopamine transport (DAT) ligand 2β-carbomethoxy-3β-(4-chlorophenyl)-8-(2-fluoroethyl)nortropane (FECNT) has shown promising properties as an in vivo DAT imaging agent in human and monkey PET studies. A semi-automated synthesis has been developed to reliably produce [ 18 F]FECNT in a 16% decay corrected yield. This method utilizes a new [ 18 F]fluoralkylating agent and provides high purity [ 18 F]FECNT in a formulation suitable for human use

  1. 18F-FPYBF-2, a new F-18 labelled amyloid imaging PET tracer: biodistribution and radiation dosimetry assessment of first-in-man 18F-FPYBF-2 PET imaging.

    Science.gov (United States)

    Nishii, Ryuichi; Higashi, Tatsuya; Kagawa, Shinya; Okuyama, Chio; Kishibe, Yoshihiko; Takahashi, Masaaki; Okina, Tomoko; Suzuki, Norio; Hasegawa, Hiroshi; Nagahama, Yasuhiro; Ishizu, Koichi; Oishi, Naoya; Kimura, Hiroyuki; Watanabe, Hiroyuki; Ono, Masahiro; Saji, Hideo; Yamauchi, Hiroshi

    2018-05-01

    male and female, respectively. The ED for the adult dosimetric model was similar to those of other agents used for amyloid PET imaging. The diagnostic dosage of 185-370 MBq of 18 F-FPYBF-2 was considered to be acceptable for administration in patients as a diagnostic tool for the evaluation of AD.

  2. Characterization of 4-[18F]-ADAM as an imaging agent for SERT in non-human primate brain using PET: a dynamic study

    International Nuclear Information System (INIS)

    Chen, Yu-An; Huang, Wen-Sheng; Lin, Yaoh-Shiang; Cheng, Cheng-Yi; Liu, Ren-Shyan; Wang, Shyh-Jen; Li, I-Hsun; Huang, San-Yuan; Shiue, Chyng-Yann; Chen, Cheng-Yu; Ma, Kuo-Hsing

    2012-01-01

    Introduction: Serotonin transporter (SERT) has been associated with many psychiatric diseases. This study investigated the biodistribution of a serotonin transporter imaging agent, N,N-dimethyl-2-(2-amino-4- 18 F-fluorophenylthio)benzylamine (4-[ 18 F]-ADAM), in nonhuman primate brain using positron emission tomography (PET). Methods: Six and four Macaca cyclopis monkeys were used to determine the transit time (i.e., time necessary to reach biodistribution equilibrium) and the reproducibility of 4-[ 18 F]-ADAM biodistribution in the brain, respectively. The sensitivity and specificity of 4-[ 18 F]-ADAM binding to SERT were evaluated in one monkey challenged with different doses of fluoxetine and one monkey treated with 3,4-methylendioxymethamphetamine (MDMA). Dynamic PET imaging was performed for 3 h after 4-[ 18 F]-ADAM intravenous bolus injection. The specific uptake ratios (SURs) in the midbrain (MB), thalamus (TH), striatum (ST) and frontal cortex (FC) were calculated. Results: The distribution of 4-[ 18 F]-ADAM reached equilibrium 120–150 min after injection. The mean SURs were 2.49±0.13 in MB, 1.59±0.17 in TH, 1.35±0.06 in ST and 0.34±0.03 in FC, and the minimum variability was shown 120–150 min after 4-[ 18 F]-ADAM injection. Using SURs and intraclass coefficient of correlation, the test/retest variability was under 8% and above 0.8, respectively, in SERT-rich areas. Challenge with fluoxetin (0.75–2 mg) dose-dependently inhibited the SURs in various brain regions. 4-[ 18 F]-ADAM binding was markedly reduced in the brain of an MDMA-treated monkey compared to that in brains of normal controls. Conclusion: 4-[ 18 F]-ADAM appears to be a highly selective radioligand for imaging SERT in monkey brain.

  3. Synthesis of 4-([{sup 18}F]fluoromethyl)-2-chlorophenylisothiocyanate: a novel bifunctional {sup 18}F-labelling agent

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, F.; Mueller, M.; Bergmann, R. [Inst. fuer Bioanorganische und Radiopharmazeutische Chemie, FZ-Rossendorf e.V., Dresden (Germany)

    2004-07-01

    The one-step radiosynthesis of 4-([{sup 18}F]fluoromethyl)-2-chlorophenylisothiocyanate {sup 18}F-7 as a novel bifunctional {sup 18}F-labelling agent is described. Optimised reaction conditions in a remotely controlled synthesis module gave isothiocyanate {sup 18}F-7 in radiochemical yields of 45% (decay-corrected) within 40 min and high radiochemical purity of > 95% after solid-phase-extraction. Coupling of compound {sup 18}F-7 with the primary amine benzylamine as a model reaction afforded the corresponding ((4-[{sup 18}F]fluoromethyl)-2-chloro-phenyl)-benzyl thiourea {sup 18}F-8 in a high radiochemical yield of > 90%. Stability studies of thiourea {sup 18}F-8 in terms of radiodefluorination showed appreciable buffer stability at pH 7.4, whereas significant radiodefluorination was observed when {sup 18}F-8 was incubated in buffers at pH 3.6 and pH 9.4. Preliminary dynamic PET studies with thiourea {sup 18}F-8 in male Wistar rats showed high bone accumulation, indicative of high in vivo radiodefluorination. (orig.)

  4. Multi-modality PET-CT imaging of breast cancer in an animal model using nanoparticle x-ray contrast agent and 18F-FDG

    Science.gov (United States)

    Badea, C. T.; Ghaghada, K.; Espinosa, G.; Strong, L.; Annapragada, A.

    2011-03-01

    Multi-modality PET-CT imaging is playing an important role in the field of oncology. While PET imaging facilitates functional interrogation of tumor status, the use of CT imaging is primarily limited to anatomical reference. In an attempt to extract comprehensive information about tumor cells and its microenvironment, we used a nanoparticle xray contrast agent to image tumor vasculature and vessel 'leakiness' and 18F-FDG to investigate the metabolic status of tumor cells. In vivo PET/CT studies were performed in mice implanted with 4T1 mammary breast cancer cells.Early-phase micro-CT imaging enabled visualization 3D vascular architecture of the tumors whereas delayedphase micro-CT demonstrated highly permeable vessels as evident by nanoparticle accumulation within the tumor. Both imaging modalities demonstrated the presence of a necrotic core as indicated by a hypo-enhanced region in the center of the tumor. At early time-points, the CT-derived fractional blood volume did not correlate with 18F-FDG uptake. At delayed time-points, the tumor enhancement in 18F-FDG micro-PET images correlated with the delayed signal enhanced due to nanoparticle extravasation seen in CT images. The proposed hybrid imaging approach could be used to better understand tumor angiogenesis and to be the basis for monitoring and evaluating anti-angiogenic and nano-chemotherapies.

  5. Biodistribution and radiation dosimetry of 18F-CP-18, a potential apoptosis imaging agent, as determined from PET/CT scans in healthy volunteers.

    Science.gov (United States)

    Doss, Mohan; Kolb, Hartmuth C; Walsh, Joseph C; Mocharla, Vani; Fan, Hong; Chaudhary, Ashok; Zhu, Zhihong; Alpaugh, R Katherine; Lango, Miriam N; Yu, Jian Q

    2013-12-01

    . (18)F-CP-18 cleared rapidly through the renal system. The urinary bladder wall received the highest radiation dose and was deemed the critical organ. Both the effective dose and the bladder dose can be reduced by frequent voiding. From the radiation dosimetry perspective, the apoptosis imaging agent (18)F-CP-18 is suitable for human use.

  6. Initial results of hypoxia imaging using 1-α-d-(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA)

    International Nuclear Information System (INIS)

    Postema, Ernst J.; McEwan, Alexander J.B.; Riauka, Terence A.; Kumar, Piyush; Richmond, Dacia A.; Abrams, Douglas N.; Wiebe, Leonard I.

    2009-01-01

    to image hypoxia in the tumour types selected. Especially the high uptake by gliomas was encouraging. Given the good imaging properties, including acceptable T/B ratios in the tumour categories studied, 18 F-FAZA could be considered as a very promising agent for assessing the hypoxic fraction of these tumour types. (orig.)

  7. Radiosynthesis and initial evaluation of [18F]-FEPPA for PET imaging of peripheral benzodiazepine receptors

    International Nuclear Information System (INIS)

    Wilson, Alan A.; Garcia, Armando; Parkes, Jun; McCormick, Patrick; Stephenson, Karin A.; Houle, Sylvain; Vasdev, Neil

    2008-01-01

    Introduction: A novel [ 18 F]-radiolabelled phenoxyanilide, [ 18 F]-FEPPA, has been synthesized and evaluated, in vitro and ex vivo, as a potential positron emission tomography imaging agent for the peripheral benzodiazepine receptor (PBR). Methods: [ 18 F]-FEPPA and two other radiotracers for imaging PBR, namely [ 11 C]-PBR28 and [ 11 C]-PBR28-d3, were synthesised and evaluated in vitro and ex vivo as potential PBR imaging agents. Results: [ 18 F]-FEPPA is efficiently prepared in one step from its tosylate precursor and [ 18 F]-fluoride in high radiochemical yields and at high specific activity. FEPPA displayed a K i of 0.07 nM for PBR in rat mitochondrial membrane preparations and a suitable lipophilicity for brain penetration (log P of 2.99 at pH 7.4). Upon intravenous injection into rats, [ 18 F]-FEPPA showed moderate brain uptake [standard uptake value (SUV) of 0.6 at 5 min] and a slow washout (SUV of 0.35 after 60 min). Highest uptake of radioactivity was seen in the hypothalamus and olfactory bulb, regions previously reported to be enriched in PBR in rat brain. Analysis of plasma and brain extracts demonstrated that [ 18 F]-FEPPA was rapidly metabolized, but no lipophilic metabolites were observed in either preparation and only 5% radioactive metabolites were present in brain tissue extracts. Blocking studies to determine the extent of specific binding of [ 18 F]-FEPPA in rat brain were problematic due to large perturbations in circulating radiotracer and the lack of a reference region. Conclusions: Further evaluation of the potential of [ 18 F]-FEPPA will require the employment of rigorous kinetic models and/or appropriate animal models

  8. 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature.

    Science.gov (United States)

    Bauman, G; Belhocine, T; Kovacs, M; Ward, A; Beheshti, M; Rachinsky, I

    2012-03-01

    Positron emission tomography (PET or combined PET-computed tomography (PET/CT)) allows the non-invasive interrogation of metabolic processes using radiolabeled probes. Altered choline metabolism has been noted as a characteristic of prostate cancer (PCa), and radiolabeled choline and choline analogs have been investigated as PET/CT imaging agents for prostate cancer; [(18)F]fluoromethyl-dimethyl-2-hydroxyethyl-ammonium ((18)F-FCH) shows particular promise as a PCa imaging agent given its favorable physical and pharmacokinetic properties. We conducted a systematic review of results to date with (18)F-FCH. As the tracer was first described by DeGrado in 2001, we limited our search from January 2001 to August 2011. In all, 37 studies including 1244 patients met the inclusion criteria. Studies included those detailing the radiosynthesis of (18)F-FCH, preclinical and early clinical dosimetry, and biodistribution (n=7); evaluation of local disease (n=6), nodal disease (n=5), bone metastases and castrate-resistant disease (n=7), biochemical recurrence (n=11), radiotherapy planning (n=7) and sources of false-positive studies (n=2); and some studies reported on multiple indications. Potential sources of variations in the studies affecting reported performance included case series size, variation in extent of disease at imaging (including Gleason grade, and PSA), selection of gold standards for comparison and variations in scan technique. On the basis of the review, we suggest potential scenarios where this metabolic imaging might be considered for further evaluation in clinical trials for guiding PCa management.

  9. [18F]fallypride-PET/CT Analysis of the Dopamine D2/D3 Receptor in the Hemiparkinsonian Rat Brain Following Intrastriatal Botulinum Neurotoxin A Injection

    Directory of Open Access Journals (Sweden)

    Teresa Mann

    2018-03-01

    Full Text Available Intrastriatal injection of botulinum neurotoxin A (BoNT-A results in improved motor behavior of hemiparkinsonian (hemi-PD rats, an animal model for Parkinson’s disease. The caudate–putamen (CPu, as the main input nucleus of the basal ganglia loop, is fundamentally involved in motor function and directly interacts with the dopaminergic system. To determine receptor-mediated explanations for the BoNT-A effect, we analyzed the dopamine D2/D3 receptor (D2/D3R in the CPu of 6-hydroxydopamine (6-OHDA-induced hemi-PD rats by [18F]fallypride-PET/CT scans one, three, and six months post-BoNT-A or -sham-BoNT-A injection. Male Wistar rats were assigned to three different groups: controls, sham-injected hemi-PD rats, and BoNT-A-injected hemi-PD rats. Disease-specific motor impairment was verified by apomorphine and amphetamine rotation testing. Animal-specific magnetic resonance imaging was performed for co-registration and anatomical reference. PET quantification was achieved using PMOD software with the simplified reference tissue model 2. Hemi-PD rats exhibited a constant increase of 23% in D2/D3R availability in the CPu, which was almost normalized by intrastriatal application of BoNT-A. Importantly, the BoNT-A effect on striatal D2/D3R significantly correlated with behavioral results in the apomorphine rotation test. Our results suggest a therapeutic effect of BoNT-A on the impaired motor behavior of hemi-PD rats by reducing interhemispheric changes of striatal D2/D3R.

  10. Quantitative kinetic analysis of PET amyloid imaging agents [11C]BF227 and [18F]FACT in human brain

    International Nuclear Information System (INIS)

    Shidahara, Miho; Watabe, Hiroshi; Tashiro, Manabu; Okamura, Nobuyuki; Furumoto, Shozo; Watanuki, Shoichi; Furukawa, Katsutoshi; Arakawa, Yuma; Funaki, Yoshihito; Iwata, Ren; Gonda, Kohsuke; Kudo, Yukitsuka; Arai, Hiroyuki; Ishiwata, Kiichi; Yanai, Kazuhiko

    2015-01-01

    Introduction: The purpose of this study was to compare two amyloid imaging agents, [ 11 C]BF227 and [ 18 F]FACT (derivative from [ 11 C]BF227) through quantitative pharmacokinetics analysis in human brain. Methods: Positron emission tomography studies were performed on six elderly healthy control (HC) subjects and seven probable Alzheimer’s disease (AD) patients with [ 11 C]BF227 and 10 HC subjects and 10 probable AD patients with [ 18 F]FACT. Data from nine regions of interest were analyzed by several approaches, namely non-linear least-squared fitting methods with arterial input functions (one-tissue compartment model(1TCM), two-tissue compartment model (2TCM)), Logan plot, and linearized methods with reference region (Reference Logan plot (RefLogan), MRTM0, MRTM2). We also evaluated SUV and SUVR for both tracers. The parameters estimated by several approaches were compared between two tracers for detectability of differences between HC and AD patients. Results: For [ 11 C]BF227, there were no significant difference of V T (2TCM, 1TCM) and SUV in all regions (Student t-test; p < 0.05) and significant differences in the DVRs (Logan, RefLogan, and MRTM2) and SUVRs in six neocortical regions (p < 0.05) between the HC and AD groups. For [ 18 F]FACT, significant differences in DVRs (RefLogan, MRTM0, and MRTM2) were observed in more than four neocortical regions between the HC and AD groups (p < 0.05), and the significant differences were found in SUVRs for two neocortical regions (inferior frontal coretex and lateral temporal coretex). Our results showed that both tracers can clearly distinguish between HC and AD groups although the pharmacokinetics and distribution patterns in brain for two tracers were substantially different. Conclusion: This study revealed that although the PET amyloid imaging agents [ 11 C]BF227 and [ 18 F]FACT have similar chemical and biological properties, they have different pharmacokinetics, and caution must be paid for usage of the

  11. Noninvasive imaging of tumor integrin expression using 18F-labeled RGD dimer peptide with PEG4 linkers

    International Nuclear Information System (INIS)

    Liu, Zhaofei; Liu, Shuanglong; Wang, Fan; Liu, Shuang; Chen, Xiaoyuan

    2009-01-01

    Various radiolabeled Arg-Gly-Asp (RGD) peptides have been previously investigated for tumor integrin α v β 3 imaging. To further develop RGD radiotracers with enhanced tumor-targeting efficacy and improved in vivo pharmacokinetics, we designed a new RGD homodimeric peptide with two PEG 4 spacers (PEG 4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid) between the two monomeric RGD motifs and one PEG 4 linker on the glutamate α-amino group ( 18 F-labeled PEG 4 -E[PEG 4 -c(RGDfK)] 2 , P-PRGD2), as a promising agent for noninvasive imaging of integrin expression in mouse models. P-PRGD2 was labeled with 18 F via 4-nitrophenyl 2- 18 F-fluoropropionate ( 18 F-FP) prosthetic group. In vitro and in vivo characteristics of the new dimeric RGD peptide tracer 18 F-FP-P-PRGD2 were investigated and compared with those of 18 F-FP-P-RGD2 ( 18 F-labeled RGD dimer without two PEG 4 spacers between the two RGD motifs). The ability of 18 F-FP-P-PRGD2 to image tumor vascular integrin expression was evaluated in a 4T1 murine breast tumor model. With the insertion of two PEG 4 spacers between the two RGD motifs, 18 F-FP-P-PRGD2 showed enhanced integrin α v β 3 -binding affinity, increased tumor uptake and tumor-to-nontumor background ratios compared with 18 F-FP-P-RGD2 in U87MG tumors. MicroPET imaging with 18 F-FP-P-PRGD2 revealed high tumor contrast and low background in tumor-bearing nude mice. Biodistribution studies confirmed the in vivo integrin α v β 3 -binding specificity of 18 F-FP-P-RGD2. 18 F-FP-P-PRGD2 can specifically image integrin α v β 3 on the activated endothelial cells of tumor neovasculature. 18 F-FP-P-PRGD2 can provide important information on integrin expression on the tumor vasculature. The high integrin binding affinity and specificity, excellent pharmacokinetic properties and metabolic stability make the new RGD dimeric tracer 18 F-FP-P-PRGD2 a promising agent for PET imaging of tumor angiogenesis and for monitoring the efficacy of antiangiogenic

  12. Imaging malignant melanoma with {sup 18}F-5-FPN

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Hongyan; Xia, Xiaotian; Li, Chongjiao; Song, Yiling; Qin, Chunxia; Liu, Qingyao; Zhang, Yongxue; Lan, Xiaoli [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (China); Hubei Key Laboratory of Molecular Imaging (China)

    2016-01-15

    Radiolabelled benzamides are attractive candidates for targeting melanoma because they bind to melanin and exhibit high tumour uptake and retention. {sup 18}F-5-Fluoro-N-(2-[diethylamino]ethyl)picolinamide ({sup 18}F-5-FPN), a benzamide analogue, was prepared and its pharmacokinetics and binding affinity evaluated both in vitro and in vivo to assess its clinical potential in the diagnosis and staging of melanoma. {sup 18}F-5-FPN was prepared and purified. Its binding specificity was measured in vitro in two different melanoma cell lines, one pigmented (B16F10 cells) and one nonpigmented (A375m cells), and in vivo in mice xenografted with the same cell lines. Dynamic and static PET images using {sup 18}F-5-FPN were obtained in the tumour-bearing mice, and the static images were also compared with those acquired with {sup 18}F-FDG. PET imaging with {sup 18}F-5-FPN was also performed in B16F10 tumour-bearing mice with lung metastases. {sup 18}F-5-FPN was successfully prepared with radiochemical yields of 5 - 10 %. Binding of {sup 18}F-5-FPN to B16F10 cells was much higher than to A375m cells. On dynamic PET imaging B16F10 tumours were visible about 1 min after injection of the tracer, and the uptake gradually increased over time. {sup 18}F-5-FPN was rapidly excreted via the kidneys. B16F10 tumours were clearly visible on static images acquired 1 and 2 h after injection, with high uptake values of 24.34 ± 6.32 %ID/g and 16.63 ± 5.41 %ID/g, respectively, in the biodistribution study (five mice). However, there was no visible uptake by A375m tumours. {sup 18}F-5-FPN and {sup 18}F-FDG PET imaging were compared in B16F10 tumour xenografts, and the tumour-to-background ratio of {sup 18}F-5-FPN was ten times higher than that of {sup 18}F-FDG (35.22 ± 7.02 vs. 3.29 ± 0.53, five mice). {sup 18}F-5-FPN PET imaging also detected simulated lung metastases measuring 1 - 2 mm. {sup 18}F-5-FPN specifically targeted melanin in vitro and in vivo with high retention and affinity

  13. Clinical studies of 18F-FDG and 18F-FP-β-CIT PET imaging in hemi-Parkinson's disease

    International Nuclear Information System (INIS)

    Zhao Jun; Lin Xiangtong; Guan Yihui; Zuo Chuantao; Zhang Zhengwei; Wang Jian; Sun Bomin; Chen Zhengping

    2003-01-01

    Objective: To study the characteristics of 18 F-fluorodeoxyglucose (FDG) and 18 F-N-3-fluoro-propyl-2β-carbomethoxy-3β-(4-iodophenyl) nortropane ( 18 F-FP-β-CIT) PET imaging in patients with hemi-Parkinson's disease (hemi-PD) and to assess their value in early diagnosis. Methods: 34 cases of hemi-PD (Hoehn and Yahr stage I-II) and 16 normal control subjects were selected for this study. 16 patients were performed with 18 F-FDG PET imaging, 18 patients with 18 F-FP-β-CIF, while 6 patients of them both 18 F-FDG and 18 F-FP-β-CIT. 30 min after injection of 185-259 MBq 18 F-FDG, 3D brain scans were acquired. Region of interest (ROI) analysis and statistical parametric mapping (SPM) were applied. 18 F-FP-β-CIT PET imaging was carried out 2-3 h post injection, and (ROI-cerebellum)/cerebellum ratio was calculated. Results: In right hemi-PD, reductions in 18 F-FDG metabolism were observed in the left basal ganglia compared with control group, but with no significant difference (P>0.05). The results of SPM analysis showed that a significant reduction in FDG uptake in the left superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus and left middle temporal gyrus, whereas a significant increase in the bilateral precentral gyrus , superior parietal lobule, left middle occipital gyrus and left thalamus as compared with the control group. There was a significant reduction in 18 F-FP-β-CIT uptake in putamen, its reduction was found not only in the contralateral putamen, but also in the ipsilateral ones, and more pronounced in the contralateral posterior putamen. Conclusions: 18 F-FDG PET imaging is non-specific for the early diagnosis of PD. 18 F-FP-β-CIT PET imaging could find the changes of striatum dopamine transporter at early stage, therefore it was helpful for early diagnosis and differential diagnosis of PD. Combined with 18 F-FDG PET imaging, the changes of local cerebral glucose metabolism in PD could also be evaluated

  14. Thoracic staging in lung cancer: prospective comparison of 18F-FDG PET/MR imaging and 18F-FDG PET/CT.

    Science.gov (United States)

    Heusch, Philipp; Buchbender, Christian; Köhler, Jens; Nensa, Felix; Gauler, Thomas; Gomez, Benedikt; Reis, Henning; Stamatis, Georgios; Kühl, Hilmar; Hartung, Verena; Heusner, Till A

    2014-03-01

    Therapeutic decisions in non-small cell lung cancer (NSCLC) patients depend on the tumor stage. PET/CT with (18)F-FDG is widely accepted as the diagnostic standard of care. The purpose of this study was to compare a dedicated pulmonary (18)F-FDG PET/MR imaging protocol with (18)F-FDG PET/CT for primary and locoregional lymph node staging in NSCLC patients using histopathology as the reference. Twenty-two patients (12 men, 10 women; mean age ± SD, 65.1 ± 9.1 y) with histopathologically confirmed NSCLC underwent (18)F-FDG PET/CT, followed by (18)F-FDG PET/MR imaging, including a dedicated pulmonary MR imaging protocol. T and N staging according to the seventh edition of the American Joint Committee on Cancer staging manual was performed by 2 readers in separate sessions for (18)F-FDG PET/CT and PET/MR imaging, respectively. Results from histopathology were used as the standard of reference. The mean and maximum standardized uptake value (SUV(mean) and SUV(max), respectively) and maximum diameter of the primary tumor was measured and compared in (18)F-FDG PET/CT and PET/MR imaging. PET/MR imaging and (18)F-FDG PET/CT agreed on T stages in 16 of 16 of patients (100%). All patients were correctly staged by (18)F-FDG PET/CT and PET/MR (100%), compared with histopathology. There was no statistically significant difference between (18)F-FDG PET/CT and (18)F-FDG PET/MR imaging for lymph node metastases detection (P = 0.48). For definition of thoracic N stages, PET/MR imaging and (18)F-FDG PET/CT were concordant in 20 of 22 patients (91%). PET/MR imaging determined the N stage correctly in 20 of 22 patients (91%). (18)F-FDG PET/CT determined the N stage correctly in 18 of 22 patients (82%). The mean differences for SUV(mean) and SUV(max) of NSCLC in (18)F-FDG PET/MR imaging and (18)F-FDG PET/CT were 0.21 and -5.06. These differences were not statistically significant (P > 0.05). The SUV(mean) and SUV(max) measurements derived from (18)F-FDG PET/CT and (18)F-FDG PET

  15. Oncological applications of 18F-FDG PET imaging

    International Nuclear Information System (INIS)

    Li Lin

    2000-01-01

    Considering normal distribution of 18 F-FDG in human body, 18 F-FDG imaging using PET can be applied to brain tumors, colorectal cancer, lymphoma, melanoma, lung cancer and head and neck cancer. The author briefly focuses on application of 18 F-FDG PET imaging to breast cancer, pancreatic cancer, hepatocellular carcinoma, musculoskeletal neoplasms, endocrine neoplasms, genitourinary neoplasms, esophageal and gastric carcinomas

  16. One-Step 18F-Labeling of Estradiol Derivative for PET Imaging of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Hongbo Huang

    2018-01-01

    Full Text Available Positron emission tomography (PET imaging is a useful method to evaluate in situ estrogen receptor (ER status for the early diagnosis of breast cancer and optimization of the appropriate treatment strategy. The 18F-labeled estradiol derivative has been successfully used to clinically assess the ER level of breast cancer. In order to simplify the radiosynthesis process, one-step 18F-19F isotope exchange reaction was employed for the 18F-fluorination of the tracer of [18F]AmBF3-TEG-ES. The radiotracer was obtained with the radiochemical yield (RCY of ~61% and the radiochemical purity (RCP of >98% within 40 min. Cell uptake and blocking assays indicated that the tracer could selectively accumulate in the ER-positive human breast cancer cell lines MCF-7 and T47D. In vivo PET imaging on the MCF-7 tumor-bearing mice showed relatively high tumor uptake (1.4~2.3 %D/g and tumor/muscle uptake ratio (4~6. These results indicated that the tracer is a promising PET imaging agent for ER-positive breast cancers.

  17. Initial results of hypoxia imaging using 1-{alpha}-d-(5-deoxy-5-[{sup 18}F]-fluoroarabinofuranosyl)-2-nitroimidazole ({sup 18}F-FAZA)

    Energy Technology Data Exchange (ETDEWEB)

    Postema, Ernst J.; McEwan, Alexander J.B.; Riauka, Terence A.; Kumar, Piyush; Richmond, Dacia A.; Abrams, Douglas N. [University of Alberta, Department of Oncology, Edmonton, Alberta (Canada); Wiebe, Leonard I. [University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, Alberta (Canada)

    2009-10-15

    that {sup 18}F-FAZA may be a very useful radiopharmaceutical to image hypoxia in the tumour types selected. Especially the high uptake by gliomas was encouraging. Given the good imaging properties, including acceptable T/B ratios in the tumour categories studied, {sup 18}F-FAZA could be considered as a very promising agent for assessing the hypoxic fraction of these tumour types. (orig.)

  18. Radiosynthesis and initial evaluation of [{sup 18}F]-FEPPA for PET imaging of peripheral benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Alan A. [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8 (Canada)], E-mail: alan.wilson@camhpet.ca; Garcia, Armando; Parkes, Jun [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); McCormick, Patrick [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); Stephenson, Karin A. [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Houle, Sylvain; Vasdev, Neil [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8 (Canada)

    2008-04-15

    Introduction: A novel [{sup 18}F]-radiolabelled phenoxyanilide, [{sup 18}F]-FEPPA, has been synthesized and evaluated, in vitro and ex vivo, as a potential positron emission tomography imaging agent for the peripheral benzodiazepine receptor (PBR). Methods: [{sup 18}F]-FEPPA and two other radiotracers for imaging PBR, namely [{sup 11}C]-PBR28 and [{sup 11}C]-PBR28-d3, were synthesised and evaluated in vitro and ex vivo as potential PBR imaging agents. Results: [{sup 18}F]-FEPPA is efficiently prepared in one step from its tosylate precursor and [{sup 18}F]-fluoride in high radiochemical yields and at high specific activity. FEPPA displayed a K{sub i} of 0.07 nM for PBR in rat mitochondrial membrane preparations and a suitable lipophilicity for brain penetration (log P of 2.99 at pH 7.4). Upon intravenous injection into rats, [{sup 18}F]-FEPPA showed moderate brain uptake [standard uptake value (SUV) of 0.6 at 5 min] and a slow washout (SUV of 0.35 after 60 min). Highest uptake of radioactivity was seen in the hypothalamus and olfactory bulb, regions previously reported to be enriched in PBR in rat brain. Analysis of plasma and brain extracts demonstrated that [{sup 18}F]-FEPPA was rapidly metabolized, but no lipophilic metabolites were observed in either preparation and only 5% radioactive metabolites were present in brain tissue extracts. Blocking studies to determine the extent of specific binding of [{sup 18}F]-FEPPA in rat brain were problematic due to large perturbations in circulating radiotracer and the lack of a reference region. Conclusions: Further evaluation of the potential of [{sup 18}F]-FEPPA will require the employment of rigorous kinetic models and/or appropriate animal models.

  19. F-18 labelling agents

    International Nuclear Information System (INIS)

    Mikecz, P.

    2001-01-01

    In this presentation the production of fluorine-18, separation of [ 18 F]fluoride, converting fluoride into fluorine as well as fluorine incorporation into organic molecules are reviewed. Reaction schemes and technology schemes are included. Towards organic reactions, with help of small molecules of the 18 F can be introduced into a wide variety of radiopharmaceuticals. (author)

  20. Synthesis of 4-[18F]fluorophenyl triphenylphosphonium as a novel imaging agent for mitochondrial dysfunction

    International Nuclear Information System (INIS)

    Kim, Jung Young; Min, Jung Joon; Song, Ho Cheon; Bom, Hee Seung; Sanjiv, S. Gambhir

    2005-01-01

    It has been known for decades that lipophilic cations such as rhodamine-123 and tetraphenylphosphonium(TPP) salts can penetrate the plasma and mitochondrial membranes and selectively accumulate in mitochondria, because of the negative inner mitochondrial transmembrane potential. Therefore, the F-18 labeled TPP have a potential as a PET probe for in vivo molecular imaging of mitochondrial dysfunction and tumor. We prepared in this study the 4-[ 1 9F]Fluorophenyl triphenylphosphonium iodide standard for synthesis of 4-[ 18 F]Fluorophenyl triphenylphosphonium. The standard material 19 F-TPP was synthesized according to stirring the mixture of triphenylphosphine, 4-fluoro-iodobenzene and palladium catalyst in xylene. This residue was purified by HPLC using semi-preparative column (rt : 24.1 min) and evaluated by 1H-NMR, ESI-MS (357.1217). For the radiosynthesis of 18 F-TPP, NO2TPP derived from triphenylphosphine was first prepared as a precursor for 18 F-TPP. The anhydrous 18F-fluoride (10 mCi, from GE PETtrace) residue was added to NO 2 TPP (1 mg) in dry DMSO (0.32 ml). The reaction mixture was heated at 120 .deg. C for 15 min in oil bath. This solution was purified by HPLC (rt : 25.5 min). The product (0.7 mCi) was dried in a rotary evaporator and passed through a 0.22 mm membrane filter into a sterile vial. 18 FTPP was synthesized by nucleophilic substitution reaction of NO 2 TPP with [ 18 F]fluoride. The radiochemical purity of 18F-TPP determined by analytical HPLC (same gradient as used for semi-preparative HPLC, flow rate: 1.0 ml/min) was above 95%, and radiochemical yield for 18 F-TPP was 10-15% for 60 min of synthesis. The radiosynthesis of 18 FTPP in high radiochemical purity was achieved through a one-step reaction

  1. Exploration of the impact of stereochemistry on the identification of the novel translocator protein PET imaging agent [18F]GE-180

    International Nuclear Information System (INIS)

    Chau, Wai-Fung; Black, Andrew M.A.; Clarke, Alan; Durrant, Clare; Gausemel, Ingvil; Khan, Imtiaz; Mantzilas, Dimitrios; Oulie, Inger; Rogstad, Astri; Trigg, William; Jones, Paul A.

    2015-01-01

    Introduction: The tricyclic indole compound, [ 18 F]GE-180 has been previously identified as a promising positron emission tomography (PET) imaging agent of the translocator protein (TSPO) with the potential to aid in the diagnosis, prognosis and therapy monitoring of degenerative neuroinflammatory conditions such as multiple sclerosis. [ 18 F]GE-180 was first identified and evaluated as a racemate, but subsequent evaluations of the resolved enantiomers have shown that the S-enantiomer has a higher affinity for TSPO and an improved in vivo biodistribution performance, in terms of higher uptake in specific brain regions and good clearance (as described previously). Here we describe the additional biological evaluations carried out to confirm the improved performance of the S-enantiomer and including experiments which have demonstrated the stability of the chiral centre to chemical and biological factors. Materials and Methods: GE-180 and the corresponding radiolabelling precursor were separated into single enantiomers using semi-preparative chiral supercritical fluid chromatography (SFC). A detailed comparison of the individual enantiomers and the racemate was carried out in a number of biological studies. TSPO binding affinity was assessed using a radioligand binding assay. Incubation with rat hepatic S9 fractions was used to monitor metabolic stability. In vivo biodistribution studies up to 60 min post injection (PI) in naïve rats were carried out to monitor uptake and clearance. Achiral and chiral in vivo metabolite detection methods were developed to assess the presence of metabolite/s in plasma and brain samples, with the chiral method also determining potential racemisation at the chiral centre. Results: Evaluation of the chiral stability of the two enantiomers to metabolism by rat S9 fractions, showed no racemisation of enantiomers. There were notable differences in the biodistribution between the racemate and the R- and S-enantiomers. All compounds had

  2. Assessment of glucose metabolism and cellular proliferation in multiple myeloma: a first report on combined 18F-FDG and 18F-FLT PET/CT imaging.

    Science.gov (United States)

    Sachpekidis, C; Goldschmidt, H; Kopka, K; Kopp-Schneider, A; Dimitrakopoulou-Strauss, A

    2018-04-10

    Despite the significant upgrading in recent years of the role of 18 F-FDG PET/CT in multiple myeloma (MM) diagnostics, there is a still unmet need for myeloma-specific radiotracers. 3'-Deoxy-3'-[ 18 F]fluorothymidine ( 18 F-FLT) is the most studied cellular proliferation PET agent, considered a potentially new myeloma functional imaging tracer. The aim of this pilot study was to evaluate 18 F-FLT PET/CT in imaging of MM patients, in the context of its combined use with 18 F-FDG PET/CT. Eight patients, four suffering from symptomatic MM and four suffering from smoldering MM (SMM), were enrolled in the study. All patients underwent 18 F-FDG PET/CT and 18 F-FLT PET/CT imaging by means of static (whole body) and dynamic PET/CT of the lower abdomen and pelvis (dPET/CT) in two consecutive days. The evaluation of PET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on two-tissue compartment modeling. 18 F-FDG PET/CT demonstrated focal, 18 F-FDG avid, MM-indicative bone marrow lesions in five patients. In contrary, 18 F-FLT PET/CT showed focal, 18 F-FLT avid, myeloma-indicative lesions in only two patients. In total, 48 18 F-FDG avid, focal, MM-indicative lesions were detected with 18 F-FDG PET/CT, while 17 18 F-FLT avid, focal, MM-indicative lesions were detected with 18 F-FLT PET/CT. The number of myeloma-indicative lesions was significantly higher for 18 F-FDG PET/CT than for 18 F-FLT PET/CT. A common finding was a mismatch of focally increased 18 F-FDG uptake and reduced 18 F-FLT uptake (lower than the surrounding bone marrow). Moreover, 18 F-FLT PET/CT was characterized by high background activity in the bone marrow compartment, further complicating the evaluation of bone marrow lesions. Semi-quantitative evaluation revealed that both SUV mean and SUV max were significantly higher for 18 F-FLT than for 18 F-FDG in both MM lesions and reference tissue. SUV values were higher in MM lesions than in

  3. One-step preparation of [18F]FPBM for PET imaging of serotonin transporter (SERT) in the brain

    International Nuclear Information System (INIS)

    Qiao, Hongwen; Zhang, Yan; Wu, Zehui; Zhu, Lin; Choi, Seok Rye; Ploessl, Karl; Kung, Hank F.

    2016-01-01

    Serotonin transporters (SERT) in the brain play an important role in normal brain function. Selective serotonin reuptake inhibitors such as fluoxetine, sertraline, paroxetine, escitalopram, etc., specifically target SERT binding in the brain. Development of SERT imaging agents may be useful for studying the function of SERT by in vivo imaging. A one-step preparation of [ 18 F]FPBM, 2-(2′-(dimethylamino)methyl)-4′-(3-([ 18 F]fluoropropoxy)phenylthio) benzenamine, for positron emission tomography (PET) imaging of SERT binding in the brain was achieved. An active OTs intermediate, 9, was reacted with [ 18 F]F − /K 222 to produce [ 18 F]FPBM in one step and in high radiochemical yield. This labeling reaction was evaluated and optimized under different temperatures, bases, solvents, and varying amounts of precursor 9. The radiolabeling reaction led to the desired [ 18 F]FPBM in one step and the crude product was purified by HPLC purification to give no-carrier-added [ 18 F]FPBM (radiochemical yield, 24–33%, decay corrected; radiochemical purity > 99%). PET imaging studies in normal monkeys (n = 4) showed fast, pronounced uptakes in the midbrain and thalamus, regions known to be rich in SERT binding sites. A displacement experiment with escitalopram (5 mg/kg iv injection at 30 min after [ 18 F]FPBM injection) showed a rapid and complete reversal of SERT binding, suggesting that binding by [ 18 F]FPBM was highly specific and reversible. A one-step radiolabeling method coupled with HPLC purification for preparation of [ 18 F]FPBM was developed. Imaging studies suggest that it is feasible to use this method to prepare [ 18 F]FPBM for in vivo PET imaging of SERT binding in the brain.

  4. Evaluation of D-isomers of 4-borono-2-18F-fluoro-phenylalanine and O-11C-methyl-tyrosine as brain tumor imaging agents: a comparative PET study with their L-isomers in rat brain glioma.

    Science.gov (United States)

    Kanazawa, Masakatsu; Nishiyama, Shingo; Hashimoto, Fumio; Kakiuchi, Takeharu; Tsukada, Hideo

    2018-06-13

    The potential of the D-isomerization of 4-borono-2- 18 F-fluoro-phenylalanine ( 18 F-FBPA) to improve its target tumor to non-target normal brain tissue ratio (TBR) was evaluated in rat brain glioma and compared with those of L- and D- 11 C-methyl-tyrosine ( 11 C-CMT). The L- or D-isomer of 18 F-FBPA was injected into rats through the tail vein, and their whole body kinetics and distributions were assessed using the tissue dissection method up to 90 min after the injection. The kinetics of L- and D- 18 F-FBPA or L- and D- 11 C-CMT in the C-6 glioma-inoculated rat brain were measured for 90 or 60 min, respectively, using high-resolution animal PET, and their TBRs were assessed. Tissue dissection analyses showed that D- 18 F-FBPA uptake was significantly lower than that of L- 18 F-FBPA in the brain and abdominal organs, except for the kidney and bladder, reflecting the faster elimination rate of D- 18 F-FBPA than L- 18 F-FBPA from the blood to the urinary tract. PET imaging using 18 F-FBPA revealed that although the brain uptake of D- 18 F-FBPA was significantly lower than that of L- 18 F-FBPA, the TBR of the D-isomer improved to 6.93 from 1.45 for the L-isomer. Similar results were obtained with PET imaging using 11 C-CMT with a smaller improvement in TBR to 1.75 for D- 11 C-CMT from 1.33 for L- 11 C-CMT. The present results indicate that D- 18 F-FBPA is a better brain tumor imaging agent with higher TBR than its original L-isomer and previously reported tyrosine-based PET imaging agents. This improved TBR of D- 18 F-FBPA without any pre-treatments, such as tentative blood-brain barrier disruption using hyperosmotic agents or sonication, suggests that the D-isomerization of BPA results in the more selective accumulation of 10 B in tumor cells that is more effective and less toxic than conventional L-BPA.

  5. Synthesis and Biological Evaluation of an 18Fluorine-Labeled COX Inhibitor—[18F]Fluorooctyl Fenbufen Amide—For Imaging of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Ying-Cheng Huang

    2016-03-01

    Full Text Available Molecular imaging of brain tumors remains a great challenge, despite the advances made in imaging technology. An anti-inflammatory compound may be a useful tool for this purpose because there is evidence of inflammatory processes in brain tumor micro-environments. Fluorooctylfenbufen amide (FOFA was prepared from 8-chlorooctanol via treatment with potassium phthalimide, tosylation with Ts2O, fluorination with KF under phase transfer catalyzed conditions, deprotection using aqueous hydrazine, and coupling with fenbufen. The corresponding radiofluoro product [18F]FOFA, had a final radiochemical yield of 2.81 mCi and was prepared from activated [18F]F− (212 mCi via HPLC purification and concentration. The radiochemical purity was determined to be 99%, and the specific activity was shown to exceed 22 GBq/μmol (EOS based on decay-corrected calculations. Ex-vivo analysis of [18F]FOFA in plasma using HPLC showed that the agent had a half-life of 15 min. PET scanning showed significant accumulation of [18F]FOFA over tumor loci with reasonable contrast in C6-glioma bearing rats. These results suggest that this molecule is a promising agent for the visualization of brain tumors. Further investigations should focus on tumor micro-environments.

  6. Utility of {sup 18}F-fluoroestradiol ({sup 18}F-FES) PET/CT imaging as a pharmacodynamic marker in patients with refractory estrogen receptor-positive solid tumors receiving Z-endoxifen therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Frank I. [National Cancer Institute, NIH, Cancer Imaging Program, Bethesda, MD (United States); National Cancer Institute, Molecular Imaging Program, Bethesda, MD (United States); Gonzalez, E.M.; Kurdziel, K.A.; Ton, A.; Turkbey, B.; Choyke, P.L.; Lindenberg, M.L. [National Cancer Institute, Molecular Imaging Program, Bethesda, MD (United States); Kummar, S.; Do, K.; Collins, J.M.; Doroshow, J.H. [National Cancer Institute, Division of Cancer Treatment and Diagnosis and Center for Cancer Research, Bethesda, MD (United States); Shih, J. [National Cancer Institute, NIH, Biometric Research Program, Bethesda, MD (United States); Adler, S. [Leidos Biomedical Research, Inc., Clinical Research Directorate/Clinical Monitoring Research Program, Frederick, MD (United States); Jacobs, P.M. [National Cancer Institute, NIH, Cancer Imaging Program, Bethesda, MD (United States); Bhattacharyya, S. [Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD (United States); Chen, A.P. [National Cancer Institute, Early Clinical Trials Development Program, DCTD, Bethesda, MD (United States)

    2017-03-15

    Z-endoxifen is the most potent of the metabolites of tamoxifen, and has the potential to be more effective than tamoxifen because it bypasses potential drug resistance mechanisms attributable to patient variability in the expression of the hepatic microsomal enzyme CYP2D6. {sup 18}F-FES is a positron emission tomography (PET) imaging agent which selectively binds to estrogen receptor alpha (ER-α) and has been used for non-invasive in vivo assessment of ER activity in tumors. This study utilizes {sup 18}F-FES PET imaging as a pharmacodynamic biomarker in patients with ER+ tumors treated with Z-endoxifen. Fifteen patients were recruited from a parent therapeutic trial of Z-endoxifen and underwent imaging with {sup 18}F-FES PET at baseline. Eight had positive lesions on the baseline scan and underwent follow-up imaging with {sup 18}F-FES 1-5 days post administration of Z-endoxifen. Statistically significant changes (p = 0.0078) in standard uptake value (SUV)-Max were observed between the baseline and follow-up scans as early as 1 day post drug administration. F-FES PET imaging could serve as a pharmacodynamic biomarker for patients treated with ER-directed therapy. (orig.)

  7. Fluorine-18 NaF PET imaging of child abuse

    Energy Technology Data Exchange (ETDEWEB)

    Drubach, Laura A. [Children' s Hospital Boston and Harvard Medical School, Department of Radiology, Division of Nuclear Medicine/PET, Boston, MA (United States); Sapp, Mark.V. [School of Osteopathic Medicine, Child Abuse Research Education and Services (CARES) Institute University of Medicine and Dentistry of New Jersey, New Jersey (United States); Laffin, Stephen [Children' s Hospital Boston, Department of Radiology, Division of Nuclear Medicine/PET, Boston, MA (United States); Kleinman, Paul K. [Children' s Hospital Boston and Harvard Medical School, Department of Radiology, Division of Musculoskeletal Imaging, Boston, MA (United States)

    2008-07-15

    We describe the use of {sup 18}F-NaF positron emission tomography (PET) whole-body imaging for the evaluation of skeletal trauma in a case of suspected child abuse. To our knowledge, 18F NaF PET has not been used in the past for the evaluation of child abuse. In our patient, this technique detected all sites of trauma shown by initial and follow-up skeletal surveys, including bilateral metaphyseal fractures of the proximal humeri. Fluorine-18 NaF PET has potential advantage over Tc-99m-labeled methylene diphosphonate (MDP) based upon superior image contrast and spatial resolution. (orig.)

  8. Fluorine-18 NaF PET imaging of child abuse

    International Nuclear Information System (INIS)

    Drubach, Laura A.; Sapp, Mark V.; Laffin, Stephen; Kleinman, Paul K.

    2008-01-01

    We describe the use of 18 F-NaF positron emission tomography (PET) whole-body imaging for the evaluation of skeletal trauma in a case of suspected child abuse. To our knowledge, 18F NaF PET has not been used in the past for the evaluation of child abuse. In our patient, this technique detected all sites of trauma shown by initial and follow-up skeletal surveys, including bilateral metaphyseal fractures of the proximal humeri. Fluorine-18 NaF PET has potential advantage over Tc-99m-labeled methylene diphosphonate (MDP) based upon superior image contrast and spatial resolution. (orig.)

  9. Re(CO)3([18F]FEDA), a novel 18F PET renal tracer: Radiosynthesis and preclinical evaluation.

    Science.gov (United States)

    Lipowska, Malgorzata; Jarkas, Nashwa; Voll, Ronald J; Nye, Jonathon A; Klenc, Jeffrey; Goodman, Mark M; Taylor, Andrew T

    2018-03-01

    Our previous work demonstrated that the 99m Tc renal tracer, 99m Tc(CO) 3 (FEDA) ( 99m Tc-1), has a rapid clearance comparable in rats to that of 131 I-OIH, the radioactive gold standard for the measurement of effective renal plasma flow. The uncharged fluoroethyl pendant group of 99m Tc-1 provides a route to the synthesis of a structurally analogous rhenium-tricarbonyl 18 F renal imaging agent, Re(CO) 3 ([ 18 F]FEDA) ( 18 F-1). Our goal was to develop an efficient one-step method for the preparation of 18 F-1 and to compare its pharmacokinetic properties with those of 131 I-OIH in rats. 18 F-1 was prepared by the nucleophilic 18 F-fluorination of its tosyl precursor. The labeled compound was isolated by HPLC and subsequently evaluated in Sprague-Dawley rats using 131 I-OIH as an internal control and by dynamic PET/CT imaging. Plasma protein binding (PPB) and erythrocyte uptake (RCB) were determined and the urine was analyzed for metabolites. 18 F-1 was efficiently prepared as a single species with high radiochemical purity (>99%) and it displayed high radiochemical stability in vitro and in vivo. PPB was 87% and RCB was 21%. Biodistribution studies confirmed rapid renal extraction and high specificity for renal excretion, comparable to that of 131 I-OIH, with minimal hepatic/gastrointestinal elimination. The activity in the urine, as a percentage of 131 I-OIH, was 92% and 95% at 10 and 60 min, respectively. All other organs (heart, spleen, lungs) showed a negligible tracer uptake (F-1 through the kidneys and into the bladder; there was no demonstrable activity in bone verifying the absence of free [ 18 F]fluoride. 18 F-1 exhibited a high specificity for the kidney, rapid renal excretion comparable to that of 131 I-OIH and high in vivo radiochemical stability. Not only is 18 F-1 a promising PET renal tracer, but it provides a route to the development of a pair of analogous 18 F/ 99m Tc renal imaging agents with almost identical structures and comparable

  10. (18)F-FDG PET imaging of murine atherosclerosis

    DEFF Research Database (Denmark)

    Hag, Anne Mette Fisker; Pedersen, Sune Folke; Christoffersen, Christina

    2012-01-01

    To study whether (18)F-FDG can be used for in vivo imaging of atherogenesis by examining the correlation between (18)F-FDG uptake and gene expression of key molecular markers of atherosclerosis in apoE(-/-) mice....

  11. Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET

    International Nuclear Information System (INIS)

    Ossenkoppele, Rik; Tolboom, Nelleke; Adriaanse, Sofie F.; Foster-Dingley, Jessica C.; Boellaard, Ronald; Yaqub, Maqsood; Windhorst, Albert D.; Lammertsma, Adriaan A.; Berckel, Bart N.M. van; Barkhof, Frederik; Scheltens, Philip; Flier, Wiesje M. van der

    2012-01-01

    [ 11 C]PIB and [ 18 F]FDDNP are PET tracers for in vivo detection of the neuropathology underlying Alzheimer's disease (AD). [ 18 F]FDG is a glucose analogue and its uptake reflects metabolic activity. The purpose of this study was to examine longitudinal changes in these tracers in patients with AD or mild cognitive impairment (MCI) and in healthy controls. Longitudinal, paired, dynamic [ 11 C]PIB and [ 18 F]FDDNP (90 min each) and static [ 18 F]FDG (15 min) PET scans were obtained in 11 controls, 12 MCI patients and 8 AD patients. The mean interval between baseline and follow-up was 2.5 years (range 2.0-4.0 years). Parametric [ 11 C]PIB and [ 18 F]FDDNP images of binding potential (BP ND ) and [ 18 F]FDG standardized uptake value ratio (SUVr) images were generated. A significant increase in global cortical [ 11 C]PIB BP ND was found in MCI patients, but no changes were observed in AD patients or controls. Subsequent regional analysis revealed that this increase in [ 11 C]PIB BP ND in MCI patients was most prominent in the lateral temporal lobe (p 18 F]FDDNP, no changes in global BP ND were found. [ 18 F]FDG uptake was reduced at follow-up in the AD group only, especially in frontal, parietal and lateral temporal lobes (all p 11 C]PIB binding (ρ = -0.42, p 18 F]FDG uptake (ρ = 0.54, p 18 F]FDDNP binding (ρ = -0.18, p = 0.35) were not. [ 11 C]PIB and [ 18 F]FDG track molecular changes in different stages of AD. We found increased amyloid load in MCI patients and progressive metabolic impairment in AD patients. [ 18 F]FDDNP seems to be less useful for examining disease progression. (orig.)

  12. Synthesis of 2'-deoxy-2'-[{sup 18}F]-fluoro-5-iodo-1-{beta}-D-arabinofuranosyluracil ([{sup 18}F]-FIAU) and micro-PET imaging of suicide gene expression in tumor-bearing nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Alauddin, M.M.; Shahinian, A.; Park, R.; Tohme, M.; Fissekis, J.D.; Conti, P.S. [Univ. of Southern California, Los Angeles, CA (United States). PET Imaging Science Center

    2004-07-01

    Herpes simplex virus type-1 thymidine kinase (HSV1-tk) is being used as a suicide gene for gene therapy of cancer. An in vivo method to assess the HSV1-tk enzyme activity after gene transfer is desirable to monitor gene expression as an indicator of gene delivery. Imaging of the HSV1-tk reporter gene along with various reporter probes is of current interest. We originally developed [{sup 18}F]-FHPG and [{sup 18}F]-FHBG for PET imaging of HSV1-tk gene expression and demonstrated that [{sup 18}F]-FHBG is more useful than [{sup 18}F]-FHPG for this purpose. [{sup 124}I]-FIAU has been shown to be a potential PET imaging agent for HSV1-tk gene expression, and is superior to [{sup 18}F]-FHPG and [{sup 18}F]-FHBG. We also demonstrated that radiolabeled FMAU can be used as a marker for HSV-tk gene expression, and is superior to [{sup 18}F]-FHPG and [{sup 18}F]-FHBG. Earlier we reported a synthesis for 2'-deoxy-2'-[{sup 18}F]fluoro-5-methyl-1-{beta}-D-arabinofuranosyluracil ([{sup 18}F]-FMAU) and some other 5-substituted nucleosides. We have synthesized now [{sup 18}F]-FIAU, used the tracer for micro-PET imaging of suicide gene expression in tumor-bearing nude mice, and compared the results with earlier studies using [{sup 14}C]-FMAU. (orig.)

  13. Infection Imaging With 18F-FDS and First-in-Human Evaluation

    International Nuclear Information System (INIS)

    Yao, Shaobo; Xing, Haiqun; Zhu, Wenjia; Wu, Zhanhong; Zhang, Yingqiang; Ma, Yanru; Liu, Yimin; Huo, Li; Zhu, Zhaohui; Li, Zibo; Li, Fang

    2016-01-01

    Purpose: The noninvasive imaging of bacterial infections is critical in order to reduce mortality and morbidity caused by these diseases. The recently reported 18 F-FDS ( 18 F-2-fluorodeoxy sorbitol) as a PET (positron emission tomography) tracer can be used to image Enterobacteriaceae-specific infections and provides a potential alternative to this problem compared with other probes for imaging infections. In this study, automatic synthesis, validation of 18 F-FDS and a first-in-human study were performed and discussed. Methods: A multifunctional synthesis module was employed for the radiosynthesis of 18 F-FDG ( 18 F-2-fluorodeoxy glucose) and 18 F-FDS starting from 18 F ion using two-pot three-step fully automated reactions. The behavior of 18 F-FDS as an in vivo imaging probe for infections was evaluated in an Escherichia coli mouse infection model. The first detailed pharmacokinetic and biodistribution parameters were obtained from healthy human volunteers. Results: The uptake of 18 F-FDS in an E. coli mouse-myositis infection model was easily differentiated from other organs and normal muscle. Intensive lesion uptake declined after antibiotic treatment. In the pilot human study, no adverse effects due to 18 F-FDS were observed up to 24 h post-injection. The radiotracer was rapidly cleared from the circulation and excreted mainly through the urinary system. Conclusion: We conclude that 18 F-FDS PET holds great potential for appropriate and effective for the imaging of bacterial infections in vivo. These preliminary results indicate that further clinical studies are warranted.

  14. Evaluation of TSPO PET Ligands [18F]VUIIS1009A and [18F]VUIIS1009B: Tracers for Cancer Imaging.

    Science.gov (United States)

    Tang, Dewei; Li, Jun; Buck, Jason R; Tantawy, Mohamed Noor; Xia, Yan; Harp, Joel M; Nickels, Michael L; Meiler, Jens; Manning, H Charles

    2017-08-01

    Positron emission tomography (PET) ligands targeting translocator protein (TSPO) are potential imaging diagnostics of cancer. In this study, we report two novel, high-affinity TSPO PET ligands that are 5,7 regioisomers, [ 18 F]VUIIS1009A ([ 18 F]3A) and [ 18 F]VUIIS1009B ([ 18 F]3B), and their initial in vitro and in vivo evaluation in healthy mice and glioma-bearing rats. VUIIS1009A/B was synthesized and confirmed by X-ray crystallography. Interactions between TSPO binding pocket and novel ligands were evaluated and compared with contemporary TSPO ligands using 2D 1 H- 15 N heteronuclear single quantum coherence (HSQC) spectroscopy. In vivo biodistribution of [ 18 F]VUIIS1009A and [ 18 F]VUIIS1009B was carried out in healthy mice with and without radioligand displacement. Dynamic PET imaging data were acquired simultaneously with [ 18 F]VUIIS1009A/B injections in glioma-bearing rats, with binding reversibility and specificity evaluated by radioligand displacement. In vivo radiometabolite analysis was performed using radio-TLC, and quantitative analysis of PET data was performed using metabolite-corrected arterial input functions. Imaging was validated with histology and immunohistochemistry. Both VUIIS1009A (3A) and VUIIS1009B (3B) were found to exhibit exceptional binding affinity to TSPO, with observed IC 50 values against PK11195 approximately 500-fold lower than DPA-714. However, HSQC NMR suggested that VUIIS1009A and VUIIS1009B share a common binding pocket within mammalian TSPO (mTSPO) as DPA-714 and to a lesser extent, PK11195. [ 18 F]VUIIS1009A ([ 18 F]3A) and [ 18 F]VUIIS1009B ([ 18 F]3B) exhibited similar biodistribution in healthy mice. In rats bearing C6 gliomas, both [ 18 F]VUIIS1009A and [ 18 F]VUIIS1009B exhibited greater binding potential (k 3 /k 4 )in tumor tissue compared to [ 18 F]DPA-714. Interestingly, [ 18 F]VUIIS1009B exhibited significantly greater tumor uptake (V T ) than [ 18 F]VUIIS1009A, which was attributed primarily to greater plasma

  15. In vivo imaging of vesicular monoamine transporter 2 in pancreas using an {sup 18}F epoxide derivative of tetrabenazine

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States)], E-mail: kunghf@sunmac.spect.upenn.edu; Lieberman, Brian P. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Zhuang Zhiping [Avid Radiopharmaceuticals, Inc., Philadelphia, PA 19104 (United States); Oya, Shunichi; Kung Meiping [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Choi, Seok Rye [Avid Radiopharmaceuticals, Inc., Philadelphia, PA 19104 (United States); Poessl, Karl; Blankemeyer, Eric; Hou, Catherine [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Skovronsky, Daniel [Avid Radiopharmaceuticals, Inc., Philadelphia, PA 19104 (United States); Kilbourn, Michael [Department of Radiology, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-11-15

    Objectives: Development of imaging agents for pancreatic beta cell mass may provide tools for studying insulin-secreting beta cells and their relationship with diabetes mellitus. In this paper, a new imaging agent, [{sup 18}F](+)-2-oxiranyl-3-isobutyl-9-(3-fluoropropoxy)-10-methoxy-2,3,4,6,7, 11b-hexahydro-1H-pyrido[2,1-a]isoquinoline [{sup 18}F](+)4, which displays properties targeting vesicular monoamine transporter 2 (VMAT2) binding sites of beta cells in the pancreas, was evaluated as a positron emission tomography (PET) agent for estimating beta cell mass in vivo. The hydrolyzable epoxide group of (+)4 may provide a mechanism for shifting biodistribution from liver to kidney, thus reducing the background signal. Methods: Both {sup 18}F- and {sup 19}F-labeled (+) and (-) isomers of 4 were synthesized and evaluated. Organ distribution was carried out in normal rats. Uptake of [{sup 18}F](+)4 in pancreas of normal rats was measured and correlated with blocking studies using competing drugs, (+)dihydrotetrabenazine [(+)-DTBZ] or 9-fluoropropyl-(+)dihydro tetrabenazine [FP-(+)-DTBZ, (+)2]. Results: In vitro binding study of VMAT2 using rat brain striatum showed a K{sub i} value of 0.08 and 0.15 nM for the (+)4 and ({+-})4, respectively. The in vivo biodistribution of [{sup 18}F](+)4 in rats showed the highest uptake in the pancreas (2.68 %ID/g at 60 min postinjection). In vivo competition experiments with cold FP-(+)-DTBZ, (+)2, (3.5 mg/kg, 5 min iv pretreatment) led to a significant reduction of pancreas uptake (85% blockade at 60 min). The inactive isomer [{sup 18}F](-)4 showed significantly lower pancreas uptake (0.22 %ID/g at 30 min postinjection). Animal PET imaging studies of [{sup 18}F](+)4 in normal rats demonstrated an avid pancreatic uptake in rats. Conclusion: The preliminary results suggest that the epoxide, [{sup 18}F](+)4, is highly selective in binding to VMAT2 and it has an excellent uptake in the pancreas of rats. The liver uptake was significantly

  16. 18F-FDOPA PET/CT imaging of insulinoma revisited

    International Nuclear Information System (INIS)

    Imperiale, Alessio; Namer, Izzie-Jacques; Sebag, Frederic; Vix, Michel; Castinetti, Frederic; Kessler, Laurence; Moreau, Francois; Bachellier, Philippe; Guillet, Benjamin; Mundler, Olivier; Taieb, David

    2015-01-01

    18 F-FDOPA PET imaging is increasingly used in the work-up of patients with neuroendocrine tumours. It has been shown to be of limited value in localizing pancreatic insulin-secreting tumours in adults with hyperinsulinaemic hypoglycaemia (HH) mainly due to 18 F-FDOPA uptake by the whole pancreatic gland. The objective of this study was to review our experience with 18 F-FDOPA PET/CT imaging with carbidopa (CD) premedication in patients with HH in comparison with PET/CT studies performed without CD premedication in an independent population. A retrospective study including 16 HH patients who were investigated between January 2011 and December 2013 using 18 F-FDOPA PET/CT (17 examinations) in two academic endocrine tumour centres was conducted. All PET/CT examinations were performed under CD premedication (200 mg orally, 1 - 2 h prior to tracer injection). The PET/CT acquisition protocol included an early acquisition (5 min after 18 F-FDOPA injection) centred over the upper abdomen and a delayed whole-body acquisition starting 20 - 30 min later. An independent series of eight consecutive patients with HH and investigated before 2011 were considered for comparison. All patients had a reference whole-body PET/CT scan performed about 1 h after 18 F-FDOPA injection. In all cases, PET/CT was performed without CD premedication. In the study group, 18 F-FDOPA PET/CT with CD premedication was positive in 8 out of 11 patients with histologically proven insulinoma (73 %). All 18 F-FDOPA PET/CT-avid insulinomas were detected on early images and 5 of 11 (45 %) on delayed ones. The tumour/normal pancreas uptake ratio was not significantly different between early and delayed acquisitions. Considering all patients with HH, including those without imaging evidence of disease, the detection rate of the primary lesions using CD-assisted 18 F-FDOPA PET/CT was 53 %, showing 9 insulinomas in 17 studies performed. In the control group (without CD premedication, eight patients), the final

  17. Synthesis of 2'-deoxy-2'-[{sup 18}F]-fluoro-5-ethyl-1-{beta}-D-arabinofuranosyluracil ([{sup 18}F]-FEAU) and micro-PET imaging of HSV-tk gene expression in tumor-bearing nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Alauddin, M.M.; Shahinian, A.; Park, R.; Tohme, M.; Fissekis, J.D.; Conti, P.S. [Univ. of Southern California, Los Angeles, CA (United States). PET Imaging Science Center

    2004-07-01

    Herpes simplex virus type-1 thymidine kinase (HSV1-tk) is being used as a suicide gene for gene therapy of cancer. An in vivo method to assess the HSV1-tk enzyme activity after gene transfer is desirable to monitor gene expression as an indicator of gene delivery. Imaging of the HSV1-tk reporter gene along with various reporter probes is of current interest. We originally developed [{sup 18}F]-FHPG and [{sup 18}F]-FHBG for PET imaging of HSV1-tk gene expression and demonstrated that [{sup 18}F]-FHBG is more useful than [{sup 18}F]-FHPG for this purpose. [{sup 124}I]-FIAU has been shown to be a potential PET imaging agent for HSV1-tk gene expression, and is superior to [{sup 18}F]-FHPG and [{sup 18}F]-FHBG. We also demonstrated that radiolabeled FMAU can be used as a marker for HSV-tk gene expression, and is superior to [{sup 18}F]-FHPG and [{sup 18}F]-FHBG. Earlier we reported a synthesis for 2'-deoxy-2'-[{sup 18}F]fluoro-5-methyl-1-{beta}-D-arabinofuranosyluracil ([{sup 18}F]-FMAU) and some other 5-substituted nucleosides. We have synthesized now [{sup 18}F]-FEAU, used the tracer for micro-PET imaging of suicide gene expression in tumor-bearing nude mice, and compared the results with earlier studies using [{sup 14}C]-FMAU. (orig.)

  18. Comparison of the binding characteristics of [18F]THK-523 and other amyloid imaging tracers to Alzheimer's disease pathology

    International Nuclear Information System (INIS)

    Harada, Ryuichi; Okamura, Nobuyuki; Yoshikawa, Takeo; Yanai, Kazuhiko; Furumoto, Shozo; Tago, Tetsuro; Iwata, Ren; Maruyama, Masahiro; Higuchi, Makoto; Arai, Hiroyuki; Kudo, Yukitsuka

    2013-01-01

    Extensive deposition of senile plaques and neurofibrillary tangles in the brain is a pathological hallmark of Alzheimer's disease (AD). Although several PET imaging agents have been developed for in vivo detection of senile plaques, no PET probe is currently available for selective detection of neurofibrillary tangles in the living human brain. Recently, [ 18 F]THK-523 was developed as a potential in vivo imaging probe for tau pathology. The purpose of this study was to compare the binding properties of [ 18 F]THK-523 and other amyloid imaging agents, including PiB, BF-227 and FDDNP, to synthetic protein fibrils and human brain tissue. In vitro radioligand binding assays were conducted using synthetic amyloid β 42 and K18ΔK280-tau fibrils. Nonspecific binding was determined by the addition of unlabelled compounds at a concentration of 2 μM. To examine radioligand binding to neuropathological lesions, in vitro autoradiography was conducted using sections of AD brain. [ 18 F]THK-523 showed higher affinity for tau fibrils than for Aβ fibrils, whereas the other probes showed a higher affinity for Aβ fibrils. The autoradiographic analysis indicated that [ 18 F]THK-523 accumulated in the regions containing a high density of tau protein deposits. Conversely, PiB and BF-227 accumulated in the regions containing a high density of Aβ plaques. These findings suggest that the unique binding profile of [ 18 F]THK-523 can be used to identify tau deposits in AD brain. (orig.)

  19. Using oral 18F-FDG for infection imaging

    International Nuclear Information System (INIS)

    Bolwell, Jacob J.

    2009-01-01

    Full text:A 22-year-old female with a complex medical history presented to our department with a complaint of pain around the site her Portocath (PaC). Multiple imaging techniques failed to identify any sign of infection around the pac. A 99 m Tc-Phytate Colloid labelled white cell (LWC) scan was arranged to identify any infective processes in or around the pac. Severe difficulty was encountered attempting to gain IV access aside from the pac and the LWC scan had to aborted. In order to identify infection of the pac a Positron Emission Tomography (PET) scan using oral administration 18F-fluorodeoxyglucose (18F-FDG) was arranged. The oral 18F-FDG PET scan showed active glucose metabolism around the site of the pac port and along the cathe tubing near the medial right clavicle. As a result of this the pac was removed and replaced and the patient is now receiving continued antibiotics and medication through her new POC. In conclusion we found oral administration of 18F-FDG to be a suitable alternative to IV administered 18F-FDG in on to obtain functional imaging in a case where there was severe difficulty in obtaining venous access.

  20. Positron emission tomography imaging of cardiomyocyte apoptosis with a novel molecule probe [18F]FP-DPAZn2

    Science.gov (United States)

    Sun, Ting; Tang, Ganghua; Tian, Hua; Hu, Kongzhen; Yao, Shaobo; Su, Yifan; Wang, Changqian

    2015-01-01

    Cardiomyocyte apoptosis plays a causal role in the development and progression of heart failure. Currently, there is no effective imaging agent that can be used to detect cardiomyocyte apoptosis in vivo. To target phosphatidylserine (PS) on the surface of the dying cell, we synthesized a novel 18F-labeled Zn2+-dipicolylamine (DPA) analog, [18F]FP-DPAZn2, and evaluated it for noninvasive imaging of cardiomyocyte apoptosis. In vitro, the fluorescence imaging of dansyl-DPAZn2 was suitable for detecting cardiomyocyte apoptosis, which was confirmed by confocal immunofluorescence imaging, terminal dUTP nick-end labeling (TUNEL) assay, and western blot assay. The in vivo biodistribution showed that the uptake ratios of [18F]FP-DPAZn2 in the heart were 4.41±0.29% ID/g at 5 min, 2.40 ± 0.43% ID/g at 30 min, 1.63 ± 0.26% ID/g at 60 min, and 1.43% ± 0.07 ID/g at 120 min post-injection. In vivo, the [18F]FP-DPAZn2 PET images showed more cardiac accumulation of radioactivity 60 min post-injection in acute myocardial infarction (AMI) rats than in normal rats, which was consistent with the findings of a histological analysis of the rat cardiac tissues in vitro. [18F]FP-DPAZn2 PET imaging has the capability for myocardial apoptosis detection, but the method will require improved myocardial uptake for the noninvasive evaluation of cardiomyocyte apoptosis in clinical settings. PMID:26416423

  1. Rapid and reproducible radiosynthesis of [{sup 18}F] FHBG

    Energy Technology Data Exchange (ETDEWEB)

    Ponde, Datta E.; Dence, Carmen S.; Schuster, Daniel P.; Welch, Michael J. E-mail: Welchm@wustl.edu

    2004-01-01

    9-(4-[{sup 18}F] Fluoro-3-hydroxymethylbutyl) guanine ([{sup 18}F] FHBG), an imaging agent for gene therapy using PET, was prepared in a one-pot, two-step synthesis. Microwave (MW) mediated nucleophilic fluorination of N{sup 2}, monomethoxytrityl-9-[4-(tosyl)-3-monomethoxytrityl-methylbutyl] guanine using no-carrier-added [{sup 18}F] fluoride, followed by deprotection with hydrochloric acid and HPLC purification, gave [{sup 18}F] FHBG. The radiochemical yield (decay corrected) was 12{+-}5% (n = 35), the synthesis time was 55-60 min, and the radiochemical purity was >99%. The compound was used for lung imaging and was injected into Sprague-Dawley rats previously infected with the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene. MicroPET imaging showed accumulation confined to the lungs.

  2. In vitro and in vivo evaluation of [18F]ciprofloxacin for the imaging of bacterial infections with PET

    International Nuclear Information System (INIS)

    Langer, Oliver; Brunner, Martin; Zeitlinger, Markus; Mueller, Ulrich; Lackner, Edith; Joukhadar, Christian; Mueller, Markus; Ziegler, Sophie; Minar, Erich; Dobrozemsky, Georg; Mitterhauser, Markus; Wadsak, Wolfgang; Dudczak, Robert; Kletter, Kurt

    2005-01-01

    The suitability of the 18 F-labelled fluoroquinolone antibiotic ciprofloxacin ([ 18 F]ciprofloxacin) for imaging of bacterial infections with positron emission tomography (PET) was assessed in vitro and in vivo. For the in vitro experiments, suspensions of various E. colistrains were incubated with different concentrations of [ 18 F]ciprofloxacin (0.01-5.0 μg/ml) and radioactivity retention was measured in a gamma counter. For the in vivo experiments, 725 ± 9 MBq [ 18 F]ciprofloxacin was injected intravenously into four patients with microbiologically proven bacterial soft tissue infections of the lower extremities and time-radioactivity curves were recorded in infected and uninfected tissue for 5 h after tracer injection. Binding of [ 18 F]ciprofloxacin to bacterial cells was rapid, non-saturable and readily reversible. Moreover, bacterial binding of the agent was similar in ciprofloxacin-resistant and ciprofloxacin-susceptible clinical isolates. These findings suggest that non-specific binding rather than specific binding to bacterial type II topoisomerase enzymes is the predominant mechanism of bacterial retention of the radiotracer. PET studies in the four patients with microbiologically proven bacterial soft tissue infections demonstrated locally increased radioactivity uptake in infected tissue, with peak ratios between infected and uninfected tissue ranging from 1.8 to 5.5. Radioactivity was not retained in infected tissue and appeared to wash out with a similar elimination half-life as in uninfected tissue, suggesting that the kinetics of [ 18 F]ciprofloxacin in infected tissue are governed by increased blood flow and vascular permeability due to local infection rather than by a binding process. Taken together, our results indicate that [ 18 F]ciprofloxacin is not suited as a bacteria-specific infection imaging agent for PET. (orig.)

  3. Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging

    Science.gov (United States)

    Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy

    2017-01-01

    Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al18F-labeling strategy involves chelation in aqueous medium of aluminum mono[18F]fluoride ({Al18F}2+) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al18F}2+ to evaluate the generic applicability of the one-step Al18F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al18F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[18F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [18F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers. PMID:28824726

  4. Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging.

    Science.gov (United States)

    Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy

    2017-01-01

    Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al 18 F-labeling strategy involves chelation in aqueous medium of aluminum mono[ 18 F]fluoride ({Al 18 F} 2+ ) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al 18 F} 2+ to evaluate the generic applicability of the one-step Al 18 F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al 18 F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[ 18 F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [ 18 F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers.

  5. Can multimodality imaging using {sup 18}F-FDG/{sup 18}F-FLT PET/CT benefit the diagnosis and management of patients with pulmonary lesions?

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Baixuan; Guan, Zhiwei; Liu, Changbin; Wang, Ruimin; Yin, Dayi; Zhang, Jinming; Chen, Yingmao; Yao, Shulin; Shao, Mingzhe; Wang, Hui; Tian, Jiahe [Chinese PLA General Hospital, Department of Nuclear Medicine, Beijing (China)

    2011-02-15

    Dual-tracer, {sup 18}F-fluorodeoxyglucose and {sup 18}F-fluorodeoxythymidine ({sup 18}F-FDG/{sup 18}F-FLT), dual-modality (positron emission tomography and computed tomography, PET/CT) imaging was used in a clinical trial on differentiation of pulmonary nodules. The aims of this trial were to investigate if multimodality imaging is of advantage and to what extent it could benefit the patients in real clinical settings. Seventy-three subjects in whom it was difficult to establish the diagnosis and determine management of their pulmonary lesions were prospectively enrolled in this clinical trial. All subjects underwent {sup 18}F-FDG and {sup 18}F-FLT PET/CT imaging sequentially. The images were interpreted with different strategies as either individual or combined modalities. The pathological or clinical evidence during a follow-up period of more than 22 months served as the standard of truth. The diagnostic performance of each interpretation and their impact on clinical decision making was investigated. {sup 18}F-FLT/{sup 18}F-FDG PET/CT was proven to be of clinical value in improving the diagnostic confidence in 28 lung tumours, 18 tuberculoses and 27 other benign lesions. The ratio between maximum standardized uptake values of {sup 18}F-FLT and {sup 18}F-FDG was found to be of great potential in separating the three subgroups of patients. The advantage could only be obtained with the full use of the multimodality interpretation. Multimodality imaging induced substantial change in clinical management in 31.5% of the study subjects and partial change in another 12.3%. Multimodality imaging using {sup 18}F-FDG/{sup 18}F-FLT PET/CT provided the best diagnostic efficacy and the opportunity for better management in this group of clinically challenging patients with pulmonary lesions. (orig.)

  6. Evaluation of [18F]-ATRi as PET tracer for in vivo imaging of ATR in mouse models of brain cancer

    International Nuclear Information System (INIS)

    Carlucci, Giuseppe; Carney, Brandon; Sadique, Ahmad; Vansteene, Axel; Tang, Jun; Reiner, Thomas

    2017-01-01

    Rationale: Ataxia telangiectasia and Rad3-related (ATR) threonine serine kinase is one of the key elements in orchestrating the DNA damage response (DDR). As such, inhibition of ATR can amplify the effects of chemo- and radiation-therapy, and several ATR inhibitors (ATRi) have already undergone clinical testing in cancer. For more accurate patient selection, monitoring and staging, real-time in vivo imaging of ATR could be invaluable; the development of appropriate imaging agents has remained a major challenge. Methods: 3-amino-N-(4-[ 18 F]phenyl)-6-(4-(methylsulfonyl)phenyl) pyrazine-2-carboxamide ([ 18 F]-ATRi), a close analogue of Ve-821, (a clinical ATRi candidate), was readily accomplished similarly to already established synthetic procedures. Structurally, 18 F was introduced at the 4-position of the aromatic ring of Ve-821 for generating a labeled ATR inhibitor. In vitro experiments were conducted in U251 MG glioblastoma cell lines and ex vivo biodistribution were performed in subcutaneous U251 MG xenograft bearing athymic nude mice following microPET imaging. Results: [ 18 F]-ATRi has a similar pharmacokinetic profile to that of Ve-821. Using an U251 MG glioblastoma mouse model, we evaluated the in vivo binding efficiency of [ 18 F]-ATRi. Blood and tumor showed a statistically significant difference between mice injected with only the probe or following blocking experiment with Ve-821 (1.48 ± 0.40%ID/g vs. 0.46 ± 0.12%ID/g in tumor and 1.85 ± 0.47%ID/g vs. 0.84 ± 0.3%ID/g in blood respectively). Conclusions: [ 18 F]-ATRi represents the first 18 F positron emission tomography (PET) ATR imaging agent, and is designed on a low nanomolar and clinically relevant ATR inhibitor.

  7. PET imaging with [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) following selective lesion of cholinergic pedunculopontine tegmental neurons in rat

    International Nuclear Information System (INIS)

    Cyr, Marilyn; Parent, Maxime J.; Mechawar, Naguib; Rosa-Neto, Pedro; Soucy, Jean-Paul; Aliaga, Antonio; Kostikov, Alexey; Maclaren, Duncan A.A.; Clark, Stewart D.; Bedard, Marc-Andre

    2014-01-01

    Introduction: [ 18 F]fluoroethoxybenzovesamicol ([ 18 F]FEOBV) is a PET radiotracer with high selectivity and specificity to the vesicular acetylcholine transporter (VAChT). It has been shown to be a sensitive in vivo measurement of changes of cholinergic innervation densities following lesion of the nucleus basalis of Meynert (NBM) in rat. The current study used [ 18 F]FEOBV with PET imaging to detect the effect of a highly selective lesion of the pedunculopontine (PPTg) nucleus in rat. Methods: After bilateral and selective lesions of the PPTg cholinergic neurons, rats were scanned using [ 18 F]FEOBV, then sacrificed, and their brain tissues collected for immunostaining and quantification of the VAChT. Results: Comparisons with control rats revealed that cholinergic losses can be detected in the brainstem, lateral thalamus, and pallidum by using both in vivo imaging methods with [ 18 F]FEOBV, and ex vivo measurements. In the brainstem PPTg area, significant correlations were observed between in vivo and ex vivo measurements, while this was not the case in the thalamic and pallidal projection sites. Conclusions: These findings support PET imaging with [ 18 F]FEOBV as a reliable in vivo method for the detection of neuronal terminal losses resulting from lesion of the PPTg. Useful applications can be found in the study of neurodegenerative diseases in human, such as Parkinson’s disease, multiple system atrophy, progressive supranuclear palsy, or dementia with Lewy bodies

  8. PET imaging of the brain serotonin transporters (SERT) with N,N-dimethyl-2-(2-amino-4-[18F]fluorophenylthio)benzylamine (4-[18F]-ADAM) in humans: a preliminary study

    International Nuclear Information System (INIS)

    Huang, Wen-Sheng; Huang, San-Yuan; Ho, Pei-Shen; Yeh, Chin-Bin; Ma, Kuo-Hsing; Huang, Ya-Yao; Shiue, Chyng-Yann; Liu, Ren-Syuan; Cheng, Cheng-Yi

    2013-01-01

    The aim of this study was to assess the feasibility of using 4-[ 18 F]-ADAM as a brain SERT imaging agent in humans. Enrolled in the study were 19 healthy Taiwanese subjects (11 men, 8 women; age 33 ± 9 years). The PET data were semiquantitatively analyzed and expressed as specific uptake ratios (SUR) and distribution volume ratios (DVR) using the software package PMOD. The SUR and DVR of 4-[ 18 F]-ADAM in the raphe nucleus (RN), midbrain (MB), thalamus (TH), striatum (STR) and prefrontal cortex (PFC) were determined using the cerebellum (CB) as the reference region. 4-[ 18 F]-ADAM bound to known SERT-rich regions in human brain. The order of the regional brain uptake was MB (RN) > TH > STR > PFC > CB. The DVR (n = 4, t* = 60 min) in the RN, TH, STR and PFC were 3.00 ± 0.50, 2.25 ± 0.45, 2.05 ± 0.31 and 1.40 ± 0.13, respectively. The optimal time for imaging brain SERT with 4-[ 18 F]-ADAM was 120-140 min after injection. At the optimal imaging time, the SURs (n = 15) in the MB, TH, STR, and PFC were 2.25 ± 0.20, 2.28 ± 0.20, 2.12 ± 0.18 and 1.47 ± 0.14, respectively. There were no significant differences in SERT availability between men and women (p 18 F]-ADAM was safe for human studies and its distribution in human brain appeared to correlate well with the known distribution of SERT in the human brain. In addition, it had high specific binding and a reasonable optimal time for imaging brain SERT in humans. Thus, 4-[ 18 F]-ADAM may be feasible for assessing the status of brain SERT in humans. (orig.)

  9. {sup 18}F-FDOPA PET/CT imaging of insulinoma revisited

    Energy Technology Data Exchange (ETDEWEB)

    Imperiale, Alessio; Namer, Izzie-Jacques [University Hospitals of Strasbourg, Department of Biophysics and Nuclear Medicine, Strasbourg (France); University of Strasbourg/CNRS and FMTS, Faculty of Medicine, ICube - UMR 7357, Strasbourg (France); Sebag, Frederic [Aix-Marseille University, Department of Endocrine Surgery, La Timone University Hospital, Marseille (France); Vix, Michel [University of Strasbourg, Department of General, Digestive, and Endocrine Surgery, IRCAD-IHU, Strasbourg (France); Castinetti, Frederic [Aix-Marseille University, Department of Endocrinology, Diabetes and Metabolic Disorders, La Timone University Hospital, Marseille (France); Kessler, Laurence; Moreau, Francois [University of Strasbourg, Department of Diabetology, University Hospital of Strasbourg, Strasbourg (France); Bachellier, Philippe [University Hospitals of Strasbourg, Department of Visceral Surgery and Transplantation, Strasbourg (France); Guillet, Benjamin; Mundler, Olivier [Aix-Marseille University, Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Marseille (France); Taieb, David [Aix-Marseille University, Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Marseille (France); Aix-Marseille University, Biophysics and Nuclear Medecine, La Timone University Hospital, European Center for Research in Medical Imaging, Marseille (France)

    2014-11-01

    {sup 18}F-FDOPA PET imaging is increasingly used in the work-up of patients with neuroendocrine tumours. It has been shown to be of limited value in localizing pancreatic insulin-secreting tumours in adults with hyperinsulinaemic hypoglycaemia (HH) mainly due to {sup 18}F-FDOPA uptake by the whole pancreatic gland. The objective of this study was to review our experience with {sup 18}F-FDOPA PET/CT imaging with carbidopa (CD) premedication in patients with HH in comparison with PET/CT studies performed without CD premedication in an independent population. A retrospective study including 16 HH patients who were investigated between January 2011 and December 2013 using {sup 18}F-FDOPA PET/CT (17 examinations) in two academic endocrine tumour centres was conducted. All PET/CT examinations were performed under CD premedication (200 mg orally, 1 - 2 h prior to tracer injection). The PET/CT acquisition protocol included an early acquisition (5 min after {sup 18}F-FDOPA injection) centred over the upper abdomen and a delayed whole-body acquisition starting 20 - 30 min later. An independent series of eight consecutive patients with HH and investigated before 2011 were considered for comparison. All patients had a reference whole-body PET/CT scan performed about 1 h after {sup 18}F-FDOPA injection. In all cases, PET/CT was performed without CD premedication. In the study group, {sup 18}F-FDOPA PET/CT with CD premedication was positive in 8 out of 11 patients with histologically proven insulinoma (73 %). All {sup 18}F-FDOPA PET/CT-avid insulinomas were detected on early images and 5 of 11 (45 %) on delayed ones. The tumour/normal pancreas uptake ratio was not significantly different between early and delayed acquisitions. Considering all patients with HH, including those without imaging evidence of disease, the detection rate of the primary lesions using CD-assisted {sup 18}F-FDOPA PET/CT was 53 %, showing 9 insulinomas in 17 studies performed. In the control group (without

  10. Comparison of Positron Emission Tomography Using 2-[18F]-fluoro-2-deoxy-D-glucose and 3-deoxy-3-[18F]-fluorothymidine in Lung Cancer Imaging

    Science.gov (United States)

    Wang, Fu-Li; Tan, Ye-Ying; Gu, Xiang-Min; Li, Tian-Ran; Lu, Guang-Ming; Liu, Gang; Huo, Tian-Long

    2016-01-01

    Background: The detection of solitary pulmonary nodules (SPNs) that may potentially develop into a malignant lesion is essential for early clinical interventions. However, grading classification based on computed tomography (CT) imaging results remains a significant challenge. The 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/CT imaging produces both false-positive and false-negative findings for the diagnosis of SPNs. In this study, we compared 18F-FDG and 3-deoxy-3-[18F]-fluorothymidine (18F-FLT) in lung cancer PET/CT imaging. Methods: The binding ratios of the two tracers to A549 lung cancer cells were calculated. The mouse lung cancer model was established (n = 12), and micro-PET/CT analysis using the two tracers was performed. Images using the two tracers were collected from 55 lung cancer patients with SPNs. The correlation among the cell-tracer binding ratios, standardized uptake values (SUVs), and Ki-67 proliferation marker expression were investigated. Results: The cell-tracer binding ratio for the A549 cells using the 18F-FDG was greater than the ratio using 18F-FLT (P < 0.05). The Ki-67 expression showed a significant positive correlation with the 18F-FLT binding ratio (r = 0.824, P < 0.01). The tumor-to-nontumor uptake ratio of 18F-FDG imaging in xenografts was higher than that of 18F-FLT imaging. The diagnostic sensitivity, specificity, and the accuracy of 18F-FDG for lung cancer were 89%, 67%, and 73%, respectively. Moreover, the diagnostic sensitivity, specificity, and the accuracy of 18F-FLT for lung cancer were 71%, 79%, and 76%, respectively. There was an obvious positive correlation between the lung cancer Ki-67 expression and the mean maximum SUV of 18F-FDG and 18F-FLT (r = 0.658, P < 0.05 and r = 0.724, P < 0.01, respectively). Conclusions: The 18F-FDG uptake ratio is higher than that of 18F-FLT in A549 cells at the cellular level. 18F-FLT imaging might be superior for the quantitative diagnosis of lung tumor

  11. Radiosynthesis and biological evaluation of 18F-labeled 4-anilinoquinazoline derivative (18F-FEA-Erlotinib) as a potential EGFR PET agent.

    Science.gov (United States)

    Huang, Shun; Han, Yanjiang; Chen, Min; Hu, Kongzhen; Qi, Yongshuai; Sun, Penghui; Wang, Men; Wu, Hubing; Li, Guiping; Wang, Quanshi; Du, Zhiyun; Zhang, Kun; Zhao, Suqing; Zheng, Xi

    2018-04-01

    Epidermal growth factor receptor (EGFR) has gained significant attention as a therapeutic target. Several EGFR targeting drugs (Gefitinib and Erlotinib) have been approved by US Food and Drug Administration (FDA) and have received high approval in clinical treatment. Nevertheless, the curative effect of these medicines varied in many solid tumors because of the different levels of expression and mutations of EGFR. Therefore, several PET radiotracers have been developed for the selective treatment of responsive patients who undergo PET/CT imaging for tyrosine kinase inhibitor (TKI) therapy. In this study, a novel fluorine-18 labeled 4-anilinoquinazoline based PET tracer, 1N-(3-(1-(2- 18 F-fluoroethyl)-1H-1,2,3-triazol-4-yl)phenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine ( 18 F-FEA-Erlotinib), was synthesized and biological evaluation was performed in vitro and in vivo. 18 F-FEA-Erlotinib was achieved within 50min with over 88% radiochemical yield (decay corrected RCY), an average specific activity over 50GBq/μmol, and over 99% radiochemical purity. In vitro stability study showed no decomposition of 18 F-FEA-Erlotinib after incubated in PBS and FBS for 2h. Cellular uptake and efflux experiment results indicated the specific binding of 18 F-FEA-Erlotinib to HCC827 cell line with EGFR exon 19 deletions. In vivo, Biodistribution studies revealed that 18 F-FEA-Erlotinib exhibited rapid blood clearance both through hepatobiliary and renal excretion. The tumor uptake of 18 F-FEA-Erlotinib in HepG2, HCC827, and A431 tumor xenografts, with different EGFR expression and mutations, was visualized in PET images. Our results demonstrate the feasibility of using 18 F-FEA-Erlotinib as a PET tracer for screening EGFR TKIs sensitive patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Imaging Bone–Cartilage Interactions in Osteoarthritis Using [18F]-NaF PET-MRI

    Directory of Open Access Journals (Sweden)

    Dragana Savic MSc

    2016-12-01

    Full Text Available Purpose: Simultaneous positron emission tomography–magnetic resonance imaging (PET-MRI is an emerging technology providing both anatomical and functional images without increasing the scan time. Compared to the traditional PET/computed tomography imaging, it also exposes the patient to significantly less radiation and provides better anatomical images as MRI provides superior soft tissue characterization. Using PET-MRI, we aim to study interactions between cartilage composition and bone function simultaneously, in knee osteoarthritis (OA. Procedures: In this article, bone turnover and remodeling was studied using [18F]-sodium fluoride (NaF PET data. Quantitative MR-derived T1ρ relaxation times characterized the biochemical cartilage degeneration. Sixteen participants with early signs of OA of the knee received intravenous injections of [18F]-NaF at the onset of PET-MR image acquisition. Regions of interest were identified, and kinetic analysis of dynamic PET data provided the rate of uptake (Ki and the normalized uptake (standardized uptake value of [18F]-NaF in the bone. Morphological MR images and quantitative voxel-based T1ρ maps of cartilage were obtained using an atlas-based registration technique to segment cartilage automatically. Voxel-by-voxel statistical parameter mapping was used to investigate the relationship between bone and cartilage. Results: Increases in cartilage T1ρ, indicating degenerative changes, were associated with increased turnover in the adjoining bone but reduced turnover in the nonadjoining compartments. Associations between pain and increased bone uptake were seen in the absence of morphological lesions in cartilage, but the relationship was reversed in the presence of incident cartilage lesions. Conclusion: This study shows significant cartilage and bone interactions in OA of the knee joint using simultaneous [18F]-NaF PET-MR, the first in human study. These observations highlight the complex biomechanical and

  13. 18F-labelled annexin V: a PET tracer for apoptosis imaging

    International Nuclear Information System (INIS)

    Murakami, Yoshihiro; Tatsumi, Mitsuyoshi; Ichise, Rikiya; Nishimura, Shintaro; Takamatsu, Hiroyuki; Noda, Akihiro; Taki, Junichi; Tait, Jonathan F.

    2004-01-01

    Annexin V can be used to detect apoptotic cells in vitro and in vivo, based on its ability to identify extracellular phosphatidylserine, which arises during apoptosis. In the present study, we examined the synthesis of fluorine-18 labelled annexin V as a positron emission tomography tracer for apoptosis imaging. The distribution of [ 18 F]annexin V and technetium-99m labelled annexin V, a well-characterised SPET tracer for apoptosis imaging, was compared. [ 18 F]annexin V was synthesised using N-succinimidyl 4-[ 18 F]fluorobenzoate as an 18 F labelling reagent. Synthesised and purified [ 18 F]annexin V was confirmed by SDS-PAGE. In an ex vivo imaging experiment, [ 18 F]annexin V was intravenously injected into rats 24 h after the induction of myocardial ischaemia, and accumulation in the left ventricle was examined. [ 18 F]annexin V accumulated in the infarct area of the left ventricle, where apoptotic cells were observed. In separate experiments, [ 18 F]annexin V or [ 99m Tc]annexin V was intravenously injected into ischaemic or normal animals, and the distribution of the tracers was compared. In ischaemic animals, accumulation of [ 18 F]annexin V and [ 99m Tc]annexin V in the infarct area was about threefold higher than in the non-infarct area. Furthermore, the ratio of accumulation in the normal heart to the blood radioactivity was not significantly different between the tracers. In normal animals, however, the uptake of [ 18 F]annexin V in the liver, spleen and kidney was much lower than that of [ 99m Tc]annexin V. The low uptake of [ 18 F]annexin V in these organs might represent an advantage over [ 99m Tc]annexin V. (orig.)

  14. Synthesis of fluorine-18 labeled rhodamine B: A potential PET myocardial perfusion imaging agent

    International Nuclear Information System (INIS)

    Heinrich, Tobias K.; Gottumukkala, Vijay; Snay, Erin; Dunning, Patricia; Fahey, Frederic H.; Ted Treves, S.; Packard, Alan B.

    2010-01-01

    There is considerable interest in developing an 18 F-labeled PET myocardial perfusion agent. Rhodamine dyes share several properties with 99m Tc-MIBI, the most commonly used single-photon myocardial perfusion agent, suggesting that an 18 F-labeled rhodamine dye might prove useful for this application. In addition to being lipophilic cations, like 99m Tc-MIBI, rhodamine dyes are known to accumulate in the myocardium and are substrates for Pgp, the protein implicated in MDR1 multidrug resistance. As the first step in determining whether 18 F-labeled rhodamines might be useful as myocardial perfusion agents for PET, our objective was to develop synthetic methods for preparing the 18 F-labeled compounds so that they could be evaluated in vivo. Rhodamine B was chosen as the prototype compound for development of the synthesis because the ethyl substituents on the amine moieties of rhodamine B protect them from side reactions, thus eliminating the need to include (and subsequently remove) protecting groups. The 2'-[ 18 F]fluoroethyl ester of rhodamine B was synthesized by heating rhodamine B lactone with [ 18 F]fluoroethyltosylate in acetonitrile at 165 deg. C for 30 min using [ 18 F]fluoroethyl tosylate, which was prepared by the reaction of ethyleneglycol ditosylate with Kryptofix 2.2.2, K 2 CO 3 , and [ 18 F]NaF in acetonitrile for 10 min at 90 deg. C. The product was purified by semi-preparative HPLC to produce the 2'-[ 18 F]fluoroethylester in >97% radiochemical purity with a specific activity of 1.3 GBq/μmol, an isolated decay corrected yield of 35%, and a total synthesis time of 90 min.

  15. Synthesis of fluorine-18 labeled rhodamine B: A potential PET myocardial perfusion imaging agent

    Science.gov (United States)

    Heinrich, Tobias K.; Gottumukkala, Vijay; Snay, Erin; Dunning, Patricia; Fahey, Frederic H; Treves, S. Ted; Packard, Alan B.

    2009-01-01

    There is considerable interest in developing an 18F-labeled PET myocardial perfusion agent. Rhodamine dyes share several properties with 99mTc-MIBI, the most commonly used single-photon myocardial perfusion agent, suggesting that an 18F-labeled rhodamine dye might prove useful for this application. In addition to being lipophilic cations, like 99mTc-MIBI, rhodamine dyes are known to accumulate in the myocardium and are substrates for Pgp, the protein implicated in MDR1 multidrug resistance. As the first step in determining whether 18F-labeled rhodamines might be useful as myocardial perfusion agents for PET, our objective was to develop synthetic methods for preparing the 18F-labeled compounds so that they could be evaluated in vivo. Rhodamine B was chosen as the prototype compound for development of the synthesis because the ethyl substituents on the amine moieties of rhodamine B protect them from side reactions, thus eliminating the need to include (and subsequently remove) protecting groups. The 2′-[18F]fluoroethyl ester of rhodamine B was synthesized by heating rhodamine B lactone with [18F]fluoroethyltosylate in acetonitrile at 165°C for 30 min.using [18F]fluoroethyl tosylate, which was prepared by the reaction of ethyleneglycol ditosylate with Kryptofix 2.2.2, K2CO3, and [18F]NaF in acetonitrile for 10 min. at 90°C. The product was purified by semi-preparative HPLC to produce the 2′-[18F]-fluoroethylester in >97% radiochemical purity with a specific activity of 1.3 GBq/μmol, an isolated decay corrected yield of 35%, and a total synthesis time of 90 min. PMID:19783150

  16. Usefulness of [18F]-DA and [18F]-DOPA for PET imaging in a mouse model of pheochromocytoma

    International Nuclear Information System (INIS)

    Martiniova, Lucia; Cleary, Susannah; Lai, Edwin W.; Kiesewetter, Dale O.; Seidel, Jurgen; Dawson, Linda F.; Phillips, Jacqueline K.; Thomasson, David; Chen Xiaoyuan; Eisenhofer, Graeme; Powers, James F.; Kvetnansky, Richard

    2012-01-01

    Purpose: To evaluate the usefulness of [ 18 F]-6-fluorodopamine ([ 18 F]-DA) and [ 18 F]-L-6-fluoro-3,4-dihydroxyphenylalanine ([ 18 F]-DOPA) positron emission tomography (PET) in the detection of subcutaneous (s.c.) and metastatic pheochromocytoma in mice; to assess the expression of the norepinephrine transporter (NET) and vesicular monoamine transporters 1 and 2 (VMAT1 and VMAT2), all important for [ 18 F]-DA and [ 18 F]-DOPA uptake. Furthermore, to compare tumor detection by micro-computed tomography (microCT) to magnetic resonance imaging (MRI) in individual mouse. Methods: SUV max values were calculated from [ 18 F]-DA and [ 18 F]-DOPA PET, tumor-to-liver ratios (TLR) were obtained and expression of NET, VMAT1 and VMAT2 was evaluated. Results: [ 18 F]-DA detected less metastatic lesions compared to [ 18 F]-DOPA. TLR values for liver metastases were 2.26–2.71 for [ 18 F]-DOPA and 1.83–2.83 for [ 18 F]-DA. A limited uptake of [ 18 F]-DA was found in s.c. tumors (TLR=0.22-0.27) compared to [ 18 F]-DOPA (TLR=1.56-2.24). Overall, NET and VMAT2 were expressed in all organ and s.c. tumors. However, s.c. tumors lacked expression of VMAT1. We confirmed [ 18 F]-DA's high affinity for the NET for its uptake and VMAT1 and VMAT2 for its storage and retention in pheochromocytoma cell vesicles. In contrast, [ 18 F]-DOPA was found to utilize only VMAT2. Conclusion: MRI was superior in the detection of all organ tumors compared to microCT and PET. [ 18 F]-DOPA had overall better sensitivity than [ 18 F]-DA for the detection of metastases. Subcutaneous tumors were localized only with [ 18 F]-DOPA, a finding that may reflect differences in expression of VMAT1 and VMAT2, perhaps similar to some patients with pheochromocytoma where [ 18 F]-DOPA provides better visualization of lesions than [ 18 F]-DA.

  17. Preclinical Evaluation of 18F-Labeled Anti-HER2 Nanobody Conjugates for Imaging HER2 Receptor Expression by Immuno-PET.

    Science.gov (United States)

    Vaidyanathan, Ganesan; McDougald, Darryl; Choi, Jaeyeon; Koumarianou, Eftychia; Weitzel, Douglas; Osada, Takuya; Lyerly, H Kim; Zalutsky, Michael R

    2016-06-01

    The human growth factor receptor type 2 (HER2) is overexpressed in breast as well as other types of cancer. Immuno-PET, a noninvasive imaging procedure that could assess HER2 status in both primary and metastatic lesions simultaneously, could be a valuable tool for optimizing application of HER2-targeted therapies in individual patients. Herein, we have evaluated the tumor-targeting potential of the 5F7 anti-HER2 Nanobody (single-domain antibody fragment; ∼13 kDa) after (18)F labeling by 2 methods. The 5F7 Nanobody was labeled with (18)F using the novel residualizing label N-succinimidyl 3-((4-(4-(18)F-fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ((18)F-SFBTMGMB; (18)F-RL-I) and also via the most commonly used (18)F protein-labeling prosthetic agent N-succinimidyl 3-(18)F-fluorobenzoate ((18)F-SFB). For comparison, 5F7 Nanobody was also labeled using the residualizing radioiodination agent N-succinimidyl 4-guanidinomethyl-3-(125)I-iodobenzoate ((125)I-SGMIB). Paired-label ((18)F/(125)I) internalization assays and biodistribution studies were performed on HER2-expressing BT474M1 breast carcinoma cells and in mice with BT474M1 subcutaneous xenografts, respectively. Small-animal PET/CT imaging of 5F7 Nanobody labeled using (18)F-RL-I also was performed. Internalization assays indicated that intracellularly retained radioactivity for (18)F-RL-I-5F7 was similar to that for coincubated (125)I-SGMIB-5F7, whereas that for (18)F-SFB-5F7 was lower than coincubated (125)I-SGMIB-5F7 and decreased with time. BT474M1 tumor uptake of (18)F-RL-I-5F7 was 28.97 ± 3.88 percentage injected dose per gram of tissue (%ID/g) at 1 h and 36.28 ± 14.10 %ID/g at 2 h, reduced by more than 90% on blocking with trastuzumab, indicating HER2 specificity of uptake, and was also 26%-28% higher (P < 0.05) than that of (18)F-SFB-5F7. At 2 h, the tumor-to-blood ratio for (18)F-RL-I-5F7 (47.4 ± 13.1) was significantly higher (P < 0.05) than for (18)F-SFB-5F7 (25.4 ± 10

  18. F-18 FDG PET/CT imaging of primary hepatic neuroendocrine tumor

    Directory of Open Access Journals (Sweden)

    Katsuya Mitamura

    2015-01-01

    Full Text Available Primary hepatic neuroendocrine tumors (PHNETs are extremely rare neoplasms. Herein, we report a case of a 70-year-old man with a hepatic mass. The non-contrast computed tomography (CT image showed a low-density mass, and dynamic CT images indicated the enhancement of the mass in the arterial phase and early washout in the late phase. F18- fluorodeoxyglucose (18F-FDG positron emission tomography (PET and fused PET/CT images showed increased uptake in the hepatic mass. Whole-body 18F-FDG PET images showed no abnormal activity except for the liver lesion. Presence of an extrahepatic tumor was also ruled out by performing upper gastrointestinal endoscopy, total colonoscopy, and chest and abdominal CT. A posterior segmentectomy was performed, and histologic examination confirmed a neuroendocrine tumor (grade 1. The patient was followed up for about 2 years after the resection, and no extrahepatic lesions were radiologically found. Therefore, the patient was diagnosed with PHNET. To the best of our knowledge, no previous case of PHNET have been detected by 18F-FDG PET imaging.

  19. Synthesis of fluorine-18 labeled rhodamine B: A potential PET myocardial perfusion imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Tobias K.; Gottumukkala, Vijay [Division of Nuclear Medicine, Department of Radiology, Children' s Hospital Boston, 300 Longwood Ave., Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Snay, Erin; Dunning, Patricia [Division of Nuclear Medicine, Department of Radiology, Children' s Hospital Boston, 300 Longwood Ave., Boston, MA 02115 (United States); Fahey, Frederic H.; Ted Treves, S. [Division of Nuclear Medicine, Department of Radiology, Children' s Hospital Boston, 300 Longwood Ave., Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Packard, Alan B. [Division of Nuclear Medicine, Department of Radiology, Children' s Hospital Boston, 300 Longwood Ave., Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States)], E-mail: alan.packard@childrens.harvard.edu

    2010-01-15

    There is considerable interest in developing an {sup 18}F-labeled PET myocardial perfusion agent. Rhodamine dyes share several properties with {sup 99m}Tc-MIBI, the most commonly used single-photon myocardial perfusion agent, suggesting that an {sup 18}F-labeled rhodamine dye might prove useful for this application. In addition to being lipophilic cations, like {sup 99m}Tc-MIBI, rhodamine dyes are known to accumulate in the myocardium and are substrates for Pgp, the protein implicated in MDR1 multidrug resistance. As the first step in determining whether {sup 18}F-labeled rhodamines might be useful as myocardial perfusion agents for PET, our objective was to develop synthetic methods for preparing the {sup 18}F-labeled compounds so that they could be evaluated in vivo. Rhodamine B was chosen as the prototype compound for development of the synthesis because the ethyl substituents on the amine moieties of rhodamine B protect them from side reactions, thus eliminating the need to include (and subsequently remove) protecting groups. The 2'-[{sup 18}F]fluoroethyl ester of rhodamine B was synthesized by heating rhodamine B lactone with [{sup 18}F]fluoroethyltosylate in acetonitrile at 165 deg. C for 30 min using [{sup 18}F]fluoroethyl tosylate, which was prepared by the reaction of ethyleneglycol ditosylate with Kryptofix 2.2.2, K{sub 2}CO{sub 3}, and [{sup 18}F]NaF in acetonitrile for 10 min at 90 deg. C. The product was purified by semi-preparative HPLC to produce the 2'-[{sup 18}F]fluoroethylester in >97% radiochemical purity with a specific activity of 1.3 GBq/{mu}mol, an isolated decay corrected yield of 35%, and a total synthesis time of 90 min.

  20. Current status of PET imaging of neuroendocrine tumours ([18F]FDOPA, [68Ga]traces, [11C/[18F]-HTP)

    International Nuclear Information System (INIS)

    Ambrosini, A.; Morgini, J.J.; Nanni, C.; Castellucci, P.; Fanti, S.

    2015-01-01

    Neuroendocrine neoplasms (NEN) functional imaging is an evolving field that witnessed major advances in the past two decades. The routine use of PET/CT with an array of new radiotracers to specifically study NEN resulted in an increase in lesions detection. Currently, PET radiopharmaceuticals for NEN imaging include both metabolic ([18F]DOPA, [18F]FDG, [11C]/[18F]-HTP) and receptor-mediated compounds ([68Ga]DOTA-peptides). Discussion is still on-going regarding the clinical setting that may benefit the most from the use of one tracer over the other. [68Ga]DOTA-peptides are accurate for the detection of well differentiated NEN and are increasingly employed. Moreover, providing data on somatostatin receptors expression on NEN cells, they represent a fundamental procedure to be performed before starting therapy, as well as to guide treatment, with either hot or cold somatostatin analogues. The easy and economic synthesis process also favours their clinical employment even in centres without an on-site cyclotron. [18F]DOPA is accurate for studying well differentiated tumours however the difficult and expensive synthesis have limited its clinical employment. It currently can be successfully used for imaging tumours with variable to low expression of SSR (medullary thyroid carcinoma, neuroblastoma, pheocromocytoma), that cannot be accurately studied with [68Ga]DOTA-peptides. [11C]/[18F]-HTP has also been proposed to image well differentiated NEN, on the basis of serotonin pathway activity, for which [11C]/[18F]-HTP can be used as precursor. However, although preliminary data are encouraging, the feasibility of its widespread clinical use is still under discussion, mainly limited by a complex synthesis process and more proven advantages over other currently employed compounds. This review aims to provide an overview of the current status and clinical application of PET tracers to image well differentiated NEN and to focus on the still open-issues of debate

  1. Automated PET Radiotracer Manufacture on the BG75 System and Imaging Validation Studies of [18F]fluoromisonidazole ([18F]FMISO).

    Science.gov (United States)

    Yuan, Hong; Frank, Jonathan E; Merrill, Joseph R; Hillesheim, Daniel A; Khachaturian, Mark H; Anzellotti, Atilio I

    2016-01-01

    The hypoxia PET tracer, 1-[18F]fluoro-3-(2-nitro-1Himidazol- 1-yl)-propan-2-ol ([18F]FMISO) is the first radiotracer developed for hypoxia PET imaging and has shown promising for cancer diagnosis and prognosis. However, access to [18F]FMISO radiotracer is limited due to the needed cyclotron and radiochemistry expertise. The study aimed to develop the automated production method on the [18F]FMISO radiotracer with the novel fully automated platform of the BG75 system and validate its usage on animal tumor models. [18F]FMISO was produced with the dose synthesis cartridge automatically on the BG75 system. Validation of [18F]FMISO hypoxia imaging functionality was conducted on two tumor mouse models (FaDu/U87 tumor). The distribution of [18F]FMISO within tumor was further validated by the standard hypoxia marker EF5. The average radiochemical purity was (99±1) % and the average pH was 5.5±0.2 with other quality attributes passing standard criteria (n=12). Overall biodistribution for [18F]FMISO in both tumor models was consistent with reported studies where bladder and large intestines presented highest activity at 90 min post injection. High spatial correlation was found between [18F]FMISO autoradiography and EF5 hypoxia staining, indicating high hypoxia specificity of [18MF]FMISO. This study shows that qualified [18F]FMISO can be efficiently produced on the BG75 system in an automated "dose-on-demand" mode using single dose disposable cards. The possibilities of having a low-cost, automated system manufacturing ([18F]Fluoride production + synthesis + QC) different radiotracers will greatly enhance the potential for PET technology to reach new geographical areas and underserved patient populations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Imaging dopamine-2 receptors in cebus apella at PET with F-18 fluoropropylspiperone and F-18 fluorinated benzamide neuroleptic

    International Nuclear Information System (INIS)

    Mukherjee, J.; Yasillo, N.J.; Luh, K.E.; Diamond, M.; Levy, D.; Chen, C.T.; Cooper, M.

    1990-01-01

    Tardive dyskinesia (TD), an intractable disorder believed to involve dysfunction of dopamine D-2 receptors, often occurs with neuroleptic treatment in neuropsychiatric illness. This paper investigates the role of these receptors using a unique primate model of TD with newly developed (F-18) fluorinated radioligands. Two radioligands, (F-18)FPMB (one of a new class of fluorinated benzamide neuroleptics) have been used to image these receptors in a normal Cebus apella. Either (F-18)FPSP or (F-18)FPMB was administered intravenously to a normal Cebus, which was scanned for 2 hours in a PETT VI tomograph

  3. Small Animal [18F]FDG PET Imaging for Tumor Model Study

    International Nuclear Information System (INIS)

    Woo, Sang Keun; Kim, Kyeong Min; Cheon, Gi Jeong

    2008-01-01

    PET allows non-invasive, quantitative and repetitive imaging of biological function in living animals. Small animal PET imaging with [ 18 F]FDG has been successfully applied to investigation of metabolism, receptor, ligand interactions, gene expression, adoptive cell therapy and somatic gene therapy. Experimental condition of animal handling impacts on the biodistribution of [ 18 F]FDG in small animal study. The small animal PET and CT images were registered using the hardware fiducial markers and small animal contour point. Tumor imaging in small animal with small animal [ 18 F]FDG PET should be considered fasting, warming, and isoflurane anesthesia level. Registered imaging with small animal PET and CT image could be useful for the detection of tumor. Small animal experimental condition of animal handling and registration method will be of most importance for small lesion detection of metastases tumor model

  4. PET imaging of the brain serotonin transporters (SERT) with N,N-dimethyl-2-(2-amino-4-[{sup 18}F]fluorophenylthio)benzylamine (4-[{sup 18}F]-ADAM) in humans: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wen-Sheng [PET Center, Tri-Service General Hospital, Department of Nuclear Medicine, Neihu, Taipei (China); Changhua Christian Hospital, Department of Nuclear Medicine, Changhua (China); Huang, San-Yuan; Ho, Pei-Shen; Yeh, Chin-Bin [Tri-Service General Hospital, Department of Psychiatry, Taipei (China); Ma, Kuo-Hsing [National Defense Medical Center, Department of Biology and Anatomy, Taipei (China); Huang, Ya-Yao; Shiue, Chyng-Yann [PET Center, Tri-Service General Hospital, Department of Nuclear Medicine, Neihu, Taipei (China); PET Center, National Taiwan University Hospital, Department of Nuclear Medicine, Taipei (China); Liu, Ren-Syuan [Taipei Veterans General Hospital, Department of Nuclear Medicine, Taipei (China); Cheng, Cheng-Yi [PET Center, Tri-Service General Hospital, Department of Nuclear Medicine, Neihu, Taipei (China)

    2013-01-15

    The aim of this study was to assess the feasibility of using 4-[{sup 18}F]-ADAM as a brain SERT imaging agent in humans. Enrolled in the study were 19 healthy Taiwanese subjects (11 men, 8 women; age 33 {+-} 9 years). The PET data were semiquantitatively analyzed and expressed as specific uptake ratios (SUR) and distribution volume ratios (DVR) using the software package PMOD. The SUR and DVR of 4-[{sup 18}F]-ADAM in the raphe nucleus (RN), midbrain (MB), thalamus (TH), striatum (STR) and prefrontal cortex (PFC) were determined using the cerebellum (CB) as the reference region. 4-[{sup 18}F]-ADAM bound to known SERT-rich regions in human brain. The order of the regional brain uptake was MB (RN) > TH > STR > PFC > CB. The DVR (n = 4, t* = 60 min) in the RN, TH, STR and PFC were 3.00 {+-} 0.50, 2.25 {+-} 0.45, 2.05 {+-} 0.31 and 1.40 {+-} 0.13, respectively. The optimal time for imaging brain SERT with 4-[{sup 18}F]-ADAM was 120-140 min after injection. At the optimal imaging time, the SURs (n = 15) in the MB, TH, STR, and PFC were 2.25 {+-} 0.20, 2.28 {+-} 0.20, 2.12 {+-} 0.18 and 1.47 {+-} 0.14, respectively. There were no significant differences in SERT availability between men and women (p < 0.05). The results of this study showed that 4-[{sup 18}F]-ADAM was safe for human studies and its distribution in human brain appeared to correlate well with the known distribution of SERT in the human brain. In addition, it had high specific binding and a reasonable optimal time for imaging brain SERT in humans. Thus, 4-[{sup 18}F]-ADAM may be feasible for assessing the status of brain SERT in humans. (orig.)

  5. 18F-labelled N,N-dimethylamphetamine analogues for brain imaging studies

    International Nuclear Information System (INIS)

    Mathis, C.A.; Shulgin, A.T.; Yano, Y.; Sargent, T. III

    1986-01-01

    The radiochemical yields of nine N,N-dimethyl-2-(substituted phenyl)-isopropylamines (amphetamine analogues) were determined following reaction with [ 18 F]acetyl hypofluorite in a 0.1 M HCl solution at room temperature. The meta-dimethoxy substituted amphetamines gave the highest radiofluorination yields (24-32%, at EOB). Purification of the 18 F-labelled amphetamines was achieved in 10-20 min. 5- 18 F-2,4-Dimethoxy-N,N-dimethylamphetamine (5- 18 F-2,4-DNNA) was utilized to determine brain and lung uptake in rats. Positron emission tomography studies were conducted in a dog to determine the dynamic brain uptake and retention of this agent. The 5- 18 F-2,4-DNNA exhibited decreased initial uptake and more rapid loss of radioactivity in cerebral tissue compared to the iodinated homologue. (author)

  6. PET imaging of prostate cancer with 18F-Al-NODA-MATBBN

    International Nuclear Information System (INIS)

    Fei Chen; Jiangsu Institute of Nuclear Medicine, Jiangsu; Bao Zhu; Donghui Pan; Yuping Xu; Xiufeng Lin; Runlin Yang; Lizhen Wang; Min Yang

    2016-01-01

    We explored the application of new bifunctional chelating agent p-SCN-NODA by conjugating to GRPR targeting peptide, MATBBN. p-SCN-NODA can increase the labeling yield to 68.3 ± 1.8 %. 18 F-Al-NODA-MATBBN can be produced within 25 min with a radiochemical purity of more than 98 %. At 30 min post-injection, the tumor uptake for 18 F-Al-NODA-MATBBN was 3.23 ± 0.23 % ID/g. Biodistribution studies revealed that 18 F-Al-NODA-MATBBN was excreted mainly through the kidneys. GRPR-binding specificity was also demonstrated by reduced tumor uptake of 18 F-Al-NODA-MATBBN after co-injection with excess unlabeled MATBBN peptide at 1 h post-injection. It suggests that 18 F-Al-NODA-MATBBN may be a potential PET tracer candidate for monitoring prostate cancer. (author)

  7. Synthesis of Fluorine-18 Labeled Glucose-Lys-Arg-Gly-Asp-D-Phe as a Potential Tumor Imaging Agent

    International Nuclear Information System (INIS)

    Lee, Kyo Chul; Kim, Ji Sun; Sung, Hyun Ju; Jung, Jae Ho; An, Gwang Il; Chi, Dae Yoon; Lee, Byung Chul; Moon, Byung Seok; Choi, Tae Hyun; Chuna, Kwon Soo

    2005-01-01

    The α v β 3 integrin is an important receptor affecting tumor growth, metastatic potential on proliferating endothelial cells as well as on tumor cells of various origin, tumor-induced angiogenesis could be blocked by antagonizing the α v β 3 integrin with RGD. Therefore, α v β 3 integrin is a target for angiogenesis imaging that might be useful in assessing tumor-induced angiogenesis and identifying tumor metastasis. To design potent radiotracer for imaging angiogenesis containing a cRGD moiety should include low hepatic uptake in vivo. Tripeptide Arg-Gly-Asp (RGD), naturally existed in extracellular matrix proteins, is known to be the primary binding site of the α v β 3 integrin. The imaging of α v β 3 receptor expression will give the information of the metastatic ability of the tumor which is not available by [ 18 F]FDG. Our interest in developing new radiopharmaceuticals for in vivo visualization of angiogenesis has led us to synthesize derivatives of cRGD (cyclic arginineglycine-aspartic acid) that contains glucose moiety. Because sugar-protein interaction is a key step in metastasis and angiogenesis, it has also been proposed to play an intriguing role in imaging of tumor. We designed and synthesized two fluorine-18 labeled RGD glycopeptides . N-fluorobenzyl-diaminobutane-N'-glucose-Lys-Arg-Gly-Asp-D-Phe ([ 18 F]fluorobenzyl-glucose-KRGDf, and Nfluorobenzoyl- diaminobutane-N'-glucose-Lys-Arg-Gly-Asp-D-Phe ([ 18 F]fluorobenzoyl-glucose-KRGDf, from same precursor as a diagnostic tumor imaging agent for positron emission tomography (PET). Fluorine-18 labeled cRGD glycopeptides were prepared using two different simple labeling methods: one is reductive alkylation of an amine with [ 18 F]fluorobenzaldehyde and the other is amide condensation with [ 18 F]fluorobenzoic acid

  8. The improved syntheses of 5-substituted 2'-[18F]fluoro-2'-deoxy-arabinofuranosyluracil derivatives ([18F]FAU, [18F]FEAU, [18F]FFAU, [18F]FCAU, [18F]FBAU and [18F]FIAU) using a multistep one-pot strategy

    International Nuclear Information System (INIS)

    Cai Hancheng; Li Zibo; Conti, Peter S.

    2011-01-01

    Introduction: We and others have previously reported a four-step radiosynthesis of a series of 2'-deoxy-2'-[ 18 F]fluoro-5-substituted-1-β-D-arabinofuranosyluracil derivatives including [ 18 F]FAU, [ 18 F]FEAU, [ 18 F]FFAU, [ 18 F]FCAU, [ 18 F]FBAU and [ 18 F]FIAU as thymidine derivatives for tumor proliferation and/or reporter gene expression imaging with positron emission tomography (PET). Although the radiosynthesis has been proven to be reproducible and efficient, this complicated multistep reaction is difficult to incorporate into an automated cGMP-compliant radiosynthesis module for routine production. Recently, we have developed a simple and efficient one-pot method for routine production of [ 18 F]FMAU. In this study, we studied the feasibility of radiosynthesizing [ 18 F]FAU, [ 18 F]FEAU, [ 18 F]FFAU, [ 18 F]FCAU, [ 18 F]FBAU and [ 18 F]FIAU using this newly developed method. Methods: Similar to the radiosynthesis of [ 18 F]FMAU, 5-substituted 2'-[ 18 F]fluoro-2'-deoxy-arabinofuranosyluracil derivatives ([ 18 F]FAU, [ 18 F]FEAU, [ 18 F]FFAU, [ 18 F]FCAU, [ 18 F]FBAU and [ 18 F]FIAU) were synthesized in one-pot radiosynthesis module in the presence of Friedel-Crafts catalyst TMSOTf and HMDS. Results: This one-pot radiosynthesis method could be used to produce [ 18 F]FAU, [ 18 F]FEAU, [ 18 F]FFAU, [ 18 F]FCAU, [ 18 F]FBAU and [ 18 F]FIAU. The overall radiochemical yields of these tracers varied from 4.1%±0.8% to 10.1%±1.9% (decay-corrected, n=4). The overall reaction time was reduced from 210 min to 150 min from the end of bombardment, and the radiochemical purity was >99%. Conclusions: The improved radiosyntheses of [ 18 F]FAU, [ 18 F]FEAU, [ 18 F]FFAU, [ 18 F]FCAU, [ 18 F]FBAU and [ 18 F]FIAU have been achieved with reasonable yields and high purity using a multistep one-pot method. The synthetic time has been reduced, and the reaction procedures have been significantly simplified. The success of this approach may make PET tracers [ 18 F]FAU, [ 18 F

  9. The Role of 18F-FDG PET/CT Integrated Imaging in Distinguishing Malignant from Benign Pleural Effusion

    Science.gov (United States)

    Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan

    2016-01-01

    Objective The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. Methods A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. Results One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with

  10. The Role of 18F-FDG PET/CT Integrated Imaging in Distinguishing Malignant from Benign Pleural Effusion.

    Science.gov (United States)

    Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan; Lu, Peiou

    2016-01-01

    The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with 18F-FDG PET/CT integrated

  11. Hypoxia imaging of uterine cervix carcinoma with (18)F-FETNIM PET/CT.

    Science.gov (United States)

    Vercellino, Laetitia; Groheux, David; Thoury, Anne; Delord, Marc; Schlageter, Marie-Hélène; Delpech, Yann; Barré, Emmanuelle; Baruch-Hennequin, Valérie; Tylski, Perrine; Homyrda, Laurence; Walker, Francine; Barranger, Emmanuel; Hindié, Elif

    2012-11-01

    Our aims were to assess the feasibility of imaging hypoxia in cervical carcinoma with (18)F-fluoroerythronitroimidazole ((18)F-FETNIM) and to compare (18)F-FETNIM uptake with metabolic uptake of (18)F-FDG. We included 16 patients with cervical carcinoma. After imaging with FDG, (18)F-FETNIM PET/CT was performed and tumor-to-muscle (T/M) ratio uptake was assessed. (18)F- FETNIM uptake was correlated to FDG uptake and osteopontin (OPN), a marker of hypoxia, and patients' outcomes. All tumors were detected by (18)F-FDG PET. (18)F-FETNIM T/M ratios ranged from 1.3 to 5.4. There was no significant correlation between (18)F-FETNIM and (18)F-FDG uptake. High (18)F-FETNIM uptake (T/M > 3.2) was associated with reduced progression-free survival (log-rank = 0.002) and overall survival (log-rank = 0.02). Osteopontin ranged from 39 to 662 μg/L (median, 102.5 μg/L). Patients with OPN greater than 144 μg/L had reduced progression-free survival compared with those with OPN less than 144 μg/L (log-rank = 0.03). We found no significant correlation between (18)F-FETNIM uptake and OPN blood levels. Our preliminary results showed that a high uptake of (18)F-FETNIM was associated with a worse progression-free and overall survival.

  12. Automated Synthesis of 18F-Fluoropropoxytryptophan for Amino Acid Transporter System Imaging

    Directory of Open Access Journals (Sweden)

    I-Hong Shih

    2014-01-01

    Full Text Available Objective. This study was to develop a cGMP grade of [18F]fluoropropoxytryptophan (18F-FTP to assess tryptophan transporters using an automated synthesizer. Methods. Tosylpropoxytryptophan (Ts-TP was reacted with K18F/kryptofix complex. After column purification, solvent evaporation, and hydrolysis, the identity and purity of the product were validated by radio-TLC (1M-ammonium acetate : methanol = 4 : 1 and HPLC (C-18 column, methanol : water = 7 : 3 analyses. In vitro cellular uptake of 18F-FTP and 18F-FDG was performed in human prostate cancer cells. PET imaging studies were performed with 18F-FTP and 18F-FDG in prostate and small cell lung tumor-bearing mice (3.7 MBq/mouse, iv. Results. Radio-TLC and HPLC analyses of 18F-FTP showed that the Rf and Rt values were 0.9 and 9 min, respectively. Radiochemical purity was >99%. The radiochemical yield was 37.7% (EOS 90 min, decay corrected. Cellular uptake of 18F-FTP and 18F-FDG showed enhanced uptake as a function of incubation time. PET imaging studies showed that 18F-FTP had less tumor uptake than 18F-FDG in prostate cancer model. However, 18F-FTP had more uptake than 18F-FDG in small cell lung cancer model. Conclusion. 18F-FTP could be synthesized with high radiochemical yield. Assessment of upregulated transporters activity by 18F-FTP may provide potential applications in differential diagnosis and prediction of early treatment response.

  13. Pet imaging of human pituitary 5-HT2 receptors with F-18 setoperone

    Energy Technology Data Exchange (ETDEWEB)

    Fischman, A.J.; Bonab, A.A.; Babich, J.W. [Massachusetts General Hospital, Boston, MA (United States)] [and others

    1995-05-01

    Serotonin (5-HT) receptors play an important role in the regulation of pituitary function. In particular, 5HT agonists stimulate ACTH, {beta}-endorphin, prolactin and growth hormone secretion but inhibit TSH release. 5-HT binding sites have been identified by autoradiographic studies of rat and human pituitary. In the present investigation, we used PET with F-18 setoperone to image 5-HT2 receptors in normal humans. Setoperone, a piperidine derivative with potent 5-HT2 receptor blocking properties was labelled with F-18 by nucleophilic substitution on the nitro derivative. After HPLC purification, specific activity was between 10,000 and 15,000 mCi/{mu} mole and radiochemical purity was >98%. Six healthy male volunteers were injected with 5-7 mCi of F-18. Setoperone and serial PET images and arterial blood samples were collected over 2 hrs. Specific binding to 5-HT2 receptors in the frontal cortex (FC), striatum (ST) and pituitary (P) was quantitated using the cerebellum (C) as reference. The tracer showed clear retention in FC, ST and P (known to contain a high density of 5-HT2 receptors) relative to C (known to be devoid of 5-HT2 receptors). In all subjects, FC/C, ST/C and P/C ratios increased during the first hr. and remained stable thereafter. For FC and ST, the ratios reached similar values; 3.92{plus_minus}0.73 and 3.53{plus_minus}0.32. For pituitary, a significantly higher ratio, was measured at all times; 6.53{plus_minus}1.82 (p<0.01). These results indicate that F-18 setoperone is an effective PET radiopharmaceutical for imaging 5-HT2 receptors in the human pituitary. Future applications of this agent could provide important new insights into neuroendocrine function.

  14. [18F]FDG PET/CT outperforms [18F]FDG PET/MRI in differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Vrachimis, Alexis; Wenning, Christian; Weckesser, Matthias; Stegger, Lars; Burg, Matthias Christian; Allkemper, Thomas; Schaefers, Michael

    2016-01-01

    To evaluate the diagnostic potential of PET/MRI with [ 18 F]FDG in comparison to PET/CT in patients with differentiated thyroid cancer suspected or known to have dedifferentiated. The study included 31 thyroidectomized and remnant-ablated patients who underwent a scheduled [ 18 F]FDG PET/CT scan and were then enrolled for a PET/MRI scan of the neck and thorax. The datasets (PET/CT, PET/MRI) were rated regarding lesion count, conspicuity, diameter and characterization. Standardized uptake values were determined for all [ 18 F]FDG-positive lesions. Histology, cytology, and examinations before and after treatment served as the standards of reference. Of 26 patients with a dedifferentiated tumour burden, 25 were correctly identified by both [ 18 F]FDG PET/CT and PET/MRI. Detection rates by PET/CT and PET/MRI were 97 % (113 of 116 lesions) and 85 % (99 of 113 lesions) for malignant lesions, and 100 % (48 of 48 lesions) and 77 % (37 of 48 lesions) for benign lesions, respectively. Lesion conspicuity was higher on PET/CT for both malignant and benign pulmonary lesions and in the overall rating for malignant lesions (p < 0.001). There was a difference between PET/CT and PET/MRI in overall evaluation of malignant lesions (p < 0.01) and detection of pulmonary metastases (p < 0.001). Surgical evaluation revealed three malignant lesions missed by both modalities. PET/MRI additionally failed to detect 14 pulmonary metastases and 11 benign lesions. In patients with thyroid cancer and suspected or known dedifferentiation, [ 18 F]FDG PET/MRI was inferior to low-dose [ 18 F]FDG PET/CT for the assessment of pulmonary status. However, for the assessment of cervical status, [ 18 F]FDG PET/MRI was equal to contrast-enhanced neck [ 18 F]FDG PET/CT. Therefore, [ 18 F]FDG PET/MRI combined with a low-dose CT scan of the thorax may provide an imaging solution when high-quality imaging is needed and high-energy CT is undesirable or the use of a contrast agent is contraindicated. (orig.)

  15. Synthesis of a dopamine transporter imaging agent, N-(3-[18F]fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl)nortropane

    International Nuclear Information System (INIS)

    Choi, Yearn Seong; Oh, Seung Jun; Kim, Sang Eun; Choi, Yong; Lee, Kyung Han; Kim, Byung Tae; Chi, Dae Yoon

    1999-01-01

    N-(3-[ 18 F]fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl)nortropane ([ 18 F]FP-CIT) has been shown to be very useful for imaging the dopamine transporter. However, synthesis of this radiotracer is somewhat troublesome. In this study, we used a new method for the preparation of ([ 18 F]FP-CIT) to increse radiochemical yield and effective specific activity. ([ 18 F]FP-CIT) was prepared by N-alkylation of nor β-CIT (2 mg) with 3-bromo-1 ([ 18 F]fluoropropane in the presence of Et 3 N (5-6 drops of DMF/CH 3 CN, 140 .deg. C, 20 min). 3-Bromo-1-[ 18 F]fluropropane was synthesized from 5 μL of 3-bromo-1-trifluoromethanesulfonyloxypropane (3-bromopropyl-1-triflate) and nBu 4 N 18 F at 80 .deg. C.The final compound was purified by reverse phase HPLC and formulated in 13% ethanol in saline. 3-Bromo-1-[ 18 F]fluoropropane was obtained from 3-bromopropyl-1-triflate and nBu 4 N 18 F in 77-80% yield. N-Alkylation of nor β-CIT with 3-bromo-1-[ 18 F]fluoropropane was carried out at 140 .deg. C using acetonitrile containing a small volume of DMF as the solvents. The overall yield of [ 18 F]FP-CIT was 5-10% (decay-corrected ) with a radiochemical purity higher than 99% and effective specific activity higher than the one reported in the literature based on their HPLC data. The final [ 18 F]FP-CIT solution had the optimal pH (7.0) and it was pyrogen-free. In this study, 3-bromopropyl-1-triflate was used as the precursor for the [ 18 F]fluorination reaction and new conditions were developed for purification of [ 18 F]FP-CIT by HPLC. We established this new method for the preparation of [ 18 F]FP-CIT, which gave high effective specific activity and relatively good yield.

  16. [7α-18F]fluoro-17α-methyl-5α-dihydrotestosterone: a ligand for androgen receptor-mediated imaging of prostate cancer

    International Nuclear Information System (INIS)

    Garg, Pradeep K.; Labaree, David C.; Hoyte, Robert M.; Hochberg, Richard B.

    2001-01-01

    We have synthesized a 18 F-labeled androgen, [7α- 18 F]fluoro-17α-methyl-5α-dihydrotestosterone, in a no-carrier-added radiosynthesis by exchange of 18 F- (tetrabutylammonium fluoride) with the 7β-tosyloxy of 17α-methyl-5α-dihydrotestosterone. The nonradioactive steroid binds with high affinity and specificity to the androgen receptor and binds poorly, if at all, to other steroid receptors and plasma sex hormone binding globulin. The 7α- 18 F-androgen concentrates markedly in the prostate of rats by an androgen receptor-dependent mechanism. It is likely that [7α- 18 F]fluoro-17α-methyl-5α-dihydrotestosterone will be an excellent positron emission tomography imaging agent for prostate cancer

  17. Low carbohydrate diet before 18F-FDG tumor imaging contributes to reduce myocardial 18F-FDG uptake

    International Nuclear Information System (INIS)

    Miao Weibing; Chen Shaoming; Zheng Shan; Wu Jing; Peng Jiequan; Jiang Zhihong

    2014-01-01

    Objective: To evaluate whether low carbohydrate diet before 18 F-FDG tumor imaging could reduce myocardial 18 F-FDG uptake. Methods: From April 2011 to January 2012, 70 patients were enrolled in this study.They were randomly divided into control group (34 cases) and test group (36 cases). Patients in control group were on regular diet, while those in test group had low carbohydrate diet in the evening before imaging. Blood samples were taken before injection of 18 F-FDG for the measurement of serum glucose, free fatty acid,insulin and ketone body. Whole body 18 F-FDG tomography was performed with dual-head coincidence SPECT. The myocardial uptake of FDG was assessed visually and scored as 0 for no uptake, 1 for uptake lower than liver, 2 for uptake similar to liver, 3 for uptake higher than liver, and 4 for remarkable uptake.The ratio of myocardium to liver (H/L) was calculated. Two-sample t test, Wilcoxon rank sum test and linear correlation analysis were performed. Results: The myocardial uptake in test group was significantly lower than that in control group with H/L ratios of 0.94±0.57 and 1.50±1.04, respectively (t=-2.75, P<0.05). The concentrations of serum free fatty acid and ketone body in test group were significantly higher than those in control group: (0.671±0.229) mmol/L vs (0.547±0.207) mmol/L and (0.88±0.60) mmol/L vs (0.57±0.32) mmol/L, t=2.38 and 2.67, both P<0.05. The concentrations of glucose and insulin were (5.28±1.06) mmol/L and (35.16±33.70) pmol/L in test group, which showed no significant difference with those in control group ((5.19±0.78) mmol/L and (41.64±35.13) pmol/L, t=0.39 and-0.79, both P>0.05). A negative correlation was found between the myocardial uptake of 18 F-FDG and serum free fatty acid/ketone body concentration (r=-0.40, -0.33, both P<0.01), respectively. There was no correlation between the myocardial uptake of 18 F-FDG and glucose/insulin (r=-0.02, 0.13, both P>0.05), respectively. Conclusion: Low carbohydrate

  18. A First Report on [18F]FPRGD2 PET/CT Imaging in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Nadia Withofs

    2017-01-01

    Full Text Available An observational study was set up to assess the feasibility of [F18]FPRGD2 PET/CT for imaging patients with multiple myeloma (MM and to compare its detection rate with low dose CT alone and combined [F18]NaF/[F18]FDG PET/CT images. Four patients (2 newly diagnosed patients and 2 with relapsed MM were included and underwent whole-body PET/CT after injection of [F18]FPRGD2. The obtained images were compared with results of low dose CT and already available results of a combined [F18]NaF/[F18]FDG PET/CT. In total, 81 focal lesions (FLs were detected with PET/CT and an underlying bone destruction or fracture was seen in 72 (89% or 8 (10% FLs, respectively. Fewer FLs (54% were detected by [F18]FPRGD2 PET/CT compared to low dose CT (98% or [F18]NaF/[F18]FDG PET/CT (70% and all FLs detected with [F18]FPRGD2 PET were associated with an underlying bone lesion. In one newly diagnosed patient, more [F18]FPRGD2 positive lesions were seen than [F18]NaF/[F18]FDG positive lesions. This study suggests that [F18]FPRGD2 PET/CT might be less useful for the detection of myeloma lesions in patients with advanced disease as all FLs with [F18]FPRGD2 uptake were already detected with CT alone.

  19. (18)F-nanobody for PET imaging of HER2 overexpressing tumors.

    Science.gov (United States)

    Xavier, Catarina; Blykers, Anneleen; Vaneycken, Ilse; D'Huyvetter, Matthias; Heemskerk, Jan; Lahoutte, Tony; Devoogdt, Nick; Caveliers, Vicky

    2016-04-01

    Radiolabeled nanobodies are exciting new probes for molecular imaging due to high affinity, high specificity and fast washout from the blood. Here we present the labeling of an anti-HER2 nanobody with (18)F and its validation for in vivo assessment of HER2 overexpression. The GMP grade anti-HER2 nanobody was labeled with the prosthetic group, N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]-SFB), and its biodistribution, tumor targeting and specificity were evaluated in mouse and rat tumor models. [(18)F]FB-anti-HER2 nanobody was prepared with a 5-15% global yield (decay corrected) and a specific activity of 24.7 ± 8.2 MBq/nmol. In vivo studies demonstrated a high specific uptake for HER2 positive xenografts (5.94 ± 1.17 and 3.74 ± 0.52%IA/g, 1 and 3h p.i.) with high tumor-to-blood and tumor-to-muscle ratios generating high contrast PET imaging. The probe presented fast clearance through the kidneys (4%IA/g at 3h p.i.). [(18)F]FB-anti-HER2 nanobody is able to image HER2 expressing tumors when co-administered with the anti-HER2 therapeutic antibody trastuzumab (Herceptin), indicating the possibility of using the tracer in patients undergoing Herceptin therapy. The GMP grade anti-HER2 nanobody was labeled with (18)F. This new PET probe for imaging HER2 overexpression in tumors has ample potential for clinical translation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. 18F-nanobody for PET imaging of HER2 overexpressing tumors

    International Nuclear Information System (INIS)

    Xavier, Catarina; Blykers, Anneleen; Vaneycken, Ilse; D'Huyvetter, Matthias; Heemskerk, Jan; Lahoutte, Tony; Devoogdt, Nick; Caveliers, Vicky

    2016-01-01

    Introduction: Radiolabeled nanobodies are exciting new probes for molecular imaging due to high affinity, high specificity and fast washout from the blood. Here we present the labeling of an anti-HER2 nanobody with 18 F and its validation for in vivo assessment of HER2 overexpression. Methods: The GMP grade anti-HER2 nanobody was labeled with the prosthetic group, N-succinimidyl-4-[ 18 F]fluorobenzoate ([ 18 F]-SFB), and its biodistribution, tumor targeting and specificity were evaluated in mouse and rat tumor models. Results: [ 18 F]FB-anti-HER2 nanobody was prepared with a 5–15% global yield (decay corrected) and a specific activity of 24.7 ± 8.2 MBq/nmol. In vivo studies demonstrated a high specific uptake for HER2 positive xenografts (5.94 ± 1.17 and 3.74 ± 0.52%IA/g, 1 and 3 h p.i.) with high tumor-to-blood and tumor-to-muscle ratios generating high contrast PET imaging. The probe presented fast clearance through the kidneys (4%IA/g at 3 h p.i.). [ 18 F]FB-anti-HER2 nanobody is able to image HER2 expressing tumors when co-administered with the anti-HER2 therapeutic antibody trastuzumab (Herceptin), indicating the possibility of using the tracer in patients undergoing Herceptin therapy. Conclusions: The GMP grade anti-HER2 nanobody was labeled with 18 F. This new PET probe for imaging HER2 overexpression in tumors has ample potential for clinical translation.

  1. New radiosynthesis of 2-deoxy-2-[18F]fluoroacetamido-D-glucopyranose and its evaluation as a bacterial infections imaging agent

    International Nuclear Information System (INIS)

    Martinez, Miguel E.; Kiyono, Yasushi; Noriki, Sakon; Inai, Kunihiro; Mandap, Katheryn S.; Kobayashi, Masato; Mori, Tetsuya; Tokunaga, Yuji; Tiwari, Vijay N.; Okazawa, Hidehiko; Fujibayashi, Yasuhisa; Ido, Tatsuo

    2011-01-01

    Introduction: The diagnosis of infection and the ability to distinguish bacterial infection from nonbacterial inflammation by positron emission tomography (PET) have gained interest in recent years, but still few specific radiopharmaceuticals are available for use. In this study, we developed a new radiosynthesis method of 2-deoxy-2-[ 18 F]fluoroacetamido-D-glucopyranose ([ 18 F]FAG) by applying microwave irradiation and demonstrated that [ 18 F]FAG could be a potential radiopharmaceutical to distinguish bacterial infection from nonbacterial inflammation. Methods: 1,3,4,6-Tetra-O-acetyl-2-deoxy-2-bromoacetamido-D-glucopyranose was used as precursor, and labeling was performed under microwave irradiation conditions followed by alkaline hydrolysis and high-performance liquid chromatography (HPLC) purification. In vitro uptake of [ 18 F]FAG by Escherichia coli was performed. Tissue biodistribution of [ 18 F]FAG was performed in mice. Moreover, PET imaging acquisition of E. coli infection and nonbacterial inflammation models was performed in rats. Tissue radiotracer-accumulated sites were analyzed by hematoxylin and eosin staining and anti-E.coli immunostaining. Results: The radiosynthesis of [ 18 F]FAG was achieved with microwave irradiation, and the radiochemical yield was 9.7%±2.8% end of bombardment (EOB); the radiochemical purity was more than 98%, and the total synthesis time was 62 min. Compared with control group, in vitro uptake of [ 18 F]FAG by E. coli was significantly decrease in inhibition group (P 18 F]FAG from the animal body. [ 18 F]FAG clearly visualized the infection areas but not nonbacterial inflammation areas in PET studies. Quantitative analysis revealed that the uptake of [ 18 F]FAG into infection areas was significantly higher than that of [ 18 F]FAG into inflammation areas (P 18 F]FAG. Conclusions: Using 1,3,4,6-tetra-O-acetyl-2-deoxy-2-bromoacetamido-D-glucopyranose as a precursor, the new radiosynthesis method of [ 18 F]FAG was achieved in

  2. [{sup 18}F]DPA-714, [{sup 18}F]PBR111 and [{sup 18}F]FEDAA1106-Selective radioligands for imaging TSPO 18 kDa with PET: Automated radiosynthesis on a TRACERLAb FX-FN synthesizer and quality controls

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnast, Bertrand, E-mail: bertrand.kuhnast@cea.fr [CEA, I2BM, Service Hospitalier Frederic Joliot, 4 Place du General Leclerc, F-91401, Orsay Cedex (France); Damont, Annelaure; Hinnen, Francoise; Catarina, Tony; Demphel, Stephane; Le Helleix, Stephane; Coulon, Christine; Goutal, Sebastien; Gervais, Philippe; Dolle, Frederic [CEA, I2BM, Service Hospitalier Frederic Joliot, 4 Place du General Leclerc, F-91401, Orsay Cedex (France)

    2012-03-15

    Imaging of TSPO 18 kDa with PET is more and more considered as a relevant biomarker of inflammation in numerous diseases. Development of new radiotracers for TSPO 18 kDa has seen acceleration in the last years and the challenge today is to make available large amounts of such a radiotracer in compliance with GMP standards for application in humans. We present in this technical note automated productions of [{sup 18}F]DPA-714, [{sup 18}F]PBR111 and [{sup 18}F]FEDAA1106, three promising radiotracers for TSPO 18 kDa imaging, using a TRACERlab FX-FN synthesizer. This note also includes the quality control data of the validation batches for the manufacturing qualification of clinical production of [{sup 18}F]DPA-714. - Highlights: Black-Right-Pointing-Pointer Protein TSPO 18 kDa is recognized as a biomarker of inflammation involved in many diseases. Black-Right-Pointing-Pointer Radiotracers targeting TSPO prepared in compliance with GMPs are mandatory as new imaging tools. Black-Right-Pointing-Pointer An automated radiosynthesis of promising radiotracers and full QC have been implemented.

  3. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma.

    NARCIS (Netherlands)

    Timmers, H.J.L.M.; Chen, C.C.; Carrasquillo, J.A.; Whatley, M.; Ling, A.; Havekes, B.; Eisenhofer, G.; Martiniova, L.; Adams, K.T.; Pacak, K.

    2009-01-01

    CONTEXT: Besides (123)I-metaiodobenzylguanidine (MIBG), positron emission tomography (PET) agents are available for the localization of paraganglioma (PGL), including (18)F-3,4-dihydroxyphenylalanine (DOPA), (18)F-fluoro-2-deoxy-D-glucose ((18)F-FDG), and (18)F-fluorodopamine ((18)F-FDA). OBJECTIVE:

  4. Longitudinal imaging of Alzheimer pathology using [{sup 11}C]PIB, [{sup 18}F]FDDNP and [{sup 18}F]FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Ossenkoppele, Rik; Tolboom, Nelleke; Adriaanse, Sofie F. [VU University Medical Center, Department of Neurology and Alzheimer Center, PO Box 7057, Amsterdam (Netherlands); VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); Foster-Dingley, Jessica C.; Boellaard, Ronald; Yaqub, Maqsood; Windhorst, Albert D.; Lammertsma, Adriaan A.; Berckel, Bart N.M. van [VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); Barkhof, Frederik [VU University Medical Center, Department of Radiology, Amsterdam (Netherlands); Scheltens, Philip [VU University Medical Center, Department of Neurology and Alzheimer Center, PO Box 7057, Amsterdam (Netherlands); Flier, Wiesje M. van der [VU University Medical Center, Department of Neurology and Alzheimer Center, PO Box 7057, Amsterdam (Netherlands); VU University Medical Center, Department of Epidemiology and Biostatistics, Amsterdam (Netherlands)

    2012-06-15

    [{sup 11}C]PIB and [{sup 18}F]FDDNP are PET tracers for in vivo detection of the neuropathology underlying Alzheimer's disease (AD). [{sup 18}F]FDG is a glucose analogue and its uptake reflects metabolic activity. The purpose of this study was to examine longitudinal changes in these tracers in patients with AD or mild cognitive impairment (MCI) and in healthy controls. Longitudinal, paired, dynamic [{sup 11}C]PIB and [{sup 18}F]FDDNP (90 min each) and static [{sup 18}F]FDG (15 min) PET scans were obtained in 11 controls, 12 MCI patients and 8 AD patients. The mean interval between baseline and follow-up was 2.5 years (range 2.0-4.0 years). Parametric [{sup 11}C]PIB and [{sup 18}F]FDDNP images of binding potential (BP{sub ND}) and [{sup 18}F]FDG standardized uptake value ratio (SUVr) images were generated. A significant increase in global cortical [{sup 11}C]PIB BP{sub ND} was found in MCI patients, but no changes were observed in AD patients or controls. Subsequent regional analysis revealed that this increase in [{sup 11}C]PIB BP{sub ND} in MCI patients was most prominent in the lateral temporal lobe (p < 0.05). For [{sup 18}F]FDDNP, no changes in global BP{sub ND} were found. [{sup 18}F]FDG uptake was reduced at follow-up in the AD group only, especially in frontal, parietal and lateral temporal lobes (all p < 0.01). Changes in global [{sup 11}C]PIB binding ({rho} = -0.42, p < 0.05) and posterior cingulate [{sup 18}F]FDG uptake ({rho} = 0.54, p < 0.01) were correlated with changes in Mini-Mental-State Examination score over time across groups, whilst changes in [{sup 18}F]FDDNP binding ({rho} = -0.18, p = 0.35) were not. [{sup 11}C]PIB and [{sup 18}F]FDG track molecular changes in different stages of AD. We found increased amyloid load in MCI patients and progressive metabolic impairment in AD patients. [{sup 18}F]FDDNP seems to be less useful for examining disease progression. (orig.)

  5. In vivo evaluation of 2'-deoxy-2'-[{sup 18}F]fluoro-5-iodo-1-{beta}-D-arabinofuranosyluracil ([{sup 18}F]FIAU) and 2'-deoxy-2'-[{sup 18}F]fluoro-5-ethyl-1-{beta}-D-arabinofuranosyluracil ([{sup 18}F]FEAU) as markers for suicide gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Alauddin, Mian M. [University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. T8.3895, P.O. Box 059, Houston, TX (United States); Shahinian, Antranic; Park, Ryan; Fissekis, John D.; Conti, Peter S. [University of Southern California, PET Imaging Science Center, Keck School of Medicine, Los Angeles, CA (United States); Tohme, Michel [University of Southern California, PET Imaging Science Center, Keck School of Medicine, Los Angeles, CA (United States); Department of Biomedical Engineering, UC Davis, Davis, CA (United States)

    2007-06-15

    FIAU and FEAU were evaluated in vitro and in vivo as markers for HSV1-tk gene expression. In vitro and biodistribution studies were performed in wild type and transduced HT-29 cells using [{sup 14}C]FIAU and [{sup 3}H]FEAU. PET imaging was performed using [{sup 18}F]FIAU and [{sup 18}F]FEAU. In vitro uptake of [{sup 14}C]FIAU in tk-positive cells was 39-fold, 49-fold, and 43-fold higher (p < 0.001) than in wild type cells at 30, 60, and 120 min, respectively. Uptake of [{sup 3}H]FEAU in transduced cells was 46-fold, 62-fold, and 121-fold higher (p < 0.001) than in wild type cells at the same time points. In vivo uptake of [{sup 14}C]FIAU at 2 h in HSV1-tk positive tumors was 15.48 {+-} 3.94, 6.7-fold higher (p < 0.001) than in wild type tumors. Uptake of [{sup 3}H]FEAU in transduced tumors was 9.98 {+-} 1.99, 5.0-fold higher (p < 0.001) than in wild type tumors. Micro-PET images using [{sup 18}F]FIAU and [{sup 18}F]FEAU also showed very high uptake in HSV-tk tumors. [{sup 18}F]FIAU and [{sup 18}F]FEAU appear to be potential PET imaging agents for gene expression. (orig.)

  6. In Vivo 6-([18F]Fluoroacetamido-1-hexanoicanilide PET Imaging of Altered Histone Deacetylase Activity in Chemotherapy-Induced Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Nobuyoshi Fukumitsu

    2018-01-01

    Full Text Available Background. Histone deacetylases (HDACs regulate gene expression by changing histone deacetylation status. Neurotoxicity is one of the major side effects of cisplatin, which reacts with deoxyribonucleic acid (DNA and has excellent antitumor effects. Suberoylanilide hydroxamic acid (SAHA is an HDAC inhibitor with neuroprotective effects against cisplatin-induced neurotoxicity. Purpose. We investigated how cisplatin with and without SAHA pretreatment affects HDAC expression/activity in the brain by using 6-([18F]fluoroacetamido-1-hexanoicanilide ([18F]FAHA as a positron emission tomography (PET imaging agent for HDAC IIa. Materials and Methods. [18F]FAHA and [18F]fluoro-2-deoxy-2-D-glucose ([18F]FDG PET studies were done in 24 mice on 2 consecutive days and again 1 week later. The mice were divided into three groups according to drug administration between the first and second imaging sessions (Group A: cisplatin 2 mg/kg, twice; Group B: cisplatin 4 mg/kg, twice; Group C: cisplatin 4 mg/kg, twice, and SAHA 300 mg/kg pretreatment, 4 times. Results. The Ki value of [18F]FAHA was increased and the percentage of injected dose/tissue g (% ID/g of [18F]FDG was decreased in the brains of animals in Groups A and B. The Ki value of [18F]FAHA and % ID/g of [18F]FDG were not significantly different in Group C. Conclusions. [18F]FAHA PET clearly showed increased HDAC activity suggestive of cisplatin neurotoxicity in vivo, which was blocked by SAHA pretreatment.

  7. Labeling of complex molecules with 18F, 13N, and 11C

    International Nuclear Information System (INIS)

    Brownell, G.L.; Elmaleh, D.R.

    1980-01-01

    The overall objective during the period covered by this report was to develop a broad spectrum of radiopharmaceuticals labeled with short-lived cyclotron positron emitters, 11 C, 13 N and 18 F. The goals of the program during the last year were: (1) to complete the modular automated system for important precursor production - formaldehyde, methyliodide, cyanide; (2) to perform animal studies with the 18 F-glucose analogues 2FDG and 3FDG and measure the constants for both agents in different animals; and (3) to initiate the development of new fatty acid analogues for the myocardial imaging and metabolism. As part of a collaboration with other groups seeking new agents for myocardium and brain, 9-/sup 123m/Te-telluriumheptadecanoic acid as a myocardial imaging agent was studied. This compound could be used for designing new fatty acid analogues labeled with 11 C and 18 F that stay in the myocardium because of metabolic inhibition

  8. Evaluation of 6-([18F] fluoroacetamido)-1-hexanoic-anilide (18F-FAHA) as imaging probe in tumor xenograft mice model

    Science.gov (United States)

    Li, Fiona; Cho, Sung Ju; Yu, Lihai; Hudson, Robert H. E.; Luyt, Leonard G.; Pin, Christopher L.; Kovacs, Michael S.; Koropatnick, James; Lee, Ting-Yim

    2016-03-01

    Alteration in genetic expression is as important as gene mutation in cancer development and proliferation. Epigenetic changes affect gene expression without altering the DNA sequence. Histone deacetylase (HDAC), an enzyme facilitating histone remodelling, can lead to silencing of tumor suppressor genes making HDAC inhibitors viable anticancer drugs against tumors with increased activity of the enzyme. In this study we evaluated 18F-fluroacetamido-1-hexanoicanilide (18F-FAHA), an artificial HDAC substrate, as imaging probe of HDAC activity of human tumor xenografts in immunocompromised host mice. Human breast and melanoma cell lines, MDA-MB-468 and MDA-MB-435 respectively, known to overexpress HDAC activity were xenografted into immunocompromised mice and HDAC activity was imaged using 18F-FAHA. The melanoma group was treated with saline, SAHA (suberoylanilide hydroxamic acid, an approved anticancer HDAC inhibitor) in DMSO, or DMSO as positive control. Tracer kinetic modelling and SUV were used to estimate HDAC activity from dynamic PET data. Both breast tumor and melanoma group showed great variability in binding rate constant (BRC) of 18F-FAHA suggesting highly variable inter- and intra-tumoral HDAC activity. For the SAHA treated melanoma group, HDAC activity, as monitored by BRC of 18F-FAHA, decreased more than the two (positive and negative) control groups but not tumor growth. Our preliminary study showed that noninvasive PET imaging with 18F-FAHA has the potential to identify patients for whom treatment with HDAC inhibitors are appropriate, to assess the effectiveness of that treatment as an early marker of target reduction, and also eliminate the need for invasive tissue biopsy to individualize treatment.

  9. Whole-body biodistribution and brain PET imaging with [{sup 18}F]AV-45, a novel amyloid imaging agent - a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K.-J. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taiwan (China); Hsu, W.-C. [Department of Neurology, Chang Gung Memorial Hospital, Taiwan (China); Hsiao, I.-T.; Wey, S.-P. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taiwan (China); Jin, L.-W. [M.I.N.D. Institute and Department of Pathology, University of California, Davis, CA (United States); Skovronsky, Daniel [Avid Radiopharmaceuticals, Inc., Philadelphia, PA (United States); Wai, Y.-Y. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Radiology, Chang Gung Memorial Hospital, Taiwan (China); Chang, H.-P.; Lo, C.-W.; Yao, C.H.; Yen, T.-C. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Kung, M.-P. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Radiology, University of Pennsylvania, Philadelphia, PA (United States)

    2010-05-15

    Purpose: The compound (E)-4-(2-(6-(2-(2-(2-{sup 18}F-fluoroethoxy)ethoxy)ethoxy) pyridin-3-yl)vinyl)-N-methylbenzenamine ([{sup 18}F]AV-45) is a novel radiopharmaceutical capable of selectively binding to {beta}-amyloid (A{beta}) plaques. This pilot study reports the safety, biodistribution, and radiation dosimetry of [{sup 18}F]AV-45 in human subjects. Methods: In vitro autoradiography and fluorescent staining of postmortem brain tissue from patients with Alzheimer's disease (AD) and cognitively healthy subjects were performed to assess the specificity of the tracer. Biodistribution was assessed in three healthy elderly subjects (mean age: 60.0{+-}5.2 years) who underwent 3-h whole-body positron emission tomography (PET)/computed tomographic (CT) scans after a bolus injection of 381.9{+-}13.9 MBq of [{sup 18}F]AV-45. Another six subjects (three AD patients and three healthy controls, mean age: 67.7{+-}13.6 years) underwent brain PET studies. Source organs were delineated on PET/CT. All subjects underwent magnetic resonance imaging (MRI) for obtaining structural information. Results: In vitro autoradiography revealed exquisitely high specific binding of [{sup 18}F]AV-45 to postmortem AD brain sections, but not to the control sections. There were no serious adverse events throughout the study period. The peak uptake of the tracer in the brain was 5.12{+-}0.41% of the injected dose. The highest absorbed organ dose was to the gallbladder wall (184.7{+-}78.6 {mu}Gy/MBq, 4.8 h voiding interval). The effective dose equivalent and effective dose values for [{sup 18}F]AV-45 were 33.8{+-}3.4 {mu}Sv/MBq and 19.3{+-}1.3 {mu}Sv/MBq, respectively. Conclusion: [{sup 18}F]AV-45 binds specifically to A{beta} in vitro, and is a safe PET tracer for studying A{beta} distribution in human brain. The dosimetry is suitable for clinical and research application.

  10. Anesthesia condition for 18F-FDG imaging of lung metastasis tumors using small animal PET

    International Nuclear Information System (INIS)

    Woo, Sang-Keun; Lee, Tae Sup; Kim, Kyeong Min; Kim, June-Youp; Jung, Jae Ho; Kang, Joo Hyun; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2008-01-01

    Small animal positron emission tomography (PET) with 18 F-FDG has been increasingly used for tumor imaging in the murine model. The aim of this study was to establish the anesthesia condition for imaging of lung metastasis tumor using small animal 18 F-FDG PET. Methods: To determine the impact of anesthesia on 18 F-FDG distribution in normal mice, five groups were studied under the following conditions: no anesthesia, ketamine and xylazine (Ke/Xy), 0.5% isoflurane (Iso 0.5), 1% isoflurane (Iso 1) and 2% isoflurane (Iso 2). The ex vivo counting, standard uptake value (SUV) image and glucose SUV of 18 F-FDG in various tissues were evaluated. The 18 F-FDG images in the lung metastasis tumor model were obtained under no anesthesia, Ke/Xy and Iso 0.5, and registered with CT image to clarify the tumor region. Results: Blood glucose concentration and muscle uptake of 18 F-FDG in the Ke/Xy group markedly increased more than in the other groups. The Iso 2 group increased 18 F-FDG uptake in heart compared with the other groups. The Iso 0.5 anesthesized group showed the lowest 18 F-FDG uptake in heart and chest wall. The small size of lung metastasis tumor (2 mm) was clearly visualized by 18 F-FDG image with the Iso 0.5 anesthesia. Conclusion: Small animal 18 F-FDG PET imaging with Iso 0.5 anesthesia was appropriate for the detection of lung metastasis tumor. To acquire 18 F-FDG PET images with small animal PET, the type and level of anesthetic should be carefully considered to be suitable for the visualization of target tissue in the experimental model

  11. 18F- and 11C-labelling of quantum dots with n.c.a. [18F]fluoroethyltosylate and [11C]methyliodide. A feasibility study

    International Nuclear Information System (INIS)

    Patt, M.; Schildan, A.; Habermann, B.; Mishchenko, O.; Patt, J.T.; Sabri, O.

    2010-01-01

    Quantum dots functionalized on the outer surface with either amino- or carboxyl functions were labelled with [ 18 F]fluoroethyltosylate and [ 11 C]methyliodide in order to use the positron emitter-labelled fluorescence agents for multimodality imaging techniques, i.e. fluorescence imaging and positron emission tomography. 18 F-Labelling of both compounds was realized with yields up to 5% as determined by size exclusion chromatography, which is twice as much as reported in literature before [1]. 11 C-Labelling of amino- and carboxyl-QDs proceeded with good yields (up to 45 and 35%, respectively) under optimized reaction conditions. In general for both QD-types and both labelling agents the labelling yield increased with the amount of QDs used in the reaction as well as with reaction time and reaction temperature. (author)

  12. Synthesis of fluorine-18 radio-labeled serum albumins for PET blood pool imaging

    International Nuclear Information System (INIS)

    Basuli, Falguni; Li, Changhui; Xu, Biying; Williams, Mark; Wong, Karen; Coble, Vincent L.; Vasalatiy, Olga; Seidel, Jurgen; Green, Michael V.; Griffiths, Gary L.; Choyke, Peter L.; Jagoda, Elaine M.

    2015-01-01

    We sought to develop a practical, reproducible and clinically translatable method of radiolabeling serum albumins with fluorine-18 for use as a PET blood pool imaging agent in animals and man. Fluorine-18 radiolabeled fluoronicotinic acid-2,3,5,6-tetrafluorophenyl ester, [ 18 F]F-Py-TFP was prepared first by the reaction of its quaternary ammonium triflate precursor with [ 18 F]tetrabutylammonium fluoride ([ 18 F]TBAF) according to a previously published method for peptides, with minor modifications. The incubation of [ 18 F]F-Py-TFP with rat serum albumin (RSA) in phosphate buffer (pH 9) for 15 min at 37–40 °C produced fluorine-18-radiolabeled RSA and the product was purified using a mini-PD MiniTrap G-25 column. The overall radiochemical yield of the reaction was 18–35% (n = 30, uncorrected) in a 90-min synthesis. This procedure, repeated with human serum albumin (HSA), yielded similar results. Fluorine-18-radiolabeled RSA demonstrated prolonged blood retention (biological half-life of 4.8 hours) in healthy awake rats. The distribution of major organ radioactivity remained relatively unchanged during the 4 hour observation periods either by direct tissue counting or by dynamic PET whole-body imaging except for a gradual accumulation of labeled metabolic products in the bladder. This manual method for synthesizing radiolabeled serum albumins uses fluorine-18, a widely available PET radionuclide, and natural protein available in both pure and recombinant forms which could be scaled up for widespread clinical applications. These preclinical biodistribution and PET imaging results indicate that [ 18 F]RSA is an effective blood pool imaging agent in rats and might, as [ 18 F]HSA, prove similarly useful as a clinical imaging agent

  13. Synthesis of fluorine-18 radio-labeled serum albumins for PET blood pool imaging.

    Science.gov (United States)

    Basuli, Falguni; Li, Changhui; Xu, Biying; Williams, Mark; Wong, Karen; Coble, Vincent L; Vasalatiy, Olga; Seidel, Jurgen; Green, Michael V; Griffiths, Gary L; Choyke, Peter L; Jagoda, Elaine M

    2015-03-01

    We sought to develop a practical, reproducible and clinically translatable method of radiolabeling serum albumins with fluorine-18 for use as a PET blood pool imaging agent in animals and man. Fluorine-18 radiolabeled fluoronicotinic acid-2,3,5,6-tetrafluorophenyl ester, [(18)F]F-Py-TFP was prepared first by the reaction of its quaternary ammonium triflate precursor with [(18)F]tetrabutylammonium fluoride ([(18)F]TBAF) according to a previously published method for peptides, with minor modifications. The incubation of [(18)F]F-Py-TFP with rat serum albumin (RSA) in phosphate buffer (pH9) for 15 min at 37-40 °C produced fluorine-18-radiolabeled RSA and the product was purified using a mini-PD MiniTrap G-25 column. The overall radiochemical yield of the reaction was 18-35% (n=30, uncorrected) in a 90-min synthesis. This procedure, repeated with human serum albumin (HSA), yielded similar results. Fluorine-18-radiolabeled RSA demonstrated prolonged blood retention (biological half-life of 4.8 hours) in healthy awake rats. The distribution of major organ radioactivity remained relatively unchanged during the 4 hour observation periods either by direct tissue counting or by dynamic PET whole-body imaging except for a gradual accumulation of labeled metabolic products in the bladder. This manual method for synthesizing radiolabeled serum albumins uses fluorine-18, a widely available PET radionuclide, and natural protein available in both pure and recombinant forms which could be scaled up for widespread clinical applications. These preclinical biodistribution and PET imaging results indicate that [(18)F]RSA is an effective blood pool imaging agent in rats and might, as [(18)F]HSA, prove similarly useful as a clinical imaging agent. Published by Elsevier Inc.

  14. Biological evaluation of [18F]-nifedipine as a novel PET tracer for L-type calcium channel imaging

    International Nuclear Information System (INIS)

    Sadeghpour, H.; Jalilian, A.R.; Akhlaghi, M.; Mirzaii, M.; Saddadi, F.; Shafiee, A.; Miri, R.

    2008-01-01

    Due to interesting role of dihydropyridines in cardiovascular diseases and drug resistance studies and lack of a fluorine-18 labeled imaging agent for L-type calcium channel studies, this study was designed. [ 18 F] Dimethyl 2 - (fluoromethyl) - 6 - methyl - 4 - (2 - nitrophenyl) - 1,4 - dihydropyridine - 3,5 - dicarboxylate 2 was prepared in no-carrier-added (n.c.a.) form from a starting brominated compound in one step at 80 o C in Kryptofix2.2.2/[ 18 F]. Compound 2 was administered to normal rats via their tail veins for preliminary biodistribution studies and the ID/g % of the labeled compound was determined up to 3 h post injections. Coincidence images were obtained in rats 5 to 120 min. Radiofluorination on bromo precursor gave a fluorinated compound in 95 % radiochemical purity and a 8% yield shown by RTLC and HPLC. Biodistribution studies showed that the tracer is accumulated in the heart in the first few minutes, followed by metabolism resulting in very soluble 18 F-containing metabolites eliminated through the urinary tract. In coincidence images, the target organ was shown to be the heart. Lung had high accumulation possibly due to the presence of Ca 2+ channels and/or hydrolyzing enzymes showing a significant myocardial uptake at 120 min. The data demonstrates a significant agreement with the reported L-type calcium channels throughout the animal body. To our knowledge, this is the first example of 18 F-DHPs in the literature. (authors)

  15. The Semi-automatic Synthesis of 18F-fluoroethyl-choline by Domestic FDG Synthesizer

    Directory of Open Access Journals (Sweden)

    ZHOU Ming

    2016-02-01

    Full Text Available As an important complementary imaging agent for 18F-FDG, 18F-fluoroethyl-choline (18F-FECH has been demonstrated to be promising in brain and prostate cancer imaging. By using domestic PET-FDG-TI-I CPCU synthesizer, 18F-FECH was synthesized by different reagents and consumable supplies. The C18 column was added before the product collection bottle to remove K2.2.2. The 18F-FECH was synthesized by PET-FDG-IT-I synthesizer efficiently about 30 minutes by radiochemical yield of 42.0% (no decay corrected, n=5, and the radiochemical purity was still more than 99.0% after 6 hours. The results showed the domestic PET-FDG-IT-I synthesizer could semi-automatically synthesize injectable 18F-FECH in high efficiency and radiochemical purity

  16. Comparison of the binding characteristics of [{sup 18}F]THK-523 and other amyloid imaging tracers to Alzheimer's disease pathology

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Ryuichi; Okamura, Nobuyuki; Yoshikawa, Takeo; Yanai, Kazuhiko [Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan); Furumoto, Shozo [Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan); Tohoku University, Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Sendai (Japan); Tago, Tetsuro; Iwata, Ren [Tohoku University, Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Sendai (Japan); Maruyama, Masahiro; Higuchi, Makoto [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba (Japan); Arai, Hiroyuki [Tohoku University, Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Sendai (Japan); Kudo, Yukitsuka [Tohoku University, Innovation of New Biomedical Engineering Center, Sendai (Japan)

    2013-01-15

    Extensive deposition of senile plaques and neurofibrillary tangles in the brain is a pathological hallmark of Alzheimer's disease (AD). Although several PET imaging agents have been developed for in vivo detection of senile plaques, no PET probe is currently available for selective detection of neurofibrillary tangles in the living human brain. Recently, [{sup 18}F]THK-523 was developed as a potential in vivo imaging probe for tau pathology. The purpose of this study was to compare the binding properties of [{sup 18}F]THK-523 and other amyloid imaging agents, including PiB, BF-227 and FDDNP, to synthetic protein fibrils and human brain tissue. In vitro radioligand binding assays were conducted using synthetic amyloid {beta}{sub 42} and K18{Delta}K280-tau fibrils. Nonspecific binding was determined by the addition of unlabelled compounds at a concentration of 2 {mu}M. To examine radioligand binding to neuropathological lesions, in vitro autoradiography was conducted using sections of AD brain. [{sup 18}F]THK-523 showed higher affinity for tau fibrils than for A{beta} fibrils, whereas the other probes showed a higher affinity for A{beta} fibrils. The autoradiographic analysis indicated that [{sup 18}F]THK-523 accumulated in the regions containing a high density of tau protein deposits. Conversely, PiB and BF-227 accumulated in the regions containing a high density of A{beta} plaques. These findings suggest that the unique binding profile of [{sup 18}F]THK-523 can be used to identify tau deposits in AD brain. (orig.)

  17. Evaluation of the Enantiomer Specific Biokinetics and Radiation Doses of [18F]Fluspidine—A New Tracer in Clinical Translation for Imaging of σ1 Receptors

    Directory of Open Access Journals (Sweden)

    Mathias Kranz

    2016-09-01

    Full Text Available The enantiomers of [18F]fluspidine, recently developed for imaging of σ1 receptors, possess distinct pharmacokinetics facilitating their use in different clinical settings. To support their translational potential, we estimated the human radiation dose of (S-(−-[18F]fluspidine and (R-(+-[18F]fluspidine from ex vivo biodistribution and PET/MRI data in mice after extrapolation to the human scale. In addition, we validated the preclinical results by performing a first-in-human PET/CT study using (S-(−-[18F]fluspidine. Based on the respective time-activity curves, we calculated using OLINDA the particular organ doses (ODs and effective doses (EDs. The ED values of (S-(−-[18F]fluspidine and (R-(+-[18F]fluspidine differed significantly with image-derived values obtained in mice with 12.9 μSv/MBq and 14.0 μSv/MBq (p < 0.025, respectively. A comparable ratio was estimated from the biodistribution data. In the human study, the ED of (S-(−-[18F]fluspidine was calculated as 21.0 μSv/MBq. Altogether, the ED values for both [18F]fluspidine enantiomers determined from the preclinical studies are comparable with other 18F-labeled PET imaging agents. In addition, the first-in-human study confirmed that the radiation risk of (S-(−-[18F]fluspidine imaging is within acceptable limits. However, as already shown for other PET tracers, the actual ED of (S-(−-[18F]fluspidine in humans was underestimated by preclinical imaging which needs to be considered in other first-in-human studies.

  18. Prediction of standard-dose brain PET image by using MRI and low-dose brain [{sup 18}F]FDG PET images

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jiayin [School of Electronics Engineering, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China and IDEA Laboratory, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Gao, Yaozong [IDEA Laboratory, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Shi, Feng [IDEA Laboratory, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Lalush, David S. [Joint UNC-NCSU Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Lin, Weili [MRI Laboratory, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Shen, Dinggang, E-mail: dgshen@med.unc.edu [IDEA Laboratory, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2015-09-15

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [{sup 18}F]FDG PET image by using a low-dose brain [{sup 18}F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [{sup 18}F]FDG PET image by low-dose brain [{sup 18}F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [{sup 18}F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [{sup 18}F]FDG PET

  19. Prediction of standard-dose brain PET image by using MRI and low-dose brain ["1"8F]FDG PET images

    International Nuclear Information System (INIS)

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S.; Lin, Weili; Shen, Dinggang

    2015-01-01

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain ["1"8F]FDG PET image by using a low-dose brain ["1"8F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain ["1"8F]FDG PET image by low-dose brain ["1"8F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain ["1"8F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain ["1"8F]FDG PET image and substantially

  20. Evaluation of F-18-labeled 5-iodocytidine ({sup 18}F-FIAC) as a new potential positron emission tomography probe for herpes simplex virus type 1 thymidine kinase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Pei-Chia; Wu, Chun-Yi; Chang, Wen-Yi; Chang, Wei-Ting [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, 11221, Taiwan (China); Alauddin, Mian [Department of Experimental Diagnostic Imaging, MD Anderson Cancer Center, University of Texas, TX, 77054 (United States); Liu, Ren-Shan [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, 11221, Taiwan (China); Department of Nuclear Medicine, Faculty of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan (China); Department of Nuclear Medicine and National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, 11217, Taiwan (China); Lin, Wuu-Jyh [Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, 32546, Taiwan (China); Chen, Fu-Du [College of Health and Leisure Science, TransWorld University, Yunlin, 64063, Taiwan (China); Chen, Chuan-Lin, E-mail: clchen2@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, 11221, Taiwan (China); Wang, Hsin-Ell, E-mail: hewang@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, 11221, Taiwan (China)

    2011-10-15

    Objective: Herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene in combination with radiolabeled nucleoside substrates is the most widely used reporter system. This study characterized 1-(2'-deoxy-2'-[{sup 18}F]fluoro-{beta}-D-arabinofuranosyl)-5-iodocytosine ({sup 18}F-FIAC) as a new potential positron emission tomography (PET) probe for HSV1-tk gene imaging and compared it with 2'-deoxy-2'-[{sup 18}F]fluoro-5-iodo-1-{beta}-D-arabinofuranosyluracil ({sup 18}F-FIAU) and 2'-deoxy-2'-[{sup 18}F]fluoro-5-ethyl-1-{beta}-D-arabinofuranosyluracil({sup 18}F-FEAU) (thymidine analogues) in an NG4TL4-WT/STK sarcoma-bearing mouse model. Methods: A cellular uptake assay, biodistribution study, radioactive metabolites assay and microPET imaging of NG4TL4-WT/STK tumor-bearing mice post administration of {sup 18}F-FIAC, {sup 18}F-FIAU and {sup 18}F-FEAU were conducted to characterize the biological properties of these tracers. Results: Highly specific uptake of {sup 18}F-FIAC, {sup 18}F-FIAU and {sup 18}F-FEAU in tk-transfected [tk(+)] cells was observed. The tk(+)-to-tk(-) cellular uptake ratio after a 2-h incubation was 66.6{+-}25.1, 76.3{+-}18.2 and 247.2{+-}37.2, respectively. In biodistribution studies, {sup 18}F-FIAC showed significant tk(+) tumor specificity (12.6; expressed as the tk(+)-to-tk(-) tumor uptake ratio at 2 h postinjection) comparable with {sup 18}F-FIAU (15.8) but lower than {sup 18}F-FEAU (48.0). The results of microPET imaging also revealed the highly specific accumulation of these three radioprobes in the NG4TL4-tk(+) tumor. Conclusion: Our findings suggested that the cytidine analogue {sup 18}F-FIAC is a new potential PET probe for the imaging of HSV1-tk gene expression. {sup 18}F-FIAC may be regarded as the prodrug of {sup 18}F-FIAU in vivo.

  1. Nucleophilic Fluorination Reactions in Novel Reaction Media for 18F-Fluorine Labeling Method

    International Nuclear Information System (INIS)

    Kim, Dong Wook; Jeong, Hwan Jeong; Lim, Seok Tae; Sohn, Myung Hee

    2009-01-01

    Noninvasive imaging of molecular and biological processes in living subjects with positron emission tomography (PET) provides exciting opportunities to monitor metabolism and detect diseases in humans. Measuring these processes with PET requires the preparation of specific molecular imaging probes labeled with 18F-fluorine. In this review we describe recent methods and novel trends for the introduction of 18 F-fluorine into molecules which in turn are intended to serve as imaging agents for PET study. Nucleophilic 18 F-fluorination of some halo- and mesyloxyalkanes to the corresponding 18 F-fluoroalkanes with 18 F-fluoride obtained from an 18 O(p,n) 18 F reaction, using novel reaction media system such as an ionic liquidor tert-alcohol, has been studied as a new method for 18 F-fluorine labeling. Ionic liquid method is rapid and particularly convenient because 18 F-fluoride in H 2 O can be added directly to the reaction media, obviating the careful drying that is typically required for currently used radiofluorination methods. The nonpolar protic tert-alcohol enhances the nucleophilicity of the fluoride ion dramatically in the absence of any kind of catalyst, greatly increasing the rate of the nucleophilic fluorination and reducing formation of byproducts compared with conventional methods using dipolar aprotic solvents. The great efficacy of this method is a particular advantage in labeling radiopharmaceuticals with 18 F-fluorine for PET imaging, and it is illustrated by the synthesis of 18 F-fluoride radiolabeled molecular imaging probes, such as 18 F-FDG, 18 F-FLT, 18 F-FP-CIT, and 18 F-FMISO, in high yield and purity and in shorter times compared to conventional syntheses

  2. The optimization of 18F-nucleophilic fluorination reaction and its application in synthesis of VMAT2 imaging tracer: [18F]AV-133

    International Nuclear Information System (INIS)

    Liu Yajing; Zhu Lin; Karl, P.; Qu Wenchao

    2010-01-01

    Objective: The nucleophilic introduction of n.c.a. [ 18 F]F- into alkanes by nucleophilic reaction is the main method of preparing 18 F-labelled radiopharmaceuticals, and the efficient and rapid reaction is important in 18 F-labelled radiopharmaceuticals. Method: Using 2-(3-substitute propoxy)naphthalene as model compound, the optimal reaction condition was achieved by comparing the different [ 18 F]fluorination condition: 1)different leaving groups (-OTs, -I, -Br and -Cl), 2) different [ 18 F]fluorination catalysts (Kryptofix222/K 2 CO 3 and TBAHCO 3 ), 3) different reaction solvent (ACN, DMSO and DMF), 4) [ 18 F]fluorination temperature (40, 50 and 60 degree C) and 5) reaction time. The radiochemical yields were analyzed by TLC and HPLC. VMAT2 imaging tracer [ 18 F]AV-133 was synthesized under the optimal conditions. Results: From the experiment results, the reation activity was the highest when using -OTs as the leaving group, followed by -I and -Br, -Clunder the [ 18 F]fluorination condition of using K222/K 2 CO 3 as catalyst and ACN as solvent. And also, the radiochemical yield raised as the reaction time and temperature increased. The higher temperature, the shorter time to reach the equilibrium. When changing the solvent from ACN to DMSO, the radiochemical yields were increased. On the contrary, the radiochemical yields were decreasing by using DMF. Comparing the catalyst K222/K 2 CO 3 with TBAHCO 3 , the [ 18 F] fluorination of -OTs gave a higher radiochemical yield in the presence of K222/K 2 CO 3 . So the optimized [ 18 F]fluorination reaction condition was that choosing -OTs as the leaving group, the [ 18 F]fluorination reaction was efficient and gave higher radiochemical yield catalyzed by K222/K 2 CO 3 in DMSO at high temperature. [ 18 F]fluorination of AV-244 was found to provide the VMAT2 imaging tracer [ 18 F]AV-133 in 80 ± 2% radiochemical yield after reaction at 120 degree C for 3 min under optimized conditions. Conclusion: We have described an

  3. CONVERGENT SYNTHESIS AND EVALUATION OF 18F-LABELED AZULENIC COX2 PROBES FOR CANCER IMAGING

    Directory of Open Access Journals (Sweden)

    Donald D. Nolting

    2013-01-01

    Full Text Available The overall objectives of this research are to (i develop azulene-based PET probes and (ii image COX2 as a potential biomarker of breast cancer. Several lines of research have demonstrated that COX2 is overexpressed in breast cancer and that its presence correlates with poor prognoses. While other studies have reported that COX2 inhibition can be modulated and used beneficially as a chemopreventive strategy in cancer, no viable mechanism for achieving that approach has yet been developed. This shortfall could be circumvented through in vivo imaging of COX2 activity, particularly using sensitive imaging techniques such as PET. Toward that goal, our laboratory focuses on the development of novel 18F-labled COX2 probes. We began the synthesis of the probes by transforming tropolone into a lactone, which was subjected to an [8+2] cycloaddition reaction to yield 2-methylazulene as the core ring of the probe. After exploring numerous synthetic routes, the final target molecule and precursor PET compounds were prepared successfully using convergent synthesis. Conventional 18F labeling methods caused precursor decomposition, which prompted us to hypothesize that the acidic protons of the methylene moiety between the azulene and thiazole rings were readily abstracted by a strong base such as potassium carbonate. Ultimately, this caused the precursors to disintegrate. This observation was supported after successfully using an 18F labeling strategy that employed a much milder phosphate buffer. The 18F-labeled COX2 probe was tested in a breast cancer xenograft mouse model. The data obtained via successive whole-body PET/CT scans indicated probe accumulation and retention in the tumor. Overall, the probe was stable in vivo and no defluorination was observed. A biodistribution study and Western blot analysis corroborate with the imaging data. In conclusion, this novel COX2 PET probe was shown to be a promising agent for cancer imaging and deserves further

  4. Anesthesia condition for {sup 18}F-FDG imaging of lung metastasis tumors using small animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang-Keun; Lee, Tae Sup; Kim, Kyeong Min; Kim, June-Youp; Jung, Jae Ho; Kang, Joo Hyun [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Cheon, Gi Jeong [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of)], E-mail: larry@kcch.re.kr; Choi, Chang Woon; Lim, Sang Moo [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of)

    2008-01-15

    Small animal positron emission tomography (PET) with {sup 18}F-FDG has been increasingly used for tumor imaging in the murine model. The aim of this study was to establish the anesthesia condition for imaging of lung metastasis tumor using small animal {sup 18}F-FDG PET. Methods: To determine the impact of anesthesia on {sup 18}F-FDG distribution in normal mice, five groups were studied under the following conditions: no anesthesia, ketamine and xylazine (Ke/Xy), 0.5% isoflurane (Iso 0.5), 1% isoflurane (Iso 1) and 2% isoflurane (Iso 2). The ex vivo counting, standard uptake value (SUV) image and glucose SUV of {sup 18}F-FDG in various tissues were evaluated. The {sup 18}F-FDG images in the lung metastasis tumor model were obtained under no anesthesia, Ke/Xy and Iso 0.5, and registered with CT image to clarify the tumor region. Results: Blood glucose concentration and muscle uptake of {sup 18}F-FDG in the Ke/Xy group markedly increased more than in the other groups. The Iso 2 group increased {sup 18}F-FDG uptake in heart compared with the other groups. The Iso 0.5 anesthesized group showed the lowest {sup 18}F-FDG uptake in heart and chest wall. The small size of lung metastasis tumor (2 mm) was clearly visualized by {sup 18}F-FDG image with the Iso 0.5 anesthesia. Conclusion: Small animal {sup 18}F-FDG PET imaging with Iso 0.5 anesthesia was appropriate for the detection of lung metastasis tumor. To acquire {sup 18}F-FDG PET images with small animal PET, the type and level of anesthetic should be carefully considered to be suitable for the visualization of target tissue in the experimental model.

  5. 18F-FDG-labeled red blood cell PET for blood-pool imaging: preclinical evaluation in rats.

    Science.gov (United States)

    Matsusaka, Yohji; Nakahara, Tadaki; Takahashi, Kazuhiro; Iwabuchi, Yu; Nishime, Chiyoko; Kajimura, Mayumi; Jinzaki, Masahiro

    2017-12-01

    Red blood cells (RBCs) labeled with single-photon emitters have been clinically used for blood-pool imaging. Although some PET tracers have been introduced for blood-pool imaging, they have not yet been widely used. The present study investigated the feasibility of labeling RBCs with 18 F-2-deoxy-2-fluoro-D-glucose ( 18 F-FDG) for blood-pool imaging with PET. RBCs isolated from venous blood of rats were washed with glucose-free phosphate-buffered saline and labeled with 18 F-FDG. To optimize labeling efficiency, the effects of glucose deprivation time and incubation (labeling) time with 18 F-FDG were investigated. Post-labeling stability was assessed by calculating the release fraction of radioactivity and identifying the chemical forms of 18 F in the released and intracellular components of 18 F-FDG-labeled RBCs incubated in plasma. Just after intravenous injection of the optimized autologous 18 F-FDG-labeled RBCs, dynamic PET scans were performed to evaluate in vivo imaging in normal rats and intraabdominal bleeding models (temporary and persistent bleeding). The optimal durations of glucose deprivation and incubation (labeling) with 18 F-FDG were 60 and 30 min, respectively. As low as 10% of 18 F was released as the form of 18 F-FDG from 18 F-FDG-labeled RBCs after a 60-min incubation. Dynamic PET images of normal rats showed strong persistence in the cardiovascular system for at least 120 min. In the intraabdominal bleeding models, 18 F-FDG-labeled RBC PET visualized the extravascular blood clearly and revealed the dynamic changes of the extravascular radioactivity in the temporary and persistent bleeding. RBCs can be effectively labeled with 18 F-FDG and used for blood-pool imaging with PET in rats.

  6. One-pot production of 18F-biotin by conjugation with 18F-FDG for pre-targeted imaging: Synthesis and radio-labelling of a PEGylated precursor

    International Nuclear Information System (INIS)

    Simpson, Michael; Trembleau, Laurent; Cheyne, Richard W.; Smith, Tim A.D.

    2011-01-01

    The biotin-avidin affinity system is exploited in pre-targeted imaging using avidin-conjugated antibodies. 18 F-FDG is available at all PET centres. 18 F-FDG forms oximes by reaction with oxyamine. Herein we describe the synthesis of oxyamine-funtionalised biotin, its 18 F-labelling by conjugation with 18 F-FDG and confirm its ability to interact with avidin.

  7. The 18F-labelled alkylating agent 2,2,2-trifluoroethyl triflate: synthesis and specific activity

    International Nuclear Information System (INIS)

    Johnstroem, P.; Stone-Elander, S.

    1995-01-01

    A method for synthesizing the alkylating agent 2,2,2-trifluoroethyl triflate labelled with [ 18 ]fluoride in the two position is presented. Ethyl [2- 18 )F]-trifluoroacetate was synthesized by the nucleophilic reaction of [ 18 F]F - with ethyl bromodifluoroacetate in DMSO (45-60%, 5 min, 80 o C) and subsequently converted to [2- 18 F]-2,2,2-trifluoroethanol using alane in THF (85-95%, 2 min, 40 o C. Reaction with triflic anhydride in 2,6-lutidine produced [2- 18 F]-2,2,2-trifluoroethyl triflate (70-80%, 1 min, 0 o C. In all three cases the product was removed from the reaction vessel by heating to distil under a stream of nitrogen. [2- 18 F]-2,2,2-Trifluoroethyl triflate was used to label 2-oxoquazepam by N-alkylation in a toulene:DMF mixture (80-85%, 20 min, 120 o C). Although no-carrier-added [ 18 )F]F - was used, considerable unlabelled ethyl trifluoroacetate was produced in the first reaction. Varying the conditions for the fluoro-debromination reaction did not appreciably improve the relative ratio of labelled to unlabelled ester. The specific activity of the labelled 1,4-benzodiazepine-2-one obtained from 1850 MBq [ 18 F]F - was found to be ≅37 MBq/μmol (1mCi/μmol). (Author)

  8. First Human Use of a Radiopharmaceutical Prepared by Continuous-Flow Microfluidic Radiofluorination: Proof of Concept with the Tau Imaging Agent [18F]T807

    Directory of Open Access Journals (Sweden)

    Steven H. Liang

    2014-10-01

    Full Text Available Despite extensive preclinical imaging with radiotracers developed by continuous-flow microfluidics, a positron emission tomographic (PET radiopharmaceutical has not been reported for human imaging studies by this technology. The goal of this study was to validate the synthesis of the tau radiopharmaceutical 7-(6-fluoropyridin-3-yl-5H-pyrido[4,3-b]indole ([18F]T807 and perform first-in-human PET scanning enabled by microfluidic flow chemistry. [18F]T807 was synthesized by our modified one-step method and adapted to suit a commercial microfluidic flow chemistry module. For this proof of concept, the flow system was integrated to a GE Tracerlab FXFN unit for high-performance liquid chromatography purification and formulation. Three consecutive productions of [18F]T807 were conducted to validate this radiopharmaceutical. Uncorrected radiochemical yields of 17 ± 1% of crude [18F]T807 (≈ 500 mCi, radiochemical purity 95% were obtained from the microfluidic device. The crude material was then purified, and > 100 mCi of the final product was obtained in an overall uncorrected radiochemical yield of 5 ± 1% (n = 3, relative to starting [18F]fluoride (end of bombardment, with high radiochemical purity (≥ 99% and high specific activities (6 Ci/μmol in 100 minutes. A clinical research study was carried out with [18F]T807, representing the first reported human imaging study with a radiopharmaceutical prepared by this technology.

  9. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology

    DEFF Research Database (Denmark)

    Stauss, J.; Franzius, C.; Pfluger, T.

    2008-01-01

    tomography ((18)F-FDG PET) in paediatric oncology. The Oncology Committee of the European Association of Nuclear Medicine (EANM) has published excellent procedure guidelines on tumour imaging with (18)F-FDG PET (Bombardieri et al., Eur J Nucl Med Mol Imaging 30:BP115-24, 2003). These guidelines, published...

  10. Synthesis and Preliminary Evaluation of 5-[18F]fluoroleucine.

    Science.gov (United States)

    Chin, Bennett B; McDougald, Darryl; Weitzel, Douglas H; Hawk, Thomas; Reiman, Robert E; Zalutsky, Michael R; Vaidyanathan, Ganesan

    2017-01-01

    Amino acid transporters, such as LAT1, are overexpressed in aggressive prostate and breast carcinomas, directly influencing pathways of growth and proliferation. The purpose of this study was to synthesize and characterize a novel 18F labeled leucine analog, 5-[18F]fluoroleucine, as a potential imaging agent for aggressive tumors which may not be amenable to imaging by FDG PET. 5-fluoroleucine was synthesized and characterized, and its 18F-labeled analog was synthesized from a mesylate precursor. First, breast cancer cell line assays were performed to evaluate uptake of 3H- or 14C-labeled L-leucine and other essential amino acids. Both L-leucine and 5- [18F]fluoroleucine were tested for uptake and accumulation over time, and for uptake via LAT1. Biodistribution studies were performed to estimate radiation dosimetry for human studies. Small animal PET / CT studies of a breast cancer were performed to evaluate in vivo 5-[18F]fluoroleucine tumor uptake. Breast cancer cell lines showed increasing high net accumulation of L-[14C]leucine. Both L-leucine and 5-[18F]fluoroleucine showed increasing uptake over time in in vitro tumor cell assays, and uptake was also shown to occur via LAT1. The biodistribution study of 5-[18F]fluoroleucine showed rapid renal excretion, no significant in vivo metabolism, and acceptable dosimetry for use in humans. In vivo small animal PET / CT imaging of a breast cancer xenograft showed uptake of 5- [18F]fluoroleucine in the tumor, which progressively increased over time. 5-[18F]fluoroleucine is a leucine analog which may be useful in identifying tumors with high or upregulated expression of amino acid transporters, providing additional information that may not be provided by FDG PET. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. 18F-F.D.G. PET imaging of infection and inflammation: intestinal, prosthesis replacements, fibrosis, sarcoidosis, tuberculosis.

    International Nuclear Information System (INIS)

    Fernandez, A.; Cortes, M.; Caresia, A.P.; Juan, R. de; Vidaller, A.; Mana, J.; Martinez-Yelamos, S.; Gamez, C.

    2008-01-01

    Nuclear medicine plays an important role in the evaluation of infection and inflammation. A variety of diagnostic methods are available for imaging this inflammation and infection, most notably computed tomography, 68 Ga scintigraphy or radionuclide labeled leucocytes. Fluorine 18 fluorodeoxyglucose ( 18 F-F.D.G.) is a readily available radiotracer that offers rapid, exquisitely sensitive high-resolution images by positron emission tomography (PET). Inflammation can be acute or chronic, the former showing predominantly neutrophilic granulocyte infiltrates, whereas in the latter, macrophages predominate. F.D.G. uptake in infection is based on the fact that mononuclear cells and granulocytes use large quantities of glucose by way of the hexose monophosphate shunts. 18 F-F.D.G. PET accurately helps diagnose spinal osteomyelitis, diabetic foot and in inflammatory conditions such as sarcoidosis and tuberculosis.(it appears to be useful for defining the extent of disease and monitoring response to treatment). 18 F-F.D.G. PET can also help localize the source of fever of undetermined origin, thereby guiding additional testing. 18 F-F.D.G. PET may be of limited usefulness in postoperative patients and in patients with a failed joint prosthesis or bowel inflammatory disease. In this review, we will focus on the role of 18 F-F.D.G. PET in the management of patients with inflammation or suspected or confirmed infection

  12. Preclinical evaluation of an {sup 18}F-trifluoroborate methionine derivative for glioma imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiangyu [Medical School of Southeast University, Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Nanjing (China); National Institutes of Health (NIH), Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD (United States); Liu, Zhibo; Zhang, Huimin; Li, Zhu; Niu, Gang; Chen, Xiaoyuan [National Institutes of Health (NIH), Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD (United States); Munasinghe, Jeeva P. [NIH, Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD (United States); Teng, Gaojun [Medical School of Southeast University, Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Nanjing (China)

    2018-04-15

    {sup 11}C-methionine (MET) is one of the most commonly used amino acid tracers for PET imaging of brain tumors. In this study, we report an {sup 18}F-labeled boron-derived methionine analogue, denoted as {sup 18}F-B-MET, as a potential substitute of {sup 11}C-MET for glioma PET imaging. {sup 19}F-B-MET was synthesized from readily available chemicals according to our previous publication. For kit development, {sup 19}F-B-MET was aliquoted in quantities of 10 nmol for on-demand one-step labeling. The {sup 18}F-labeling was performed by {sup 18}F-{sup 19}F isotope exchange, and quality control was performed by both HPLC and radio-TLC. Uptake of the tracer was determined in GL26, C6 and U87 tumor cells. PET imaging and the biodistribution assay were performed on mice bearing subcutaneous or orthotopic C6 and U87 tumor xenografts. Starting with 740-1110 MBq {sup 18}F-fluoride, >370 MBq of {sup 18}F-B-MET was obtained in 25 min (n = 5) with >99% purity and high specific activity (>37 GBq/μmol). {sup 18}F-B-MET demonstrated excellent in vitro stability with <1% decomposition after incubation with plasma for 2 h. In vitro cell uptake assay showed that {sup 18}F-B-MET accumulated in tumor cells in a time dependent manner and could be competitively inhibited by natural methionine and other L-type transporter transported amino acids. In vivo biodistribution and imaging studies showed high tumor accumulation (2.99 ± 0.23 %ID/g, n = 6) compared with low uptake of brain (0.262 ± 0.05 %ID/g, n = 6) at 60 min after injection in a subcutaneous C6 tumor model. Orthotropic C6 and U87 tumors were clearly visualized with high tumor to brain ratios at 60 min post-injection, corroborating with tumor L-type amino acid transporter 1 (LAT-1) expression levels. {sup 18}F-B-MET was radiolabeled with high yield in a one-step labeling process, showed excellent pharmacokinetic properties in vivo, with high tumor-to-brain contrast. (orig.)

  13. Effects of common anesthetic agents on [(18)F]flumazenil binding to the GABAA receptor

    DEFF Research Database (Denmark)

    Palner, Mikael; Beinat, Corinne; Banister, Sam

    2016-01-01

    in preclinical imaging studies and clinical imaging studies involving patient populations that do not tolerate relatively longer scan times. The objective of this study was to examine the effects of anesthesia on the binding of [(18)F]flumazenil to GABAA receptors in mice. METHODS: Brain and whole blood...... mice. CONCLUSIONS: Anesthesia has pronounced effects on the binding and blood-brain distribution of [(18)F]flumazenil. Consequently, considerable caution must be exercised in the interpretation of preclinical and clinical PET studies of GABAA receptors involving the use of anesthesia.......BACKGROUND: The availability of GABAA receptor binding sites in the brain can be assessed by positron emission tomography (PET) using the radioligand, [(18)F]flumazenil. However, the brain uptake and binding of this PET radioligand are influenced by anesthetic drugs, which are typically needed...

  14. Radiopharmacological evaluation of 18F-labeled phosphatidylserine-binding peptides for molecular imaging of apoptosis

    International Nuclear Information System (INIS)

    Wuest, Melinda; Perreault, Amanda; Kapty, Janice; Richter, Susan; Foerster, Christian; Bergman, Cody; Way, Jenilee; Mercer, John; Wuest, Frank

    2015-01-01

    Introduction: Radiolabeled phosphatidylserine (PS)-binding peptides represent an innovative strategy for molecular imaging of apoptosis with positron emission tomography (PET). The goal of this study was the radiopharmacological evaluation of radiolabeled peptides for their binding to PS on apoptotic cancer cells, involving metabolic stability, cellular uptake, biodistribution, and dynamic PET imaging experiments. Methods: Binding of peptides LIKKPF, PGDLSR, FBz-LIKKPF, FBz-PGDLSR, FBAM-CLIKKPF and FBAM-CPGDLSR to PS was analyzed in a newly developed radiometric binding assay using 64 Cu-labeled wild-type annexin-V as radiotracer. Radiolabeling of most potent peptides with fluorine-18 was carried out with thiol-selective prosthetic group [ 18 F]FBAM to give [ 18 F]FBAM-CLIKKPF and [ 18 F]FBAM-CPGDLSR. [ 18 F]FBAM-labeled peptides were studied in camptothecin-induced apoptotic human T lymphocyte Jurkat cells, and in a murine EL4 tumor model of apoptosis using dynamic PET imaging and biodistribution. Results: Peptides LIKKPF and PGDLSR inhibited binding of 64 Cu-labeled annexin-V to immobilized PS in the millimolar range (IC 50 10–15 mM) compared to annexin-V (45 nM). Introduction of FBAM prosthetic group slightly increased inhibitory potencies (FBAM-CLIKKPF: IC 50 = 1 mM; FBAM-CPGDLSR: IC 50 = 6 mM). Radiolabeling succeeded in good radiochemical yields of 50–54% using a chemoselective alkylation reaction of peptides CLIKKPF and CPGDLSR with [ 18 F]FBAM. In vivo metabolic stability studies in mice revealed 40–60% of intact peptides at 5 min p.i. decreasing to 25% for [ 18 F]FBAM-CLIKKPF and less than 5% for [ 18 F]FBAM-CPGDLSR at 15 min p.i.. Cell binding of [ 18 F]FBAM-CLIKKPF in drug-treated Jurkat cells was significantly higher compared to untreated cells, but this was not observed for [ 18 F]FBAM-CPGDLSR. Dynamic PET imaging experiments showed that baseline uptake of [ 18 F]FBAM-CLIKKPF in EL4 tumors was higher (SUV 5min 0.46, SUV 60min 0.13) compared to

  15. Use of Molecular Imaging Markers of Glycolysis, Hypoxia and Proliferation (18F-FDG, 64Cu-ATSM and 18F-FLT) in a Dog with Fibrosarcoma

    DEFF Research Database (Denmark)

    Zornhagen, Kamilla; Clausen, Malene; Hansen, Anders Elias

    2015-01-01

    of cancer patients. A dog with fibrosarcoma was imaged using 18F-FDG, 64Cu-ATSM, and 18F-FLT before, during, and after 10 fractions of 4.5 Gy radiotherapy. Uptake of all tracers decreased during treatment. Fluctuations in 18F-FDG and 18F-FLT PET uptakes and a heterogeneous spatial distribution of the three......Glycolysis, hypoxia, and proliferation are important factors in the tumor microenvironment contributing to treatment-resistant aggressiveness. Imaging these factors using combined functional positron emission tomography and computed tomography can potentially guide diagnosis and management...... tracers were seen. Tracer distributions partially overlapped. It appears that each tracer provides distinct information about tumor heterogeneity and treatment response....

  16. One-pot production of 18F-biotin by conjugation with 18F-FDG for pre-targeted imaging: synthesis and radio-labelling of a PEGylated precursor.

    Science.gov (United States)

    Simpson, Michael; Trembleau, Laurent; Cheyne, Richard W; Smith, Tim A D

    2011-02-01

    The biotin-avidin affinity system is exploited in pre-targeted imaging using avidin-conjugated antibodies. (18)F-FDG is available at all PET centres. (18)F-FDG forms oximes by reaction with oxyamine. Herein we describe the synthesis of oxyamine-funtionalised biotin, its (18)F-labelling by conjugation with (18)F-FDG and confirm its ability to interact with avidin. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. PET imaging of lung inflammation with [18F]FEDAC, a radioligand for translocator protein (18 kDa.

    Directory of Open Access Journals (Sweden)

    Akiko Hatori

    Full Text Available PURPOSE: The translocator protein (18 kDa (TSPO is highly expressed on the bronchial and bronchiole epithelium, submucosal glands in intrapulmonary bronchi, pneumocytes and alveolar macrophages in human lung. This study aimed to perform positron emission tomography (PET imaging of lung inflammation with [(18F]FEDAC, a specific TSPO radioligand, and to determine cellular sources enriching TSPO expression in the lung. METHODS: An acute lung injury model was prepared by intratracheal administration of lipopolysaccharide (LPS to rat. Uptake of radioactivity in the rat lungs was measured with small-animal PET after injection of [(18F]FEDAC. Presence of TSPO was examined in the lung tissue using Western blot and immunohistochemical assays. RESULTS: The uptake of [(18F]FEDAC increased in the lung with the progress of inflammation by treatment with LPS. Pretreatment with a TSPO-selective ligand PK11195 showed a significant decrease in the lung uptake of [(18F]FEDAC due to competitive binding to TSPO. TSPO expression was elevated in the inflamed lung section and its level responded to the [(18F]FEDAC uptake and severity of inflammation. Increase of TSPO expression was mainly found in the neutrophils and macrophages of inflamed lungs. CONCLUSION: From this study we conclude that PET with [(18F]FEDAC may be a useful tool for imaging TSPO expression and evaluating progress of lung inflammation. Study on human lung using [(18F]FEDAC-PET is promising.

  18. [{sup 18}F]FDG PET/CT outperforms [{sup 18}F]FDG PET/MRI in differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Vrachimis, Alexis; Wenning, Christian; Weckesser, Matthias; Stegger, Lars [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Burg, Matthias Christian; Allkemper, Thomas [University Hospital Muenster, Department of Clinical Radiology, Muenster (Germany); Schaefers, Michael [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Westfaelische Wilhelms University Muenster, European Institute for Molecular Imaging, Muenster (Germany)

    2016-02-15

    To evaluate the diagnostic potential of PET/MRI with [{sup 18}F]FDG in comparison to PET/CT in patients with differentiated thyroid cancer suspected or known to have dedifferentiated. The study included 31 thyroidectomized and remnant-ablated patients who underwent a scheduled [{sup 18}F]FDG PET/CT scan and were then enrolled for a PET/MRI scan of the neck and thorax. The datasets (PET/CT, PET/MRI) were rated regarding lesion count, conspicuity, diameter and characterization. Standardized uptake values were determined for all [{sup 18}F]FDG-positive lesions. Histology, cytology, and examinations before and after treatment served as the standards of reference. Of 26 patients with a dedifferentiated tumour burden, 25 were correctly identified by both [{sup 18}F]FDG PET/CT and PET/MRI. Detection rates by PET/CT and PET/MRI were 97 % (113 of 116 lesions) and 85 % (99 of 113 lesions) for malignant lesions, and 100 % (48 of 48 lesions) and 77 % (37 of 48 lesions) for benign lesions, respectively. Lesion conspicuity was higher on PET/CT for both malignant and benign pulmonary lesions and in the overall rating for malignant lesions (p < 0.001). There was a difference between PET/CT and PET/MRI in overall evaluation of malignant lesions (p < 0.01) and detection of pulmonary metastases (p < 0.001). Surgical evaluation revealed three malignant lesions missed by both modalities. PET/MRI additionally failed to detect 14 pulmonary metastases and 11 benign lesions. In patients with thyroid cancer and suspected or known dedifferentiation, [{sup 18}F]FDG PET/MRI was inferior to low-dose [{sup 18}F]FDG PET/CT for the assessment of pulmonary status. However, for the assessment of cervical status, [{sup 18}F]FDG PET/MRI was equal to contrast-enhanced neck [{sup 18}F]FDG PET/CT. Therefore, [{sup 18}F]FDG PET/MRI combined with a low-dose CT scan of the thorax may provide an imaging solution when high-quality imaging is needed and high-energy CT is undesirable or the use of a contrast

  19. The influence of interpreters' professional background and experience on the interpretation of multimodality imaging of pulmonary lesions using 18F-3'-deoxy-fluorothymidine and 18F-fluorodeoxyglucose PET/CT.

    Science.gov (United States)

    Xu, Bai-xuan; Liu, Chang-bin; Wang, Rui-min; Shao, Ming-zhe; Fu, Li-ping; Li, Yun-gang; Tian, Jia-he

    2013-01-01

    Based on the results of a recently accomplished multicenter clinical trial for the incremental value of a dual-tracer (18F-FDG and 18F-FLT), dual-modality (PET and CT) imaging in the differential diagnosis of pulmonary lesions, we investigate some issues that might affect the image interpretation and result reporting. The images were read in two separate sessions. Firstly the images were read and reported by physician(s) of the imaging center on completion of each PET/CT scanning. By the end of MCCT, all images collected during the trial were re-read by a collective of readers in an isolated, blinded, and independent way. One hundred sixty two patients successfully passed the data verification and entered into the final analysis. The primary reporting result showed adding 18F-FDG image information did not change the clinical performance much in sensitivity, specifity and accuracy, but the ratio between SUVFLT and SUVFDG did help the differentiation efficacy among the three subgroups of patients. The collective reviewing result showed the diagnostic achievement varied with reading strategies. ANOVA indicated significant differences among (18)F-FDG, (18)F-FLT in SUV (F = 14.239, p = 0.004). CT had almost the same diagnostic performance as 18F-FLT. When the 18F-FDG, 18F-FLT and CT images read in pair, both diagnostic sensitivity and specificity improved. The best diagnostic figures were obtained in full-modality strategy, when dual-tracer PET worked in combination with CT. With certain experience and training both radiologists and nuclear physicians are qualified to read and to achieve the similar diagnostic accuracy in PET/CT study. Making full use of modality combination and selecting right criteria seems more practical than professional back ground and personal experience in the new hybrid imaging technology, at least when novel tracer or application is concerned.

  20. Influence of Animal Heating on PET Imaging Quantification and Kinetics: Biodistribution of 18F-Tetrafluoroborate and 18F-FDG in Mice.

    Science.gov (United States)

    Goetz, Christian; Podein, Matthias; Braun, Friederike; Weber, Wolfgang A; Choquet, Philippe; Constantinesco, André; Mix, Michael

    2017-07-01

    Different environmental conditions under anesthesia may lead to unstable homeostatic conditions in rodents and therefore may alter kinetics. In this study, the impact of different heating conditions on PET imaging quantification was evaluated. Methods: Two groups of 6 adult female BALB/c nude mice with subcutaneously implanted tumors underwent microPET imaging after injection of 18 F-labeled tetrafluoroborate or 18 F-FDG. Dynamic scans were acquired under optimal and suboptimal heating conditions. Time-activity curves were analyzed to calculate uptake and washout time constants. Results: With 18 F-labeled tetrafluoroborate, optimal animal heating led to a stable heart rate during acquisition (515 ± 35 [mean ± SD] beats/min), whereas suboptimal heating led to a lower heart rate and a higher SD (470 ± 84 beats/min). Both uptake and washout time constants were faster ( P heating. Conclusion: Although the difference in heart rates was slight, optimal heating yielded significantly faster uptake and washout kinetics than suboptimal heating in all organs for both tracers. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  1. Radiosynthesis and biological evaluation of 5-(3-[18F]Fluoropropyloxy)-L-tryptophan for tumor PET imaging

    International Nuclear Information System (INIS)

    He, Shanzhen; Tang, Ganghua; Hu, Kongzhen; Wang, Hongliang; Wang, Shuxia; Huang, Tingting; Liang, Xiang; Tang, Xiaolan

    2013-01-01

    Introduction: [ 18 F]FDG PET has difficulty distinguishing tumor from inflammation in the clinic because of the same high uptake in nonmalignant and inflammatory tissue. In contrast, amino acid tracers do not accumulate in inflamed tissues and thus provide an excellent opportunity for their use in clinical cancer imaging. In this study, we developed a new amino acid tracer 5-(3-[ 18 F]Fluoropropyloxy)-L-tryptophan ([ 18 F]-L-FPTP) by two-step reactions and performed its biologic evaluation. Methods: [ 18 F]-L-FPTP was prepared by [ 18 F]fluoropropylation of 5-hydroxy-L-tryptophan disodium salt and purification on C18 cartridges. The biodistribution of [ 18 F]-L-FPTP was determined in normal mice and the incorporation of [ 18 F]-L-FPTP into tissue proteins was investigated. In vitro competitive inhibition experiments were performed with Hepa1-6 hepatoma cell lines. [ 18 F]-L-FPTP PET imaging was performed on tumor-bearing and inflammation mice and compared with [ 18 F]-L-FEHTP PET. Results: The overall uncorrected radiochemical yield of [ 18 F]-L-FPTP was 21.1 ± 4.4% with a synthesis time of 60 min, the radiochemical purity was more than 99%. Biodistribution studies demonstrate high uptake of [ 18 F]-L-FPTP in liver, kidney, pancreas, and blood at the early phase, and fast clearance in most tissues over the whole observed time. The uptake studies in Hepa1-6 cells suggest that [ 18 F]-L-FPTP is transported by the amino acid transport system B 0,+ , LAT2 and ASC. [ 18 F]-L-FPTP displays good stability and is not incorporated into proteins in vitro. PET imaging shows that [ 18 F]-L-FPTP can be a better potential PET tracer for differentiating tumor from inflammation than [ 18 F]FDG and 5-(3-[ 18 F]fluoroethyloxy)-L-tryptophan ([ 18 F]-L-FEHTP), with high [ 18 F]-L-FPTP uptake ratio (2.53) of tumor to inflammation at 60 min postinjection. Conclusions: Using [ 18 F]fluoropropyl derivatives as intermediates, the new tracer [ 18 F]-L-FPTP was achieved with good yield and

  2. Nicotinic α4β2 receptor imaging agents

    International Nuclear Information System (INIS)

    Pichika, Rama; Easwaramoorthy, Balasubramaniam; Collins, Daphne; Christian, Bradley T.; Shi, Bingzhi; Narayanan, Tanjore K.; Potkin, Steven G.; Mukherjee, Jogeshwar

    2006-01-01

    The α4β2 nicotinic acetylcholine receptor (nAChR) has been implicated in various neurodegenerative diseases. Optimal positron emission tomography (PET) imaging agents are therefore highly desired for this receptor. We report here the development and initial evaluation of 2-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (nifene). In vitro binding affinity of nifene in rat brain homogenate using 3 H-cytisine exhibited a K i =0.50 nM for the α4β2 sites. The radiosynthesis of 2- 18 F-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine ( 18 F-nifene) was accomplished in 2.5 h with an overall radiochemical yield of 40-50%, decay corrected. The specific activity was estimated to be approx. 37-185 GBq/μmol. In vitro autoradiography in rat brain slices indicated selective binding of 18 F-nifene to anteroventral thalamic (AVT) nucleus, thalamus, subiculum, striata, cortex and other regions consistent with α4β2 receptor distribution. Rat cerebellum showed some binding, whereas regions in the hippocampus had the lowest binding. The highest ratio of >13 between AVT and cerebellum was measured for 18 F-nifene in rat brain slices. The specific binding was reduced (>95%) by 300 μM nicotine in these brain regions. Positron emission tomography imaging study of 18 F-nifene (130 MBq) in anesthetized rhesus monkey was carried out using an ECAT EXACT HR+ scanner. PET study showed selective maximal uptake in the regions of the anterior medial thalamus, ventro-lateral thalamus, lateral geniculate, cingulate gyrus, temporal cortex including the subiculum. The cerebellum in the monkeys showed lower binding than the other regions. Thalamus-to-cerebellum ratio peaked at 30-35 min postinjection to a value of 2.2 and subsequently reduced. The faster binding profile of 18 F-nifene indicates promise as a PET imaging agent and thus needs further evaluation

  3. 19F labelled dextrans and antibodies as NMR imaging and spectroscopy agents

    International Nuclear Information System (INIS)

    Antich, P.P.; Kulkarni, P.V.

    1993-01-01

    A method is described of NMR imaging or spectroscopy, comprising the steps of administering to a living subject a 19 F labelled NMR agent, the NMR agent comprising (a) a transport polymer selected from the group consisting of dextran polymers and amino dextrans, having a molecular weight between approximately 100 d and 500 kd, and antibodies and fragments thereof, and (b) a 19F-containing sensor moiety selected from the group consisting of fluorinated alkyls, fluorinated acetates, fluoroaniline, and fluoroalkyl phosphonates, in an amount effective to provide a detectable NMR signal; and then detecting the 19 F NMR signal produced

  4. Delayed sodium (18)F-fluoride PET/CT imaging does not improve quantification of vascular calcification metabolism

    DEFF Research Database (Denmark)

    Blomberg, Björn Alexander; Thomassen, Anders; Takx, Richard A P

    2014-01-01

    This study aimed to determine if delayed sodium (18)F-fluoride (Na(18)F) PET/CT imaging improves quantification of vascular calcification metabolism. Blood-pool activity can disturb the arterial Na(18)F signal. With time, blood-pool activity declines. Therefore, delayed imaging can potentially...

  5. Syntheses of 2-nitroimidazole derivatives conjugated with 1,4,7-triazacyclononane-N,N'-diacetic acid labeled with F-18 using an aluminum complex method for hypoxia imaging.

    Science.gov (United States)

    Hoigebazar, Lathika; Jeong, Jae Min; Lee, Ji-Youn; Shetty, Dinesh; Yang, Bo Yeun; Lee, Yun-Sang; Lee, Dong Soo; Chung, June-Key; Lee, Myung Chul

    2012-04-12

    Hypoxia imaging is important for diagnosis of ischemic diseases, and thus various (18)F-labeled radiopharmaceuticals have been developed. However, (18)F-labeling requires multistep procedures including azeotropic distillation, which is complicated and difficult to automate. Recently, (18)F-labeling method using Al-F complex in aqueous solution was devised that offered a straightforward (18)F-labeling procedure. We synthesized nitroimidazole derivatives conjugated with 1,4,7-triazacyclononane-1,4-diacetic acid (NODA) that can be labeled with (18)F using Al-F complex and examined their radiochemistries, in vitro and in vivo biological properties, and animal PET imaging characteristics. We found that the synthesized derivatives have excellent (18)F-labeling efficiencies, high stabilities, specific uptakes in cultured hypoxic tumor cells, and high tumor to nontumor ratios in xenografted mice. Furthermore, the derivatives were labeled with (18)F in a straightforward manner within 15 min at high labeling efficiencies and radiochemical purities. In conclusion, (18)F-labeled NODA-nitroimidazole conjugates were developed and proved to be promising hypoxia PET agents. © 2012 American Chemical Society

  6. Convergent synthesis and evaluation of {sup 18}F-labeled azulenic COX2 probes for cancer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nolting, Donald D.; Nickels, Michael; Tantawy, Mohammed N.; Yu, James Y. H.; Xie, Jingping [Department of Radiology, Institute of Imaging Science, Vanderbilt University, Nashville, TN (United States); Peterson, Todd E. [Department of Radiology, Institute of Imaging Science, Vanderbilt University, Nashville, TN (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Crews, Brenda C. [Department of Chemistry, Vanderbilt University, Nashville, TN (United States); Vanderbilt Institute of Chemical Biology, Nashville, TN (United States); Marnett, Larry [Department of Chemistry, Vanderbilt University, Nashville, TN (United States); Vanderbilt Institute of Chemical Biology, Nashville, TN (United States); Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN (United States); Gore, John C. [Department of Radiology, Institute of Imaging Science, Vanderbilt University, Nashville, TN (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN (United States); Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (United States); Pham, Wellington, E-mail: wellington.pham@vanderbilt.edu [Department of Radiology, Institute of Imaging Science, Vanderbilt University, Nashville, TN (United States); Vanderbilt Institute of Chemical Biology, Nashville, TN (United States); Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN (United States); Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Department of Neuroscience, Vanderbilt University, Nashville, TN (United States)

    2013-01-03

    The overall objectives of this research are to (i) develop azulene-based positron emission tomography (PET) probes and (ii) image COX2 as a potential biomarker of breast cancer. Several lines of research have demonstrated that COX2 is overexpressed in breast cancer and that its presence correlates with poor prognoses. While other studies have reported that COX2 inhibition can be modulated and used beneficially as a chemopreventive strategy in cancer, no viable mechanism for achieving that approach has yet been developed. This shortfall could be circumvented through in vivo imaging of COX2 activity, particularly using sensitive imaging techniques such as PET. Toward that goal, our laboratory focuses on the development of novel {sup 18}F-labled COX2 probes. We began the synthesis of the probes by transforming tropolone into a lactone, which was subjected to an [8 + 2] cycloaddition reaction to yield 2-methylazulene as the core ring of the probe. After exploring numerous synthetic routes, the final target molecule and precursor PET compounds were prepared successfully using convergent synthesis. Conventional {sup 18}F labeling methods caused precursor decomposition, which prompted us to hypothesize that the acidic protons of the methylene moiety between the azulene and thiazole rings were readily abstracted by a strong base such as potassium carbonate. Ultimately, this caused the precursors to disintegrate. This observation was supported after successfully using an {sup 18}F labeling strategy that employed a much milder phosphate buffer. The {sup 18}F-labeled COX2 probe was tested in a breast cancer xenograft mouse model. The data obtained via successive whole-body PET/CT scans indicated probe accumulation and retention in the tumor. Overall, the probe was stable in vivo and no defluorination was observed. A biodistribution study and Western blot analysis corroborate with the imaging data. In conclusion, this novel COX2 PET probe was shown to be a promising agent for

  7. PET imaging of α{sub 7} nicotinic acetylcholine receptors: a comparative study of [{sup 18}F]ASEM and [{sup 18}F]DBT-10 in nonhuman primates, and further evaluation of [{sup 18}F]ASEM in humans

    Energy Technology Data Exchange (ETDEWEB)

    Hillmer, Ansel T.; Li, Songye; Zheng, Ming-Qiang; Lin, Shu-fei; Nabulsi, Nabeel; Holden, Daniel; Pracitto, Richard; Labaree, David; Ropchan, Jim; Esterlis, Irina; Cosgrove, Kelly P.; Carson, Richard E.; Huang, Yiyun [Yale University, PET Center, New Haven, CT (United States); Scheunemann, Matthias; Teodoro, Rodrigo; Deuther-Conrad, Winnie; Brust, Peter [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig (Germany)

    2017-06-15

    The α{sub 7} nicotinic acetylcholine receptor (nAChR) is implicated in many neuropsychiatric disorders, making it an important target for positron emission tomography (PET) imaging. The first aim of this work was to compare two α{sub 7} nAChRs PET radioligands, [{sup 18}F]ASEM 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-6-([{sup 18}F]fluorodibenzo[b,d]thiophene 5,5-dioxide) and [{sup 18}F]DBT-10 7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-([{sup 18}F]fluorodibenzo[b,d]thiophene 5,5-dioxide), in nonhuman primates. The second aim was to assess further the quantification and test-retest variability of [{sup 18}F]ASEM in humans. PET scans with high specific activity [{sup 18}F]ASEM or [{sup 18}F]DBT-10 were acquired in three rhesus monkeys (one male, two female), and the kinetic properties of these radiotracers were compared. Additional [{sup 18}F]ASEM PET scans with blocking doses of nicotine, varenicline, and cold ASEM were acquired separately in two animals. Next, six human subjects (five male, one female) were imaged with [{sup 18}F]ASEM PET for 180 min, and arterial sampling was used to measure the parent input function. Different modeling approaches were compared to identify the optimal analysis method and scan duration for quantification of [{sup 18}F]ASEM distribution volume (V{sub T}). In addition, retest scans were acquired in four subjects (three male, one female), and the test-retest variability of V{sub T} was assessed. In the rhesus monkey brain [{sup 18}F]ASEM and [{sup 18}F]DBT-10 exhibited highly similar kinetic profiles. Dose-dependent blockade of [{sup 18}F]ASEM binding was observed, while administration of either nicotine or varenicline did not change [{sup 18}F]ASEM V{sub T}. [{sup 18}F]ASEM was selected for further validation because it has been used in humans. Accurate quantification of [{sup 18}F]ASEM V{sub T} in humans was achieved using multilinear analysis with at least 90 min of data acquisition, resulting in V{sub T} values ranging from 19.6 ± 2

  8. Metabolic 19F MRI an dynamic 18F PET for chemotherapy monitoring in experimental tumors

    International Nuclear Information System (INIS)

    Brix, G.; Haberkorn, U.; Bellemann, M.E.

    1999-01-01

    The efficient clinical use of chemotherapeutic agents requires the assessment of the uptake and metabolism of the drugs in the tumor as well as in the various organs of the body by using noninvasive imaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET). In this overview, we present different metabolic 19 F MRI and dynamic 18 F PET techniques for noninvasive monitoring of fluorine-containing anticancer drugs and evaluate their potentials and limitations within the framework of experimental animal studies. (orig.) [de

  9. Long-circulating liposomes radiolabeled with [18F]fluorodipalmitin ([18F]FDP)

    International Nuclear Information System (INIS)

    Marik, Jan; Tartis, Michaelann S.; Zhang, Hua; Fung, Jennifer Y.; Kheirolomoom, Azadeh; Sutcliffe, Julie L.; Ferrara, Katherine W.

    2007-01-01

    Synthesis of a radiolabeled diglyceride, 3-[ 18 F]fluoro-1,2-dipalmitoylglycerol [[ 18 F]fluorodipalmitin ([ 18 F]FDP)], and its potential as a reagent for radiolabeling long-circulating liposomes were investigated. The incorporation of 18 F into the lipid molecule was accomplished by nucleophilic substitution of the p-toluenesulfonyl moiety with a decay-corrected yield of 43±10% (n=12). Radiolabeled, long-circulating polyethylene-glycol-coated liposomes were prepared using a mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, cholesterol, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy(polyethyleneglycol)-2000] ammonium salt (61:30:9) and [ 18 F]FDP with a decay-corrected yield of 70±8% (n=4). PET imaging and biodistribution studies were performed with free [ 18 F]FDP and liposome-incorporated [ 18 F]FDP. Freely injected [ 18 F]FDP had the highest uptake in the liver, spleen and lungs. Liposomal [ 18 F]FDP remained in blood circulation at near-constant levels for at least 90 min, with a peak concentration near 2.5%ID/cc. Since [ 18 F]FDP was incorporated into the phospholipid bilayer, it could potentially be used for radiolabeling a variety of lipid-based drug carriers

  10. GMP-compliant automated synthesis of [{sup 18}F]AV-45 (Florbetapir F 18) for imaging {beta}-amyloid plaques in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Yao, C.-H. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Lin, K.-J. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China); Weng, C.-C. [Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China); Hsiao, I.-T. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China); Ting, Y.-S. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Yen, T.-C. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China); Jan, T.-R. [Department and Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei, Taiwan (China); Skovronsky, Daniel [Avid Radiopharmaceuticals, Inc., Philadelphia, PA 19104 (United States); Kung, M.-P. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Wey, S.-P., E-mail: spwey@mail.cgu.edu.t [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China)

    2010-12-15

    We report herein the Good Manufacturing Practice (GMP)-compliant automated synthesis of {sup 18}F-labeled styrylpyridine, AV-45 (Florbetapir), a novel tracer for positron emission tomography (PET) imaging of {beta}-amyloid (A{beta}) plaques in the brain of Alzheimer's disease patients. [{sup 18}F]AV-45 was prepared in 105 min using a tosylate precursor with Sumitomo modules for radiosynthesis under GMP-compliant conditions. The overall yield was 25.4{+-}7.7% with a final radiochemical purity of 95.3{+-}2.2% (n=19). The specific activity of [{sup 18}F]AV-45 reached as high as 470{+-}135 TBq/mmol (n=19). The present studies show that [{sup 18}F]AV-45 can be manufactured under GMP-compliant conditions and could be widely available for routine clinical use.

  11. Pilot Preclinical and Clinical Evaluation of (4S-4-(3-[18F]Fluoropropyl-L-Glutamate (18F-FSPG for PET/CT Imaging of Intracranial Malignancies.

    Directory of Open Access Journals (Sweden)

    Erik S Mittra

    Full Text Available (S-4-(3-[18F]Fluoropropyl-L-glutamic acid (18F-FSPG is a novel radiopharmaceutical for Positron Emission Tomography (PET imaging. It is a glutamate analogue that can be used to measure xC- transporter activity. This study was performed to assess the feasibility of 18F-FSPG for imaging orthotopic brain tumors in small animals and the translation of this approach in human subjects with intracranial malignancies.For the small animal study, GS9L glioblastoma cells were implanted into brains of Fischer rats and studied with 18F-FSPG, the 18F-labeled glucose derivative 18F-FDG and with the 18F-labeled amino acid derivative 18F-FET. For the human study, five subjects with either primary or metastatic brain cancer were recruited (mean age 50.4 years. After injection of 300 MBq of 18F-FSPG, 3 whole-body PET/Computed Tomography (CT scans were obtained and safety parameters were measured. The three subjects with brain metastases also had an 18F-FDG PET/CT scan. Quantitative and qualitative comparison of the scans was performed to assess kinetics, biodistribution, and relative efficacy of the tracers.In the small animals, the orthotopic brain tumors were visualized well with 18F-FSPG. The high tumor uptake of 18F-FSPG in the GS9L model and the absence of background signal led to good tumor visualization with high contrast (tumor/brain ratio: 32.7. 18F-FDG and 18F-FET showed T/B ratios of 1.7 and 2.8, respectively. In the human pilot study, 18F-FSPG was well tolerated and there was similar distribution in all patients. All malignant lesions were positive with 18F-FSPG except for one low-grade primary brain tumor. In the 18F-FSPG-PET-positive tumors a similar T/B ratio was observed as in the animal model.18F-FSPG is a novel PET radiopharmaceutical that demonstrates good uptake in both small animal and human studies of intracranial malignancies. Future studies on larger numbers of subjects and a wider array of brain tumors are planned.ClinicalTrials.gov NCT

  12. On the use of [18F]DOPA as an imaging biomarker for transplanted islet mass

    International Nuclear Information System (INIS)

    Eriksson, Olof; Mintz, Akiva; Liu, Chengyang; Yu, Ming; Naji, Ali; Alavi, Abass

    2014-01-01

    Islet transplantation is being developed as a potential cure for patients with type 1 diabetes. There is a need for non-invasive imaging techniques for the quantification of transplanted islets, as current transplantation sites are associated with a substantial loss of islet viability. The dopaminergic metabolic pathway is present in the islets; therefore, we propose Fluorine-18 labeled L-3,4-dihydroxyphenylalanine ([ 18 F]DOPA) as a biomarker for transplanted islet mass. The expression of enzymes involved in the dopaminergic metabolic pathway was investigated in both native and transplanted human islets. The specific uptake of [ 18 F]DOPA in islets and immortalized beta cells was studied in vitro by selective blocking of dopa decarboxylase (DDC). Initial in vivo positron emission tomography (PET) imaging of viable subcutaneous human islets was performed using [ 18 F]DOPA. DDC and vesicular monoamine transporter 2 are co-localized with insulin in the native human pancreas, and the expression is retained after transplantation. Islet uptake of the [ 18 F]DOPA could be modulated by inhibiting DDC, indicating that the uptake followed the normal dopaminergic metabolic pathway. In vivo imaging revealed [ 18 F]DOPA uptake at the site of the functional islet graft. Based on the in vitro and in vivo results presented in this study, we propose to further validate [ 18 F]DOPA-PET as a sensitive imaging modality for imaging extrahepatically transplanted islets. (author)

  13. Radiosynthesis and preclinical evaluation of [{sup 18}F] 4-(2-fluoroethoxy)-2H-chromen-2-one as a novel myocardial perfusion imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Bhusari, Arun M.; Degani, Mariam S. [Institute of Chemical Technology, Mumbai (India). Dept. of Pharmaceutical Sciences and Technology; Lakshminarayanan, N.; Pawar, Yogita P.; Moghe, Surendra H.; Rajan, M.G.R. [Bhabha Atomic Research Centre, Mumbai (India). Radiation Medicine Center

    2017-07-01

    Recently we developed [{sup 18}F] 4-(2-fluoroethoxy)-2H-chromen-2-one as a novel {sup 18}F myocardial perfusion imaging radiotracer. It was synthesized in good radiochemical yield (>90%). The total time from radiosynthesis to its purification was less than 40 min, with excellent radiochemical purity (≥99%). It showed good stability over a period of 5 h at room temperature. The partition coefficient (log P) of radiotracer was found to be 2.70, suggesting the lipophilic nature of radiotracer. Ex vivo biodistribution study of radiotracer in normal Wistar rats for 30 min post-injection, demonstrated a good heart uptake (>1.3% ID/g) and favorable pharmacokinetics. Additionally, the radiotracer showed significant excretion (>11% ID) by liver, which is indicative of its rapid clearance. Further, in vivo biodistribution study of radiotracer in New Zealand White rabbit provided the clear PET/CT images of cardiomyocytes and myocardial perfusion. All these experimental findings suggest that [{sup 18}F] 4-(2-fluoroethoxy)-2H-chromen-2-one could be used as a potential hit for myocardial perfusion imaging.

  14. Extracardiac 18F-florbetapir imaging in patients with systemic amyloidosis: more than hearts and minds.

    Science.gov (United States)

    Wagner, T; Page, J; Burniston, M; Skillen, A; Ross, J C; Manwani, R; McCool, D; Hawkins, P N; Wechalekar, Ashutosh D

    2018-07-01

    18 F-Florbetapir has been reported to show cardiac uptake in patients with systemic light-chain amyloidosis (AL). This study systematically assessed uptake of 18 F-florbetapir in patients with proven systemic amyloidosis at sites outside the heart. Seventeen patients with proven cardiac amyloidosis underwent 18 F-florbetapir PET/CT imaging, 15 with AL and 2 with transthyretin amyloidosis (ATTR). Three patients had repeat scans. All patients had protocolized assessment at the UK National Amyloidosis Centre including imaging with 123 I-serum amyloid P component (SAP). 18 F-Florbetapir images were assessed for areas of increased tracer accumulation and time-uptake curves in terms of standardized uptake values (SUV mean ) were produced. All 17 patients showed 18 F-florbetapir uptake at one or more extracardiac sites. Uptake was seen in the spleen in 6 patients (35%; 6 of 9, 67%, with splenic involvement on 123 I-SAP scintigraphy), in the fat in 11 (65%), in the tongue in 8 (47%), in the parotids in 8 (47%), in the masticatory muscles in 7 (41%), in the lungs in 3 (18%), and in the kidney in 2 (12%) on the late half-body images. The 18 F-florbetapir spleen retention index (SRI) was calculated. SRI >0.045 had 100% sensitivity/sensitivity (in relation to 123 I-SAP splenic uptake, the current standard) in detecting splenic amyloid on dynamic imaging and a sensitivity of 66.7% and a specificity of 100% on the late half-body images. Intense lung uptake was seen in three patients, one of whom had lung interstitial infiltration suggestive of amyloid deposition on previous high-resolution CT. Repeat imaging showed a stable appearance in all three patients suggesting no early impact of treatment response. 18 F-Florbetapir PET/CT is a promising tool for the detection of extracardiac sites of amyloid deposition. The combination of uptake in the heart and uptake in the spleen on 18 F-florbetapir PET/CT, a hallmark of AL, suggests that this tracer holds promise as a screening tool

  15. Characteristic of 18F-FDG Excretion According to Use Diuretics in 18F-FDG of PET/CT

    International Nuclear Information System (INIS)

    Jang, Dong Gun; Yang, Seoung Oh; Lee, Sang Ho; Bae, Jong Lim; Kim, Jeong Koo

    2012-01-01

    18 F-fluorodeoxyglucose ( 18 F-FDG) causes a significant amount of radioactivity retention in kidneys and urinary tract and degrades image quality and diagnostic performance. Diuretics are used to perform tests and prevent the urinary tract retention of 18 F-FDG. The purpose of the study is to investigate how the diuretics affect images and excretion rates of 18 F-FDG. The study consists of a group using diuretics for patients with no primary tumors or transfer lesions in kidneys according to PET/CT images, a group using physiological saline and the control group injecting only 18 F-FDG and SUVs are measured by configuring interested areas for each group. Also, SUVs are compared and evaluated depending on the lasix injection after basic inspection and injecting 18 F-FDG for quantitative analysis. The study shows that images with decreased background radioactivity and increased urine excretion due to using diuretics. However, an opposite result that there is no change in the amount of radioactivity in urine appears. The study concludes that the diuretics may decrease background radioactivity in the images but may not affect the 18 F-FDG excretion.

  16. Monitoring of anti-cancer treatment with (18)F-FDG and (18)F-FLT PET

    DEFF Research Database (Denmark)

    Jensen, Mette Munk; Kjaer, Andreas

    2015-01-01

    treatment effect early in a treatment course and by that to stratify patients into responders and non-responders. With 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) and 3'-deoxy-3'-[(18)F]fluorothymidine((18)F-FLT) two of the cancer hallmarks, altered energy metabolism and increased cell proliferation, can......Functional imaging of solid tumors with positron emission tomography (PET) imaging is an evolving field with continuous development of new PET tracers and discovery of new applications for already implemented PET tracers. During treatment of cancer patients, a general challenge is to measure...... be visualized and quantified non-invasively by PET. With (18)F-FDG and (18)F-FLT PET changes in energy metabolism and cell proliferation can thereby be determined after initiation of cancer treatment in both clinical and pre-clinical studies in order to predict, at an early time-point, treatment response...

  17. The influence of interpreters' professional background and experience on the interpretation of multimodality imaging of pulmonary lesions using 18F-3'-deoxy-fluorothymidine and 18F-fluorodeoxyglucose PET/CT.

    Directory of Open Access Journals (Sweden)

    Bai-xuan Xu

    Full Text Available OBJECTIVE: Based on the results of a recently accomplished multicenter clinical trial for the incremental value of a dual-tracer (18F-FDG and 18F-FLT, dual-modality (PET and CT imaging in the differential diagnosis of pulmonary lesions, we investigate some issues that might affect the image interpretation and result reporting. METHODS: The images were read in two separate sessions. Firstly the images were read and reported by physician(s of the imaging center on completion of each PET/CT scanning. By the end of MCCT, all images collected during the trial were re-read by a collective of readers in an isolated, blinded, and independent way. RESULTS: One hundred sixty two patients successfully passed the data verification and entered into the final analysis. The primary reporting result showed adding 18F-FDG image information did not change the clinical performance much in sensitivity, specifity and accuracy, but the ratio between SUVFLT and SUVFDG did help the differentiation efficacy among the three subgroups of patients. The collective reviewing result showed the diagnostic achievement varied with reading strategies. ANOVA indicated significant differences among (18F-FDG, (18F-FLT in SUV (F = 14.239, p = 0.004. CT had almost the same diagnostic performance as 18F-FLT. When the 18F-FDG, 18F-FLT and CT images read in pair, both diagnostic sensitivity and specificity improved. The best diagnostic figures were obtained in full-modality strategy, when dual-tracer PET worked in combination with CT. CONCLUSIONS: With certain experience and training both radiologists and nuclear physicians are qualified to read and to achieve the similar diagnostic accuracy in PET/CT study. Making full use of modality combination and selecting right criteria seems more practical than professional back ground and personal experience in the new hybrid imaging technology, at least when novel tracer or application is concerned.

  18. Effect of 18F-FDG dosage alternation on final PET image

    International Nuclear Information System (INIS)

    Yin Dayi; Yao Shulin; Chen Yingmao; Shao Mingzhe; Tian Jiahe

    2002-01-01

    Objective: To assess PET reconstructed image effected by different 18 F-FDG dosages with quantitative and qualitative analysis. Methods: To perform PET phantom acquisition by routine clinical parameters after filled with different doses of 18 F-FDG solution. An identical slice was extracted from reconstructed image for doing following analysis: the hot area standard uptake value (SUV), the ratio of hot area to cold area, the standard deviation on background area, the ratio of true coincidence to random. Results: 296 MBq: The image uniformity was terribly worse, T/R=0.83, other indexes were irregular. 148 MBq: The image presentation looked like the image without attenuation correction, T/R=1.64, other indexes were moderate. 74, 37 and 18.5 MBq: The images were with excellent uniformity, resolution and contrast, the background noise was suitable, all of the quantitative indexes were good. 9.25 and 4.625 MBq: The uniformity and resolution was degraded terribly because of the higher noise and lower information. Conclusion: Combining above results with other considerations, such as radiation exposure, information amount and acquisition time, the authors think the optimal dosage should be 4.625-11.1 MBq/kg

  19. F-18 Radiopharmaceuticals

    International Nuclear Information System (INIS)

    2001-12-01

    This document includes 8 presentations delivered at the symposium. The topics discussed include: optimization of accelerator production of 18 F- and 18 F 2 -fluorodeoxyglucose; radiopharmaceuticals synthesis, synthesis modules, pharmacopoeia and GLP; quality control; radiation safety of production and application; PET imaging in human medicine. Each presentation has been indexed separately

  20. NaF18-PET/CT imaging of second hyperparathyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Win, Aung Zaw; Aparici, Carina Mari [San Francisco VA Medical Center, San Franciso (United States)

    2015-12-15

    The patient was a 59-year-old man with a history of hypertension and end-stage renal disease for 14 years. An NaF-18 positron emission tomography/CT bone scan was ordered to rule out osteosarcoma or other possible bone malignancies. A lesion representing a brown tumor was observed on the left femoral shaft. The incidence of ESRD is about 400 cases per million in the United States and it has risen fastest in older individuals. This is the second paper to report the use of NaF18-PET/CT to image secondary hyperparathyroidism, osteomalacia, mixed renal ostedystrophy and adyanmic bone disease.

  1. NaF18-PET/CT imaging of second hyperparathyroidism

    International Nuclear Information System (INIS)

    Win, Aung Zaw; Aparici, Carina Mari

    2015-01-01

    The patient was a 59-year-old man with a history of hypertension and end-stage renal disease for 14 years. An NaF-18 positron emission tomography/CT bone scan was ordered to rule out osteosarcoma or other possible bone malignancies. A lesion representing a brown tumor was observed on the left femoral shaft. The incidence of ESRD is about 400 cases per million in the United States and it has risen fastest in older individuals. This is the second paper to report the use of NaF18-PET/CT to image secondary hyperparathyroidism, osteomalacia, mixed renal ostedystrophy and adyanmic bone disease

  2. 18F-NaF PET/CT: EANM procedure guidelines for bone imaging

    International Nuclear Information System (INIS)

    Beheshti, M.; Langsteger, W.; Mottaghy, F.M.; Payche, F.; Behrendt, F.F.F.; Wyngaert, T.V. den; Fogelman, I.; Strobel, K.; Celli, M.; Fanti, S.; Giammarile, F.; Krause, B.

    2015-01-01

    The aim of this guideline is to provide minimum standards for the performance and interpretation of 18 F-NaF PET/CT scans. Standard acquisition and interpretation of nuclear imaging modalities will help to provide consistent data acquisition and numeric values between different platforms and institutes and to promote the use of PET/CT modality as an established diagnostic modality in routine clinical practice. This will also improve the value of scientific work and its contribution to evidence-based medicine. (orig.)

  3. Utility of [18F]FSPG PET to Image Hepatocellular Carcinoma: First Clinical Evaluation in a US Population.

    Science.gov (United States)

    Kavanaugh, Gina; Williams, Jason; Morris, Andrew Scott; Nickels, Michael L; Walker, Ronald; Koglin, Norman; Stephens, Andrew W; Washington, M Kay; Geevarghese, Sunil K; Liu, Qi; Ayers, Dan; Shyr, Yu; Manning, H Charles

    2016-12-01

    Non-invasive imaging is central to hepatocellular carcinoma (HCC) diagnosis; however, conventional modalities are limited by smaller tumors and other chronic diseases that are often present in patients with HCC, such as cirrhosis. This pilot study evaluated the feasibility of (4S)-4-(3-[ 18 F]fluoropropyl)-L-glutamic acid ([ 18 F]FSPG) positron emission tomography (PET)/X-ray computed tomography (CT) to image HCC. [ 18 F]FSPG PET/CT was compared to standard-of-care (SOC) magnetic resonance imaging (MRI) and CT, and [ 11 C]acetate PET/CT, commonly used in this setting. We report the largest cohort of HCC patients imaged to date with [ 18 F]FSPG PET/CT and present the first comparison to [ 11 C]acetate PET/CT and SOC imaging. This study represents the first in a US HCC population, which is distinguished by different underlying comorbidities than non-US populations. x C- transporter RNA and protein levels were evaluated in HCC and matched liver samples from The Cancer Genome Atlas (n = 16) and a tissue microarray (n = 83). Eleven HCC patients who underwent prior MRI or CT scans were imaged by [ 18 F]FSPG PET/CT, with seven patients also imaged with [ 11 C]acetate PET/CT. x C- transporter RNA and protein levels were elevated in HCC samples compared to background liver. Over 50 % of low-grade HCCs and ~70 % of high-grade tumors exceeded background liver protein expression. [ 18 F]FSPG PET/CT demonstrated a detection rate of 75 %. [ 18 F]FSPG PET/CT also identified an HCC devoid of typical MRI enhancement pattern. Patients scanned with [ 18 F]FSPG and [ 11 C]acetate PET/CT exhibited a 90 and 70 % detection rate, respectively. In dually positive tumors, [ 18 F]FSPG accumulation consistently resulted in significantly greater tumor-to-liver background ratios compared with [ 11 C]acetate PET/CT. [ 18 F]FSPG PET/CT is a promising modality for HCC imaging, and larger studies are warranted to examine [ 18 F]FSPG PET/CT impact on diagnosis and management of HCC. [ 18 F

  4. [18F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity.

    Science.gov (United States)

    Kim, Woosuk; Le, Thuc M; Wei, Liu; Poddar, Soumya; Bazzy, Jimmy; Wang, Xuemeng; Uong, Nhu T; Abt, Evan R; Capri, Joseph R; Austin, Wayne R; Van Valkenburgh, Juno S; Steele, Dalton; Gipson, Raymond M; Slavik, Roger; Cabebe, Anthony E; Taechariyakul, Thotsophon; Yaghoubi, Shahriar S; Lee, Jason T; Sadeghi, Saman; Lavie, Arnon; Faull, Kym F; Witte, Owen N; Donahue, Timothy R; Phelps, Michael E; Herschman, Harvey R; Herrmann, Ken; Czernin, Johannes; Radu, Caius G

    2016-04-12

    Deoxycytidine kinase (dCK), a rate-limiting enzyme in the cytosolic deoxyribonucleoside (dN) salvage pathway, is an important therapeutic and positron emission tomography (PET) imaging target in cancer. PET probes for dCK have been developed and are effective in mice but have suboptimal specificity and sensitivity in humans. To identify a more suitable probe for clinical dCK PET imaging, we compared the selectivity of two candidate compounds-[(18)F]Clofarabine; 2-chloro-2'-deoxy-2'-[(18)F]fluoro-9-β-d-arabinofuranosyl-adenine ([(18)F]CFA) and 2'-deoxy-2'-[(18)F]fluoro-9-β-d-arabinofuranosyl-guanine ([(18)F]F-AraG)-for dCK and deoxyguanosine kinase (dGK), a dCK-related mitochondrial enzyme. We demonstrate that, in the tracer concentration range used for PET imaging, [(18)F]CFA is primarily a substrate for dCK, with minimal cross-reactivity. In contrast, [(18)F]F-AraG is a better substrate for dGK than for dCK. [(18)F]CFA accumulation in leukemia cells correlated with dCK expression and was abrogated by treatment with a dCK inhibitor. Although [(18)F]CFA uptake was reduced by deoxycytidine (dC) competition, this inhibition required high dC concentrations present in murine, but not human, plasma. Expression of cytidine deaminase, a dC-catabolizing enzyme, in leukemia cells both in cell culture and in mice reduced the competition between dC and [(18)F]CFA, leading to increased dCK-dependent probe accumulation. First-in-human, to our knowledge, [(18)F]CFA PET/CT studies showed probe accumulation in tissues with high dCK expression: e.g., hematopoietic bone marrow and secondary lymphoid organs. The selectivity of [(18)F]CFA for dCK and its favorable biodistribution in humans justify further studies to validate [(18)F]CFA PET as a new cancer biomarker for treatment stratification and monitoring.

  5. Imaging of lung metastasis tumor mouse model using [{sup 18}F]FDG small animal PET and CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, June Youp; Woo, Sang Keun; Lee, Tae Sup [Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of)] (and others)

    2007-02-15

    The purpose of this study is to image metastaic lung melanoma model with optimal pre-conditions for animal handling by using [{sup 18}F]FDG small animal PET and clinical CT. The pre-conditions for lung region tumor imaging were 16-22 h fasting and warming temperature at 30 .deg. C. Small animal PET image was obtained at 60 min postinjection of 7.4 MBq [{sup 18}F]FDG and compared pattern of [{sup 18}F]FDG uptake and glucose standard uptake value (SUVG) of lung region between Ketamine/Xylazine (Ke/Xy) and Isoflurane (Iso) anesthetized group in normal mice. Metastasis tumor mouse model to lung was established by intravenous injection of B16-F10 cells in C57BL/6 mice. In lung metastasis tumor model, [{sup 18}F]FDG image was obtained and fused with anatomical clinical CT image. Average blood glucose concentration in normal mice were 128.0 {+-} 22.87 and 86.0 {+-} 21.65 mg/dL in Ke/Xy group and Iso group, respectively. Ke/Xy group showed 1.5 fold higher blood glucose concentration than Iso group. Lung to Background ratio (L/B) in SUVG image was 8.6 {+-} 0.48 and 12.1 {+-}0.63 in Ke/Xy group and Iso group, respectively. In tumor detection in lung region, [{sup 18}F]FDG image of Iso group was better than that of Ke/Xy group, because of high L/B ratio. Metastatic tumor location in [{sup 18}F]FDG small animal PET image was confirmed by fusion image using clinical CT. Tumor imaging in small animal lung region with [{sup 18}F]FDG small animal PET should be considered pre-conditions which fasting, warming and an anesthesia during [{sup 18}F]FDG uptake. Fused imaging with small animal PET and CT image could be useful for the detection of metastatic tumor in lung region.

  6. 123I-Mibg scintigraphy and 18F-Fdg-Pet imaging for diagnosing neuroblastoma

    Science.gov (United States)

    Bleeker, Gitta; Tytgat, Godelieve Am; Adam, Judit A; Caron, Huib N; Kremer, Leontien Cm; Hooft, Lotty; van Dalen, Elvira C

    2015-01-01

    Background Neuroblastoma is an embryonic tumour of childhood that originates in the neural crest. It is the second most common extracranial malignant solid tumour of childhood. Neuroblastoma cells have the unique capacity to accumulate Iodine-123-metaiodobenzylguanidine (123I-MIBG), which can be used for imaging the tumour. Moreover, 123I-MIBG scintigraphy is not only important for the diagnosis of neuroblastoma, but also for staging and localization of skeletal lesions. If these are present, MIBG follow-up scans are used to assess the patient's response to therapy. However, the sensitivity and specificity of 123I-MIBG scintigraphy to detect neuroblastoma varies according to the literature. Prognosis, treatment and response to therapy of patients with neuroblastoma are currently based on extension scoring of 123I-MIBG scans. Due to its clinical use and importance, it is necessary to determine the exact diagnostic accuracy of 123I-MIBG scintigraphy. In case the tumour is not MIBG avid, fluorine-18-fluorodeoxy-glucose (18F-FDG) positron emission tomography (PET) is often used and the diagnostic accuracy of this test should also be assessed. Objectives Primary objectives: 1.1 To determine the diagnostic accuracy of 123I-MIBG (single photon emission computed tomography (SPECT), with or without computed tomography (CT)) scintigraphy for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old. 1.2 To determine the diagnostic accuracy of negative 123I-MIBG scintigraphy in combination with 18F-FDG-PET(-CT) imaging for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old, i.e. an add-on test. Secondary objectives: 2.1 To determine the diagnostic accuracy of 18F-FDG-PET(-CT) imaging for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old. 2.2 To compare the diagnostic accuracy of 123I

  7. {sup 18}F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiaoyuan; Park, Ryan; Shahinian, Anthony H.; Tohme, Michel; Khankaldyyan, Vazgen; Bozorgzadeh, Mohammed H.; Bading, James R.; Moats, Rex; Laug, Walter E.; Conti, Peter S. E-mail: pconti@usc.edu

    2004-02-01

    Brain tumors are highly angiogenesis dependent. The cell adhesion receptor integrin {alpha}{sub v}{beta}{sub 3} is overexpressed in glioma and activated endothelial cells and plays an important role in brain tumor growth, spread and angiogenesis. Suitably labeled {alpha}{sub v}{beta}{sub 3}-integrin antagonists may therefore be useful for imaging brain tumor associated angiogenesis. Cyclic RGD peptide c(RGDyK) was labeled with {sup 18}F via N-succinimidyl-4-[{sup 18}F]fluorobenzoate through the side-chain {epsilon}-amino group of the lysine residue. The radiotracer was evaluated in vivo for its tumor targeting efficacy and pharmacokinetics in subcutaneously implanted U87MG and orthotopically implanted U251T glioblastoma nude mouse models by means of microPET, quantitative autoradiography and direct tissue sampling. The N-4-[{sup 18}F]fluorobenzoyl-RGD ([{sup 18}F]FB-RGD) was produced in less than 2 h with 20-25% decay-corrected yields and specific activity of 230 GBq/{mu}mol at end of synthesis. The tracer showed very rapid blood clearance and both hepatobiliary and renal excretion. Tumor-to-muscle uptake ratio at 30 min was approximately 5 in the subcutaneous U87MG tumor model. MicroPET imaging with the orthotopic U251T brain tumor model revealed very high tumor-to-brain ratio, with virtually no uptake in the normal brain. Successful blocking of tumor uptake of [{sup 18}F]FB-RGD in the presence of excess amount of c(RGDyK) revealed receptor specific activity accumulation. Hence, N-4-[{sup 18}F]fluorobenzoyl labeled cyclic RGD peptide [{sup 18}F]FB-RGD is a potential tracer for imaging {alpha}{sub v}{beta}{sub 3}-integrin positive tumors in brain and other anatomic locations.

  8. 18F-FLT Positron Emission Tomography/Computed Tomography Imaging in Pancreatic Cancer: Determination of Tumor Proliferative Activity and Comparison with Glycolytic Activity as Measured by 18F-FDG Positron Emission Tomography/Computed Tomography Imaging

    Directory of Open Access Journals (Sweden)

    Senait Aknaw Debebe

    2016-02-01

    Full Text Available Objective: This phase-I imaging study examined the imaging characteristic of 3’-deoxy-3’-(18F-fluorothymidine (18F-FLT positron emission tomography (PET in patients with pancreatic cancer and comparisons were made with (18F-fluorodeoxyglucose (18F-FDG. The ultimate aim was to develop a molecular imaging tool that could better define the biologic characteristics of pancreas cancer, and to identify the patients who could potentially benefit from surgical resection who were deemed inoperable by conventional means of staging. Methods: Six patients with newly diagnosed pancreatic cancer underwent a combined FLT and FDG computed tomography (CT PET/CT imaging protocol. The FLT PET/CT scan was performed within 1 week of FDG PET/CT imaging. Tumor uptake of a tracer was determined and compared using various techniques; statistical thresholding (z score=2.5, and fixed standardized uptake value (SUV thresholds of 1.4 and 2.5, and applying a threshold of 40% of maximum SUV (SUVmax and mean SUV (SUVmean. The correlation of functional tumor volumes (FTV between 18F-FDG and 18F-FLT was assessed using linear regression analysis. Results: It was found that there is a correlation in FTV due to metabolic and proliferation activity when using a threshold of SUV 2.5 for FDG and 1.4 for FLT (r=0.698, p=ns, but a better correlation was obtained when using SUV of 2.5 for both tracers (r=0.698, p=ns. The z score thresholding (z=2.5 method showed lower correlation between the FTVs (r=0.698, p=ns of FDG and FLT PET. Conclusion: Different tumor segmentation techniques yielded varying degrees of correlation in FTV between FLT and FDGPET images. FLT imaging may have a different meaning in determining tumor biology and prognosis.

  9. Tumour imaging by Positron Emission Tomography using fluorinase generated 5-[18F]fluoro-5-deoxyribose as a novel tracer

    International Nuclear Information System (INIS)

    Dall'Angelo, Sergio; Bandaranayaka, Nouchali; Windhorst, Albert D.; Vugts, Danielle J.; Born, Dion van der; Onega, Mayca; Schweiger, Lutz F.; Zanda, Matteo; O'Hagan, David

    2013-01-01

    Introduction: 5-[ 18 F]Fluoro-5-deoxyribose ([ 18 F]FDR) 3 was prepared as a novel monosaccharide radiotracer in a two-step synthesis using the fluorinase, a C-F bond forming enzyme, and a nucleoside hydrolase. The resulting [ 18 F]FDR 3 was then explored as a radiotracer for imaging tumours (A431 human epithelial carcinoma) by positron emission tomography in a mice model. Methods: 5-[ 18 F]Fluoro-5-deoxyribose ([ 18 F]FDR) 3, was prepared by incubating S-adenosyl-L-methionine (SAM) and [ 18 F]fluoride with the fluorinase enzyme, and then incubating the product of this reaction, [ 18 F]-5'-fluoro-5'-deoxadenosine ([ 18 F]FDA) 2, with an adenosine hydrolase to generate [ 18 F]FDR 3. The enzymes were freeze-dried and were used on demand by dissolution in buffer solution. The resulting [ 18 F]FDR 3 was then administered to four mice that had tumours induced from the A431 human epithelial carcinoma cell line. Results: The tumour (A431 human epithelial carcinoma) bearing mice were successfully imaged with [ 18 F]FDR 3. The radiotracer displayed good tumour imaging resolution. A direct comparison of the uptake and efflux of [ 18 F]FDR 3 with 2-[ 18 F]fluoro-2-deoxyglucose ([ 18 F]FDG) was made, revealing comparative tumour uptake and imaging potential over the first 10–20 min. The study revealed however that [ 18 F]FDR 3 does not accumulate in the tumour as efficiently as [ 18 F]FDG over longer time periods. Conclusions: [ 18 F]FDR 3 can be rapidly synthesised in a two enzyme protocol and used to image tumours in small animal models

  10. Very low-dose adult whole-body tumor imaging with F-18 FDG PET/CT

    Science.gov (United States)

    Krol, Andrzej; Naveed, Muhammad; McGrath, Mary; Lisi, Michele; Lavalley, Cathy; Feiglin, David

    2015-03-01

    The aim of this study was to evaluate if effective radiation dose due to PET component in adult whole-body tumor imaging with time-of-flight F-18 FDG PET/CT could be significantly reduced. We retrospectively analyzed data for 10 patients with the body mass index ranging from 25 to 50. We simulated F-18 FDG dose reduction to 25% of the ACR recommended dose via reconstruction of simulated shorter acquisition time per bed position scans from the acquired list data. F-18 FDG whole-body scans were reconstructed using time-of-flight OSEM algorithm and advanced system modeling. Two groups of images were obtained: group A with a standard dose of F-18 FDG and standard reconstruction parameters and group B with simulated 25% dose and modified reconstruction parameters, respectively. Three nuclear medicine physicians blinded to the simulated activity independently reviewed the images and compared diagnostic quality of images. Based on the input from the physicians, we selected optimal modified reconstruction parameters for group B. In so obtained images, all the lesions observed in the group A were visible in the group B. The tumor SUV values were different in the group A, as compared to group B, respectively. However, no significant differences were reported in the final interpretation of the images from A and B groups. In conclusion, for a small number of patients, we have demonstrated that F-18 FDG dose reduction to 25% of the ACR recommended dose, accompanied by appropriate modification of the reconstruction parameters provided adequate diagnostic quality of PET images acquired on time-of-flight PET/CT.

  11. Automated synthesis of an {sup 18}F-labelled pyridine-based alkylating agent for high yield oligonucleotide conjugation

    Energy Technology Data Exchange (ETDEWEB)

    Guggenberg, Elisabeth von; Sader, Jayden A.; Wilson, John S.; Shahhosseini, Soraya; Koslowsky, Ingrid; Wuest, Frank [Edmonton PET Centre, Division of Oncologic Imaging, Department of Oncology, Cross Cancer Institute, 11560 University Ave, Edmonton, AB, T6G 1Z2 (Canada); Mercer, John R. [Edmonton PET Centre, Division of Oncologic Imaging, Department of Oncology, Cross Cancer Institute, 11560 University Ave, Edmonton, AB, T6G 1Z2 (Canada)], E-mail: johnmerc@cancerboard.ab.ca

    2009-09-15

    Alkylating agents have been shown to be very promising for the radiolabelling of oligonucleotides with fluorine-18. In this report we describe the fully automated synthesis of 2-bromo-N-[3-(2-[{sup 18}F]fluoropyridin-3-yloxy)propyl]acetamide ([{sup 18}F]FPyBrA) utilizing a modular synthesis unit. Reaction conditions for the coupling of this pyridine-based alkylating agent at the 5' end of a fully phosphorothioated random 20-mer DNA sequence were optimized to achieve very high radiochemical yields (>90%) and a maximum specific activity of 5-6 GBq/{mu}moL. The potential for rapid purification by solid phase extraction without need of chromatographic isolation of the radiolabelled oligonucleotide presents an overall benefit for the application of oligonucleotides in preclinical studies and potential clinical applications.

  12. 18F-PET imaging: frequency, distribution and appearance of benign lesions

    International Nuclear Information System (INIS)

    Schirrmeister, H.; Kotzerke, J.; Rentschler, M.; Traeger, H.; Fenchel, S.; Diederichs, C.G.; Reske, S.N.; Nuessle, K.

    1998-01-01

    Purpose: We evaluated the frequency, distribution and appearance of benign lesions in 18 F-PET scans. Methods: Between March 1996 and May 1997, 18 F-PET scans were performed in 59 patients in addition to conventional planar bone scintigraphy. Eleven patients were subjected to additional SPECT imaging. The main indication was searching for bone metastases (58 pat.). The diagnosis was confirmed radiologically. Results: With 18 F-PET in 39 patients (66,1%) 152 benign lesions, mostly located in the spine were detected. 99m Tc bone scans revealed 45 lesions in 10 patients. Osteoarthritis of the intervertebral articulations (69%) or of the acromioclavicular joint (15%) were the most common reasons for degenerative lesions detected with 18 F-PET. Osteophytes appeared as hot lesions located at two adjacent vertebral endplates. Osteoarthritis of the intervertebral articulations showed an enhanced tracer uptake at these localizations, whereas endplate fractures of the vertebral bodies appeared very typically; solitary fractures of the ribs could not be differentiated from metastases. Rare benign lesions were not studied. Conclusion: Most of the degenerative lesions (84%) detected with 18 F-PET had a very typical appearance and could be detected with the improved spatial resolution and advantages of a tomographic technique. 18 F-PET had an increased accuracy in detecting degenerative bone lesions. (orig.) [de

  13. Research progress in radiolabeling imaging mechanism and clinical applications of "1"8F-FDG

    International Nuclear Information System (INIS)

    Zhai Shizhen; Yang Zhi; Du Jin

    2011-01-01

    PET/CT is one of the most advanced technologies contemporarily, achieving the combination of anatomical imaging and functional imaging. "1"8F-FDG is the most important positron radiopharmaceutical, which was used over 95% in total PET/CT imaging. FDG- PET has been extensively used in diagnosis of several kinds of diseases such as tumor, cardiac disease and epilepsy. The present review provides the history, the quality control, the imaging mechanisms as well as the research progress of the clinical applications of "1"8F-FDG. (authors)

  14. Nicotinic {alpha}4{beta}2 receptor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Pichika, Rama [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Easwaramoorthy, Balasubramaniam [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Collins, Daphne [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Christian, Bradley T. [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Shi, Bingzhi [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Narayanan, Tanjore K. [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Potkin, Steven G. [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Mukherjee, Jogeshwar [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States)]. E-mail: j.mukherjee@uci.edu

    2006-04-15

    The {alpha}4{beta}2 nicotinic acetylcholine receptor (nAChR) has been implicated in various neurodegenerative diseases. Optimal positron emission tomography (PET) imaging agents are therefore highly desired for this receptor. We report here the development and initial evaluation of 2-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (nifene). In vitro binding affinity of nifene in rat brain homogenate using {sup 3}H-cytisine exhibited a K {sub i}=0.50 nM for the {alpha}4{beta}2 sites. The radiosynthesis of 2-{sup 18}F-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine ({sup 18}F-nifene) was accomplished in 2.5 h with an overall radiochemical yield of 40-50%, decay corrected. The specific activity was estimated to be approx. 37-185 GBq/{mu}mol. In vitro autoradiography in rat brain slices indicated selective binding of {sup 18}F-nifene to anteroventral thalamic (AVT) nucleus, thalamus, subiculum, striata, cortex and other regions consistent with {alpha}4{beta}2 receptor distribution. Rat cerebellum showed some binding, whereas regions in the hippocampus had the lowest binding. The highest ratio of >13 between AVT and cerebellum was measured for {sup 18}F-nifene in rat brain slices. The specific binding was reduced (>95%) by 300 {mu}M nicotine in these brain regions. Positron emission tomography imaging study of {sup 18}F-nifene (130 MBq) in anesthetized rhesus monkey was carried out using an ECAT EXACT HR+ scanner. PET study showed selective maximal uptake in the regions of the anterior medial thalamus, ventro-lateral thalamus, lateral geniculate, cingulate gyrus, temporal cortex including the subiculum. The cerebellum in the monkeys showed lower binding than the other regions. Thalamus-to-cerebellum ratio peaked at 30-35 min postinjection to a value of 2.2 and subsequently reduced. The faster binding profile of {sup 18}F-nifene indicates promise as a PET imaging agent and thus needs further evaluation.

  15. Automatic extraction analysis of the anatomical functional area for normal brain 18F-FDG PET imaging

    International Nuclear Information System (INIS)

    Guo Wanhua; Jiang Xufeng; Zhang Liying; Lu Zhongwei; Li Peiyong; Zhu Chengmo; Zhang Jiange; Pan Jiapu

    2003-01-01

    Using self-designed automatic extraction software of brain functional area, the grey scale distribution of 18 F-FDG imaging and the relationship between the 18 F-FDG accumulation of brain anatomic function area and the 18 F-FDG injected dose, the level of glucose, the age, etc., were studied. According to the Talairach coordinate system, after rotation, drift and plastic deformation, the 18 F-FDG PET imaging was registered into the Talairach coordinate atlas, and then the average gray value scale ratios between individual brain anatomic functional area and whole brain area was calculated. Further more the statistics of the relationship between the 18 F-FDG accumulation of every brain anatomic function area and the 18 F-FDG injected dose, the level of glucose and the age were tested by using multiple stepwise regression model. After images' registration, smoothing and extraction, main cerebral cortex of the 18 F-FDG PET brain imaging can be successfully localized and extracted, such as frontal lobe, parietal lobe, occipital lobe, temporal lobe, cerebellum, brain ventricle, thalamus and hippocampus. The average ratios to the inner reference of every brain anatomic functional area were 1.01 ± 0.15. By multiple stepwise regression with the exception of thalamus and hippocampus, the grey scale of all the brain functional area was negatively correlated to the ages, but with no correlation to blood sugar and dose in all areas. To the 18 F-FDG PET imaging, the brain functional area extraction program could automatically delineate most of the cerebral cortical area, and also successfully reflect the brain blood and metabolic study, but extraction of the more detailed area needs further investigation

  16. Development of 18F-FDG ([F-18]-2-fluoro-2-deoxy-D-glucose) injection for imaging of tumor reflecting glucose metabolism. Results of preclinical studies

    International Nuclear Information System (INIS)

    Ino, Sento; Shimada, Takayuki; Kanagawa, Masaru; Suzuki, Noriaki; Kondo, Susumu; Shirakami, Yoshifumi; Ito, Osamu; Kato-Azuma, Makoto

    1999-01-01

    Fluorine-18-2-fluoro-2-deoxy-D-glucose ( 18 F-FDG) injection was prepared by a modification of a method originally developed by Hamacher et al. The dosage form is the injectable solution (2 ml) containing 185 MBq of 18 F-FDG at a calibration time. Preclinical studies of the agent were performed. Its radiochemical purity is more than 95% and expiration time is 4 hours after the calibration time at ambient temperature. No toxicity was observed with up to 200 mg/kg and 100 mg/kg of non-radioactive FDG intravenously injected to rats and dogs in single dose toxicity tests, respectively. Biodistribution studies demonstrated that the radioactivity was mainly distributed into brain (3.0 to 3.3% I.D./Organ at 30 minutes) and heart (4.2 to 5.8% I.D./Organ at 1 to 3 hours) after intravenous injection of the agent to normal rats. In a tumor transplanted mouse model (colon 26), tumor uptake was 10.9±3.5% I.D./g at 1 hr after intravenous injection of the agent, the radioactivity was retained until 3 hours. The radiation absorbed dose was estimated according to the MIRD Pamphlet based on the biodistribution data both in humans reported by Mejia et al. and rats described in this report. The radiation absorbed dose was not higher than those of commercially available radiopharmaceuticals. In conclusion, the 18 F-FDG injection is expected to be useful for further clinical application. (author)

  17. Effect of blood glucose level on 18F-FDG PET/CT imaging

    International Nuclear Information System (INIS)

    Tan Haibo; Lin Xiangtong; Guan Yihui; Zhao Jun; Zuo Chuantao; Hua Fengchun; Tang Wenying

    2008-01-01

    Objective: The aim of this study was to investigate the effect of blood glucose level on the image quality of 18 F-fluorodeoxyglucose (FDG) PET/CT imaging. Methods: Eighty patients referred to the authors' department for routine whole-body 18 F-FDG PET/CT check up were recruited into this study. The patients were classified into 9 groups according to their blood glucose level: normal group avg and SUV max ) of liver on different slices. SPSS 12.0 was used to analyse the data. Results: (1) There were significant differences among the 9 groups in image quality scores and image noises (all P avg and SUV max : 0.60 and 0.33, P<0.05). Conclusions: The higher the blood glucose level, the worse the image quality. When the blood glucose level is more than or equal to 12.0 mmol/L, the image quality will significantly degrade. (authors)

  18. The translocator protein ligand [{sup 18}F]DPA-714 images glioma and activated microglia in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Winkeler, Alexandra; Boisgard, Raphael; Awde, Ali R.; Dubois, Albertine; Theze, Benoit; Zheng, Jinzi [Universite Paris Sud, Inserm, U1023, Laboratoire d' Imagerie Moleculaire Experimentale, Orsay (France); CEA, I2BM, SHFJ, Orsay (France); Ciobanu, Luisa [CEA, DSV, I2BM, NeuroSpin, LRMN, Gif sur Yvette (France); Dolle, Frederic [CEA, I2BM, SHFJ, Orsay (France); Viel, Thomas; Jacobs, Andreas H. [Westfaelische Wilhelm-Universitaet Muenster (WWU), European Institute for Molecular Imaging (EIMI), Muenster (Germany); Tavitian, Bertrand [Universite Paris Sud, Inserm, U1023, Laboratoire d' Imagerie Moleculaire Experimentale, Orsay (France)

    2012-05-15

    In recent years there has been an increase in the development of radioligands targeting the 18-kDa translocator protein (TSPO). TSPO expression is well documented in activated microglia and serves as a biomarker for imaging neuroinflammation. In addition, TSPO has also been reported to be overexpressed in a number of cancer cell lines and human tumours including glioma. Here we investigated the use of [{sup 18}F]DPA-714, a new TSPO positron emission tomography (PET) radioligand to image glioma in vivo. We studied the uptake of [{sup 18}F]DPA-714 in three different rat strains implanted with 9L rat glioma cells: Fischer (F), Wistar (W) and Sprague Dawley (SD) rats. Dynamic [{sup 18}F]DPA-714 PET imaging, kinetic modelling of PET data and in vivo displacement studies using unlabelled DPA-714 and PK11195 were performed. Validation of TSPO expression in 9L glioma cell lines and intracranial 9L gliomas were investigated using Western blotting and immunohistochemistry of brain tissue sections. All rats showed significant [{sup 18}F]DPA-714 PET accumulation at the site of 9L tumour implantation compared to the contralateral brain hemisphere with a difference in uptake among the three strains (F > W > SD). The radiotracer showed high specificity for TSPO as demonstrated by the significant reduction of [{sup 18}F]DPA-714 binding in the tumour after administration of unlabelled DPA-714 or PK11195. TSPO expression was confirmed by Western blotting in 9L cells in vitro and by immunohistochemistry ex vivo. The TSPO radioligand [{sup 18}F]DPA-714 can be used for PET imaging of intracranial 9L glioma in different rat strains. This preclinical study demonstrates the feasibility of employing [{sup 18}F]DPA-714 as an alternative radiotracer to image human glioma. (orig.)

  19. Comparisons of [18F]-1-deoxy-1-fluoro-scyllo-inositol with [18F]-FDG for PET imaging of inflammation, breast and brain cancer xenografts in athymic mice

    International Nuclear Information System (INIS)

    McLarty, Kristin; Moran, Matthew D.; Scollard, Deborah A.; Chan, Conrad; Sabha, Nesrin; Mukherjee, Joydeep; Guha, Abhijit; McLaurin, JoAnne; Nitz, Mark; Houle, Sylvain; Wilson, Alan A.; Reilly, Raymond M.; Vasdev, Neil

    2011-01-01

    Introduction: The aim of the study was to evaluate the uptake of [ 18 F]-1-deoxy-1-fluoro-scyllo-inositol ([ 18 F]-scyllo-inositol) in human breast cancer (BC) and glioma xenografts, as well as in inflammatory tissue, in immunocompromised mice. Studies of [ 18 F]-2-fluoro-2-deoxy-D-glucose ([ 18 F]-FDG) under the same conditions were also performed. Methods: Radiosynthesis of [ 18 F]-scyllo-inositol was automated using a commercial synthesis module. Tumour, inflammation and normal tissue uptakes were evaluated by biodistribution studies and positron emission tomography (PET) imaging using [ 18 F]-scyllo-inositol and [ 18 F]-FDG in mice bearing subcutaneous MDA-MB-231, MCF-7 and MDA-MB-361 human BC xenografts, intracranial U-87 MG glioma xenografts and turpentine-induced inflammation. Results: The radiosynthesis of [ 18 F]-scyllo-inositol was automated with good radiochemical yields (24.6%±3.3%, uncorrected for decay, 65±2 min, n=5) and high specific activities (≥195 GBq/μmol at end of synthesis). Uptake of [ 18 F]-scyllo-inositol was greatest in MDA-MB-231 BC tumours and was comparable to that of [ 18 F]-FDG (4.6±0.5 vs. 5.5±2.1 %ID/g, respectively; P=.40), but was marginally lower in MDA-MB-361 and MCF-7 xenografts. Uptake of [ 18 F]-scyllo-inositol in inflammation was lower than [ 18 F]-FDG. While uptake of [ 18 F]-scyllo-inositol in intracranial U-87 MG xenografts was significantly lower than [ 18 F]-FDG, the tumour-to-brain ratio was significantly higher (10.6±2.5 vs. 2.1±0.6; P=.001). Conclusions: Consistent with biodistribution studies, uptake of [ 18 F]-scyllo-inositol was successfully visualized by PET imaging in human BC and glioma xenografts, with lower accumulation in inflammatory tissue than [ 18 F]-FDG. The tumour-to-brain ratio of [ 18 F]-scyllo-inositol was also significantly higher than that of [ 18 F]-FDG for visualizing intracranial glioma xenografts in NOD SCID mice, giving a better contrast. -- Graphical Abstract: Display Omitted

  20. Whole-body biodistribution and dosimetry estimates of a novel radiotracer for imaging of serotonin 4 receptors in brain: [18F]MNI-698

    International Nuclear Information System (INIS)

    Tavares, Adriana Alexandre S.; Caillé, Fabien; Barret, Olivier; Papin, Caroline; Lee, Hsiaoju; Morley, Thomas J.; Fowles, Krista; Holden, Daniel; Seibyl, John P.; Alagille, David; Tamagnan, Gilles D.

    2014-01-01

    Introduction: A new radiotracer for imaging the serotonin 4 receptors (5-HT 4 ) in brain, [ 18 F]MNI-698, was recently developed by our group. Evaluation in nonhuman primates indicates the novel radiotracer holds promise as an imaging agent of 5-HT 4 in brain. This paper aims to describe the whole-body biodistribution and dosimetry estimates of [ 18 F]MNI-698. Methods: Whole-body positron emission tomography (PET) images were acquired over 240 minutes after intravenous bolus injection of [ 18 F]MNI-698 in adult rhesus monkeys. Different models were investigated for quantification of radiation absorbed and effective doses using OLINDA/EXM 1.0 software. Results: The radiotracer main elimination route was found to be urinary and the critical organ was the urinary bladder. Modeling of the urinary bladder voiding interval had a considerable effect on the estimated effective dose. Normalization of rhesus monkeys’ organs and whole-body masses to human equivalent reduced the calculated dosimetry values. The effective dose ranged between 0.017 and 0.027 mSv/MBq. Conclusion: The dosimetry estimates, obtained when normalizing organ and whole-body weights and applying the urinary bladder model, indicate that the radiation doses from [ 18 F]MNI-698 comply with limits and guidelines recommended by key regulatory authorities that govern the translation of radiotracers to human clinical trials. The timing of urinary bladder emptying should be considered when designing future clinical protocols with [ 18 F]MNI-698, in order to minimize the subject absorbed doses

  1. 18F-Fluorothymidine-Pet Imaging of Glioblastoma Multiforme: Effects of Radiation Therapy on Radiotracer Uptake and Molecular Biomarker Patterns

    Directory of Open Access Journals (Sweden)

    Sanjay Chandrasekaran

    2013-01-01

    Full Text Available Introduction. PET imaging is a useful clinical tool for studying tumor progression and treatment effects. Conventional 18F-FDG-PET imaging is of limited usefulness for imaging Glioblastoma Multiforme (GBM due to high levels of glucose uptake by normal brain and the resultant signal-to-noise intensity. 18F-Fluorothymidine (FLT in contrast has shown promise for imaging GBM, as thymidine is taken up preferentially by proliferating cells. These studies were undertaken to investigate the effectiveness of 18F-FLT-PET in a GBM mouse model, especially after radiation therapy (RT, and its correlation with useful biomarkers, including proliferation and DNA damage. Methods. Nude/athymic mice with human GBM orthografts were assessed by microPET imaging with 18F-FDG and 18F-FLT. Patterns of tumor PET imaging were then compared to immunohistochemistry and immunofluorescence for markers of proliferation (Ki-67, DNA damage and repair (γH2AX, hypoxia (HIF-1α, and angiogenesis (VEGF. Results. We confirmed that 18F-FLT-PET uptake is limited in healthy mice but enhanced in the intracranial tumors. Our data further demonstrate that 18F-FLT-PET imaging usefully reflects the inhibition of tumor by RT and correlates with changes in biomarker expression. Conclusions. 18F-FLT-PET imaging is a promising tumor imaging modality for GBM, including assessing RT effects and biologically relevant biomarkers.

  2. Canine study on myocardial ischemic memory with 18F-FDG PET/CT imaging

    International Nuclear Information System (INIS)

    Xie Boqia; Yang Minfu; Dou Kefei; Han Chunlei; Tian Yi; Zhang Ping; Yang Zihe; Yin Jiye; Wang Hao

    2012-01-01

    Objective: To explore whether the existence and duration of ischemia measured by dynamic 18 F-FDG PET/CT imaging correlated with the extent of myocardial ischemia in a canine model of myocardial ischemia-reperfusion. Methods: Canine coronary artery occlusion was carried out for 20 min (n=4) and for 40 min (n=4) followed by 24 h of open-artery reperfusion. All dogs underwent dynamic 18 F-FDG PET/CT and 99 Tc m -MIBI SPECT imaging at baseline and 1 h and 24 h after reperfusion.Quantitative analysis of myocardial 18 F-FDG uptake was performed using Carimas Core software,and the extraction ratio of 18 F-FDG (K) was calculated by the ratio of 18 F-FDG uptake rate in the ischemic area (k ischemia ) and normoperfused region (k normoperfused ). Echocardiographic data were also acquired between each PET/CT imaging study to detect the wall motion in the ischemic and normoperfused myocardium. Paired t test and non-parametric statistical tests, measured by SPSS 19.0, were used to analyze the data. Results: Coronary occlusion produced sustained, abnormal wall motion in the ischemic region for more than 1 h. Similar K values were demonstrated between the 20 min and 40 min groups at baseline (1.02 ±0.06 and 1.03 ±0.05, Z=-0.29, P>0.05). At 1 h after reperfusion, the reperfusion regions showed normal perfusion but with increased 18 F-FDG uptake, which was higher in the 40 min ischemic group than in the 20 min ischemic group (2.31 ±0.13 and 1.87 ±0.09, Z=-2.31, P<0.05). At 24 h after reperfusion, however, only the 40 min ischemic group showed slightly higher 18 F-FDG uptake than baseline (1.15 ± 0.02 and 1.03 ±0.05, t=4.32, P<0.05), whereas no significant difference was found in the 20 min ischemic group (1.05 ± 0.04 and 1.02 ± 0.06, t=0.87, P>0.05). Histological examination of the ischemic myocardium from both groups revealed neatly arranged cells without interstitial edema, hemorrhage nor inflammatory response. Conclusions: Myocardial 'ischemic memory' was

  3. Characteristic of {sup 18}F-FDG Excretion According to Use Diuretics in {sup 18}F-FDG of PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Dong Gun; Yang, Seoung Oh; Lee, Sang Ho [Dept. of Nuclear Medicine, Dongnam Institute of Radiological and Medical Sciences Cancer Center, Busan (Korea, Republic of); Bae, Jong Lim [Dept. of Physics, Daegu University, Daegu (Korea, Republic of); Kim, Jeong Koo [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of)

    2012-06-15

    {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) causes a significant amount of radioactivity retention in kidneys and urinary tract and degrades image quality and diagnostic performance. Diuretics are used to perform tests and prevent the urinary tract retention of {sup 18}F-FDG. The purpose of the study is to investigate how the diuretics affect images and excretion rates of {sup 18}F-FDG. The study consists of a group using diuretics for patients with no primary tumors or transfer lesions in kidneys according to PET/CT images, a group using physiological saline and the control group injecting only {sup 18}F-FDG and SUVs are measured by configuring interested areas for each group. Also, SUVs are compared and evaluated depending on the lasix injection after basic inspection and injecting {sup 18}F-FDG for quantitative analysis. The study shows that images with decreased background radioactivity and increased urine excretion due to using diuretics. However, an opposite result that there is no change in the amount of radioactivity in urine appears. The study concludes that the diuretics may decrease background radioactivity in the images but may not affect the {sup 18}F-FDG excretion.

  4. Differential diagnosis of Parkinsonism using dual phase F 18 FP CIT PET imaging

    International Nuclear Information System (INIS)

    Jin, So Young; Oh, Min Young; Ok, Seung Jun; Oh, Jung Su; Lee, Sang Ju; Chung, Sun Ju; Lee, Chong Sik; Kim, Jae Seung

    2012-01-01

    Dopamine transporter (DAT) imaging can demonstrate presynaptic dopaminergic neuronal loss in Parkinson's disease (PD). However, differentiating atypical parkinsonism (APD) from PD is often difficult. We investigated the usefulness of dual phase F 18 FP CIT positron emission tomography (PET) imaging in the differential diagnosis of parkinsonism. Ninety eight subjects [five normal, seven drug induced parkinsonism (DIP), five essential tremor (ET), 24 PD, 20 multiple system atrophy parkinson type (MSA-P), 13 multiple system atrophy cerebellar type (MSA-C), 13 progressive supranuclear palsy (PSP), and 11 dementia with Lewy bodies(DLB)] underwent F 18 FP CIT PET. PET images were acquired at 5 min (early phase) and 3 h (late phase) after F 18 FP CIT administration (185MBq). Regional uptake pattern of cerebral and cerebellar hemispheres was assessed on early phase images, using visual, quantitative, and statistical parametric mapping (SPM) analyses. Striatal DAT binding was normal in normal, ET, DIP, and MSA C groups, but abnormal in PD, MSA P PSP, and DLB groups. No difference was found in regional uptake on early phase images among normal DAT binding groups, except in the MSA C group. Abnormal DAT binding groups showed different regional uptake pattern on early phase images compared with PD in SPM analysis (FDR<0.05). When discriminating APD from PD, visual interpretation of the early phase image showed high diagnostic sensitivity and specificity (75.4% and 100%, respectively). Regarding the ability to distinguish specific APD, sensitivities were 81% for MSA P, 77% for MSA C, 23% for PSP, and 54.5% for DLB. Dual phase F 18 FP CIT PET imaging is useful in demonstrating striatal DAT loss in neurodegenerative parkinsonism, and also in differentiating APD, particularly MSA, from PD

  5. Differential diagnosis of Parkinsonism using dual phase F 18 FP CIT PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jin, So Young; Oh, Min Young; Ok, Seung Jun; Oh, Jung Su; Lee, Sang Ju; Chung, Sun Ju; Lee, Chong Sik; Kim, Jae Seung [Univ. of Ulsan, Seoul (Korea, Republic of)

    2012-03-15

    Dopamine transporter (DAT) imaging can demonstrate presynaptic dopaminergic neuronal loss in Parkinson's disease (PD). However, differentiating atypical parkinsonism (APD) from PD is often difficult. We investigated the usefulness of dual phase F 18 FP CIT positron emission tomography (PET) imaging in the differential diagnosis of parkinsonism. Ninety eight subjects [five normal, seven drug induced parkinsonism (DIP), five essential tremor (ET), 24 PD, 20 multiple system atrophy parkinson type (MSA-P), 13 multiple system atrophy cerebellar type (MSA-C), 13 progressive supranuclear palsy (PSP), and 11 dementia with Lewy bodies(DLB)] underwent F 18 FP CIT PET. PET images were acquired at 5 min (early phase) and 3 h (late phase) after F 18 FP CIT administration (185MBq). Regional uptake pattern of cerebral and cerebellar hemispheres was assessed on early phase images, using visual, quantitative, and statistical parametric mapping (SPM) analyses. Striatal DAT binding was normal in normal, ET, DIP, and MSA C groups, but abnormal in PD, MSA P PSP, and DLB groups. No difference was found in regional uptake on early phase images among normal DAT binding groups, except in the MSA C group. Abnormal DAT binding groups showed different regional uptake pattern on early phase images compared with PD in SPM analysis (FDR<0.05). When discriminating APD from PD, visual interpretation of the early phase image showed high diagnostic sensitivity and specificity (75.4% and 100%, respectively). Regarding the ability to distinguish specific APD, sensitivities were 81% for MSA P, 77% for MSA C, 23% for PSP, and 54.5% for DLB. Dual phase F 18 FP CIT PET imaging is useful in demonstrating striatal DAT loss in neurodegenerative parkinsonism, and also in differentiating APD, particularly MSA, from PD.

  6. Superiority of 18F-FNa PET/CT for Detecting Bone Metastases in Comparison with Other Diagnostic Imaging Modalities

    OpenAIRE

    Paula Lapa; Tiago Saraiva; Rodolfo Silva; Margarida Marques; Gracinda Costa; João Pedroso Lima

    2017-01-01

    Introduction: The 18F-NaF positron emission tomography/computed tomography is being considered as an excellent imaging modality for bone metastases detection. This ability was compared with other imaging techniques. Material and Methods: We retrospectively evaluated 114 patients who underwent 18F-NaF positron emission tomography/ computed tomography. Of these, 49 patients also had bone scintigraphy, 61 18F-FDG positron emission tomography/computed tomography and 10 18F-FCH positron emis...

  7. Imaging tumor endothelial marker 8 using an 18F-labeled peptide

    International Nuclear Information System (INIS)

    Quan, Qimeng; Yang, Min; Gao, Haokao; Zhu, Lei; Lin, Xin; Guo, Ning; Chen, Xiaoyuan; Zhang, Guixiang; Eden, Henry S.; Niu, Gang

    2011-01-01

    Tumor endothelial marker 8 (TEM8) has been reported to be upregulated in both tumor cells and tumor-associated endothelial cells in several cancer types. TEM8 antagonists and TEM8-targeted delivery of toxins have been developed as effective cancer therapeutics. The ability to image TEM8 expression would be of use in evaluating TEM8-targeted cancer therapy. A 13-meric peptide, KYNDRLPLYISNP (QQM), identified from the small loop in domain IV of protective antigen of anthrax toxin was evaluated for TEM8 binding and labeled with 18 F for small-animal PET imaging in both UM-SCC1 head-and-neck cancer and MDA-MB-435 melanoma models. A modified ELISA showed that QQM peptide bound specifically to the extracellular vWA domain of TEM8 with an IC 50 value of 304 nM. Coupling 4-nitrophenyl 2- 18 F-fluoropropionate with QQM gave almost quantitative yield and a high specific activity (79.2 ± 7.4 TBq/mmol, n = 5) of 18 F-FP-QQM at the end of synthesis. 18 F-FP-QQM showed predominantly renal clearance and had significantly higher accumulation in TEM8 high-expressing UM-SCC1 tumors (2.96 ± 0.84 %ID/g at 1 h after injection) than TEM8 low-expressing MDA-MB-435 tumors (1.38 ± 0.56 %ID/g at 1 h after injection). QQM peptide bound specifically to the extracellular domain of TEM8. 18 F-FP-QQM peptide tracer would be a promising lead compound for measuring TEM8 expression. Further efforts to improve the affinity and specificity of the tracer and to increase its metabolic stability are warranted. (orig.)

  8. Application of 18F-FDOPA PET imaging in gliomas%18F-FDOPA PET显像在脑胶质瘤中的临床应用价值

    Institute of Scientific and Technical Information of China (English)

    葛璟洁; 张政伟; 陆秀宏(综述); 管一晖(审校)

    2016-01-01

    脑胶质瘤是发病率最高的神经系统来源肿瘤。目前临床上诊断胶质瘤的方法主要为MRI平扫及增强,但存在一定的局限性。近年来,随着PET与核素显像剂的不断发展和改进,其在胶质瘤领域的研究越来越深入,尤其是18F-FDOPA PET显像在原发性及复发性胶质瘤的诊断、鉴别、分级、定位、治疗和预后评估中具有较高的临床应用价值。本文就此进行综述。%Glioma is one of the most common neurologically originated tumor. Although MRI scanning is the major approach to make diagnosis of glioma at present, it still has some limitations. With the development and improvement of positron emission tomography imaging techniques and radionuclide agents, PET imaging such as 18F-FDOPA PET imaging has played a more and more important role in the diagnosis, discrimination, grading, localization and prognosis evaluation of primary and recurrent gliomas. The present paper summarizes the research progress in this ifeld.

  9. {sup 18}F-NaF PET/CT: EANM procedure guidelines for bone imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beheshti, M.; Langsteger, W. [St Vincent' s Hospital, PET - CT Center LINZ, Department of Nuclear Medicine and Endocrinology, Linz (Austria); Mottaghy, F.M. [University Hospital Aachen, RWTH Aachen University, Department of Nuclear Medicine, Aachen (Germany); Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Payche, F. [Louis Mourier Hospital, Department of Nuclear Medicine, Colombes (France); Behrendt, F.F.F. [University Hospital Aachen, RWTH Aachen University, Department of Nuclear Medicine, Aachen (Germany); Wyngaert, T.V. den [Antwerp University Hospital, Department of Nuclear Medicine, Edegem (Belgium); Fogelman, I. [King' s College, Department of Nuclear Medicine, London (United Kingdom); Strobel, K. [Lucerne Cantonal Hospital, Department of Radiology and Nuclear Medicine, Lucerne (Switzerland); Celli, M.; Fanti, S. [Policlinico S. Orsola-Malpighi, Department of Nuclear Medicine, PET Unit, Bologna (Italy); Giammarile, F. [Centre Hospitalier Universitaire de Lyon, Department of Nuclear Medicine, Lyon (France); Krause, B. [University Hospital Rostock, Department of Nuclear Medicine, Rostock (Germany)

    2015-10-15

    The aim of this guideline is to provide minimum standards for the performance and interpretation of {sup 18}F-NaF PET/CT scans. Standard acquisition and interpretation of nuclear imaging modalities will help to provide consistent data acquisition and numeric values between different platforms and institutes and to promote the use of PET/CT modality as an established diagnostic modality in routine clinical practice. This will also improve the value of scientific work and its contribution to evidence-based medicine. (orig.)

  10. Evaluation of F-18-labeled amino acid derivatives and [18F]FDG as PET probes in a brain tumor-bearing animal model

    International Nuclear Information System (INIS)

    Wang, H.-E.; Wu, S.-Y.; Chang, C.-W.; Liu, R.-S.; Hwang, L.-C.; Lee, T.-W.; Chen, J.-C.; Hwang, J.-J.

    2005-01-01

    2-Deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) has been extensively used as positron emission tomography (PET) tracer in clinical tumor imaging. This study compared the pharmacokinetics of two 18 F-labeled amino acid derivatives, O-2-[ 18 F]fluoroethyl-L-tyrosine (L-[ 18 F]FET) and 4-borono-2-[ 18 F]fluoro-L-phenylalanine-fructose (L-[ 18 F]FBPA-Fr), to that of [ 18 F]FDG in an animal brain tumor model. Methods: A self-modified automated PET tracer synthesizer was used to produce no-carrier-added (nca) L-[ 18 F]FET. The cellular uptake, biodistribution, autoradiography and microPET imaging of L-[ 18 F]FET, L-[ 18 F]FBPA-Fr and [ 18 F]FDG were performed with F98 glioma cell culture and F98 glioma-bearing Fischer344 rats. Results: The radiochemical purity of L-[ 18 F]FET was >98% and the radiochemical yield was 50% in average of 16 runs. The uptake of L-[ 18 F]FET and L-[ 18 F]FBPA-Fr in the F98 glioma cells increased rapidly for the first 5 min and reached a steady-state level after 10 min of incubation, whereas the cellular uptake of [ 18 F]FDG kept increasing during the study period. The biodistribution of L-[ 18 F]FET, L-[ 18 F]FBPA-Fr and [ 18 F]FDG in the brain tumors was 1.26±0.22, 0.86±0.08 and 2.77±0.44 %ID/g at 60 min postinjection, respectively, while the tumor-to-normal brain ratios of L-[ 18 F]FET (3.15) and L-[ 18 F]FBPA-Fr (3.44) were higher than that of [ 18 F]FDG (1.44). Both microPET images and autoradiograms of L-[ 18 F]FET and L-[ 18 F]FBPA-Fr exhibited remarkable uptake with high contrast in the brain tumor, whereas [ 18 F]FDG showed high uptake in the normal brain and gave blurred brain tumor images. Conclusion: Both L-[ 18 F]FET and L-[ 18 F]FBPA-Fr are superior to [ 18 F]FDG for the brain tumor imaging as shown in this study with microPET

  11. Quantitative PET Imaging of Tissue Factor Expression Using 18F-Labeled Active Site-Inhibited Factor VII.

    Science.gov (United States)

    Nielsen, Carsten H; Erlandsson, Maria; Jeppesen, Troels E; Jensen, Mette M; Kristensen, Lotte K; Madsen, Jacob; Petersen, Lars C; Kjaer, Andreas

    2016-01-01

    Tissue factor (TF) is upregulated in many solid tumors, and its expression is linked to tumor angiogenesis, invasion, metastasis, and prognosis. A noninvasive assessment of tumor TF expression status is therefore of obvious clinical relevance. Factor VII is the natural ligand to TF. Here we report the development of a new PET tracer for specific imaging of TF using an (18)F-labeled derivative of factor VII. Active site-inhibited factor VIIa (FVIIai) was obtained by inactivation with phenylalanine-phenylalanine-arginine-chloromethyl ketone. FVIIai was radiolabeled with N-succinimidyl 4-(18)F-fluorobenzoate and purified. The corresponding product, (18)F-FVIIai, was injected into nude mice with subcutaneous human pancreatic xenograft tumors (BxPC-3) and investigated using small-animal PET/CT imaging 1, 2, and 4 h after injection. Ex vivo biodistribution was performed after the last imaging session, and tumor tissue was preserved for molecular analysis. A blocking experiment was performed in a second set of mice. The expression pattern of TF in the tumors was visualized by immunohistochemistry and the amount of TF in tumor homogenates was measured by enzyme-linked immunosorbent assay and correlated with the uptake of (18)F-FVIIai in the tumors measured in vivo by PET imaging. The PET images showed high uptake of (18)F-FVIIai in the tumor regions, with a mean uptake of 2.5 ± 0.3 percentage injected dose per gram (%ID/g) (mean ± SEM) 4 h after injection of 7.3-9.3 MBq of (18)F-FVIIai and with an average maximum uptake in the tumors of 7.1 ± 0.7 %ID/g at 4 h. In comparison, the muscle uptake was 0.2 ± 0.01 %ID/g at 4 h. At 4 h, the tumors had the highest uptake of any organ. Blocking with FVIIai significantly reduced the uptake of (18)F-FVIIai from 2.9 ± 0.1 to 1.4 ± 0.1 %ID/g (P < 0.001). The uptake of (18)F-FVIIai measured in vivo by PET imaging correlated (r = 0.72, P < 0.02) with TF protein level measured ex vivo. (18)F-FVIIai is a promising PET tracer for

  12. Impact of motion compensation and partial volume correction for 18F-NaF PET/CT imaging of coronary plaque

    Science.gov (United States)

    Cal-González, J.; Tsoumpas, C.; Lassen, M. L.; Rasul, S.; Koller, L.; Hacker, M.; Schäfers, K.; Beyer, T.

    2018-01-01

    Recent studies have suggested that 18F-NaF-PET enables visualization and quantification of plaque micro-calcification in the coronary tree. However, PET imaging of plaque calcification in the coronary arteries is challenging because of the respiratory and cardiac motion as well as partial volume effects. The objective of this work is to implement an image reconstruction framework, which incorporates compensation for respiratory as well as cardiac motion (MoCo) and partial volume correction (PVC), for cardiac 18F-NaF PET imaging in PET/CT. We evaluated the effect of MoCo and PVC on the quantification of vulnerable plaques in the coronary arteries. Realistic simulations (Biograph TPTV, Biograph mCT) and phantom acquisitions (Biograph mCT) were used for these evaluations. Different uptake values in the calcified plaques were evaluated in the simulations, while three ‘plaque-type’ lesions of 36, 31 and 18 mm3 were included in the phantom experiments. After validation, the MoCo and PVC methods were applied in four pilot NaF-PET patient studies. In all cases, the MoCo-based image reconstruction was performed using the STIR software. The PVC was obtained from a local projection (LP) method, previously evaluated in preclinical and clinical PET. The results obtained show a significant increase of the measured lesion-to-background ratios (LBR) in the MoCo  +  PVC images. These ratios were further enhanced when using directly the tissue-activities from the LP method, making this approach more suitable for the quantitative evaluation of coronary plaques. When using the LP method on the MoCo images, LBR increased between 200% and 1119% in the simulated data, between 212% and 614% in the phantom experiments and between 46% and 373% in the plaques with positive uptake observed in the pilot patients. In conclusion, we have built and validated a STIR framework incorporating MoCo and PVC for 18F-NaF PET imaging of coronary plaques. First results indicate an improved

  13. Improved automated production of 18F-FMISO and its tumor hypoxia imaging by Micro-PET/CT

    International Nuclear Information System (INIS)

    Wang Mingwei; Zhang Yongping; Zheng Yujia; Bao Xiao; Zheng Yingjian

    2013-01-01

    Background: 1-H-1-(3-[ 18 F]fluoro-2-hydroxypropyl)-2-nitroimidazole ( 18 F-FMISO) is a specific molecular imaging probe for tumor hypoxia imaging, and its PET/CT imaging has an important clinical value for planning cancer radiotherapy target volume. Purpose: This study aimed to develop an improved, automated production of 18 F-FMISO and to perform Micro-PET/CT imaging of tumor hypoxia. Methods: Based on the labeling precursor NITTP and a simple 'one-pot' method, an upgraded Explora GN module together with Explora LC was adopted to run radiofluorination (NITTP (10 mg), MeCN (1.0 mL), 120℃, 5.0 min), hydrolysis (HCI (1.0 mol/L, 1.0 mL), 130℃, 8.0 min) and high performance liquid chromatography (HPLC) purification to produce 18 F-FMISO automatically. Moreover, Radio-HPLC and Radio-TLC were applied for the quality control, and Micro-PET/CT scanner for hypoxia imaging of SW1990 pancreatic tumor-bearing mice. Results: As results, 18 F-FMISO was obtained with the synthesis time for about 65 min, the radiochemical yield of (30±5.0)% (no decay corrected, n=20), the radiochemical purity of above 99%, the specific activity of (2.04±0.17)x10 11 Bq·μmol -1 , plus with the enhanced chemical purity. Moreover, MicroPET/CT imaging showed that 18 F-FMISO presented whole-body distribution in SW1990 tumor-bearing mice, and the optimized time point for tumor hypoxia imaging was 3 h post injection with the uptake ratios of tumor-to-muscle of 3.00±0.08. Conclusion: In sum, we developed an improved, automated production of 18 F-FMISO with high performance liquid chromatography purification, high radiochemical yield, high specific activity and high reliability , and also verified its MicroPET/CT imaging of tumor hypoxia for providing experimental reference data. (authors)

  14. Ethnic comparison of pharmacokinetics of {sup 18}F-florbetaben, a PET tracer for beta-amyloid imaging, in healthy Caucasian and Japanese subjects

    Energy Technology Data Exchange (ETDEWEB)

    Senda, Michio; Sasaki, Masahiro; Yamane, Tomohiko; Shimizu, Keiji [Institute of Biomedical Research and Innovation, Division of Molecular Imaging, 2-2 Minatojima-Minamimachi, Chuo-ku, Kobe (Japan); Patt, Marianne; Barthel, Henryk; Sattler, Bernhard; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Nagasawa, Toshiki; Aitoku, Yasuko [Bayer Yakuhin Ltd, Osaka (Japan); Schultze-Mosgau, Marcus [Bayer HealthCare AG, Berlin (Germany); Dinkelborg, Ludger [Piramal Imaging GmbH, Berlin (Germany)

    2015-01-15

    {sup 18}F-Florbetaben is a positron emission tomography (PET) tracer indicated for imaging cerebral beta-amyloid deposition in adult patients with cognitive impairment who are being evaluated for Alzheimer's disease and other causes of cognitive decline. The present study examined ethnic comparability of the plasma pharmacokinetics, which is the input to the brain, between Caucasian and Japanese subjects. Two identical phase I trials were performed in 18 German and 18 Japanese healthy volunteers to evaluate the plasma pharmacokinetics of a single dose of 300 MBq {sup 18}F-florbetaben, either of low (≤5 μg, LD) or high (50-55 μg, HD) mass dose. Pharmacokinetic parameters were evaluated based on the total {sup 18}F radioactivity measurements in plasma followed by metabolite analysis using radio-HPLC. The pharmacokinetics of {sup 18}F-florbetaben was characterized by a rapid elimination from plasma. The dose-normalized areas under the curve of {sup 18}F-florbetaben in plasma as an indicator of the input to the brain were comparable between Germans (LD: 0.38 min/l, HD: 0.55 min/l) and Japanese (LD: 0.35 min/l, HD: 0.45 min/l) suggesting ethnic similarity, and the mass dose effect was minimal. A polar metabolite fraction was the main radiolabelled degradation product in plasma and was also similar between the doses and the ethnic groups. Absence of a difference in the pharmacokinetics of {sup 18}F-florbetaben in Germans and Japanese has warranted further global development of the PET imaging agent. (orig.)

  15. (18)F-alfatide II and (18)F-FDG dual-tracer dynamic PET for parametric, early prediction of tumor response to therapy.

    Science.gov (United States)

    Guo, Jinxia; Guo, Ning; Lang, Lixin; Kiesewetter, Dale O; Xie, Qingguo; Li, Quanzheng; Eden, Henry S; Niu, Gang; Chen, Xiaoyuan

    2014-01-01

    A single dynamic PET acquisition using multiple tracers administered closely in time could provide valuable complementary information about a tumor's status under quasiconstant conditions. This study aimed to investigate the utility of dual-tracer dynamic PET imaging with (18)F-alfatide II ((18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2) and (18)F-FDG for parametric monitoring of tumor responses to therapy. We administered doxorubicin to one group of athymic nude mice with U87MG tumors and paclitaxel protein-bound particles to another group of mice with MDA-MB-435 tumors. To monitor therapeutic responses, we performed dual-tracer dynamic imaging, in sessions that lasted 90 min, starting with injection via the tail vein catheters with (18)F-alfatide II, followed 40 min later by (18)F-FDG. To achieve signal separation of the 2 tracers, we fit a 3-compartment reversible model to the time-activity curve of (18)F-alfatide II for the 40 min before (18)F-FDG injection and then extrapolated to 90 min. The (18)F-FDG tumor time-activity curve was isolated from the 90-min dual-tracer tumor time-activity curve by subtracting the fitted (18)F-alfatide II tumor time-activity curve. With separated tumor time-activity curves, the (18)F-alfatide II binding potential (Bp = k3/k4) and volume of distribution (VD) and (18)F-FDG influx rate ((K1 × k3)/(k2 + k3)) based on the Patlak method were calculated to validate the signal recovery in a comparison with 60-min single-tracer imaging and to monitor therapeutic response. The transport and binding rate parameters K1-k3 of (18)F-alfatide II, calculated from the first 40 min of the dual-tracer dynamic scan, as well as Bp and VD correlated well with the parameters from the 60-min single-tracer scan (R(2) > 0.95). Compared with the results of single-tracer PET imaging, (18)F-FDG tumor uptake and influx were recovered well from dual-tracer imaging. On doxorubicin treatment, whereas no significant changes in static tracer uptake values of (18)F-alfatide II

  16. Development of {sup 18}F-FDG ([F-18]-2-fluoro-2-deoxy-D-glucose) injection for imaging of tumor reflecting glucose metabolism. Results of preclinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Ino, Sento; Shimada, Takayuki; Kanagawa, Masaru; Suzuki, Noriaki; Kondo, Susumu; Shirakami, Yoshifumi; Ito, Osamu; Kato-Azuma, Makoto [Nihon Medi-Physics Co., Ltd., Sodegaura, Chiba (Japan). Research Center

    1999-07-01

    Fluorine-18-2-fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) injection was prepared by a modification of a method originally developed by Hamacher et al. The dosage form is the injectable solution (2 ml) containing 185 MBq of {sup 18}F-FDG at a calibration time. Preclinical studies of the agent were performed. Its radiochemical purity is more than 95% and expiration time is 4 hours after the calibration time at ambient temperature. No toxicity was observed with up to 200 mg/kg and 100 mg/kg of non-radioactive FDG intravenously injected to rats and dogs in single dose toxicity tests, respectively. Biodistribution studies demonstrated that the radioactivity was mainly distributed into brain (3.0 to 3.3% I.D./Organ at 30 minutes) and heart (4.2 to 5.8% I.D./Organ at 1 to 3 hours) after intravenous injection of the agent to normal rats. In a tumor transplanted mouse model (colon 26), tumor uptake was 10.9{+-}3.5% I.D./g at 1 hr after intravenous injection of the agent, the radioactivity was retained until 3 hours. The radiation absorbed dose was estimated according to the MIRD Pamphlet based on the biodistribution data both in humans reported by Mejia et al. and rats described in this report. The radiation absorbed dose was not higher than those of commercially available radiopharmaceuticals. In conclusion, the {sup 18}F-FDG injection is expected to be useful for further clinical application. (author)

  17. In vivo imaging of brain androgen receptors in rats: a [18F]FDHT PET study

    International Nuclear Information System (INIS)

    Khayum, M.A.; Doorduin, J.; Antunes, I.F.; Kwizera, C.; Zijlma, R.; Boer, J.A. den; Dierckx, R.A.J.O.; Vries, E.F.J. de

    2015-01-01

    Introduction: Steroid hormones like androgens play an important role in the development and maintenance of several brain functions. Androgens can act through androgen receptors (AR) in the brain. This study aims to demonstrate the feasibility of positron emission tomography (PET) with 16β-[ 18 F]fluoro-5α-dihydrotestosterone ([ 18 F]FDHT) to image AR expression in the brain. Methods: Male Wistar rats were either orchiectomized to inhibit endogenous androgen production or underwent sham-surgery. Fifteen days after surgery, rats were subjected to a 90-min dynamic [ 18 F]FDHT PET scan with arterial blood sampling. In a subset of orchiectomized rats, 1 mg/kg dihydrotestosterone was co-injected with the tracer in order to saturate the AR. Plasma samples were analyzed for the presence of radioactive metabolites by radio-TLC. Pharmacokinetic modeling was performed to quantify brain kinetics of the tracer. After the PET scan, the animals were terminated for ex-vivo biodistribution. Results: PET imaging and ex vivo biodistribution studies showed low [ 18 F]FDHT uptake in all brain regions, except pituitary. [ 18 F]FDHT uptake in the surrounding cranial bones was high and increased over time. [ 18 F]FDHT was rapidly metabolized in rats. Metabolism was significantly faster in orchiectomized rats than in sham-orchiectomized rats. Quantitative analysis of PET data indicated substantial spill-over of activity from cranial bones into peripheral brain regions, which prevented further analysis of peripheral brain regions. Logan graphical analysis and kinetic modeling using 1- and 2-tissue compartment models showed reversible and homogenously distributed tracer uptake in central brain regions. [ 18 F]FDHT uptake in the brain could not be blocked by endogenous androgens or administration of dihydrotestosterone. Conclusion: The results of this study indicate that imaging of AR availability in rat brain with [ 18 F]FDHT PET is not feasible. The low AR expression in the brain, the

  18. 2-deoxy-2[F-18]fluoro-D-mannose positron emission tomography imaging in atherosclerosis

    NARCIS (Netherlands)

    Tahara, Nobuhiro; Mukherjee, Jogeshwar; de Haas, Hans J; Petrov, Artiom D; Tawakol, Ahmed; Haider, Nezam; Tahara, Atsuko; Constantinescu, Cristian C; Zhou, Jun; Boersma, Hendrikus H; Imaizumi, Tsutomu; Nakano, Masataka; Finn, Aloke; Fayad, Zahi; Virmani, Renu; Fuster, Valentin; Bosca, Lisardo; Narula, Jagat

    Progressive inflammation in atherosclerotic plaques is associated with increasing risk of plaque rupture. Molecular imaging of activated macrophages with 2-deoxy-2[F-18]fluoro-D-glucose ([F-18]FDG) has been proposed for identification of patients at higher risk for acute vascular events. Because

  19. Clinical value of 18F-FDG coincidence imaging for diagnosis of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Ning Yanli; Lou Cen; Huang Zhongke; Shi Guohua; Chen Dongfang; Mu Da

    2012-01-01

    Objective: To investigate the value of 18 F-FDG coincidence imaging for diagnosis of nasopharyngeal carcinoma. Methods: A total of 45 patients with nasopharyngeal carcinoma (33 males and 12 females, average age (55.56 ± 13.50) years), who underwent 18 F-FDG coincidence imaging before treatment, were studied retrospectively. The images of 18 F-FDG coincidence imaging (GE Millennium VG SPECT) and MRI were analyzed. The radioactivity ratio of the accumulated regions to cerebellum (T/NT)was calculated by ROI technique. The volume of nasopharyngeal carcinoma was recorded by MRI. The positive rates of 18 F-FDG coincidence imaging and EB virus-related antibody measurements were compared by paired χ 2 test. The correlation between T/NT ratios and tumor volumes were tested by Pearson correlation, and then ROC curves were established. The T/NT ratios and tumor volumes of different groups (different first symptoms, clinical stages, T stages, pathological classification and outcomes, with or without lymph node enlargement) were compared by t-test and rank sum test. Results: The positive rate of 18 F-FDG coincidence imaging was 97.78% (44/45), and the positive rate of EB virus-related antibody measurement was 95.56% (43/45, χ 2 =1.33, P>0.05). The T/NT ratio (2.439 ±1.119) and tumor volume ((7.311 ± 8.280) cm 3 ) of primary lesions had a positive correlation (r=0.463, P<0.05). The cut-off values of T/NT ratio and the tumor volume were 2.396 and 7.348 cm 3 , respectively, by ROC curves. T/NT ratios in groups with or without first symptom of epistaxis (2.847 ± 1.254 vs 2.082 ± 0.863, t=-2.409) and groups with or without facial numbness (2.855 ± 1.261 vs 2.134 ± 0.913, t=-2.225) were both significantly different (both P<0.05). T/NT ratios of differentiated and undifferentiated cancer were 2.266 ± 0.997 and 2.971 ± 1.351, respectively (t=-2.018, P<0.05). There was a significant difference of tumor volumes between groups with or without facial numbness (t=-2.684, P<0

  20. Comparison of three 18F-labeled carboxylic acids with 18F-FDG of the differentiation tumor from inflammation in model mice

    International Nuclear Information System (INIS)

    Wang, Hongliang; Tang, Ganghua; Hu, Kongzhen; Huang, Tingting; Liang, Xiang; Wu, Zhifang; Li, Sijin

    2016-01-01

    The aim of this study was to compare the properties and feasibility of the glucose analog, 2- 18 F-fluoro-2-deoxy-D-glucose ( 18 F-FDG), three short 18 F-labeled carboxylic acids, 18 F-fluoroacetate ( 18 F-FAC), 2- 18 F-fluoropropionic acid ( 18 F-FPA) and 4-( 18 F)fluorobenzoic acid ( 18 F-FBA), for differentiating tumors from inflammation. Biodistributions of 18 F-FAC, 18 F-FPA and 18 F-FBA were determined on normal Kunming mice, and positron emission tomography (PET) imaging with these tracers were performed on the separate tumor-bearing mice model and inflammation mice model in comparison with 18 F-FDG. Biodistribution results showed that 18 F-FAC and 18 F-FPA had similar biodistribution profiles and the slow radioactivity clearance from most tissues excluding the in vivo defluorination of 18 F-FAC, and 18 F-FBA demonstrated a lower uptake and fast clearance in most tissues. PET imaging with 18 F-FDG, 18 F-FAC and 18 F-FPA revealed the high uptake in both tumor and inflammatory lesions. The ratios of tumor-to-inflammation were 1.63 ± 0.28 for 18 F-FDG, 1.20 ± 0.38 for 18 F-FAC, and 1.41 ± 0.33 for 18 F-FPA at 60 min postinjection, respectively. While clear tumor images with high contrast between tumor and inflammation lesion were observed in 18 F-FBA/PET with the highest ratio of tumor-to-inflammation (1.98 ± 0.15). Our data demonstrated 18 F-FBA is a promising PET probe to distinguish tumor from inflammation. But the further modification of 18 F-FBA structure is required to improve its pharmacokinetics

  1. Whole-body radiation dosimetry of 2-[18F]Fluoro-A-85380 in human PET imaging studies

    International Nuclear Information System (INIS)

    Obrzut, Sebastian L.; Koren, Andrei O.; Mandelkern, Mark A.; Brody, Arthur L.; Hoh, Carl K.; London, Edythe D.

    2005-01-01

    2-[ 18 F]Fluoro-A-85380 (2-[ 18 F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine, 2-[ 18 F]FA) is a recently developed PET radioligand for noninvasive imaging of nicotinic acetylcholine receptors. Previous radiation absorbed dose estimates for 2-[ 18 F]FA were limited to evaluation of activity in only several critical organs. Here, we performed 2-[ 18 F]FA radiation dosimetry studies on two healthy human volunteers to obtain data for all important body organs. Intravenous injection of 2.9 MBq/kg of 2-[ 18 F]FA was followed by dynamic PET imaging. Regions of interest were placed over images of each organ to generate time-activity curves, from which we computed residence times. Radiation absorbed doses were calculated from the residence times using the MIRDOSE 3.0 program (version 3.0, ORISE, Oak Ridge, TN). The urinary bladder wall receives the highest radiation absorbed dose (0.153 mGy/MBq, 0.566 rad/mCi, for a 2.4-h voiding interval), followed by the liver (0.0496 mGy/MBq, 0.184 rad/mCi) and the kidneys (0.0470 mGy/MBq, 0.174 rad/mCi). The mean effective dose equivalent is estimated to be 0.0278 mSv/MBq (0.103 rem/mCi), indicating that radiation dosimetry associated with 2-[ 18 F]FA is within acceptable limits

  2. Imaging cardiac amyloidosis: a pilot study using 18F-florbetapir positron emission tomography

    International Nuclear Information System (INIS)

    Dorbala, Sharmila; Vangala, Divya; Semer, James; Strader, Christopher; Bruyere, John R.; Moore, Stephen C.; Di Carli, Marcelo F.; Falk, Rodney H.

    2014-01-01

    Cardiac amyloidosis, a restrictive heart disease with high mortality and morbidity, is underdiagnosed due to limited targeted diagnostic imaging. The primary aim of this study was to evaluate the utility of 18 F-florbetapir for imaging cardiac amyloidosis. We performed a pilot study of cardiac 18 F-florbetapir PET in 14 subjects: 5 control subjects without amyloidosis and 9 subjects with documented cardiac amyloidosis. Standardized uptake values (SUV) of 18 F-florbetapir in the left ventricular (LV) myocardium, blood pool, liver, and vertebral bone were determined. A 18 F-florbetapir retention index (RI) was computed. Mean LV myocardial SUVs, target-to-background ratio (TBR, myocardial/blood pool SUV ratio) and myocardial-to-liver SUV ratio between 0 and 30 min were calculated. Left and right ventricular myocardial uptake of 18 F-florbetapir were noted in all the amyloid subjects and in none of the control subjects. The RI, TBR, LV myocardial SUV and LV myocardial to liver SUV ratio were all significantly higher in the amyloidosis subjects than in the control subjects (RI median 0.043 min -1 , IQR 0.034 - 0.051 min -1 , vs. 0.023 min -1 , IQR 0.015 - 0.025 min -1 , P = 0.002; TBR 1.84, 1.64 - 2.50, vs. 1.26, IQR 0.91 - 1.36, P = 0.001; LV myocardial SUV 3.84, IQR 1.87 - 5.65, vs. 1.35, IQR 1.17 - 2.28, P = 0.029; ratio of LV myocardial to liver SUV 0.67, IQR 0.44 - 1.64, vs. 0.18, IQR 0.15 - 0.35, P = 0.004). The myocardial RI, TBR and myocardial to liver SUV ratio also distinguished the control subjects from subjects with transthyretin and those with light chain amyloid. 18 F-Florbetapir PET may be a promising technique to image light chain and transthyretin cardiac amyloidosis. Its role in diagnosing amyloid in other organ systems and in assessing response to therapy needs to be further studied. (orig.)

  3. (S)-4-(3-18F-fluoropropyl)-L-glutamic acid: an 18F-labeled tumor-specific probe for PET/CT imaging--dosimetry.

    Science.gov (United States)

    Smolarz, Kamilla; Krause, Bernd Joachim; Graner, Frank-Philipp; Wagner, Franziska Martina; Hultsch, Christina; Bacher-Stier, Claudia; Sparks, Richard B; Ramsay, Susan; Fels, Lüder M; Dinkelborg, Ludger M; Schwaiger, Markus

    2013-06-01

    The glutamic acid derivative (S)-4-(3-(18)F-Fluoropropyl)-l-glutamic acid ((18)F-FSPG, alias BAY 94-9392), a new PET tracer for the detection of malignant diseases, displayed promising results in non-small cell lung cancer patients. The aim of this study was to provide dosimetry estimates for (18)F-FSPG based on human whole-body PET/CT measurements. (18)F-FSPG was prepared by a fully automated 2-step procedure and purified by a solid-phase extraction method. PET/CT scans were obtained for 5 healthy volunteers (mean age, 59 y; age range, 51-64 y; 2 men, 3 women). Human subjects were imaged for up to 240 min using a PET/CT scanner after intravenous injection of 299 ± 22.5 MBq of (18)F-FSPG. Image quantification, time-activity data modeling, estimation of normalized number of disintegrations, and production of dosimetry estimates were performed using the RADAR (RAdiation Dose Assessment Resource) method for internal dosimetry and in general concordance with the methodology and principles as presented in the MIRD 16 document. Because of the renal excretion of the tracer, the absorbed dose was highest in the urinary bladder wall and kidneys, followed by the pancreas and uterus. The individual organ doses (mSv/MBq) were 0.40 ± 0.058 for the urinary bladder wall, 0.11 ± 0.011 for the kidneys, 0.077 ± 0.020 for the pancreas, and 0.030 ± 0.0034 for the uterus. The calculated effective dose was 0.032 ± 0.0034 mSv/MBq. Absorbed dose to the bladder and the effective dose can be reduced significantly by frequent bladder-voiding intervals. For a 0.75-h voiding interval, the bladder dose was reduced to 0.10 ± 0.012 mSv/MBq, and the effective dose was reduced to 0.015 ± 0.0010 mSv/MBq. On the basis of the distribution and biokinetic data, the determined radiation dose for (18)F-FSPG was calculated to be 9.5 ± 1.0 mSv at a patient dose of 300 MBq, which is of similar magnitude to that of (18)F-FDG (5.7 mSv). The effective dose can be reduced to 4.5 ± 0.30 mSv (at 300 MBq

  4. Imaging of accidental contamination with F-18-solution; a quick trouble-shooting procedure

    Directory of Open Access Journals (Sweden)

    Kalevi Kairemo

    2016-01-01

    Full Text Available To the best of our knowledge, imaging of accidental exposure to radioactive fluorine-18 (F-18 due to liquid spill has not been described earlier in the scientific literature. The short half-life of F-18 (t½=110 min, current radiation safety requirements, and Good Manufacturing Practice (GMP regulations on radiopharmaceuticals have restrained the occurrence of these incidents. The possibility of investigating this type of incidents by gamma and positron imaging is also quite limited. Additionally, a quick and precise analysis of radiochemical contamination is cumbersome and sometimes challenging if the spills of radioactive materials are low in activity. Herein, we report a case of accidental F-18 contamination in a service person during a routine cyclotron maintenance procedure. During target replacement, liquid F-18 was spilled on the person responsible for the maintenance. The activities of spills were immediately measured using contamination detectors, and the photon spectrum of contaminated clothes was assessed through gamma spectroscopy. Despite protective clothing, some skin areas were contaminated, which were then thoroughly washed. Later on, these areas were imaged, using positron emission tomography (PET, and a gamma camera (including spectroscopy. Two contaminated skin areas were located on the hand (9.7 and 14.7 cm2, respectively, which showed very low activities (19.0 and 22.8 kBq respectively at the time of incident. Based on the photon spectra, F-18 was confirmed as the main present radionuclide. PET imaging demonstrated the shape of these contaminated hot spots. However, the measured activities were very low due to the use of protective clothing. With prompt action and use of proper equipments at the time of incident, minimal radionuclide activities and their locations could be thoroughly analyzed. The cumulative skin doses of the contaminated regions were calculated at 1.52 and 2.00 mSv, respectively. In the follow-up, no skin

  5. Prognostic value of tumour blood flow, [18F]EF5 and [18F]FDG PET/CT imaging in patients with head and neck cancer treated with radiochemotherapy

    International Nuclear Information System (INIS)

    Komar, Gaber; Eskola, Olli; Sipilae, Hannu; Solin, Olof; Lehtioe, Kaisa; Levola, Helena; Lindholm, Paula; Seppaelae, Jan; Seppaenen, Marko; Grenman, Reidar; Minn, Heikki

    2014-01-01

    In order to improve the treatment of squamous cell carcinoma of the head and neck, precise information on the treated tumour's biology is required and the prognostic importance of different biological parameters needs to be determined. The aim of our study was to determine the predictive value of pretreatment PET/CT imaging using [ 18 F]FDG, a new hypoxia tracer [ 18 F]EF5 and the perfusion tracer [ 15 O]H 2 O in patients with squamous cell cancer of the head and neck treated with radiochemotherapy. The study group comprised 22 patients with confirmed squamous cell carcinoma of the head and neck who underwent a PET/CT scan using the above tracers before any treatment. Patients were later treated with a combination of radiochemotherapy and surgery. Parametric blood flow was calculated from dynamic [ 15 O]H 2 O PET images using a one-tissue compartment model. [ 18 F]FDG images were analysed by calculating standardized uptake values (SUV) and metabolically active tumour volumes (MATV). [ 18 F]EF5 images were analysed by calculating tumour-to-muscle uptake ratios (T/M ratio). A T/M ratio of 1.5 was considered a significant threshold and used to determine tumour hypoxic subvolumes (HS) and hypoxic fraction area. The findings were finally correlated with the pretreatment clinical findings (overall stage and TNM stage) as well as the outcome following radiochemotherapy in terms of local control and overall patient survival. Tumour stage and T-classification did not show any significant differences in comparison to the patients' metabolic and functional characteristics measured on PET. Using the Cox proportional hazards model, a shorter overall survival was associated with MATV (p = 0.008, HR = 1.108), maximum [ 18 F]EF5 T/M ratio (p = 0.0145, HR = 4.084) and tumour HS (p = 0.0047, HR = 1.112). None of the PET parameters showed a significant effect on patient survival in the log-rank test, although [ 18 F]EF5 maximum T/M ratio was the closest (p = 0.109). By contrast

  6. Comparisons of [{sup 18}F]-1-deoxy-1-fluoro-scyllo-inositol with [{sup 18}F]-FDG for PET imaging of inflammation, breast and brain cancer xenografts in athymic mice

    Energy Technology Data Exchange (ETDEWEB)

    McLarty, Kristin; Moran, Matthew D. [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Scollard, Deborah A.; Chan, Conrad [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Sabha, Nesrin; Mukherjee, Joydeep; Guha, Abhijit [Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, ON, M5G 1X8 (Canada); McLaurin, JoAnne [Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5S 3H2 (Canada); Nitz, Mark [Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6 (Canada); Houle, Sylvain; Wilson, Alan A. [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Reilly, Raymond M., E-mail: raymond.reilly@utoronto.ca [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2M9 (Canada); Department of Medical Imaging, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Vasdev, Neil, E-mail: neil.vasdev@utoronto.ca [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2011-10-15

    Introduction: The aim of the study was to evaluate the uptake of [{sup 18}F]-1-deoxy-1-fluoro-scyllo-inositol ([{sup 18}F]-scyllo-inositol) in human breast cancer (BC) and glioma xenografts, as well as in inflammatory tissue, in immunocompromised mice. Studies of [{sup 18}F]-2-fluoro-2-deoxy-D-glucose ([{sup 18}F]-FDG) under the same conditions were also performed. Methods: Radiosynthesis of [{sup 18}F]-scyllo-inositol was automated using a commercial synthesis module. Tumour, inflammation and normal tissue uptakes were evaluated by biodistribution studies and positron emission tomography (PET) imaging using [{sup 18}F]-scyllo-inositol and [{sup 18}F]-FDG in mice bearing subcutaneous MDA-MB-231, MCF-7 and MDA-MB-361 human BC xenografts, intracranial U-87 MG glioma xenografts and turpentine-induced inflammation. Results: The radiosynthesis of [{sup 18}F]-scyllo-inositol was automated with good radiochemical yields (24.6%{+-}3.3%, uncorrected for decay, 65{+-}2 min, n=5) and high specific activities ({>=}195 GBq/{mu}mol at end of synthesis). Uptake of [{sup 18}F]-scyllo-inositol was greatest in MDA-MB-231 BC tumours and was comparable to that of [{sup 18}F]-FDG (4.6{+-}0.5 vs. 5.5{+-}2.1 %ID/g, respectively; P=.40), but was marginally lower in MDA-MB-361 and MCF-7 xenografts. Uptake of [{sup 18}F]-scyllo-inositol in inflammation was lower than [{sup 18}F]-FDG. While uptake of [{sup 18}F]-scyllo-inositol in intracranial U-87 MG xenografts was significantly lower than [{sup 18}F]-FDG, the tumour-to-brain ratio was significantly higher (10.6{+-}2.5 vs. 2.1{+-}0.6; P=.001). Conclusions: Consistent with biodistribution studies, uptake of [{sup 18}F]-scyllo-inositol was successfully visualized by PET imaging in human BC and glioma xenografts, with lower accumulation in inflammatory tissue than [{sup 18}F]-FDG. The tumour-to-brain ratio of [{sup 18}F]-scyllo-inositol was also significantly higher than that of [{sup 18}F]-FDG for visualizing intracranial glioma xenografts in

  7. Sulfonyl fluoride-based prosthetic compounds as potential 18F labelling agents.

    Science.gov (United States)

    Inkster, James A H; Liu, Kate; Ait-Mohand, Samia; Schaffer, Paul; Guérin, Brigitte; Ruth, Thomas J; Storr, Tim

    2012-08-27

    Nucleophilic incorporation of [(18)F]F(-) under aqueous conditions holds several advantages in radiopharmaceutical development, especially with the advent of complex biological pharmacophores. Sulfonyl fluorides can be prepared in water at room temperature, yet they have not been assayed as a potential means to (18)F-labelled biomarkers for PET chemistry. We developed a general route to prepare bifunctional 4-formyl-, 3-formyl-, 4-maleimido- and 4-oxylalkynl-arylsulfonyl [(18)F]fluorides from their sulfonyl chloride analogues in 1:1 mixtures of acetonitrile, THF, or tBuOH and Cs[(18)F]F/Cs(2)CO(3(aq.)) in a reaction time of 15 min at room temperature. With the exception of 4-N-maleimide-benzenesulfonyl fluoride (3), pyridine could be used to simplify radiotracer purification by selectively degrading the precursor without significantly affecting observed yields. The addition of pyridine at the start of [(18)F]fluorination (1:1:0.8 tBuOH/Cs(2)CO(3(aq.))/pyridine) did not negatively affect yields of 3-formyl-2,4,6-trimethylbenzenesulfonyl [(18)F]fluoride (2) and dramatically improved the yields of 4-(prop-2-ynyloxy)benzenesulfonyl [(18)F]fluoride (4). The N-arylsulfonyl-4-dimethylaminopyridinium derivative of 4 (14) can be prepared and incorporates (18)F efficiently in solutions of 100 % aqueous Cs(2)CO(3) (10 mg mL(-1)). As proof-of-principle, [(18)F]2 was synthesised in a preparative fashion [88(±8) % decay corrected (n=6) from start-of-synthesis] and used to radioactively label an oxyamino-modified bombesin(6-14) analogue [35(±6) % decay corrected (n=4) from start-of-synthesis]. Total preparation time was 105-109 min from start-of-synthesis. Although the (18)F-peptide exhibited evidence of proteolytic defluorination and modification, our study is the first step in developing an aqueous, room temperature (18)F labelling strategy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 18F-FDG PET/CT imaging of 100 normal adrenal gland cases

    International Nuclear Information System (INIS)

    Yu Zhiguo; Qu Wanying; Yao Zhiming; Zheng Jianguo; Song Renhe; Liu Xiuqin

    2008-01-01

    Objective: The purpose of this study was to obtain the 18 F-fluorodeoxyglucose (FDG) uptake characteristics in normal adrenal gland as the criteria to diagnose abnormal glucose metabolism in ad- renal gland by 18 F-FDG PET or PET/CT imaging. Methods: One hundred healthy persons underwent 18 F- FDG PET/CT imaging in this study. The images were reviewed by visual judgement and measured by stand-ardized uptake value (SUV). With reference to normal liver, the uptake of adrenal gland was scored from 0 to 3, namely, 0=no uptake, 1=less than the uptake of normal liver, 2=equal to the uptake of normal liver, 3=more than the uptake of normal liver. SUV was measured on the trans-axial images. The regions of interest (ROIs) of adrenal glands and livers were manually drawn based on the CT images. Both average SUV (SUV avg ) and maximum SUV(SUV max ) were calculated. Results: (1) By visual judgment, 94% and 91% of left and right normal adrenal glands had uptake intensity less than that of livers. (2) The SUV avg of left and right adrenal glands were 1.39 and 1.65, and the SUV max 1.98 and 2.19, respectively with the up- per limit of 95% confidence interval (Cf). (3)The ratios of left and right adrenal glands SUV avg to livers SUV avg were 0.65 and 0.75 and left and right adrenal glands SUV max to livers SUV max were 0.76 and 0.83 respectively with the upper limit of 95% CI. (4)The uptake of right adrenal gland was higher than that of the left. (5)There was no significant difference of the SUVs between men and women, except that right ad- renal gland SUV max of men was higher than that of women. (6) There was no significant difference in 18 F- FDG uptake between persons younger and elder than 60 years old. Conclusion: The physiological FDG uptake of the adrenal gland in normal healthy individuals is generally lower than that of liver. (authors)

  9. Brain energy metabolism and neuroinflammation in ageing APP/PS1-21 mice using longitudinal 18F-FDG and 18F-DPA-714 PET imaging.

    Science.gov (United States)

    Takkinen, Jatta S; López-Picón, Francisco R; Al Majidi, Rana; Eskola, Olli; Krzyczmonik, Anna; Keller, Thomas; Löyttyniemi, Eliisa; Solin, Olof; Rinne, Juha O; Haaparanta-Solin, Merja

    2017-08-01

    Preclinical animal model studies of brain energy metabolism and neuroinflammation in Alzheimer's disease have produced conflicting results, hampering both the elucidation of the underlying disease mechanism and the development of effective Alzheimer's disease therapies. Here, we aimed to quantify the relationship between brain energy metabolism and neuroinflammation in the APP/PS1-21 transgenic mouse model of Alzheimer's disease using longitudinal in vivo 18 F-FDG and 18 F-DPA-714) PET imaging and ex vivo brain autoradiography. APP/PS1-21 (TG, n = 9) and wild type control mice (WT, n = 9) were studied longitudinally every third month from age 6 to 15 months with 18 F-FDG and 18 F-DPA-714 with a one-week interval between the scans. Additional TG (n = 52) and WT (n = 29) mice were used for ex vivo studies. In vivo, the 18 F-FDG SUVs were lower and the 18 F-DPA-714 binding ratios relative to the cerebellum were higher in the TG mouse cortex and hippocampus than in WT mice at age 12 to 15 months ( p < 0.05). The ex vivo cerebellum binding ratios supported the results of the in vivo 18 F-DPA-714 studies but not the 18 F-FDG studies. This longitudinal PET study demonstrated decreased energy metabolism and increased inflammation in the brains of APP/PS1-21 mice compared to WT mice.

  10. Recognition of fibrous dysplasia of bone mimicking skeletal metastasis on 18F-FDG PET/CT imaging

    International Nuclear Information System (INIS)

    Su, Ming Gang; Tian, Rong; Fan, Qiu Ping; Tian, Ye; Li, Fang Lan; Li, Lin; Kuang, An Ren; Miller, John Howard

    2011-01-01

    Fibrous dysplasia of bone (FDB) reveals intense 18F-FDG uptake mimicking metastases on 18F-FDG PET/CT. We reviewed sites of FDB revealed by 18F-FDG PET/CT imaging to allow identification of this abnormality. Eleven patients (7 male, 4 female, aged 16-78 years) were evaluated after 55 MBq (0.15 mCi)/kg 18F-FDG utilizing a 16-slice multiple detector CT (MDCT) whole-body PET scanner, with LOR algorithm 3D reconstruction. One- and 2-h imaging was performed in 9 patients. Standard uptake value (SUV) for each lesion, on early and delayed imaging, was calculated. Lesions were confirmed in 6 patients by biopsy. The PET images correlated with MDCT to establish the imaging characteristics. Solitary lesions were found in 4 patients, two lesions in 1 patient, and in 6 patients there were multiple bone lesions. The SUV early ranged from 1.23 to 9.64 with an average of 3.76 ± 2.40. The SUV delayed ranged from 1.76 to 11.42 with an average of 4.51 ± 3.07. The SUV delayed decreased or increased slightly (-31% to 5%) in 6 of our patients, and increased significantly (11% to 39%) in 3. There was a negative correlation between SUVs and age, as well as the number of affected bones. In our study, FDB had wide skeletal distribution with variability of 18F-FDG uptake and CT appearance. SUV in the delayed stage was seen to either decrease or increase on dual-time 18F-FDG PET scanning. It is very important to recognize the characteristics of this skeletal dysplasia to allow differentiation from skeletal metastasis. (orig.)

  11. Radiochemical synthesis of 3-(4-[18F] Fluorophenyl)-8-hydroxy-1, 2, 3, 4-tetrahydrochromeno [3, 4-c] pyridin-5-one: A putative dopamine D$4 receptor PET imaging agent

    International Nuclear Information System (INIS)

    Li, G.C.; Yin, D.Z.; Wang, M.W.; Cheng, D.F.; Wang, Y.X.

    2005-01-01

    Introduction: The dopamine D 4 receptor has lately received increasing interest since it has been hypothesized to be involved in the pathology and pharmacotherapy of schizophrenia. While this receptor is expressed in lower density in various extrastriatal brain regions and its distribution is still unclear due to the lack of suitable imaging agent and its level change in schizophrenia is controversial. Herein, based on the structure-activity analysis of chromeno[3, 4-c]pyridine- 5-ones as potential dopamine D 4 receptor ligands, a putative D 4 subtype positron emission tomography (PET) radioligand, 3-(4-[ 18 F]fluorophenyl)-8-hydroxy-1, 2, 3, 4-tetrahydrochromeno [3, 4-c]pyridin-5-one ([ 18 F]FHTP), was designed and synthesized. Methods: The radiochemical synthesis route was shown in Figure 1. [ 18 F]Fluoride was produced with a Cyclone-30 (IBA, Belgium) by 18 O(p, n) 18 F reaction using enriched 18 O-H 2 O and eluted from a Dowex 1-X8 anion-exchange column with aqueous potassium carbonate (20 mg/mL). 4-[ 18 F]Fluorobenzaldehyde was prepared according to the method reported by Alan A. Wilson and et al.. Then, 8-hydroxy-1, 2, 3, 4-tetrahydrochromeno [3, 4-c]pyridin-5-one, sodium cyanoborohydride, methanol and acetic acid were added to the dry residue, The mixture was then sealed and heated at 120 degree C for 12 min. At the end of the reaction, the mixture was cooled, diluted with ethyl acetate and washed with water. The extracted organic layer was passed through a small anhydrous magnesium sulfate column. After removal of the solvents in the mixture at 50 degree C under a stream of nitrogen, the obtained residue was redissolved in methanol and purified with a semi-preparative HPLC system, then the desired product was collected. Results: The radiochemical synthesis of [ 18 F]FHTP took around 110 min at EOS with an overall radiochemical yield 19% (decay-corrected) and its radiochemical purity was higher than 95%. Conclusion: A presumed dopamine D 4 receptor PET

  12. Imaging Radiation-Induced Gastrointestinal, Bone Marrow Injury and Recovery Kinetics Using 18F-FDG PET.

    Science.gov (United States)

    Tang, Tien T; Rendon, David A; Zawaski, Janice A; Afshar, Solmaz F; Kaffes, Caterina K; Sabek, Omaima M; Gaber, M Waleed

    2017-01-01

    Positron emission tomography using 18F-Fluro-deoxy-glucose (18F-FDG) is a useful tool to detect regions of inflammation in patients. We utilized this imaging technique to investigate the kinetics of gastrointestinal recovery after radiation exposure and the role of bone marrow in the recovery process. Male Sprague-Dawley rats were either sham irradiated, irradiated with their upper half body shielded (UHBS) at a dose of 7.5 Gy, or whole body irradiated (WBI) with 4 or 7.5 Gy. Animals were imaged using 18F-FDG PET/CT at 5, 10 and 35 days post-radiation exposure. The gastrointestinal tract and bone marrow were analyzed for 18F-FDG uptake. Tissue was collected at all-time points for histological analysis. Following 7.5 Gy irradiation, there was a significant increase in inflammation in the gastrointestinal tract as indicated by the significantly higher 18F-FDG uptake compared to sham. UHBS animals had a significantly higher activity compared to 7.5 Gy WBI at 5 days post-exposure. Animals that received 4 Gy WBI did not show any significant increase in uptake compared to sham. Analysis of the bone marrow showed a significant decrease of uptake in the 7.5 Gy animals 5 days post-irradiation, albeit not observed in the 4 Gy group. Interestingly, as the metabolic activity of the gastrointestinal tract returned to sham levels in UHBS animals it was accompanied by an increase in metabolic activity in the bone marrow. At 35 days post-exposure both gastrointestinal tract and bone marrow 18F-FDG uptake returned to sham levels. 18F-FDG imaging is a tool that can be used to study the inflammatory response of the gastrointestinal tract and changes in bone marrow metabolism caused by radiation exposure. The recovery of the gastrointestinal tract coincides with an increase in bone marrow metabolism in partially shielded animals. These findings further demonstrate the relationship between the gastrointestinal syndrome and bone marrow recovery, and that this interaction can be studied

  13. Imaging Radiation-Induced Gastrointestinal, Bone Marrow Injury and Recovery Kinetics Using 18F-FDG PET.

    Directory of Open Access Journals (Sweden)

    Tien T Tang

    Full Text Available Positron emission tomography using 18F-Fluro-deoxy-glucose (18F-FDG is a useful tool to detect regions of inflammation in patients. We utilized this imaging technique to investigate the kinetics of gastrointestinal recovery after radiation exposure and the role of bone marrow in the recovery process. Male Sprague-Dawley rats were either sham irradiated, irradiated with their upper half body shielded (UHBS at a dose of 7.5 Gy, or whole body irradiated (WBI with 4 or 7.5 Gy. Animals were imaged using 18F-FDG PET/CT at 5, 10 and 35 days post-radiation exposure. The gastrointestinal tract and bone marrow were analyzed for 18F-FDG uptake. Tissue was collected at all-time points for histological analysis. Following 7.5 Gy irradiation, there was a significant increase in inflammation in the gastrointestinal tract as indicated by the significantly higher 18F-FDG uptake compared to sham. UHBS animals had a significantly higher activity compared to 7.5 Gy WBI at 5 days post-exposure. Animals that received 4 Gy WBI did not show any significant increase in uptake compared to sham. Analysis of the bone marrow showed a significant decrease of uptake in the 7.5 Gy animals 5 days post-irradiation, albeit not observed in the 4 Gy group. Interestingly, as the metabolic activity of the gastrointestinal tract returned to sham levels in UHBS animals it was accompanied by an increase in metabolic activity in the bone marrow. At 35 days post-exposure both gastrointestinal tract and bone marrow 18F-FDG uptake returned to sham levels. 18F-FDG imaging is a tool that can be used to study the inflammatory response of the gastrointestinal tract and changes in bone marrow metabolism caused by radiation exposure. The recovery of the gastrointestinal tract coincides with an increase in bone marrow metabolism in partially shielded animals. These findings further demonstrate the relationship between the gastrointestinal syndrome and bone marrow recovery, and that this

  14. Coupled Imaging with [18F]FBB and [18F]FDG in AD Subjects Show a Selective Association Between Amyloid Burden and Cortical Dysfunction in the Brain.

    Science.gov (United States)

    Chiaravalloti, Agostino; Castellano, Anna Elisa; Ricci, Maria; Barbagallo, Gaetano; Sannino, Pasqualina; Ursini, Francesco; Karalis, Georgios; Schillaci, Orazio

    2018-02-05

    The present study was aimed to investigate the relationships between dysfunction of cortical glucose metabolism as detectable by means of 2-deoxy-2-[ 18 F]fluoro -D-glucose ([ 18 F]FDG) positron emission tomography/x-ray computed tomography (PET/CT) and amyloid burden as detectable by means of 4-{(E)-2-[4-(2-{2-[2-[ 18 F]fluoroethoxy]ethoxy}ethoxy)phenyl]vinyl}-N-methylaniline (florbetaben; [ 18 F]FBB) in a group of patients affected by Alzheimer's disease (AD). We examined 38 patients newly diagnosed with AD according to the NINCDS-ADRDA criteria. All the subjects underwent a PET/CT scan using both [ 18 F]FDG and [ 18 F]FBB with an average interval of 1 month. We used statistical parametric mapping (SPM8) implemented in Matlab R2012b and WFU pickatlas for the definition of a region of interest (ROI) mask including the whole cortex. These data were then normalized on the counts of the cerebellum and then used for a regression analysis on [ 18 F]FDG scans in SPM. Furthermore, 58 control subjects were used as control group for [ 18 F]FDG PET/CT scans. SPM analysis in AD patients showed a significant negative correlation between [ 18 F] FBB and [ 18 F] FDG uptake in temporal and parietal lobes bilaterally. Of note, these areas in AD patients displayed a marked glucose hypometabolism compared to control group. Combined imaging with [ 18 F]FBB and [ 18 FFDG shows that amyloid burden in the brain is related to cortical dysfunction of temporal and parietal lobes in AD.

  15. Combined approach of perioperative 18F-FDG PET/CT imaging and intraoperative 18F-FDG handheld gamma probe detection for tumor localization and verification of complete tumor resection in breast cancer

    Directory of Open Access Journals (Sweden)

    Knopp Michael V

    2007-12-01

    Full Text Available Abstract Background 18F-fluorodeoxyglucose (18F-FDG positron emission tomography/computed tomography (PET/CT has become an established method for detecting hypermetabolic sites of known and occult disease and is widely used in oncology surgical planning. Intraoperatively, it is often difficult to localize tumors and verify complete resection of tumors that have been previously detected on diagnostic PET/CT at the time of the original evaluation of the cancer patient. Therefore, we propose an innovative approach for intraoperative tumor localization and verification of complete tumor resection utilizing 18F-FDG for perioperative PET/CT imaging and intraoperative gamma probe detection. Methods Two breast cancer patients were evaluated. 18F-FDG was administered and PET/CT was acquired immediately prior to surgery. Intraoperatively, tumors were localized and resected with the assistance of a handheld gamma probe. Resected tumors were scanned with specimen PET/CT prior to pathologic processing. Shortly after the surgical procedure, patients were re-imaged with PET/CT utilizing the same preoperatively administered 18F-FDG dose. Results One patient had primary carcinoma of breast and a metastatic axillary lymph node. The second patient had a solitary metastatic liver lesion. In both cases, preoperative PET/CT verified these findings and demonstrated no additional suspicious hypermetabolic lesions. Furthermore, intraoperative gamma probe detection, specimen PET/CT, and postoperative PET/CT verified complete resection of the hypermetabolic lesions. Conclusion Immediate preoperative and postoperative PET/CT imaging, utilizing the same 18F-FDG injection dose, is feasible and image quality is acceptable. Such perioperative PET/CT imaging, along with intraoperative gamma probe detection and specimen PET/CT, can be used to verify complete tumor resection. This innovative approach demonstrates promise for assisting the oncologic surgeon in localizing and

  16. Significance of 18F-FDG PET/CT imaging in the evaluation of the efficacy of lymphoma

    Institute of Scientific and Technical Information of China (English)

    CHEN Chengcheng; WANG Zhengguang; CHENG Nan

    2014-01-01

    To evaluate the 18F-labeled deoxyglucose (18F-FDG) PET/CT imaging in the evaluation of the efficacy of ly-mphoma significance.Methods:42 cases of our hospital patients with malignant lymphoma for 2-5 times 18F-FDG PET/CT imaging results in the treatment process, and the treatment process simple CT results were compared and analyzed, the final results were confirmed by pathology and clinical. Results:The lesions were found in153,including 141 malignant, benign 12, sensitivity, specificity, and accuracy evaluating of lymphoma treatment effect of 18F-FDG PET/CT were, 99.30%, 91.67%, 98.70%, were significantly better than CT examination (P18F-FDG PET/CT in the evaluation of ly-mphoma treatment was superior to CT scan purely, it is an effective means of monitoring the efficacy of lymphoma, it can provide the basis for effective treatment programs in clinical work.

  17. Synthesis and preclinical evaluation of the choline transport tracer deshydroxy-[18F]fluorocholine ([18F]dOC)

    International Nuclear Information System (INIS)

    Henriksen, G.; Herz, M.; Hauser, A.; Schwaiger, M.; Wester, H.-J.

    2004-01-01

    11 C-labeled choline ([ 11 C]CHO) and 18 F-fluorinated choline analogues have been demonstrated to be valuable tracers for in vivo imaging of neoplasms by means of positron emission tomography (PET). The objective of the present study was to evaluate whether deshydroxy-[ 18 F]fluorocholine, ([ 18 F]dOC), a non-metabolizable [ 18 F]fluorinated choline analogue, can serve as a surrogate for cholines that are able to be phosphorylated and thus allow PET-imaging solely by addressing the choline transport system. The specificity of uptake of [ 18 F]dOC was compared with that of [ 11 C]choline ([ 11 C]CHO) in cultured rat pancreatic carcinoma and PC-3 human prostate cancer cells in vitro. In addition, biodistribution of [ 18 F]dOC and [ 11 C]CHO was compared in AR42J- and PC-3 tumor bearing mice. The in vitro studies revealed that membrane transport of both compounds can be inhibited in a concentration dependent manner by similar concentrations of cold choline (IC 50 [ 18 F]dOC= 11 μM; IC 50 [ 11 C]CHO=13 μM. In vitro studies with PC-3 and AR42J cells revealed that the internalized fraction of [ 18 F]dOC after 5 min incubation time is comparable to that of [ 11 C]CHO, whereas the uptake of [ 11 C]CHO was superior after 20 min incubation time. As for [ 11 C]CHO, kidney and liver were also the primary sites of uptake for [ 18 F]dOC in vivo. Biodistribution data after simultaneous injection of both tracers into AR42J tumor bearing mice revealed slightly higher tumor uptake for [ 18 F]dOC at 10 min post-injection, whereas [ 11 C]CHO uptake was higher at later time points. In conclusion, [ 18 F]dOC is taken up into AR42J rat pancreatic carcinoma and PC-3 human prostate cancer cells by a choline specific transport system. Similar transport rates of [ 18 F]dOC and [ 11 C]CHO result in comparable cellular uptake levels at early time points. In contrast to [ 18 F]dOC, which is transported but not intracellularily trapped, the choline kinase substrate [ 11 C]CHO is transported

  18. Staging and Functional Characterization of Pheochromocytoma and Paraganglioma by 18F-Fluorodeoxyglucose (18F-FDG) Positron Emission Tomography

    Science.gov (United States)

    Timmers, Henri J. L. M.; Chen, Clara C.; Carrasquillo, Jorge A.; Whatley, Millie; Ling, Alexander; Eisenhofer, Graeme; King, Kathryn S.; Rao, Jyotsna U.; Wesley, Robert A.; Adams, Karen T.

    2012-01-01

    Background Pheochromocytomas and paragangliomas (PPGLs) are rare tumors of the adrenal medulla and extra-adrenal sympathetic chromaffin tissues; their anatomical and functional imaging are critical to guiding treatment decisions. This study aimed to compare the sensitivity and specificity of 18F-fluorodeoxyglucose positron emission tomography with computed tomography (18F-FDG PET/CT) for tumor localization and staging of PPGLs with that of conventional imaging by [123I]-metaiodobenzylguanidine single photon emission CT (123I-MIBG SPECT), CT, and magnetic resonance imaging (MRI). Methods A total of 216 patients (106 men, 110 women, aged 45.2 ± 14.9 years) with suspected PPGL underwent CT or MRI, 18F-FDG PET/CT, and 123I-MIBG SPECT/CT. Sensitivity and specificity were measured as endpoints and compared by the McNemar test, using two-sided P values only. Results Sixty (28%) of patients had nonmetastatic PPGL, 95 (44%) had metastatic PPGL, and 61 (28%) were PPGL negative. For nonmetastatic tumors, the sensitivity of 18F-FDG was similar to that of 123I-MIBG but less than that of CT/MRI (sensitivity of 18F-FDG = 76.8%; of 123I-MIBG = 75.0%; of CT/MRI = 95.7%; 18F-FDG vs 123I-MIBG: difference = 1.8%, 95% confidence interval [CI] = −14.8% to 14.8%, P = .210; 18F-FDG vs CT/MRI: difference = 18.9%, 95% CI = 9.4% to 28.3%, P < .001). The specificity was 90.2% for 18F-FDG, 91.8% for 123I-MIBG, and 90.2% for CT/MRI. 18F-FDG uptake was higher in succinate dehydrogenase complex– and von Hippel–Lindau syndrome–related tumors than in multiple endocrine neoplasia type 2 (MEN2) related tumors. For metastases, sensitivity was greater for 18F-FDG and CT/MRI than for 123I-MIBG (sensitivity of 18F-FDG = 82.5%; of 123I-MIBG = 50.0%; of CT/MRI = 74.4%; 18F-FDG vs 123I-MIBG: difference = 32.5%, 95% CI = 22.3% to 42.5%, P < .001; CT/MRI vs 123I-MIBG: difference = 24.4%, 95% CI = 11.3% to 31.6%, P < .001). For bone metastases, 18F-FDG was more sensitive than CT/MRI (sensitivity of 18

  19. [{sup 18}F]FDG-PET in large vessel vasculitis; [{sup 18}F]FDG-PET bei Grossgefaess-Vaskulitiden

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, A.S.D.; Walter, M.A. [Universitaetsspital Basel (Switzerland). Inst. fuer Nuklearmedizin

    2007-06-15

    [{sup 18}F]FDG-PET is a non-invasive metabolic imaging modality based on the regional distribution of fluorine-18-fluorodeoxyglucose that is highly effective in assessing the activity and the extent of giant cell arteritis and Takayasu's arteritis. It has shown to identify more affected vascular regions than morphologic imaging with Magnetic Resonance Imaging in both diseases. A visual grading of vascular [{sup 18}F]FDG-uptake helps to discriminate arteritis from atherosclerosis und therefore provides high specificity. High sensitivity is reached by scanning during the active inflammatory phase. [{sup 18}F]FDG-PET has the potential to develop into a valuable tool in the diagnostic work-up of giant cell arteritis and Takayasu's arteritis, respectively, and might become a first-line investigation technique. Therefore consensus regarding the most favorable imaging procedure as well as further clinical evidence is needed. The purpose of this review is to summarize current information on the present clinical data and to assist nuclear medicine practitioners in recommending, performing and interpreting the results of [{sup 18}F]FDG-PET in patients with suspected large vessel vasculitis. (orig.)

  20. Insulinoma imaging with glucagon-like peptide-1 receptor targeting probe (18)F-FBEM-Cys (39)-exendin-4.

    Science.gov (United States)

    Xu, Yuping; Pan, Donghui; Xu, Qing; Zhu, Chen; Wang, Lizhen; Chen, Fei; Yang, Runlin; Luo, Shineng; Yang, Min

    2014-09-01

    Glucagon-like peptide-1 receptor (GLP-1R) is a specific target for insulinomas imaging since it is overexpressed in the tumor. Exendin-4 exhibits high affinity for the GLP-1R. In this study, a novel (18)F-labeled exendin-4 analog, (18)F-FBEM-Cys(39)-exendin-4, was synthesized and its potentials for GLP-1R imaging were also evaluated. (18)F-FBEM was synthesized by coupling (18)F-fluorobenzoic acid ((18)F-FBA) with N-(2-aminoethyl) maleimide, and the reaction conditions were optimized. Cys(39)-exendin-4 was then conjugated with (18)F-FBEM to obtain (18)F-FBEM-Cys(39)-exendin-4. The GLP-1R targeting potential and pharmacokinetic profile of the tracer were analyzed in INS-1 insulinoma and MDA-MB-435 breast tumor model, respectively. Under the optimal conditions, the yield of radiolabeled (18)F-FBEM was 49.1 ± 2.0 % (based on (18)F-FBA, non-decay corrected). The yield of (18)F-FBEM-Cys(39)-exendin-4 was 35.1 ± 2.6 % (based on the starting (18)F-FBEM, non-decay corrected). The radiochemical purity of (18)F-FBEM-Cys(39)-exendin-4 is >95 %, and the specific activity was at least 35 GBq/μmol. The GLP-1R-positive INS-1 insulinoma xenograft was clearly visible with good contrast to background, whereas GLP-1R-negative MDA-MB435 breast tumor was barely visible. Low levels of radioactivity were also detected at pancreas and lungs due to few GLP-1R expressions. GLP-1R binding specificity was demonstrated by reduced INS-1 tumor uptake of the tracer after coinjection with an excess of unlabeled Cys(39)-exendin-4 at 1 h postinjection. The thiol-reactive reagent, (18)F-FBEM, was prepared with high yield and successfully conjugated to Cys(39)-exendin-4. Favorable preclinical data showing specific and effective tumor targeting by (18)F-FBEM-Cys(39)-exendin-4 suggest that the tracer may be a potential probe for insulinomas imaging.

  1. Clinicopathological and prognostic relevance of uptake level using 18F-fluorodeoxyglucose positron emission tomography/computed tomography fusion imaging (18F-FDG PET/CT) in primary breast cancer

    International Nuclear Information System (INIS)

    Ueda, Shigeto; Tsuda, Hitoshi; Asakawa, Hideki

    2008-01-01

    Using integrated 18 F-fluorodeoxyglucose positron emission tomography/computed tomography fusion imaging ( 18 F-FDG PET/CT), the clinical significance of 18 F-FDG uptake was evaluated in patients with primary breast cancer. Clinicopathological correlation with the level of maximum standardized uptake values (SUV) 60 min obtained from preoperative 18 F-FDG PET/CT were examined in 152 patients with primary breast cancer. The prognostic impact of the level of SUV was explored using simulated prognosis derived from computed program Adjuvant! in 136 (89%) patients with invasive ductal carcinoma (IDC). High SUV level was significantly correlated with tumor invasive size (≤2 cm) (P 18 F-FDG would be predictive of poor prognosis in patients with primary breast cancer, and aggressive features of cancer cells in patients with early breast cancer. 18 F-FDG PET/CT could be a useful tool to pretherapeutically predict biological characteristics and baseline risk of breast cancer. (author)

  2. In vivo biodistribution of two [18F]-labelled muscarinic cholinergic receptor ligands: 2-[18F]- and 4-[18F]-fluorodexetimide

    International Nuclear Information System (INIS)

    Wilson, A.A.; Scheffel, U.A.; Dannals, R.F.; Stathis, M.; Ravert, H.T.; Wagner, H.N. Jr.

    1991-01-01

    Two [ 18 F]-labelled analogues of the potent muscarinic cholinergic receptor (m-AChR) antagonist, dexetimide, were evaluated as potential ligands for imaging m-AChR by positron emission tomography (PET). Intravenous administration of both 2-[ 18 F]- or 4-[ 18 F]-fluorodexetimide resulted in high brain uptake of radioactivity in mice. High binding levels were observed in m-AChR rich areas, such as cortex and striatum, with low levels in the receptor-poor cerebellum. Uptake of radioactivity was saturable and could be blocked by pre-administration of dexetimide or atropine. Drugs with different sites of action were ineffective at blocking receptor binding. The results indicate that both radiotracers are promising candidates for use in PET studies

  3. PET imaging of cerebral metabolic change in tinnitus using 18F-FDG

    International Nuclear Information System (INIS)

    Tian Jiahe; Wang Hongtian; Yin Dayi; Yao Shulin; Shao Mingzhe; Yang Weiyan; Jiang Sichang

    2000-01-01

    Tinnitus is an auditory disorder hardly assessable by clinical technology. PET imaging of the brain in 13 cases with and 10 without tinnitus was undertaken at 40 min after injection of 280-440 MBq 18 F-FDG. To ensure the quality of the PET study, all cases followed a normalized procedure with visual and auditory blockage. CT/MRI imaging and routine acoustic tests were carried out in all subjects. PET revealed that an increased uptake of 18 F-FDG at left med-temporal lobe (primary auditory center, PAC) present exclusively in tinnitus, regardless the side of hearing hallucination. Significant asymmetry was noted between left and right PAC, but not at other cortex area. While control cases showed no asymmetric uptake between two hemispheres. The abnormal PAC uptake did not respond to external pure sound stimulus, nor did it relate to the severity of hearing loss assessed by acoustic tests. No anatomical or morphological alteration could be proven on CT/MRI. In conclusion, PET/ 18 F-FDG objectively revealed an increased metabolic change at left PAC in tinnitus, which is of diagnostic value; and there is evidence suggesting tinnitus is most likely induced by a functional change in the brain

  4. One-step radiosynthesis of {sup 18}F-AlF-NOTA-RGD{sub 2} for tumor angiogenesis PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuanglong; Liu, Hongguang; Xu, Yingding; Cheng, Zhen [Stanford University, Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Bio-X Program, Department of Radiology, Stanford, CA (United States); Jiang, Han [Stanford University, Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Bio-X Program, Department of Radiology, Stanford, CA (United States); Institute of Nuclear Medicine and Molecular Imaging, and the Second Affiliated Hospital of Zhejiang University School of Medicine, Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Department of Nuclear Medicine, Medical PET Center, Hangzhou, Zhejiang (China); Zhang, Hong [Institute of Nuclear Medicine and Molecular Imaging, and the Second Affiliated Hospital of Zhejiang University School of Medicine, Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Department of Nuclear Medicine, Medical PET Center, Hangzhou, Zhejiang (China)

    2011-09-15

    One of the major obstacles of the clinical translation of {sup 18}F-labeled arginine-glycine-aspartic acid (RGD) peptides has been the laborious multistep radiosynthesis. In order to facilitate the application of RGD-based positron emission tomography (PET) probes in the clinical setting we investigated in this study the feasibility of using the chelation reaction between Al{sup 18}F and a macrocyclic chelator-conjugated dimeric RGD peptide as a simple one-step {sup 18}F labeling strategy for development of a PET probe for tumor angiogenesis imaging. Dimeric cyclic peptide E[c(RGDyK)]{sub 2} (RGD{sub 2}) was first conjugated with a macrocyclic chelator, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), and the resulting bioconjugate NOTA-RGD{sub 2} was then radiofluorinated via Al{sup 18}F intermediate to synthesize {sup 18}F-AlF-NOTA-RGD{sub 2}. Integrin binding affinities of the peptides were assessed by a U87MG cell-based receptor binding assay using {sup 125}I-echistatin as the radioligand. The tumor targeting efficacy and in vivo profile of {sup 18}F-AlF-NOTA-RGD{sub 2} were further evaluated in a subcutaneous U87MG glioblastoma xenograft model by microPET and biodistribution. NOTA-RGD{sub 2} was successfully {sup 18}F-fluorinated with good yield within 40 min using the Al{sup 18}F intermediate. The IC{sub 50} of {sup 19}F-AlF-NOTA-RGD{sub 2} was determined to be 46 {+-} 4.4 nM. Quantitative microPET studies demonstrated that {sup 18}F-AlF-NOTA-RGD{sub 2} showed high tumor uptake, fast clearance from the body, and good tumor to normal organ ratios. NOTA-RGD{sub 2} bioconjugate has been successfully prepared and labeled with Al{sup 18}F in one single step of radiosynthesis. The favorable in vivo performance and the short radiosynthetic route of {sup 18}F-AlF-NOTA-RGD{sub 2} warrant further optimization of the probe and the radiofluorination strategy to accelerate the clinical translation of {sup 18}F-labeled RGD peptides. (orig.)

  5. 18F fluorination using macrocyclic polyethers

    International Nuclear Information System (INIS)

    Klatte, B.; Knoechel, A.

    The aim of this work is the nucleophilic substitution labelling with 18 F with high selectivity and yield for a short reaction time. Labelling with little or no carrier presumes that 18 F is obtained in anhydrons form. Starting with the production via the nuclear reaction 20 Ne(d,α) 18 F, the 18 F formed is to be continuously converted into an alkali polyether complex whose purpose is to increase the reactivity of the fluoride (compared to the non-complexed anion form), so that nucleophilic substitution reactions can be carried out faster and more carefully. A report is given on the working program and on first results to optimize the carrier-poor synthesis with polyethers as synthesis agent. (RB) [de

  6. Safety, pharmacokinetics, metabolism and radiation dosimetry of 18F-tetrafluoroborate (18F-TFB) in healthy human subjects.

    Science.gov (United States)

    Jiang, Huailei; Schmit, Nicholas R; Koenen, Alex R; Bansal, Aditya; Pandey, Mukesh K; Glynn, Robert B; Kemp, Bradley J; Delaney, Kera L; Dispenzieri, Angela; Bakkum-Gamez, Jamie N; Peng, Kah-Whye; Russell, Stephen J; Gunderson, Tina M; Lowe, Val J; DeGrado, Timothy R

    2017-10-27

    18 F-Tetrafluoroborate ( 18 F-TFB) is a promising iodide analog for PET imaging of thyroid cancer and sodium/iodide symporter (NIS) reporter activity in viral therapy applications. The aim of this study was to evaluate the safety, pharmacokinetics, biodistribution, and radiation dosimetry of high-specific activity 18 F-TFB in healthy human subjects. 18 F-TFB was synthesized with specific activity of 3.2 ± 1.3 GBq/μmol (at the end of synthesis). Dynamic and whole-body static PET/CT scans over 4 h were performed after intravenous administration of 18 F-TFB (333-407 MBq) in four female and four male healthy volunteers (35 ± 11 years old). Samples of venous blood and urine were collected over the imaging period and analyzed by ion-chromatography HPLC to determine tracer stability. Vital signs and clinical laboratory safety assays were measured to evaluate safety. 18 F-TFB administration was well tolerated with no significant findings on vital signs and no clinically meaningful changes in clinical laboratory assays. Left-ventricular blood pool time-activity curves showed a multi-phasic blood clearance of 18 F-radioactivity with the two rapid clearance phases over the first 20 min, followed by a slower clearance phase. HPLC analysis showed insignificant 18 F-labeled metabolites in the blood and urine over the length of the study (4 h). High uptakes were seen in the thyroid, stomach, salivary glands, and bladder. Urinary clearance of 18 F-TFB was prominent. Metabolic stability was evidenced by low accumulation of 18 F-radioactivity in the bone. Effective doses were 0.036 mSv/MBq in males and 0.064 mSv/MBq in females (p = 0.08, not significant). This initial study in healthy human subjects showed 18 F-TFB was safe and distributed in the human body similar to other iodide analogs. These data support further translational studies with 18 F-TFB as NIS gene reporter and imaging biomarker for thyroid cancer and other disease processes that import iodide.

  7. Biodistribution and stability studies of [18F]Fluoroethylrhodamine B, a potential PET myocardial perfusion agent

    International Nuclear Information System (INIS)

    Gottumukkala, Vijay; Heinrich, Tobias K.; Baker, Amanda; Dunning, Patricia; Fahey, Frederic H.; Treves, S. Ted; Packard, Alan B.

    2010-01-01

    Introduction: Fluorine-18-labeled rhodamine B was developed as a potential positron emission tomography (PET) tracer for the evaluation of myocardial perfusion, but preliminary studies in mice showed no accumulation in the heart suggesting that it was rapidly hydrolyzed in vivo in mice. A study was therefore undertaken to further evaluate this hypothesis. Methods: [ 18 F]Fluoroethylrhodamine B was equilibrated for 2 h at 37 deg. C in human, rat and mouse serum and in phosphate-buffered saline. Samples were removed periodically and assayed by high-performance liquid chromatography. Based on the results of the stability study, microPET imaging and a biodistribution study were carried out in rats. Results: In vitro stability studies demonstrated that [ 18 F]fluoroethylrhodamine B much more stable in rat and human sera than in mouse serum. After 2 h, the compound was >80% intact in rat serum but 18 F-labeled rhodamines should accumulate in the heart. Conclusions: [ 18 F]Fluoroethylrhodamine B is more stable in rat and human sera than it is in mouse serum. This improved stability is demonstrated by the high uptake of the tracer in the rat heart in comparison to the absence of visible uptake in the mouse heart. These observations suggest that 18 F-labeled rhodamines are promising candidates for more extensive evaluation as PET tracers for the evaluation of myocardial perfusion.

  8. PET imaging of angiogenesis after myocardial infarction/reperfusion using a one-step labeled integrin-targeted tracer {sup 18}F-AlF-NOTA-PRGD2

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Haokao [The Fourth Military Medical University, Department of Cardiology, Xijing Hospital, Xi' an (China); National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Laboratory of Molecular Imaging and Nanomedicine (LOMIN), Bethesda, MD (United States); Lang, Lixin; Guo, Ning; Quan, Qimeng; Hu, Shuo; Kiesewetter, Dale O.; Niu, Gang; Chen, Xiaoyuan [National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Laboratory of Molecular Imaging and Nanomedicine (LOMIN), Bethesda, MD (United States); Cao, Feng [The Fourth Military Medical University, Department of Cardiology, Xijing Hospital, Xi' an (China)

    2012-04-15

    The {alpha}{sub v}{beta}{sub 3} integrin represents a potential target for noninvasive imaging of angiogenesis. The purpose of this study was to evaluate a novel one-step labeled integrin {alpha}{sub v}{beta}{sub 3}-targeting positron emission tomography (PET) probe, {sup 18}F-AlF-NOTA-PRGD2, for angiogenesis imaging in a myocardial infarction/reperfusion (MI/R) animal model. Male Sprague-Dawley rats underwent 45-min transient left coronary artery occlusion followed by reperfusion. The myocardial infarction was confirmed by ECG, {sup 18}F-fluorodeoxyglucose (FDG) imaging, and cardiac ultrasound. In vivo PET imaging was used to determine myocardial uptake of {sup 18}F-AlF-NOTA-PRGD2 at different time points following reperfusion. The control peptide RAD was labeled with a similar procedure and used to confirm the specificity. Ex vivo autoradiographic analysis and CD31/CD61 double immunofluorescence staining were performed to validate the PET results. Myocardial origin of the {sup 18}F-AlF-NOTA-PRGD2 accumulation was confirmed by {sup 18}F-FDG and autoradiography. PET imaging demonstrated increased focal accumulation of {sup 18}F-AlF-NOTA-PRGD2 in the infarcted area which started at day 3 (0.28 {+-} 0.03%ID/g, p < 0.05) and peaked between 1 and 3 weeks (0.59 {+-} 0.16 and 0.55 {+-} 0.13%ID/g, respectively). The focal accumulation decreased but still kept at a higher level than the sham group after 4 months of reperfusion (0.31 {+-} 0.01%ID/g, p < 0.05). Pretreatment with unlabeled arginine-glycine-aspartic acid (RGD) peptide significantly decreased tracer uptake, indicating integrin specificity of this tracer. At 1 week after MI/R, uptake of the control tracer {sup 18}F-AlF-NOTA-RAD that does not bind to integrin, in the infarcted area, was only 0.21 {+-} 0.01%ID/g. Autoradiographic imaging showed the same trend of uptake in the myocardial infarction area. The time course of focal tracer uptake was consistent with the pattern of vascular density and integrin {beta

  9. In vivo imaging of monocyte trafficking with 18F-fluorodeoxyglucose labeled monocytes

    International Nuclear Information System (INIS)

    Paik, Jin Young; Lee, Kyung Han; Han, Yu Mi; Choe, Yearn Seong; Kim, Byung Tae

    2000-01-01

    Since the ability to monitor in vivo monocyte trafficking would contribute to our understanding of the pathophysiology of various inflammatory disorders, we investigated the feasibility of labeling human monocytes with 18 F-FDG. Human monocytes were separated by Ficoll/Hypaque gradient and purity was assessed by flow cytometry. The influence of insulin and/or glucose on labeling efficiency was evaluated. Cell viability and activation was measured with trypan blue exclusion and hydrogen peroxide assays, respectively. Label stability was measured for up to 18 hr, and the effect of insulin pre-incubation on FDG washout was investigated. PET images were acquired in SD rats at various time points after injection of FDG labeled monocytes. Monocytes were >85% pure, and labeling efficiency was 35% for 1x106 cells after 40 min incubation with 2 mCi 18 F-FDG without insulin. Pre-incubation with 10∼100 nM insulin significantly increased FDG uptake which reached 400% of baseline levels, whereas presence of glucose or serum decreased FDG uptake. Labeled cells were >90% viable for up to 22 hr, and the labeling process did appear to significantly activate cells, Washout studies however, demonstrated gradual washout of the FDG from monocytes after initial uptake PET images of FDG labeled monocytes in SD rats showed consistent findings. Utilizing insulin effects on cellular glucose metabolism may be a feasible way of labeling monocytes with 18 F-FDG for PET imaging. However, gradual washout of FDG after initial uptake poses as a potential problem which needs to be addressed before practical application

  10. Development of [18F]halofluorination and [18F]fluoride ion displacement reactions for the synthesis of F-18 labelled radiopharmaceuticals

    International Nuclear Information System (INIS)

    Chi, D.Y.

    1986-01-01

    Two fluorine-18 labeling methods, [ 18 F]halofluorination and [ 18 F]fluoride ion displacement reactions, have been developed to assess their potential for labeling molecules with the positron-emitting radionuclide fluorine-18 at the no-carrier-added level. Olefin halofluorination involves the in situ generation of a halogen-fluoride reagent and subsequent addition to an olefin. The characteristics of this reaction were investigated with three model olefins (allylbenzene, 1-hexene, and propene). A two-step method for the preparation of fluoroalkyl substituted amines and amides has been achieved. The sequence involves fluoride ion displacement of trifluoromethanesulfonates (triflates) from short-chain haloalkyl triflates, followed by fluoroalkylation of the amine or amide. Alternatively, short-chain fluoroalkyl halides can be prepared by halofluorination of a terminal olefin. These reactions have been used to prepare various fluoroalkyl derivatives of 1-phenylpiperazine and N-fluoroalkyl derivatives of the neuroleptic agent spiperone. A series of fluorine-18 labeled N-fluoroalkylated spiperone derivatives were synthesized by N-alkylation of spiperone with fluoroalkyl halides

  11. Vasculitis assessment with [18F]F.D.G. positron emission tomography

    International Nuclear Information System (INIS)

    Liozon, E.; Monteil, J.

    2008-01-01

    [ 18 F]fluorodeoxyglucose ( 18 F.D.G.) positron emission tomography (PET) is a noninvasive metabolic imaging modality that is well suited to the assessment of activity and extent of large vessel vasculitis, such as giant cell arteritis and Takayasu arteritis. PET could be more effective than magnetic resonance imaging in detecting the earliest stages of vascular wall inflammation. The visual grading of vascular [ 18 F]F.D.G. uptake makes it possible to discriminate arteritis from atherosclerosis, providing therefore high specificity. High sensitivity can be achieved provided scanning is performed during active inflammatory phase, preferably before starting corticosteroid treatment. Large scale prospective studies are needed to determine the exact value of PET imaging in assessing the large vessel vasculitis outcome and response to immunosuppressive treatment

  12. Effect of subcutaneous injection of insulin on 18F-FDG myocardial imaging in diabetics

    International Nuclear Information System (INIS)

    Tian Yueqin; Shi Rongfang; Guo Feng; Wei Hongxing; Wu Qingwen; Liu Xiujie

    2001-01-01

    Objective: To evaluate the effect of subcutaneous injection of insulin on 18 F-fluorodeoxyglucose (FDG) myocardial imaging in patients with diabetes mellitus. Methods: Fifty-seven patients with coronary artery disease complicated with diabetes mellitus [mean age (60 +- 8) years] underwent 18 F-FDG PET and dual isotope simultaneous acquisition SPECT with 99 Tc m -MIBI/ 18 F-FDG. Thirty minutes before FDG injection, blood glucose was measured with an automatic glucose analyzer and insulin was subcutaneously used, the dose was adjusted according to the level of blood glucose. Results: Regression analysis showed that the insulin was positively associated with blood glucose. The linear regression analysis showed that the correlation between dose of insulin (y) and blood glucose (x) was good, r 0.8172; the linear regression equation was y = -5.4 + 1.2x. 52 of 57 images were of good quality with 91% success rate. Conclusion: Subcutaneous injection of insulin is an effective and simple method for obtaining cardiac FDG images of good quality in patients with diabetes mellitus

  13. {sup 18}F-F.D.G. PET imaging of infection and inflammation: intestinal, prosthesis replacements, fibrosis, sarcoidosis, tuberculosis..; La TEP au {sup 18}F-FDG dans la pathologie inflammatoire et infectieuse: intestinale, prothetique, fibrose, sarcoidose, tuberculose..

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Cortes, M.; Caresia, A.P.; Juan, R. de; Vidaller, A.; Mana, J.; Martinez-Yelamos, S.; Gamez, C. [Hospital Universitari de Bellvitge, Service TEP-Centre IDI, Services de Medecine Interne, Barcelone (Spain)

    2008-10-15

    Nuclear medicine plays an important role in the evaluation of infection and inflammation. A variety of diagnostic methods are available for imaging this inflammation and infection, most notably computed tomography, {sup 68}Ga scintigraphy or radionuclide labeled leucocytes. Fluorine 18 fluorodeoxyglucose ({sup 18}F-F.D.G.) is a readily available radiotracer that offers rapid, exquisitely sensitive high-resolution images by positron emission tomography (PET). Inflammation can be acute or chronic, the former showing predominantly neutrophilic granulocyte infiltrates, whereas in the latter, macrophages predominate. F.D.G. uptake in infection is based on the fact that mononuclear cells and granulocytes use large quantities of glucose by way of the hexose monophosphate shunts. {sup 18}F-F.D.G. PET accurately helps diagnose spinal osteomyelitis, diabetic foot and in inflammatory conditions such as sarcoidosis and tuberculosis.(it appears to be useful for defining the extent of disease and monitoring response to treatment). {sup 18}F-F.D.G. PET can also help localize the source of fever of undetermined origin, thereby guiding additional testing. {sup 18}F-F.D.G. PET may be of limited usefulness in postoperative patients and in patients with a failed joint prosthesis or bowel inflammatory disease. In this review, we will focus on the role of {sup 18}F-F.D.G. PET in the management of patients with inflammation or suspected or confirmed infection.

  14. Value of 18F-3,4-dihydroxyphenylalanine PET/MR image fusion in pediatric supratentorial infiltrative astrocytomas: a prospective pilot study.

    Science.gov (United States)

    Morana, Giovanni; Piccardo, Arnoldo; Milanaccio, Claudia; Puntoni, Matteo; Nozza, Paolo; Cama, Armando; Zefiro, Daniele; Cabria, Massimo; Rossi, Andrea; Garrè, Maria Luisa

    2014-05-01

    Infiltrative astrocytomas (IAs) represent a group of astrocytic gliomas ranging from low-grade to highly malignant, characterized by diffuse invasion of the brain parenchyma. When compared with their adult counterpart, pediatric IAs may be considered biologically distinct entities; nevertheless, similarly to those in adults they represent a complex oncologic challenge. The aim of this study was to investigate the diagnostic role, clinical contribution, and prognostic value of fused (18)F-3,4-dihydroxyphenylalanine ((18)F-DOPA) PET/MR images in pediatric supratentorial IAs. Pediatric patients with supratentorial IAs involving at least 2 cerebral lobes, either newly diagnosed or with suspected disease progression, prospectively underwent (18)F-DOPA PET and conventional MR imaging, performed within 10 d of each other. (18)F-DOPA PET data were interpreted qualitatively and semiquantitatively, fusing images with MR images. PET scans were classified as positive if tumors identified on MR imaging exhibited tracer uptake above the level of the corresponding contralateral normal brain. Maximum standardized uptake values, tumor-to-normal contralateral tissue ratios, and tumor-to-normal striatum ratios were calculated for all tumors. Correlations between the degree and extent of (18)F-DOPA uptake, MR imaging tumor characteristics, and histologic results were investigated. The contribution of (18)F-DOPA PET/MR image fusion was considered relevant if it enabled one to select the most appropriate biopsy site, discriminate between disease progression and treatment-related changes, or influence treatment strategy. The patient's outcome was finally correlated with (18)F-DOPA uptake. Thirteen patients (8 boys and 5 girls) were included (5 diffuse astrocytomas, 2 anaplastic astrocytomas, 5 gliomatosis cerebri, and 1 glioblastoma multiforme). The (18)F-DOPA uptake pattern was heterogeneous in all positive scans (9/13), revealing metabolic heterogeneities within each tumor. Significant

  15. Chilean experience in production of 18F-FDG from 18F in a reactor

    International Nuclear Information System (INIS)

    Chandia, M.; Godoy, N.; Errazu, X.; Hernandez; Figols, M.; Firnau, G.; Tronsoco, F.

    2000-01-01

    18 F-FDG (fluorine-deoxy-D-glucose) is an important and useful radiopharmaceutical for imaging and study of myocardial viability. Usually cyclotron-produced 18 F is used to label 18 F-FDG. The availability of a 5 MW Nuclear Reactor in Chile and the absence of a quality cyclotron to produce 18 F required that we developed a method in order to obtain suitable 18 F to label 18 F-FDG using the facilities we have at the Nuclear Center of La Reina, Chilean Nuclear Energy Commission. The nuclear reactions involved are: 6 Li(n,aα) 3 H and 16 O( 3 H,n) 18 F. Enriched Li 2 CO 3 ( 6 Li = 95 %) was irradiated in a 5 MW swimming pool type nuclear reactor with a neutron flux of 5. 7 x 10 13 n cm -2 s -1 for 4 hours. The irradiated Li 2 CO 3 was dissolved in H 2 SO 4 (1:1) and distilled as trimethylsilyl( 18 F)fluoride ( 18 F-TMS). The labelling of the sugar was carried out using the method described by Hamacker. The 18 F-TMS was trapped in a solution of acetonitrile, water, potassium carbonate, and kriptofix and hydrolysed to form 18 F fluoride. The nucleophilic complex reacts with 1,3,4,6, tetra-O-acetyl- 2-O-trifluoromethanesulfonyl-bβ-D-mannopyranose. The acetylated carbohydrate by acid hydrolysis produces 18 F-FDG. The final product was purified using an ion retarding resin (AG11-A8) and a system two Sep Pak Plus: Alumina and C-18 cartridge and sterilised by Millipore 0.22 μm filter. The 18 F-FDG was obtained in an apyrogenic and sterile solution. The 18 F radionuclide purity was higher than 99.9% and the radiochemical purity ofthe 18 F-FDG obtained was over than 99%. Residual 3 H content was as low as 20 (Bq 3 H/MBq 18 F-FDG.). The yield of the process 18 F-FDG was 13.2 %. (authors)

  16. Novel one-pot one-step synthesis of 2'-[(18)F]fluoroflumazenil (FFMZ) for benzodiazepine receptor imaging.

    Science.gov (United States)

    Yoon, Young Hyun; Jeong, Jae Min; Kim, Hyung Woo; Hong, Sung Hyun; Lee, Yun-Sang; Kil, Hee Sup; Chi, Dae Yoon; Lee, Dong Soo; Chung, June-Key; Lee, Myung Chul

    2003-07-01

    We describe the synthesis of 2'-[(18)F]fluoroflumazenil (FFMZ), which differs from the typically used [(18)F]fluoroethylflumazenil (FEFMZ) for benzodiazepine receptor imaging. For one-pot one-step labeling, the precursors, 2'-tosyloxyflumazenil (TFMZ) and 2'-mesyloxyflumazenil (MFMZ), were synthesized in three steps. The precursors were successfully labeled with no-carrier-added (18)F-fluoride which was activated by repeated azeotropic distillation with Kryptofix 2.2.2./potassium carbonate in MeCN. An automated system for labeling and purification of [(18)F]FFMZ was developed. Labeling efficiency and radiochemical purity of [(18)F]FFMZ after synthesis by the automated system were 68% and 98%, respectively. Specific binding of [(18)F]FFMZ to central benzodiazepine receptor of rats was demonstrated by phosphoimaging.

  17. Novel one-pot one-step synthesis of 2'-[18F]fluoroflumazenil (FFMZ) for benzodiazepine receptor imaging

    International Nuclear Information System (INIS)

    Young, Hyun Yoon; Jae, Min Jeong; Hyung, Woo Kim; Sung, Hyun Hong; Lee, Yun-Sang; Hee, Sup Kil; Dae, Yoon Chi; Dong, Soo Lee; Chung, June-Key; Myung, Chul Lee

    2003-01-01

    We describe the synthesis of 2'-[ 18 F]fluoroflumazenil (FFMZ), which differs from the typically used [ 18 F]fluoroethylflumazenil (FEFMZ) for benzodiazepine receptor imaging. For one-pot one-step labeling, the precursors, 2'-tosyloxyflumazenil (TFMZ) and 2'-mesyloxyflumazenil (MFMZ), were synthesized in three steps. The precursors were successfully labeled with no-carrier-added 18 F-fluoride which was activated by repeated azeotropic distillation with Kryptofix 2.2.2./potassium carbonate in MeCN. An automated system for labeling and purification of [ 18 F]FFMZ was developed. Labeling efficiency and radiochemical purity of [ 18 F]FFMZ after synthesis by the automated system were 68% and 98%, respectively. Specific binding of [ 18 F]FFMZ to central benzodiazepine receptor of rats was demonstrated by phosphoimaging

  18. Characterization of biological features of a rat F98 GBM model: A PET-MRI study with [18F]FAZA and [18F]FDG

    International Nuclear Information System (INIS)

    Belloli, Sara; Brioschi, Andrea; Politi, Letterio Salvatore; Ronchetti, Francesca; Calderoni, Sara; Raccagni, Isabella; Pagani, Antonella; Monterisi, Cristina; Zenga, Francesco; Zara, Gianpaolo; Fazio, Ferruccio; Mauro, Alessandro

    2013-01-01

    Introduction: The prognosis of malignant gliomas remains largely unsatisfactory for the intrinsic characteristics of the pathology and for the delayed diagnosis. Multimodal imaging based on PET and MRI may assess the dynamics of disease onset and progression allowing the validation of preclinical models of glioblastoma multiforme (GBM). The aim of this study was the characterization of a syngeneic rat model of GBM using combined in vivo imaging and immunohistochemistry. Methods: Four groups of Fischer rats were implanted in a subcortical region with increasing concentration of rat glioma F98 cells and weekly monitored with Gd-MR, [ 18 F]FDG- and [ 18 F]FAZA-PET starting one week after surgery. Different targets were evaluated on post mortem brain specimens using immunohistochemistry: VEGF, GFAP, HIF-1α, Ki-67 and nestin. Results: Imaging results indicated that tumor onset but not progression was related to the number of F98 cells. Hypoxic regions identified with [ 18 F]FAZA and high-glucose metabolism regions recognized with [ 18 F]FDG were located respectively in the core and in external areas of the tumor, with partial overlap and remodeling during disease progression. Histological and immunohistochemical analysis confirmed PET/MRI results and revealed that our model resumes biological characteristics of human GBM. IHC and PET studies showed that necrotic regions, defined on the basis of [ 18 F]FDG uptake reduction, may include hypoxic clusters of vital tumor tissue identified with [ 18 F]FAZA. This last information is particularly relevant for the identification of the target volume during image-guided radiotherapy. Conclusions: In conclusion, the combined use of PET and MRI allows in vivo monitoring of the biological modification of F98 lesions during tumor progression

  19. Quantitative PET Imaging of Tissue Factor Expression Using 18F-labled Active Site Inhibited Factor VII

    DEFF Research Database (Denmark)

    Nielsen, Carsten H; Erlandsson, Maria; Jeppesen, Troels E

    2016-01-01

    Tissue factor (TF) is up regulated in many solid tumors and its expression is linked to tumor angiogenesis, invasion, metastasis and prognosis. A non-invasive assessment of tumor TF expression status is therefore of obvious clinical relevance. Factor VII (FVII) is the natural ligand to TF. Here we...... report the development of a new PET tracer for specific imaging of TF using an (18)F-labeled derivative of FVII. METHODS: Active site inhibited factor VIIa (FVIIai) was obtained by inactivation with phenylalanine-phenylalanine-arginine-chloromethyl ketone. FVIIai was radiolabeled with N-succinimidyl 4......-[(18)F]-fluorobenzoate ([(18)F]SFB) and purified. The corresponding product, [(18)F]FVIIai, was injected into nude mice with subcutaneous human pancreatic xenograft tumors (BxPC-3) and investigated using small animal PET/CT imaging 1, 2 and 4 hours after injection. Ex vivo biodistribution was performed...

  20. Radiosynthesis and biological evaluation of an 18F-labeled derivative of the novel pyrazolopyrimidine sedative-hypnotic agent indiplon

    International Nuclear Information System (INIS)

    Hoepping, Alexander; Scheunemann, Matthias; Fischer, Steffen; Deuther-Conrad, Winnie; Hiller, Achim; Wegner, Florian; Diekers, Michael; Steinbach, Joerg; Brust, Peter

    2007-01-01

    Introduction: Gamma amino butyric acid type A (GABA A ) receptors are involved in a variety of neurological and psychiatric diseases, which have promoted the development and use of radiotracers for positron emission tomography imaging. Radiolabeled benzodiazepine antagonists such as flumazenil have most extensively been used for this purpose so far. Recently, the non-benzodiazepine pyrazolopyrimidine derivative indiplon with higher specificity for the α 1 subtype of the GABA A receptor has been introduced for treatment of insomnia. The aim of this study was the development and biological evaluation of an 18 F-labeled derivative of indiplon. Methods: Both [ 18 F]fluoro-indiplon and its labeling precursor were synthesized by two-step procedures starting from indiplon. The radiosynthesis of [ 18 F]fluoro-indiplon was performed using the bromoacetyl precursor followed by multiple-stage purification using semipreparative HPLC and solid phase extraction. Stability, partition coefficients, binding affinities and regional brain binding were determined in vitro. Biodistribution and radiotracer metabolism were studied in vivo. Results: [ 18 F]Fluoro-indiplon was readily accessible in good yields (38-43%), with high purity and high specific radioactivity (>150 GBq/μmol). It displays high in vitro stability and moderate lipophilicity. [ 18 F]Fluoro-indiplon has an affinity to GABA A receptors comparable to indiplon (K i =8.0 nM vs. 3.4 nM). In vitro autoradiography indicates high [ 18 F]fluoro-indiplon binding in regions with high densities of GABA A receptors. However, ex vivo autoradiography and organ distribution studies show no evidence of specific binding of [ 18 F]fluoro-indiplon. Furthermore, the radiotracer is rapidly metabolized with high accumulation of labeled metabolites in the brain. Conclusions: Although [ 18 F]fluoro-indiplon shows good in vitro features, it is not suitable for in vivo imaging studies because of its metabolism. Structural modifications are

  1. Comparison of [18F]FLT and [18F]FDG in in vitro cancer cell uptake and glucose effect

    International Nuclear Information System (INIS)

    Soo Jung Lim; Jin-Sook Ryu; Heuiran Lee; Seok Young Kim; Seung Jun Oh; Dae Hyuk Moon

    2004-01-01

    [18F]FLT is a new radiopharmaceutical for cell proliferation. We compared [18F]FLT and [18F]FDG in in vitro cancer cell uptake and glucose effect. Method: In vitro cancer cell uptake of [18F]FLT was evaluated using SCC7(mouse squamous cell carcinoma). At 24 hours after seeding 1 x 106 cells/well in 6 well plates with RPMI 1640 medium, culture media were changed to medium with glucose free or glucose concentration of 100 mg/dl. Then, [18F]FLT 5 μCi/50 ml was added to each well. After incubation for 30, 60, 90, 120 minutes, cells were washed twice by PBS, and harvested using 0.25% trypsin-EDTA. After centrifugation and counting at gamma counter, cell uptake was calculated by % activity of cellular uptake to total activity of cell and supernatant. For comparison, same tumor cell uptake experiment was performed with [18F]FDG. Results: After incubation with SCC7 cell line for 30, 60, 90, 120 minutes, [18F]FLT showed 1.95%, 2.17%, 2.10% and 2.80% of cell uptake in glucose free media, respectively. The results [18F]FLT uptake in glucose 100 mg/dl media were 1.82%, 1.87%, 1.97%, and 2.94%, respectively. The results of [18F]FDG in glucose free media were 2.50%, 3.47%, 5.04%, and 10.4%, whereas those in glucose 100 mg/dl media were 1.60%, 1.79%, 1.53%, and 1.82%, respectively. Conclusion: In contrast to [18F]FDG, [18F]FLT uptake in cancer cell was not affected by glucose concentration. In physiologic glucose concentration, [18F]FLT uptake in SCC7 cell line was significantly higher than [18F]FDG uptake after 120 minutes incubation. In [18F]FLT PET imaging may not need fasting for preparation before imaging study. (authors)

  2. Prognostic value of tumour blood flow, [{sup 18}F]EF5 and [{sup 18}F]FDG PET/CT imaging in patients with head and neck cancer treated with radiochemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Komar, Gaber; Eskola, Olli; Sipilae, Hannu; Solin, Olof [Turku PET Centre, Turku (Finland); Lehtioe, Kaisa; Levola, Helena; Lindholm, Paula; Seppaelae, Jan [Turku University Hospital and University of Turku, Department of Oncology and Radiotherapy, Turku (Finland); Seppaenen, Marko [Turku PET Centre, Turku (Finland); Turku University Hospital and University of Turku, Department of Nuclear Medicine, Turku (Finland); Grenman, Reidar [Turku University Hospital and University of Turku, Department of Otorhinolaryngology, Head and Neck Surgery, Turku (Finland); Minn, Heikki [Turku PET Centre, Turku (Finland); Turku University Hospital and University of Turku, Department of Oncology and Radiotherapy, Turku (Finland)

    2014-11-15

    In order to improve the treatment of squamous cell carcinoma of the head and neck, precise information on the treated tumour's biology is required and the prognostic importance of different biological parameters needs to be determined. The aim of our study was to determine the predictive value of pretreatment PET/CT imaging using [{sup 18}F]FDG, a new hypoxia tracer [{sup 18}F]EF5 and the perfusion tracer [{sup 15}O]H{sub 2}O in patients with squamous cell cancer of the head and neck treated with radiochemotherapy. The study group comprised 22 patients with confirmed squamous cell carcinoma of the head and neck who underwent a PET/CT scan using the above tracers before any treatment. Patients were later treated with a combination of radiochemotherapy and surgery. Parametric blood flow was calculated from dynamic [{sup 15}O]H{sub 2}O PET images using a one-tissue compartment model. [{sup 18}F]FDG images were analysed by calculating standardized uptake values (SUV) and metabolically active tumour volumes (MATV). [{sup 18}F]EF5 images were analysed by calculating tumour-to-muscle uptake ratios (T/M ratio). A T/M ratio of 1.5 was considered a significant threshold and used to determine tumour hypoxic subvolumes (HS) and hypoxic fraction area. The findings were finally correlated with the pretreatment clinical findings (overall stage and TNM stage) as well as the outcome following radiochemotherapy in terms of local control and overall patient survival. Tumour stage and T-classification did not show any significant differences in comparison to the patients' metabolic and functional characteristics measured on PET. Using the Cox proportional hazards model, a shorter overall survival was associated with MATV (p = 0.008, HR = 1.108), maximum [{sup 18}F]EF5 T/M ratio (p = 0.0145, HR = 4.084) and tumour HS (p = 0.0047, HR = 1.112). None of the PET parameters showed a significant effect on patient survival in the log-rank test, although [{sup 18}F]EF5 maximum T

  3. Multimodality imaging using proton magnetic resonance spectroscopic imaging and 18F-fluorodeoxyglucose-positron emission tomography in local prostate cancer

    Science.gov (United States)

    Shukla-Dave, Amita; Wassberg, Cecilia; Pucar, Darko; Schöder, Heiko; Goldman, Debra A; Mazaheri, Yousef; Reuter, Victor E; Eastham, James; Scardino, Peter T; Hricak, Hedvig

    2017-01-01

    AIM To assess the relationship using multimodality imaging between intermediary citrate/choline metabolism as seen on proton magnetic resonance spectroscopic imaging (1H-MRSI) and glycolysis as observed on 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) in prostate cancer (PCa) patients. METHODS The study included 22 patients with local PCa who were referred for endorectal magnetic resonance imaging/1H-MRSI (April 2002 to July 2007) and 18F-FDG-PET/CT and then underwent prostatectomy as primary or salvage treatment. Whole-mount step-section pathology was used as the standard of reference. We assessed the relationships between PET parameters [standardized uptake value (SUVmax and SUVmean)] and MRSI parameters [choline + creatine/citrate (CC/Cmax and CC/Cmean) and total number of suspicious voxels] using spearman’s rank correlation, and the relationships of PET and 1H-MRSI index lesion parameters to surgical Gleason score. RESULTS Abnormal intermediary metabolism on 1H-MRSI was present in 21/22 patients, while abnormal glycolysis on 18F-FDG-PET/CT was detected in only 3/22 patients. Specifically, index tumor localization rates were 0.95 (95%CI: 0.77-1.00) for 1H-MRSI and 0.14 (95%CI: 0.03-0.35) for 18F-FDG-PET/CT. Spearman rank correlations indicated little relationship (ρ = -0.36-0.28) between 1H-MRSI parameters and 18F-FDG-PET/CT parameters. Both the total number of suspicious voxels (ρ = 0.55, P = 0.0099) and the SUVmax (ρ = 0.46, P = 0.0366) correlated weakly with the Gleason score. No significant relationship was found between the CC/Cmax, CC/Cmean or SUVmean and the Gleason score (P = 0.15-0.79). CONCLUSION The concentration of intermediary metabolites detected by 1H MRSI and glycolytic flux measured 18F-FDG PET show little correlation. Furthermore, only few tumors were FDG avid on PET, possibly because increased glycolysis represents a late and rather ominous event in the progression of PCa. PMID:28396727

  4. 18F-FDG PET imaging before and after capsulotomy in obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    Guan Yihui; Sun Bomin; Zhang Haiying; Lin Xiangtong; Zuo Chuantao; Zhao Jun; Liu Yongchang

    2001-01-01

    Objective: To evaluate the therapeutic effect of surgery in obsessive-compulsive disorder (OCD) patients with 18 F-FDG PET imaging. Methods: 18 F-fluorodeoxyglucose (FDG)-PET images were obtained in 9 patients with OCD (6 male and 3 female) before and after 3 to 4 weeks of bilateral capsulotomy, PET images were also performed in 10 controls. Each OCD patient was also evaluated both before and after the surgery by various neuropsychiatric tests including Y-BOCS, HAMA and HAMD. Results: Compare with normal controls, 9 cases of OCD demonstrated high 18 F-FDG uptake in frontal, cingulate, orbital gyri, caudate and thalamus. After capsulotomy, 6 of 9 cases showed better results, the metabolic ratios were also significant decreased in the following areas: anterior cingule gyrus: right (P < 0.001) left (P < 0.05), caudate nuclei: right (P < 0.01) left (P < 0.05), anterolateral orbital frontal cortex: right (P < 0.01) left (P < 0.05), there is no significant changes in bilateral thalamus. Meanwhile, the OCD scales also have significant decreased values in Y-BOCS (P < 0.05) and HARS (P < 0.001). Conclusions: These results indicated that cingule-striatum-pallidum-thalamic circuit is closely related to OCD, and glucose metabolism in these areas decreases significantly after bilateral capsulotomy

  5. Radiolabelling and evaluation of novel haloethylsulfoxides as PET imaging agents for tumor hypoxia

    International Nuclear Information System (INIS)

    Laurens, Evelyn; Yeoh, Shinn Dee; Rigopoulos, Angela; Cao, Diana; Cartwright, Glenn A.; O'Keefe, Graeme J.; Tochon-Danguy, Henri J.; White, Jonathan M.; Scott, Andrew M.; Ackermann, Uwe

    2012-01-01

    The significance of imaging hypoxia with the PET ligand [ 18 F]FMISO has been demonstrated in a variety of cancers. However, the slow kinetics of [ 18 F]FMISO require a 2-h delay between tracer administration and patient scanning. Labelled chloroethyl sulfoxides have shown faster kinetics and higher contrast than [ 18 F]FMISO in a rat model of ischemic stroke. However, these nitrogen mustard analogues are unsuitable for routine production and use in humans. Here we report on the synthesis and in vitro and in vivo evaluation of two novel sulfoxides which we synthesised from a single precursor molecule via either 2-[ 18 F]fluoroethyl azide click chemistry or conventional nucleophilic displacement of a chloride leaving group. The yields of the click chemistry approach were 90±5% of [ 18 F] based on 2-[ 18 F]fluoroethyl azide, and the yields for the S N reaction were 15±5% of [ 18 F] based on K[ 18 F]F. Both radiotracers underwent metabolism in an in vitro assay using S9 liver fractions with biological half-lives of 32.39 and 43.32 min, respectively. Imaging studies using an SK-RC-52 tumor model in BALB/c nude mice have revealed that only [ 18 F] is retained in hypoxic tumors, whereas [ 18 F] is cleared from those tumors at a rate similar to that of muscle tissue. [ 18 F] has emerged as a promising new lead structure for further development of sulfoxide-based hypoxia imaging agents. In particular, the mechanism of uptake needs to be elucidated and changes to the chemical structure need to be made in order to reduce metabolism and improve radiotracer kinetics.

  6. Imaging findings and literature review of 18F-FDG PET/CT in primary systemic AL amyloidosis

    International Nuclear Information System (INIS)

    Lee, Joo Hee; Lee, Ga Yeon; Kim, Seok Jin; Kim, Ki Hyun; Jeon, Eun Seok; Lee, Kyung Han; Kim, Byung Tae; Choi, Joon Young

    2015-01-01

    Although several case reports and case series have described 18 F-FDG PET/CT in amyloidosis, the value of 18 F-FDG PET/CT for diagnosing amyloidosis has not been clarified. We investigated the imaging findings of 18 F-FDG PET/CT in patients with primary systemic AL amyloidosis. Subjects were 15 patients (M:F = 12:3; age, 61.5 ± 7.4 years) with histologically confirmed primary systemic AL amyloidosis who underwent pretreatment 18 F-FDG PET/CT to rule out the possibility of malignancy or for initial workup of alleged cancer. For involved organs, visual and semiquantitative analyses were performed on 18 F-FDG PET/CT images. In total, 22 organs (10 hearts, 5 kidneys, 2 stomachs, 2 colons, 1 ileum, 1 pancreas, and 1 liver) were histologically confirmed to have primary systemic AL amyloidosis. F-FDG uptake was significantly increased in 15 of the 22 organs (68.2 %; 10 hearts, 2 kidneys, 1 colon, 1 ileum, and 1 liver; SUV max  = 7.0 ± 3.2, range 2.1–14.1). However, in 11 of 15 PET-positive organs (78.6 %; 10 hearts and the ileum), it was difficult to differentiate pathological uptake from physiological uptake. Definitely abnormal 18 F-FDG uptake was found in only 4 of the 22 organs (18.2 %; 2 kidneys, 1 colon, and the liver). 18 F-FDG uptake was negative for pancreas and gastric lesions. Although 18 F-FDG PET/CT showed high uptake in two-thirds of the organs involving primary systemic AL amyloidosis, its sensitivity appeared to be low to make differentiation of pathological uptake from physiological uptake. However, due to the small number of cases, further study for the role of 18 F-FDG PET/CT in amyloidosis will be warranted

  7. A new assessment model for tumor heterogeneity analysis with [18]F-FDG PET images.

    Science.gov (United States)

    Wang, Ping; Xu, Wengui; Sun, Jian; Yang, Chengwen; Wang, Gang; Sa, Yu; Hu, Xin-Hua; Feng, Yuanming

    2016-01-01

    It has been shown that the intratumor heterogeneity can be characterized with quantitative analysis of the [18]F-FDG PET image data. The existing models employ multiple parameters for feature extraction which makes it difficult to implement in clinical settings for the quantitative characterization. This article reports an easy-to-use and differential SUV based model for quantitative assessment of the intratumor heterogeneity from 3D [18]F-FDG PET image data. An H index is defined to assess tumor heterogeneity by summing voxel-wise distribution of differential SUV from the [18]F-FDG PET image data. The summation is weighted by the distance of SUV difference among neighboring voxels from the center of the tumor and can thus yield increased values for tumors with peripheral sub-regions of high SUV that often serves as an indicator of augmented malignancy. Furthermore, the sign of H index is used to differentiate the rate of change for volume averaged SUV from its center to periphery. The new model with the H index has been compared with a widely-used model of gray level co-occurrence matrix (GLCM) for image texture characterization with phantoms of different configurations and the [18]F-FDG PET image data of 6 lung cancer patients to evaluate its effectiveness and feasibility for clinical uses. The comparison of the H index and GLCM parameters with the phantoms demonstrate that the H index can characterize the SUV heterogeneity in all of 6 2D phantoms while only 1 GLCM parameter can do for 1 and fail to differentiate for other 2D phantoms. For the 8 3D phantoms, the H index can clearly differentiate all of them while the 4 GLCM parameters provide complicated patterns in the characterization. Feasibility study with the PET image data from 6 lung cancer patients show that the H index provides an effective single-parameter metric to characterize tumor heterogeneity in terms of the local SUV variation, and it has higher correlation with tumor volume change after

  8. Radiolabelling and evaluation of a novel sulfoxide as a PET imaging agent for tumor hypoxia

    International Nuclear Information System (INIS)

    Laurens, Evelyn; Yeoh, Shinn Dee; Rigopoulos, Angela; Cao, Diana; Cartwright, Glenn A.; O'Keefe, Graeme J.; Tochon-Danguy, Henri J.; White, Jonathan M.; Scott, Andrew M.; Ackermann, Uwe

    2014-01-01

    [ 18 F]FMISO is the most widely validated PET radiotracer for imaging hypoxic tissue. However, as a result of the pharmacokinetics of [ 18 F]FMISO a 2 h wait between tracer administration and patient scanning is required for optimal image acquisition. In order to develop hypoxia imaging agents with faster kinetics, we have synthesised and evaluated several F-18 labelled anilino sulfoxides. In this manuscript we report on the synthesis, in vitro and in vivo evaluation of a novel fluoroethyltriazolyl propargyl anilino sulfoxide. The radiolabelling of the novel tracer was achieved via 2-[ 18 F]fluoroethyl azide click chemistry. Radiochemical yields were 23 ± 4% based on 2-[ 18 F]fluoroethyl azide and 7 ± 2% based on K[ 18 F]F. The radiotracer did not undergo metabolism or defluorination in an in vitro assay using S9 liver fractions. Imaging studies using SK-RC-52 tumors in BALB/c nude mice have indicated that the tracer may have a higher pO 2 threshold than [ 18 F]FMISO for uptake in hypoxic tumors. Although clearance from muscle was faster than [ 18 F]FMISO, uptake in hypoxic tumors was slower. The average tumor to muscle ratio at 2 h post injection in large, hypoxic tumors with a volume greater than 686 mm 3 was 1.7, which was similar to the observed ratio of 1.75 for [ 18 F]FMISO. Although the new tracer showed improved pharmacokinetics when compared with the previously synthesised sulfoxides, further modifications to the chemical structure need to be made in order to offer significant in vivo imaging advantages over [ 18 F]FMISO

  9. Image-derived input function in dynamic human PET/CT: methodology and validation with 11C-acetate and 18F-fluorothioheptadecanoic acid in muscle and 18F-fluorodeoxyglucose in brain

    International Nuclear Information System (INIS)

    Croteau, Etienne; Lavallee, Eric; Hubert, Laurent; Rousseau, Jacques A.; Lecomte, Roger; Labbe, Sebastien M.; Carpentier, Andre C.; Pifferi, Fabien; Cunnane, Stephen C.; Benard, Francois

    2010-01-01

    Despite current advances in PET/CT systems, blood sampling still remains the standard method to obtain the radiotracer input function for tracer kinetic modelling. The purpose of this study was to validate the use of image-derived input functions (IDIF) of the carotid and femoral arteries to measure the arterial input function (AIF) in PET imaging. The data were obtained from two different research studies, one using 18 F-FDG for brain imaging and the other using 11 C-acetate and 18 F-fluoro-6-thioheptadecanoic acid ( 18 F-FTHA) in femoral muscles. The method was validated with two phantom systems. First, a static phantom consisting of syringes of different diameters containing radioactivity was used to determine the recovery coefficient (RC) and spill-in factors. Second, a dynamic phantom built to model bolus injection and clearance of tracers was used to establish the correlation between blood sampling, AIF and IDIF. The RC was then applied to the femoral artery data from PET imaging studies with 11 C-acetate and 18 F-FTHA and to carotid artery data from brain imaging with 18 F-FDG. These IDIF data were then compared to actual AIFs from patients. With 11 C-acetate, the perfusion index in the femoral muscle was 0.34±0.18 min -1 when estimated from the actual time-activity blood curve, 0.29±0.15 min -1 when estimated from the corrected IDIF, and 0.66±0.41 min -1 when the IDIF data were not corrected for RC. A one-way repeated measures (ANOVA) and Tukey's test showed a statistically significant difference for the IDIF not corrected for RC (p 18 F-FTHA there was a strong correlation between Patlak slopes, the plasma to tissue transfer rate calculated using the true plasma radioactivity content and the corrected IDIF for the femoral muscles (vastus lateralis r=0.86, p=0.027; biceps femoris r=0.90, p=0.017). On the other hand, there was no correlation between the values derived using the AIF and those derived using the uncorrected IDIF. Finally, in the brain imaging

  10. Early [18F]florbetaben and [11C]PiB PET images are a surrogate biomarker of neuronal injury in Alzheimer's disease

    International Nuclear Information System (INIS)

    Tiepolt, Solveig; Patt, Marianne; Luthardt, Julia; Barthel, Henryk; Hesse, Swen; Sabri, Osama; Schroeter, Matthias L.; Hoffmann, Karl-Titus; Weise, David; Gertz, Hermann-Josef

    2016-01-01

    [ 18 F]FDG is a commonly used neuronal injury biomarker for early and differential diagnosis of dementia. Typically, the blood supply to the brain is closely coupled to glucose consumption. Early uptake of the Aβ tracer [ 11 C]PiB on PET images is mainly determined by cerebral blood flow and shows a high correlation with [ 18 F]FDG uptake. Uptake data for 18 F-labelled Aβ PET tracers are, however, scarce. We investigated the value of early PET images using the novel Aβ tracer [ 18 F]FBB in the diagnosis of Alzhimers disease (AD). This retrospective analysis included 22 patients with MCI or dementia who underwent dual time-point PET imaging with either [ 11 C]PiB (11 patients) or [ 18 F]FBB (11 patients) in routine clinical practice. Images were acquired 1 - 9 min after administration of both tracers and 40 - 70 min and 90 - 110 min after administration of [ 11 C]PiB and [ 18 F]FBB, respectively. The patients also underwent [ 18 F]FDG brain PET imaging. PET data were analysed visually and semiquantitatively. Associations between early Aβ tracer uptake and dementia as well as brain atrophy were investigated. Regional visual scores of early Aβ tracer and [ 18 F]FDG PET images were significantly correlated (Spearman's ρ = 0.780, P < 0.001). Global brain visual analysis revealed identical results between early Aβ tracer and [ 18 F]FDG PET images. In a VOI-based analysis, the early Aβ tracer data correlated significantly with the [ 18 F]FDG data (r = 0.779, P < 0.001), but there were no differences between [ 18 F]FBB and [ 11 C]PiB. Cortical SUVRs in regions typically affected in AD on early Aβ tracer and [ 18 F]FDG PET images were correlated with MMSE scores (ρ = 0.458, P = 0.032, and ρ = 0.456, P = 0.033, respectively). A voxel-wise group-based search for areas with relatively higher tracer uptake on early Aβ tracer PET images compared with [ 18 F]FDG PET images revealed a small cluster in the midbrain/pons; no significant clusters were found for the

  11. Synthesis of [18F]-labelled nebivolol as a β1-adrenergic receptor antagonist for PET imaging agent

    International Nuclear Information System (INIS)

    Kim, Taek Soo; Park, Jeong Hoon; Lee, Jun Young; Yang, Seung Dae; Chang, Dong Jo

    2017-01-01

    Selective β 1 -agonist and antagonists are used for the treatment of cardiac diseases including congestive heart failure, angina pectoris and arrhythmia. Selective β 1 -antagonists including nebivolol have high binding affinity on β 1 -adrenergic receptor, not β 2 -receptor mainly expressed in smooth muscle. Nebivolol is one of most selective β 1 -blockers in clinically used β 1 - blockers including atenolol and bisoprolol. We tried to develop clinically useful cardiac PET tracers using a selective β 1 -blocker. Nebivolol is C 2 -symmetric and has two chromane moiety with a secondary amino alcohol and aromatic fluorine. We adopted the general synthetic strategy using epoxide ring opening reaction. Unlike formal synthesis of nebivolol, we prepared two chromane building blocks with fluorine and iodine which was transformed to diaryliodonium salt for labelling of 18 F. Two epoxide building blocks were readily prepared from commercially available chromene carboxylic acids (1, 8). Then, the amino alcohol building block (15) was prepared by ammonolysis of epoxide (14) followed by coupling reaction with the other building block, epoxide (7). Diaryliodonium salt, a precursor for 18 F-aromatic substitution, was synthesized in moderate yield which was readily subjected to 18 F-aromatic substitution to give 18 F-labelled nebivolol

  12. Cholinergic PET imaging in infections and inflammation using "1"1C-donepezil and "1"8F-FEOBV

    International Nuclear Information System (INIS)

    Joergensen, Nis Pedersen; Hoegsberg Schleimann, Mariane; Alstrup, Aage K.O.; Knudsen, Karoline; Jakobsen, Steen; Bender, Dirk; Gormsen, Lars C.; Borghammer, Per; Mortensen, Frank V.; Madsen, Line Bille; Breining, Peter; Petersen, Mikkel Steen; Dagnaes-Hansen, Frederik

    2017-01-01

    Immune cells utilize acetylcholine as a paracrine-signaling molecule. Many white blood cells express components of the cholinergic signaling pathway, and these are up-regulated when immune cells are activated. However, in vivo molecular imaging of cholinergic signaling in the context of inflammation has not previously been investigated. We performed positron emission tomography (PET) using the glucose analogue 18F-FDG, and 11C-donepezil and 18F-FEOBV, markers of acetylcholinesterase and the vesicular acetylcholine transporter, respectively. Mice were inoculated subcutaneously with Staphylococcus aureus, and PET scanned at 24, 72, 120, and 144 h post-inoculation. Four pigs with post-operative abscesses were also imaged. Finally, we present initial data from human patients with infections, inflammation, and renal and lung cancer. In mice, the FDG uptake in abscesses peaked at 24 h and remained stable. The 11C-donepezil and 18F-FEOBV uptake displayed progressive increase, and at 120-144 h was nearly at the FDG level. Moderate 11C-donepezil and slightly lower 18F-FEOBV uptake were seen in pig abscesses. PCR analyses suggested that the 11C-donepezil signal in inflammatory cells is derived from both acetylcholinesterase and sigma-1 receptors. In humans, very high 11C-donepezil uptake was seen in a lobar pneumonia and in peri-tumoral inflammation surrounding a non-small cell lung carcinoma, markedly superseding the 18F-FDG uptake in the inflammation. In a renal clear cell carcinoma no 11C-donepezil uptake was seen. The time course of cholinergic tracer accumulation in murine abscesses was considerably different from 18F-FDG, demonstrating in the 11C-donepezil and 18F-FEOBV image distinct aspects of immune modulation. Preliminary data in humans strongly suggest that 11C-donepezil can exhibit more intense accumulation than 18F-FDG at sites of chronic inflammation. Cholinergic PET imaging may therefore have potential applications for basic research into cholinergic

  13. Cholinergic PET imaging in infections and inflammation using {sup 11}C-donepezil and {sup 18}F-FEOBV

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Nis Pedersen; Hoegsberg Schleimann, Mariane [Aarhus University Hospital, Department of Infectious Diseases, Aarhus (Denmark); Alstrup, Aage K.O.; Knudsen, Karoline; Jakobsen, Steen; Bender, Dirk; Gormsen, Lars C.; Borghammer, Per [Aarhus University Hospital, Department of Nuclear Medicine and PET Centre, Aarhus C (Denmark); Mortensen, Frank V. [Aarhus University Hospital, Department of Gastroenterology, Aarhus (Denmark); Madsen, Line Bille [Aarhus University Hospital, Department of Histopathology, Aarhus (Denmark); Breining, Peter [Aarhus University Hospital, Department of Endocrinology and Metabolism, Aarhus (Denmark); Petersen, Mikkel Steen [Aarhus University Hospital, Department of Clinical Immunology, Aarhus (Denmark); Dagnaes-Hansen, Frederik [Aarhus University, Department of Biomedicine, Aarhus (Denmark)

    2017-03-15

    Immune cells utilize acetylcholine as a paracrine-signaling molecule. Many white blood cells express components of the cholinergic signaling pathway, and these are up-regulated when immune cells are activated. However, in vivo molecular imaging of cholinergic signaling in the context of inflammation has not previously been investigated. We performed positron emission tomography (PET) using the glucose analogue 18F-FDG, and 11C-donepezil and 18F-FEOBV, markers of acetylcholinesterase and the vesicular acetylcholine transporter, respectively. Mice were inoculated subcutaneously with Staphylococcus aureus, and PET scanned at 24, 72, 120, and 144 h post-inoculation. Four pigs with post-operative abscesses were also imaged. Finally, we present initial data from human patients with infections, inflammation, and renal and lung cancer. In mice, the FDG uptake in abscesses peaked at 24 h and remained stable. The 11C-donepezil and 18F-FEOBV uptake displayed progressive increase, and at 120-144 h was nearly at the FDG level. Moderate 11C-donepezil and slightly lower 18F-FEOBV uptake were seen in pig abscesses. PCR analyses suggested that the 11C-donepezil signal in inflammatory cells is derived from both acetylcholinesterase and sigma-1 receptors. In humans, very high 11C-donepezil uptake was seen in a lobar pneumonia and in peri-tumoral inflammation surrounding a non-small cell lung carcinoma, markedly superseding the 18F-FDG uptake in the inflammation. In a renal clear cell carcinoma no 11C-donepezil uptake was seen. The time course of cholinergic tracer accumulation in murine abscesses was considerably different from 18F-FDG, demonstrating in the 11C-donepezil and 18F-FEOBV image distinct aspects of immune modulation. Preliminary data in humans strongly suggest that 11C-donepezil can exhibit more intense accumulation than 18F-FDG at sites of chronic inflammation. Cholinergic PET imaging may therefore have potential applications for basic research into cholinergic

  14. Characterization of brown adipose tissue 18F-FDG uptake in PET/CT imaging and its influencing factors in the Chinese population

    International Nuclear Information System (INIS)

    Shao, Xiaonan; Shao, Xiaoliang; Wang, Xiaosong; Wang, Yuetao

    2016-01-01

    18 F-FDG PET/CT has been widely applied for tumor imaging. However, it is reported that many normal tissues, e.g., brown adipose tissue, can also uptake 18 F-FDG. The purpose of this study was to determine the imaging characteristics of 18 F-FDG uptake in brown adipose tissue (BAT) in PET/CT. A total of 2,944 patients who underwent PET/CT from September 2011 to March 2013 were analyzed retrospectively. Imaging features of 18 F-FDG uptake in BAT were analyzed. Univariate analysis and logistic regression analysis were performed to evaluate the effect of age, gender, cancer status, body mass index (BMI), average daily maximum temperature of imaging month and fasting plasma glucose (Glu) on the positive rate of 18 F-FDG uptake in BAT. The results showed that 1.9% (57/2944) patients had 18 F-FDG uptake in BAT. 18 F-FDG, manifested as flaky, nodular and beaded shape, was symmetrically distributed in the adipose tissues of cervical and supraclavicular, mediastinal, paravertebral, and perirenal areas. Uptake of 18 F-FDG within cervical/supraclavicular area was most common (89.5%, 51/57) with an SUV max ranging from 2.8 to 31.4. Univariate analysis showed that gender and cancer status were not significantly correlated with the BAT 18 F-FDG uptake rate. In contrast, age, BMI, Glu and average daily maximum temperature in the imaging month were significantly correlated with the BAT 18 F-FDG uptake rate (P < 0.05). Further logistic regression analysis showed that only age, BMI and average daily maximum temperature were significant (OR < 1, P < 0.05). Based on the value of OR, the most significant factor that affects BAT 18 F-FDG uptake rate was age, followed by the average daily maximum temperature and BMI. We concluded that Chinese adult has low positive rate of 18 F-FDG uptake in BAT. Cervical/Supraclavicular is the most common area with BAT 18 F-FDG uptake. Age, average daily maximum temperature and BMI are independent factors affecting 18 F-FDG uptake.

  15. Adrenal tuberculosis masquerading as disseminated malignancy: A pitfall of (18)F-FDG PET/CT Imaging.

    Science.gov (United States)

    Gorla, A K R; Gupta, K; Sood, A; Biswal, C K; Bhansali, A; Mittal, B R

    2016-01-01

    Non-invasive characterization of adrenal lesions is a commonly encountered diagnostic challenge. Characteristic clinical and correlative imaging findings may assist in only arriving at a probable diagnosis. Currently, (18)F-FDG PET/CT is considered to provide the most comprehensive imaging information. We here present a case of bilateral adrenal tuberculosis that highlights the need for caution during the interpretation of (18)F-FDG PET/CT and also the need to suggest histopathological correlation. Copyright © 2016 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  16. High-resolution(18)F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for pituitary adenoma detection in Cushing disease.

    Science.gov (United States)

    Chittiboina, Prashant; Montgomery, Blake K; Millo, Corina; Herscovitch, Peter; Lonser, Russell R

    2015-04-01

    OBJECT High-resolution PET (hrPET) performed using a high-resolution research tomograph is reported as having a resolution of 2 mm and could be used to detect corticotroph adenomas through uptake of(18)F-fluorodeoxyglucose ((18)F-FDG). To determine the sensitivity of this imaging modality, the authors compared(18)F-FDG hrPET and MRI detection of pituitary adenomas in Cushing disease (CD). METHODS Consecutive patients with CD who underwent preoperative(18)F-FDG hrPET and MRI (spin echo [SE] and spoiled gradient recalled [SPGR] sequences) were prospectively analyzed. Standardized uptake values (SUVs) were calculated from hrPET and were compared with MRI findings. Imaging findings were correlated to operative and histological findings. RESULTS Ten patients (7 females and 3 males) were included (mean age 30.8 ± 19.3 years; range 11-59 years). MRI revealed a pituitary adenoma in 4 patients (40% of patients) on SE and 7 patients (70%) on SPGR sequences.(18)F-FDG hrPET demonstrated increased(18)F-FDG uptake consistent with an adenoma in 4 patients (40%; adenoma size range 3-14 mm). Maximum SUV was significantly higher for(18)F-FDG hrPET-positive tumors (difference = 5.1, 95% CI 2.1-8.1; p = 0.004) than for(18)F-FDG hrPET-negative tumors.(18)F-FDG hrPET positivity was not associated with tumor volume (p = 0.2) or dural invasion (p = 0.5). Midnight and morning ACTH levels were associated with(18)F-FDG hrPET positivity (p = 0.01 and 0.04, respectively) and correlated with the maximum SUV (R = 0.9; p = 0.001) and average SUV (R = 0.8; p = 0.01). All(18)F-FDG hrPET-positive adenomas had a less than a 180% ACTH increase and(18)F-FDG hrPET-negative adenomas had a greater than 180% ACTH increase after CRH stimulation (p = 0.03). Three adenomas were detected on SPGR MRI sequences that were not detected by(18)F-FDG hrPET imaging. Two adenomas not detected on SE (but no adenomas not detected on SPGR) were detected on(18)F-FDG hrPET. CONCLUSIONS While(18)F-FDG hrPET imaging can

  17. (18)F-labeled rhodamines as potential myocardial perfusion agents: comparison of pharmacokinetic properties of several rhodamines.

    Science.gov (United States)

    Bartholomä, Mark D; Zhang, Shaohui; Akurathi, Vamsidhar; Pacak, Christina A; Dunning, Patricia; Fahey, Frederic H; Cowan, Douglas B; Treves, S Ted; Packard, Alan B

    2015-10-01

    We recently reported the development of the [(18)F]fluorodiethylene glycol ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI). This compound was developed by optimizing the ester moiety on the rhodamine B core, and its pharmacokinetic properties were found to be superior to those of the prototype ethyl ester. The goal of the present study was to optimize the rhodamine core while retaining the fluorodiethyleneglycol ester prosthetic group. A series of different rhodamine cores (rhodamine 6G, rhodamine 101, and tetramethylrhodamine) were labeled with (18)F using the corresponding rhodamine lactones as the precursors and [(18)F]fluorodiethylene glycol ester as the prosthetic group. The compounds were purified by semipreparative HPLC, and their biodistribution was measured in rats. Additionally, the uptake of the compounds was evaluated in isolated rat cardiomyocytes. As was the case with the different prosthetic groups, we found that the rhodamine core has a significant effect on the in vitro and in vivo properties of this series of compounds. Of the rhodamines evaluated to date, the pharmacologic properties of the (18)F-labeled diethylene glycol ester of rhodamine 6G are superior to those of the (18)F-labeled diethylene glycol esters of rhodamine B, rhodamine 101, and tetramethylrhodamine. As with (18)F-labeled rhodamine B, [(18)F]rhodamine 6G was observed to localize in the mitochondria of isolated rat cardiomyocytes. Based on these results, the (18)F-labeled diethylene glycol ester of rhodamine 6G is the most promising potential PET MPI radiopharmaceutical of those that have evaluated to date, and we are now preparing to carry out first-in-human clinical studies with this compound. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. 18F-labeled rhodamines as potential myocardial perfusion agents: comparison of pharmacokinetic properties of several rhodamines

    International Nuclear Information System (INIS)

    Bartholomä, Mark D.; Zhang, Shaohui; Akurathi, Vamsidhar; Pacak, Christina A.; Dunning, Patricia; Fahey, Frederic H.; Cowan, Douglas B.; Ted Treves, S.; Packard, Alan B.

    2015-01-01

    Introduction: We recently reported the development of the [ 18 F]fluorodiethylene glycol ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI). This compound was developed by optimizing the ester moiety on the rhodamine B core, and its pharmacokinetic properties were found to be superior to those of the prototype ethyl ester. The goal of the present study was to optimize the rhodamine core while retaining the fluorodiethyleneglycol ester prosthetic group. Methods: A series of different rhodamine cores (rhodamine 6G, rhodamine 101, and tetramethylrhodamine) were labeled with 18 F using the corresponding rhodamine lactones as the precursors and [ 18 F]fluorodiethylene glycol ester as the prosthetic group. The compounds were purified by semipreparative HPLC, and their biodistribution was measured in rats. Additionally, the uptake of the compounds was evaluated in isolated rat cardiomyocytes. Results: As was the case with the different prosthetic groups, we found that the rhodamine core has a significant effect on the in vitro and in vivo properties of this series of compounds. Of the rhodamines evaluated to date, the pharmacologic properties of the 18 F-labeled diethylene glycol ester of rhodamine 6G are superior to those of the 18 F-labeled diethylene glycol esters of rhodamine B, rhodamine 101, and tetramethylrhodamine. As with 18 F-labeled rhodamine B, [ 18 F]rhodamine 6G was observed to localize in the mitochondria of isolated rat cardiomyocytes. Conclusions: Based on these results, the 18 F-labeled diethylene glycol ester of rhodamine 6G is the most promising potential PET MPI radiopharmaceutical of those that have evaluated to date, and we are now preparing to carry out first-in-human clinical studies with this compound

  19. 18F-labeled Rhodamines as Potential Myocardial Perfusion Agents: Comparison of Pharmacokinetic Properties of Several Rhodamines

    Science.gov (United States)

    Bartholoma, Mark D.; Zhang, Shaohui; Akurathi, Vamsidhar; Pacak, Christina A.; Dunning, Patricia; Fahey, Frederic H.; Cowan, Douglas B.; Treves, S. Ted; Packard, Alan B.

    2015-01-01

    Introduction We recently reported the development of the [18F]fluorodiethylene glycol ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI). This compound was developed by optimizing the ester moiety on the rhodamine B core, and its pharmacokinetic properties were found to be superior to those of the prototype ethyl ester. The goal of the present study was to optimize the rhodamine core while retaining the fluorodiethyleneglycol ester prosthetic group. Methods A series of different rhodamine cores (rhodamine 6G, rhodamine 101, and tetramethylrhodamine) were labeled with 18F using the corresponding rhodamine lactones as the precursors and [18F]fluorodiethylene glycol ester as the prosthetic group. The compounds were purified by semipreparative HPLC, and their biodistribution was measured in rats. Additionally, the uptake of the compounds was evaluated in isolated rat cardiomyocytes. Results As was the case with the different prosthetic groups, we found that the rhodamine core has a significant effect on the in vitro and in vivo properties of this series of compounds. Of the rhodamines evaluated to date, the pharmacologic properties of the 18F-labeled diethylene glycol ester of rhodamine 6G are superior to those of the 18F-labeled diethylene glycol esters of rhodamine B, rhodamine 101, and tetramethylrhodamine. As with 18F-labeled rhodamine B, [18F]rhodamine 6G was observed to localize in the mitochondria of isolated rat cardiomyocytes. Conclusions Based on these results, the 18F-labeled diethylene glycol ester of rhodamine 6G is the most promising potential PET MPI radiopharmaceutical of those that have been evaluated to date, and we are now preparing to carry out first-in-human clinical studies with this compound. PMID:26205075

  20. WE-H-207A-05: Spatial Co-Localization of F-18 NaF Vs. F-18 FDG Defined Disease Volumes

    Energy Technology Data Exchange (ETDEWEB)

    Ferjancic, P; Harmon, S; Jeraj, R [University of Wisconsin, Madison, WI (United States); Chen, S [1st Hospital of China Medical University, Shenyang, Liaoning (China); Simoncic, U [Jozef Stefan Institute, Ljubljana (Slovenia)

    2016-06-15

    Purpose: Both [F-18]NaF and [F-18]FDG show promise for quantitative PET/CT assessment in metastatic prostate cancer to bone. Broad agreement between the tracers has been shown but voxel-wise correspondence has not been explored in depth. This study evaluates the spatial co-localization of [F-18]NaF PET and [F-18]FDG PET in bone lesions. Methods: Seventy-three lesion contours were identified in six patients receiving dynamic NaF PET/CT and FDG PET/CT scans two hours apart using identical fields-of-view. Tracer uptake (SUV) reflecting 60 minutes post-injection was modeled from kinetic parameters. Lesions were segmented by a physician separately on NaF PET and FDG PET. PET images were rigidly aligned using skeletal references on CT images. Lesion size, degree of overlap, voxel-wise tracer uptake values (SUV), and CT density distributions were compared using Dice coefficient, Positive Predictive Value (PPV), and Spearman rank correlation tests. Results: Across all patients, 42 lesions were identified on NaF PET (median 1.4 cm{sup 3}, range <1–204 cm{sup 3}) compared to 31 using FDG PET (median 1.8 cm{sup 3}, range <1–244 cm{sup 3}). Spatial cooccurrence was found in 25 lesion pairs. Lesions on NaF PET had PPV of 0.91 and on FDG a PPV of 0.65. Overall, NaF-defined lesions were 47% (±24%) larger by volume with moderate overlap to FDG, resulting in mean Dice coefficient of 34% (±22%). In areas of overlap, voxel-wise correlation of NaF and FDG SUV was moderate (ρ=0.56). Expanding to regions of non-spatial overlap, voxels contained in FDG-only contours were almost exclusively low HU (median 118), compared to dense regions of NaF-only voxels (median 250). In sclerotic sub-volumes (HU > 300) NaF-defined contours encompassed 83% of total FDG volume. Conclusion: Moderate voxel-wise correlation of FDG and NaF PET/CT uptake was observed. Spatial discrepancies in FDG and NaF PET/CT imaging of boney metastases could be influenced by poor sensitivity of FDG PET/CT in

  1. Value of 18F-FDG PET imaging for differentiation of benign and malignant pancreatic mass

    International Nuclear Information System (INIS)

    Zhang Liying; Guo Wanhua; Guan Liang; Li Peiyong

    2002-01-01

    To evaluate the value of positron emission tomography (PET) imaging with 18 F-FDG in differentiation of benign and malignant pancreatic mass. 12 patients with pancreatic occupying lesion diagnosed by ultrasound or CT/MR including 7 pancreatic cancer and 5 pancreatitis underwent 18 F-FDG PET imaging. Visual interpretation and semiquantitative analysis by calculating the tumor/liver (T/L) ratio based on ROI were performed on attenuation corrected images. 9 positive findings were detected. Among them, 7 were confirmed to be cancer, but the other 2 were mass-forming pancreatitis. Final diagnoses of the 3 patients with negative findings were confirmed to be pancreatitis. The mean T/L ratio was 2.58 +- 0.95 in pancreatic cancer, significantly higher than that in pancreatitis (1.29 +- 0.87) (p = 0.037). With a T/L ratio cutoff value of 1.5, all 7 cancer patients were correctly categorized. However, one pancreatitis had T/L ratio higher than 1.5. 18 F-FEG PET imaging was a potential reliable method in differentiating benign or malignant pancreatic mass with high negative predictive value, but the specificity was limited. Semiquantitative analysis may improve the accuracy of the diagnosis

  2. Synthesis, radiosynthesis and in vitro evaluation of 18F-Bodipy-C16/triglyceride as a dual modal imaging agent for brown adipose tissue.

    Directory of Open Access Journals (Sweden)

    Andreas Paulus

    Full Text Available Brown adipose tissue research is in the focus in the field of endocrinology. We designed a dual-modal fluorescent/PET fatty acid based tracer on commercially available Bodipy-C16, which can be synthesized to its corresponding triglyceride and which combines the benefits of fluorescent and PET imaging.Bodipy-C16 was coupled to 1,3-diolein resulting in Bodipy-triglyceride. Bodipy-C16 and Bodipy-triglyceride compounds were radiolabeled with 18F using an 18F/19F exchange reaction to yield a dual-modal imaging molecule. Uptake of radiolabeled and non-labeled Bodipy-C16 and Bodipy-triglyceride was analyzed by fluorescence imaging and radioactive uptake in cultured adipocytes derived from human brown adipose tissue and white adipose tissue.Bodipy-C16 and Bodipy-triglyceride were successfully radiolabeled and Bodipy-C16 showed high shelf life and blood plasma stability (99% from 0-4 h. The uptake of Bodipy-C16 increased over time in cultured adipocytes, which was further enhanced after beta-adrenergic stimulation with norepinephrine. The uptake of Bodipy-C16 was inhibited by oleic acid and CD36 inhibitor sulfosuccinimidyl-oleate. The poor solubility of Bodipy-triglyceride did not allow stability or in vitro experiments.The new developed dual modal fatty acid based tracers Bodipy-C16 and Bodipy-triglyceride showed promising results to stimulate further in vivo evaluation and will help to understand brown adipose tissues role in whole body energy expenditure.

  3. Functional imaging of the brain with18F-fluorodeoxyglucose

    International Nuclear Information System (INIS)

    Reivich, M.; Greenberg, J.; Alavi, A.; Hand, P.; Rintelmann, W.; Rosenquist, A.; Christman, D.; Fowler, J.; MacGregor, R.; Wolf, A.

    1980-01-01

    A techniques is reported by which it is possible to determine which regions of the human brain become functionally active in response to a specific stimulus. The method utilizes 18 F-2-fluoro-2-deoxyglucose ([ 18 F]-FDG) administered as a bolus. [ 18 F]-FDG is used as a tracer for the exchange of glucose between plasma and brain and its phosphorylation. The subject is then scanned during administration of a physiologic stimulus by position emission tomography and the three-dimensional distribution of 18 F activity in the brain determined

  4. The use of molecular sieves to simulate hot lesions in (18)F-fluorodeoxyglucose--positron emission tomography imaging.

    Science.gov (United States)

    Matheoud, R; Secco, C; Ridone, S; Inglese, E; Brambilla, M

    2008-04-21

    We investigated the use of a kind of zeolite, the Bowie chabazite, to produce radioactive sources of different shapes, dimensions and activity concentrations that can be used for lesion simulation in positron emission tomography (PET) imaging. The (18)F-fluorodeoxyglucose ((18)F-FDG) uptake of a group of 12 zeolites was studied as a function of their weight (120-1,520 mg) and of the activity concentration of the (18)F-FDG solution (1-37 MBq ml(-1)), using a multiple linear regression model. The reproducibility, homogeneity and stability over time of the (18)F-FDG uptake were assessed. The fit of the regression model is good (r(2) = 0.83). This relation allows the production of zeolites of a desired (18)F-FDG activity using knowledge of the concentration of the soaking solution and the weight of the zeolite. The reproducibility of the (18)F-FDG uptake after heating the zeolites is elevated (CV% = 3.68). The almost complete regeneration of the zeolites allows us to reuse them in successive experiments. The stability of the (18)F-FDG uptake on zeolites is far from ideal. When placed in a saline solution the 'activated' zeolites release the (18)F-FDG with an effective half-time of 53 min. The sealing of the zeolites in plastic film bags has been demonstrated to be effective in preventing any release of (18)F-FDG. These features, together with their variable dimensions and shapes, make them ideal (18)F-FDG sources with a fixed target-to-background ratio that can be placed anywhere in a phantom to study lesion detectability in PET imaging.

  5. The use of molecular sieves to simulate hot lesions in 18F-fluorodeoxyglucose-positron emission tomography imaging

    International Nuclear Information System (INIS)

    Matheoud, R; Secco, C; Brambilla, M; Ridone, S; Inglese, E

    2008-01-01

    We investigated the use of a kind of zeolite, the Bowie chabazite, to produce radioactive sources of different shapes, dimensions and activity concentrations that can be used for lesion simulation in positron emission tomography (PET) imaging. The 18 F-fluorodeoxyglucose ( 18 F-FDG) uptake of a group of 12 zeolites was studied as a function of their weight (120-1520 mg) and of the activity concentration of the 18 F-FDG solution (1-37 MBq ml -1 ), using a multiple linear regression model. The reproducibility, homogeneity and stability over time of the 18 F-FDG uptake were assessed. The fit of the regression model is good (r 2 = 0.83). This relation allows the production of zeolites of a desired 18 F-FDG activity using knowledge of the concentration of the soaking solution and the weight of the zeolite. The reproducibility of the 18 F-FDG uptake after heating the zeolites is elevated (CV% = 3.68). The almost complete regeneration of the zeolites allows us to reuse them in successive experiments. The stability of the 18 F-FDG uptake on zeolites is far from ideal. When placed in a saline solution the 'activated' zeolites release the 18 F-FDG with an effective half-time of 53 min. The sealing of the zeolites in plastic film bags has been demonstrated to be effective in preventing any release of 18 F-FDG. These features, together with their variable dimensions and shapes, make them ideal 18 F-FDG sources with a fixed target-to-background ratio that can be placed anywhere in a phantom to study lesion detectability in PET imaging. (note)

  6. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial

    DEFF Research Database (Denmark)

    Vandenberghe, Rik; Van Laere, Koen; Ivanoiu, Adrian

    2010-01-01

    The most widely studied positron emission tomography ligand for in vivo beta-amyloid imaging is (11)C-Pittsburgh compound B ((11)C-PIB). Its availability, however, is limited by the need for an on-site cyclotron. Validation of the (18)F-labeled PIB derivative (18)F-flutemetamol could significantl...

  7. 18F-labeling and evaluation of novel MDL 100907 derivatives as potential 5-HT2A antagonists for molecular imaging

    DEFF Research Database (Denmark)

    Debus, Fabian; Herth, Matthias Manfred; Piel, Markus

    2010-01-01

    ]tracers with a purity >96% and a typical specific activity of 25-35 GBq/mumol. Autoradiographic images of (R)-[(18)F]MH.MZ (5) and [(18)F]DD-1 (4) showed excellent visualization and selectivity of the 5-HT2A receptor for (R)-[(18)F]MH.MZ and less specific binding for [(18)F]DD-1. The binding potential (BP) of (R)-[(18......, equal levels of specific activities were used. High uptake could be demonstrated in cortex regions. CONCLUSION: Labeling of both novel tracers was carried out in high RCY. Autoradiography revealed (R)-[(18)F]MH.MZ as a very selective and affine 5-HT2A tracer (K(i)=0.72 nM), whereas [(18)F]DD-1 showed...... no reasonable distribution pattern on autoradiographic sections. Moreover, results from microPET scans of (R)-[(18)F]MH.MZ hint on improved molecular imaging characteristics compared with those of [(18)F]MH.MZ. Therefore, (R)-[(18)F]MH.MZ appears to be a highly potent and selective serotonergic PET ligand...

  8. Association Between Osteogenesis and Inflammation During the Progression of Calcified Plaque Evaluated by 18F-Fluoride and 18F-FDG.

    Science.gov (United States)

    Li, Xiang; Heber, Daniel; Cal-Gonzalez, Jacobo; Karanikas, Georgios; Mayerhoefer, Marius E; Rasul, Sazan; Beitzke, Dietrich; Zhang, Xiaoli; Agis, Hermine; Mitterhauser, Markus; Wadsak, Wolfgang; Beyer, Thomas; Loewe, Christian; Hacker, Marcus

    2017-06-01

    18 F-FDG is the most widely validated PET tracer for the evaluation of atherosclerotic inflammation. Recently, 18 F-NaF has also been considered a potential novel biomarker of osteogenesis in atherosclerosis. We aimed to analyze the association between inflammation and osteogenesis at different stages of atherosclerosis, as well as the interrelationship between these 2 processes during disease progression. Methods: Thirty-four myeloma patients underwent 18 F-NaF and 18 F-FDG PET/CT examinations. Lesions were divided into 3 groups (noncalcified, mildly calcified, and severely calcified lesions) on the basis of calcium density as measured in Hounsfield units by CT. Tissue-to-background ratios were determined from PET for both tracers. The association between inflammation and osteogenesis during atherosclerosis progression was evaluated in 19 patients who had at least 2 examinations with both tracers. Results: There were significant correlations between the maximum tissue-to-background ratios of the 2 tracers (Spearman r = 0.5 [ P < 0.01]; Pearson r = 0.4 [ P < 0.01]) in the 221 lesions at baseline. The highest uptake of both tracers was observed in noncalcified lesions, but without any correlation between the tracers (Pearson r = 0.06; P = 0.76). Compared with noncalcified plaques, mildly calcified plaques showed concordant significantly lower accumulation, with good correlation between the tracers (Pearson r = 0.7; P < 0.01). In addition, enhanced osteogenesis-derived 18 F-NaF uptake and regressive inflammation-derived 18 F-FDG uptake were observed in severely calcified lesions (Pearson r = 0.4; P < 0.01). During follow-up, increased calcium density and increased mean 18 F-NaF uptake were observed, whereas mean 18 F-FDG uptake decreased. Most noncalcified (86%) and mildly calcified (81%) lesions and 47% of severely calcified lesions had concordant development of both vascular inflammation and osteogenesis. Conclusion: The combination of 18 F-NaF PET imaging and 18 F

  9. [F18]-FDG imaging of experimental animal tumours using a hybrid gamma-camera

    International Nuclear Information System (INIS)

    Lausson, S.; Maurel, G.; Kerrou, K.; Montravers, F.; Petegnief, Y.; Talbot, J.N.; Fredelizi, D.

    2001-01-01

    Positron emission tomography (PET) has been widely used in clinical studies. This technology permits detection of compounds labelled with positron emitting radionuclides and in particular, [F18]-fluorodeoxyglucose ([F18]-FDG).[F18]-FDG uptake and accumulation is generally related to malignancy; some recent works have suggested the usefulness of PET camera dedicated to small laboratory animals (micro-PET). Our study dealt with the feasibility of [F18]-FDG imaging of malignant tumours in animal models by means of an hybrid camera dedicated for human scintigraphy. We evaluated the ability of coincidence detection emission tomography (CDET) using this hybrid camera to visualize in vivo subcutaneous tumours grafted to mice or rats. P815 murine mastocytoma grafted in syngeneic DBA/2 mice resulted with foci of very high FDG uptake. Tumours with a diameter of only 3 mm were clearly visualized. Medullary thyroid cancer provoked by rMTC 6/23 and CA77 lines in syngeneic Wag/Rij rat was also detected. The differentiated CA77 tumours exhibited avidity for [F18]-FDG and a tumour, which was just palpable (diameter lower than 2 mm), was identified. In conclusion, CDET-FDG is a non-invasive imaging tool which can be used to follow grafted tumours in the small laboratory animal, even when their size is smaller than 1 cm. It has the potential to evaluate experimental anticancer treatments in small series of animals by individual follow-up. It offers the opportunity to develop experimental PET research within a nuclear medicine or biophysics department, the shift to a dedicated micro-PET device being subsequently necessary. It is indeed compulsory to strictly follow the rules for non contamination and disinfection of the hybrid camera. (authors)

  10. Comparison of 68Ga-DOTA-Siglec-9 and 18F-Fluorodeoxyribose-Siglec-9: Inflammation Imaging and Radiation Dosimetry.

    Science.gov (United States)

    Virtanen, Helena; Silvola, Johanna M U; Autio, Anu; Li, Xiang-Guo; Liljenbäck, Heidi; Hellberg, Sanna; Siitonen, Riikka; Ståhle, Mia; Käkelä, Meeri; Airaksinen, Anu J; Helariutta, Kerttuli; Tolvanen, Tuula; Veres, Tibor Z; Saraste, Antti; Knuuti, Juhani; Jalkanen, Sirpa; Roivainen, Anne

    2017-01-01

    Sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) is a ligand of inflammation-inducible vascular adhesion protein-1 (VAP-1). We compared 68 Ga-DOTA- and 18 F-fluorodeoxyribose- (FDR-) labeled Siglec-9 motif peptides for PET imaging of inflammation. Methods . Firstly, we examined 68 Ga-DOTA-Siglec-9 and 18 F-FDR-Siglec-9 in rats with skin/muscle inflammation. We then studied 18 F-FDR-Siglec-9 for the detection of inflamed atherosclerotic plaques in mice and compared it with previous 68 Ga-DOTA-Siglec-9 results. Lastly, we estimated human radiation dosimetry from the rat data. Results . In rats, 68 Ga-DOTA-Siglec-9 (SUV, 0.88 ± 0.087) and 18 F-FDR-Siglec-9 (SUV, 0.77 ± 0.22) showed comparable ( P = 0.29) imaging of inflammation. In atherosclerotic mice, 18 F-FDR-Siglec-9 detected inflamed plaques with a target-to-background ratio (1.6 ± 0.078) similar to previously tested 68 Ga-DOTA-Siglec-9 ( P = 0.35). Human effective dose estimates for 68 Ga-DOTA-Siglec-9 and 18 F-FDR-Siglec-9 were 0.024 and 0.022 mSv/MBq, respectively. Conclusion . Both tracers are suitable for PET imaging of inflammation. The easier production and lower cost of 68 Ga-DOTA-Siglec-9 present advantages over 18 F-FDR-Siglec-9, indicating it as a primary choice for clinical studies.

  11. Single step 18F-labeling of dimeric cycloRGD for functional PET imaging of tumors in mice

    International Nuclear Information System (INIS)

    Li, Ying; Liu, Zhibo; Lozada, Jerome; Wong, May Q.; Lin, Kuo-Shyan; Yapp, Donald; Perrin, David M.

    2013-01-01

    Introduction: Arylboronates afford rapid aqueous 18 F-labeling via the creation of a highly polar 18 F-aryltrifluoroborate anion ( 18 F-ArBF 3 − ). Hypothesis: Radiosynthesis of an 18 F-ArBF 3 − can be successfully applied to a clinically relevant peptide. To test this hypothesis, we labeled dimeric-cylcoRGD, [c(RGDfK)] 2 E because a) it is molecularly complex and provides a challenging substrate to test the application of this technique, and b) [c(RGDfK)] 2 E has already been labeled via several 18 F-labeling methods which provide for a preliminary comparison. Goal: To validate this labeling method in the context of a complex and clinically relevant tracer to show tumor-specific uptake ex vivo with representative PET images in vivo. Methods: An arylborimidine was conjugated to [c(RGDfK)] 2 E to give the precursor [c(RGDfK)] 2 E-ArB(dan), which was aliquoted and stored at − 20 °C. Aliquots of 10 or 25 nmol, containing only micrograms of precursor, were labeled using relatively low levels of 18 F-activity. Following purification eight mice (pre-blocked/unblocked) with U87M xenograft tumors were injected with [c(RGDfK)] 2 E- 18 F-ArBF 3 − (n = 4) for ex vivo tissue dissection. Two sets of mice (pre-blocked/unblocked) were also imaged with PET–CT (n = 2). Results: The [c(RGDfK)] 2 E-ArB(dan) is converted within 15 min to [c(RGDfK)] 2 E- 18 F-ArBF 3 − in isolated radiochemical yields of ∼ 10% (n = 3) at a minimum effective specific activity of 0.3 Ci/μmol. Biodistribution shows rapid clearance to the bladder via the kidney resulting in high tumor-to-blood and tumor-to-muscle ratios of > 9 and > 6 respectively while pre-blocking with [c(RGDfK)] 2 E showed high tumor specificity. PET imaging showed good contrast between tumor and non-target tissues confirming the biodistribution data. Conclusion: An arylborimidine-RGD peptide is rapidly 18 F-labeled in one step, in good yield, at useful specific activity. Biodistribution studies with blocking controls

  12. Biological characterization of F-18-labeled rhodamine B, a potential positron emission tomography perfusion tracer.

    Science.gov (United States)

    Bartholomä, Mark D; He, Huamei; Pacak, Christina A; Dunning, Patricia; Fahey, Frederic H; McGowan, Francis X; Cowan, Douglas B; Treves, S Ted; Packard, Alan B

    2013-11-01

    Myocardial infarction is the leading cause of death in western countries, and positron emission tomography (PET) plays an increasing role in the diagnosis and treatment planning for this disease. However, the absence of an (18)F-labeled PET myocardial perfusion tracer hampers the widespread use of PET in myocardial perfusion imaging (MPI). We recently reported a potential MPI agent based on (18)F-labeled rhodamine B. The goal of this study was to more completely define the biological properties of (18)F-labeled rhodamine B with respect to uptake and localization in an animal model of myocardial infarction and to evaluate the uptake (18)F-labeled rhodamine B by cardiomyocytes. A total of 12 female Sprague Dawley rats with a permanent ligation of the left anterior descending artery (LAD) were studied with small-animal PET. The animals were injected with 100-150 μCi of (18)F-labeled rhodamine B diethylene glycol ester ([(18)F]RhoBDEGF) and imaged two days before ligation. The animals were imaged again two to ten days post-ligation. After the post-surgery scans, the animals were euthanized and the hearts were sectioned into 1mm slices and myocardial infarct size was determined by phosphorimaging and 2,3,5-triphenyltetrazolium chloride staining (TTC). In addition, the uptake of [(18)F]RhoBDEGF in isolated rat neonatal cardiomyocytes was determined by fluorescence microscopy. Small-animal PET showed intense and uniform uptake of [(18)F]RhoBDEGF throughout the myocardium in healthy rats. After LAD ligation, well defined perfusion defects were observed in the PET images. The defect size was highly correlated with the infarct size as determined ex vivo by phosphorimaging and TTC staining. In vitro, [(18)F]RhoBDEGF was rapidly internalized into rat cardiomyocytes with ~40 % of the initial activity internalized within the 60 min incubation time. Fluorescence microscopy clearly demonstrated localization of [(18)F]RhoBDEGF in the mitochondria of rat cardiomyocytes. Fluorine-18

  13. Biological characterization of F-18-labeled rhodamine B, a potential positron emission tomography perfusion tracer

    International Nuclear Information System (INIS)

    Bartholomä, Mark D.; He, Huamei; Pacak, Christina A.; Dunning, Patricia; Fahey, Frederic H.; McGowan, Francis X.; Cowan, Douglas B.; Treves, S. Ted; Packard, Alan B.

    2013-01-01

    Introduction: Myocardial infarction is the leading cause of death in western countries, and positron emission tomography (PET) plays an increasing role in the diagnosis and treatment planning for this disease. However, the absence of an 18 F-labeled PET myocardial perfusion tracer hampers the widespread use of PET in myocardial perfusion imaging (MPI). We recently reported a potential MPI agent based on 18 F-labeled rhodamine B. The goal of this study was to more completely define the biological properties of 18 F-labeled rhodamine B with respect to uptake and localization in an animal model of myocardial infarction and to evaluate the uptake 18 F-labeled rhodamine B by cardiomyocytes. Methods: A total of 12 female Sprague Dawley rats with a permanent ligation of the left anterior descending artery (LAD) were studied with small-animal PET. The animals were injected with 100–150 μCi of 18 F-labeled rhodamine B diethylene glycol ester ([ 18 F]RhoBDEGF) and imaged two days before ligation. The animals were imaged again two to ten days post-ligation. After the post-surgery scans, the animals were euthanized and the hearts were sectioned into 1 mm slices and myocardial infarct size was determined by phosphorimaging and 2,3,5-triphenyltetrazolium chloride staining (TTC). In addition, the uptake of [ 18 F]RhoBDEGF in isolated rat neonatal cardiomyocytes was determined by fluorescence microscopy. Results: Small-animal PET showed intense and uniform uptake of [ 18 F]RhoBDEGF throughout the myocardium in healthy rats. After LAD ligation, well defined perfusion defects were observed in the PET images. The defect size was highly correlated with the infarct size as determined ex vivo by phosphorimaging and TTC staining. In vitro, [ 18 F]RhoBDEGF was rapidly internalized into rat cardiomyocytes with ∼ 40 % of the initial activity internalized within the 60 min incubation time. Fluorescence microscopy clearly demonstrated localization of [ 18 F]RhoBDEGF in the mitochondria

  14. Clinical impact of PSMA-based 18F-DCFBC PET/CT imaging in patients with biochemically recurrent prostate cancer after primary local therapy

    International Nuclear Information System (INIS)

    Mena, Esther; Lindenberg, Maria L.; Bergvall, Ethan; Ton, Anita T.; McKinney, Yolanda; Eclarinal, Philip; Choyke, Peter L.; Turkbey, Baris; Shih, Joanna H.; Adler, Stephen; Harmon, Stephanie; Weaver, Juanita; Forest, Alicia; Citrin, Deborah; Dahut, William; Afari, George; Bhattacharyya, Sibaprasad; Mease, Ronnie C.; Pomper, Martin G.; Merino, Maria J.; Pinto, Peter; Wood, Bradford J.; Jacobs, Paula

    2018-01-01

    The purpose of our study was to assess 18 F-DCFBC PET/CT, a PSMA targeted PET agent, for lesion detection and clinical management of biochemical relapse in prostate cancer patients after primary treatment. This is a prospective IRB-approved study of 68 patients with documented biochemical recurrence after primary local therapy consisting of radical prostatectomy (n = 50), post radiation therapy (n = 9) or both (n = 9), with negative conventional imaging. All 68 patients underwent whole-body 18 F-DCFBC PET/CT, and 62 also underwent mpMRI within one month. Lesion detection with 18 F-DCFBC was correlated with mpMRI findings and pre-scan PSA levels. The impact of 18 F-DCFBC PET/CT on clinical management and treatment decisions was established after 6 months' patient clinical follow-up. Forty-one patients (60.3%) showed at least one positive 18 F-DCFBC lesion, for a total of 79 lesions, 30 in the prostate bed, 39 in lymph nodes, and ten in distant sites. Tumor recurrence was confirmed by either biopsy (13/41 pts), serial CT/MRI (8/41) or clinical follow-up (15/41); there was no confirmation in five patients, who continue to be observed. The 18 F-DCFBC and mpMRI findings were concordant in 39 lesions (49.4%), and discordant in 40 lesions (50.6%); the majority (n = 32/40) of the latter occurring because the recurrence was located outside the mpMRI field of view. 18 F-DCFBC PET positivity rates correlated with PSA values and 15%, 46%, 83%, and 77% were seen in patients with PSA values <0.5, 0.5 to <1.0, 1.0 to <2.0, and ≥2.0 ng/mL, respectively. The optimal cut-off PSA value to predict a positive 18 F-DCFBC scan was 0.78 ng/mL (AUC = 0.764). A change in clinical management occurred in 51.2% (21/41) of patients with a positive 18 F-DCFBC result, generally characterized by starting a new treatment in 19 patients or changing the treatment plan in two patients. 18 F-DCFBC detects recurrences in 60.3% of a population of patients with biochemical recurrence, but results

  15. Clinical impact of PSMA-based 18F-DCFBC PET/CT imaging in patients with biochemically recurrent prostate cancer after primary local therapy.

    Science.gov (United States)

    Mena, Esther; Lindenberg, Maria L; Shih, Joanna H; Adler, Stephen; Harmon, Stephanie; Bergvall, Ethan; Citrin, Deborah; Dahut, William; Ton, Anita T; McKinney, Yolanda; Weaver, Juanita; Eclarinal, Philip; Forest, Alicia; Afari, George; Bhattacharyya, Sibaprasad; Mease, Ronnie C; Merino, Maria J; Pinto, Peter; Wood, Bradford J; Jacobs, Paula; Pomper, Martin G; Choyke, Peter L; Turkbey, Baris

    2018-01-01

    The purpose of our study was to assess 18 F-DCFBC PET/CT, a PSMA targeted PET agent, for lesion detection and clinical management of biochemical relapse in prostate cancer patients after primary treatment. This is a prospective IRB-approved study of 68 patients with documented biochemical recurrence after primary local therapy consisting of radical prostatectomy (n = 50), post radiation therapy (n = 9) or both (n = 9), with negative conventional imaging. All 68 patients underwent whole-body 18 F-DCFBC PET/CT, and 62 also underwent mpMRI within one month. Lesion detection with 18 F-DCFBC was correlated with mpMRI findings and pre-scan PSA levels. The impact of 18 F-DCFBC PET/CT on clinical management and treatment decisions was established after 6 months' patient clinical follow-up. Forty-one patients (60.3%) showed at least one positive 18 F-DCFBC lesion, for a total of 79 lesions, 30 in the prostate bed, 39 in lymph nodes, and ten in distant sites. Tumor recurrence was confirmed by either biopsy (13/41 pts), serial CT/MRI (8/41) or clinical follow-up (15/41); there was no confirmation in five patients, who continue to be observed. The 18 F-DCFBC and mpMRI findings were concordant in 39 lesions (49.4%), and discordant in 40 lesions (50.6%); the majority (n = 32/40) of the latter occurring because the recurrence was located outside the mpMRI field of view. 18 F-DCFBC PET positivity rates correlated with PSA values and 15%, 46%, 83%, and 77% were seen in patients with PSA values <0.5, 0.5 to <1.0, 1.0 to <2.0, and ≥2.0 ng/mL, respectively. The optimal cut-off PSA value to predict a positive 18 F-DCFBC scan was 0.78 ng/mL (AUC = 0.764). A change in clinical management occurred in 51.2% (21/41) of patients with a positive 18 F-DCFBC result, generally characterized by starting a new treatment in 19 patients or changing the treatment plan in two patients. 18 F-DCFBC detects recurrences in 60.3% of a population of patients with biochemical recurrence, but

  16. Comparison of {sup 18}F-FET and {sup 18}F-FDG PET in brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Pauleit, Dirk; Stoffels, Gabriele [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, D-52425 Juelich (Germany); Bachofner, Ansgar [Clinic of Nuclear Medicine, Heinrich-Heine-University, D-40001 Duesseldorf (Germany); Floeth, Frank W.; Sabel, Michael [Department of Neurosurgery, Heinrich-Heine-University, D-40001 Duesseldorf (Germany); Herzog, Hans; Tellmann, Lutz [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, D-52425 Juelich (Germany); Jansen, Paul [Institute of Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Reifenberger, Guido [Department of Neuropathology, Heinrich-Heine-University, D-40001 Duesseldorf (Germany); Hamacher, Kurt; Coenen, Heinz H. [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, D-52425 Juelich (Germany); Langen, Karl-Josef [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, D-52425 Juelich (Germany)], E-mail: k.j.langen@fz-juelich.de

    2009-10-15

    The purpose of this study was to compare the diagnostic value of positron emission tomography (PET) using [{sup 18}F]-fluorodeoxyglucose ({sup 18}F-FDG) and O-(2-[{sup 18}F]fluoroethyl)-L-tyrosine ({sup 18}F-FET) in patients with brain lesions suspicious of cerebral gliomas. Methods: Fifty-two patients with suspicion of cerebral glioma were included in this study. From 30 to 50 min after injection of 180 MBq {sup 18}F-FET, a first PET scan ({sup 18}F-FET scan) was performed. Thereafter, 240 MBq {sup 18}F-FDG was injected and a second PET scan was acquired from 30 to 60 min after the second injection ({sup 18}F-FET/{sup 18}F-FDG scan). The cerebral accumulation of {sup 18}F-FDG was calculated by decay corrected subtraction of the {sup 18}F-FET scan from the {sup 18}F-FET/{sup 18}F-FDG scan. Tracer uptake was evaluated by visual scoring and by lesion-to-background (L/B) ratios. The imaging results were compared with the histological results and prognosis. Results: Histology revealed 24 low-grade gliomas (LGG) of World Health Organization (WHO) Grade II and 19 high-grade gliomas (HGG) of WHO Grade III or IV, as well as nine others, mainly benign histologies. The gliomas showed increased {sup 18}F-FET uptake (>normal brain) in 86% and increased {sup 18}F-FDG uptake (>white matter) in 35%. {sup 18}F-FET PET provided diagnostically useful delineation of tumor extent while this was impractical with {sup 18}F-FDG due to high tracer uptake in the gray matter. A local maximum in the tumor area for biopsy guidance could be identified with {sup 18}F-FET in 76% and with {sup 18}F-FDG in 28%. The L/B ratios showed significant differences between LGG and HGG for both tracers but considerable overlap so that reliable preoperative grading was not possible. A significant correlation of tracer uptake with overall survival was found with {sup 18}F-FDG only. In some benign lesions like abscesses, increased uptake was observed for both tracers indicating a limited specificity of both

  17. Repeatability of tumour hypoxia imaging using [{sup 18}F]EF5 PET/CT in head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Silvoniemi, Antti [University of Turku, Turku PET Centre (Finland); Turku University Hospital, Department of Otorhinolaryngology - Head and Neck Surgery (Finland); Suilamo, Sami [Turku University Hospital, Department of Oncology and Radiotherapy (Finland); Turku University Hospital, Department of Medical Physics (Finland); Laitinen, Timo; Forsback, Sarita; Solin, Olof [University of Turku, Turku PET Centre (Finland); Loeyttyniemi, Eliisa [University of Turku, Department of Biostatistics, Turku (Finland); Vaittinen, Samuli [Turku University Hospital, Department of Pathology (Finland); Saunavaara, Virva [University of Turku, Turku PET Centre (Finland); Turku University Hospital, Department of Medical Physics (Finland); Groenroos, Tove J.; Minn, Heikki [University of Turku, Turku PET Centre (Finland); Turku University Hospital, Department of Oncology and Radiotherapy (Finland)

    2018-02-15

    Hypoxia contributes to radiotherapy resistance and more aggressive behaviour of several types of cancer. This study was designed to evaluate the repeatability of intratumour uptake of the hypoxia tracer [{sup 18}F]EF5 in paired PET/CT scans. Ten patients with newly diagnosed head and neck cancer (HNC) received three static PET/CT scans before chemoradiotherapy: two with [{sup 18}F]EF5 a median of 7 days apart and one with [{sup 18}F]FDG. Metabolically active primary tumour volumes were defined in [{sup 18}F]FDG images and transferred to co-registered [{sup 18}F]EF5 images for repeatability analysis. A tumour-to-muscle uptake ratio (TMR) of 1.5 at 3 h from injection of [{sup 18}F]EF5 was used as a threshold representing hypoxic tissue. In 10 paired [{sup 18}F]EF5 PET/CT image sets, SUVmean, SUVmax, and TMR showed a good correlation with the intraclass correlation coefficients of 0.81, 0.85, and 0.87, respectively. The relative coefficients of repeatability for these parameters were 15%, 17%, and 10%, respectively. Fractional hypoxic volumes of the tumours in the repeated scans had a high correlation using the Spearman rank correlation test (r = 0.94). In a voxel-by-voxel TMR analysis between the repeated scans, the mean of Pearson correlation coefficients of individual patients was 0.65. The mean (± SD) difference of TMR in the pooled data set was 0.03 ± 0.20. Pretreatment [{sup 18}F]EF5 PET/CT within one week shows high repeatability and is feasible for the guiding of hypoxia-targeted treatment interventions in HNC. (orig.)

  18. Fiber-optic system for dual-modality imaging of glucose probes 18F-FDG and 6-NBDG in atherosclerotic plaques.

    Directory of Open Access Journals (Sweden)

    Raiyan T Zaman

    Full Text Available Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD-the leading cause of death in the United States. Thus, the ultimate goal of this research is to advance our understanding of human CAD by improving the characterization of metabolically active vulnerable plaques within the coronary arteries using a novel catheter-based imaging system. The aims of this study include (1 developing a novel fiber-optic imaging system with a scintillator to detect both 18F and fluorescent glucose probes, and (2 validating the system on ex vivo murine plaques.A novel design implements a flexible fiber-optic catheter consisting of both a radio-luminescence and a fluorescence imaging system to detect radionuclide 18F-fluorodeoxyglucose (18F-FDG and the fluorescent analog 6-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-ylamino-6-Deoxyglucose (6-NBDG, respectively. Murine macrophage-rich atherosclerotic carotid plaques were imaged ex vivo after intravenous delivery of 18F-FDG or 6-NBDG. Confirmatory optical imaging by IVIS-200 and autoradiography were also performed.Our fiber-optic imaging system successfully visualized both 18F-FDG and 6-NBDG probes in atherosclerotic plaques. For 18F-FDG, the ligated left carotid arteries (LCs exhibited 4.9-fold higher radioluminescence signal intensity compared to the non-ligated right carotid arteries (RCs (2.6 × 10(4 ± 1.4 × 10(3 vs. 5.4 × 10(3 ± 1.3 × 10(3 A.U., P = 0.008. Similarly, for 6-NBDG, the ligated LCs emitted 4.3-fold brighter fluorescent signals than the control RCs (1.6 × 10(2 ± 2.7 × 10(1 vs. 3.8 × 10(1 ± 5.9 A.U., P = 0.002. The higher uptake of both 18F-FDG and 6-NBDG in ligated LCs were confirmed with the IVIS-200 system. Autoradiography further verified the higher uptake of 18F-FDG by the LCs.This novel fiber-optic imaging system was sensitive to both radionuclide and fluorescent glucose probes taken up by murine atherosclerotic plaques. In addition, 6-NBDG is a

  19. Imaging findings and literature review of {sup 18}F-FDG PET/CT in primary systemic AL amyloidosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Hee; Lee, Ga Yeon; Kim, Seok Jin; Kim, Ki Hyun; Jeon, Eun Seok; Lee, Kyung Han; Kim, Byung Tae; Choi, Joon Young [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-09-15

    Although several case reports and case series have described {sup 18}F-FDG PET/CT in amyloidosis, the value of {sup 18}F-FDG PET/CT for diagnosing amyloidosis has not been clarified. We investigated the imaging findings of {sup 18}F-FDG PET/CT in patients with primary systemic AL amyloidosis. Subjects were 15 patients (M:F = 12:3; age, 61.5 ± 7.4 years) with histologically confirmed primary systemic AL amyloidosis who underwent pretreatment {sup 18}F-FDG PET/CT to rule out the possibility of malignancy or for initial workup of alleged cancer. For involved organs, visual and semiquantitative analyses were performed on {sup 18}F-FDG PET/CT images. In total, 22 organs (10 hearts, 5 kidneys, 2 stomachs, 2 colons, 1 ileum, 1 pancreas, and 1 liver) were histologically confirmed to have primary systemic AL amyloidosis. F-FDG uptake was significantly increased in 15 of the 22 organs (68.2 %; 10 hearts, 2 kidneys, 1 colon, 1 ileum, and 1 liver; SUV{sub max} = 7.0 ± 3.2, range 2.1–14.1). However, in 11 of 15 PET-positive organs (78.6 %; 10 hearts and the ileum), it was difficult to differentiate pathological uptake from physiological uptake. Definitely abnormal {sup 18}F-FDG uptake was found in only 4 of the 22 organs (18.2 %; 2 kidneys, 1 colon, and the liver). {sup 18}F-FDG uptake was negative for pancreas and gastric lesions. Although {sup 18}F-FDG PET/CT showed high uptake in two-thirds of the organs involving primary systemic AL amyloidosis, its sensitivity appeared to be low to make differentiation of pathological uptake from physiological uptake. However, due to the small number of cases, further study for the role of {sup 18}F-FDG PET/CT in amyloidosis will be warranted.

  20. Synthesis and evaluation of ortho-[18F]fluorocelecoxib for COX-2 cholangiocarcinoma imaging

    Directory of Open Access Journals (Sweden)

    Chang CW

    2018-05-01

    Full Text Available Chi-Wei Chang,1,* Chun-Nan Yeh,2,* Yi-Hsiu Chung,3,* Yong-Ren Chen,4 Shi-Wei Tien,4 Tsung-Wen Chen,2 Shiou-Shiow Farn,4,5 Ying-Cheng Huang,6 Chung-Shan Yu4,7 1Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; 2Department of Surgery, Liver Research Center, Chang-Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan; 3Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan; 4Department of Biomedical Engineering and Environmental Sciences, National Tsinghua University, Hsinchu, Taiwan; 5Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan; 6Department of Neurosurgery, Chang-Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan; 7Institute of Nuclear Engineering and Science, National Tsinghua University, Hsinchu, Taiwan *These authors contributed equally to this work Background: An 18F-tagged NSAID analog was prepared for use as a probe for COX-2 expression, which is associated with tumor development. Methods: The in vivo uptake of celecoxib was monitored with ortho-[18F]fluorocelecoxib using positron emission tomography (PET. The binding affinity of ortho-[18F]fluorocelecoxib to COX-1 and COX-2 enzymes were assessed using the competitor celecoxib. Results: The IC50 values were 0.039 μM and 0.024 μM, respectively. A selectivity index of 1.63 was obtained (COX-2 vs COX-1. COX-2 overexpressed cholangiocarcinoma (CCA murine cells took up more ortho-[18F]fluorocelecoxib than that by usual CCA cells from 10 to 60 minutes post incubation. Competitive inhibition (blocking of the tracer uptake of ortho-[18F]fluorocelecoxib in the presence of celecoxib by the COX-2 overexpressed CCA cells and the usual CCA cells gave the IC50 values of 0.5 μM and 46.5 μM, respectively. Based on the in vitro accumulation data and in vivo metabolism half-life (30 min, PET scanning was performed 30–60 min after the

  1. Evaluation of an [18F]AlF-NOTA Analog of Exendin-4 for Imaging of GLP-1 Receptor in Insulinoma

    Directory of Open Access Journals (Sweden)

    Dale O. Kiesewetter, Ning Guo, Jinxia Guo, Haokao Gao, Lei Zhu, Ying Ma, Gang Niu, Xiaoyuan Chen

    2012-01-01

    Full Text Available Introduction: The GLP-1 receptor plays an important role in glucose homeostasis and thus is a very important target for diabetes therapy. The receptor is also overexpressed in insulinoma, a tumor of pancreatic beta-cells. We previously evaluated two fluorine-18-labeled analogs of exendin-4 prepared by conjugation with [18F]FBEM (N-[2-(4-[18F]fluorobenzamideethyl]maleimide. Both compounds demonstrated good tumor uptake, but the synthesis of the radiotracers was time consuming. To overcome this challenge, we developed a NOTA analog and performed radiolabeling using aluminum [18F]fluoride complexation.Methods: Cys40-exendin-4 was conjugated with NOTA mono N-ethylmaleimide. [18F]AlF conjugation was conducted and the radiolabeled product purified by preparative HPLC. Dynamic and static PET imaging scans were conducted on nude mice with established INS-1 xenografts. Uptake of tumor and other major organs in static images was quantitated (%ID/g and comparison with blocking studies was made. PET quantification was also compared with ex vivo biodistribution results.Results: The radiosynthesis provided [18F]AlF-NOTA-MAL-cys40-exendin-4 in 23.6 ± 2.4 % radiochemical yield (uncorrected, n = 3 after HPLC; the process required about 55 min. The specific activity at time of injection ranged from 19.6 to 31.4 GBq (0.53-0.85 Ci/µmol. Tumor uptake had reached its maximum (16.09 ± 1.18% ID/g, n = 4 by 5 min and remained nearly constant for the duration of the study. Kidney uptake continued to increase throughout the entire one hour time course. Pre-injection of exendin-4 caused a marked reduction in tissue uptake with the major exception of liver and kidneys, in which uptake was not affected. HPLC analysis of the radioactive components in extracts of the tumor and plasma showed primarily parent compound at 60 min post-injection, whereas extracts of kidney and urine contained exclusively one polar radioactive component.Conclusion: The radiotracer is prepared in

  2. Radiosynthesis and biological evaluation of N-(2-[18F]fluoropropionyl)-3,4-dihydroxy-l-phenylalanine as a PET tracer for oncologic imaging.

    Science.gov (United States)

    Tang, Caihua; Nie, Dahong; Tang, Ganghua; Gao, Siyuan; Liu, Shaoyu; Wen, Fuhua; Tang, Xiaolan

    2017-07-01

    Several 11 C and 18 F labeled 3,4-dihydroxy-l-phenylalanine (l-DOPA) analogues have been used for neurologic and oncologic diseases, especially for brain tumors and neuroendocrine tumors PET imaging. However, 18 F-labeled N-substituted l-DOPA analogues have not been reported so far. In the current study, radiosynthesis and biological evaluation of a new 18 F-labeled l-DOPA analogue, N-(2-[ 18 F]fluoropropionyl)-3,4-dihydroxy-l-phenylalanine ([ 18 F]FPDOPA) for tumor PET imaging are performed. The synthesis of [ 18 F]FPDOPA was via a two-step reaction sequence from 4-nitrophenyl-2-[ 18 F]fluoropropionate ([ 18 F]NFP). The biodistribution of [ 18 F]FPDOPA was determined in normal Kunming mice. In vitro competitive inhibition and protein incorporation experiments were performed with SPC-A-1 lung adenocarcinoma cell lines. PET/CT studies of [ 18 F]FPDOPA were conducted in C6 rat glioma and SPC-A-1 human lung adenocarcinoma and H460 human large cell lung cancer-bearing nude mice. [ 18 F]FPDOPA was prepared with a decay-corrected radiochemical yield of 28±5% and a specific activity of 50±15GBq/μmol (n=10) within 125min. In vitro cell experiments showed that [ 18 F]FPDOPA uptake in SPC-A-1 cells was primarily transported through Na + -independent system L, with Na + -dependent system B 0,+ and system ASC partly involved in it. Biodistribution data in mice showed that renal-bladder route was the main excretory system of [ 18 F]FPDOPA. PET imaging demonstrated intense accumulation of [ 18 F]FPDOPA in several tumor xenografts, with (8.50±0.40)%ID/g in C6 glioma, (6.30±0.12)%ID/g in SPC-A-1 lung adenocarcinoma, and (6.50±0.10)%ID/g in H460 large cell lung cancer, respectively. A novel N-substituted 18 F-labeled L-DOPA analogue [ 18 F]FPDOPA is synthesized and evaluated in vitro and in vivo. The results support that [ 18 F]FPDOPA seems to be a potential PET tracer for tumor imaging, especially be a better potential PET tracer than [ 18 F]fluoro-2-deoxy-d-glucose ([ 18 F

  3. [18F]FDG-PET in large vessel vasculitis

    International Nuclear Information System (INIS)

    Hauser, A.S.D.; Walter, M.A.

    2007-01-01

    [ 18 F]FDG-PET is a non-invasive metabolic imaging modality based on the regional distribution of fluorine-18-fluorodeoxyglucose that is highly effective in assessing the activity and the extent of giant cell arteritis and Takayasu's arteritis. It has shown to identify more affected vascular regions than morphologic imaging with Magnetic Resonance Imaging in both diseases. A visual grading of vascular [ 18 F]FDG-uptake helps to discriminate arteritis from atherosclerosis und therefore provides high specificity. High sensitivity is reached by scanning during the active inflammatory phase. [ 18 F]FDG-PET has the potential to develop into a valuable tool in the diagnostic work-up of giant cell arteritis and Takayasu's arteritis, respectively, and might become a first-line investigation technique. Therefore consensus regarding the most favorable imaging procedure as well as further clinical evidence is needed. The purpose of this review is to summarize current information on the present clinical data and to assist nuclear medicine practitioners in recommending, performing and interpreting the results of [ 18 F]FDG-PET in patients with suspected large vessel vasculitis. (orig.)

  4. N-(3-( sup 18 F)fluoropropyl)-N-nordiprenorphine: Synthesis and characterization of a new agent for imaging opioid receptors with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Chesis, P.L.; Hwang, D.R.; Welch, M.J. (Washington Univ. School of Medicine, St. Louis, MO (USA))

    1990-05-01

    A series of N-fluoroalkyl (1-5) and N-alkyl (6-8) analogues of the high-affinity opioid receptor antagonist diprenorphine (9) has been synthesized and evaluated with in vitro binding assays. Three of the N-fluoroalkyl compounds were prepared with the positron-emitting radionuclide {sup 18}F (1a, 2a, 5a), and their biodistribution was determined in rats. Compounds 2a and 5a were made by using a two-step labeling procedure, ({sup 18}F)fluoride displacement of an iodoalkyl triflate followed by N-alkylation, that required 2 h and proceeded in 4-6% overall radiochemical yield at the end of synthesis. The effective specific activity of compounds 2a and 5a, determined by competitive receptor binding assay, was 840-1820 Ci/mmol. Compound 1a was made by the same two-step procedure, with the bromoalkyl triflate, in 0.3-0.6% radiochemical yield at an effective specific activity of 106-264 Ci/mmol. Specificity of binding in vivo was measured as the percent injected dose/gram of striatal tissue divided by the percent injected dose/gram of cerebellar tissue. The best striatum to cerebellum ratio (3.32 +/- 0.74 at 30 min) was achieved with N-(3-({sup 18}F)-fluoropropyl)-N-nordiprenorphine (2a, ({sup 18}F)FPND). The high specific binding demonstrated by this compound indicates that it may be useful for in vivo imaging of opioid receptors with positron emission tomography.

  5. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer.

    Science.gov (United States)

    Tixier, Florent; Le Rest, Catherine Cheze; Hatt, Mathieu; Albarghach, Nidal; Pradier, Olivier; Metges, Jean-Philippe; Corcos, Laurent; Visvikis, Dimitris

    2011-03-01

    (18)F-FDG PET is often used in clinical routine for diagnosis, staging, and response to therapy assessment or prediction. The standardized uptake value (SUV) in the primary or regional area is the most common quantitative measurement derived from PET images used for those purposes. The aim of this study was to propose and evaluate new parameters obtained by textural analysis of baseline PET scans for the prediction of therapy response in esophageal cancer. Forty-one patients with newly diagnosed esophageal cancer treated with combined radiochemotherapy were included in this study. All patients underwent pretreatment whole-body (18)F-FDG PET. Patients were treated with radiotherapy and alkylatinlike agents (5-fluorouracil-cisplatin or 5-fluorouracil-carboplatin). Patients were classified as nonresponders (progressive or stable disease), partial responders, or complete responders according to the Response Evaluation Criteria in Solid Tumors. Different image-derived indices obtained from the pretreatment PET tumor images were considered. These included usual indices such as maximum SUV, peak SUV, and mean SUV and a total of 38 features (such as entropy, size, and magnitude of local and global heterogeneous and homogeneous tumor regions) extracted from the 5 different textures considered. The capacity of each parameter to classify patients with respect to response to therapy was assessed using the Kruskal-Wallis test (P textural analysis can provide nonresponder, partial-responder, and complete-responder patient identification with higher sensitivity (76%-92%) than any SUV measurement. Textural features of tumor metabolic distribution extracted from baseline (18)F-FDG PET images allow for the best stratification of esophageal carcinoma patients in the context of therapy-response prediction.

  6. F-18-fluorodeoxyglucose-positron-emission tomography in neurology

    International Nuclear Information System (INIS)

    Fazekas, F.; Payer, F.

    2002-01-01

    Positron emission tomography using F-18-fluorodeoxyglucose (F-18-FDG-PET) is an ideal tool for imaging regional cerebral metabolism as glucose is the most important source of energy for neurons. Under physiologic conditions the pattern of metabolism reflects the state of cerebral activation which can be modulated by various stimuli to investigate cerebral organization. Pathologic conditions usually cause a drop in metabolism because of neuronal inactivity or loss. They can, however, also be associated with an increased rate of glucose metabolism such as in case of active epileptic foci or malignant tumors. As a consequence F-18-FDG-PET has become a valuable functional imaging modality especially for the diagnostic clarification of non-contributory or negative morphologic imaging results. Dementia, pre-surgical evaluation of epilepsy and neurooncology are currently frequent indications for referral to F-18-FDG-PET in neurology. (author)

  7. Preliminary evaluation of 1′-[18F]fluoroethyl-β-D-lactose ([18F]FEL) for detection of pancreatic cancer in nude mouse orthotopic xenografts

    International Nuclear Information System (INIS)

    Arumugam, Thiruvengadam; Paolillo, Vincenzo; Young, Daniel; Wen, XiaoXia; Logsdon, Craig D.; De Palatis, Louis; Alauddin, Mian M.

    2014-01-01

    Introduction: Early detection of pancreatic cancer could save many thousands of lives. Non-invasive diagnostic imaging, including PET with [ 18 F]FDG, has inadequate resolution for detection of small (2–3 mm) pancreatic tumours. We demonstrated the efficacy of PET imaging with an 18 F-labelled lactose derivative, [ 18 F]FEDL, that targets HIP/PAP, a biomarker that is overexpressed in the peritumoural pancreas. We developed another analogue, 1-[ 18 F]fluoroethyl lactose ([ 18 F]FEL), which is simpler to synthesise, for the same application. We conducted a preliminary evaluation of the new probe and its efficacy in detecting orthotopic pancreatic carcinoma xenografts in mice. Methods: Xenografts were developed in nude mice by injecting L3.6pl/GL + pancreatic carcinoma cells into the pancreas of each mouse. Tumour growth was monitored by bioluminescence imaging (BLI); accuracy of BLI tumour size estimates was verified by MRI in two representative mice. When the tumour size reached approximately 2–3 mm, the animals were injected with [ 18 F]FEL (3.7 MBq) and underwent static PET/CT scans. Blood samples were collected at 2, 5, 10, 20 and 60 min after [ 18 F]FEL injection to track blood clearance. Following imaging, animals were sacrificed and their organs and tumours/pancreatic tissue were collected and counted on a gamma counter. Pancreas, including tumour, was frozen, sliced and used for autoradiography and immunohistochemical analysis of HIP/PAP expression. Results: Tumour growth was rapid, as observed by BLI and MRI. Blood clearance of [ 18 F]FEL was bi-exponential, with half-lives of approximately 3.5 min and 40 min. Mean accumulation of [ 18 F]FEL in the peritumoural pancreatic tissue was 1.29 ± 0.295 %ID/g, and that in the normal pancreas of control animals was 0.090 ± 0.101 %ID/g. [ 18 F]FEL was cleared predominantly by the kidneys. Comparative analysis of autoradiographic images and immunostaining results demonstrated a correlation between [ 18 F

  8. PET imaging of EGF receptors using [{sup 18}F]FBEM-EGF in a head and neck squamous cell carcinoma model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weihua [Harbin Medical University, Department of Medical Imaging and Nuclear Medicine, Fourth Affiliated Hospital, Harbin (China); National Institutes of Health (NIH), Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), Bethesda, MD (United States); Niu, Gang; Lang, Lixin; Guo, Ning; Ma, Ying; Kiesewetter, Dale O.; Chen, Xiaoyuan [National Institutes of Health (NIH), Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), Bethesda, MD (United States); Backer, Joseph M. [SibTech Inc., Brookfield, CT (United States); Shen, Baozhong [Harbin Medical University, Department of Medical Imaging and Nuclear Medicine, Fourth Affiliated Hospital, Harbin (China)

    2012-02-15

    To prepare and evaluate a new radiotracer for molecular imaging of cell surface receptors for epidermal growth factor (EGF). Cys-tagged EGF (cEGF) was labeled with {sup 18}F by coupling the free thiol group of the Cys tag with N-[2-(4-[{sup 18}F]fluorobenzamido)ethyl]maleimide ([{sup 18}F]FBEM) to form [{sup 18}F]FBEM-cEGF. Cell uptake, internalization and efflux of [{sup 18}F]FBEM-cEGF were tested in human head and neck squamous carcinoma UM-SCC1 cells. In vivo tumor targeting and pharmacokinetics of the radiotracers were evaluated in UM-SCC1 tumor-bearing athymic nude mice by static and dynamic microPET imaging. Ex vivo biodistribution assays were performed to confirm the noninvasive imaging results. The radiolabeling yield for [{sup 18}F]FBEM-cEGF was over 60%, based on starting [{sup 18}F]FBEM. [{sup 18}F]FBEM-cEGF exhibited rapid blood clearance through both hepatobiliary and renal excretion. UM-SCC1 tumors were clearly visualized and showed modest tracer uptake of 2.60 {+-} 0.59 %ID/g at 30 min after injection. Significantly higher tumor uptake of [{sup 18}F]FBEM-cEGF (5.99 {+-} 1.61%ID/g at 30 min after injection, p < 0.01) and tumor/nontumor ratio were achieved by coinjection of 50 {mu}g of unlabeled EGF. Decreased liver uptake of [{sup 18}F]FBEM-cEGF was observed when unlabeled EGF was coadministered. With optimized liver blocking, [{sup 18}F]FBEM-cEGF has the potential to be used in a noninvasive and quantitative manner for detection of malignant lesions and evaluation of EGFR activity. (orig.)

  9. Prospective study of serial 18F-FDG PET and 18F-fluoride (18F-NaF) PET to predict time to skeletal related events, time-to-progression, and survival in patients with bone-dominant metastatic breast cancer.

    Science.gov (United States)

    Peterson, Lanell M; O'Sullivan, Janet; Wu, Qian Vicky; Novakova-Jiresova, Alena; Jenkins, Isaac; Lee, Jean H; Shields, Andrew; Montgomery, Susan; Linden, Hannah M; Gralow, Julie R; Gadi, Vijayakrishna K; Muzi, Mark; Kinahan, Paul E; Mankoff, David A; Specht, Jennifer M

    2018-05-10

    Assessing therapy response of breast cancer bone metastases is challenging. In retrospective studies, serial 18 F-FDG PET was predictive of time to skeletal related events (tSRE) and time-to-progression (TTP). 18 F-NaF PET improves bone metastasis detection compared to bone scans. We prospectively tested 18 F-FDG PET and 18 F-NaF PET to predict tSRE, TTP, and overall survival (OS) in patients with bone-dominant metastatic breast cancer (BD MBC). Methods: Patients with BD MBC were imaged with 18 F-FDG PET and 18 F-NaF PET prior to starting new therapy (scan1) and again at a range of times centered around approximately 4 months later (scan2). SUV max and SULpeak were recorded for a single index lesion and up to 5 most dominant lesions for each scan. tSRE, TTP, and OS were assessed exclusive of the PET images. Univariate Cox regression was performed to test the association between clinical endpoints and 18 F-FDG PET and 18 F-NaF PET measures. mPERCIST (Modified PET Response Criteria in Solid Tumors) criteria were also applied. Survival curves for mPERCIST compared response categories of Complete Response+Partial Response+Stable Disease versus Progressive Disease (CR+PR+SD vs PD) for tSRE, TTP, and OS. Results: Twenty-eight patients were evaluated. Higher FDG SULpeak at scan2 predicted shorter time to tSRE ( P = PET mPERCIST, tSRE and TTP were longer in responders (CR, PR, or stable) compared to non-responders (PD) ( P = 0.007, 0.028 respectively), with a trend toward improved survival ( P = 0.1). An increase in the uptake between scans of up to 5 lesions by 18 F-NaF PET was associated with longer OS ( P = 0.027). Conclusion: Changes in 18 F-FDG PET parameters during therapy are predictive of tSRE and TTP, but not OS. mPERCIST evaluation in bone lesions may be useful in assessing response to therapy and is worthy of evaluation in multicenter, prospective trials. Serial 18 F-NaF PET was associated with OS, but was not useful for predicting TTP or tSRE in BD MBC

  10. SU-D-201-03: Imaging Cellular Pharmacokinetics of 18F-FDG in Inflammatory/Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, R; Tuerkcan, S; Mahmoudi, M; Toshinobu, T; Kosuge, H; Yang, P; Chin, F; McConnell, M; Xing, L [Stanford University School of Medicine, Stanford, CA (United States)

    2015-06-15

    Purpose: Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD)—the leading cause of death in the USA. Thus, understating the metabolism of inflammatory cells can be a valuable tool for investigating CAD. To the best of our knowledge, we are the first to successfully investigate the pharmacokinetics of [18F]fluoro-deoxyglucose (18F-FDG) uptake in a single macrophages and compared with induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) with a novel imaging technique, radioluminescence microscopy, initially developed for cancer imaging. Methods: Live cells were cultured sparsely on Matrigel in a glass-bottom dish and starved for 1 hour before incubation with 250 microCi of 18F-FDG for 45 minutes. Excess radiotracer was removed using DMEM medium without glucose. Before imaging, DMEM (1 mL) was added to the cell culture and a 100 microm-thin CdWO4 scintillator plate was placed on top of the cells. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus) fitted with a 40x/1.3 high-NA oil objective, and an EM-CCD camera. The images were collected over 18,000 frames with 4×4 binning (1200 MHz EM Gain, 300ms exposure). Custom-written software was developed in MATLAB for image processing (Figure 1). For statistical analysis 10 different region-of-interests (ROIs) were selected for each cell type. Results: Figures 2A–2B show bright-field/fusion images for all three different cell types. The relationship between cell-to-cell comparisons was found to be linear for macrophages unlike iPSCs and MSCs, which were best fitted with moving or rolling average (Figure 2C). The average observed decay of 18F-FDG in a single cell of MSCs per second (0.067) was 20% and 36% higher compared to iPSCs (0.054) and macrophages (0.043), respectively (Figure 2D). Conclusion: MSCs was found to be 2–3x more sensitive to glucose molecule despite constant parameters for each

  11. SU-D-201-03: Imaging Cellular Pharmacokinetics of 18F-FDG in Inflammatory/Stem Cells

    International Nuclear Information System (INIS)

    Zaman, R; Tuerkcan, S; Mahmoudi, M; Toshinobu, T; Kosuge, H; Yang, P; Chin, F; McConnell, M; Xing, L

    2015-01-01

    Purpose: Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD)—the leading cause of death in the USA. Thus, understating the metabolism of inflammatory cells can be a valuable tool for investigating CAD. To the best of our knowledge, we are the first to successfully investigate the pharmacokinetics of [18F]fluoro-deoxyglucose (18F-FDG) uptake in a single macrophages and compared with induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) with a novel imaging technique, radioluminescence microscopy, initially developed for cancer imaging. Methods: Live cells were cultured sparsely on Matrigel in a glass-bottom dish and starved for 1 hour before incubation with 250 microCi of 18F-FDG for 45 minutes. Excess radiotracer was removed using DMEM medium without glucose. Before imaging, DMEM (1 mL) was added to the cell culture and a 100 microm-thin CdWO4 scintillator plate was placed on top of the cells. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus) fitted with a 40x/1.3 high-NA oil objective, and an EM-CCD camera. The images were collected over 18,000 frames with 4×4 binning (1200 MHz EM Gain, 300ms exposure). Custom-written software was developed in MATLAB for image processing (Figure 1). For statistical analysis 10 different region-of-interests (ROIs) were selected for each cell type. Results: Figures 2A–2B show bright-field/fusion images for all three different cell types. The relationship between cell-to-cell comparisons was found to be linear for macrophages unlike iPSCs and MSCs, which were best fitted with moving or rolling average (Figure 2C). The average observed decay of 18F-FDG in a single cell of MSCs per second (0.067) was 20% and 36% higher compared to iPSCs (0.054) and macrophages (0.043), respectively (Figure 2D). Conclusion: MSCs was found to be 2–3x more sensitive to glucose molecule despite constant parameters for each

  12. [18F]Fluoroethylflumazenil: a novel tracer for PET imaging of human benzodiazepine receptors

    International Nuclear Information System (INIS)

    Gruender, G.; Lange-Asschenfeldt, C.; Vernaleken, I.; Lueddens, H.; Siessmeier, T.; Buchholz, H.-G.; Bartenstein, P.; Stoeter, P.; Drzezga, A.; Roesch, F.

    2001-01-01

    5-(2'-[ 18 F]Fluoroethyl)flumazenil ([ 18 F]FEF) is a fluorine-18 labelled positron emission tomography (PET) tracer for central benzodiazepine receptors. Compared with the established [ 11 C]flumazenil, it has the advantage of the longer half-life of the fluorine-18 label. After optimisation of its synthesis and determination of its in vitro receptor affinities, we performed first PET studies in humans. PET studies in seven healthy human volunteers were performed on a Siemens ECAT EXACT whole-body scanner after injection of 100-280 MBq [ 18 F]FEF. In two subjects, a second PET scan was conducted after pretreatment with unlabelled flumazenil (1 mg or 2.5 mg i.v., 3 min before tracer injection). A third subject was studied both with [ 18 F]FEF and with [ 11 C]flumazenil. Brain radioactivity was measured for 60-90 min p.i. and analysed with a region of interest-oriented approach and on a voxelwise basis with spectral analysis. Plasma radioactivity was determined from arterial blood samples and metabolites were determined by high-performance liquid chromatography. In human brain, maximum radioactivity accumulation was observed 4±2 min p.i., with a fast clearance kinetics resulting in 50% and 20% of maximal activities at about 10 and 30 min, respectively. [ 18 F]FEF uptake followed the known central benzodiazepine receptor distribution in the human brain (occipital cortex >temporal cortex >cerebellum >thalamus >pons). Pretreatment with unlabelled flumazenil resulted in reduced tracer uptake in all brain areas except for receptor-free reference regions like the pons. Parametric images of distribution volume and binding potential generated on a voxelwise basis revealed two- to three-fold lower in vivo receptor binding of [ 18 F]FEF compared with [ 11 C]flumazenil, while relative uptake of [ 18 F]FEF was higher in the cerebellum, most likely owing to its relatively higher affinity for benzodiazepine receptors containing the α6 subunit. Metabolism of [ 18 F]FEF was very

  13. 18F-FDG and 18F-FLT-PET imaging for monitoring everolimus effect on tumor-growth in neuroendocrine tumors: studies in human tumor xenografts in mice.

    Directory of Open Access Journals (Sweden)

    Camilla Bardram Johnbeck

    Full Text Available The mTOR inhibitor everolimus has shown promising results in some but not all neuroendocrine tumors. Therefore, early assessment of treatment response would be beneficial. In this study, we investigated the in vivo and in vitro treatment effect of everolimus in neuroendocrine tumors and evaluated the performance of 18F-FDG and the proliferation tracer 18F-FLT for treatment response assessment by PET imaging.The effect of everolimus on the human carcinoid cell line H727 was examined in vitro with the MTT assay and in vivo on H727 xenograft tumors. The mice were scanned at baseline with 18F-FDG or 18F-FLT and then treated with either placebo or everolimus (5 mg/kg daily for 10 days. PET/CT scans were repeated at day 1,3 and 10.Everolimus showed significant inhibition of H727 cell proliferation in vitro at concentrations above 1 nM. In vivo tumor volumes measured relative to baseline were significantly lower in the everolimus group compared to the control group at day 3 (126±6% vs. 152±6%; p = 0.016, day 7 (164±7% vs. 226±13%; p<0.001 and at day 10 (194±10% vs. 281±18%; p<0.001. Uptake of 18F-FDG and 18F-FLT showed little differences between control and treatment groups, but individual mean uptake of 18F-FDG at day 3 correlated with tumor growth day 10 (r2 = 0.45; P = 0.034, 18F-FLT mean uptake at day 1 correlated with tumor growth day 7 (r2 = 0.63; P = 0.019 and at day 3 18F-FLT correlated with tumor growth day 7 (r2 = 0.87; P<0.001 and day 10 (r2 = 0.58; P = 0.027.Everolimus was effective in vitro and in vivo in human xenografts lung carcinoid NETs and especially early 18F-FLT uptake predicted subsequent tumor growth. We suggest that 18F-FLT PET can be used for tailoring therapy for neuroendocrine tumor patients through early identification of responders and non-responders.

  14. Membrane Potential-dependent Uptake of 18F-triphenylphosphonium - A New Voltage Sensor as an Imaging Agent for Detecting Burn-induced Apoptosis

    Science.gov (United States)

    Zhao, Gaofeng; Yu, Yong-Ming; Shoup, Timothy M.; Elmaleh, David R.; Bonab, Ali A.; Tompkins, Ronald G.; Fischman, Alan J.

    2014-01-01

    Background Mitochondrial dysfunction has been closely related to many pathological processes, such as cellular apoptosis. Alterations in organelle membrane potential are associated with mitochondrial dysfunction. A fluorine -18 labeled phosphonium compound: 18F-triphenylphosphonium (18F-TPP) was prepared to determine its potential use as a mitochondria-targeting radiopharmaceutical to evaluate cellular apoptosis. Methods Studies were conducted in both ex vivo cell lines and in vivo using a burned animal model. Uptake of 18F-TPP was assessed in PC-3 cells by gamma counting under the following conditions: graded levels of extra-cellular potassium concentrations, incubation with carbonyl cyanide m-chlorophenylhydrazone (CCCP) and staurosporine. Apoptosis was studied in a burn animal model using TUNEL staining and simultaneous assessment of 18F-TPP uptake by biodistribution. Results We found that stepwise membrane depolarization by potassium (K) resulted in a linear decrease in 18F-TPP uptake, with a slope of 0.62+/−0.08 and a correlation coefficient of 0.936+/−0.11. Gradually increased concentrations of CCCP lead to decreased uptakes of 18F-TPP. Staurosporine significantly decreased the uptake of 18F-TPP in PC-3 cells from 14.2+/−3.8% to 5.6+/−1.3% (P<0.001). Burn induced significant apoptosis (sham: 4.4 +/−1.8% vs. burn: 24.6+/− 6.7 %; p<0.005) and a reduced uptake of tracer in the spleens of burn injured animals as compared to sham burn controls (burn: 1.13+/−0.24% vs. sham: 3.28+/−0.67%; p<0.005). Biodistribution studies demonstrated that burn induced significant reduction in 18F-TPP uptake in spleen, heart, lung, and liver, which were associated with significantly increased apoptosis. Conclusions 18F-TPP is a promising new voltage sensor for detecting mitochondrial dysfunction and apoptosis in various tissues. PMID:24582214

  15. PET imaging of cerebral metabolic change in tinnitus using {sup 18}F-FDG

    Energy Technology Data Exchange (ETDEWEB)

    Jiahe, Tian; Hongtian, Wang; Dayi, Yin; Shulin, Yao; Mingzhe, Shao; Weiyan, Yang; Sichang, Jiang [The PLA General Hospital, Beijing (China)

    2000-11-01

    Tinnitus is an auditory disorder hardly assessable by clinical technology. PET imaging of the brain in 13 cases with and 10 without tinnitus was undertaken at 40 min after injection of 280-440 MBq {sup 18}F-FDG. To ensure the quality of the PET study, all cases followed a normalized procedure with visual and auditory blockage. CT/MRI imaging and routine acoustic tests were carried out in all subjects. PET revealed that an increased uptake of {sup 18}F-FDG at left med-temporal lobe (primary auditory center, PAC) present exclusively in tinnitus, regardless the side of hearing hallucination. Significant asymmetry was noted between left and right PAC, but not at other cortex area. While control cases showed no asymmetric uptake between two hemispheres. The abnormal PAC uptake did not respond to external pure sound stimulus, nor did it relate to the severity of hearing loss assessed by acoustic tests. No anatomical or morphological alteration could be proven on CT/MRI. In conclusion, PET/{sup 18}F-FDG objectively revealed an increased metabolic change at left PAC in tinnitus, which is of diagnostic value; and there is evidence suggesting tinnitus is most likely induced by a functional change in the brain.

  16. Comparison of 11C-PiB and 18F-florbetaben for Aβ imaging in ageing and Alzheimer's disease

    International Nuclear Information System (INIS)

    Villemagne, Victor L.; Mulligan, Rachel S.; Pejoska, Svetlana; Ong, Kevin; Jones, Gareth; O'Keefe, Graeme; Chan, J.G.; Young, Kenneth; Tochon-Danguy, Henri; Masters, Colin L.; Rowe, Christopher C.

    2012-01-01

    Amyloid imaging with 18 F-labelled radiotracers will allow widespread use of this technique, facilitating research, diagnosis and therapeutic development for Alzheimer's disease (AD). The purpose of this analysis was to compare data on cortical Aβ deposition in subjects who had undergone both 11 C-PiB (PiB) and 18 F-florbetaben (FBB) PET imaging. We identified ten healthy elderly controls (HC) and ten patients with AD who had undergone PET imaging after intravenous injection of 370 MBq of PiB and 300 MBq of FBB under separate research protocols. PiB and FBB images were coregistered so that placement of regions of interest was identical on both scans and standard uptake value ratios (SUVR) using the cerebellar cortex as reference region were calculated between 40 and 70 min and between 90 and 110 min after injection for PiB and FBB, respectively. Significantly higher SUVR values (p 18 F radiotracer for imaging AD pathology in vivo. (orig.)

  17. 5-(2-18F-fluoroethoxy)-L-tryptophan as a substrate of system L transport for tumor imaging by PET.

    Science.gov (United States)

    Krämer, Stefanie D; Mu, Linjing; Müller, Adrienne; Keller, Claudia; Kuznetsova, Olga F; Schweinsberg, Christian; Franck, Dominic; Müller, Cristina; Ross, Tobias L; Schibli, Roger; Ametamey, Simon M

    2012-03-01

    Large neutral l-amino acids are substrates of system L amino acid transporters. The level of one of these, LAT1, is increased in many tumors. Aromatic l-amino acids may also be substrates of aromatic l-amino acid decarboxylase (AADC), the level of which is enhanced in endocrine tumors. Increased amino acid uptake and subsequent decarboxylation result in the intracellular accumulation of the amino acid and its decarboxylation product. (18)F- and (11)C-labeled neutral aromatic amino acids, such as l-3,4-dihydroxy-6-(18)F-fluorophenylalanine ((18)F-FDOPA) and 5-hydroxy-l-[β-(11)C]tryptophan, are thus successfully used in PET to image endocrine tumors. However, 5-hydroxy-l-[β-(11)C]tryptophan has a relatively short physical half-life (20 min). In this work, we evaluated the in vitro and in vivo characteristics of the (18)F-labeled tryptophan analog 5-(2-(18)F-fluoroethoxy)-l-tryptophan ((18)F-l-FEHTP) as a PET probe for tumor imaging. (18)F-l-FEHTP was synthesized by no-carrier-added (18)F fluorination of 5-hydroxy-l-tryptophan. In vitro cell uptake and efflux of (18)F-l-FEHTP and (18)F-FDOPA were studied with NCI-H69 endocrine small cell lung cancer cells, PC-3 pseudoendocrine prostate cancer cells, and MDA-MB-231 exocrine breast cancer cells. Small-animal PET was performed with the respective xenograft-bearing mice. Tissues were analyzed for potential metabolites. (18)F-l-FEHTP specific activity and radiochemical purity were 50-150 GBq/μmol and greater than 95%, respectively. In vitro cell uptake of (18)F-l-FEHTP was between 48% and 113% of added radioactivity per milligram of protein within 60 min at 37°C and was blocked by greater than 95% in all tested cell lines by the LAT1/2 inhibitor 2-amino-2-norboranecarboxylic acid. (18)F-FDOPA uptake ranged from 26% to 53%/mg. PET studies revealed similar xenograft-to-reference tissue ratios for (18)F-l-FEHTP and (18)F-FDOPA at 30-45 min after injection. In contrast to the (18)F-FDOPA PET results, pretreatment with the

  18. Fluorine-18 labelling of a novel series of chimeric, mdm2 oncogene targeting, peptide-pna oligomers using [18F]FPyME

    International Nuclear Information System (INIS)

    Kuhnast, B.; Hinnen, F.; Boisgard, R.; Tavitian, B.; Dolle, F.; Nielsen, P.

    2011-01-01

    Complete text of publication follows: Peptide nucleic acids (PNAs) form a unique class of synthetic macromolecules, originally designed as ligands for the recognition of double stranded DNA, where the deoxyribose phosphate backbone of original DNA is replaced by a pseudo-peptide N-(2-aminoethyl)glycyl backbone, while retaining the nucleobases of DNA. PNAs have already showed promising therapeutic potential as antisense and anti-gene agents and are inspiring the development of a variety of research and diagnostic assays, including their use as imaging tools. Within our intensive programs of development of oligonucleotide-based probes for PET-imaging, a novel series of chimeric peptide-PNA oligomers has been designed as complementary antisense probes targeting a specific 15-base sequence located at the intron-exon junction of the pre-mRNA of the murine double minute (mdm2) oncogene. This gene codes for a p53 interacting protein that represses p53 transcriptional activity, and appears to be over expressed in several tumor types including soft tissue sarcomas and osteosarcomas as well as breast tumors. For in vivo 3D-imaging purposes, all oligomers include a cysteine thus providing a sulfhydryl function permitting prosthetic conjugation with maleimide-based reagents such as AlexaFluor680 R (AF680) for optical fluorescence imaging and [ 18 F]FPyME (1-[3-(2-[ 18 F]fluoropyridin-3-yloxy)propyl]pyrrole-2, 5-dione), a prosthetic reagent labeled with the positron-emitter fluorine-18 for PET imaging, which latter work is presented herein. Methods: [ 18 F]FPyME was prepared using a three-step radiochemical pathway already reported and includes an HPLC-purification (semi-preparative SiO 2 Zorbax R Rx-SIL, Hewlett Packard). [ 18 F]FPyME was conjugated with the peptide-PNA oligomers (PNA3132, PNA3133, and PNA3135, 0.25-0.30 micro-moles) in 1/9 (v:v) mixture (1 mL) of DMSO and 0.1 M aq. PBS (pH 8) at room temperature for 15 min. The [ 18 F]FPyME-conjugated products (c-[ 18 F

  19. 18F-FAC PET selectively images hepatic infiltrating CD4 and CD8 T cells in a mouse model of autoimmune hepatitis.

    Science.gov (United States)

    Salas, Jessica R; Chen, Bao Ying; Wong, Alicia; Cheng, Donghui; Van Arnam, John S; Witte, Owen N; Clark, Peter M

    2018-04-26

    Immune cell-mediated attack on the liver is a defining feature of autoimmune hepatitis and hepatic allograft rejection. Despite an assortment of diagnostic tools, invasive biopsies remain the only method for identifying immune cells in the liver. We evaluated whether PET imaging with radiotracers that quantify immune activation ( 18 F-FDG and 18 F-FAC) and hepatocyte biology ( 18 F-DFA) can visualize and quantify hepatic infiltrating immune cells and hepatocyte inflammation, respectively, in a preclinical model of autoimmune hepatitis. Methods: Mice treated with Concanavalin A (ConA) to induce a model of autoimmune hepatitis or vehicle were imaged with 18 F-FDG, 18 F-FAC, and 18 F-DFA PET. Immunohistochemistry, digital autoradiography, and ex vivo accumulation assays were used to localize areas of altered radiotracer accumulation in the liver. For comparison, mice treated with an adenovirus to induce a viral hepatitis or vehicle were imaged with 18 F-FDG, 18 F-FAC, and 18 F-DFA PET. 18 F-FAC PET was performed on mice treated with ConA, and vehicle or dexamethasone. Biopsy samples of patients suffering from autoimmune hepatitis were immunostained for deoxycytidine kinase (dCK). Results: Hepatic accumulation of 18 F-FDG and 18 F-FAC was 173% and 61% higher, respectively, and hepatic accumulation of 18 F-DFA was 41% lower in a mouse model of autoimmune hepatitis compared to control mice. Increased hepatic 18 F-FDG accumulation was localized to infiltrating leukocytes and inflamed sinusoidal endothelial cells, increased hepatic 18 F-FAC accumulation was concentrated in infiltrating CD4 and CD8 cells, and decreased hepatic 18 F-DFA accumulation was apparent in hepatocytes throughout the liver. In contrast, viral hepatitis increased hepatic 18 F-FDG accumulation by 109% and decreased hepatic 18 F-DFA accumulation by 20% but had no effect on hepatic 18 F-FAC accumulation (non-significant 2% decrease). 18 F-FAC PET provided a non-invasive biomarker of the efficacy of

  20. Monitoring of the Formation and Development Process for Infection and Inflammation Using F-18 FDG, PET/CT

    Directory of Open Access Journals (Sweden)

    Türkan Ertay

    2015-02-01

    Full Text Available Objective: Many radiopharmaceuticals have been evaluated extensively in both preclinical and clinical studies as potential diagnostic agents to identify the sites of infection. There is a definite role of FDG-PET in diagnosis, extent of assessing the disease, evaluation of treatment response and disease activity in patients with infections and inflammation. The aim of the study, the process of formation and development of infection and inflammation is monitored using (18 F 2’-deoxy-2-fluoroD-glucose (F-18 FDG by Positron Emission Computed Tomography (PET-CT. Methods: In this study, sterile abscess was induced by using turpentine and infected abscess was induced by using Staphylococcus aureus atcc 25923 strain on rats. In the abscess formation on rats, three grups rats were used as sterile, infected and control grups. There were examined male White Wistar Rats, the clinical healthy animals were 150-220 gr body weight. Bacterial strain and rat model for abscess formation for infected abscess formation on rats (n=7, S. aureus 0.5 ml 107 CFU/ml was inoculated in the right arm of the rats as subcutaneous. For sterile abscess formation on rats (n=7 0.2-0.4 ml turpentine (sigma-aldrich was injected into the right arm of the rats as subcutaneous. In control group (n=6, 0.5 ml 0.9% NaCl was injected into the right arm of the rats as subcutaneous. First day imsaging was acquired 24 hours after inoculation of S.aureus and turpentine. 1 mCi 18F-FDG was injected intravenously via the tail vein. Prior to 18F-FDG injection, rats fasted at least 4 hours and well hydrated. Imaging was done using PET-CT (PHILIPS Gemini TF, beginning 1 hour following injection of 18F-FDG IV in the first day and at intervals of 24 hours for five days. First day imaging was performed 1. hour after IV injection of 18F-FDG to obtain optimum imaging time. PET/CT images were visually and semiquantitatively assessed. For semiquantitative analysis of the PET images, a region of interest

  1. Radiosynthesis and biological evaluation of an {sup 18}F-labeled derivative of the novel pyrazolopyrimidine sedative-hypnotic agent indiplon

    Energy Technology Data Exchange (ETDEWEB)

    Hoepping, Alexander [ABX Advanced Biochemical Compounds GmbH, 01454 Radeberg (Germany); Scheunemann, Matthias [Institute of Interdisciplinary Isotope Research, 04318 Leipzig (Germany); Fischer, Steffen [Institute of Interdisciplinary Isotope Research, 04318 Leipzig (Germany); Deuther-Conrad, Winnie [Institute of Interdisciplinary Isotope Research, 04318 Leipzig (Germany); Hiller, Achim [Institute of Interdisciplinary Isotope Research, 04318 Leipzig (Germany); Wegner, Florian [Department of Neurology, University of Leipzig, 04103 Leipzig (Germany); Diekers, Michael [ABX Advanced Biochemical Compounds GmbH, 01454 Radeberg (Germany); Steinbach, Joerg [Institute of Interdisciplinary Isotope Research, 04318 Leipzig (Germany); Brust, Peter [Institute of Interdisciplinary Isotope Research, 04318 Leipzig (Germany)]. E-mail: brust@iif-leipzig.de

    2007-07-15

    Introduction: Gamma amino butyric acid type A (GABA{sub A}) receptors are involved in a variety of neurological and psychiatric diseases, which have promoted the development and use of radiotracers for positron emission tomography imaging. Radiolabeled benzodiazepine antagonists such as flumazenil have most extensively been used for this purpose so far. Recently, the non-benzodiazepine pyrazolopyrimidine derivative indiplon with higher specificity for the {alpha}{sub 1} subtype of the GABA{sub A} receptor has been introduced for treatment of insomnia. The aim of this study was the development and biological evaluation of an {sup 18}F-labeled derivative of indiplon. Methods: Both [{sup 18}F]fluoro-indiplon and its labeling precursor were synthesized by two-step procedures starting from indiplon. The radiosynthesis of [{sup 18}F]fluoro-indiplon was performed using the bromoacetyl precursor followed by multiple-stage purification using semipreparative HPLC and solid phase extraction. Stability, partition coefficients, binding affinities and regional brain binding were determined in vitro. Biodistribution and radiotracer metabolism were studied in vivo. Results: [{sup 18}F]Fluoro-indiplon was readily accessible in good yields (38-43%), with high purity and high specific radioactivity (>150 GBq/{mu}mol). It displays high in vitro stability and moderate lipophilicity. [{sup 18}F]Fluoro-indiplon has an affinity to GABA{sub A} receptors comparable to indiplon (K {sub i}=8.0 nM vs. 3.4 nM). In vitro autoradiography indicates high [{sup 18}F]fluoro-indiplon binding in regions with high densities of GABA{sub A} receptors. However, ex vivo autoradiography and organ distribution studies show no evidence of specific binding of [{sup 18}F]fluoro-indiplon. Furthermore, the radiotracer is rapidly metabolized with high accumulation of labeled metabolites in the brain. Conclusions: Although [{sup 18}F]fluoro-indiplon shows good in vitro features, it is not suitable for in vivo

  2. Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN.

    Science.gov (United States)

    Liu, Zhaofei; Yan, Yongjun; Chin, Frederic T; Wang, Fan; Chen, Xiaoyuan

    2009-01-22

    Radiolabeled RGD and bombesin peptides have been extensively investigated for tumor integrin alpha(v)beta(3) and GRPR imaging, respectively. Due to the fact that many tumors are both integrin and GRPR positive, we designed and synthesized a heterodimeric peptide Glu-RGD-BBN, which is expected to be advantageous over the monomeric peptides for dual-receptor targeting. A PEG(3) spacer was attached to the glutamate alpha-amino group of Glu-RGD-BBN to enhance the (18)F labeling yield and to improve the in vivo kinetics. PEG(3)-Glu-RGD-BBN possesses the comparable GRPR and integrin alpha(v)beta(3) receptor-binding affinities as the corresponding monomers, respectively. The dual-receptor targeting properties of (18)F-FB-PEG(3)-Glu-RGD-BBN were observed in PC-3 tumor model. (18)F-FB-PEG(3)-Glu-RGD-BBN with high tumor contrast and favorable pharmacokinetics is a promising PET tracer for dual integrin and GRPR positive tumor imaging. This heterodimer strategy may also be an applicable method to develop other molecules with improved in vitro and in vivo characterizations for tumor diagnosis and therapy.

  3. Clinical impact of PSMA-based {sup 18}F-DCFBC PET/CT imaging in patients with biochemically recurrent prostate cancer after primary local therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Esther [Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD (United States); Lindenberg, Maria L.; Bergvall, Ethan; Ton, Anita T.; McKinney, Yolanda; Eclarinal, Philip; Choyke, Peter L.; Turkbey, Baris [Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD (United States); Shih, Joanna H. [National Cancer Institute, NIH, Division of Cancer treatment and Diagnosis: Biometric Research Program, Bethesda, MD (United States); Adler, Stephen; Harmon, Stephanie; Weaver, Juanita; Forest, Alicia [National Cancer Institute, Campus at Frederick, Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., Frederick, MD (United States); Citrin, Deborah [Radiation Oncology Branch, Center for Cancer Research. National Cancer Institute, NIH, Bethesda, MD (United States); Dahut, William [National Cancer Institute, NIH, Genitourinary Malignancies Branch, Bethesda, MD (United States); Afari, George; Bhattacharyya, Sibaprasad [Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD (United States); Mease, Ronnie C.; Pomper, Martin G. [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Merino, Maria J. [Laboratory of Pathology, NCI, NIH, Bethesda, MD (United States); Pinto, Peter [National Cancer Institute, NIH, Urologic Oncology Branch, Bethesda, MD (United States); Wood, Bradford J. [National Cancer Institute, NIH, Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, Bethesda, MD (United States); Jacobs, Paula [National Cancer Institute, NIH, Cancer Imaging Program, Rockville, MD (United States)

    2018-01-15

    The purpose of our study was to assess {sup 18}F-DCFBC PET/CT, a PSMA targeted PET agent, for lesion detection and clinical management of biochemical relapse in prostate cancer patients after primary treatment. This is a prospective IRB-approved study of 68 patients with documented biochemical recurrence after primary local therapy consisting of radical prostatectomy (n = 50), post radiation therapy (n = 9) or both (n = 9), with negative conventional imaging. All 68 patients underwent whole-body {sup 18}F-DCFBC PET/CT, and 62 also underwent mpMRI within one month. Lesion detection with {sup 18}F-DCFBC was correlated with mpMRI findings and pre-scan PSA levels. The impact of {sup 18}F-DCFBC PET/CT on clinical management and treatment decisions was established after 6 months' patient clinical follow-up. Forty-one patients (60.3%) showed at least one positive {sup 18}F-DCFBC lesion, for a total of 79 lesions, 30 in the prostate bed, 39 in lymph nodes, and ten in distant sites. Tumor recurrence was confirmed by either biopsy (13/41 pts), serial CT/MRI (8/41) or clinical follow-up (15/41); there was no confirmation in five patients, who continue to be observed. The {sup 18}F-DCFBC and mpMRI findings were concordant in 39 lesions (49.4%), and discordant in 40 lesions (50.6%); the majority (n = 32/40) of the latter occurring because the recurrence was located outside the mpMRI field of view. {sup 18}F-DCFBC PET positivity rates correlated with PSA values and 15%, 46%, 83%, and 77% were seen in patients with PSA values <0.5, 0.5 to <1.0, 1.0 to <2.0, and ≥2.0 ng/mL, respectively. The optimal cut-off PSA value to predict a positive {sup 18}F-DCFBC scan was 0.78 ng/mL (AUC = 0.764). A change in clinical management occurred in 51.2% (21/41) of patients with a positive {sup 18}F-DCFBC result, generally characterized by starting a new treatment in 19 patients or changing the treatment plan in two patients. {sup 18}F-DCFBC detects recurrences in 60.3% of a population of

  4. Progress of study on the dopamine D4 receptor imaging agent

    International Nuclear Information System (INIS)

    Tian Haibin; Zhang Lan; Zhang Chunfu; Li Junling; Yin Duanzhi

    2001-01-01

    Dopamine receptors were originally classified into five receptors subtypes, the dopamine D 4 receptor was included. Schizophrenic pathophysiology may be associated with expression and function of the dopamine D 4 receptor; it is of great importance to study the imaging agent of dopamine D 4 receptor. The study on radioactivity distribution and metabolize of radioligand remains hampered by the lack radioligand for the D 4 receptor which can be labeled using suitable nuclei. This paper reviews the progress of study on the dopamine D 4 receptor imaging agent, with particular emphasis vary nuclei, for example 11 C, 18 F, 123 I, labeled D 4 receptor ligands, antagonists and analogs as PET or SPECT imaging agents. Authors estimated affinity and selectivity of radioligands for the dopamine D 4 receptor in laboratory animal tests

  5. Synthesis, radiofluorination and first evaluation of [{sup 18}F]fluorophenylsulfonyl- and [{sup 18}F]fluorophenylsulfinyl-piperidines as serotonin 5-HT{sub 2A} receptor antagonists for PET

    Energy Technology Data Exchange (ETDEWEB)

    Muehlhausen, Ute; Sihver, Wiebke [Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Ermert, Johannes, E-mail: j.ermert@fz-juelich.d [Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Coenen, Heinz H. [Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany)

    2010-07-15

    In psychiatric disorders, 5-HT{sub 2A} receptors play an important role. In order to study these receptors in vivo by positron emission tomography (PET), there is an increasing interest for subtype selective and high affinity radioligands. Up to now, no optimal radiotracer is available. Thus, 1-(2,4-difluorophenethyl)-4-(4-fluorophenylsulfonyl)piperidine (9), possessing high affinity and sufficient subtype selectivity for 5-HT{sub 2A} receptors, and 1-(2,4-difluorophenethyl)-4-(4-fluorophenylsulfinyl)piperidine (15) have been {sup 18}F-labelled by a nucleophilic one-step reaction. Both radiotracers could be prepared and isolated within 45 min, [{sup 18}F]9 in a radiochemical yield (RCY) of 34.5{+-}8% and [{sup 18}F]15 of 9.5{+-}2.5%. The K{sub i} values of 9 and 15 at 5-HT{sub 2A} receptors towards [{sup 3}H]ketanserin were determined to be 1.9{+-}0.6 and 198{+-}8 nM, respectively. Autoradiography with [{sup 18}F]9 and [{sup 18}F]15 on rat brain sections showed a very high nonspecific binding of >80% for [{sup 18}F]9 and 30% to 40% nonspecific binding for [{sup 18}F]15; however, it is still too high in order to compensate for its lower affinity. Even though the affinity of 9 is more promising compared with 15, the high nonspecific binding of both radiofluorinated tracers in rat brain does not recommend those as an in vivo PET imaging agent for serotonin 5-HT{sub 2A} receptors in humans.

  6. New horizons in cardiac innervation imaging. Introduction of novel 18F-labeled PET tracers

    International Nuclear Information System (INIS)

    Kobayashi, Ryohei; Chen, Xinyu; Werner, Rudolf A.; Lapa, Constantin; Javadi, Mehrbod S.; Higuchi, Takahiro

    2017-01-01

    Cardiac sympathetic nervous activity can be uniquely visualized by non-invasive radionuclide imaging techniques due to the fast growing and widespread application of nuclear cardiology in the last few years. The norepinephrine analogue 123 I-meta-iodobenzylguanidine ( 123 I-MIBG) is a single photon emission computed tomography (SPECT) tracer for the clinical implementation of sympathetic nervous imaging for both diagnosis and prognosis of heart failure. Meanwhile, positron emission tomography (PET) imaging has become increasingly attractive because of its higher spatial and temporal resolution compared to SPECT, which allows regional functional and dynamic kinetic analysis. Nevertheless, wider use of cardiac sympathetic nervous PET imaging is still limited mainly due to the demand of costly on-site cyclotrons, which are required for the production of conventional 11 C-labeled (radiological half-life, 20 min) PET tracers. Most recently, more promising 18 F-labeled (half-life, 110 min) PET radiopharmaceuticals targeting sympathetic nervous system have been introduced. These tracers optimize PET imaging and, by using delivery networks, cost less to produce. In this article, the latest advances of sympathetic nervous imaging using 18 F-labeled radiotracers along with their possible applications are reviewed. (orig.)

  7. Single-scan rest/stress imaging: validation in a porcine model with {sup 18}F-Flurpiridaz

    Energy Technology Data Exchange (ETDEWEB)

    Guehl, Nicolas J.; Normandin, Marc D.; Wooten, Dustin W.; Sitek, Arkadiusk; Shoup, Timothy M.; El Fakhri, Georges; Alpert, Nathaniel M. [Harvard Medical School, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Rozen, Guy; Ruskin, Jeremy [Harvard Medical School, Cardiac Arrhythmia Service, Department of Medicine, Massachusetts General Hospital, Boston, MA (United States); Ptaszek, Leon M. [Harvard Medical School, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Harvard Medical School, Cardiac Arrhythmia Service, Department of Medicine, Massachusetts General Hospital, Boston, MA (United States)

    2017-08-15

    {sup 18}F-labeled myocardial flow agents are becoming available for clinical application but the ∝2 hour half-life of {sup 18}F complicates their clinical application for rest-stress measurements. The goal of this work is to evaluate in a pig model a single-scan method which provides quantitative rest-stress blood flow in less than 15 minutes. Single-scan rest-stress measurements were made using {sup 18}F-Flurpiridaz. Nine scans were performed in healthy pigs and seven scans were performed in injured pigs. A two-injection, single-scan protocol was used in which an adenosine infusion was started 4 minutes after the first injection of {sup 18}F-Flurpiridaz and followed either 3 or 6 minutes later by a second radiotracer injection. In two pigs, microsphere flow measurements were made at rest and during stress. Dynamic images were reoriented into the short axis view, and regions of interest (ROIs) for the 17 myocardial segments were defined in bull's eye fashion. PET data were fitted with MGH2, a kinetic model with time varying kinetic parameters, in which blood flow changes abruptly with the introduction of adenosine. Rest and stress myocardial blood flow (MBF) were estimated simultaneously. The first 12-14 minutes of rest-stress PET data were fitted in detail by the MGH2 model, yielding MBF measurement with a mean precision of 0.035 ml/min/cc. Mean myocardial blood flow across pigs was 0.61 ± 0.11 mL/min/cc at rest and 1.06 ± 0.19 mL/min/cc at stress in healthy pigs and 0.36 ± 0.20 mL/min/cc at rest and 0.62 ± 0.24 mL/min/cc at stress in the ischemic area. Good agreement was obtained with microsphere flow measurement (slope = 1.061 ± 0.017, intercept = 0.051 ± 0.017, mean difference 0.096 ± 0.18 ml/min/cc). Accurate rest and stress blood flow estimation can be obtained in less than 15 min of PET acquisition. The method is practical and easy to implement suggesting the possibility of clinical translation. (orig.)

  8. Syntheses of F-18 Labeled Fluoroalkyltyrosine Derivatives

    International Nuclear Information System (INIS)

    Moon, Byung Seok; Lee, Kyo Chul; Yang, Seung Dae; Chun, Kwon Soo; Chi, Dae Yoon

    2005-01-01

    Positron emission tomography (PET) offers the highest resolution of all nuclear medicine imaging modalities and allows quantitation of tracer concentration in tissues. For more than 60 years, some of C-11 or F-18 labeled amino acids have been synthesized and evaluated for potential use in oncology, neurology and psychiatric disorders. Besides, a variety of radioisotope labeled amino acids have proven to be useful for imaging tumors, especially for brain tumor, lung tumor and breast tumor. These amino acids can be subdivided into two categories. The first category is represented by radiolabled naturally occurring amino acids and structurally similar analogues. Although these radiolabeled amino acids have proven useful in detecting brain and systemic tumors, it is susceptible to in vivo metabolism through multiple pathways that give rise to numerous radiolabled metabolites. On the other side, structurally similar amino acid analogues have some significant advantages over the natural amino acids. These nonnatural amino acids are not metabolized, which simplifieds the kinetic analysis of their uptake. On the basis of the promising results obtained with these nonnatural amino acids in preclinical studies, recent efforts have focused on the development of new F-18 labeled nonnatural amino acids. Recently, O-(2-[ 18 F]Fluoroethyl)-L-tyrosine (FET), O-(3-[ 18 F]Fluoropropyl)-L-tyrosine (FPT) were developed and evaluated among structurally similar to a new amino acid analogue. FET has shown high uptake in activated inflammatory cells using an experimental acute abscess model and in inflammation within lymph nodes. FPT was superior to FDG and had a slight advantage over FET in the differentiation of tumor from inflammation, and, like FET, it appeared to be a potential amino acid tracer for tumor imaging with PET. In this paper, we elected to introduce fluoroethyl and fluoropropyl groups at the R 1 positions and OCH 3 at R 2 position to the same effect of FET. Herein, we wish

  9. 18F-DOPA PET and enhanced CT imaging for congenital hyperinsulinism: initial UK experience from a technologist's perspective.

    Science.gov (United States)

    Meintjes, Marguerite; Endozo, Raymond; Dickson, John; Erlandsson, Kjel; Hussain, Khalid; Townsend, Caroline; Menezes, Leon; Bomanji, Jamshed

    2013-06-01

    Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycaemia in infants and children. Histologically, there are two subgroups, diffuse and focal. The aim of this study was to evaluate the accuracy of (18)F-fluoro-L-dihydroxyphenylalanine ((18)F-DOPA) PET/computed tomography (CT) and contrast-enhanced CT in distinguishing between focal and diffuse lesions in infants with CHI who are unresponsive to medical therapy. In addition, this paper describes the detailed protocol used for imaging and analysis of (18)F-DOPA PET/CT images in our clinical practice. Twenty-two (18)F-DOPA PET/CT and contrast-enhanced CT imaging studies were carried out on 18 consecutive patients (nine boys and nine girls) with CHI (median age, 2 years and 1 month; range, 1-84 months) who had positive dominant ABCC8 mutation genetic results or negative ABCC8/t results but did not respond to first-line medical therapy with high-dose diazoxide. (18)F-DOPA was produced by the cyclotron unit of Woolfson Molecular Imaging Centre, Manchester, and transported to our centre in central London after synthesis and implementation of quality control measures. (18)F-DOPA was administered intravenously at a dose of 4 MBq/kg, and iodine contrast medium was injected intravenously at a dose of 1.5 ml/kg. Single bed position PET/CT images of the pancreas were acquired under light sedation with oral chloral hydrate. Four PET dynamic data acquisition scans were taken 20, 40, 50 and 60 min after injection for a duration of 10 min each. The results were assessed by visual interpretation and quantitative measurements of standardized uptake values (SUVs) in the head, body, and tail of the pancreas. Of the 18 patients, 13 showed diffuse and five showed focal (18)F-DOPA PET pancreatic uptake. Three regions of interest were drawn over the head, body and tail of the pancreas to calculate the SUV(max). Using the formula - highest SUV(max)/next highest SUV(max) - a ratio was calculated. Five patients had

  10. Synthesis and evaluation of 18f-labeled benzylideneaniline derivatives as new biomarkers for β-amyloid imaging in Alzheimer's disease

    International Nuclear Information System (INIS)

    B, Rai Ganeaha; Jeong, Jae Min; Lee, Yun Sang; Chang, Young Soo; Kim, Young Ju; Kim, Hyung Woo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul

    2005-01-01

    Noninvasive early detection of the Aβ plaques in Alzheimer's disease (AD) brain may be useful tool for the treatment of AD patients. We herein describe the synthesis of 18 F-labeled benzylideneaniline derivatives utilizing a novel labeling approach for imaging Aβ plaques in AD patients. Condensation of [ 18 F] 4-fluorobenzaldehyde with various aromatic amines afforded 18 F-labeled benzylideneaniline derivatives. The biodistribution of 18F-Iabeled benzylideneaniline derivatives was studied with ICR male mice. The binding affinities of the cold compounds to Aβ (1-40) were determined using [ 125 I] 2-(3'-iodo-4-methylaminophenyl) benzothiazole as a reference standard. The radiochemical yields were 32-44% and radiochemical purities were above 99% after purification. Log P values of the compounds were 1.56-1.58. Some of the benzylideneaniline derivatives showed relatively high binding affinity to Aβ (1-40) aggregates (Ki 149-304 nM). The 18 F-labeled benzylideneaniline derivatives displayed high brain uptake ratio in normal mice (2.9-24.93). The study suggests that these 18 F-labeled compounds may be suitable for Aβ plaque imaging in AD patients

  11. Single-scan rest/stress imaging: validation in a porcine model with 18F-Flurpiridaz.

    Science.gov (United States)

    Guehl, Nicolas J; Normandin, Marc D; Wooten, Dustin W; Rozen, Guy; Sitek, Arkadiusk; Ruskin, Jeremy; Shoup, Timothy M; Ptaszek, Leon M; El Fakhri, Georges; Alpert, Nathaniel M

    2017-08-01

    18 F-labeled myocardial flow agents are becoming available for clinical application but the ∼2 hour half-life of 18 F complicates their clinical application for rest-stress measurements. The goal of this work is to evaluate in a pig model a single-scan method which provides quantitative rest-stress blood flow in less than 15 minutes. Single-scan rest-stress measurements were made using 18 F-Flurpiridaz. Nine scans were performed in healthy pigs and seven scans were performed in injured pigs. A two-injection, single-scan protocol was used in which an adenosine infusion was started 4 minutes after the first injection of 18 F-Flurpiridaz and followed either 3 or 6 minutes later by a second radiotracer injection. In two pigs, microsphere flow measurements were made at rest and during stress. Dynamic images were reoriented into the short axis view, and regions of interest (ROIs) for the 17 myocardial segments were defined in bull's eye fashion. PET data were fitted with MGH2, a kinetic model with time varying kinetic parameters, in which blood flow changes abruptly with the introduction of adenosine. Rest and stress myocardial blood flow (MBF) were estimated simultaneously. The first 12-14 minutes of rest-stress PET data were fitted in detail by the MGH2 model, yielding MBF measurement with a mean precision of 0.035 ml/min/cc. Mean myocardial blood flow across pigs was 0.61 ± 0.11 mL/min/cc at rest and 1.06 ± 0.19 mL/min/cc at stress in healthy pigs and 0.36 ± 0.20 mL/min/cc at rest and 0.62 ± 0.24 mL/min/cc at stress in the ischemic area. Good agreement was obtained with microsphere flow measurement (slope = 1.061 ± 0.017, intercept = 0.051 ± 0.017, mean difference 0.096 ± 0.18 ml/min/cc). Accurate rest and stress blood flow estimation can be obtained in less than 15 min of PET acquisition. The method is practical and easy to implement suggesting the possibility of clinical translation.

  12. Clinical Significance of F 18 FP CIT Dual Time Point PET Imaging in Idiopathic Parkinson's Disease

    International Nuclear Information System (INIS)

    Oh, Jin Kyoung; Yoo, Ik Dong; Seo, Ye Young; Chung, Youg An; Yoo, Ie Ryung; Kim, Sung Hoon; Song, In Uk

    2011-01-01

    The purpose of this study was to investigate the diagnostic value of dual time point F 18 FP CIT PET imaging in idiopathic Parkinson's disease (PD). Twenty four patients with PD (mean age 69.6) and 18 healthy people (mean age 70.26) underwent two sequential PET/CT scans (dual time point imaging) at 90 and 210 min after F 18 FP CIT injection. Tracer activity of region of interest was measured in the caudate, putamen and a reference region in the brain from both time points. The outcome parameter was the striatooccipital ratio (SOR). Normal SOR values were obtained in the control group. The percent change in tracer activity between 90 and 210 min images was calculated. The SOR values and the percent change in tracer activity were compared between the patients and healthy control group. The SOR values for the caudate, anterior and posterior putamen at both 90 and 210 min images were significantly reduced in the patients with PD. The lowest P value was obtained for the anterior and posterior putamen (p<0.001) at both time points. There were significant differences of the percent change in tracer activity for the anterior and posterior putamen in the two groups (p=0.01) F 18 FP CIT PET scans at 90 and 210 min after injection are both able to diagnose PD. Therefore, the 90 min image by itself in sufficient for diagnosing PD.

  13. 18F-radiolabeled analogs of exendin-4 for PET imaging of GLP-1 in insulinoma

    International Nuclear Information System (INIS)

    Kiesewetter, Dale O.; Ma, Ying; Niu, Gang; Quan, Qimeng; Guo, Ning; Chen, Xiaoyuan; Gao, Haokao

    2012-01-01

    Glucagon-like peptide type 1 (GLP-1) is an incretin peptide that augments glucose-stimulated insulin release following oral consumption of nutrients. Its message is transmitted via a G protein-coupled receptor called GLP-1R, which is colocalized with pancreatic β-cells. The GLP-1 system is responsible for enhancing insulin release, inhibiting glucagon production, inhibiting hepatic gluconeogenesis, inhibiting gastric mobility, and suppression of appetite. The abundance of GLP-1R in pancreatic β-cells in insulinoma, a cancer of the pancreas, and the activity of GLP-1 in the cardiovascular system have made GLP-1R a target for molecular imaging. We prepared 18 F radioligands for GLP-1R by the reaction of [ 18 F]FBEM, a maleimide prosthetic group, with [Cys 0 ] and [Cys 40 ] analogs of exendin-4. The binding affinity, cellular uptake and internalization, in vitro stability, and uptake and specificity of uptake of the resulting compounds were determined in an INS-1 xenograft model in nude mice. The [ 18 F]FBEM-[Cys x ]-exendin-4 analogs were obtained in good yield (34.3 ± 3.4%, n = 11), based on the starting compound [ 18 F]FBEM, and had a specific activity of 45.51 ± 16.28 GBq/μmol (1.23 ± 0.44 Ci/μmol, n = 7) at the end of synthesis. The C-terminal isomer, [ 18 F]FBEM-[Cys 40 ]-exendin-4, had higher affinity for INS-1 tumor cells (IC 50 1.11 ± 0.057 nM) and higher tumor uptake (25.25 ± 3.39 %ID/g at 1 h) than the N-terminal isomer, [ 18 F]FBEM-[Cys 0 ]-exendin-4 (IC 50 2.99 ± 0.06 nM, uptake 7.20 ± 1.26 %ID/g at 1 h). Uptake of both isomers into INS-1 tumor, pancreas, stomach, and lung could be blocked by preinjection of nonradiolabeled [Cys x ]-exendin-4 (p 18 F]FBEM-[Cys 40 ]-exendin-4 and [ 18 F]FBEM-[Cys 0 ]-exendin-4 have high affinity for GLP-1R and display similar in vitro cell internalization. The higher uptake into INS-1 xenograft tumors exhibited by [ 18 F]FBEM-[Cys 40 ]-exendin-4 suggests that this compound would be the better tracer for imaging

  14. Clinical Usefulness of 18F-fluoride Bone PET

    International Nuclear Information System (INIS)

    Kang, Ji Yeon; Lee, Won Woo; Lee, Byung Chul; Kim, Sang Eun; So, Young

    2010-01-01

    18 F-fluoride bone positron emission tomography (PET) has been reported as a useful bone imaging modality. However, no clinical bone PET study had been performed previously in Korea. The authors investigated the usefulness of 18 F-fluoride bone PET in Korean patients with malignant or benign bone disease. Eighteen consecutive patients (eight women, ten men; mean age, 55±12 years) who had undergone 18 F-fluoride bone PET for the evaluation of bone metastasis (n=13) or benign bone lesions (n=5) were included. The interpretation of bone lesions on 18 F-fluoride bone PET was determined by consensus of two nuclear medicine physicians, and final results were confirmed using combination of all imaging studies and/or clinical follow-up. The analysis was performed on the basis of lesion group. Thirteen patients with malignant disease had 15 lesion groups, among which seven were confirmed as metastatic bone lesions and eight were confirmed as non-metastatic lesions. 18 F-fluoride bone PET correctly identified six of seven metastatic lesions (sensitivity, 86%), and seven of eight non-metastatic lesions (specificity, 88%). On the other hand, five patients with benign conditions had five bone lesion groups; four were confirmed as benign bone diseases and the other one was confirmed as not a bone lesion. 18 F-fluoride bone PET showed correct results in all the five lesion groups. 18 F-fluoride bone PET showed promising potential for bone imaging in Korean patients with malignant diseases as well as with various benign bone conditions. Therefore, further studies are required on the diagnostic performance and cost-effectiveness of 18 F-fluoride bone PET.

  15. Synthesis of n.c.a. {sup 18}F-fluorinated NMDA- and D{sub 4}-receptor ligands via [{sup 18}F]fluorobenzenes; Traegerarme Synthese {sup 18}F-markierter, ausgewaehlter NMDA- und D{sub 4}-Rezeptorliganden durch Einsatz geeigneter [{sup 18}F]Fluorbenzolderivate

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, T

    2005-11-01

    In this thesis new strategies were developed and evaluated for the no-carrier-added (n.c.a.) {sup 18}F-labelling of receptor ligands as radiodiagnostics for characterization of brain receptors using positron-emission-tomography (PET). Special emphasis was placed on the synthesis of n.c.a. ({+-})-3-(4-hydroxy-4-(4-[{sup 18}F]fluorophenyl)-piperidin-l-yl)chroman-4,7-diol, a ligand with high affinity for the NR2B subtype of NMDA receptors and n.c.a. (3-(4-[{sup 18}F]fluorphenoxy)propyl)-(2-(4-tolylphenoxy)ethyl)amine ([{sup 18}F]FPTEA) a dopamine D{sub 4} receptor ligand. In order to synthesize n.c.a. ({+-})-3-(4-hydroxy-4-(4-[{sup 18}F]fluorophenyl)-piperidin-l-yl)chroman-4,7-diol the {sup 18}F-fluoroarylation method via metallorganic intermediates was modified and improved. The suitability of the organometallic {sup 18}F-fluoroarylation agents was proven with several model compounds. High radiochemical yields of 20-30% were obtained also with piperidinone-derivatives. The preparation of a suitable precursor for the synthesis of the NMDA receptor ligand, however, could not be achieved by synthesis of appropriate 1,3-dioxolane protected piperidinone derivatives. Further, the synthesis of n.c.a. ([{sup 18}F]fluoroaryloxy)alkylamines via n.c.a. 4-[{sup 18}F]fluorophenol was developed and evaluated. The synthesis of n.c.a. [{sup 18}F]fluoroarylethers with corresponding model compounds was optimized and led to a radiochemical yield of 25-60%, depending on the alkylhalide used. The preparation of n.c.a. 1-(3-bromopropoxy)-4-[{sup 18}F]fluorobenzene proved advantageous in comparison to direct use of 4-[{sup 18}]fluorophenol for coupling with a corresponding N-protected precursor for the synthesis of n.c.a. [{sup 18}F]FPTEA. With regard to the radiochemical yields and the loss of activity during the synthesis and isolation of n.c.a. 4-[{sup 18}F]fluorophenol and n.c.a. 1-(3-bromopropoxy)-4-[{sup 18}F]fluorobenzene, [{sup 18}F]FPTEA was obtained by reaction with 2-(4-tolyloxy

  16. 18F-FAZA PET/CT in the Preoperative Evaluation of NSCLC: Comparison with 18F-FDG and Immunohistochemistry.

    Science.gov (United States)

    Mapelli, Paola; Bettinardi, Valentino; Fallanca, Federico; Incerti, Elena; Compierchio, Antonia; Rossetti, Francesca; Coliva, Angela; Savi, Annarita; Doglioni, Claudio; Negri, Giampiero; Gianolli, Luigi; Picchio, Maria

    2018-01-01

    To assess the capability of 18F-FAZA PET/CT in identifying intratumoral hypoxic areas in early and locally advanced non-small cell lung cancer (NSCLC) patients and to compare 18FFAZA PET/CT with 18F-FDG PET/CT and histopathological biomarkers and to investigate whether the assessment of tumour to blood (T/B) and tumour to muscle (T/M) ratios provide comparable information regarding the hypoxic fractions of the tumour. Seven patients with NSCLC were prospectively enrolled (3 men, 4 women; median age: 71 years; range 63-80). All patients underwent to 18F-FDG PET/CT and 18F-FAZA PET/CT before surgery. Maximum standardized uptake value (SUVmax) was used to evaluate 18FFDG PET/CT images, while 18F-FAZA PET/CT images have been interpreted by using tumour-toblood (T/B) and tumour-to-muscle (T/M) ratio. Surgery was performed in all patients; immunohistochemical analysis for hypoxia biomarkers was performed on histologic tumor samples. All lung lesions showed intense 18F-FDG uptake (mean SUVmax: 7.35; range: 2.35-25.20). A faint 18F-FAZA uptake was observed in 6/7 patients (T/B < 1.2) while significant uptake was present in the remaining 1/7 (T/B and T/M=2.24). On both 2 and 4 h imaging after injection, no differences were observed between T/M and T/B (p=0.5), suggesting that both blood and muscle are equivalent in estimating the background activity for image analysis. Immunohisotchemical analysis showed low or absent staining for hypoxia biomarkers in 3 patients (CA-IX and GLUT-1: 0%; HIF-1α: mean 3.3%; range 0-10). Two patients showed staining for HIF-1α of 5%, with CA-IX being 60% and 30%, respectively and GLUT-1 being 30% and 80%, respectively; in 1/7 HIF-1α was 10%, CA-IX was 50% and GLUT-1 was 90%. In one patient a higher percentage of HIF-1α and CA-IX (20% and 70%, respectively) positive cells was present, with GLUT-1 being 30%. To the best of our knowledge, this is the first paper assessing hypoxia and glucose metabolism in comparison with immunohistochemistry

  17. Missed causative tumors in diagnosing tumor-induced osteomalacia with (18)F-FDG PET/CT: a potential pitfall of standard-field imaging.

    Science.gov (United States)

    Kaneuchi, Yoichi; Hakozaki, Michiyuki; Yamada, Hitoshi; Hasegawa, Osamu; Tajino, Takahiro; Konno, Shinichi

    2016-01-01

    We describe herein two tumor-induced osteomalacia (TIO) cases for whom the causative lesions, located in their popliteal fossa, that were not identified in the standard field of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET/CT), which usually images only the head, trunk, and proximal parts of the extremities. A 47 years old Japanese man with multiple pathological fractures due to osteomalacia, accompanied by muscle weakness, hypophosphatemia, and an elevation of alkaline phosphatase (ALP) was referred to our hospital. A (18)F-FDG PET/CT scan was performed, but no (18)F-FDG uptake was detected in the standard field of imaging. Magnetic resonance imaging revealed a small subcutaneous tumor (1.9×1.2×0.6cm) of the left posteriomedial knee, displaying uniform enhancement on gadolinium-enhanced T1-weighted fat-suppression imaging. The tumor was resected widely and diagnosed as phosphaturic mesenchymal tumor, mixed connective tissue variant (PMTMCT). The other patient was a 31 years old Japanese woman with multiple pathological fractures, hypophosphatemia and elevated of ALP and was referred to our hospital on suspicion of TIO. Although the causative lesion was not identified in the standard field of (18)F-FDG PET/CT, (18)F-FDG uptake (SUVmax 2.9) was detected on the right knee in the additional whole-body (18)F-FDG PET/CT. Magnetic resonance imaging revealed a soft-tissue tumor (6.4×4.1×2.9cm) in the right posterior knee. Following biopsy, the tumor was marginally resected, and was pathologically diagnosed as PMTMCT. Once patients are suspected to have TIO, a whole-body nuclear imaging study such as (18)F-FDG PET/CT should be performed, in order not to miss the hidden causative tumor, especially occurring in the distal extremities.

  18. Preparation and biological evaluation of 2-amino-6-[{sup 18}F]fluoro-9-(4-hydroxy-3-hydroxy-methylbutyl) purine (6-[{sup 18}F]FPCV) as a novel PET probe for imaging HSV1-tk reporter gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Cai Hancheng [Research Center of Radiopharmaceuticals, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Yin Duanzhi [Research Center of Radiopharmaceuticals, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)], E-mail: chcbati@yahoo.com.cn; Zhang Lan [Research Center of Radiopharmaceuticals, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhejiang California International NanoSystems Institute, Hangzhou 310029 (China); Yang, Xiaofeng; Xu Xiaoyan; Liu Weiguo; Zheng Xuesheng [Institute of Brain Medical Science, Second affiliated Hospital, Medicine School of Zhejiang University, Hangzhou 310009 (China); Zhang Hong [Department of Nuclear Medicine, Second Affiliated Hospital, Zhejiang University Medical PET Center, Medicine School of Zhejiang University, Hangzhou 310009 (China); Wang Jing [Department of Nuclear Medicine, Second Affiliated Hospital, Zhejiang University Medical PET Center, Medicine School of Zhejiang University, Hangzhou 310009 (China); Zhejiang California International NanoSystems Institute, Hangzhou 310029 (China); Xu Yuhong [Zhejiang California International NanoSystems Institute, Hangzhou 310029 (China); Cheng Dengfeng; Zheng Mingqiang; Han Yanjiang; Wu Mingxing; Wang Yongxian [Research Center of Radiopharmaceuticals, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2007-08-15

    Introduction: 2-Amino-6-[{sup 18}F]fluoro-9-(4-hydroxy-3-hydroxy-methylbutyl) purine (6-[{sup 18}F]FPCV) was prepared via a one-step nucleophilic substitution and evaluated as a novel probe for imaging the expression of herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene. Methods: Log P of 6-[{sup 18}F]FPCV was calculated in octanol/phosphate-buffered saline (PBS). Stability studies were performed in PBS and bovine serum albumin (BSA). Cell uptake was performed at various time points in wild-type cells and transduced cells. For in vivo studies, tumors were grown in nude mice by inoculation with C6 cells, wild type and tk positive. The radiotracer was intravenously injected to animals, and micro-PET imaging was performed. Biodistribution of 6-[{sup 18}F]FPCV was performed on another group of animals at different time points. Results: Log P of 6-[{sup 18}F]FPCV was -0.517. 6-[{sup 18}F]FPCV was fairly stable in PBS and BSA at 6 h. The tracer uptake in C6-tk cells was 5.5-18.8 times higher than that in wild-type cells. The plasma half-life of 6-[{sup 18}F]FPCV was as follows: {alpha} t{sub 1/2}=1.2 min and {beta} t{sub 1/2}=73.7 min. The average ratio of tumor uptake between the transduced tumor and the wild-type tumor was 1.69 at 15 min. Conclusion: Biological evaluation showed that 6-[{sup 18}F]FPCV is a potential probe for imaging HSV1-tk gene expression. However, its in vivo defluorination may limit its application in PET imaging of gene expression.

  19. Fully automated synthesis of [(18) F]fluoro-dihydrotestosterone ([(18) F]FDHT) using the FlexLab module.

    Science.gov (United States)

    Ackermann, Uwe; Lewis, Jason S; Young, Kenneth; Morris, Michael J; Weickhardt, Andrew; Davis, Ian D; Scott, Andrew M

    2016-08-01

    Imaging of androgen receptor expression in prostate cancer using F-18 FDHT is becoming increasingly popular. With the radiolabelling precursor now commercially available, developing a fully automated synthesis of [(18) F] FDHT is important. We have fully automated the synthesis of F-18 FDHT using the iPhase FlexLab module using only commercially available components. Total synthesis time was 90 min, radiochemical yields were 25-33% (n = 11). Radiochemical purity of the final formulation was > 99% and specific activity was > 18.5 GBq/µmol for all batches. This method can be up-scaled as desired, thus making it possible to study multiple patients in a day. Furthermore, our procedure uses 4 mg of precursor only and is therefore cost-effective. The synthesis has now been validated at Austin Health and is currently used for [(18) F]FDHT studies in patients. We believe that this method can easily adapted by other modules to further widen the availability of [(18) F]FDHT. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Imaging cellular pharmacokinetics of 18F-FDG and 6-NBDG uptake by inflammatory and stem cells.

    Directory of Open Access Journals (Sweden)

    Raiyan T Zaman

    Full Text Available Myocardial infarction (MI causes significant loss of cardiomyocytes, myocardial tissue damage, and impairment of myocardial function. The inability of cardiomyocytes to proliferate prevents the heart from self-regeneration. The treatment for advanced heart failure following an MI is heart transplantation despite the limited availability of the organs. Thus, stem-cell-based cardiac therapies could ultimately prevent heart failure by repairing injured myocardium that reverses cardiomyocyte loss. However, stem-cell-based therapies lack understanding of the mechanisms behind a successful therapy, including difficulty tracking stem cells to provide information on cell migration, proliferation and differentiation. In this study, we have investigated the interaction between different types of stem and inflammatory cells and cell-targeted imaging molecules, 18F-FDG and 6-NBDG, to identify uptake patterns and pharmacokinetics in vitro.Macrophages (both M1 and M2, human induced pluripotent stem cells (hiPSCs, and human amniotic mesenchymal stem cells (hAMSCs were incubated with either 18F-FDG or 6-NBDG. Excess radiotracer and fluorescence were removed and a 100 μm-thin CdWO4 scintillator plate was placed on top of the cells for radioluminescence microscopy imaging of 18F-FDG uptake, while no scintillator was needed for fluorescence imaging of 6-NBDG uptake. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus and an Electron Multiplying Charge-Couple Device (EM-CCD camera. Custom-written software was developed in MATLAB for image processing.The average cellular activity of 18F-FDG in a single cell of hAMSCs (0.670±0.028 fCi/μm2, P = 0.001 was 20% and 36% higher compared to uptake in hiPSCs (0.540±0.026 fCi/μm2, P = 0.003 and macrophages (0.430±0.023 fCi/μm2, P = 0.002, respectively. hAMSCs exhibited the slowest influx (0.210 min-1 but the fastest efflux (0.327 min-1 rate compared to the other

  1. Imaging cellular pharmacokinetics of 18F-FDG and 6-NBDG uptake by inflammatory and stem cells.

    Science.gov (United States)

    Zaman, Raiyan T; Tuerkcan, Silvan; Mahmoudi, Morteza; Saito, Toshinobu; Yang, Phillip C; Chin, Frederick T; McConnell, Michael V; Xing, Lei

    2018-01-01

    Myocardial infarction (MI) causes significant loss of cardiomyocytes, myocardial tissue damage, and impairment of myocardial function. The inability of cardiomyocytes to proliferate prevents the heart from self-regeneration. The treatment for advanced heart failure following an MI is heart transplantation despite the limited availability of the organs. Thus, stem-cell-based cardiac therapies could ultimately prevent heart failure by repairing injured myocardium that reverses cardiomyocyte loss. However, stem-cell-based therapies lack understanding of the mechanisms behind a successful therapy, including difficulty tracking stem cells to provide information on cell migration, proliferation and differentiation. In this study, we have investigated the interaction between different types of stem and inflammatory cells and cell-targeted imaging molecules, 18F-FDG and 6-NBDG, to identify uptake patterns and pharmacokinetics in vitro. Macrophages (both M1 and M2), human induced pluripotent stem cells (hiPSCs), and human amniotic mesenchymal stem cells (hAMSCs) were incubated with either 18F-FDG or 6-NBDG. Excess radiotracer and fluorescence were removed and a 100 μm-thin CdWO4 scintillator plate was placed on top of the cells for radioluminescence microscopy imaging of 18F-FDG uptake, while no scintillator was needed for fluorescence imaging of 6-NBDG uptake. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus) and an Electron Multiplying Charge-Couple Device (EM-CCD) camera. Custom-written software was developed in MATLAB for image processing. The average cellular activity of 18F-FDG in a single cell of hAMSCs (0.670±0.028 fCi/μm2, P = 0.001) was 20% and 36% higher compared to uptake in hiPSCs (0.540±0.026 fCi/μm2, P = 0.003) and macrophages (0.430±0.023 fCi/μm2, P = 0.002), respectively. hAMSCs exhibited the slowest influx (0.210 min-1) but the fastest efflux (0.327 min-1) rate compared to the other tested

  2. Automated synthesis with HPLC purification of 18F-FMISO as specific molecular imaging probe of tumor hypoxia

    International Nuclear Information System (INIS)

    Wang Mingwei; Zhang Yingjian; Zhang Yongping

    2012-01-01

    An improved automated synthesis of 1-H-1-(3-[ 18 F] fluoro-2-hydroxypropyl)-2-nitro-imidazole ( 18 F-FMISO), a specific molecular imaging probe of tumor hypoxia, was developed using an upgraded Explora GN module integrated with Explora LC for HPLC purification in this study. The radiochemical synthesis of 18 F-FMISO was started with precursor 1-( 2'-nitro-1'-imidazolyl)-2-O-tetrahydropyranyl-3-O-tosyl-propanediol (NITTP) and included nucleophilic [ 18 F] radio-fluorination at 120℃ for 5 min and hydrolysis at 130℃ for 8 min. The automated synthesis of 18 F-FMISO, presenting fast, reliable and multi-run features, could be completed with the total synthesis time of less than 65 min and radiochemical yield of 25%∼35% (without decay correction). The quality control of 18 F-FMISO was identical with the radiopharmaceutical requirements, especially the radiochemical purity of greater than 99% and high chemical purity and specific activity own to HPLC purification. (authors)

  3. Herpes simplex virus thymidine kinase imaging in mice with (1-(2'-deoxy-2'-[{sup 18}F]fluoro-1-{beta}-D-arabinofuranosyl)-5-iodouracil) and metabolite (1-(2'-deoxy-2'-[{sup 18}F]fluoro-1-{beta}-D-arabinofuranosyl)-5-uracil)

    Energy Technology Data Exchange (ETDEWEB)

    Nimmagadda, Sridhar; Lawhorn-Crews, Jawana M.; Shields, Anthony F. [Wayne State University, Karmanos Cancer Institute, Detroit, MI (United States); Wayne State University, Department of Medicine, Detroit, MI (United States); Mangner, Thomas J. [Wayne State University, Karmanos Cancer Institute, Detroit, MI (United States); Wayne State University, Department of Radiology, Detroit, MI (United States); Haberkorn, Uwe [University of Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany)

    2009-12-15

    FIAU, (1-(2{sup '}-deoxy-2{sup '}-fluoro-1-{beta}-D-arabinofuranosyl)-5-iodouracil) has been used as a substrate for herpes simplex virus thymidine kinases (HSV-TK and HSV-tk, for protein and gene expression, respectively) and other bacterial and viral thymidine kinases for noninvasive imaging applications. Previous studies have reported the formation of a de-iodinated metabolite of {sup 18}F-FIAU. This study reports the dynamic tumor uptake, biodistribution, and metabolite contribution to the activity of {sup 18}F-FIAU seen in HSV-tk gene expressing tumors and compares the distribution properties with its de-iodinated metabolite {sup 18}F-FAU. CD-1 nu/nu mice with subcutaneous MH3924A and MH3924A-stb-tk+ xenografts on opposite flanks were used for the biodistribution and imaging studies. Mice were injected IV with either {sup 18}F-FIAU or {sup 18}F-FAU. Mice underwent dynamic imaging with each tracer for 65 min followed by additional static imaging up to 150 min post-injection for some animals. Animals were sacrificed at 60 or 150 min post-injection. Samples of blood and tissue were collected for biodistribution and metabolite analysis. Regions of interest were drawn over the images obtained from both tumors to calculate the time-activity curves. Biodistribution and imaging studies showed the highest uptake of {sup 18}F-FIAU in the MH3924A-stb-tk+ tumors. Dynamic imaging studies revealed a continuous accumulation of {sup 18}F-FIAU in HSV-TK expressing tumors over 60 min. The mean biodistribution values (SUV {+-} SE) for MH3924A-stb-tk+ were 2.07 {+-} 0.40 and 6.15 {+-} 1.58 and that of MH3924A tumors were 0.19 {+-} 0.07 and 0.47 {+-} 0.06 at 60 and 150 min, respectively. In {sup 18}F-FIAU injected mice, at 60 min nearly 63% of blood activity was present as its metabolite {sup 18}F-FAU. Imaging and biodistribution studies with {sup 18}F-FAU demonstrated no specific accumulation in MH3924A-stb-tk+ tumors and SUVs for both the tumors were similar to those

  4. Applying Amide Proton Transfer MR Imaging to Hybrid Brain PET/MR: Concordance with Gadolinium Enhancement and Added Value to [18F]FDG PET.

    Science.gov (United States)

    Sun, Hongzan; Xin, Jun; Zhou, Jinyuan; Lu, Zaiming; Guo, Qiyong

    2018-06-01

    The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[ 18 F-]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI. Twenty-one subjects underwent brain gadolinium-enhanced [ 18 F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [ 18 F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis. APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [ 18 F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P PET in the evaluation of tumor metabolic activity during brain PET/MR studies.

  5. 18F-FET and 18F-FCH uptake in human glioblastoma T98G cell lines

    International Nuclear Information System (INIS)

    Persico, Marco Giovanni; Buroni, Federica Eleonora; Pasi, Francesca; Lodola, Lorenzo; Aprile, Carlo; Nano, Rosanna; Hodolic, Marina

    2016-01-01

    for neuro-oncological PET imaging. 18 F-FET could be the most useful oncological PET marker in the presence of reparative changes after therapy, where the higher affinity of 18 F-FCH to inflammatory cells makes it more difficult to discriminate between tumour persistence and non-neoplastic changes. Additional studies on the influence of inflammatory tissue and radionecrotic cellular components on radiopharmaceutical uptake are necessary

  6. Quantitative analysis and comparison study of [18F]AlF-NOTA-PRGD2, [18F]FPPRGD2 and [68Ga]Ga-NOTA-PRGD2 using a reference tissue model.

    Directory of Open Access Journals (Sweden)

    Ning Guo

    Full Text Available With favorable pharmacokinetics and binding affinity for α(vβ(3 integrin, (18F-labeled dimeric cyclic RGD peptide ([(18F]FPPRGD2 has been intensively used as a PET imaging probe for lesion detection and therapy response monitoring. A recently introduced kit formulation method, which uses an (18F-fluoride-aluminum complex labeled RGD tracer ([(18F]AlF-NOTA-PRGD2, provides a strategy for simplifying the labeling procedure to facilitate clinical translation. Meanwhile, an easy-to-prepare (68Ga-labeled NOTA-PRGD2 has also been reported to have promising properties for imaging integrin α(vβ(3. The purpose of this study is to quantitatively compare the pharmacokinetic parameters of [(18F]FPPRGD2, [(18F]AlF-NOTA-PRGD2, and [(68Ga]Ga-NOTA-PRGD2. U87MG tumor-bearing mice underwent 60-min dynamic PET scans following the injection of three tracers. Kinetic parameters were calculated using Logan graphical analysis with reference tissue. Parametric maps were generated using voxel-level modeling. All three compounds showed high binding potential (Bp(ND = k(3/k(4 in tumor voxels. [(18F]AlF-NOTA-PRGD2 showed comparable Bp(ND value (3.75±0.65 with those of [(18F]FPPRGD2 (3.39±0.84 and [(68Ga]Ga-NOTA-PRGD2 (3.09±0.21 (p>0.05. Little difference was found in volume of distribution (V(T among these three RGD tracers in tumor, liver and muscle. Parametric maps showed similar kinetic parameters for all three tracers. We also demonstrated that the impact of non-specific binding could be eliminated in the kinetic analysis. Consequently, kinetic parameter estimation showed more comparable results among groups than static image analysis. In conclusion, [(18F]AlF-NOTA-PRGD2 and [(68Ga]Ga-NOTA-PRGD2 have comparable pharmacokinetics and quantitative parameters compared to those of [(18F]FPPRGD2. Despite the apparent difference in tumor uptake (%ID/g determined from static images and clearance pattern, the actual specific binding component extrapolated from kinetic

  7. Synthesis of n.c.a. 18F-fluorinated NMDA- and D4-receptor ligands via [18F]fluorobenzenes

    International Nuclear Information System (INIS)

    Ludwig, T.

    2005-11-01

    In this thesis new strategies were developed and evaluated for the no-carrier-added (n.c.a.) 18 F-labelling of receptor ligands as radiodiagnostics for characterization of brain receptors using positron-emission-tomography (PET). Special emphasis was placed on the synthesis of n.c.a. (±)-3-(4-hydroxy-4-(4-[ 18 F]fluorophenyl)-piperidin-l-yl)chroman-4,7-diol, a ligand with high affinity for the NR2B subtype of NMDA receptors and n.c.a. (3-(4-[ 18 F]fluorphenoxy)propyl)-(2-(4-tolylphenoxy)ethyl)amine ([ 18 F]FPTEA) a dopamine D 4 receptor ligand. In order to synthesize n.c.a. (±)-3-(4-hydroxy-4-(4-[ 18 F]fluorophenyl)-piperidin-l-yl)chroman-4,7-diol the 18 F-fluoroarylation method via metallorganic intermediates was modified and improved. The suitability of the organometallic 18 F-fluoroarylation agents was proven with several model compounds. High radiochemical yields of 20-30% were obtained also with piperidinone-derivatives. The preparation of a suitable precursor for the synthesis of the NMDA receptor ligand, however, could not be achieved by synthesis of appropriate 1,3-dioxolane protected piperidinone derivatives. Further, the synthesis of n.c.a. ([ 18 F]fluoroaryloxy)alkylamines via n.c.a. 4-[ 18 F]fluorophenol was developed and evaluated. The synthesis of n.c.a. [ 18 F]fluoroarylethers with corresponding model compounds was optimized and led to a radiochemical yield of 25-60%, depending on the alkylhalide used. The preparation of n.c.a. 1-(3-bromopropoxy)-4-[ 18 F]fluorobenzene proved advantageous in comparison to direct use of 4-[ 18 ]fluorophenol for coupling with a corresponding N-protected precursor for the synthesis of n.c.a. [ 18 F]FPTEA. With regard to the radiochemical yields and the loss of activity during the synthesis and isolation of n.c.a. 4-[ 18 F]fluorophenol and n.c.a. 1-(3-bromopropoxy)-4-[ 18 F]fluorobenzene, [ 18 F]FPTEA was obtained by reaction with 2-(4-tolyloxy)ethylamine in radiochemical yields of about 25-30% in ethanol or 2-butanone

  8. Utility of 18F sodium fluoride PET/CT imaging in the evaluation of postoperative pain following surgical spine fusion.

    Science.gov (United States)

    Pouldar, D; Bakshian, S; Matthews, R; Rao, V; Manzano, M; Dardashti, S

    2017-08-01

    A retrospective case review of patients who underwent 18F sodium fluoride PET/CT imaging of the spine with postoperative pain following vertebral fusion. To determine the benefit of 18F sodium fluoride PET/CT imaging in the diagnosis of persistent pain in the postoperative spine. The diagnosis of pain generators in the postoperative spine has proven to be a diagnostic challenge. The conventional radiologic evaluation of persistent pain after spine surgery with the use of plain radiographs, MRI, and CT can often fall short of diagnosis in the complex patient. 18F sodium fluoride PET/CT imaging is an alternative tool to accurately identify a patient's source of pain in the difficult patient. This retrospective study looked at 25 adult patients who had undergone 18F sodium fluoride PET/CT imaging. All patients had persistent or recurrent back pain over the course of a 15-month period after having undergone spinal fusion surgery. All patients had inconclusive dedicated MRI. The clinical accuracy of PET/CT in identifying the pain generator and contribution to altering the decision making process was compared to the use of CT scan alone. Of the 25 patients studied, 17 patients had increased uptake on the 18F sodium fluoride PET/CT fusion images. There was a high-level correlation of radiotracer uptake to the patients' pain generator. Overall 88% of the studies were considered beneficial with either PET/CT altering the clinical diagnosis and treatment plan of the patient or confirming unnecessary surgery. 18F sodium fluoride PET/CT proves to be a useful tool in the diagnosis of complex spine pathology of the postoperative patients. In varied cases, a high correlation of metabolic activity to the source of the patient's pain was observed.

  9. The Effect of the Prosthetic Group on the Pharmacologic Properties of 18F-labeled Rhodamine B, a Potential Myocardial Perfusion Agent for PET

    Science.gov (United States)

    Bartholomä, Mark D.; Gottumukkala, Vijay; Zhang, Shaohui; Baker, Amanda; Dunning, Patricia; Fahey, Frederic H.; Treves, S. Ted; Packard, Alan B.

    2013-01-01

    We recently reported the development of the 2-[18F]fluoroethyl ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging. This compound, which was prepared using a [18F]fluoroethyl prosthetic group, has significant uptake in the myocardium in rats, but also demonstrates relatively high liver uptake and is rapidly hydrolyzed in vivo in mice. We have now prepared 18F-labeled rhodamine B using three additional prosthetic groups (propyl, diethylene glycol, and triethylene glycol) and found that the prosthetic group has a significant effect on the in vitro and in vivo properties of these compounds. Of the esters prepared to date, the diethylene glycol ester is superior in terms of in vitro stability and pharmacokinetics. These observations suggest that the prosthetic group plays a significant role in determining the pharmacological properties of 18F-labeled compounds. They also support the value of continued investigation of 18F-labeled rhodamines as PET radiopharmaceuticals for myocardial perfusion imaging. PMID:23210516

  10. Fluorine-18 nuclide and its PET imaging agent

    International Nuclear Information System (INIS)

    Wang Mingfang

    2003-01-01

    Fluorine-18 has predominant physical features with long half-life and the enough time for preparation of radiopharmaceuticals and PET imaging. Also, the chemical nature of fluorine-18 is similar to that of hydrogen, and the fluorine-18 labelled organic molecules can not change the non-labelled molecular character. Therefore, fluorine-18 is widely applied in the labelled glucose, amino acids, fatty acids, nucleotide, receptor-ligand and neurotransmitter molecular etc., with the propose of detecting the blood flow, metabolism, synthesis of the protein and the neurotransmitter function in brain by PET imaging. It is very important in the basic science and clinical research to understand and master the preparation of the fluorine-18 and its labelled compounds

  11. Micro-PET Imaging of αvβ3-Integrin Expression with 18F-Labeled Dimeric RGD Peptide

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Chen

    2004-04-01

    Full Text Available The αv integrins, which act as cell adhesion molecules, are closely involved with tumor invasion and angiogenesis. In particular, αvβ3 integrin, which is specifically expressed on proliferating endothelial cells and tumor cells, is a logical target for development of a radiotracer method to assess angiogenesis and anti-angiogenic therapy. In this study, a dimeric cyclic RGD peptide E[c(RGDyK]2 was labeled with 18F (t1/2 = 109.7 min by using a prosthetic 4-[18F]fluorobenzoyl moiety to the amino group of the glutamate. The resulting [18F]FB-E[c(RGDyK]2, with high specific activity (200–250 GBq/μmol at the end of synthesis, was administered to subcutaneous U87MG glioblastoma xenograft models for micro-PET and autoradiographic imaging as well as direct tissue sampling to assess tumor targeting efficacy and in vivo kinetics of this PET tracer. The dimeric RGD peptide demonstrated significantly higher tumor uptake and prolonged tumor retention in comparison with a monomeric RGD peptide analog [18F]FB-c(RGDyK. The dimeric RGD peptide had predominant renal excretion, whereas the monomeric analog was excreted primarily through the biliary route. Micro-PET imaging 1 hr after injection of the dimeric RGD peptide exhibited tumor to contralateral background ratio of 9.5 ± 0.8. The synergistic effect of polyvalency and improved pharmacokinetics may be responsible for the superior imaging characteristics of [18F]FB-E[c(RGDyK]2.

  12. 5-[{sup 18}F]Fluoroalkyl pyrimidine nucleosides: probes for positron emission tomography imaging of herpes simplex virus type 1 thymidine kinase gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Chacko, Ann-Marie [Institute for Environmental Medicine, Targeted Therapeutics Program, University of Pennsylvania, Philadelphia, PA 19104 (United States); Blankemeyer, Eric; Lieberman, Brian P.; Qu, Wenchao [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States)], E-mail: kunghf@gmail.com

    2009-01-15

    Introduction: The preliminary in vivo evaluation of novel 5-[{sup 18}F]fluoroalkyl-2'-deoxyuridines ([{sup 18}F]FPrDU, [{sup 18}F]FBuDU, [{sup 18}F]FPeDU; [{sup 18}F]1a-c, respectively) and 2'-fluoro-2'-deoxy-5-[{sup 18}F]fluoroalkyl-1-{beta}-D-arabinofuranosyl uracils ([{sup 18}F]FFPrAU, [{sup 18}F]FFBuAU, [{sup 18}F]FFPeAU; [{sup 18}F]1d-f, respectively) as probes for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene expression is described. Methods: [{sup 18}F]1a-f were successfully synthesized by a rapid and efficient two-step one-pot nucleophilic fluorination reaction using 5-O-mesylate precursors and [{sup 18}F]F{sup -}. For in vivo studies, tumor xenografts were grown in nude mice by implanting RG2 cells stably expressing HSV1-tk (RG2TK+) and wild-type cells (RG2). Results: Biodistribution studies at 2 h pi revealed that the uptake of [{sup 18}F]1a-b and [{sup 18}F]1d-e in RG2TK+ tumors was not significantly different from control tumors. However, [{sup 18}F]1c and [{sup 18}F]1f had an average 1.6- and 1.7-fold higher uptake in RG2TK+ tumors than control RG2 tumors. Blood activity curves for [{sup 18}F]1c and [{sup 18}F]1f highlight rapid clearance of radioactivity in the blood. Dynamic small animal PET (A-PET) imaging studies of tumor-bearing mice with [{sup 18}F]1c and [{sup 18}F]1f showed higher initial uptake (3.5- and 1.4-fold, respectively) in RG2TK+ tumors than in control tumors, with continued washout of activity from both tumors over time. Conclusions: Biological evaluations suggest that [{sup 18}F]1c and [{sup 18}F]1f may have limited potential for imaging HSV1-tk gene expression due to fast washout of activity from the blood, thus significantly decreasing sensitivity and specificity of tracer accumulation in HSV1-tk-expressing tumors.

  13. Increased brain temserotoneric transporter availability in adult migraineurs: ([18F]FP-CIT PET imaging pilot study

    International Nuclear Information System (INIS)

    Park, Eun Kyung; Hwang, Yu Mi; Chu, Min Kyung; Jung, Ki Young

    2016-01-01

    Recent studies have proposed central serotonergic dysfunction as a major pathophysiology of migraine. We investigated serotonin transporter (SERT) availability in migraineurs using F-18-N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl) nortropane ([18F]FP-CIT) positron emission tomography (PET). Brain [18F]FP-CIT PET images were obtained in eight women with migraine during headache free phase and 12 healthy adult women, 120 min after injection of 185 MBq. Non-displaceable binding potential (BP ND) of [18F]FP-CIT, which is an estimate of SERT availability, was calculated at the brainstem and compared with clinical parameters. BP ND at the brainstem was significantly higher in adult migraineurs (n = 6, 1.15 ± 0.17) than healthy subjects (0.95 ± 0.14) (p = 0.04). Healthy subjects demonstrated negative correlation between brainstem BP ND and age (r = −0.64, p = 0.02), whereas this age-related decline pattern was not found in the migraineurs. Severity of migraine attack was significantly correlated with brainstem BP ND (r = 0.66, p = 0.02), when age and duration of illness were corrected. Increased SERT availability in the brainstem of adult migraineurs indicates low serotonin neurotransmission during headache-free phase. Patients who experience more painful headaches have lower serotonin neurotransmission. [18F]FP-CIT PET is a useful in vivo imaging technique for evaluating brainstem SERT availability in migraineurs

  14. Increased brain temserotoneric transporter availability in adult migraineurs: ([18F]FP-CIT PET imaging pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun Kyung [Dept. of Nuclear Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul (Korea, Republic of); Hwang, Yu Mi [Center for Research Information, Korea University, Seoul (Korea, Republic of); Chu, Min Kyung [Dept. of Neurology, Sacred Heart Hospital, Hallym University College of Medicine, Anyang (Korea, Republic of); Jung, Ki Young [Dept. of Neurology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-03-15

    Recent studies have proposed central serotonergic dysfunction as a major pathophysiology of migraine. We investigated serotonin transporter (SERT) availability in migraineurs using F-18-N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl) nortropane ([18F]FP-CIT) positron emission tomography (PET). Brain [18F]FP-CIT PET images were obtained in eight women with migraine during headache free phase and 12 healthy adult women, 120 min after injection of 185 MBq. Non-displaceable binding potential (BP ND) of [18F]FP-CIT, which is an estimate of SERT availability, was calculated at the brainstem and compared with clinical parameters. BP ND at the brainstem was significantly higher in adult migraineurs (n = 6, 1.15 ± 0.17) than healthy subjects (0.95 ± 0.14) (p = 0.04). Healthy subjects demonstrated negative correlation between brainstem BP ND and age (r = −0.64, p = 0.02), whereas this age-related decline pattern was not found in the migraineurs. Severity of migraine attack was significantly correlated with brainstem BP ND (r = 0.66, p = 0.02), when age and duration of illness were corrected. Increased SERT availability in the brainstem of adult migraineurs indicates low serotonin neurotransmission during headache-free phase. Patients who experience more painful headaches have lower serotonin neurotransmission. [18F]FP-CIT PET is a useful in vivo imaging technique for evaluating brainstem SERT availability in migraineurs.

  15. Comparative studies of '18F-FDG PET/CT brain imaging and EEG in preoperative localization of temporal lobe epileptic focus

    International Nuclear Information System (INIS)

    Chen Ziqian; Zhao Chunlei; Liu Yao; Ni Ping; Zhong Qun; Bai Wei; Peng Dexin

    2012-01-01

    Objective: To compare the value of 18 F-FDG PET/CT brain imaging and EEG in preoperative localization of the epileptic focus at the temporal lobe. Methods: A total of 152 patients (108 males, 44 females, age ranged from 3 to 59 years old) with past history of temporal lobe epilepsy were included.All patients underwent 18 F-FDG PET/CT brain imaging and long-range or video EEG, and 29 patients underwent intracranial electrode EEG due to the failure to localize the disease focus by non-invasive methods.Histopathologic findings after operative treatment were considered the gold standard for disease localization. All patients were followed up for at least six months after the operation. The accuracy of the 18 F-FDG PET/CT brain imaging and long-range or video EEG examination were compared using χ 2 test. Results: The accuracy of locating the epileptic focus was 80.92% (123/152) for 18 F-FDG PET/CT brain imaging and 43.42% (66/152) for long-range or video EEG (χ 2 =22.72, P<0.01). The accuracy of locating the epileptic focus for the 29 cases with intracranial electrode EEG was 100%. Conclusions: Interictal 18 F-FDG PET/CT brain imaging is a sensitive and effective method to locate the temporal lobe epileptic focus and is better than long-range or video EEG. The combination of 18 F-FDG PET/CT brain imaging and intracranial electrode EEG examination can further improve the accuracy of locating the epileptic focus. (authors)

  16. Optimization of the reference region method for dual pharmacokinetic modeling using Gd-DTPA/MRI and (18) F-FDG/PET.

    Science.gov (United States)

    Poulin, Éric; Lebel, Réjean; Croteau, Étienne; Blanchette, Marie; Tremblay, Luc; Lecomte, Roger; Bentourkia, M'hamed; Lepage, Martin

    2015-02-01

    The combination of MRI and positron emission tomography (PET) offers new possibilities for the development of novel methodologies. In pharmacokinetic image analysis, the blood concentration of the imaging compound as a function of time, [i.e., the arterial input function (AIF)] is required for MRI and PET. In this study, we tested whether an AIF extracted from a reference region (RR) in MRI can be used as a surrogate for the manually sampled (18) F-FDG AIF for pharmacokinetic modeling. An MRI contrast agent, gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) and a radiotracer, (18) F-fluorodeoxyglucose ((18) F-FDG), were simultaneously injected in a F98 glioblastoma rat model. A correction to the RR AIF for Gd-DTPA is proposed to adequately represent the manually sampled AIF. A previously published conversion method was applied to convert this AIF into a (18) F-FDG AIF. The tumor metabolic rate of glucose (TMRGlc) calculated with the manually sampled (18) F-FDG AIF, the (18) F-FDG AIF converted from the RR AIF and the (18) F-FDG AIF converted from the corrected RR AIF were found not statistically different (P>0.05). An AIF derived from an RR in MRI can be accurately converted into a (18) F-FDG AIF and used in PET pharmacokinetic modeling. © 2014 Wiley Periodicals, Inc.

  17. Evaluation of gross tumor size using CT, 18F-FDG PET, integrated 18F-FDG PET/CT and pathological analysis in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Yu Huiming; Liu Yunfang; Hou Ming; Liu Jie; Li Xiaonan; Yu Jinming

    2009-01-01

    Purpose: The correlation of gross tumor sizes between combined 18 F-FDG PET/CT images and macroscopic surgical samples has not yet been studied in detail. In the present study, we compared CT, 18 F-FDG PET and combined 18 F-FDG PET/CT for the delineation of gross tumor volume (GTV) and validated the results through examination of the macroscopic surgical specimen. Methods: Fifty-two operable non-small cell lung cancer (NSCLC) patients had integrated 18 F-FDG PET/CT scans preoperatively and pathological examination post-operation. Four separate maximal tumor sizes at X (lateral direction), Y (ventro-dorsal direction) and Z (cranio-caudal direction) axis were measured on 18 F-FDG PET, CT, combined 18 F-FDG PET/CT and surgical specimen, respectively. Linear regression was calculated for each of the three imaging measurements versus pathological measurement. Results: No significant differences were observed among the tumor sizes measured by three images and pathological method. Compared with pathological measurement, CT size at X, Y, Z axis was larger, whereas combined 18 F-FDG PET/CT and 18 F-FDG PET size were smaller. Combined 18 F-FDG PET/CT size was more similar to the pathological size than that of 18 F-FDG PET or CT. Results of linear regressions showed that integrated 18 F-FDG PET/CT was the most accurate modality in measuring the size of cancer. Conclusions: 18 F-FDG PET/CT correlates more faithfully with pathological findings than 18 F-FDG PET or CT. Integrated 18 F-FDG PET/CT is an effective tool to define the target of GTV in radiotherapy.

  18. F-18 FDG Uptake in an Eosinophilic Liver Abscess Mimicking Hepatic Metastasis on PET/CT Images

    International Nuclear Information System (INIS)

    Sohn, Myung Hee; Jeong, Hwan Jeong; Lim, Seok Tae; Kim, Dong Wook; Yin, Chang Yeol

    2008-01-01

    A 61-year-old man had a F-18 FDG PET/CT scan for evaluation of a common bile duct cancer identified on CT. The PET/CT image showed a hypermetabolic mass in the common bile duct, and a focal area of increased F-18 FDG uptake in segment IV of the liver, which corresponded to a hypoattenuated lesion on non-enhanced CT, and was consistent with hepatic metastasis. The patient underwent choledochojejunostomy with hepatic resection, and pathologic findings were compatible with an eosinophilic abscess in the liver. This case demonstrates that F-18 FDG uptake by an eosinophilic abscess can mimic hepatic metastasis in a patient with a malignancy

  19. F-18 FDG Uptake in an Eosinophilic Liver Abscess Mimicking Hepatic Metastasis on PET/CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Myung Hee; Jeong, Hwan Jeong; Lim, Seok Tae; Kim, Dong Wook; Yin, Chang Yeol [Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2008-06-15

    A 61-year-old man had a F-18 FDG PET/CT scan for evaluation of a common bile duct cancer identified on CT. The PET/CT image showed a hypermetabolic mass in the common bile duct, and a focal area of increased F-18 FDG uptake in segment IV of the liver, which corresponded to a hypoattenuated lesion on non-enhanced CT, and was consistent with hepatic metastasis. The patient underwent choledochojejunostomy with hepatic resection, and pathologic findings were compatible with an eosinophilic abscess in the liver. This case demonstrates that F-18 FDG uptake by an eosinophilic abscess can mimic hepatic metastasis in a patient with a malignancy.

  20. Syntheses of F-18 Labeled Fluoroalkyltyrosine Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Byung Seok; Lee, Kyo Chul; Yang, Seung Dae; Chun, Kwon Soo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Chi, Dae Yoon [Inha Univ., Inchon (Korea, Republic of)

    2005-07-01

    Positron emission tomography (PET) offers the highest resolution of all nuclear medicine imaging modalities and allows quantitation of tracer concentration in tissues. For more than 60 years, some of C-11 or F-18 labeled amino acids have been synthesized and evaluated for potential use in oncology, neurology and psychiatric disorders. Besides, a variety of radioisotope labeled amino acids have proven to be useful for imaging tumors, especially for brain tumor, lung tumor and breast tumor. These amino acids can be subdivided into two categories. The first category is represented by radiolabled naturally occurring amino acids and structurally similar analogues. Although these radiolabeled amino acids have proven useful in detecting brain and systemic tumors, it is susceptible to in vivo metabolism through multiple pathways that give rise to numerous radiolabled metabolites. On the other side, structurally similar amino acid analogues have some significant advantages over the natural amino acids. These nonnatural amino acids are not metabolized, which simplifieds the kinetic analysis of their uptake. On the basis of the promising results obtained with these nonnatural amino acids in preclinical studies, recent efforts have focused on the development of new F-18 labeled nonnatural amino acids. Recently, O-(2-[{sup 18}F]Fluoroethyl)-L-tyrosine (FET), O-(3-[{sup 18}F]Fluoropropyl)-L-tyrosine (FPT) were developed and evaluated among structurally similar to a new amino acid analogue. FET has shown high uptake in activated inflammatory cells using an experimental acute abscess model and in inflammation within lymph nodes. FPT was superior to FDG and had a slight advantage over FET in the differentiation of tumor from inflammation, and, like FET, it appeared to be a potential amino acid tracer for tumor imaging with PET. In this paper, we elected to introduce fluoroethyl and fluoropropyl groups at the R{sub 1} positions and OCH{sub 3} at R{sub 2} position to the same effect

  1. Feasibility of in vivo "1"8F-florbetaben PET/MR imaging of human carotid amyloid-β

    International Nuclear Information System (INIS)

    Bucerius, Jan; Barthel, Henryk; Tiepolt, Solveig; Werner, Peter; Patt, Marianne; Sabri, Osama; Sluimer, Judith C.; Biessen, Erik A.L.; Wildberger, Joachim E.; Hesse, Swen; Gertz, Hermann-Josef; Mottaghy, Felix M.

    2017-01-01

    Amyloid-beta (Aβ) peptides are involved in the inflammatory pathology of atherosclerosis. "1"8F-Florbetaben is a PET tracer for clinical imaging of cerebral Aβ plaques in Alzheimer's disease (AD). We sought to determine whether specific uptake of "1"8F-florbetaben in the carotid arteries can be identified using a fully integrated hybrid PET/MRI system and whether this uptake is associated with clinical cardiovascular disease (CVD) risk factors. Carotid "1"8F-florbetaben uptake was quantified as the mean of the maximum target-to-background ratio (_m_e_a_nTBR_m_a_x) in 40 cognitively impaired subjects (age 68.2 ± 9.5 years) undergoing "1"8F-florbetaben PET/MRI to diagnose AD. Associations between carotid "1"8F-florbetaben uptake and several CVD risk factors were assessed by univariate analysis followed by a multivariate linear regression analysis. Furthermore, carotid "1"8F-florbetaben uptake was compared between patients with and without a positive cerebral Aβ PET scan. "1"8F-Florbetaben uptake was clearly visualized in the carotid arteries. Values of_m_e_a_nTBR_m_a_x corrected for the blood pool activity of the tracer showed specific "1"8F-florbetaben uptake in the carotid wall. Male gender was associated with carotid "1"8F-florbetaben uptake in the univariate analysis, and was found to be an independent predictor of "1"8F-florbetaben uptake in the multivariate regression analysis (standardized regression coefficient β = 0.407, p = 0.009). Carotid "1"8F-florbetaben_m_e_a_nTBR_m_a_x in patients with a positive cerebral Aβ scan did not differ from that in patients without cerebral Aβ deposits. Specific "1"8F-florbetaben uptake in human carotid arteries was detected. Male gender was identified as an independent clinical risk factor. Therefore, "1"8F-florbetaben PET/MRI might provide new insights into the pathophysiological process in atherosclerosis. (orig.)

  2. Feasibility of in vivo {sup 18}F-florbetaben PET/MR imaging of human carotid amyloid-β

    Energy Technology Data Exchange (ETDEWEB)

    Bucerius, Jan [Maastricht University Medical Center (MUMC+), Department of Radiology/Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center (MUMC+), Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Maastricht University Medical Center (MUMC+), Department of Nuclear Medicine/Radiology and Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); Barthel, Henryk; Tiepolt, Solveig; Werner, Peter; Patt, Marianne; Sabri, Osama [Leipzig University Medical Centre, Department of Nuclear Medicine, Leipzig (Germany); Sluimer, Judith C.; Biessen, Erik A.L. [Maastricht University Medical Center (MUMC+), Department of Pathology, Experimental Vascular Pathology, Maastricht (Netherlands); Wildberger, Joachim E. [Maastricht University Medical Center (MUMC+), Department of Radiology/Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center (MUMC+), Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); Hesse, Swen [Leipzig University Medical Centre, Department of Nuclear Medicine, Leipzig (Germany); Leipzig University Medical Centre, Integrated Treatment and Research Centre (IFB) Adiposity Diseases, Leipzig (Germany); Gertz, Hermann-Josef [Leipzig University Medical Centre, Department of Psychiatry, Leipzig (Germany); Mottaghy, Felix M. [Maastricht University Medical Center (MUMC+), Department of Radiology/Nuclear Medicine, Maastricht (Netherlands); University Hospital RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany)

    2017-07-15

    Amyloid-beta (Aβ) peptides are involved in the inflammatory pathology of atherosclerosis. {sup 18}F-Florbetaben is a PET tracer for clinical imaging of cerebral Aβ plaques in Alzheimer's disease (AD). We sought to determine whether specific uptake of {sup 18}F-florbetaben in the carotid arteries can be identified using a fully integrated hybrid PET/MRI system and whether this uptake is associated with clinical cardiovascular disease (CVD) risk factors. Carotid {sup 18}F-florbetaben uptake was quantified as the mean of the maximum target-to-background ratio ({sub mean}TBR{sub max}) in 40 cognitively impaired subjects (age 68.2 ± 9.5 years) undergoing {sup 18}F-florbetaben PET/MRI to diagnose AD. Associations between carotid {sup 18}F-florbetaben uptake and several CVD risk factors were assessed by univariate analysis followed by a multivariate linear regression analysis. Furthermore, carotid {sup 18}F-florbetaben uptake was compared between patients with and without a positive cerebral Aβ PET scan. {sup 18}F-Florbetaben uptake was clearly visualized in the carotid arteries. Values of{sub mean}TBR{sub max} corrected for the blood pool activity of the tracer showed specific {sup 18}F-florbetaben uptake in the carotid wall. Male gender was associated with carotid {sup 18}F-florbetaben uptake in the univariate analysis, and was found to be an independent predictor of {sup 18}F-florbetaben uptake in the multivariate regression analysis (standardized regression coefficient β = 0.407, p = 0.009). Carotid {sup 18}F-florbetaben{sub mean}TBR{sub max} in patients with a positive cerebral Aβ scan did not differ from that in patients without cerebral Aβ deposits. Specific {sup 18}F-florbetaben uptake in human carotid arteries was detected. Male gender was identified as an independent clinical risk factor. Therefore, {sup 18}F-florbetaben PET/MRI might provide new insights into the pathophysiological process in atherosclerosis. (orig.)

  3. Clinical significance of 18F-fluorodeoxyglucose PET/CT whole body imaging in detecting thyroid incidentaloma

    International Nuclear Information System (INIS)

    Zhai Ge; Li Biao; Zhang Miao; Xu Haoping; Jiang Xufeng; Wang Chao; Ge Guizhi; Shun Chengwei; Zhu Chengmo

    2009-01-01

    Objective: 18 F-fluorodeoxyglucose (FDG) PET/CT is a noninvasive whole-body imaging technique used to evaluate various types of malignancies. Recent advances have rapidly developed it into a diagnostic imaging modality in ontology. The aims of this study were two. One was to estimate the detection rate of thyroid indoleacetamide and the risk of thyroid malignancy by 18 F-FDG PET/CT scan and the other Was to further understand whether the maximum standardized uptake value (SUV max ) would be helpful in differentiating benign from malignant thyroid tumor. Methods: From June 2007 to January 2008, a total of 1190 subjects who had no previous history of thyroid cancer and had 18 F-FDG PET/CT scan were included. All had visual interpretation and semiquantitative analyses by SUV max at thyroid incidentalomas detected by FDG PET/CT. Kruskal-Wallis test and Spearman relation analysis were used. Results: The prevalence of thyroid incidentaloma on 18 F-FDG PET/CT wag 2.1% (25/1190). Of these 25 tumors, 20 had histologically proven. Of these 20 tumors, 9 were benign and 11 were malignant (papillary carcinoma of thyroid gland in 9, follicular carcinoma of thyroid gland in 1, metastatic squamous cell carcinoma from lung cancer in 1). Therefore,the cancer risk of thyroid incidentaloma was 55% (11/20). Significantly higher SUV max in malignant than in benign nodules were observed (Kruskal-Wallis test,χ 2 =8.8, P max (3.0-46.0) and maximal diameter (1.0-4.2 cm) of nodule findings was insignificant (r=0.25, P>0.01). Conclusion: Thyroid incidentaloma detected by 18 F-FDG PET/CT has higher risk rate for thyroid malignancy.(authors)

  4. [18F]DPA 714 PET Imaging Reveals Global Neuroinflammation in Zika Virus Infected Mice

    Science.gov (United States)

    2017-09-12

    with neurotropic viruses and the evaluation of therapeutics being developed for treatment of infectious diseases. Keywords: Zika virus , Animal...18F]DPA-714 PET Imaging Reveals Global Neuroinflammation in Zika Virus - Infected Mice Kyle Kuszpit1†, Bradley S. Hollidge2†, Xiankun Zeng3, Robert...Running Head: PET Imaging of Zika Virus -Induced Neuroinflammation Manuscript Category: Article Affiliations: 1Molecular and Translational

  5. Evaluation of 18F-labeled exendin(9-39) derivatives targeting glucagon-like peptide-1 receptor for pancreatic β-cell imaging.

    Science.gov (United States)

    Kimura, Hiroyuki; Ogawa, Yu; Fujimoto, Hiroyuki; Mukai, Eri; Kawashima, Hidekazu; Arimitsu, Kenji; Toyoda, Kentaro; Fujita, Naotaka; Yagi, Yusuke; Hamamatsu, Keita; Murakami, Takaaki; Murakami, Atsushi; Ono, Masahiro; Nakamoto, Yuji; Togashi, Kaori; Inagaki, Nobuya; Saji, Hideo

    2018-01-15

    β-cell mass (BCM) is known to be decreased in subjects with type-2 diabetes (T2D). Quantitative analysis for BCM would be useful for understanding how T2D progresses and how BCM affects treatment efficacy and for earlier diagnosis of T2D and development of new therapeutic strategies. However, a noninvasive method to measure BCM has not yet been developed. We developed four 18 F-labeled exendin(9-39) derivatives for β-cell imaging by PET: [ 18 F]FB9-Ex(9-39), [ 18 F]FB12-Ex(9-39), [ 18 F]FB27-Ex(9-39), and [ 18 F]FB40-Ex(9-39). Affinity to the glucagon-like peptide-1 receptor (GLP-1R) was evaluated with dispersed islet cells of ddY mice. Uptake of exendin(9-39) derivatives in the pancreas as well as in other organs was evaluated by a biodistribution study. Small-animal PET study was performed after injecting [ 18 F]FB40-Ex(9-39). FB40-Ex(9-39) showed moderate affinity to the GLP-1R. Among all of the derivatives, [ 18 F]FB40-Ex(9-39) resulted in the highest uptake of radioactivity in the pancreas 30 min after injection. Moreover, it showed significantly less radioactivity accumulated in the liver and kidney, resulting in an overall increase in the pancreas-to-organ ratio. In the PET imaging study, pancreas was visualized at 30 min after injection of [ 18 F]FB40-Ex(9-39). [ 18 F]FB40-Ex(9-39) met the basic requirements for an imaging probe for GLP-1R in pancreatic β-cells. Further enhancement of pancreatic uptake and specific binding to GLP-1R will lead to a clear visualization of pancreatic β-cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Characterization of 5-(2-18F-fluoroethoxy-L-tryptophan for PET imaging of the pancreas [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Ahmed Abbas

    2016-11-01

    Full Text Available Purpose: In diabetes, pancreatic beta cell mass declines significantly prior to onset of fasting hyperglycemia. This decline may be due to endoplasmic reticulum (ER stress, and the system L amino acid transporter LAT1 may be a biomarker of this process. In this study, we used 5-(2-18F-fluoroethoxy-L-tryptophan (18F-L-FEHTP to target LAT1 as a potential biomarker of beta cell function in diabetes. Procedures: Uptake of 18F-L-FEHTP was determined in wild-type C57BL/6 mice by ex vivo biodistribution. Both dynamic and static positron emission tomography (PET images were acquired in wild-type and Akita mice, a model of ER stress-induced diabetes, as well as in mice treated with streptozotocin (STZ. LAT1 expression in both groups of mice was evaluated by immunofluorescence microscopy. Results: Uptake of 18F-L-FEHTP was highest in the pancreas, and static PET images showed highly specific pancreatic signal. Time-activity curves showed significantly reduced 18F-L-FEHTP uptake in Akita mice, and LAT1 expression was also reduced. However, mice treated with STZ, in which beta cell mass was reduced by 62%, showed no differences in 18F-L-FEHTP uptake in the pancreas, and there was no significant correlation of 18F-L-FEHTP uptake with beta cell mass. Conclusions: 18F-L-FEHTP is highly specific for the pancreas with little background uptake in kidney or liver. We were able to detect changes in LAT1 in a mouse model of diabetes, but these changes did not correlate with beta cell function or mass. Therefore, 18F-L-FEHTP PET is not a suitable method for the noninvasive imaging of changes in beta cell function during the progression of diabetes.

  7. The manifestation of 18F-FDG imaging of coincidence SPECT in benign pulmonary diseases

    International Nuclear Information System (INIS)

    Miao Jisheng; Liu Jinjun; Wu Jiyong; Pan Huizhong; Wang Huoqiang; Shen Yi; Shi Degang

    2001-01-01

    Objective: To study the uptake of the 18 F-FDG in the benign pulmonary diseases with dual head SPECT coincidence detection system. Methods: Scanning were performed with dual head SPECT coincidence detection system for patients with pulmonary diseases,the uptake and the imaging characteristic of the diseases were analysed. Results: 1) In 28 tuberculosis (TB) patients, 19 cases with a negative imaging (68%, 19/28), whereas 9 cases with a positive result (32%, 9/28). The T/N value of the TB is 1.7 +- 1.2, but the T/N of the lung cancer is 4.1 +- 2.4, significantly different from them. In the skin PPD test, 9 cases with positive scans showed a 16.2 (12 - 22) mm diameter red spot, but 7 cases of negative scans with a 8.6 (0 - 15) mm diameter, both also have a significant difference. 2) Out of the 8 patients suffered from sarcoidosis, among them 5 active stage with positive scans, whereas another 3 remission cases with negative results. 3) In 18 inflammation cases, positive imagings were showed in 6 patients with cryptococcosis, mycoplasma pneumonia, mycosis, organized pneumonia, lung abscess and bacteria pneumonia. Conclusions: In some benign pulmonary diseases, 18 F-FDG imaging can be positive also. Analysing the characteristic of the imaging could rise specificity in lung cancer and also give some new clues to treatment of these benign pulmonary diseases

  8. Clinical value of 18F-fluorodihydroxyphenylalanine positron emission tomography/computed tomography (18F-DOPA PET/CT) for detecting pheochromocytoma

    International Nuclear Information System (INIS)

    Luster, Markus; Zeich, Katrin; Glatting, Gerhard; Buck, Andreas K.; Solbach, Christoph; Reske, Sven N.; Karges, Wolfram; Pauls, Sandra; Verburg, Frederik A.; Dralle, Henning; Neumaier, Bernd; Mottaghy, Felix M.

    2010-01-01

    In detecting pheochromocytoma (PHEO), positron emission tomography (PET) with the radiolabelled amine precursor 18 F-fluorodihydroxyphenylalanine ( 18 F-DOPA) offers excellent specificity, while computed tomography (CT) provides high sensitivity and ability to localize lesions; therefore, the combination of these modalities could be advantageous in this setting. The aim of this study was to investigate whether combined 18 F-DOPA PET/CT more accurately detects and localizes PHEO lesions than does each modality alone. 18 F-DOPA PET, CT and 18 F-DOPA PET/CT images of 25 consecutive patients undergoing diagnostic scanning of suspected sporadic or multiple endocrine neoplasia type 2 syndrome-associated PHEO were reviewed retrospectively in randomized sequence. Two blinded observers scored the images regarding the likelihood of PHEO being present and localizable. Results were correlated with subsequent clinical history and, when available, histology. Of the 19 lesions detected by all three modalities, PET identified each as positive for PHEO, but was unable to definitively localize 15 of 19 (79%). CT could definitively localize all 19 lesions, but could not definitively diagnose or exclude PHEO in 18 of 19 (95%) lesions. Furthermore, CT falsely identified as negative for PHEO one lesion which was judged to be positive for this tumor by both PET and PET/CT. Only in PET/CT scans were all 19 lesions accurately characterized and localized. On a per-patient basis, the sensitivity of 18 F-DOPA PET/CT for PHEO was 100% and the specificity 88%, with a 100% positive predictive value and an 88% negative predictive value. 18 F-DOPA PET/CT more accurately diagnoses and localizes adrenal and extra-adrenal masses suspicious for PHEO than do 18 F-DOPA PET or CT alone. (orig.)

  9. Validation of an HPLC method for determination of chemical purity of [18F]fluoromisonidazole ([18F]FMISO)

    International Nuclear Information System (INIS)

    Nascimento, Natalia C.E.S.; Oliveira, Mércia L.; Lima, Fernando R.A.; Silveira, Marina B.; Ferreira, Soraya Z.; Silva, Juliana B.

    2017-01-01

    [ 18 F]Fluoromisonidazole ([ 18 F]FMISO) is a nitroimidazole derivative labelled with fluorine-18 that selectively binds to hypoxic cells. It has been shown to be a suitable PET tracer for imaging hypoxia in tumors as well as in noncancerous tissues. [ 18 F]FMISO was prepared using a TRACERlabMX FDG ® module (GE) with cassettes, software sequence and reagents kits from ABX. In this work, we aimed to develop and to validate a new high performance liquid chromatography (HPLC) method for determination of chemical purity of [ 18 F]FMISO. Analyses were performed with an Agilent chromatograph equipped with radioactivity and UV detectors. [ 18 F]FMISO and impurities were separated on a C18 column by gradient elution with water and acetonitrile. Selectivity, linearity, detection limit (DL), quantification limit (LQ), precision, accuracy and robustness were assessed to demonstrate that the HPLC method is adequate for its intended purpose. The HPLC method showed a good precision, as all RSD values were lower than 5%. Robustness was evaluated considering a variation on parameters such mobile phase gradient and flow rate. Results evidenced that the HPLC method is validated and is suitable for radiochemical purity evaluation of [ 18 F]FMISO, considering operational conditions of our laboratory. As an extension of this work, other analytical methods used for [ 18 F]FMISO quality control should be evaluated, in compliance with good manufacture practice. (author)

  10. Evaluation of 19 cases of benign lesions with high accumulation of tracer on 18F-FDG PET imaging

    International Nuclear Information System (INIS)

    Wang Quanshi; Wu Hubing; Wang Mingfang; Huang Zuhan

    2003-01-01

    Objective: To review PET images of benign lesions with high accumulation of 18 F-FDG and to analyse the possibility of FDG PET imaging for differentiating the benign from the malignant. Methods: 18 F-FDG PET imaging was performed on 19 patients with benign diseases including 13 cases of active tuberculosis and 6 cases of other benign diseases. Positive pathologic or bacteriological results were obtained for all the patients. PET images were evaluated with standardized uptake value (SUV), lesion shapes , and radioactivity distribution. CT or MRI and histopathologic findings also were reviewed. Results: 1) Thirteen patients with active tuberculosis showed high uptake of 18 F-FDG. The SUV was 3.1±1.8. But radioactivity distribution in some lesions was not uniform and there were defect areas in the lesions. Histopathologic findings proved that the defect areas were induced by caseous necrosis. Seven cases of pulmonary tuberculosis showed two or multiple stripe and funicular high accumulation and other lesions displayed high uptake in sheet or irregular shape; 1 case of scrofula and 1 case of splenetic tuberculosis showed defect areas in the lesions; the other scrofula case showed focal intense uptake. Two of lumbar tuberculosis showed intense uptake in the lumbar vertebra, and one of the two cases complicated with the cold abscess showed bilateral high accumulation in the shape of sheet along musculus psoas major. In the peritoneal tuberculosis case, PET images showed diffuse incrassation and intense uptake in peritoneum and mesentery. CT findings revealed that the peritoneum and mesentery thickened. 2) Pulmonary abscess, pulmonary cryptococcus granuloma, cerebral cryptococcus granuloma, pulmonary inflammatory pseudotumor, leiomyoma, and breast adenoma all showed high accumulation in the shapes of nodule or mass. Mean SUV was 4.5±3.1. CT or MRI findings were the same as on PET images shape. Histopathologic work-up did not find necrosis in the lesions. Conclusions

  11. Para neoplastic cataplexy: evolution of PET with [{sup 18}F] -F.D.G. imaging; Cataplexie paraneoplasique: evolution de l'imagerie TEP au [18F]-FDG

    Energy Technology Data Exchange (ETDEWEB)

    Farida, K.; Fernandez, P.; Guyot, M.; Jeandot, R.; Allard, M. [Service de medecine nucleaire, CHU de Bordeaux, (France); Sibon, I. [service de neurologie, CHU de Bordeaux, (France)

    2009-05-15

    Cataplexy is sudden and transient episode of loss of muscle tone, often triggered by emotions. We find it in the Gelineau disease but it can be constitutes an exceptional clinical expression of para-neoplasic syndromes. We report the evolution of the PET imaging for a patient during a para-neoplasic syndrome secondary to a testes teratoma associated to the presence of antibodies anti-Ma2. Different aspects of the {sup 18}F-F.D.G. fixation can be observed during the para-neoplasic syndromes affecting the central nervous system. Their values in term of prognosis and help to the therapy decision are still to define. (N.C.)

  12. Ability of 18F-DOPA PET/CT and fused 18F-DOPA PET/MRI to assess striatal involvement in paediatric glioma

    International Nuclear Information System (INIS)

    Morana, Giovanni; Severino, Mariasavina; Tortora, Domenico; Rossi, Andrea; Puntoni, Matteo; Garre, Maria Luisa; Massollo, Michela; Naseri, Merhdad; Piccardo, Arnoldo; Lopci, Egesta

    2016-01-01

    To assess the diagnostic performance of 18 F-DOPA PET/CT and fused 18 F-DOPA PET/MRI in detecting striatal involvement in children with gliomas. This retrospective study included 28 paediatric patients referred to our institution for the presence of primary, residual or recurrent glioma (12 boys, 16 girls; mean age 10.7 years) and investigated with 18 F-DOPA PET/CT and brain MRI. Fused 18 F-DOPA PET/MR images were obtained and compared with PET/CT and MRI images. Accuracy, sensitivity, specificity, negative predictive value (NPV) and positive predictive value (PPV) for striatal involvement were calculated for each diagnostic tool. Univariate and multivariate logistic analyses were applied to evaluate the associations between 18 F-DOPA PET/CT and fused 18 F-DOPA PET/MRI diagnostic results and tumour uptake outside the striatum, grade, dimension and site of striatal involvement (ventral and/or dorsal). Accuracy, sensitivity, specificity, PPV, and NPV were 100 % for MRI, 93 %, 89 %, 100 %, 100 % and 82 % for 18 F-DOPA PET/MRI, and 75 %, 74 %, 78 %, 88 % and 58 % for 18 F-DOPA PET/CT, respectively. 18 F-DOPA PET/MRI showed a trend towards higher accuracy compared with 18 F-DOPA PET/CT (p = 0.06). MRI showed significantly higher accuracy compared with 18 F-DOPA PET/CT (p = 0.01), but there was no significant difference between MRI and 18 F-DOPA PET/MRI. Both univariate and multivariate logistic analyses showed a significant association (OR 8.0 and 7.7, respectively) between the tumour-to-normal striatal uptake (T/S) ratio and the diagnostic ability of 18 F-DOPA PET/CT (p = 0.03). A strong significant association was also found between involvement of the dorsal striatum and the 18 F-DOPA PET/CT results (p = 0.001), with a perfect prediction of involvement of the dorsal striatum by 18 F-DOPA PET/MRI. Physiological striatal 18 F-DOPA uptake does not appear to be a main limitation in the evaluation of basal ganglia involvement. 18 F-DOPA PET/CT correctly detected

  13. New horizons in cardiac innervation imaging. Introduction of novel {sup 18}F-labeled PET tracers

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Ryohei [University Hospital of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Nihon Medi-Physics Co., Ltd., Research Centre, Chiba (Japan); Chen, Xinyu [University Hospital of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); University Hospital of Wuerzburg, Comprehensive Heart Failure Center, Wuerzburg (Germany); Werner, Rudolf A. [University Hospital of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); University Hospital of Wuerzburg, Comprehensive Heart Failure Center, Wuerzburg (Germany); Johns Hopkins School of Medicine, The Russell H Morgan Department of Radiology and Radiological Sciences, Baltimore, MD (United States); Lapa, Constantin [University Hospital of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Javadi, Mehrbod S. [Johns Hopkins School of Medicine, The Russell H Morgan Department of Radiology and Radiological Sciences, Baltimore, MD (United States); Higuchi, Takahiro [University Hospital of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); University Hospital of Wuerzburg, Comprehensive Heart Failure Center, Wuerzburg (Germany); National Cerebral and Cardiovascular Center, Department of Biomedical Imaging, Research Institute, Suita (Japan)

    2017-12-15

    Cardiac sympathetic nervous activity can be uniquely visualized by non-invasive radionuclide imaging techniques due to the fast growing and widespread application of nuclear cardiology in the last few years. The norepinephrine analogue {sup 123}I-meta-iodobenzylguanidine ({sup 123}I-MIBG) is a single photon emission computed tomography (SPECT) tracer for the clinical implementation of sympathetic nervous imaging for both diagnosis and prognosis of heart failure. Meanwhile, positron emission tomography (PET) imaging has become increasingly attractive because of its higher spatial and temporal resolution compared to SPECT, which allows regional functional and dynamic kinetic analysis. Nevertheless, wider use of cardiac sympathetic nervous PET imaging is still limited mainly due to the demand of costly on-site cyclotrons, which are required for the production of conventional {sup 11}C-labeled (radiological half-life, 20 min) PET tracers. Most recently, more promising {sup 18}F-labeled (half-life, 110 min) PET radiopharmaceuticals targeting sympathetic nervous system have been introduced. These tracers optimize PET imaging and, by using delivery networks, cost less to produce. In this article, the latest advances of sympathetic nervous imaging using {sup 18}F-labeled radiotracers along with their possible applications are reviewed. (orig.)

  14. Biocompatible KMnF3 nanoparticular contrast agent with proper plasma retention time for in vivo magnetic resonance imaging.

    Science.gov (United States)

    Liu, Zhi-jun; Song, Xiao-xia; Xu, Xian-zhu; Tang, Qun

    2014-04-18

    Nanoparticular MRI contrast agents are rapidly becoming suitable for use in clinical diagnosis. An ideal nanoparticular contrast agent should be endowed with high relaxivity, biocompatibility, proper plasma retention time, and tissue-specific or tumor-targeting imaging. Herein we introduce PEGylated KMnF3 nanoparticles as a new type of T1 contrast agent. Studies showed that the nanoparticular contrast agent revealed high bio-stability with bovine serum albumin in PBS buffer solution, and presented excellent biocompatibility (low cytotoxicity, undetectable hemolysis and hemagglutination). Meanwhile the new contrast agent possessed proper plasma retention time (circulation half-life t1/2 is approximately 2 h) in the body of the administrated mice. It can be delivered into brain vessels and maintained there for hours, and is mostly cleared from the body within 48 h, as demonstrated by time-resolved MRI and Mn-biodistribution analysis. Those distinguishing features make it suitable to obtain contrast-enhanced brain magnetic resonance angiography. Moreover, through the process of passive targeting delivery, the T1 contrast agent clearly illuminates a brain tumor (glioma) with high contrast image and defined shape. This study demonstrates that PEGylated KMnF3 nanoparticles represent a promising biocompatible vascular contrast agent for magnetic resonance angiography and can potentially be further developed into an active targeted tumor MRI contrast agent.

  15. Comparative studies of epibatidine derivatives [{sup 18}F]NFEP and [{sup 18}F]N-Methyl-NFEP: kinetics, nicotine effect, and toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Ding Yushin E-mail: ding@bnl.gov; Molina, Patricia E.; Fowler, Joanna S.; Logan, Jean; Volkow, Nora D.; Kuhar, Michael J.; Carroll, F. Ivy

    1999-01-01

    We have previously shown that [{sup 18}F]norchlorofluoroepibatidine ([{sup 18}F]NFEP) would be an ideal radiotracer for positron emission tomography (PET) imaging of nicotinic acetylcholine receptors (nAChR); however, its high toxicity is a limiting factor for human studies. We, therefore, synthesized its N-methyl derivative ([{sup 18}F]N-Me-NFEP) and carried out comparative studies. The distribution volumes for different brain regions were higher for [{sup 18}F]N-Me-NFEP than those for [{sup 18}F]NFEP (average: 52.5 {+-} 0.9 vs. 36.4 {+-} 0.7 for thalamus), though the distribution volume (DV) ratios were similar (3.93 {+-} 0.27 vs. 3.65 {+-} 0.19 for thalamus to cerebellum). Treatment with nicotine reduced the binding of both radiotracers. Toxicology studies in awake rats showed that N-methyl-NFEP has a lower mortality (0 vs. 30%) and smaller effect on plasma catecholamines than NFEP at a dose of 1.5 {mu}g/kg. However, marked alterations in cardiorespiratory parameters were observed after injection of N-methyl-NFEP (0.5 {mu}g/kg, IV) to an awake dog. methresults suggest that although the binding characteristics of [{sup 18}F]NFEP and [{sup 18}F]N-Me-NFEP appear to be ideally suited for PET imaging studies of the human brain, their relatively small safety margin will limit their use in humans.

  16. {sup 18}F-radiolabeled analogs of exendin-4 for PET imaging of GLP-1 in insulinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kiesewetter, Dale O.; Ma, Ying; Niu, Gang; Quan, Qimeng; Guo, Ning; Chen, Xiaoyuan [National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Laboratory of Molecular Imaging and Nanomedicine (LOMIN), Bethesda, MD (United States); Gao, Haokao [National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Laboratory of Molecular Imaging and Nanomedicine (LOMIN), Bethesda, MD (United States); Fourth Military Medical University, Department of Cardiology, Xijing Hospital, Xi' an (China)

    2012-03-15

    Glucagon-like peptide type 1 (GLP-1) is an incretin peptide that augments glucose-stimulated insulin release following oral consumption of nutrients. Its message is transmitted via a G protein-coupled receptor called GLP-1R, which is colocalized with pancreatic {beta}-cells. The GLP-1 system is responsible for enhancing insulin release, inhibiting glucagon production, inhibiting hepatic gluconeogenesis, inhibiting gastric mobility, and suppression of appetite. The abundance of GLP-1R in pancreatic {beta}-cells in insulinoma, a cancer of the pancreas, and the activity of GLP-1 in the cardiovascular system have made GLP-1R a target for molecular imaging. We prepared {sup 18}F radioligands for GLP-1R by the reaction of [{sup 18}F]FBEM, a maleimide prosthetic group, with [Cys{sup 0}] and [Cys{sup 40}] analogs of exendin-4. The binding affinity, cellular uptake and internalization, in vitro stability, and uptake and specificity of uptake of the resulting compounds were determined in an INS-1 xenograft model in nude mice. The [{sup 18}F]FBEM-[Cys{sup x}]-exendin-4 analogs were obtained in good yield (34.3 {+-} 3.4%, n = 11), based on the starting compound [{sup 18}F]FBEM, and had a specific activity of 45.51 {+-} 16.28 GBq/{mu}mol (1.23 {+-} 0.44 Ci/{mu}mol, n = 7) at the end of synthesis. The C-terminal isomer, [{sup 18}F]FBEM-[Cys{sup 40}]-exendin-4, had higher affinity for INS-1 tumor cells (IC{sub 50} 1.11 {+-} 0.057 nM) and higher tumor uptake (25.25 {+-} 3.39 %ID/g at 1 h) than the N-terminal isomer, [{sup 18}F]FBEM-[Cys{sup 0}]-exendin-4 (IC{sub 50} 2.99 {+-} 0.06 nM, uptake 7.20 {+-} 1.26 %ID/g at 1 h). Uptake of both isomers into INS-1 tumor, pancreas, stomach, and lung could be blocked by preinjection of nonradiolabeled [Cys{sup x}]-exendin-4 (p < 0.05). [{sup 18}F]FBEM-[Cys{sup 40}]-exendin-4 and [{sup 18}F]FBEM-[Cys{sup 0}]-exendin-4 have high affinity for GLP-1R and display similar in vitro cell internalization. The higher uptake into INS-1 xenograft tumors

  17. Kinetics of 16-α-[18]fluoroestradiol-3,17-β-disulphatemate ([18F]FESDS) in piglet blood and brain

    International Nuclear Information System (INIS)

    Brust, P.; Roemer, J.; Fuechtner, F.; Kasch, H.; Steinbach, J.

    2002-01-01

    The suitability of [ 18 F]FESDS as PET tracer was investigated. After i.v. injection [ 18 F]FESDS was immediately trapped by the erythrocytes. The PET images did not allow the differentiation of brain regions because of the very high amounts retained in the blood. [ 18 F]FESDS is therefore not recommended for brain imaging with PET. (orig.)

  18. Effect of α-Methyl versus α-Hydrogen Substitution on Brain Availability and Tumor Imaging Properties of Heptanoic [F-18]Fluoroalkyl Amino Acids for Positron Emission Tomography (PET).

    Science.gov (United States)

    Bouhlel, Ahlem; Alyami, Wadha; Li, Aixiao; Yuan, Liya; Rich, Keith; McConathy, Jonathan

    2016-04-14

    Two [(18)F]fluoroalkyl substituted amino acids differing only by the presence or absence of a methyl group on the α-carbon, (S)-2-amino-7-[(18)F]fluoro-2-methylheptanoic acid ((S)-[(18)F]FAMHep, (S)-[(18)F]14) and (S)-2-amino-7-[(18)F]fluoroheptanoic acid ((S)-[(18)F]FAHep, (S)-[(18)F]15), were developed for brain tumor imaging and compared to the well-established system L amino acid tracer, O-(2-[(18)F]fluoroethyl)-l-tyrosine ([(18)F]FET), in the delayed brain tumor (DBT) mouse model of high-grade glioma. Cell uptake, biodistribution, and PET/CT imaging studies showed differences in amino acid transport of these tracer by DBT cells. Recognition of (S)-[(18)F]15 but not (S)-[(18)F]14 by system L amino acid transporters led to approximately 8-10-fold higher uptake of the α-hydrogen substituted analogue (S)-[(18)F]15 in normal brain. (S)-[(18)F]15 had imaging properties similar to those of (S)-[(18)F]FET in the DBT tumor model while (S)-[(18)F]14 afforded higher tumor to brain ratios due to much lower uptake by normal brain. These results have important implications for the future development of α-alkyl and α,α-dialkyl substituted amino acids for brain tumor imaging.

  19. Non-invasive glucagon-like peptide-1 receptor imaging in pancreas with (18)F-Al labeled Cys(39)-exendin-4.

    Science.gov (United States)

    Mi, Baoming; Xu, Yuping; Pan, Donghui; Wang, Lizhen; Yang, Runlin; Yu, Chunjing; Wan, Weixing; Wu, Yiwei; Yang, Min

    2016-02-26

    Glucagon-like peptide-1 receptor (GLP-1R) is abundantly expressed on beta cells and may be an ideal target for the pancreas imaging. Monitoring the GLP-1R of pancreas could be benefit for understanding the pathophysiology of diabetes. In the present study, (18)F-Al labeled exendin-4 analog, (18)F-Al-NOTA-MAL-Cys(39)-exendin-4, was evaluated for PET imaging GLP-1R in the pancreas. The targeting of (18)F-Al labeled exendin-4 analog was examined in healthy and streptozotocin induced diabetic rats. Rats were injected with (18)F-Al-NOTA-MAL-Cys(39)-exendin-4 and microPET imaging was performed at 1 h postinjection, followed by ex vivo biodistribution. GLP-1R expression in pancreas was determined through post mortern examinations. The pancreas of healthy rats was readily visualized after administration of (18)F-Al-NOTA-MAL-Cys(39)-exendin-4, whereas the pancreas of diabetic rats, as well as those from rats co-injected with excess of unlabeled peptides, was barely visible by microPET. At 60 min postinjection, the pancreatic uptakes were 1.02 ± 0.15%ID/g and 0.23 ± 0.05%ID/g in healthy and diabetic rats respectively. Under block, the pancreatic uptakes of non-diabetic rats reduced to 0.21 ± 0.07%ID/g at the same time point. Biodistribution data and IHC staining confirmed the findings of the microPET imaging. The favorable preclinical data indicated that (18)F-Al-NOTA-MAL-Cys(39)-exendin-4may be suitable for non-invasive monitoring functional pancreatic beta cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Biologically stable [18F]-labeled benzylfluoride derivatives

    International Nuclear Information System (INIS)

    Magata, Yasuhiro; Lang, Lixin; Kiesewetter, Dale O.; Jagoda, Elaine M.; Channing, Michael A.; Eckelman, William C.

    2000-01-01

    Use of the [ 18 F]-fluoromethyl phenyl group is an attractive alternative to direct fluorination of phenyl groups because the fluorination of the methyl group takes place under milder reaction conditions. However, we have found that 4-FMeBWAY showed femur uptake equal to that of fluoride up to 30 min in rat whereas 4-FMeQNB had a significantly lower percent injected dose per gram in femur up to 120 min. For these and other benzylfluoride derivatives, there was no clear in vivo structure-defluorination relationship. Because benzylchlorides (BzCls) are known alkylating agents, benzylfluorides may be alkylating agents as well, which may be the mechanism of defluorination. On this basis, the effects of substitution on chemical stability were evaluated by the 4-(4-nitro-benzyl)-pyridine (NBP) test, which is used to estimate alkylating activity with NBP. The effect of substitution on the alkylating activity was evaluated for nine BzCl derivatives: BzCl; 3- or 4-methoxy (electron donation) substituted BzCl; 2-, 3-, or 4-nitro (electron withdrawing) substituted BzCl; and 2-, 3-, or 4-chloro (electron withdrawing) substituted BzCl. Taken together, the alkylating reactivity of 3-chloro-BzCl was the weakest. This result was then applied to [ 18 F]-benzylfluoride derivatives and in vivo and in vitro stability were evaluated. Consequently, 3-chloro-[ 18 F]-benzylfluoride showed a 70-80% decrease of defluorination in both experiments in comparison with [ 18 F]-benzylfluoride, as expected. Moreover, a good linear relationship between in vivo femur uptake and in vitro hepatocyte metabolism was observed with seven 18 F-labeled radiopharmaceuticals, which were benzylfluorides, alkylfluorides, and arylfluorides. Apparently, the [ 18 F]-fluoride ion is released by metabolism in the liver in vivo. In conclusion, 3-chloro substituted BzCls are the most stable, which suggests that 3-chloro benzylfluorides will be the most chemically stable compound. This result should be important in

  1. A Conjugate of Pentamethine Cyanine and 18F as a Positron Emission Tomography/Near-Infrared Fluorescence Probe for Multimodality Tumor Imaging

    Directory of Open Access Journals (Sweden)

    Fei-Fei An

    2017-06-01

    Full Text Available The novel synthesis of a dual-modality, pentamethine cyanine (Cy5 fluorescent, 18F positron emission tomography (PET imaging probe is reported. The probe shows a large extinction coefficient and large quantum yield in the biologically transparent, near-infrared window (650–900 nm for in vivo fluorescent imaging. This fluorophore bears the isotope, 18F, giving a 18F-PET/near-infrared fluorescent (NIRF, bi-modal imaging probe, that combines the long-term stability of NIRF and the unlimited penetration depth of PET imaging. The bi-modal probe is labeled with 18F in a quick, one-step reaction, which is important in working with the rapid decay of 18F. The bi-modal probe bears a free carboxyl group, highlighting a PET/NIRF synthon that can be conjugated onto many advanced biomolecules for biomarker-specific in vivo dual-modal PET/NIR tumor imaging, confocal histology, and utility in multi-fluorophore, fluorescence-guided surgery. Its potential in vivo biocompatibility is explored in a quick proof-of-principal in vivo study. The dye is delivered to A549 xenograft flank-tumors to generate PET and NIRF signals at the tumor site. The tumor distribution is confirmed in ex vivo gamma counting and imaging. Pentamethine cyanine (Cy5 has the ability to preferentially accumulate in tumor xenografts. We substitute the PET/NIRF probe for Cy5, and explore this phenomenon.

  2. Optimal scanning time window for 18F-FP-(+)-DTBZ (18F-AV-133) summed uptake measurements

    International Nuclear Information System (INIS)

    Lin, Kun-Ju; Lin, Wey-Yil; Hsieh, Chia-Ju; Weng, Yi-Hsin; Wey, Shiaw-Pyng; Lu, Chin-Song; Skovronsky, Daniel; Yen, Tzu-Chen; Chang, Chee-Jen; Kung, Mei-Ping

    2011-01-01

    18 F-9-fluoropropyl-(+)-dihydrotetrabenazine ( 18 F-AV-133) is a novel positron emission tomography tracer for imaging the vesicular monoamine transporter II in dopaminergic neuron degeneration, which might be indicative for Parkinson's disease (PD) and other parkinsonism. Studies were performed to optimize the imaging time window for calculating standardized uptake value ratio (SUVR) with correlation to distribution volume ratio (DVR) and in differentiating PD from normal controls (NCs). Methods: Thirteen 18 F-AV-133 positron emission tomography studies were conducted on four NCs (age, 62.3±4.9 years) and nine PD patients (age, 60.8±6.0 years) with Hoehn and Yahr stages 2 to 3. Dynamic images were acquired within 180 min (0–30, 50–140 and 160–180 min) and were rearranged into 14 of 10-min scans. The contralateral striatum was defined as the opposite striatum to the predominantly affected limbs. Volumes of interest (VOIs) of bilateral putamen, caudate nuclei and occipital cortex (OC; as the reference region) were delineated from individual magnetic resonance imaging. SUVRs of striatum to OC were computed from 14 dynamic image sets. The DVRs were computed from Logan graphic analysis by using OC as the input. The performance of SUVR was evaluated based on the correlation of SUVR at each time window to DVR, as well as the Cohen effect size (group mean SUVR difference between PD and NC/standard deviation). Results: 18 F-AV-133 uptake decreased in PD subjects at bilateral striatum especially at contralateral side with posterior putamen predominant as compared with NC. Consistent higher correlations of SUVRs to DVR for all VOIs were observed at later time window and reached to its maximal value of 0.9917 at 90–100 min. The group mean SUVR differences between NC and PD subjects increased and reached relatively stable values after 90 min. The effect sizes for all VOIs were stable across different time window and with the largest value around 90∼120 min

  3. Radiosynthesis of 1-[{sup 18}F]fluoroethyl-L-tryptophan as a novel potential amino acid PET tracer

    Energy Technology Data Exchange (ETDEWEB)

    Sun Ting, E-mail: beibeisun2008@163.com [Department of Cardiac Function, Shanghai Ninth People' s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Tang Ganghua, E-mail: gtang0224@yahoo.com.cn [Department of Nuclear Medicine, the first affiliated hospital, SunYat-Sen University, Guangzhou 510080 (China); Tian Hua [State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032 (China); Wang Xiaoyan [Department of Nuclear Medicine, the first affiliated hospital, SunYat-Sen University, Guangzhou 510080 (China); Chen Xianghua [Department of Cardiac Function, Shanghai Ninth People' s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Chen Zhifeng [Department of Nuclear Medicine, the first affiliated hospital, SunYat-Sen University, Guangzhou 510080 (China); Wang Shihchen [Department of Nuclear Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, 1 Shuaifuyuan Wangfujing Beijing 100730 (China)

    2012-04-15

    {sup 18}F labeled natural amino acids have been introduced as promising tumor imaging agents. A novel [{sup 18}F]fluoro amino acid analog 1-[{sup 18}F]fluoroethyl-L-tryptophan (1-[{sup 18}F]FETrp) was designed and synthesized by a two-pot three-step procedure, including the synthesis of 1-[{sup 18}F]fluoro-2- (tosyloxy)ethane, the [{sup 18}F]fluoroethylation of the precursor N-Boc-L-tryptophan ethyl ester and following the deprotection of the tert-butoxycarbonyl and ethyl ester protecting groups. 1-[{sup 18}F]FETrp was resulted in 0.9{+-}0.2% (n=5) radiochemical yields (no decay corrected) by HPLC purification, within a total synthesis time of 65 min. The radiochemical purity of 1-[{sup 18}F]FETrp was 95-97%. The radiosynthetic method needs to be further optimized to get a satisfying radiochemical yield. - Highlights: Black-Right-Pointing-Pointer We designed and synthesized the novel amino acid analog 1-[{sup 19}F]FETrp. Black-Right-Pointing-Pointer We radiosynthesized 1-[{sup 18}F]FETrp using the two-pot three-step procedure. Black-Right-Pointing-Pointer The total synthesis time was 65 min and the yield was very low. Black-Right-Pointing-Pointer The synthetic strategy via [{sup 18}F]FCH{sub 2}CH{sub 2}OTs needs to be optimized or changed.

  4. Imaging of Enzymes in the Steroid Biosynthetic Pathway: Synthesis of 18F-Labelled Tracers

    International Nuclear Information System (INIS)

    Erlandsson, Maria

    2009-01-01

    This thesis deals with the synthesis and development of 18 F-labelled alkyl etomidate and vorozole analogues, and their use as positron emission tomography (PET) tracers for the imaging of the steroid enzymes 11β-hydroxylase and aromatase. Two synthetic 18 F-labelling approaches to the etomidate and vorozole analogues were developed, and the analogues were evaluated in some biological assays. The two-step labelling method was used to synthesise many compounds for biological evaluation. In the first step, a 18 F-labelled intermediate based on a ditosylate or a halogenated diethyl ether was synthesised and used directly in the next alkylation step. The decay-corrected (d.c.) radiochemical yield was higher compared to other known two-step labelling methods. Once an appropriate candidate has been chosen for clinical evaluation, a one-step labelling method will be more suitable. We therefore developed a method based on precursors that had leaving groups at the end of their alkyl chains, and used these directly in the 18 F-labelling synthesis. The one-step 18 F-labelling synthesis required less reaction time and produced higher specific radioactivity and d.c. radiochemical yield than our two-step synthesis. With microwave heating, the reaction time was reduced to seconds and the d.c. radiochemical yield was better than that obtained with conventional heating. The one-step synthesis simplified the technical handling by allowing the tracer syntheses to be automated on the TRACERLab FX FN

  5. Synthesis of [{sup 18}F]-labelled nebivolol as a β{sub 1}-adrenergic receptor antagonist for PET imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taek Soo; Park, Jeong Hoon; Lee, Jun Young; Yang, Seung Dae [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup (Korea, Republic of); Chang, Dong Jo [College of pharmacy, Sunchon National University, Suncheon (Korea, Republic of)

    2017-02-15

    Selective β{sub 1}-agonist and antagonists are used for the treatment of cardiac diseases including congestive heart failure, angina pectoris and arrhythmia. Selective β{sub 1}-antagonists including nebivolol have high binding affinity on β{sub 1}-adrenergic receptor, not β{sub 2}-receptor mainly expressed in smooth muscle. Nebivolol is one of most selective β{sub 1}-blockers in clinically used β{sub 1}- blockers including atenolol and bisoprolol. We tried to develop clinically useful cardiac PET tracers using a selective β{sub 1}-blocker. Nebivolol is C{sub 2}-symmetric and has two chromane moiety with a secondary amino alcohol and aromatic fluorine. We adopted the general synthetic strategy using epoxide ring opening reaction. Unlike formal synthesis of nebivolol, we prepared two chromane building blocks with fluorine and iodine which was transformed to diaryliodonium salt for labelling of {sup 18}F. Two epoxide building blocks were readily prepared from commercially available chromene carboxylic acids (1, 8). Then, the amino alcohol building block (15) was prepared by ammonolysis of epoxide (14) followed by coupling reaction with the other building block, epoxide (7). Diaryliodonium salt, a precursor for {sup 18}F-aromatic substitution, was synthesized in moderate yield which was readily subjected to {sup 18}F-aromatic substitution to give {sup 18}F-labelled nebivolol.

  6. A comparison of [/sup 18/F]spiroperidol, [/sup 18/F]benperidol and [/sup 18/F] haloperidol kinetics in baboon brain

    International Nuclear Information System (INIS)

    Arnett, C.D.; Shiue, C.Y.; Wolf, A.P.; Fowler, J.S.; Logan, J.

    1984-01-01

    Neuroleptic receptor ligands, spiroperidol, benperidol and haloperidol were labeled with fluorine-18 by a nucleophilic aromatic substitution reaction of p-nitrobenzo-nitrile with /sup 18/F/sup -/ to produce p-[/sup 18/F]fluorobenzonitrile which was converted to p-[/sup 18/F]fluoro-y-chlorobutyrophenone and then alkylated with the appropriate amine to give [/sup 18/F]spiroperidol ([/sup 18/F]SP), [/sup 18/F]benperidol ([/sup 18/F]BEN), or [/sup 18/F]haloperidol ([/sup 18/F]HAL). Specific activity ranged from 3 to 6 Ci/μmol. Anesthetized baboons were injected with 6-17 mCi of [/sup 18/F]-labeled tracer. Kinetic curves (striatum and cerebellum) were obtained from PETT scans up to 4 hr with each drug; [/sup 18/F]SP was studied to 8 hr. [/sup 18/F]SP and [/sup 18/F]BEN exhibited similar kinetics in striatum, with radioactivity concentration plateauing by 30 min after injection and remaining constant for the remainder of the study. These two compounds cleared rapidly from the cerebellum. [/sup 18/F]HAL showed a much different kinetic pattern in the striatum. Although it reached a higher striatal concentration (≅0.07% per ml vs. ≅ 0.02% per ml for [/sup 18/F]SP or [/sup 18/F]BEN), a peak occurred at 30 min after injection, followed by a decline almost as rapid as that in the cerebellum. Plasma analyses for [/sup 18/F]SP showed > 90% unchanged drug up to 5 min and ≅ 30% metabolites at 20 min after injection. Pretreatment with (+)-butaclamol abolished the selective distribution of [/sup 18/F]SP to the striatum in the four animals studied. Both [/sup 18/F]SP and [/sup 18/F]BEN may be suitable for PETT studies of neuroleptic receptors, but the in vivo kinetics of these compounds are markedly different from their in vitro receptor binding kinetics

  7. Preclinical acute toxicity, biodistribution, pharmacokinetics, radiation dosimetry and microPET imaging studies of ["1"8F]fluorocholine in mice

    International Nuclear Information System (INIS)

    Silveira, Marina B.; Ferreira, Soraya M.Z.M.D.; Nascimento, Leonardo T.C.; Costa, Flávia M.; Mendes, Bruno M.; Ferreira, Andrea V.; Malamut, Carlos; Silva, Juliana B.; Mamede, Marcelo

    2016-01-01

    ["1"8F]Fluorocholine (["1"8F]FCH) has been proven to be effective in prostate cancer. Since ["1"8F]FCH is classified as a new radiopharmaceutical in Brazil, preclinical safety and efficacy data are required to support clinical trials and to obtain its approval. The aim of this work was to perform acute toxicity, biodistribution, pharmacokinetics, radiation dosimetry and microPET imaging studies of ["1"8F]FCH. The results could support its use in nuclear medicine as an important piece of work for regulatory in Brazil. - Highlights: • Data demonstrated the high quality, safety and effectiveness of ["1"8F]FCH. • ["1"8F]FCH preclinical profile is in accordance with previously published. • Toxicity, distribution, kinetics and radiation dosimetry were well characterized. • The results are important for regulatory issues in Brazil and other countries.

  8. MO-AB-BRA-05: [18F]NaF PET/CT Imaging Biomarkers in Metastatic Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, S; Perk, T; Lin, C; Eickhoff, J; Perlman, S; Liu, G; Jeraj, R [University of Wisconsin Madison, Madison, WI (United States); Choyke, P; Dahut, W; Apolo, A [National Cancer Institute at the National Institutes of Health, Bethesda, MD (United States); Humm, J; Larson, S; Morris, MJ [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: Clinical use of {sup 18}F-Sodium Fluoride (NaF) PET/CT in metastatic settings often lacks technology to quantitatively measure full disease dynamics due to high tumor burden. This study assesses radiomics-based extraction of NaF PET/CT measures, including global metrics of overall burden and local metrics of disease heterogeneity, in metastatic prostate cancer for correlation to clinical outcomes. Methods: Fifty-six metastatic Castrate-Resistant Prostate Cancer (mCRPC) patients had NaF PET/CT scans performed at baseline and three cycles into chemotherapy (N=16) or androgen-receptor (AR) inhibitors (N=39). A novel technology, Quantitative Total Bone Imaging (QTBI), was used for analysis. Employing hybrid PET/CT segmentation and articulated skeletal-registration, QTBI allows for response assessment of individual lesions. Various SUV metrics were extracted from each lesion (iSUV). Global metrics were extracted from composite lesion-level statistics for each patient (pSUV). Proportion of detected lesions and those with significant response (%-increase or %-decrease) was calculated for each patient based on test-retest limits for iSUV metrics. Cox proportional hazard regression analyses were conducted between imaging metrics and progression-free survival (PFS). Results: Functional burden (pSUV{sub total}) assessed mid-treatment was the strongest univariate predictor of PFS (HR=2.03; p<0.0001). Various global metrics outperformed baseline clinical markers, including fraction of skeletal burden, mean uptake (pSUV{sub mean}), and heterogeneity of average lesion uptake (pSUV{sub hetero}). Of 43 patients with paired baseline/mid-treatment imaging, 40 showed heterogeneity in lesion-level response, containing populations of lesions with both increasing/decreasing metrics. Proportion of lesions with significantly increasing iSUV{sub mean} was highly predictive of clinical PFS (HR=2.0; p=0.0002). Patients exhibiting higher proportion of lesions with decreasing i

  9. Routinely automated production of 3'-deoxy-3'-[18F] fluorothymidine as a specific molecular imaging probe of tumor cell proliferation

    International Nuclear Information System (INIS)

    Wang Mingwei; Zhang Yingjian; Zhang Yongping

    2011-01-01

    This work was aimed at developing a routine for automated production of 3'-deoxy-3'-[ 18 F]fluorothymidine ( 18 F-FLT), a specific molecular imaging probe of tumor cell proliferation, using one-pot two-step strategy and an upgraded Explora GN module integrated with a semi-preparative HPLC system. Firstly, the nucleophilic [ 18 F] radiofluorination of precursor BDNT with activated 18 F ion was carried out at 120 degree C for 5 min to yield the labeled intermediate 18 F-BDFT. Secondly, the acidic hydrolysis of 18 F-BDFT was run at 110 degree C for 5 min to produce 18 F-FLT after addition of HCl, and 18 F-FLT was purified by HPLC. This automated production of 18 F-FLT is of fast, reliable and multi-run features, being completed within 65 min with radiochemical yield of 15%-25% (without decay correction). The quality control of 18 F-FLT was identical with the radiopharmaceutical requirements, especiallly the radiochemical purity of greater than 99% and high chemical purity and specific activity own to HPLC purification. (authors)

  10. Combined early dynamic (18)F-FDG PET/CT and conventional whole-body (18)F-FDG PET/CT provide one-stop imaging for detecting hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Shao-Bo; Wu, Hu-Bing; Wang, Quan-Shi; Zhou, Wen-Lan; Tian, Ying; Li, Hong-Sheng; Ji, Yun-Hai; Lv, Liang

    2015-06-01

    It is widely accepted that conventional (18)F-FDG PET/CT (whole-body static (18)F-FDG PET/CT, WB (18)F-FDG PET/CT) has a low detection rate for hepatocellular carcinoma (HCC). We prospectively assessed the role of early dynamic (18)F-FDG PET/CT (ED (18)F-FDG PET/CT) and WB (18)F-FDG PET/CT in detecting HCC, and we quantified the added value of ED (18)F-FDG PET/CT to WB (18)F-FDG PET/CT. Twenty-two patients with 37 HCC tumors (HCCs) who underwent both a liver ED (18)F-FDG PET/CT (performed simultaneously with a 5.5 MBq/kg (18)F-FDG bolus injection and continued for 240 s) and a WB (18)F-FDG PET/CT were enrolled in the study. The WB (18)F-FDG PET/CT and ED (18)F-FDG PET/CT scans were positive in 56.7% (21/37) and 78.4% (29/37) HCCs, respectively (PPET/CT in conjunction with WB (18)F-FDG PET/CT (one-stop (18)F-FDG PET/CT) improved the positive detection rates of WB and ED (18)F-FDG PET/CT alone from 56.7% and 78.4% to 91.9% (34/37) (P0.05, respectively). One-stop (18)F-FDG PET/CT appears to be useful to improve WB (18)F-FDG PET/CT for HCC detection. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging.

    Science.gov (United States)

    Barrio, Jorge R; Small, Gary W; Wong, Koon-Pong; Huang, Sung-Cheng; Liu, Jie; Merrill, David A; Giza, Christopher C; Fitzsimmons, Robert P; Omalu, Bennet; Bailes, Julian; Kepe, Vladimir

    2015-04-21

    Chronic traumatic encephalopathy (CTE) is an acquired primary tauopathy with a variety of cognitive, behavioral, and motor symptoms linked to cumulative brain damage sustained from single, episodic, or repetitive traumatic brain injury (TBI). No definitive clinical diagnosis for this condition exists. In this work, we used [F-18]FDDNP PET to detect brain patterns of neuropathology distribution in retired professional American football players with suspected CTE (n = 14) and compared results with those of cognitively intact controls (n = 28) and patients with Alzheimer's dementia (AD) (n = 24), a disease that has been cognitively associated with CTE. [F-18]FDDNP PET imaging results in the retired players suggested the presence of neuropathological patterns consistent with models of concussion wherein brainstem white matter tracts undergo early axonal damage and cumulative axonal injuries along subcortical, limbic, and cortical brain circuitries supporting mood, emotions, and behavior. This deposition pattern is distinctively different from the progressive pattern of neuropathology [paired helical filament (PHF)-tau and amyloid-β] in AD, which typically begins in the medial temporal lobe progressing along the cortical default mode network, with no or minimal involvement of subcortical structures. This particular [F-18]FDDNP PET imaging pattern in cases of suspected CTE also is primarily consistent with PHF-tau distribution observed at autopsy in subjects with a history of mild TBI and autopsy-confirmed diagnosis of CTE.

  12. Extramedullary Solitary Plasmacytoma: Demonstrating the Role of 18F-FDG PET Imaging.

    Science.gov (United States)

    Gautam, Archana; Sahu, Kamal Kant; Alamgir, Ahsan; Siddiqi, Imran; Ailawadhi, Sikander

    2017-04-01

    An Extramedullary Plasmacytoma (EMP) is characterized by a neoplastic proliferation of clonal plasma cells outside the medullary cavity. EMPs are a rare occurrence compared to other malignant plasma cell disorders and account for approximately 3-5% of plasma-cell neoplasms. Although most cases of EMP are not immediately life threatening at diagnosis, EMPs can progress to Multiple Myeloma (MM) and thus, warrant monitoring. Currently, there are no standard guidelines for when and how to monitor patients who are diagnosed with or treated for a solitary plasmacytoma. We present a case of solitary EMP who was treated adequately and definitively but developed a distinct, non-contiguous subsequent solitary EMP and was only discovered due to surveillance 18 F-Fludeoxyglucose Positron Emission Tomography ( 18 F-FDG) (PET) scan. Uniform surveillance guidelines should be developed and the potential benefits of PET and other imaging techniques as well as their cost should be considered.

  13. Imaging of hypoxia in small animals with 18F fluoromisonidasole

    Directory of Open Access Journals (Sweden)

    Kilian Krzysztof

    2016-06-01

    Full Text Available A method of automated synthesis of [18F]fluoromisonidazole ([18F]FMISO for application in preclinical studies on small animals was presented. A remote-controlled synthesizer Synthra RNplus was used for nucleophilic substitution of NITTP (1′-(2′-nitro-1-imidazolyl-2-O-tetrahydropyranyl-3-O-toluenesulfonyl-propanediol with 18F anion. Labeling of 5 mg of precursor was performed in anhydrous acetonitrile at 100°C for 10 min, and the hydrolysis with HCl was performed at 100°C for 5 min. Final purification was done with high-performance liquid chromatography (HPLC and the radiochemical purity of radiotracer was higher than 99%. Proposed [18F]FMISO synthesis was used as a reliable tool in studies on hypoxia in Lewis lung carcinoma (LLC in mouse models.

  14. Clinical study of 18F-FDG PET/CT whole-body imaging in disseminated carcinoma of unknown primary site

    International Nuclear Information System (INIS)

    Wang Guohui; Liang Peiyan; Cai Yanjun; Zhang Weiguang; Xie Chuanmiao; Wu Peihong

    2008-01-01

    Objective: Carcinoma of unknown primary (CUP) is not uncommon in usual clinical settings. They are, by definition, those cases with clinically suspected primary malignancy but not revealed by conventional investigation. The aim of this study was to investigate the efficacy of whole-body 18 F-fluoro- deoxyglucose (FDG) PET/CT in detecting a primary neoplasm for these patients. Methods: A totle of 150 patients with retrievable records from 169 CUP patients were selected within a group of consecutive 2589 patients from Jan. 2006 to Jun. 2007. All cases underwent whole-body FDG PET/CT scan. The final diagnoses were confirmed by pathologic results, other imaging modalities or clinical follow-up. Results: Among 150 patients, primary tumor sites were successfully detected by whole-body 18 F-FDG PET/CT scan in 70 cases (46.7%), of which 52 were pathologically confirmed and 18 by clinical follow-up. And 38 cases (54.3%) were lung cancer, 8 (11.4%) were nasopharyngeal carcinoma, 13 (18.6%) in digestive sys- tem, and 11 (15.7%) in other systems. Three clinically suspected CUP cases with negative 18 F-FDG PET/ CT were subsequently confirmed of benign processes by clinical follow-up. Six patients were wrongly diagnosed by 18 F-FDG PET/CT, and 15 patients did not have a confirmed diagnosis by the end of research. The primary cause of malignancy after 18 F-FDG PET/CT remained obscure in 56 patients, only 3 of whom be- came known during the course of clinical follow-up (nasopharyngeal bladder and esophageal carcinoma). Conclusion: 18 F-FDG PET/CT whole-body imaging plays an important role in patients with metastatic CUP. (authors)

  15. Targeting personalized medicine in a non-Hodgkin lymphoma patient with {sup 18F}-FDG and {sup 18F}-choline PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Thalles H.; Filho, Raul S.; Castro, Ana Carolina G.; Paulino Junior, Eduardo; Mamede, Marcelo, E-mail: mamede.mm@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-02-15

    Early diagnosis and staging of non-Hodgkin lymphoma (NHL) is essential for therapeutic strategy decision. Positron emission tomography/computed tomography (PET/CT) with fluorodeoxyglucose (FDG), a glucose analogue, labeled with fluor-18 ({sup 18F}-FDG) has been used to evaluate staging, therapy response and prognosis in NHL patients. However, in some cases, {sup 18F}-FDG has shown false- -positive uptake due to inflammatory reaction after chemo and/or radiation therapy. In this case report, we present a NHL patient evaluated with {sup 18F}-FDG and {sup 18F}-choline PET/CT scan imaging pre- and post-therapy. {sup 18F}-FDG and {sup 18F}-choline PET/CT were performed for the purpose of tumor staging and have shown intense uptake in infiltrative tissue as well as in the lymph node, but with some mismatching in the tumor. Post-treatment {sup 18F}-FDG and {sup 18F}-choline PET/ CT scans revealed no signs of radiotracer uptake, suggesting complete remission of the tumor. {sup 18F}-choline may be a complimentary tool for staging and assessment of therapeutic response in non-Hodgkin lymphoma, while non-{sup 18F}-FDG tracer can be used for targeted therapy and patient management. (author)

  16. Quantifying [{sup 18}F]fluorodeoxyglucose uptake in the arterial wall: the effects of dual time-point imaging and partial volume effect correction

    Energy Technology Data Exchange (ETDEWEB)

    Blomberg, Bjoern A. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Odense University Hospital, Department of Nuclear Medicine, Odense (Denmark); Bashyam, Arjun; Ramachandran, Abhinay; Gholami, Saeid; Houshmand, Sina; Salavati, Ali; Werner, Tom; Alavi, Abass [Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States); Zaidi, Habib [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva (Switzerland); University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands)

    2015-08-15

    The human arterial wall is smaller than the spatial resolution of current positron emission tomographs. Therefore, partial volume effects should be considered when quantifying arterial wall {sup 18}F-FDG uptake. We evaluated the impact of a novel method for partial volume effect (PVE) correction with contrast-enhanced CT (CECT) assistance on quantification of arterial wall {sup 18}F-FDG uptake at different imaging time-points. Ten subjects were assessed by CECT imaging and dual time-point PET/CT imaging at approximately 60 and 180 min after {sup 18}F-FDG administration. For both time-points, uptake of {sup 18}F-FDG was determined in the aortic wall by calculating the blood pool-corrected maximum standardized uptake value (cSUV{sub MAX}) and cSUV{sub MEAN}. The PVE-corrected SUV{sub MEAN} (pvcSUV{sub MEAN}) was also calculated using {sup 18}F-FDG PET/CT and CECT images. Finally, corresponding target-to-background ratios (TBR) were calculated. At 60 min, pvcSUV{sub MEAN} was on average 3.1 times greater than cSUV{sub MAX} (P <.0001) and 8.5 times greater than cSUV{sub MEAN} (P <.0001). At 180 min, pvcSUV{sub MEAN} was on average 2.6 times greater than cSUV{sub MAX} (P <.0001) and 6.6 times greater than cSUV{sub MEAN} (P <.0001). This study demonstrated that CECT-assisted PVE correction significantly influences quantification of arterial wall {sup 18}F-FDG uptake. Therefore, partial volume effects should be considered when quantifying arterial wall {sup 18}F-FDG uptake with PET. (orig.)

  17. [18F]FDG and [18F]FLT positron emission tomography imaging following treatment with belinostat in human ovary cancer xenografts in mice

    DEFF Research Database (Denmark)

    Jensen, Mette Munk; Erichsen, Kamille Dumong; Johnbeck, Camilla Bardram

    2013-01-01

    Belinostat is a histone deacetylase inhibitor with anti-tumor effect in several pre-clinical tumor models and clinical trials. The aim of the study was to evaluate changes in cell proliferation and glucose uptake by use of 3'-deoxy-3'-[(18)F]fluorothymidine ([18F]FLT) and 2-deoxy-2-[(18)F]fluoro-......]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) following treatment with belinostat in ovarian cancer in vivo models....

  18. Diagnostic value of exercise induced 18F-FDG myocardial metabolism scintigraphy in myocardial ischemia

    International Nuclear Information System (INIS)

    Shen Rui; He Zuoxiang; Shi Rongfang; Liu Xiujie; Tian Yueqin; Guo Feng; Wei Hongxing; Wu Yongjian; Qin Xuewen; Gao Runlin

    2006-01-01

    Objective: To evaluate the feasibility and diagnostic accuracy of exercise induced myocardial imaging with 18 F-fluorodeoxyglucose (FDG) in myocardial ischemia. Methods: Twenty-six patients with known or suspected coronary artery, disease (CAD) and with no prior myocardial infarction underwent simultaneous myocardial perfusion and metabolism imaging following intravenous injection of 99 Tc m -methoxy-isobutylisonitrile ( 99 Tc m -sestamibi) and 18 F-FDG at peak exercise. Subsequently rest perfusion imaging and coronary angiography (CAG) were performed in all patients. Exercise 18 F-FDG myocardial imaging was compared with 99 Tc m -sestamibi imaging and CAG. Results: In 22 patients with ≥50% narrowing over l coronary artery, 18 had perfusion abnormalities (sensitivity 82%), whereas 20 had abnormal myocardial 18 F-FDG uptake (sensitivity 91%, P>0.05). Patients with reversible (12 cases) or partial reversible (3 cases) perfusion abnormalities had increased myocardial 18 F-FDG uptake in abnormal perfusion segments. Compared with CAG, perfusion defect was seen in myocardial segments corresponding to 25 vascular territories of 51 vessels with ≥50% narrowing in 22 patients in 99 Tc m -sestamibi imaging (sensitivity 49%), whereas increased 18 F-FDG uptake was seen in 34 vascular territories (sensitivity 67%, P=0.008). Conclusions: Exercise induced myocardial ischemia can be imaged directly with 18 F-FDG. Combined exercise 18 F-FDG and 99 Tc m -sestamibi imaging provides a better assessment of exercise-induced myocardial ischemia as compared with exercise-rest perfusion imaging. (authors)

  19. Synthesis of 2-deoxy-2-[18F]-fluoro-β-mannosyl [18F]-fluoride as a potential imaging probe for glycosidases

    International Nuclear Information System (INIS)

    McCarter, J.D.; Withers, S.G.; Adam, M.J.

    1992-01-01

    The mechanism-based glycosidase inhibitor 2-deoxy-2-[ 18 F]-fluoro-Β-mannosyl 2-[ 18 F]-fluoride was synthesized and its covalent binding to Agrobacterium Β-glucosidase was demonstrated in vitro. (Author)

  20. Clinical significance of MRI/18F-FDG PET fusion imaging of the spinal cord in patients with cervical compressive myelopathy

    International Nuclear Information System (INIS)

    Uchida, Kenzo; Nakajima, Hideaki; Watanabe, Shuji; Yoshida, Ai; Baba, Hisatoshi; Okazawa, Hidehiko; Kimura, Hirohiko; Kudo, Takashi

    2012-01-01

    18 F-FDG PET is used to investigate the metabolic activity of neural tissue. MRI is used to visualize morphological changes, but the relationship between intramedullary signal changes and clinical outcome remains controversial. The present study was designed to evaluate the use of 3-D MRI/ 18 F-FDG PET fusion imaging for defining intramedullary signal changes on MRI scans and local glucose metabolic rate measured on 18 F-FDG PET scans in relation to clinical outcome and prognosis. We studied 24 patients undergoing decompressive surgery for cervical compressive myelopathy. All patients underwent 3-D MRI and 18 F-FDG PET before surgery. Quantitative analysis of intramedullary signal changes on MRI scans included calculation of the signal intensity ratio (SIR) as the ratio between the increased lesional signal intensity and the signal intensity at the level of the C7/T1 disc. Using an Advantage workstation, the same slices of cervical 3-D MRI and 18 F-FDG PET images were fused. On the fused images, the maximal count of the lesion was adopted as the standardized uptake value (SUV max ). In a similar manner to SIR, the SUV ratio (SUVR) was also calculated. Neurological assessment was conducted using the Japanese Orthopedic Association (JOA) scoring system for cervical myelopathy. The SIR on T1-weighted (T1-W) images, but not SIR on T2-W images, was significantly correlated with preoperative JOA score and postoperative neurological improvement. Lesion SUV max was significantly correlated with SIR on T1-W images, but not with SIR on T2-W images, and also with postoperative neurological outcome. The SUVR correlated better than SIR on T1-W images and lesion SUV max with neurological improvement. Longer symptom duration was correlated negatively with SIR on T1-W images, positively with SIR on T2-W images, and negatively with SUV max . Our results suggest that low-intensity signal on T1-W images, but not on T2-W images, is correlated with a poor postoperative neurological

  1. Imaging for metabotropic glutamate receptor subtype 1 in rat and monkey brains using PET with [18F]FITM.

    Science.gov (United States)

    Yamasaki, Tomoteru; Fujinaga, Masayuki; Maeda, Jun; Kawamura, Kazunori; Yui, Joji; Hatori, Akiko; Yoshida, Yuichiro; Nagai, Yuji; Tokunaga, Masaki; Higuchi, Makoto; Suhara, Tetsuya; Fukumura, Toshimitsu; Zhang, Ming-Rong

    2012-04-01

    In this study, we evaluate the utility of 4-[(18)F]fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ([(18)F]FITM) as a positron emission tomography (PET) ligand for imaging of the metabotropic glutamate receptor subtype 1 (mGluR1) in rat and monkey brains. In vivo distribution of [(18)F]FITM in brains was evaluated by PET scans with or without the mGluR1-selective antagonist (JNJ16259685). Kinetic parameters of monkey PET data were obtained using the two-tissue compartment model with arterial blood sampling. In PET studies in rat and monkey brains, the highest uptake of radioactivity was in the cerebellum, followed by moderate uptake in the thalamus, hippocampus and striatum. The lowest uptake of radioactivity was detected in the pons. These uptakes in all brain regions were dramatically decreased by pre-administration of JNJ16259685. In kinetic analysis of monkey PET, the highest volume of distribution (V(T)) was detected in the cerebellum (V(T) = 11.5). [(18)F]FITM has an excellent profile as a PET ligand for mGluR1 imaging. PET with [(18)F]FITM may prove useful for determining the regional distribution and density of mGluR1 and the mGluR1 occupancy of drugs in human brains.

  2. Head to head comparison of [18F] AV-1451 and [18F] THK5351 for tau imaging in Alzheimer's disease and frontotemporal dementia

    International Nuclear Information System (INIS)

    Jang, Young Kyoung; Kim, Hee Jin; Jang, Hyemin; Lyoo, Chul Hyoung; Cho, Hanna; Park, Seongbeom; Oh, Seung Jun; Oh, Minyoung; Kim, Jae Seung; Ryu, Young Hoon; Choi, Jae Yong; Rabinovici, Gil D.; Moon, Seung Hwan; Lee, Jin San; Jagust, William J.; Na, Duk L.; Seo, Sang Won

    2018-01-01

    Tau accumulation is a core pathologic change in various neurodegenerative diseases including Alzheimer's disease and frontotemporal lobar degeneration-tau. Recently, tau positron emission tomography tracers such as [ 18 F] AV-1451 and [ 18 F] THK5351 have been developed to detect tau deposition in vivo. In the present study, we performed a head to head comparison of these two tracers in Alzheimer's disease and frontotemporal dementia cases and aimed to investigate which tracers are better suited to image tau in these disorders. A cross-sectional study was conducted using a hospital-based sample at a tertiary referral center. We recruited eight participants (two Alzheimer's disease, four frontotemporal dementia and two normal controls) who underwent magnetic resonance image, amyloid positron emission tomography with [ 18 F]-Florbetaben and tau positron emission tomography with both THK5351 and AV-1451. To measure regional AV1451 and THK5351 uptakes, we used the standardized uptake value ratios by dividing mean activity in target volume of interest by mean activity in the cerebellar hemispheric gray matter. Although THK5351 and AV-1451 uptakes were highly correlated, cortical uptake of AV-1451 was more striking in Alzheimer's disease, while cortical uptake of THK5351 was more prominent in frontotemporal dementia. THK5351 showed higher off-target binding than AV-1451 in the white matter, midbrain, thalamus, and basal ganglia. AV-1451 is more sensitive and specific to Alzheimer's disease type tau and shows lower off-target binding, while THK5351 may mirror non-specific neurodegeneration. (orig.)

  3. Evaluation of 18F-fluorothymidine positron emission tomography ([18F]FLT-PET/CT) methodology in assessing early response to chemotherapy in patients with gastro-oesophageal cancer.

    Science.gov (United States)

    Sharma, R; Mapelli, P; Hanna, G B; Goldin, R; Power, D; Al-Nahhas, A; Merchant, S; Ramaswami, R; Challapalli, A; Barwick, T; Aboagye, E O

    2016-12-01

    3'-Deoxy-3'-[ 18 F]fluorothymidine ([ 18 F]FLT) PET has limited utility in abdominal imaging due to high physiological hepatic uptake of a tracer. We evaluated [ 18 F]FLT-PET/CT combined with a temporal-intensity information-based voxel-clustering approach termed kinetic spatial filtering (KSF) to improve tumour visualisation in patients with locally advanced and metastatic gastro-oesophageal cancer and as a marker of early response to chemotherapy. Dynamic [ 18 F]FLT-PET/CT data were collected before and 3 weeks post first cycle of chemotherapy. Changes in tumour [ 18 F]FLT-PET/CT variables were determined. Response was determined on contrast-enhanced CT after three cycles of therapy using RECIST 1.1. Ten patients were included. Following application of the KSF, visual distinction of all oesophageal and/or gastric tumours was observed in [ 18 F]FLT-PET images. Among the nine patients available for response evaluation (RECIST 1.1), three patients had responded (partial response) and six patients were non-responders (stable disease). There was a significant association between Ki-67 and all baseline [ 18 F]FLT-PET parameters. Area under the curve (AUC) from 0 to 1 min was associated with treatment response. The results of this study indicate that application of the KSF allowed accurate visualisation of both primary and metastatic lesions following imaging with the proliferation marker, [ 18 F]FLT-PET/CT. However, [ 18 F]FLT-PET uptake parameters did not correlate with response. Instead, we observe significant changes in tracer delivery following chemotherapy suggesting that further [ 18 F]FLT-PET/CT studies in this tumour type should be undertaken with caution.

  4. Effect of the prosthetic group on the pharmacologic properties of 18F-labeled rhodamine B, a potential myocardial perfusion agent for positron emission tomography (PET).

    Science.gov (United States)

    Bartholomä, Mark D; Gottumukkala, Vijay; Zhang, Shaohui; Baker, Amanda; Dunning, Patricia; Fahey, Frederic H; Treves, S Ted; Packard, Alan B

    2012-12-27

    We recently reported the development of the 2-[(18)F]fluoroethyl ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging. This compound, which was prepared using a [(18)F]fluoroethyl prosthetic group, has significant uptake in the myocardium in rats but also demonstrates relatively high liver uptake and is rapidly hydrolyzed in vivo in mice. We have now prepared (18)F-labeled rhodamine B using three additional prosthetic groups (propyl, diethylene glycol, and triethylene glycol) and found that the prosthetic group has a significant effect on the in vitro and in vivo properties of these compounds. Of the esters prepared to date, the diethylene glycol ester is superior in terms of in vitro stability and pharmacokinetics. These observations suggest that the prosthetic group plays a significant role in determining the pharmacological properties of (18)F-labeled compounds. They also support the value of continued investigation of (18)F-labeled rhodamines as PET radiopharmaceuticals for myocardial perfusion imaging.

  5. TH-302 in Combination with Radiotherapy Enhances the Therapeutic Outcome and Is Associated with Pretreatment [18F]HX4 Hypoxia PET Imaging.

    Science.gov (United States)

    Peeters, Sarah G J A; Zegers, Catharina M L; Biemans, Rianne; Lieuwes, Natasja G; van Stiphout, Ruud G P M; Yaromina, Ala; Sun, Jessica D; Hart, Charles P; Windhorst, Albert D; van Elmpt, Wouter; Dubois, Ludwig J; Lambin, Philippe

    2015-07-01

    Conventional anticancer treatments are often impaired by the presence of hypoxia. TH-302 selectively targets hypoxic tumor regions, where it is converted into a cytotoxic agent. This study assessed the efficacy of the combination treatment of TH-302 and radiotherapy in two preclinical tumor models. The effect of oxygen modification on the combination treatment was evaluated and the effect of TH-302 on the hypoxic fraction (HF) was monitored using [(18)F]HX4-PET imaging and pimonidazole IHC stainings. Rhabdomyosarcoma R1 and H460 NSCLC tumor-bearing animals were treated with TH-302 and radiotherapy (8 Gy, single dose). The tumor oxygenation status was altered by exposing animals to carbogen (95% oxygen) and nicotinamide, 21% or 7% oxygen breathing during the course of the treatment. Tumor growth and treatment toxicity were monitored until the tumor reached four times its start volume (T4×SV). Both tumor models showed a growth delay after TH-302 treatment, which further increased when combined with radiotherapy (enhancement ratio rhabdomyosarcoma 1.23; H460 1.49). TH-302 decreases the HF in both models, consistent with its hypoxia-targeting mechanism of action. Treatment efficacy was dependent on tumor oxygenation; increasing the tumor oxygen status abolished the effect of TH-302, whereas enhancing the HF enlarged TH-302's therapeutic effect. An association was observed in rhabdomyosarcoma tumors between the pretreatment HF as measured by [(18)F]HX4-PET imaging and the T4×SV. The combination of TH-302 and radiotherapy is promising and warrants clinical testing, preferably guided by the companion biomarker [(18)F]HX4 hypoxia PET imaging for patient selection. ©2015 American Association for Cancer Research.

  6. Computer-aided diagnosis of interictal 18F-FDG PET images for presurgical evaluation of epileptic foci in extratemporal lobe epilepsy

    International Nuclear Information System (INIS)

    Imabayashi, Etsuko

    2003-01-01

    Interictal 18 F-FDG PET is beneficial to patients with epilepsy to define the epileptic foci before operation, especially to decide the laterality of temporal lobe epilepsy (TLE). However usefulness has not been clearly established in extra TLE. We retrospectively applied Z-score analysis to interictal preoperative 18 F-FDG PET images for detection of the epileptic foci in order to achieve better performance. Seventeen epileptic patients (women/men; 8/9, age; 11-55 yrs) underwent resection of epileptic foci with good outcome (Engel's stage of I or II) even after more than a year from operation. Presurgical 18 F-FDG PET images were spatially normalized using statistical parametric mapping 99 (SPM99) with an original Japanese template for 18 F-FDG and compared with normal database constructed from 31 healthy volunteers (women/men; 14/17, age; 19-59 yrs). A software program, easy Z-score imaging system (eZIS), for analysis of patient data was developed by calculating Z-score in each voxel and visualizing the score in a standardized stereotactic space; Z-score=(normal mean-patient's value)/a standard deviation of normal data. Detectability of epileptic foci for this computer-aided analysis was compared with visual inspection of original 18 F-FDG PET images by five radiologists without any clinical information. In all cases, there was significant reduction of glucose metabolism in the operated area. The sensitivities of the detection of epileptic foci obtained from visual inspection were 47-59%. In contrast to, computer analysis by eZIS showed 71% sensitivity when we defined the highest Z-score in the cerebrum to be the focus diagnosed by eZIS. Computer-aided diagnosis with eZIS for 18 F-FDG PET study is useful for detecting epileptic foci in extra TLE. (author)

  7. Experimental study of the molecular mechanisms of myocardial ischemic memory with 18F-FDG PET/CT imaging

    International Nuclear Information System (INIS)

    Xie Boqia; Yang Minfu; Ye Jue; Yang Zihe; Dou Kefei; Tian Yi; Han Chunlei

    2012-01-01

    This study was aimed to explore whether the changes of mRNA and the existence and duration of ischemic 18 F-FDG uptake correlate with the extent of myocardial ischemia in ischemia-reperfusion canine model. The 20-minute (n= 4) and 40-minute (n=4) coronary artery occlusion followed by 24 h of open-artery reperfusion in canine model were per- formed. All dogs underwent fasting (>12 h) dynamic 18 F-FDG PET/CT and 99 Tc m -MIBI SPECT imaging at baseline, 1 h and 24 h after reperfusion. When all imaging were completed, myocardial samples from the ischemic and nonischemic region were obtained, and the mRNA expression of glucose transporter-l (GLUT-1), glucose transporter-4 (GLUT-4), and heart-fatty acid binding protein (H-FABP) were estimated by Real Time PCR. There was no difference in the ratio of hypoperfused region/nomoperfused region of 18 F-FDG up- take between the 20-minute group and 40-minute group at baseline. When examined at 1 h, increased 18 F-FDG uptake was observed in the 40-minute group. When estimated at 24 h, only the 40-minute group showed slightly higher 18 F-FDG uptake than baseline, whereas no such difference was demonstrated in the 20-minute group. Similar mRNA expression of GLUT-1, GLUT-4 and H-FABP were demonstrated in the nonischemic regions between the 2 groups, whereas increased expressions of GLUT-1 and GLUT-4, and decreased H-FABP mRNA were demonstrated in the ischemic regions. The changes of mRNA expression were more obvious in the 40 minute group than in the 20-minute group. The results showed that the existence and persistent period of ischemic 18 F-FDG uptake (ischemic memory) was correlated with the extent of myocardial ischemia. (authors)

  8. Clinical value of {sup 18}F-fluorodihydroxyphenylalanine positron emission tomography/computed tomography ({sup 18}F-DOPA PET/CT) for detecting pheochromocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Luster, Markus; Zeich, Katrin; Glatting, Gerhard; Buck, Andreas K.; Solbach, Christoph; Reske, Sven N. [University of Ulm, Department of Nuclear Medicine, Ulm (Germany); Karges, Wolfram [RWTH Aachen, Division of Endocrinology and Diabetes, Aachen (Germany); Pauls, Sandra [University of Ulm, Department of Radiology, Ulm (Germany); Verburg, Frederik A. [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Dralle, Henning [University Halle-Wittenberg, Department of General, Visceral and Vascular Surgery, Halle (Germany); Neumaier, Bernd [University of Ulm, Department of Nuclear Medicine, Ulm (Germany); Max-Planck-Institut fuer Neurologische Forschung, Section for Radiochemistry, Cologne (Germany); Mottaghy, Felix M. [University of Ulm, Department of Nuclear Medicine, Ulm (Germany); RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany)

    2010-03-15

    In detecting pheochromocytoma (PHEO), positron emission tomography (PET) with the radiolabelled amine precursor {sup 18}F-fluorodihydroxyphenylalanine ({sup 18}F-DOPA) offers excellent specificity, while computed tomography (CT) provides high sensitivity and ability to localize lesions; therefore, the combination of these modalities could be advantageous in this setting. The aim of this study was to investigate whether combined {sup 18}F-DOPA PET/CT more accurately detects and localizes PHEO lesions than does each modality alone. {sup 18}F-DOPA PET, CT and {sup 18}F-DOPA PET/CT images of 25 consecutive patients undergoing diagnostic scanning of suspected sporadic or multiple endocrine neoplasia type 2 syndrome-associated PHEO were reviewed retrospectively in randomized sequence. Two blinded observers scored the images regarding the likelihood of PHEO being present and localizable. Results were correlated with subsequent clinical history and, when available, histology. Of the 19 lesions detected by all three modalities, PET identified each as positive for PHEO, but was unable to definitively localize 15 of 19 (79%). CT could definitively localize all 19 lesions, but could not definitively diagnose or exclude PHEO in 18 of 19 (95%) lesions. Furthermore, CT falsely identified as negative for PHEO one lesion which was judged to be positive for this tumor by both PET and PET/CT. Only in PET/CT scans were all 19 lesions accurately characterized and localized. On a per-patient basis, the sensitivity of {sup 18}F-DOPA PET/CT for PHEO was 100% and the specificity 88%, with a 100% positive predictive value and an 88% negative predictive value. {sup 18}F-DOPA PET/CT more accurately diagnoses and localizes adrenal and extra-adrenal masses suspicious for PHEO than do {sup 18}F-DOPA PET or CT alone. (orig.)

  9. Contrast Agent in Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Vu-Quang, Hieu

    2015-01-01

    Nanoparticles have been employed as contrast agent in magnetic resonance imaging (MRI) in order to improve sensitivity and accuracy in diagnosis. In addition, these contrast agents are potentially combined with other therapeutic compounds or near infrared bio-imaging (NIR) fluorophores to obtain...... theranostic or dual imaging purposes, respectively. There were two main types of MRI contrast agent that were synthesized during this PhD project including fluorine containing nanoparticles and magnetic nanoparticles. In regard of fluorine containing nanoparticles, there were two types contrast agent...... cancer cells for cancer diagnosis in MRI. F127-Folate coated SPION were stable in various types of suspension medium for over six months. They could specifically target folate receptor of cancer cells in vitro and in vivo thus enhancing the contrast in MRI T2/T2* weighted images. These are preliminary...

  10. Synthesis of 6-[18F]fluoro-PBR28, a novel radiotracer for imaging the TSPO 18 kDa with PET

    International Nuclear Information System (INIS)

    Damont, A.; Boisgard, R.; Kuhnast, B.; Lemee, F.; Raggiri, G.; Tavitian, B.; Dolle, F.; Boisgard, R.; Tavitian, B.; Scarf, A.M.; Scarf, A.M.; Kassiou, M.; Da Pozzo, E.; Martini, C.; Selleri, S.; Kassiou, M.; Tavitian, B.; Kassiou, M.

    2011-01-01

    6-Fluoro-PBR28 (N-(6-fluoro-4-phenoxypyridin-3-yl)-N-(2-methoxybenzyl)acetamide), a fluorinated analogue of the recently developed TSPO 18 kDa ligand PBR28, was synthesized and labelled with fluorine- 18. 6-Fluoro-PBR28 and its 6-chloro/6-bromo counterparts were synthesized in six chemical steps and obtained in 16%, 10% and 19% overall yields, respectively. Labelling with fluorine-18 was performed in one single step (chlorine/bromine-for-fluorine heteroaromatic substitution) using a Zymate-XP robotic system affording HPLC-purified, ready-to-inject, 6-[ 18 F]fluoro-PBR28 (≥95% radiochemically pure). Non decay-corrected overall yields were 9-10% and specific radioactivities ranged from 74 to 148 GBq/μmol. In vitro binding experiments, dynamic μPET studies performed in a rat model of acute neuro-inflammation (unilaterally, AMPA-induced, striatum-lesioned rats) and ex vivo autoradiography on the same model demonstrated the potential of 6-[ 18 F]fluoro-PBR28 to image the TSPO 18 kDa using PET. (authors)

  11. Evaluation of 6-([{sup 18}F]fluoroacetamido)-1-hexanoicanilide for PET imaging of histone deacetylase in the baboon brain

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Alicia E. [National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892 (United States); Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)], E-mail: areid@bnl.gov; Hooker, Jacob; Shumay, Elena; Logan, Jean; Shea, Colleen; Kim, Sung Won [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Collins, Shanika [School of Science, Health and Technology Medgar Evers College, Brooklyn, NY 11225 (United States); Xu Youwen [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Volkow, Nora [National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892 (United States); National Institute on Drug Abuse, Bethesda, MD 20892 (United States); Fowler, Joanna S. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2009-04-15

    Introduction: Histone deacetylases (HDACs) are enzymes involved in epigenetic modifications that shift the balance toward chromatin condensation and silencing of gene expression. Here, we evaluate the utility of 6-([{sup 18}F]fluoroacetamido)-1-hexanoicanilide ([{sup 18}F]FAHA) for positron emission tomography imaging of HDAC activity in the baboon brain. For this purpose, we assessed its in vivo biodistribution, sensitivity to HDAC inhibition, metabolic stability and the distribution of the putative metabolite [{sup 18}F]fluoroacetate ([{sup 18}F]FAC). Methods: [{sup 18}F]FAHA and its metabolite [{sup 18}F]FAC were prepared, and their in vivo biodistribution and pharmacokinetics were determined in baboons. [{sup 18}F]FAHA metabolism and its sensitivity to HDAC inhibition using suberanilohydroxamic acid (SAHA) were assessed in arterial plasma and by in vitro incubation studies. The chemical form of F-18 in rodent brain was assessed by ex vivo studies. Distribution volumes for [{sup 18}F]FAHA in the brain were derived. Results: [{sup 18}F]FAHA was rapidly metabolized to [{sup 18}F]FAC, and both labeled compounds entered the brain. [{sup 18}F]FAHA exhibited regional differences in brain uptake and kinetics. In contrast, [{sup 18}F]FAC showed little variation in regional brain uptake and kinetics. A kinetic analysis that takes into account the uptake of peripherally produced [{sup 18}F]FAC indicated that SAHA inhibited binding of [{sup 18}F]FAHA in the baboon brain dose-dependently. In vitro studies demonstrated SAHA-sensitive metabolism of [{sup 18}F]FAHA to [{sup 18}F]FAC within the cell and diffusion of [{sup 18}F]FAC out of the cell. All radioactivity in brain homogenate from rodents was [{sup 18}F]FAC at 7 min postinjection of [{sup 18}F]FAHA. Conclusion: The rapid metabolism of [{sup 18}F]FAHA to [{sup 18}F]FAC in the periphery complicates the quantitative analysis of HDAC in the brain. However, dose-dependent blocking studies with SAHA and kinetic modeling

  12. Radiation dosimetry estimates of "1"8F-alfatide II based on whole-body PET imaging of mice

    International Nuclear Information System (INIS)

    Wang, Si-yang; Bao, Xiao; Wang, Ming-wei; Zhang, Yong-ping; Zhang, Ying-jian; Zhang, Jian-ping

    2015-01-01

    We estimated the dosimetry of "1"8F-alfatide II with the method established by MIRD based on biodistribution data of mice. Six mice (three females and three males) were scanned for 160 min on an Inveon MicroPET/CT scanner after injection of "1"8F-alfatide II via tail vein. Eight source organs were delineated on the CT images and their residence times calculated. The data was then converted to human using scaling factors based on organ and body weight. The absorbed doses for human and the resulting effective dose were computed by OLINDA 1.1 software. The highest absorbed doses was observed in urinary bladder wall (male 0.102 mGy/MBq, female 0.147 mGy/MBq); and the lowest one was detected in brain (male 0.0030 mGy/MBq, female 0.0036). The total effective doses were 0.0127 mSv/MBq for male and 0.0166 mSv/MBq for female, respectively. A 370-MBq injection of "1"8F-alfatide II led to an estimated effective dose of 4.70 mSv for male and 6.14 mSv for female. The potential radiation burden associated with "1"8F-alfatide II/PET imaging therefore is comparable to other PET examinations. - Highlights: • We demonstrated a proper mice model to estimate human radiation dosimetry. • This is the first paper to estimate human radiation dosimetry of "1"8F-alfatide II. • Estimated effective dose are in the range of routine nuclear medicine studies.

  13. F-18-FDG-hybrid-camera-PET in patients with postoperative fever

    International Nuclear Information System (INIS)

    Meller, J.; Lehmann, K.; Siefker, U.; Meyer, I.; Altenvoerde, G.; Becker, W.; Sahlmann, C.O.; Schreiber, K.

    2002-01-01

    Aim: Evaluation of F-18-FDG-hybrid-camera-PET imaging in patients with undetermined postoperative fever (POF). Methods: Prospective study of 18 patients (9 women, 9 men; age 23-85 years) suffering from POF with 2-fluoro-2'-deoxyglucose (F-18-FDG) using a dual headed coincidence camera (DHCC). Surgery had been performed 5-94 days prior to our investigation. 13 of the 18 patients received antibiotic therapy during the time of evaluation. Ten (55%) had an infectious and eight (45%) a norr infectious cause of fever. Results: Increased F-18-FDG-uptake outside the surgical wound occurred in 13 regions (infection n = 11, malignancy n = 2). The sensitivity of F-18-FDG-hybrid-camera-PET in imaging infection in areas outside the surgical wound was 86% and the specificity 100%, respectively. Antibiotic therapy did not negatively influence the results of F-18-FDG-scanning. Increased F-18-FDG-uptake within the surgical wound was seen in 8 of 18 patients. The sensitivity of F-18-FDG-hybrid-camera-PET in imaging infection within the surgical wound was 100% and the specificty 56%, respectively. The interval between surgery and F-18-FDG-scanning was significantly shorter in patients with false positive results compared with patients showing true negative results (median 34 vs. 54 days; p = 0,038). Conclusion: In POF-Patients, F-18-FDG transaxial tomography performed with a F-18-FDG-hybrid-camera-PET is sensitive in the diagnosis of inflammation and malignant disease within and outside the surgical wound. Because of the accumulation of the tracer both in granulation tissue and infection, the specificity in detecting the focus of fever within the surgical wound is poor. (orig.) [de

  14. Optimized and Automated Radiosynthesis of [18F]DHMT for Translational Imaging of Reactive Oxygen Species with Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    Wenjie Zhang

    2016-12-01

    Full Text Available Reactive oxygen species (ROS play important roles in cell signaling and homeostasis. However, an abnormally high level of ROS is toxic, and is implicated in a number of diseases. Positron emission tomography (PET imaging of ROS can assist in the detection of these diseases. For the purpose of clinical translation of [18F]6-(4-((1-(2-fluoroethyl-1H-1,2,3-triazol-4-ylmethoxyphenyl-5-methyl-5,6-dihydrophenanthridine-3,8-diamine ([18F]DHMT, a promising ROS PET radiotracer, we first manually optimized the large-scale radiosynthesis conditions and then implemented them in an automated synthesis module. Our manual synthesis procedure afforded [18F]DHMT in 120 min with overall radiochemical yield (RCY of 31.6% ± 9.3% (n = 2, decay-uncorrected and specific activity of 426 ± 272 GBq/µmol (n = 2. Fully automated radiosynthesis of [18F]DHMT was achieved within 77 min with overall isolated RCY of 6.9% ± 2.8% (n = 7, decay-uncorrected and specific activity of 155 ± 153 GBq/µmol (n = 7 at the end of synthesis. This study is the first demonstration of producing 2-[18F]fluoroethyl azide by an automated module, which can be used for a variety of PET tracers through click chemistry. It is also the first time that [18F]DHMT was successfully tested for PET imaging in a healthy beagle dog.

  15. Mapping of functional activity in brain with 18F-fluoro-deoxyglucose

    International Nuclear Information System (INIS)

    Alavi, A.; Reivich, M.; Greenberg, J.; Wolf, A.

    1981-01-01

    A model has been designed based on the assumptions of a steady state for glucose consumption, a first-order equilibration of the free 14 C-DG pool in the tissue with the plasma level, and relative rates of phosphorylation of 14 C-DG and glucose determined by their kinetic constants for hexokinase reaction. Using an operational equation based on this model, the metabolic rates of glucose are calculated in various regions of brain (utilizing brain slices and autoradiography). 14 C is a beta emitter and therefore not suitable for noninvasive imaging in man. With the synthesis of 18 F-2-deoxy-2-fluoro-D-glucose ( 18 F-DG) all of the requirements for a suitable radiopharmaceutical for the determination of local cerebral metabolism have been met. This agent behaves very similarly to 14 C-DG and therefore, using the above described model and emission tomography, it has become possible to measure regional cerebral metabolism for the first time in man

  16. Cholinergic PET imaging in infections and inflammation using 11C-donepezil and 18F-FEOBV

    DEFF Research Database (Denmark)

    Jørgensen, Nis Pedersen; Alstrup, Aage Kristian Olsen; Mortensen, Frank Viborg

    2017-01-01

    with Staphylococcus aureus, and PET scanned at 24, 72, 120, and 144 h post-inoculation. Four pigs with post-operative abscesses were also imaged. Finally, we present initial data from human patients with infections, inflammation, and renal and lung cancer. Results In mice, the FDG uptake in abscesses peaked at 24 h...... and remained stable. The 11C-donepezil and 18F-FEOBV uptake displayed progressive increase, and at 120–144 h was nearly at the FDG level. Moderate 11C-donepezil and slightly lower 18F-FEOBV uptake were seen in pig abscesses. PCR analyses suggested that the 11C-donepezil signal in inflammatory cells is derived...... from both acetylcholinesterase and sigma-1 receptors. In humans, very high 11C-donepezil uptake was seen in a lobar pneumonia and in peri-tumoral inflammation surrounding a non-small cell lung carcinoma, markedly superseding the 18F-FDG uptake in the inflammation. In a renal clear cell carcinoma no 11C...

  17. The use of 18F-fluoride and 18F-FDG PET scans to assess fracture healing in a rat femur model

    International Nuclear Information System (INIS)

    Hsu, W.K.; Feeley, B.T.; Krenek, L.; Stout, D.B.; Chatziioannou, A.F.; Lieberman, J.R.

    2007-01-01

    Currently available diagnostic techniques can be unreliable in the diagnosis of delayed fracture healing in certain clinical situations, which can lead to increased complication rates and costs to the health care system. This study sought to determine the utility of positron emission tomography (PET) scanning with 18 F-fluoride ion, which localizes in regions of high osteoblastic activity, and 18 F-fluorodeoxyglucose (FDG), an indicator of cellular glucose metabolism, in assessing bone healing in a rat femur fracture model. Fractures were created in the femurs of immunocompetent rats. Animals in group I had a fracture produced via a manual three-point bending technique. Group II animals underwent a femoral osteotomy with placement of a 2-mm silastic spacer at the fracture site. Fracture healing was assessed with plain radiographs, 18 F-fluoride, and 18 F-FDG PET scans at 1, 2, 3, and 4-week time points after surgery. Femoral specimens were harvested for histologic analysis and manual testing of torsional and bending strength 4 weeks after surgery. All fractures in group I revealed abundant callus formation and bone healing, while none of the nonunion femurs were healed via assessment with manual palpation, radiographic, and histologic evaluation at the 4-week time point. 18 F-fluoride PET images of group I femurs at successive 1-week intervals revealed progressively increased signal uptake at the union site during fracture repair. In contrast, minimal tracer uptake was seen at the fracture sites in group II at all time points after surgery. Data analysis revealed statistically significant differences in mean signal intensity between groups I and II at each weekly interval. No significant differences between the two groups were seen using 18 F-FDG PET imaging at any time point. This study suggests that 18 F-fluoride PET imaging, which is an indicator of osteoblastic activity in vivo, can identify fracture nonunions at an early time point and may have a role in the

  18. The use of 18F-fluoride and 18F-FDG PET scans to assess fracture healing in a rat femur model

    Science.gov (United States)

    Hsu, W. K.; Feeley, B. T.; Krenek, L.; Stout, D. B.; Chatziioannou, A. F.; Lieberman, J. R.

    2011-01-01

    Purpose Currently available diagnostic techniques can be unreliable in the diagnosis of delayed fracture healing in certain clinical situations, which can lead to increased complication rates and costs to the health care system. This study sought to determine the utility of positron emission tomography (PET) scanning with 18F-fluoride ion, which localizes in regions of high osteoblastic activity, and 18F-fluorodeoxyglucose (FDG), an indicator of cellular glucose metabolism, in assessing bone healing in a rat femur fracture model. Methods Fractures were created in the femurs of immuno-competent rats. Animals in group I had a fracture produced via a manual three-point bending technique. Group II animals underwent a femoral osteotomy with placement of a 2-mm silastic spacer at the fracture site. Fracture healing was assessed with plain radiographs, 18F-fluoride, and 18F-FDG PET scans at 1, 2, 3, and 4-week time points after surgery. Femoral specimens were harvested for histologic analysis and manual testing of torsional and bending strength 4 weeks after surgery. Results All fractures in group I revealed abundant callus formation and bone healing, while none of the nonunion femurs were healed via assessment with manual palpation, radiographic, and histologic evaluation at the 4-week time point. 18F-fluoride PET images of group I femurs at successive 1-week intervals revealed progressively increased signal uptake at the union site during fracture repair. In contrast, minimal tracer uptake was seen at the fracture sites in group II at all time points after surgery. Data analysis revealed statistically significant differences in mean signal intensity between groups I and II at each weekly interval. No significant differences between the two groups were seen using 18F-FDG PET imaging at any time point. Conclusion This study suggests that 18F-fluoride PET imaging, which is an indicator of osteoblastic activity in vivo, can identify fracture nonunions at an early time point

  19. Synthesis and evaluation of 4-[F-18]fluoro thalidomide for the in vivo studies of angiogenesis

    International Nuclear Information System (INIS)

    Kim, D. H.; Choi, Y. S.; Jeong, K. H.; Lee, K. H.; Choi, Y.; Kim, B. T.

    2005-01-01

    Thalidomide has been recently rediscovered for its possible utility as an antitumor agent, although it was marketed as a sedative in the 1950s and later found to be a potent teratogen. In this study, therefore, F-18 labeled thalidomide was synthesized and evaluated for the in vivo studies of angiogenesis. 4-[F-18]Fluoro thalidomide ([F-18]1) was prepared by labeling of 4-trimethylammonium thalidomide triflate with TBA[F-18]F in DMSO (90 .deg. C, 10 min) and purified by HPLC. The triflate salt was prepared from 3-fluoro phthalic anhydride in 3 steps. [F-18]1 was incubated with HUVEC cells at 37 .deg. C for 15, 30, 60, and 120 min, respectively. Dynamic PET images of [F-18]1 was obtained in mice implanted with LLC cells. In vitro metabolism study of [F-18]1 was carried out using mouse, rabbit, or human liver microsomes in the presence of NADPH, and the metabolites obtained from the mouse liver microsomal incubation of 1 were analyzed using LC-MS. Radiochemical yield of [F-18]1 was 50-60%, and the specific activity was 42-120 GBq/imol. The HUVEC cell uptake of [F-18]1 increased with time (100% at 15 min and 241% at 120 min). PET images showed that the radioactivity was accumulated in the liver, the kidneys and the bladder of the mice, and brain uptake was shown from 40 min postinjection. However, there was low level of radioactivity uptake in tumor. [F-18]1 was not metabolized by mouse, rabbit, or human liver microsomes but was hydrolyzed significantly at physiological pH. The hydrolyzed product was further analyzed by LC-MS, showing a mass peak corresponding to that of 4-fluoro-N-(o-carboxybenzoyl)glutamic acid imide. This result suggests that [F-18]1 is easily hydrolyzed at physiological pH and thus may not be suitable for the in vivo studies of tumor angiogenesis at least in rodents, although it was reported that the hydrolysis product of thalidomide may be responsible for its angiogenesis activity in humans

  20. Radiation dosimetry of [(18)F]VAT in nonhuman primates.

    Science.gov (United States)

    Karimi, Morvarid; Tu, Zhude; Yue, Xuyi; Zhang, Xiang; Jin, Hongjun; Perlmutter, Joel S; Laforest, Richard

    2015-12-01

    The objective of this study is to determine the radiation dosimetry of a novel radiotracer for vesicular acetylcholine transporter (-)-(1-((2R,3R)-8-(2-[(18)F]fluoro-ethoxy)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)piperidin-4-yl)(4-fluorophenyl)-methanone ([(18)F]VAT) based on PET imaging in nonhuman primates. [(18)F]VAT has potential for investigation of neurological disorders including Alzheimer's disease, Parkinson's disease, and dystonia. Three macaque fascicularis (two males, one female) received 185.4-198.3 MBq [(18)F]VAT prior to whole-body imaging in a MicroPET-F220 scanner. Time activity curves (TACs) were created from regions of interest (ROIs) that encompassed the entire small organs or samples with the highest activity within large organs. Organ residence times were calculated based on the TACs. We then used OLINDA/EXM 1.1 to calculate human radiation dose estimates based on scaled organ residence times. Measurements from directly sampled arterial blood yielded a residence time of 0.30 h in agreement with the residence time of 0.39 h calculated from a PET-generated time activity curve measured in the left ventricle. Organ dosimetry revealed the liver as the critical organ (51.1 and 65.4 μGy/MBq) and an effective dose of 16 and 19 μSv/MBq for male and female, respectively. The macaque biodistribution data showed high retention of [(18)F]VAT in the liver consistent with hepatobiliary clearance. These dosimetry data support that relatively safe doses of [(18)F]VAT can be administered to obtain imaging in humans.

  1. Physiological 18F-FDG uptake in the ovaries and uterus of healthy female volunteers

    International Nuclear Information System (INIS)

    Nishizawa, Sadahiko; Inubushi, Masayuki; Okada, Hiroyuki

    2005-01-01

    Good knowledge of physiological 18 F-fluorodeoxglucose ( 18 F-FDG) uptake in the healthy population is of great importance for the correct interpretation of 18 F-FDG positron emission tomography (PET) images of pathological processes. The purpose of this study was to investigate the physiological 18 F-FDG uptake in the ovaries and uterus of healthy female volunteers. One hundred and 33 healthy females, 78 of whom were premenopausal (age 37.2±6.9 years) and 55 postmenopausal (age 55.0±2.7 years), were examined using whole-body 18 F-FDG PET and pelvic magnetic resonance (MR) imaging. Focal 18 F-FDG uptake in the ovaries and uterus was evaluated visually and using standardised uptake value (SUVs). Anatomical and morphological information was obtained from MR images. Distinct ovarian 18 F-FDG uptake with an SUV of 3.9±0.7 was observed in 26 premenopausal women out of 32 examined during the late follicular to early luteal phase of the menstrual cycle. Eighteen of the 32 women also showed focal 18 F-FDG uptake in the endometrium, with an SUV of 3.3±0.3. On the other hand, all nine women in the first 3 days of the menstrual cycle demonstrated intense 18 F-FDG uptake in the endometrium, with an SUV of 4.6±1.0. No physiological 18 F-FDG uptake was observed in the ovaries or uterus of any postmenopausal women. In women of reproductive age, 18 F-FDG imaging should preferably be done within a week before or a few days after the menstrual flow phase to avoid any misinterpretation of pelvic 18 F-FDG PET images. (orig.)

  2. Cellular Origin of [18F]FDG-PET Imaging Signals During Ceftriaxone-Stimulated Glutamate Uptake: Astrocytes and Neurons.

    Science.gov (United States)

    Dienel, Gerald A; Behar, Kevin L; Rothman, Douglas L

    2017-12-01

    Ceftriaxone stimulates astrocytic uptake of the excitatory neurotransmitter glutamate, and it is used to treat glutamatergic excitotoxicity that becomes manifest during many brain diseases. Ceftriaxone-stimulated glutamate transport was reported to drive signals underlying [ 18 F]fluorodeoxyglucose-positron emission tomographic ([ 18 F]FDG-PET) metabolic images of brain glucose utilization and interpreted as supportive of the notion of lactate shuttling from astrocytes to neurons. This study draws attention to critical roles of astrocytes in the energetics and imaging of brain activity, but the results are provocative because (1) the method does not have cellular resolution or provide information about downstream pathways of glucose metabolism, (2) neuronal and astrocytic [ 18 F]FDG uptake were not separately measured, and (3) strong evidence against lactate shuttling was not discussed. Evaluation of potential metabolic responses to ceftriaxone suggests lack of astrocytic specificity and significant contributions by pre- and postsynaptic neuronal compartments. Indeed, astrocytic glycolysis may not make a strong contribution to the [ 18 F]FDG-PET signal because partial or complete oxidation of one glutamate molecule on its uptake generates enough ATP to fuel uptake of 3 to 10 more glutamate molecules, diminishing reliance on glycolysis. The influence of ceftriaxone on energetics of glutamate-glutamine cycling must be determined in astrocytes and neurons to elucidate its roles in excitotoxicity treatment.

  3. Correlation of Perfusion MRI and 18F-FDG PET Imaging Biomarkers for Monitoring Regorafenib Therapy in Experimental Colon Carcinomas with Immunohistochemical Validation

    Science.gov (United States)

    Eschbach, Ralf S.; Fendler, Wolfgang P.; Kazmierczak, Philipp M.; Hacker, Marcus; Rominger, Axel; Carlsen, Janette; Hirner-Eppeneder, Heidrun; Schuster, Jessica; Moser, Matthias; Havla, Lukas; Schneider, Moritz J.; Ingrisch, Michael; Spaeth, Lukas; Reiser, Maximilian F.; Nikolaou, Konstantin; Cyran, Clemens C.

    2015-01-01

    Objectives To investigate a multimodal, multiparametric perfusion MRI / 18F-fluoro-deoxyglucose-(18F-FDG)-PET imaging protocol for monitoring regorafenib therapy effects on experimental colorectal adenocarcinomas in rats with immunohistochemical validation. Materials and Methods Human colorectal adenocarcinoma xenografts (HT-29) were implanted subcutaneously in n = 17 (n = 10 therapy group; n = 7 control group) female athymic nude rats (Hsd:RH-Foxn1rnu). Animals were imaged at baseline and after a one-week daily treatment protocol with regorafenib (10 mg/kg bodyweight) using a multimodal, multiparametric perfusion MRI/18F-FDG-PET imaging protocol. In perfusion MRI, quantitative parameters of plasma flow (PF, mL/100 mL/min), plasma volume (PV, %) and endothelial permeability-surface area product (PS, mL/100 mL/min) were calculated. In 18F-FDG-PET, tumor-to-background-ratio (TTB) was calculated. Perfusion MRI parameters were correlated with TTB and immunohistochemical assessments of tumor microvascular density (CD-31) and cell proliferation (Ki-67). Results Regorafenib significantly (pregorafenib therapy effects on experimental colorectal adenocarcinomas in vivo with significant correlations between perfusion MRI parameters and 18F-FDG-PET validated by immunohistochemistry. PMID:25668193

  4. Robotic production of 2-deoxy-2-[18F]fluoro-D-glucose: a routine method of synthesis using tetrabutylammonium [18F]fluoride

    International Nuclear Information System (INIS)

    Brodack, J.W.; Dence, C.S.; Kilbourn, M.R.; Welch, M.J.

    1988-01-01

    Using existing robotic hardware and software programs developed for the synthesis of several positron-emitting radiopharmaceuticals for PET imaging, the additional automated synthesis of 2-deoxy-2-[ 18 F]fluoro-D-glucose (2-[ 18 F]FDG) has been incorporated into our Zymate Laboratory Automation System. The robotic synthesis of 2-[ 18 F]FDG took less than one week to implement, including the organization of software subroutines and construction of an additional heating station. The end of synthesis yield (12-17%) and radiochemical purity (96-99%) for the robotic preparation of 2-[ 18 F]FDG is similar to that of the manual synthesis. This automated method uses anhydrous tetrabutylammonium [ 18 F]fluoride as the reactive fluoride source in the labeling step. The procedure is a modification of the synthesis reported by Hamacher et al. [Hamacher et al. (1986) J. Nucl. Med. 27, 235]. (author)

  5. Synthesis and preliminary evaluation of 9-(4-[{sup 18}F]fluoro-3-hydroxymethylbutyl) guanine ([{sup 18}F]FHBG) in HSV1-tk gene transduced hepatoma cell

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Byung Seok; Lee, Tae Sup [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Myoung Keun [Yonsei University, Wonju (Korea, Republic of)] (and others)

    2006-08-15

    The HSV1-tk reporter gene system is the most widely used system because of its advantage that direct monitoring is possible without the introduction of a separate reporter gene in case of HSV1-tk suicide gene therapy. In this study, we investigate the usefulness of the reporter probe (substrate), 9-(4-[{sup 18}F]fluoro-3-hydroxymethylbutyl) guanine ([{sup 18}F]FHBG) for non-invasive reporter gene imaging using PET in HSV1-tk expressing hepatoma model. Radiolabeled FHBG was prepared in 8 steps from a commercially available triester. The labeling reaction was carried out by NCA nucleophilic substitution with K[{sup 18}F]/K2.2.2. in acetonitrile using N2-monomethoxytrityl-9-[4-(tosly)-3-monomethoxytritylmethylbutl] guanine as a precursor, followed by deprotection with 1 N HCI. Preliminary biological properties of the probe were evaluated with MCA cells and MCA-tk cells transduced with HSV1-tk reporter gene. In vitro uptake and release-out studies of [{sup 18}F]FHBG were performed, and was analyzed correlation between [{sup 18}F]FHBG uptake ratio according to increasing numeric count of MCA-tk cells and degree of gene expression. MicroPET scan image was obtained with MCA and MCA-tk tumor beating Balb/c-nude mouse model. [{sup 18}F]FHBG was purified by reverse phase semi-HPLC system and collected at around 16-18 min. Radiochemical yield was about 20-25% (corrected for decay), radiochemical purity was > 95% and specific activity was around > 55.5 GBq/ {mu} mol. Specific accumulation of [{sup 18}F]FHBG was observed in HSV1-tk gene transduced MCA-tk cells but not MCA cells, and consecutive 1 hour release-out results showed more than 86% of uptaked [{sup 18}F]FHBG was retained inside of cells. The uptake of [{sup 18}F]FHBG was showed a highly significant linear correlation (R{sup 2} = 0.995) with increasing percentage of MCA-tk numeric cell count. In microPET scan images, remarkable difference of accumulation was observed for the two type of tumors. [{sup 18}F]FHBG appears

  6. Vasculitis assessment with [{sup 18}F]F.D.G. positron emission tomography; Place de la tomographie par emission de positons (TEP) au [{sup 18}F]FDG dans l'exploration des vascularites

    Energy Technology Data Exchange (ETDEWEB)

    Liozon, E. [CHU Dupuytren, Services de Medecine Interne A, 87 - Limoges (France); Monteil, J. [CHU Dupuytren, Services de Medecine Nucleaire, 87 - Limoges (France)

    2008-10-15

    [{sup 18}F]fluorodeoxyglucose ({sup 18}F.D.G.) positron emission tomography (PET) is a noninvasive metabolic imaging modality that is well suited to the assessment of activity and extent of large vessel vasculitis, such as giant cell arteritis and Takayasu arteritis. PET could be more effective than magnetic resonance imaging in detecting the earliest stages of vascular wall inflammation. The visual grading of vascular [{sup 18}F]F.D.G. uptake makes it possible to discriminate arteritis from atherosclerosis, providing therefore high specificity. High sensitivity can be achieved provided scanning is performed during active inflammatory phase, preferably before starting corticosteroid treatment. Large scale prospective studies are needed to determine the exact value of PET imaging in assessing the large vessel vasculitis outcome and response to immunosuppressive treatment.

  7. The result analysis of 18F-FDG imaging in suspected malignant pleural effusion or atelectasis on CT scanning

    International Nuclear Information System (INIS)

    Wang Huoqiang; Wu Jiyong; Pan Huizhong; Liu Jinjun; Zhao Xianguo

    2004-01-01

    Objective: To determine the ability of 18 F-fluorodeoxyglucose (FDG) dual-head tomography with coincidence (DHTC) imaging in detecting lung cancer in patients with suspected malignant pleural effusion or malignant atelectasis on CT scanning and to differentiate benign and malignant pleural effusions in patients with lung cancer. Methods: One hundred and ten patients with suspected malignant pleural effusion (n=84) or atelectasis (n=26) but without primary lesions in the lungs on CT scanning underwent 18 F-FDG DHTC. Results: Thirty-eight of 110 patients were proven with lung cancer. Among the 38 lung cancer patients, 30 of them had pleural effusion and 8 of them had atelectasis. Seventy-two of 110 patients were proven with benign lung diseases. The sensitivity, specificity and accuracy of 18 F-FDG DHTC for detecting lung cancer in patients with suspected malignant pleural effusion or atelectasis were 97%, 78% and 85%, respectively. In 30 patients with lung cancer plus pleural effusion, 18 F-FDG DHTC correctly detected the presence of malignant pleural effusion and malignant pleural metastatic involvement in 18 of 21 patients and excluded malignant pleural effusion or pleural metastatic involvement in 8 of 9 patients (sensitivity, specificity and accuracy of 86%, 8/9 and 87%, respectively). Conclusion: 18 F-FDG DHTC imaging is a highly accurate and reliable noninvasive test for detecting primary malignant lesions in lung in patients with pleural effusion or atelectasis findings on CT scanning and is useful to differentiate malignant from benign pleural effusion in patients with lung cancer. (authors)

  8. Synthesis of O-[2-[18F]fluoro-3-(2-nitro-1H-imidazole-1-yl)propyl]tyrosine ([18F]FNT]) as a new class of tracer for imaging hypoxia

    International Nuclear Information System (INIS)

    Noeen Malik; Xian Lin; Christoph Solbach; Hans-Juergen Machulla; Bin Shen; Gerald Reischl; Wolfgang Voelter

    2012-01-01

    For detection of hypoxic tumor tissue, all radiotracers synthesized until now, are based on the concept that cellular uptake is being controlled by diffusion. As a new approach, we chose the concept to have the tracer hypothetically transported into the cells by well known carrier systems like the amino acid transporters. For this purpose, radiosynthesis of O-[2-[ 18 F]fluoro-3-(2-nitro-1H-imidazole-1yl)propyl]tyrosine ([18F]FNT]) was carried out from methyl 2-(benzyloxycarbonyl)-3-(4-3-(2-nitro-1H-imidazol-1-yl) -2-(tosyloxy)propoxy) phenyl)propanoate via no-carrier-added nucleophilic aliphatic substitution. After labelling, 81 ± 0.9% of labelled intermediate i.e. methyl 2-(benzyloxycarbonyl)-3-(4-(2-[ 18 F]fluoro-3- (2-nitro-1H-imidazole-1-yl)propoxy) phenyl)propanoate was obtained at 140 deg C. At the end of radiosynthesis, [ 18 F]FNT was obtained in an overall radiochemical yield of 40 ± 0.9% (not decay corrected) within 90 min in a radiochemical purity of >98% in a formulation ready for application in the clinical studies for PET imaging of hypoxia. (author)

  9. 神经淋巴瘤病的18F-FDG PET/CT影像特征分析%Analysis of 18F-FDG PET/CT imaging features of neurolymphomatosis

    Institute of Scientific and Technical Information of China (English)

    方雷; 安建平; 赵辉; 毛军峰; 徐晓红; 李运; 代伟; 廖兰萍

    2014-01-01

    Objective To evaluate the imaging characteristics and value of 18F-FDG PET/CT in neurolymphomatosis.Methods Eight cases (3 males,5 females,age range: 35-82 years) with neurolymphomatosis confirmed by histopathology were included in this study.The imaging characteristics of the peripheral nerves surrounding the neurolymphoma lesions and contralateral normal tissue on 18F-FDG PET/CT were analyzed,and SUVmax was measured.Paired t test was used for data analysis by SPSS 12.0.Results Eleven lesions with increased 18F-FDG uptake in 8 cases distributed along the plexus,nerve bundle or intervertebral foramen,and shaped like bars,nodules or masses.The lesion SUVmax(6.54±3.23) was significantly higher than that of the contralateral normal peripheral nerves (1.15±0.48; t =9.357,P<0.001).The neurolymphoma lesions on CT showed no significant density change with reference to the surrounding tissue.Conclusions The most common 18F-FDG PET/CT features of neurolymphomatosis is high 18F-FDG uptake along the neurovascular plexus,bundles or intervertebral foramina with shapes like bars,nodules or masses.18F-FDG PET/CT is a useful tool for the localization and T staging of neurolymphomatosis.%目的 分析神经淋巴瘤病18 F-FDG PET/CT影像特征,并探讨其在评估神经淋巴瘤病中的应用价值.方法 回顾性分析经病理检查证实的8例神经淋巴瘤病患者(男3例,女5例,年龄35~ 82岁)18F-FDG PET/CT影像学资料,比较神经淋巴瘤病受累周围神经与健侧周围神经PET/CT表现的异同,并利用SPSS 12.0软件对两者SUVmax行配对t检验.结果 8例神经淋巴瘤病患者PET/CT共发现病灶11个,PET示病灶均沿神经丛、神经束或椎间孔走行,表现为束条形、根块状或结节状FDG代谢异常增高,SUVmax为6.54±3.23;病灶CT表现为沿神经束或神经根管走行的束条形、根块状或结节状软组织密度影,与周围软组织及邻近脂肪间隙分界不清.健侧对应部位周围神经在18F-FDG PET

  10. F-18-fluorodeoxyglucose-positron emission tomography in colorectal cancer

    International Nuclear Information System (INIS)

    Joerg, L.; Langsteger, W.

    2002-01-01

    Whole-body positron emission tomography (PET) with the radiolabeled glucose analog F-18-fluorodeoxyglucose (F-18-FDG) is a sensitive diagnostic tool that images tumors based on increased uptake of glucose. Several recent publications have shown that F-18-fluorodeoxyglucose-positron emission tomography is more sensitive than computed-tomography (CT) in detecting colorectal cancer. In patients with increasing CEA (carcinoembryonic antigen) and no evidence of recurrent disease on CT F-18-fluorodeoxyglucose-positron emission tomography often detects recurrent cancer. In all, patient management seems to be changed in about 25 % of patients who undergo F-18-fluorodeoxyglucose-positron emission tomography in addition to standard staging procedure. Limited reports to date on both chemotherapy and radiotherapy support the role of F-18-fluorodeoxyglucose-positron emission tomography in assessing treatment response. Also regarding preoperative staging of primary colorectal cancer the literature is very limited. (author)

  11. NaGdF4:Nd3+/Yb3+ Nanoparticles as Multimodal Imaging Agents

    Science.gov (United States)

    Pedraza, Francisco; Rightsell, Chris; Kumar, Ga; Giuliani, Jason; Monton, Car; Sardar, Dhiraj

    Medical imaging is a fundamental tool used for the diagnosis of numerous ailments. Each imaging modality has unique advantages; however, they possess intrinsic limitations. Some of which include low spatial resolution, sensitivity, penetration depth, and radiation damage. To circumvent this problem, the combination of imaging modalities, or multimodal imaging, has been proposed, such as Near Infrared Fluorescence imaging (NIRF) and Magnetic Resonance Imaging (MRI). Combining individual advantages, specificity and selectivity of NIRF with the deep penetration and high spatial resolution of MRI, it is possible to circumvent their shortcomings for a more robust imaging technique. In addition, both imaging modalities are very safe and minimally invasive. Fluorescent nanoparticles, such as NaGdF4:Nd3 +/Yb3 +, are excellent candidates for NIRF/MRI multimodal imaging. The dopants, Nd and Yb, absorb and emit within the biological window; where near infrared light is less attenuated by soft tissue. This results in less tissue damage and deeper tissue penetration making it a viable candidate in biological imaging. In addition, the inclusion of Gd results in paramagnetic properties, allowing their use as contrast agents in multimodal imaging. The work presented will include crystallographic results, as well as full optical and magnetic characterization to determine the nanoparticle's viability in multimodal imaging.

  12. Validation of an HPLC method for determination of chemical purity of [{sup 18}F]fluoromisonidazole ([{sup 18}F]FMISO)

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Natalia C.E.S.; Oliveira, Mércia L.; Lima, Fernando R.A., E-mail: nataliafleming@hotmail.com, E-mail: mercial@cnen.gov.br, E-mail: falima@cnen.gov.br [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Silveira, Marina B.; Ferreira, Soraya Z.; Silva, Juliana B., E-mail: mbs@cdtn.br, E-mail: zandims@cdtn.br, E-mail: silvajb@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    [{sup 18}F]Fluoromisonidazole ([{sup 18}F]FMISO) is a nitroimidazole derivative labelled with fluorine-18 that selectively binds to hypoxic cells. It has been shown to be a suitable PET tracer for imaging hypoxia in tumors as well as in noncancerous tissues. [{sup 18}F]FMISO was prepared using a TRACERlabMX{sub FDG}® module (GE) with cassettes, software sequence and reagents kits from ABX. In this work, we aimed to develop and to validate a new high performance liquid chromatography (HPLC) method for determination of chemical purity of [{sup 18}F]FMISO. Analyses were performed with an Agilent chromatograph equipped with radioactivity and UV detectors. [{sup 18}F]FMISO and impurities were separated on a C18 column by gradient elution with water and acetonitrile. Selectivity, linearity, detection limit (DL), quantification limit (LQ), precision, accuracy and robustness were assessed to demonstrate that the HPLC method is adequate for its intended purpose. The HPLC method showed a good precision, as all RSD values were lower than 5%. Robustness was evaluated considering a variation on parameters such mobile phase gradient and flow rate. Results evidenced that the HPLC method is validated and is suitable for radiochemical purity evaluation of [{sup 18}F]FMISO, considering operational conditions of our laboratory. As an extension of this work, other analytical methods used for [{sup 18}F]FMISO quality control should be evaluated, in compliance with good manufacture practice. (author)

  13. First (18)F-labeled ligand for PET imaging of uPAR

    DEFF Research Database (Denmark)

    Persson, Morten; Liu, Hongguang; Madsen, Jacob

    2013-01-01

    Urokinase-type plasminogen activator receptor (uPAR) is overexpressed in human prostate cancer and uPAR has been found to be associated with metastatic disease and poor prognosis. AE105 is a small linear peptide with high binding affinity to uPAR. We synthesized an N-terminal NOTA......-conjugated version (NOTA-AE105) for development of the first (18)F-labeled uPAR positron-emission-tomography PET ligand using the Al(18)F radiolabeling method. In this study, the potential of (18)F-AlF-NOTA-AE105 to specifically target uPAR-positive prostate tumors was investigated....

  14. Normal bone and soft tissue distribution of fluorine-18-sodium fluoride and artifacts on 18F-NaF PET/CT bone scan: a pictorial review.

    Science.gov (United States)

    Sarikaya, Ismet; Elgazzar, Abdelhamid H; Sarikaya, Ali; Alfeeli, Mahmoud

    2017-10-01

    Fluorine-18-sodium fluoride (F-NaF) PET/CT is a relatively new and high-resolution bone imaging modality. Since the use of F-NaF PET/CT has been increasing, it is important to accurately assess the images and be aware of normal distribution and major artifacts. In this pictorial review article, we will describe the normal uptake patterns of F-NaF in the bone tissues, particularly in complex structures, as well as its physiologic soft tissue distribution and certain artifacts seen on F-NaF PET/CT images.

  15. Non-invasive glucagon-like peptide-1 receptor imaging in pancreas with {sup 18}F-Al labeled Cys{sup 39}-exendin-4

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Baoming [Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006 (China); Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University (Wuxi 4th People' s Hospital), Wuxi, Jiangsu, 214062 (China); Xu, Yuping [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063 (China); Nanjing Medical University, Nanjing, Jiangsu, 210029 (China); Pan, Donghui; Wang, Lizhen; Yang, Runlin [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063 (China); Yu, Chunjing; Wan, Weixing [Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University (Wuxi 4th People' s Hospital), Wuxi, Jiangsu, 214062 (China); Wu, Yiwei, E-mail: wuyiwei3988@gmail.com [Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006 (China); Yang, Min, E-mail: ymzfk@yahoo.com.hk [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063 (China); Nanjing Medical University, Nanjing, Jiangsu, 210029 (China)

    2016-02-26

    Purpose: Glucagon-like peptide-1 receptor (GLP-1R) is abundantly expressed on beta cells and may be an ideal target for the pancreas imaging. Monitoring the GLP-1R of pancreas could be benefit for understanding the pathophysiology of diabetes. In the present study, {sup 18}F-Al labeled exendin-4 analog, {sup 18}F-Al-NOTA-MAL-Cys{sup 39}-exendin-4, was evaluated for PET imaging GLP-1R in the pancreas. Methods: The targeting of {sup 18}F-Al labeled exendin-4 analog was examined in healthy and streptozotocin induced diabetic rats. Rats were injected with {sup 18}F-Al-NOTA-MAL-Cys{sup 39}-exendin-4 and microPET imaging was performed at 1 h postinjection, followed by ex vivo biodistribution. GLP-1R expression in pancreas was determined through post mortern examinations. Results: The pancreas of healthy rats was readily visualized after administration of {sup 18}F-Al-NOTA-MAL-Cys{sup 39}-exendin-4, whereas the pancreas of diabetic rats, as well as those from rats co-injected with excess of unlabeled peptides, was barely visible by microPET. At 60 min postinjection, the pancreatic uptakes were 1.02 ± 0.15%ID/g and 0.23 ± 0.05%ID/g in healthy and diabetic rats respectively. Under block, the pancreatic uptakes of non-diabetic rats reduced to 0.21 ± 0.07%ID/g at the same time point. Biodistribution data and IHC staining confirmed the findings of the microPET imaging. Conclusion: The favorable preclinical data indicated that {sup 18}F-Al-NOTA-MAL-Cys{sup 39}-exendin-4may be suitable for non-invasive monitoring functional pancreatic beta cells.

  16. TU-AB-BRA-05: Repeatability of [F-18]-NaF PET Imaging Biomarkers for Bone Lesions: A Multicenter Study

    International Nuclear Information System (INIS)

    Lin, C; Bradshaw, T; Perk, T; Harmon, S; Jeraj, R; Liu, G

    2015-01-01

    Purpose: Quantifying the repeatability of imaging biomarkers is critical for assessing therapeutic response. While therapeutic efficacy has been traditionally quantified by SUV metrics, imaging texture features have shown potential for use as quantitative biomarkers. In this study we evaluated the repeatability of quantitative "1"8F-NaF PET-derived SUV metrics and texture features in bone lesions from patients in a multicenter study. Methods: Twenty-nine metastatic castrate-resistant prostate cancer patients received whole-body test-retest NaF PET/CT scans from one of three harmonized imaging centers. Bone lesions of volume greater than 1.5 cm"3 were identified and automatically segmented using a SUV>15 threshold. From each lesion, 55 NaF PET-derived texture features (including first-order, co-occurrence, grey-level run-length, neighbor gray-level, and neighbor gray-tone difference matrix) were extracted. The test-retest repeatability of each SUV metric and texture feature was assessed with Bland-Altman analysis. Results: A total of 315 bone lesions were evaluated. Of the traditional SUV metrics, the repeatability coefficient (RC) was 12.6 SUV for SUVmax, 2.5 SUV for SUVmean, and 4.3 cm"3 for volume. Their respective intralesion coefficients of variation (COVs) were 12%, 17%, and 6%. Of the texture features, COV was lowest for entropy (0.03%) and highest for kurtosis (105%). Lesion intraclass correlation coefficient (ICC) was lowest for maximum correlation coefficient (ICC=0.848), and highest for entropy (ICC=0.985). Across imaging centers, repeatability of texture features and SUV varied. For example, across imaging centers, COV for SUVmax ranged between 11–23%. Conclusion: Many NaF PET-derived SUV metrics and texture features for bone lesions demonstrated high repeatability, such as SUVmax, entropy, and volume. Several imaging texture features demonstrated poor repeatability, such as SUVtotal and SUVstd. These results can be used to establish response criteria

  17. In vitro and in vivo evaluation of a (18F-labeled high affinity NOTA conjugated bombesin antagonist as a PET ligand for GRPR-targeted tumor imaging.

    Directory of Open Access Journals (Sweden)

    Zohreh Varasteh

    Full Text Available Expression of the gastrin-releasing peptide receptor (GRPR in prostate cancer suggests that this receptor can be used as a potential molecular target to visualize and treat these tumors. We have previously investigated an antagonist analog of bombesin (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2, RM26 conjugated to 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA via a diethylene glycol (PEG2 spacer (NOTA-P2-RM26 labeled with (68Ga and (111In. We found that this conjugate has favorable properties for in vivo imaging of GRPR-expression. The focus of this study was to develop a (18F-labelled PET agent to visualize GRPR. NOTA-P2-RM26 was labeled with (18F using aluminum-fluoride chelation. Stability, in vitro binding specificity and cellular processing tests were performed. The inhibition efficiency (IC50 of the [(natF]AlF-NOTA-P2-RM26 was compared to that of the (natGa-loaded peptide using (125I-Tyr(4-BBN as the displacement radioligand. The pharmacokinetics and in vivo binding specificity of the compound were studied. NOTA-P2-RM26 was labeled with (18F within 1 h (60-65% decay corrected radiochemical yield, 55 GBq/µmol. The radiopeptide was stable in murine serum and showed high specific binding to PC-3 cells. [(natF]AlF-NOTA-P2-RM26 showed a low nanomolar inhibition efficiency (IC50=4.4±0.8 nM. The internalization rate of the tracer was low. Less than 14% of the cell-bound radioactivity was internalized after 4 h. The biodistribution of [(18F]AlF-NOTA-P2-RM26 demonstrated rapid blood clearance, low liver uptake and low kidney retention. The tumor uptake at 3 h p.i. was 5.5±0.7 %ID/g, and the tumor-to-blood, -muscle and -bone ratios were 87±42, 159±47, 38±16, respectively. The uptake in tumors, pancreas and other GRPR-expressing organs was significantly reduced when excess amount of non-labeled peptide was co-injected. The low uptake in bone suggests a high in vivo stability of the Al-F bond. High contrast PET image was obtained 3 h p

  18. Human dosimetry and preliminary tumor distribution of 18F-fluoropaclitaxel in healthy volunteers and newly diagnosed breast cancer patients using PET/CT.

    Science.gov (United States)

    Kurdziel, Karen A; Kalen, Joseph D; Hirsch, Jerry I; Wilson, John D; Bear, Harry D; Logan, Jean; McCumisky, James; Moorman-Sykes, Kathy; Adler, Stephen; Choyke, Peter L

    2011-09-01

    (18)F-fluoropaclitaxel is a radiolabeled form of paclitaxel, a widely used chemotherapy agent. Preclinical data suggest that (18)F-fluoropaclitaxel may be a reasonable surrogate for measuring the uptake of paclitaxel. As a substrate of P-glycoprotein, a drug efflux pump associated with multidrug resistance, (18)F-fluoropaclitaxel may also be useful in identifying multidrug resistance and predicting tumor response for drugs other than paclitaxel. After informed consent was obtained, 3 healthy volunteers and 3 patients with untreated breast cancer (neoadjuvant chemotherapy candidates, tumor size > 2 cm) received an intravenous infusion of (18)F-fluoropaclitaxel and then underwent PET/CT. Healthy volunteers underwent serial whole-body imaging over an approximately 3-h interval, and organ (18)F residence times were determined from the time-activity curves uncorrected for decay to determine dosimetry. Radiation dose estimates were calculated using OLINDA/EXM software. For breast cancer patients, dynamic imaging of the primary tumor was performed for 60 min, followed by static whole-body scans at 1 and 2 h after injection. Dosimetry calculations showed that the gallbladder received the highest dose (229.50 μGy/MBq [0.849 rad/mCi]), followed by the small and large intestines (161.26 μGy/MBq [0.597 rad/mCi] and 184.59 μGy/MBq [0.683 rad/mCi]). The resultant effective dose was 28.79 μGy/MBq (0.107 rem/mCi). At approximately 1 h after injection, an average of 42% of the decay-corrected activity was in the gastrointestinal system, with a mean of 0.01% in the tumor. All 3 breast cancer patients showed retention of (18)F-fluoropaclitaxel and ultimately demonstrated a complete pathologic response (no invasive cancer in the breast or axillary nodes) to chemotherapy that included a taxane (either paclitaxel or docetaxel) at surgical resection. The tumor-to-background ratio increased with time to a maximum of 7.7 at 20 min. This study demonstrates the feasibility of using (18)F

  19. Human Dosimetry and Preliminary Tumor Distribution of 18F-Fluoropaclitaxel in Healthy Volunteers and Newly Diagnosed Breast Cancer Patients Using PET/CT

    International Nuclear Information System (INIS)

    Kurdziel, K.A.; Logan, J.; Kalen, J.D.; Hirsch, J.I.; Wilson, J.D.; Bear, H.D.; McCumisky, J.; Moorman-Sykes, K.; Adler, S.; Choyke, P.L.

    2011-01-01

    18 F-fluoropaclitaxel is a radiolabeled form of paclitaxel, a widely used chemotherapy agent. Preclinical data suggest that 18 F-fluoropaclitaxel may be a reasonable surrogate for measuring the uptake of paclitaxel. As a substrate of P-glycoprotein, a drug efflux pump associated with multidrug resistance, 18 F-fluoropaclitaxel may also be useful in identifying multidrug resistance and predicting tumor response for drugs other than paclitaxel. After informed consent was obtained, 3 healthy volunteers and 3 patients with untreated breast cancer (neoadjuvant chemotherapy candidates, tumor size > 2 cm) received an intravenous infusion of 18 F-fluoropaclitaxel and then underwent PET/CT. Healthy volunteers underwent serial whole-body imaging over an approximately 3-h interval, and organ 18 F residence times were determined from the time-activity curves uncorrected for decay to determine dosimetry. Radiation dose estimates were calculated using OLINDA/EXM software. For breast cancer patients, dynamic imaging of the primary tumor was performed for 60 min, followed by static whole-body scans at 1 and 2 h after injection. Dosimetry calculations showed that the gallbladder received the highest dose (229.50 μGy/MBq [0.849 rad/mCi]), followed by the small and large intestines (161.26 μGy/MBq [0.597 rad/mCi] and 184.59 μGy/MBq [0.683 rad/mCi]). The resultant effective dose was 28.79 μGy/MBq (0.107 rem/mCi). At approximately 1 h after injection, an average of 42% of the decay-corrected activity was in the gastrointestinal system, with a mean of 0.01% in the tumor. All 3 breast cancer patients showed retention of 18 F-fluoropaclitaxel and ultimately demonstrated a complete pathologic response (no invasive cancer in the breast or axillary nodes) to chemotherapy that included a taxane (either paclitaxel or docetaxel) at surgical resection. The tumor-to-background ratio increased with time to a maximum of 7.7 at 20 min. This study demonstrates the feasibility of using 18 F

  20. The clinical value and pitfalls of 18F-fluoroethylcholine PET/CT imaging in the diagnosis of prostate cancer

    International Nuclear Information System (INIS)

    Zhou Shuo; Lin Meifu; Chen Wenxin; Chen Guobao; Li Junxia

    2012-01-01

    Objective: To evaluate the clinical value of 18 F-fluoroethylcholine (FECH) PET/CT imaging in the diagnosis of prostate cancer and to investigate its physiological or non-cancerous uptake. Methods: The subjects consisted of 30 patients (age ranged from 56 to 83 years, mean age 61 years) with pathologically confirmed prostate cancer, in whom 18 F-FECH and 18 F-FDG PET/CT scans were undertaken from October 2009 to December 2011. The sensitivity and accuracy of the two tracers in detecting prostate cancer were compared.SUV max was obtained for quantitative analysis. χ 2 test and t test were used for statistic analysis. Results: Of the 30 patients, 41 lesions presented high uptake in prostate region. The sensitivity and accuracy for diagnosing prostate cancer with 18 F-FECH PET/CT were 87.9% (29/33) and 82.9%(34/41), respectively, while the sensitivity and accuracy with 18 F-FDG PET/CT were 36.4% (12/33) and 36.6% (15/41), respectively. There were significant differences in sensitivity and accuracy between the two methods (χ 2 =8.1 and 11.1, both P<0.05). Physiological uptake appeared in the liver, pancreas, spleen, salivary gland, and also, owing to renal excretion,in the urinary tract. The SUV max in liver and pancreas were 10.1 ± 1.6 and 6.1 ± 1.1, respectively. The SUV max was 6.0 ± 2.2 in prostate cancer, while it was 2.6 ± 1.3 in benign lesions (t=2.9, P<0.05). Other abnormalities that were not related to prostate cancer were detected in 10 patients. Of these 10 patients, there were 6 with inflammation, 1 with lymphoma, 1 with tuberculosis, 1 with lung cancer and 1 with germinoma in pineal body. Conclusions: 18 F-FECH PET/CT is promising for diagnosis of prostate cancer.Understanding the biodistribution and pitfalls of 18 F-FECH is very important for image interpretation. (authors)

  1. Evaluation of {sup 18}F-BCPP-EF for mitochondrial complex 1 imaging in the brain of conscious monkeys using PET

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Hideo; Ohba, Hiroyuki; Kanazawa, Masakatsu; Kakiuchi, Takeharu; Harada, Norihiro [Hamamatsu Photonics K.K., Central Research Laboratory, Hamamatsu, Shizuoka (Japan)

    2014-04-15

    We have reported on the development of a novel PET probe, {sup 18}F-2-tert-butyl-4-chloro-5-{6-[2-(2-fluoroethoxy)-ethoxy] -pyridin-3-ylmethoxy}-2H-pyridazin-3-one ({sup 18}F-BCPP-EF), for quantitative imaging of mitochondrial complex 1 (MC-1) activity in the brain of the living rat. For clinical application in humans, translational research in the monkey was conducted. PET measurements with {sup 18}F-BCPP-EF were performed in young and old monkeys (Macaca mulatta) in a conscious state with arterial blood sampling. The binding specificity of {sup 18}F-BCPP-EF was evaluated with rotenone, a specific MC-1 inhibitor, in young animals. The binding (total distribution volume, V{sub T}) of {sup 18}F-BCPP-EF was calculated using Logan graphical analysis, and one-tissue compartment model (1-TC) and two-tissue compartment model (2-TC) analyses using a metabolite-corrected plasma input function. F-BCPP-EF was rapidly taken up into the brain just after intravenous injection, peaked between 10 and 20 min after injection, and was then gradually eliminated. The 2-TC analysis provided a better fit than the 1-TC analysis, and the V{sub T} values from the 2-TC analysis correlated well with those from the Logan plot. With predosing with rotenone, {sup 18}F-BCPP-EF showed a higher uptake peak in the brain, followed by more rapid elimination thereafter than in the vehicle condition, resulting in significant reductions in 2-TC V{sub T} values in all regions. In old animals, the kinetics of {sup 18}F-BCPP-EF were slightly slower with lower peak levels than in young animals, resulting age-related reductions in {sup 18}F-BCPP-EF binding in all brain regions. The present study demonstrated that {sup 18}F-BCPP-EF may be a potential PET probe for quantitative imaging MC-1 activity in the living brain using PET. (orig.)

  2. Evaluation of the PET component of simultaneous [18F]choline PET/MRI in prostate cancer: comparison with [18F]choline PET/CT

    International Nuclear Information System (INIS)

    Wetter, Axel; Lipponer, Christine; Nensa, Felix; Altenbernd, Jens-Christian; Schlosser, Thomas; Lauenstein, Thomas; Heusch, Philipp; Ruebben, Herbert; Bockisch, Andreas; Poeppel, Thorsten; Nagarajah, James

    2014-01-01

    The aim of this study was to evaluate the positron emission tomography (PET) component of [ 18 F]choline PET/MRI and compare it with the PET component of [ 18 F]choline PET/CT in patients with histologically proven prostate cancer and suspected recurrent prostate cancer. Thirty-six patients were examined with simultaneous [ 18 F]choline PET/MRI following combined [ 18 F]choline PET/CT. Fifty-eight PET-positive lesions in PET/CT and PET/MRI were evaluated by measuring the maximum and mean standardized uptake values (SUV max and SUV mean ) using volume of interest (VOI) analysis. A scoring system was applied to determine the quality of the PET images of both PET/CT and PET/MRI. Agreement between PET/CT and PET/MRI regarding SUV max and SUV mean was tested using Pearson's product-moment correlation and Bland-Altman analysis. All PET-positive lesions that were visible on PET/CT were also detectable on PET/MRI. The quality of the PET images was comparable in both groups. Median SUV max and SUV mean of all lesions were significantly lower in PET/MRI than in PET/CT (5.2 vs 6.1, p max of PET/CT and PET/MRI (R = 0.86, p mean of PET/CT and PET/MRI (R = 0.81, p max of PET/CT vs PET/MRI and -1.12 to +2.23 between SUV mean of PET/CT vs PET/MRI. PET image quality of PET/MRI was comparable to that of PET/CT. A highly significant correlation between SUV max and SUV mean was found. Both SUV max and SUV mean were significantly lower in [ 18 F]choline PET/MRI than in [ 18 F]choline PET/CT. Differences of SUV max and SUV mean might be caused by different techniques of attenuation correction. Furthermore, differences in biodistribution and biokinetics of [ 18 F]choline between the subsequent examinations and in the respective organ systems have to be taken into account. (orig.)

  3. Tritium in [18O]water containing [18F]fluoride for [18F]FDG synthesis

    International Nuclear Information System (INIS)

    Ito, Shigeki; Saze, Takuya; Sakane, Hitoshi; Ito, Satoshi; Ito, Shinichi; Nishizawa, Kunihide

    2004-01-01

    The presence of tritium in enriched [ 18 O]water irradiated with 9.6 MeV protons used to produce [ 18 F]fluoride by the 18 O(p, n) 18 F reaction was inferred from the cross sections and threshold energies of the 18 O(p, t) 16 O reaction, and the existence of tritium was confirmed experimentally. Tritium was also detected in both [ 18 O]water recovered for recycling and waste acetonitrile solutions. The purified [ 18 F]FDG was not contaminated with 3 H. The amount of 3 H discharged into the air was far less than the International Basic Safety Standard Level

  4. Clinical value of 18F-FDG and 18F-FLT PET /CT for the detection of primary and regional lymph node metastasis of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    杨洋

    2014-01-01

    Objective To evaluate the value of18F-FDG and18F-FLT PET/CT for the detection of primary and regional lymph node metastasis of gastric cancer.Methods Thirty-seven patients with gastric cancer underwent preoperative18F-FLT and18F-FDG PET/CT within one week from March 2011 to April 2013.Postoperative histopathology confirmation was obtained in all patients.The PET/CT images were assessed visually and semi-quantitatively.Two-sample t andχ2tests were analyzed using SPSS overall diagnostic

  5. Clinical relevance of F-18 FDG PET for imaging of neuroendocrine tumors

    International Nuclear Information System (INIS)

    Adams, S.; Baum, R.P.; Hoer, G.

    2001-01-01

    Neuroendocrine tumors are characterized immunocytochemically by the expression of different peptides and biogenic amines. Hormones induce their biological action by binding to and stimulating specific membrane-associated receptors for e.g. somatostatin. The presence of somatostatin receptors (SR) has been described mainly in endocrine glands and the central nervous system. Interestingly, a large variety of human tumors, including gastroenteropancreatic (GEP) tumors and medullary thyroid carcinomas (MTC) also express a high density of SR and can be imaged with [ 111 In-DTPA-D-Phe 1 ]-pentetreotide. Cell proliferative activity is an important indicator of the growth of various malignant tumors associated with a poorer prognosis and Ki-67 expression. 18 F-FDG is a marker of tumor viability, based upon the increased glycolysis that is associated with malignancy as compared with normal tissue. SR-containing neuroendocrine tumors are well-differentiated and tend to grow slowly. Furthermore, these tumors demonstrate inverse relationship between in vivo SR expression, cell proliferation (low Ki-67 expression) and FDG uptake (normal biodistribution). In comparison, less differentiated tumors, e.g. atypical carcinoids or MTC with increasing CEA levels show mitotic activity (high levels of Ki-67 immunoreactivity and increased FDG uptake) and often lack of SR. In conclusion, SR scintigraphy has been shown to localize well-differentiated neuroendocrine tumors. In contrast, PET imaging is valuable for predicting malignancy only in less differentiated tumors with increased glucose metabolism. Therefore, an additional F-18 FDG PET should be performed if SR scintigraphy (GEP tumors) or combined imaging using [ 111 In-DTPA-D-Phe 1 ]-pentetreotide and 99m Tc(V)-DMSA (MTC) is negative. (orig.) [de

  6. Efficient automated synthesis of 2-(5-["1"8F]fluoropentyl)-2-methylmalonic acid (["1"8F]ML-10) on a commercial available ["1"8F]FDG synthesis module

    International Nuclear Information System (INIS)

    Liu, Shaoyu; Nie, Dahong; Jiang, Shende; Tang, Ganghua

    2017-01-01

    ["1"8F]ML-10 (2-(5-["1"8F]fluoro-pentyl)-2-methylmalonic acid) is a small molecule positron emission tomography (PET) probe for apoptosis imaging. Automated synthesis of ["1"8F]ML-10 was developed by using two different purification methods through a direct saponification procedure on a modified commercial ["1"8F]Fluoro-2-Deoxyglucose (["1"8F]FDG) synthesizer. C18 purification method 1: The final ["1"8F]ML-10 solution containing ethanol was obtained with radiochemical yields of 60±5% (n=5) at the end of bombardment (EOB) and radiochemical purity of 98% in 35 min. Al_2O_3 and SCX purification method 2: To avoid possible side effects of a conventional ethanol-containing formulation, an new ethanol-free solution of ["1"8F]ML-10 was also developed, the radiochemical yields was 50±5% (n=5, EOB) within 45 min and the radiochemical purity was 98%. - Highlights: • The production of ["1"8F]ML-10 was optimized by using a straightforward saponification procedure. • Automated synthesis was performed on a commonly FDG synthesis module. • An ethanol-containing ["1"8F]ML-10 formulation was obtained with high radiochemical yield in a shorter time. • An ethanol-free formulation method of ["1"8F]ML-10 was also developed.

  7. An Assessment of Early Response to Targeted Therapy via Molecular Imaging: A Pilot Study of 3′-deoxy-3′[(18F]-Fluorothymidine Positron Emission Tomography 18F-FLT PET/CT in Prostate Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Kalevi Kairemo

    2017-04-01

    Full Text Available Fluorothymidine is a thymidine analog labeled with fluorine-18 fluorothymidine for positron emission tomography (18F-FLT-PET imaging. Thymidine is a nucleic acid that is used to build DNA. Fluorine-18 fluorothymidine (18F-FLT utilizes the same metabolic pathway as does thymidine but has a very low incidence of being incorporated into the DNA (<1%. 18F-FLT-PET could have a role in the evaluation of response to targeted therapy. We present here a pilot study where we investigated cellular metabolism and proliferation in patients with prostate cancer before and after targeted therapy. Seven patients with Stage IV prostate adenocarcinoma, candidates for targeted therapy inhibiting the hepatocyte growth factor/tyrosine-protein kinase Met (HGF/C-MET pathway, were included in this study. The HGF/C-MET pathway is implicated in prostate cancer progression, and an evaluation of the inhibition of this pathway could be valuable. 18F-FLT was performed at baseline and within four weeks post-therapy. Tumor response was assessed semi-quantitatively and using visual response criteria. The range of SUVmax for 18F-FLT at baseline in the prostate varied from 2.5 to 4.2. This study demonstrated that 18F-FLT with positron emission tomography/computerized tomography (18F-FLT PET/CT had only limited applications in the early response evaluation of prostate cancer. 18F-FLT PET/CT may have some utility in the assessment of response in lymph node disease. However, 18F-FLT PET/CT was not found to be useful in the evaluation of the prostate bed, metastatic skeletal disease, and liver disease.

  8. Radiosynthesis of (S)-["1"8F]T1: The first PET radioligand for molecular imaging of α3β4 nicotinic acetylcholine receptors

    International Nuclear Information System (INIS)

    Sarasamkan, Jiradanai; Fischer, Steffen; Deuther-Conrad, Winnie; Ludwig, Friedrich-Alexander; Scheunemann, Matthias; Arunrungvichian, Kuntarat; Vajragupta, Opa; Brust, Peter

    2017-01-01

    Recent pharmacologic data revealed the implication of α3β4 nicotinic acetylcholine receptors (nAChRs) in nicotine and drug addiction. To image α3β4 nAChRs in vivo, we aimed to establish the synthesis of a ["1"8F]-labelled analog of the highly affine and selective α3β4 ligand (S)-3-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)quinuclidine ((S)-T1). (S)-["1"8F]T1 was synthesized from ethynyl-4-["1"8F]fluorobenzene (["1"8F]5) and (S)-azidoquinuclidine by click reaction. After a synthesis time of 130 min (S)-["1"8F]T1 was obtained with a radiochemical yield (non-decay corrected) of 4.3±1.3%, a radiochemical purity of >99% and a molar activity of >158 GBq/μmol. The brain uptake and the brain-to-blood ratio of (S)-["1"8F]T1 in mice at 30 min post injection were 2.02 (SUV) and 6.1, respectively. According to an ex-vivo analysis, the tracer remained intact (>99%) in brain. Only one major radiometabolite was detected in plasma and urine samples. In-vitro autoradiography on pig brain slices revealed binding of (S)-["1"8F]T1 to brain regions associated with the expression of α3β4 nAChRs, which could be reduced by the α3β4 nAChR selective drug AT-1001. These findings make (S)-["1"8F]T1 a potential tool for the non-invasive imaging of α3β4 nAChRs in the brain by PET. - Highlights: • (S)-["1"8F]T1 is a promising α3ß4 nAChR ligand for PET imaging. • The novel radioligand (S)-["1"8F]T1 was synthesized by click reaction. • The potential of (S)-["1"8F]T1 was shown by in vitro autoradiography and in vivo evaluation in mice.

  9. Comparison of [{sup 18}F]FHPG and [{sup 124/125}I]FIAU for imaging herpes simplex virus type 1 thymidine kinase gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Brust, P.; Friedrich, A.; Scheunemann, M.; Noll, S.; Noll, B.; Johannsen, B. [Inst. of Bioinorganic and Radiopharmaceutical Chemistry, Forschungszentrum, Rossendorf (Germany); Haubner, R.; Avril, N. [Dept. of Nuclear Medicine, Technische Univ., Muenchen (Germany); Anton, M. [Inst. of Experimental Oncology, Technische Univ., Muenchen (Germany); Koufaki, O.N.; Schackert, H.K. [Dept. of Surgical Research, Technische Univ., Dresden (Germany); Hauses, M.; Schackert, G. [Dept. of Neurosurgery, Technische Univ., Dresden (Germany); Haberkorn, U. [Dept. of Oncological Diagnostics and Therapy, Deutsches Krebsforschungszentrum, Heidelberg (Germany)

    2001-06-01

    Various radiotracers based on uracil nucleosides (e.g. [{sup 124}I]2'-fluoro-2'-deoxy-5-iodo-1-{beta}-D-arabinofuranosyluracil, [{sup 124}I]FIAU) and acycloguanosine derivatives (e.g. [{sup 18}F]9-[(3-fluoro-1-hydroxy-2-propoxy)methyl]guanine, [{sup 18}F]FHPG) have been proposed for the non-invasive imaging of herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene expression. However, these radiotracers have been evaluated in different in vitro and in vivo models, precluding a direct comparison. Therefore, we directly compared [{sup 18}F]FHPG and radioiodinated FIAU to assess their potential for PET imaging of transgene expression. The uptake of [{sup 125}I]FIAU, [{sup 18}F]FHPG and [{sup 3}H]acyclovir was determined in vitro using four different HSV1-tk expressing cell lines and their respective negative controls. The in vitro tracer uptake was generally low in non-transduced parental cell lines. In HSV1-tk expressing cells, [{sup 3}H]acyclovir showed approximately a twofold higher tracer accumulation, the [{sup 18}F]FHPG uptake increased by about sixfold and the [{sup 125}I]FIAU accumulation increased by about 28-fold after 120-min incubation of T1115 human glioblastoma cells. Similar results were found in the other cell lines. In addition, biodistribution and positron emission tomography (PET) studies with [{sup 18}F]FHPG and [{sup 124/125}I]FIAU were carried out in tumour-bearing BALB/c mice. Significantly higher specific accumulation of radioactivity was found for [{sup 125}I]FIAU compared with [{sup 18}F]FHPG. The ratio of specific tracer accumulation between [{sup 125}I]FIAU and [{sup 18}F]FHPG increased from 21 (30 min p.i.) to 119 (4 h p.i.). PET imaging, using [{sup 124}I]FIAU, clearly visualised and delineated HSV1-tk expressing tumours, whereas only a negligible uptake of [{sup 18}F]FHPG was observed. This study demonstrated that in vitro and in vivo, the radioiodinated uracil nucleoside FIAU has a significantly higher specific

  10. Monitoring of Radiochemotherapy in Patients with Glioblastoma Using O-(2-[18F]Fluoroethyl-L-Tyrosine Positron Emission Tomography: Is Dynamic Imaging Helpful?

    Directory of Open Access Journals (Sweden)

    Marc D. Piroth

    2013-09-01

    Full Text Available Monitoring of radiochemotherapy (RCX in patients with glioblastoma is difficult because unspecific alterations in magnetic resonance imaging with contrast enhancement can mimic tumor progression. Changes in tumor to brain ratios (TBRs in positron emission tomography (PET using O-(2-[18F]fluoroethyl-L-tyrosine (18F-FET after RCX with temozolomide of patients with glioblastoma have been shown to be valuable parameters to predict survival. The kinetic behavior of 18F-FET in the tumors is another promising parameter to analyze tumor metabolism. In this study, we investigated the predictive value of dynamic 18F-FET PET during RCX of glioblastoma. Time-activity curves (TACs of 18F-FET uptake of 25 patients with glioblastoma were evaluated after surgery (FET-1, early (7–10 days after completion of RCX (FET-2, and 6 to 8 weeks later (FET-3. Changes in the time to peak (TTP and the slope of the TAC (10–50 minutes postinjection were analyzed and related to survival. Changes in kinetic parameters of 18F-FET uptake after RCX showed no relationship with survival time. In contrast, the high predictive value of changes of TBR to predict survival was confirmed. We conclude that dynamic 18F-FET PET does not provide additional prognostic information during RCX. Static 18F-FET PET imaging (20–40 minutes postinjection appears to be sufficient for this purpose and reduces costs.

  11. The value of dual time point 18F-FDG PET imaging for the differentiation between malignant and benign lesions

    International Nuclear Information System (INIS)

    Lan, X.-L.; Zhang, Y.-X.; Wu, Z.-J.; Jia, Q.; Wei, H.; Gao, Z.-R.

    2008-01-01

    Aim: To assess the clinical value of dual time point 2-[ 18 F]-fluoro-2-deoxy-D-glucose positron emission tomography ( 18 F-FDG PET) imaging for the differentiation between malignant and benign lesions. Materials and methods: Ninety-six patients (28 patients with primary lung cancer, 18 patients with digestive system carcinoma, 13 patients with other malignant tumours, and 37 patients with benign lesions) underwent FDG-PET/CT at two time points: examination 1 at 45-55 min and examination 2 at 160 ± 24 (150-180) min after the intravenous injection of 233 ± 52 (185-370) MBq 18 F-FDG. Reconstructed images were evaluated qualitatively and quantitatively. The maximum standardized uptake values (SUVmax) of the lesions were calculated for both time points. An increase was considered to have occurred if the SUVs at examination 2 had increased by >10% as compared with those at the examination 1. Results: The lesions in 24 of 28 (86%) patients with primary lung cancer had an SUVmax ≥2.5 at examination 1. Of these, SUVmax values increased in 23 patients, but had not changed in one patient, at examination 2. The lesions in the other four patients with primary lung tumour had SUVmax values between 1.5 and 2.5 at examination 1, which were considered as suspected positive, increased SUVmax values were observed in three of these patients at examination 2. The malignant lesions in 17 of 18 patients with digestive system carcinoma showed SUVmax values ≥2.5 and only one patient had an SUVmax value 18 F-FDG PET imaging is an important noninvasive method for the differentiation of malignant and nonmalignant lesions

  12. Facile and efficient synthesis of [{sup 18}F]fluoromisonidazole using novel 2-nitroimidazole derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Do; Lim, Seok Tae; Sohn, Myung-Hee; Kim, Hee-Kwon, E-mail: hkkim717@jbnu.ac.kr [Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju (Korea, Republic of); Jung, Yongju [Department of Chemical Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-07-01

    [{sup 18}F]Fluoromisonidazole ([{sup 18}F]FMISO) is a hypoxia imaging marker utilized in positron emission tomography. Novel FMISO precursors were prepared from a commercially available material, and several reaction factors that affect synthesis of [{sup 18}F]FMISO were examined to achieve a higher fluorination yield. [{sup 18}F]FMISO was obtained from radiosynthesis, followed by the hydrolysis of protecting groups with HCl. New 2-nitroimidazole precursor showed a higher [{sup 18}F]fluorination and a higher synthetic yield. This result provided alternative guidelines for the preparation of hypoxia imaging marker. (author)

  13. Comparative assessment of 6-[18 F]fluoro-L-m-tyrosine and 6-[18 F]fluoro-L-dopa to evaluate dopaminergic presynaptic integrity in a Parkinson's disease rat model.

    Science.gov (United States)

    Becker, Guillaume; Bahri, Mohamed Ali; Michel, Anne; Hustadt, Fabian; Garraux, Gaëtan; Luxen, André; Lemaire, Christian; Plenevaux, Alain

    2017-05-01

    Because of the progressive loss of nigro-striatal dopaminergic terminals in Parkinson's disease (PD), in vivo quantitative imaging of dopamine (DA) containing neurons in animal models of PD is of critical importance in the preclinical evaluation of highly awaited disease-modifying therapies. Among existing methods, the high sensitivity of positron emission tomography (PET) is attractive to achieve that goal. The aim of this study was to perform a quantitative comparison of brain images obtained in 6-hydroxydopamine (6-OHDA) lesioned rats using two dopaminergic PET radiotracers, namely [ 18 F]fluoro-3,4-dihydroxyphenyl-L-alanine ([ 18 F]FDOPA) and 6-[ 18 F]fluoro-L-m-tyrosine ([ 18 F]FMT). Because the imaging signal is theoretically less contaminated by metabolites, we hypothesized that the latter would show stronger relationship with behavioural and post-mortem measures of striatal dopaminergic deficiency. We used a within-subject design to measure striatal [ 18 F]FMT and [ 18 F]FDOPA uptake in eight partially lesioned, eight fully lesioned and ten sham-treated rats. Animals were pretreated with an L-aromatic amino acid decarboxylase inhibitor. A catechol-O-methyl transferase inhibitor was also given before [ 18 F]FDOPA PET. Quantitative estimates of striatal uptake were computed using conventional graphical Patlak method. Striatal dopaminergic deficiencies were measured with apomorphine-induced rotations and post-mortem striatal DA content. We observed a strong relationship between [ 18 F]FMT and [ 18 F]FDOPA estimates of decreased uptake in the denervated striatum using the tissue-derived uptake rate constant K c . However, only [ 18 F]FMT K c succeeded to discriminate between the partial and the full 6-OHDA lesion and correlated well with the post-mortem striatal DA content. This study indicates that the [ 18 F]FMT could be more sensitive, with respect of [ 18 F]FDOPA, to investigate DA terminals loss in 6-OHDA rats, and open the way to in vivo L

  14. Radiotherapy volume delineation using dynamic [18F]-FDG PET/CT imaging in patients with oropharyngeal cancer: a pilot study.

    Science.gov (United States)

    Silvoniemi, Antti; Din, Mueez U; Suilamo, Sami; Shepherd, Tony; Minn, Heikki

    2016-11-01

    Delineation of gross tumour volume in 3D is a critical step in the radiotherapy (RT) treatment planning for oropharyngeal cancer (OPC). Static [ 18 F]-FDG PET/CT imaging has been suggested as a method to improve the reproducibility of tumour delineation, but it suffers from low specificity. We undertook this pilot study in which dynamic features in time-activity curves (TACs) of [ 18 F]-FDG PET/CT images were applied to help the discrimination of tumour from inflammation and adjacent normal tissue. Five patients with OPC underwent dynamic [ 18 F]-FDG PET/CT imaging in treatment position. Voxel-by-voxel analysis was performed to evaluate seven dynamic features developed with the knowledge of differences in glucose metabolism in different tissue types and visual inspection of TACs. The Gaussian mixture model and K-means algorithms were used to evaluate the performance of the dynamic features in discriminating tumour voxels compared to the performance of standardized uptake values obtained from static imaging. Some dynamic features showed a trend towards discrimination of different metabolic areas but lack of consistency means that clinical application is not recommended based on these results alone. Impact of inflammatory tissue remains a problem for volume delineation in RT of OPC, but a simple dynamic imaging protocol proved practicable and enabled simple data analysis techniques that show promise for complementing the information in static uptake values.

  15. Noninvasive monitoring of cancer therapy induced activated T cells using [18F]FB-IL-2 PET imaging.

    Science.gov (United States)

    Hartimath, S V; Draghiciu, O; van de Wall, S; Manuelli, V; Dierckx, R A J O; Nijman, H W; Daemen, T; de Vries, E F J

    2017-01-01

    Cancer immunotherapy urgently calls for methods to monitor immune responses at the site of the cancer. Since activated T lymphocytes may serve as a hallmark for anticancer responses, we targeted these cells using the radiotracer N-(4-[ 18 F]fluorobenzoyl)-interleukin-2 ([ 18 F]FB-IL-2) for positron emission tomography (PET) imaging. Thus, we noninvasively monitored the effects of local tumor irradiation and/or immunization on tumor-infiltrating and systemic activated lymphocytes in tumor-bearing mice. A 10- and 27-fold higher [ 18 F]FB-IL-2 uptake was observed in tumors of mice receiving tumor irradiation alone or in combination with immunization, respectively. This increased uptake was extended to several non-target tissues. Administration of the CXCR4 antagonist AMD3100 reduced tracer uptake by 2.8-fold, indicating a CXCR4-dependent infiltration of activated T lymphocytes upon cancer treatment. In conclusion, [ 18 F]FB-IL-2 PET can serve as a clinical biomarker to monitor treatment-induced infiltration of activated T lymphocytes and, on that basis, may guide cancer immunotherapies.

  16. Recent progress in fluorine-18 labelled peptide radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Okarvi, S.M. [Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia)

    2001-07-01

    The application of biologically active peptides labelled with positron-emitting nuclides has emerged as a useful and interesting field in nuclear medicine. Small synthetic receptor-binding peptides are currently the preferred agents over proteins and antibodies for diagnostic imaging of various tumours. Due to the smaller size of peptides, both higher target-to-background ratios and rapid blood clearance can often be achieved with radiolabelled peptides. Hence, short-lived positron emission tomography (PET) isotopes are potential candidates for labelling peptides. Among a number of positron-emitting nuclides, fluorine-18 appears to be the best candidate for labelling bioactive peptides by virtue of its favourable physical and nuclear characteristics. The major disadvantage of labelling peptides with {sup 18}F is the laborious and time-consuming preparation of the {sup 18}F labelling agents. In recent years, various techniques have been developed which allow efficient labelling of peptides with {sup 18}F without affecting their receptor-binding properties. Moreover, the development of a variety of prosthetic groups has facilitated the efficient and site-specific labelling of peptides with {sup 18}F. The {sup 18}F-labelled peptides hold enormous clinical potential owing to their ability to quantitatively detect and characterise a wide variety of human diseases when using PET. Recently, a number of {sup 18}F-labelled bioactive peptides have shown great promise as diagnostic imaging agents. This review presents the recent developments in {sup 18}F-labelled biologically active peptides used in PET. (orig.)

  17. Recent progress in fluorine-18 labelled peptide radiopharmaceuticals

    International Nuclear Information System (INIS)

    Okarvi, S.M.

    2001-01-01

    The application of biologically active peptides labelled with positron-emitting nuclides has emerged as a useful and interesting field in nuclear medicine. Small synthetic receptor-binding peptides are currently the preferred agents over proteins and antibodies for diagnostic imaging of various tumours. Due to the smaller size of peptides, both higher target-to-background ratios and rapid blood clearance can often be achieved with radiolabelled peptides. Hence, short-lived positron emission tomography (PET) isotopes are potential candidates for labelling peptides. Among a number of positron-emitting nuclides, fluorine-18 appears to be the best candidate for labelling bioactive peptides by virtue of its favourable physical and nuclear characteristics. The major disadvantage of labelling peptides with 18 F is the laborious and time-consuming preparation of the 18 F labelling agents. In recent years, various techniques have been developed which allow efficient labelling of peptides with 18 F without affecting their receptor-binding properties. Moreover, the development of a variety of prosthetic groups has facilitated the efficient and site-specific labelling of peptides with 18 F. The 18 F-labelled peptides hold enormous clinical potential owing to their ability to quantitatively detect and characterise a wide variety of human diseases when using PET. Recently, a number of 18 F-labelled bioactive peptides have shown great promise as diagnostic imaging agents. This review presents the recent developments in 18 F-labelled biologically active peptides used in PET. (orig.)

  18. Head to head comparison of [{sup 18}F] AV-1451 and [{sup 18}F] THK5351 for tau imaging in Alzheimer's disease and frontotemporal dementia

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Young Kyoung; Kim, Hee Jin; Jang, Hyemin [Sungkyunkwan University School of Medicine, Department of Neurology, Samsung Medical Center, Seoul (Korea, Republic of); Neuroscience Center, Samsung Medical Center, Seoul (Korea, Republic of); Lyoo, Chul Hyoung; Cho, Hanna [Yonsei University College of Medicine, Department of Neurology, Gangnam Severance Hospital, Seoul (Korea, Republic of); Park, Seongbeom [Sungkyunkwan University School of Medicine, Department of Neurology, Samsung Medical Center, Seoul (Korea, Republic of); Oh, Seung Jun; Oh, Minyoung; Kim, Jae Seung [University of Ulsan College of Medicine, Department of Nuclear Medicine, Asan Medical Center, Seoul (Korea, Republic of); Ryu, Young Hoon; Choi, Jae Yong [Yonsei University College of Medicine, Department of Nuclear Medicine, Gangnam Severance Hospital, Seoul (Korea, Republic of); Rabinovici, Gil D. [University of California, San Francisco, Memory and Aging Center, San Francisco, CA (United States); University of California, Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA (United States); Moon, Seung Hwan [Sungkyunkwan University School of Medicine, Department of Nuclear Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Lee, Jin San [Kyung Hee University Hospital, Department of Neurology, Seoul (Korea, Republic of); Jagust, William J. [University of California, Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Center of Functional Imaging, Berkeley, CA (United States); Na, Duk L. [Sungkyunkwan University School of Medicine, Department of Neurology, Samsung Medical Center, Seoul (Korea, Republic of); Neuroscience Center, Samsung Medical Center, Seoul (Korea, Republic of); Sungkyunkwan University, Department of Health Sciences and Technology, SAIHST, Seoul (Korea, Republic of); Seo, Sang Won [Sungkyunkwan University School of Medicine, Department of Neurology, Samsung Medical Center, Seoul (Korea, Republic of); Neuroscience Center, Samsung Medical Center, Seoul (Korea, Republic of); Sungkyunkwan University, Department of Health Sciences and Technology, SAIHST, Seoul (Korea, Republic of); Sungkyunkwan University, Department of Clinical Research Design and Evaluation, SAIHST, Seoul (Korea, Republic of)

    2018-03-15

    Tau accumulation is a core pathologic change in various neurodegenerative diseases including Alzheimer's disease and frontotemporal lobar degeneration-tau. Recently, tau positron emission tomography tracers such as [{sup 18}F] AV-1451 and [{sup 18}F] THK5351 have been developed to detect tau deposition in vivo. In the present study, we performed a head to head comparison of these two tracers in Alzheimer's disease and frontotemporal dementia cases and aimed to investigate which tracers are better suited to image tau in these disorders. A cross-sectional study was conducted using a hospital-based sample at a tertiary referral center. We recruited eight participants (two Alzheimer's disease, four frontotemporal dementia and two normal controls) who underwent magnetic resonance image, amyloid positron emission tomography with [{sup 18}F]-Florbetaben and tau positron emission tomography with both THK5351 and AV-1451. To measure regional AV1451 and THK5351 uptakes, we used the standardized uptake value ratios by dividing mean activity in target volume of interest by mean activity in the cerebellar hemispheric gray matter. Although THK5351 and AV-1451 uptakes were highly correlated, cortical uptake of AV-1451 was more striking in Alzheimer's disease, while cortical uptake of THK5351 was more prominent in frontotemporal dementia. THK5351 showed higher off-target binding than AV-1451 in the white matter, midbrain, thalamus, and basal ganglia. AV-1451 is more sensitive and specific to Alzheimer's disease type tau and shows lower off-target binding, while THK5351 may mirror non-specific neurodegeneration. (orig.)

  19. Evaluation of thymic tumors with 18F-FDG PET-CT - A pictorial review

    International Nuclear Information System (INIS)

    Sharma, Punit; Singhal, Abhinav; Bal, Chandrasekhar; Malhotra, Arun; Kumar, Rakesh; Kumar, Arvind

    2013-01-01

    Thymic tumors represent a broad spectrum of neoplastic disorders and pose considerable diagnostic difficulties. A non-invasive imaging study to determine the nature of thymic lesions can have significant impact on management of such tumors. 18F-flurorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET-CT) has shown promising results in characterization of thymic tumors. The objective of this article is to provide an illustrative tutorial highlighting the clinical utility of 18F-FDG PET-CT imaging in patients with thymic tumors. We have pictorially depicted the 18F-FDG PET-CT salient imaging characteristics of various thymic tumors, both epithelial and non-epithelial. Also discussed is the dynamic physiology of thymus gland which is to be kept in mind when evaluating thymic pathology on 18F-FDG PET-CT, as it can lead to interpretative pitfalls

  20. F-18 fluoride positron emission tomography-computed tomography for detecting atherosclerotic plaques

    International Nuclear Information System (INIS)

    Kang, Won Jun

    2015-01-01

    A large number of major cardiovascular events occur in patients due to minimal or some lumen narrowing of the coronary artery. Recent biological studies have shown that the biological composition or vulnerability of the plaque is more critical for plaque rupture compared to the degree of stenosis. To overcome the limitations of anatomical images, molecular imaging techniques have been suggested as promising imaging tools in various fields. F-18 fluorodeoxyglucose (FDG), which is widely used in the field of oncology, is an example of molecular probes used in atherosclerotic plaque evaluation. FDG is a marker of plaque macrophage glucose utilization and inflammation, which is a prominent characteristic of vulnerable plaque. Recently, F-18 fluoride has been used to visualize vulnerable plaque in clinical studies. F-18 fluoride accumulates in regions of active microcalcification, which is normally observed during the early stages of plaque formation. More studies are warranted on the accumulation of F-18 fluoride and plaque formation/vulnerability; however, due to high specific accumulation, low background activity, and easy accessibility, F-18 fluoride is emerging as a promising non-invasive imaging probe to detect vulnerable plaque

  1. F-18 fluoride positron emission tomography-computed tomography for detecting atherosclerotic plaques

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Won Jun [Dept. of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2015-12-15

    A large number of major cardiovascular events occur in patients due to minimal or some lumen narrowing of the coronary artery. Recent biological studies have shown that the biological composition or vulnerability of the plaque is more critical for plaque rupture compared to the degree of stenosis. To overcome the limitations of anatomical images, molecular imaging techniques have been suggested as promising imaging tools in various fields. F-18 fluorodeoxyglucose (FDG), which is widely used in the field of oncology, is an example of molecular probes used in atherosclerotic plaque evaluation. FDG is a marker of plaque macrophage glucose utilization and inflammation, which is a prominent characteristic of vulnerable plaque. Recently, F-18 fluoride has been used to visualize vulnerable plaque in clinical studies. F-18 fluoride accumulates in regions of active microcalcification, which is normally observed during the early stages of plaque formation. More studies are warranted on the accumulation of F-18 fluoride and plaque formation/vulnerability; however, due to high specific accumulation, low background activity, and easy accessibility, F-18 fluoride is emerging as a promising non-invasive imaging probe to detect vulnerable plaque.

  2. In vitro characterization of [18F]-florbetaben, an Aβ imaging radiotracer

    International Nuclear Information System (INIS)

    Fodero-Tavoletti, Michelle T.; Brockschnieder, Damian; Villemagne, Victor L.; Martin, Lucas; Connor, Andrea R.; Thiele, Andrea; Berndt, Mathias; McLean, Catriona A.; Krause, Sabine; Rowe, Christopher C.; Masters, Colin L.; Dinkelborg, Ludger; Dyrks, Thomas; Cappai, Roberto

    2012-01-01

    Purpose: Amyloid-β (Aβ) plaques are a major pathological hallmark of Alzheimer's disease (AD). The noninvasive detection of Aβ plaques may increase the accuracy of clinical diagnosis as well as monitor therapeutic interventions. While [ 11 C]-PiB is the most widely used Aβ positron emission tomography (PET) radiotracer, due to the short half-life of 11 C (20 min), its application is limited to centers with an on-site cyclotron and 11 C radiochemistry expertise. Therefore, novel [ 18 F] (half-life 110 min)-labeled Aβ PET tracers have been developed. We have demonstrated that [ 18 F]-florbetaben-PET can differentiate individuals diagnosed with AD from healthy elderly, Parkinson's disease and frontotemporal lobe dementia (FTLD-tau) patients. While [ 18 F]-florbetaben-PET retention matched the reported postmortem distribution of Aβ plaques, the nature of [ 18 F]-florbetaben binding to other pathological lesions comprising misfolded proteins needs further assessment. The objective of this study was to determine whether Florbetaben selectively binds to Aβ plaques in postmortem tissue specimens containing mixed pathological hallmarks (i.e., tau and α-synuclein aggregates). Method: Human AD, FTLD-tau and dementia with Lewy bodies (DLB) brain sections were analyzed by [ 18 F]-florbetaben autoradiography and [ 3 H]-florbetaben high-resolution emulsion autoradiography and [ 19 F]-florbetaben fluorescence microscopy. Results: Both autoradiographical analyses demonstrated that Florbetaben exclusively bound Aβ plaques in AD brain sections at low nanomolar concentrations. Furthermore, at concentrations thousand-folds higher than those during a PET scan, [ 19 F]-florbetaben did not bind to α-synuclein or tau aggregates in DLB and FTLD-tau brain sections, respectively. Detection of [ 19 F]-florbetaben staining by fluorescence microscopy in several AD brain regions demonstrated that Florbetaben identified Aβ plaques in all brain regions examined. Conclusion: This study

  3. Basic principles and applications of {sup 18}F-FDG-PET/CT in oral and maxillofacial imaging: A pictorial essay

    Energy Technology Data Exchange (ETDEWEB)

    Omami, Galal [Dept. of Oral Diagnosis and Polyclinics, Faculty of Dentistry, The Hong Kong University, Hong Kong (Hong Kong); Tamimi, Dania [BeamReaders Inc., Orlando (United States); Branstette, Barton F. [Dept. of Otolaryngology and Radiology, University of Pittsburgh School of Medicine, Pittsburgh (United States)

    2014-12-15

    A combination of positron emission tomography (PET) with 18F-labeled fluoro-2-deoxyglucose ({sup 18}F-FDG) and computed tomography ({sup 18}F-FDG-PET/CT) has increasingly become a widely used imaging modality for the diagnosis and management of head and neck cancer. On the basis of both recent literature and our professional experience, we present a set of principles with pictorial illustrations and clinical applications of FDG-PET/CT in the evaluation and management planning of squamous cell carcinoma of the oral cavity and oropharynx. We feel that this paper will be of interest and will aid the learning of oral and maxillofacial radiology trainees and practitioners.

  4. PET imaging of dopamine transporters with [18F]FE-PE2I: Effects of anti-Parkinsonian drugs

    International Nuclear Information System (INIS)

    Bang, Ji-In; Jung, In Soon; Song, Yoo Sung; Park, Hyun Soo; Moon, Byung Seok; Lee, Byung Chul; Kim, Sang Eun

    2016-01-01

    Purpose: This study aimed to assess the striatal [ 18 F]FE-PE2I binding and the immunohistochemical stain of tyrosine hydroxylase (TH) in the striatum, and to evaluate the effects of therapeutic drugs on [ 18 F]FE-PE2I binding. Methods: Dynamic PET/CT of [ 18 F]FE-PE2I was performed in Parkinson’s disease (PD) rat models, induced by the unilateral injection of 6-OHDA into the striatum. A simplified reference tissue model method was used to calculate the striatal binding potential (striatal BP ND ). Each of the four normal rats was pretreated with pramipexole, amantadine, and escitalopram 30 min before [ 18 F]FE-PE2I injection. The effect of L-DOPA combined with benserazide was assessed in the normal and PD rats. Results: The BP ND was significantly lower in the lesioned striatum than in the striatum of the normal rats. After the pretreatment with pramipexole, amantadine, and escitalopram, the values of the striatal BP ND did not differ from those of the controls. The pretreatment with L-DOPA/benserazide, however, significantly reduced the striatal BP ND . The striatal BP ND of the PD rats with L-DOPA/benserazide pretreatment was not different from that of the same PD rats with placebo treatment. Conclusion: [ 18 F]FE-PE2I may be used as a radioligand for the in-vivo imaging of the DAT. In the normal rats, [ 18 F]FE-PE2I binding is unaffected by pramipexole, amantadine, and escitalopram. L-DOPA/benserazide does not affect the striatal [ 18 F]FE-PE2I binding in PD rats

  5. Clinical significance of MRI/{sup 18}F-FDG PET fusion imaging of the spinal cord in patients with cervical compressive myelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Kenzo; Nakajima, Hideaki; Watanabe, Shuji; Yoshida, Ai; Baba, Hisatoshi [University of Fukui, Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, Eiheiji, Fukui (Japan); Okazawa, Hidehiko [University of Fukui, Department of Biomedical Imaging Research Center, Eiheiji, Fukui (Japan); Kimura, Hirohiko [University of Fukui, Departments of Radiology, Faculty of Medical Sciences, Eiheiji, Fukui (Japan); Kudo, Takashi [Nagasaki University, Department of Radioisotope Medicine, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki (Japan)

    2012-10-15

    {sup 18}F-FDG PET is used to investigate the metabolic activity of neural tissue. MRI is used to visualize morphological changes, but the relationship between intramedullary signal changes and clinical outcome remains controversial. The present study was designed to evaluate the use of 3-D MRI/{sup 18}F-FDG PET fusion imaging for defining intramedullary signal changes on MRI scans and local glucose metabolic rate measured on {sup 18}F-FDG PET scans in relation to clinical outcome and prognosis. We studied 24 patients undergoing decompressive surgery for cervical compressive myelopathy. All patients underwent 3-D MRI and {sup 18}F-FDG PET before surgery. Quantitative analysis of intramedullary signal changes on MRI scans included calculation of the signal intensity ratio (SIR) as the ratio between the increased lesional signal intensity and the signal intensity at the level of the C7/T1 disc. Using an Advantage workstation, the same slices of cervical 3-D MRI and {sup 18}F-FDG PET images were fused. On the fused images, the maximal count of the lesion was adopted as the standardized uptake value (SUV{sub max}). In a similar manner to SIR, the SUV ratio (SUVR) was also calculated. Neurological assessment was conducted using the Japanese Orthopedic Association (JOA) scoring system for cervical myelopathy. The SIR on T1-weighted (T1-W) images, but not SIR on T2-W images, was significantly correlated with preoperative JOA score and postoperative neurological improvement. Lesion SUV{sub max} was significantly correlated with SIR on T1-W images, but not with SIR on T2-W images, and also with postoperative neurological outcome. The SUVR correlated better than SIR on T1-W images and lesion SUV{sub max} with neurological improvement. Longer symptom duration was correlated negatively with SIR on T1-W images, positively with SIR on T2-W images, and negatively with SUV{sub max}. Our results suggest that low-intensity signal on T1-W images, but not on T2-W images, is correlated

  6. The findings of F-18 FDG camera-based coincidence PET in acute leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S. N.; Joh, C. W.; Lee, M. H. [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2002-07-01

    We evaluated the usefulness of F-18 FDG coincidence PET (CoDe-PET) using a dual-head gamma camera in the assessment of patients with acute leukemia. F-18 FDG CoDE-PET studies were performed in 5 patients with acute leukemia (6 ALL and 2 AML) before or after treatment. CoDe-PET was performed utilizing a dual-head gamma camera equipped with 5/8 inch NaI(Tl) crystal. Image acquisition began 60 minutes after the injection of F-18 FDG in the fasting state. A whole trunk from cervical to inguinal regions or selected region were scanned. No attenuation correction was made and image reconstruction was done using filtered back-projection. CoDe-PET studies were evaluated visually. F-18 FDG image performed in 5 patients with ALL before therapy depicted multiple lymph node involvement and diffuse increased uptake involving axial skeleton, pelvis and femurs. F-18 FDG image done in 2 AML after chemotherapy showed only diffuse increased uptake in sternum, ribs, spine, pelvis and proximal femur and these may be due to G-CSF stimulation effect in view of drug history. But bone marrow histology showed scattered blast cell suggesting incomplete remission in one and completer remission in another. F-18 image done in 1 ALL after therapy showed no abnormal uptake. CoDe-PET with F-18 FDG in acute lymphoblastic lymphoma showed multiple lymphnode and bone marrow involvement in whole body. Therefore we conclude that CoDe-PET with F-18 FDG usefulness for evaluation of extent in acute lymphoblastic leukemia. But there was a limitation to assess therapy effectiveness during therapy due to reactive bone marrow.

  7. Physiologic uptake of 18F-FDG in transposed ovaries may mimic metastasis on 18F-FDG PET/CT imaging.

    Science.gov (United States)

    Davidson, Tima; Komisar, Orna; Korach, Jacob; Felder, Shira; Apter, Sara; Ben-Haim, Simona; Perri, Tamar

    2018-02-01

    Ovarian transposition is aimed at preserving ovarian function before irradiation in pelvic malignancies. The extrapelvic location of the ovaries and their physiologic fluorine-18-fluorodeoxyglucose (F-FDG)-uptake is a potential source of misdiagnosis as metastasis on F-FDG PET/CT. We describe the F-FDG PET/CT characteristics of transposed ovaries and their changes over time. We reviewed F-FDG PET/CT studies of all consecutive women with pelvic malignancies who underwent ovarian transposition between 2007 and 2013. Studies were grouped according to the time period over which they were carried out. Findings were categorized by location, size, appearance (solid/mixed/cystic), presence of surgical clips, ovarian F-FDG uptake (maximum standardized uptake value), and attenuation values on CT (Hounsfield units). Group time-period differences were assessed. Seventy-nine F-FDG PET/CT studies were reviewed, 30 before and 49 after transposition. Time-period groups after transposition were up to 4 months (18 studies), 4.1-12 months (n=14), and more than 12 months (n=17). After transposition, ovaries were located mainly in the paracolic gutter (n=32) and subhepatic regions (n=18). Surgical clips were present in 67%. Both ovaries appeared more solid 1 year after surgery than preoperatively (13.7% before vs. 61.3% after surgery; P<0.001). Transient F-FDG-avidity was observed in 11 ovaries. Hounsfield unit values were higher within 4 months after surgery than preoperatively, reverting thereafter to preoperative values. After ovarian transposition, nonanatomic location, loss of cysts formation in favor of solid appearance over time, and intermittent F-FDG uptake of functioning transposed ovaries might mimic metastatic lesions. Careful interpretation of F-FDG PET/CT findings is mandatory in women with pelvic malignancies who have undergone ovarian transposition.

  8. PET Imaging of Macrophage Mannose Receptor-Expressing Macrophages in Tumor Stroma Using 18F-Radiolabeled Camelid Single-Domain Antibody Fragments.

    Science.gov (United States)

    Blykers, Anneleen; Schoonooghe, Steve; Xavier, Catarina; D'hoe, Kevin; Laoui, Damya; D'Huyvetter, Matthias; Vaneycken, Ilse; Cleeren, Frederik; Bormans, Guy; Heemskerk, Johannes; Raes, Geert; De Baetselier, Patrick; Lahoutte, Tony; Devoogdt, Nick; Van Ginderachter, Jo A; Caveliers, Vicky

    2015-08-01

    Tumor-associated macrophages constitute a major component of the stroma of solid tumors, encompassing distinct subpopulations with different characteristics and functions. We aimed to identify M2-oriented tumor-supporting macrophages within the tumor microenvironment as indicators of cancer progression and prognosis, using PET imaging. This can be realized by designing (18)F-labeled camelid single-domain antibody fragments (sdAbs) specifically targeting the macrophage mannose receptor (MMR), which has been identified as an important biomarker on this cell population. Cross-reactive anti-MMR sdAbs were generated after immunization of an alpaca with the extracellular domains of both human and mouse MMR. The lead binder was chosen on the basis of comparisons of binding affinity and in vivo pharmacokinetics. The PET tracer (18)F-fluorobenzoate (FB)-anti-MMR sdAb was developed using the prosthetic group N-succinimidyl-4-(18)F-fluorobenzoate ((18)F-SFB), and its biodistribution, tumor-targeting potential, and specificity in terms of macrophage and MMR targeting were evaluated in mouse tumor models. Four sdAbs were selected after affinity screening, but only 2 were found to be cross-reactive for human and mouse MMR. The lead anti-MMR 3.49 sdAb, bearing an affinity of 12 and 1.8 nM for mouse and human MMR, respectively, was chosen for its favorable in vivo biodistribution profile and tumor-targeting capacity. (18)F-FB-anti-MMR 3.49 sdAb was synthesized with a 5%-10% radiochemical yield using an automated and optimized protocol. In vivo biodistribution analyses showed fast clearance via the kidneys and retention in MMR-expressing organs and tumor. The kidney retention of the fluorinated sdAb was 20-fold lower than a (99m)Tc-labeled counterpart. Compared with MMR- and C-C chemokine receptor 2-deficient mice, significantly higher uptake was observed in tumors grown in wild-type mice, demonstrating the specificity of the (18)F tracer for MMR and macrophages, respectively. Anti

  9. A report of the automated radiosynthesis of the tau positron emission tomography radiopharmaceutical, [18 F]-THK-5351.

    Science.gov (United States)

    Neelamegam, Ramesh; Yokell, Daniel L; Rice, Peter A; Furumoto, Shozo; Kudo, Yukitsuka; Okamura, Nobuyuki; El Fakhri, Georges

    2017-02-01

    The radiotracer, [ 18 F]-THK-5351, is a highly selective and high-binding affinity PET imaging agent for aggregates of hyper-phosphorylated tau protein. Our report is a simplified 1-pot, 2-step radiosynthesis of [ 18 F]-THK-5351. This report is broadly applicable for routine clinical production and multi-center trials on account of favorable half-life of flourine-18 and the use of a commercially available radiosynthesis module, the GE TRACERlab™ FX FN . First, the O-THP protected tosyl precursor underwent nucleophilic fluorinating reaction with potassium cryptand fluoride ([ 18 F] fluoride (K[ 18 F]/K 222 )) in Dimethyl sulfoxide at 110°C for 10 minutes followed by O-THP removal by using diluted hydrochloric acid (HCl) at same temperature. [ 18 F]-THK-5351 was purified via semi-preparative high-performance liquid chromatography and formulated by using 10% EtOH, United States Pharmacopeia (USP) in 0.9% sodium chloride for injection, USP and an uncorrected radiochemical yield of 21 ± 3.5%, with a specific activity of 153.11 ± 25.9 GBq/μmol (4138 ± 700 mCi/μmol) at the end of synthesis (63 minutes; n = 3). Copyright © 2016 John Wiley & Sons, Ltd.

  10. Time-efficient and convenient synthesis of [18F]altanserin for human PET imaging by a new work-up procedure

    International Nuclear Information System (INIS)

    Massarweh, G.; Kovacevic, M.; Rosa-Neto, P.; Evans, A.C.; Diksic, M.; Schirrmacher, R.

    2009-01-01

    [ 18 F]Altanserin, an important PET radioligand for the in vivo imaging of the 5-HT 2A receptor, was synthesized from its precursor nitro-altanserin in DMF or DMSO at high temperatures of 150 deg. C in an overall radiochemical yield (EOB) of 23-25% after 75 min. A new solid phase work-up procedure involving the acidification of the crude reaction mixture and a C18-SepPak-solid phase separation preceded the final HPLC purification. This led to a significantly reduced synthesis time as a result of a stable and early elution from the HPLC column using improved HPLC conditions (MeOH/THF/NaOAc 0.05 N pH 5: 27/18/55, flow: 5 mL/min, Symetry Prep 7 μm C18 (Waters)). The synthesis was performed semi-automatically in a modified GE TracerLab synthesis module using an in-house-developed program. The synthesized [ 18 F]altanserin was used in our ongoing human and animal PET imaging studies.

  11. Demons versus level-set motion registration for coronary 18F-sodium fluoride PET

    Science.gov (United States)

    Rubeaux, Mathieu; Joshi, Nikhil; Dweck, Marc R.; Fletcher, Alison; Motwani, Manish; Thomson, Louise E.; Germano, Guido; Dey, Damini; Berman, Daniel S.; Newby, David E.; Slomka, Piotr J.

    2016-03-01

    Ruptured coronary atherosclerotic plaques commonly cause acute myocardial infarction. It has been recently shown that active microcalcification in the coronary arteries, one of the features that characterizes vulnerable plaques at risk of rupture, can be imaged using cardiac gated 18F-sodium fluoride (18F-NaF) PET. We have shown in previous work that a motion correction technique applied to cardiac-gated 18F-NaF PET images can enhance image quality and improve uptake estimates. In this study, we further investigated the applicability of different algorithms for registration of the coronary artery PET images. In particular, we aimed to compare demons vs. level-set nonlinear registration techniques applied for the correction of cardiac motion in coronary 18F-NaF PET. To this end, fifteen patients underwent 18F-NaF PET and prospective coronary CT angiography (CCTA). PET data were reconstructed in 10 ECG gated bins; subsequently these gated bins were registered using demons and level-set methods guided by the extracted coronary arteries from CCTA, to eliminate the effect of cardiac motion on PET images. Noise levels, target-to-background ratios (TBR) and global motion were compared to assess image quality. Compared to the reference standard of using only diastolic PET image (25% of the counts from PET acquisition), cardiac motion registration using either level-set or demons techniques almost halved image noise due to the use of counts from the full PET acquisition and increased TBR difference between 18F-NaF positive and negative lesions. The demons method produces smoother deformation fields, exhibiting no singularities (which reflects how physically plausible the registration deformation is), as compared to the level-set method, which presents between 4 and 8% of singularities, depending on the coronary artery considered. In conclusion, the demons method produces smoother motion fields as compared to the level-set method, with a motion that is physiologically

  12. Imaging Cellular Proliferation During Chemo-Radiotherapy: A Pilot Study of Serial 18F-FLT Positron Emission Tomography/Computed Tomography Imaging for Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Everitt, Sarah; Hicks, Rodney J.; Ball, David; Kron, Tomas; Schneider-Kolsky, Michal; Walter, Tania; Binns, David; Mac Manus, Michael

    2009-01-01

    Purpose: To establish whether 18 F-3'-deoxy-3'-fluoro-L-thymidine ( 18 F-FLT) can monitor changes in cellular proliferation of non-small-cell lung cancer (NSCLC) during radical chemo-radiotherapy (chemo-RT). Methods and Materials: As part of a prospective pilot study, 5 patients with locally advanced NSCLC underwent serial 18 F-FLT positron emission tomography (PET)/computed tomography (CT) scans during treatment. Baseline 18 F-FLT PET/CT scans were compared with routine staging 18 F-FDG PET/CT scans. Two on-treatment 18 F-FLT scans were performed for each patient on Days 2, 8, 15 or 29, providing a range of time points for response assessment. Results: In all 5 patients, baseline lesional uptake of 18 F-FLT on PET/CT corresponded to staging 18 F-FDG PET/CT abnormalities. 18 F-FLT uptake in tumor was observed on five of nine (55%) on-treatment scans, on Days 2, 8 and 29, but not Day 15. A 'flare' of 18 F-FLT uptake in the primary tumor of one case was observed after 2 Gy of radiation (1.22 x baseline). The remaining eight on-treatment scans demonstrated a mean reduction in 18 F-FLT tumor uptake of 0.58 x baseline. A marked reduction of 18 F-FLT uptake in irradiated bone marrow was observed for all cases. This reduction was observed even after only 2 Gy, and all patients demonstrated a complete absence of proliferating marrow after 10 Gy. Conclusions: This proof of concept study indicates that 18 F-FLT uptake can monitor the distinctive biologic responses of epithelial cancers and highly radiosensitive normal tissue changes during radical chemo-RT. Further studies of 18 F-FLT PET/CT imaging during therapy may suggest that this tracer is useful in developing response-adapted RT for NSCLC.

  13. PET imaging of hepatocellular carcinoma with {sup 18}F-fluoroethylcholine and {sup 11}C-choline

    Energy Technology Data Exchange (ETDEWEB)

    Kolthammer, Jeffrey A.; Tenley, Nathan [Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH (United States); Corn, David J.; Wu, Chunying; Tian, Haibin; Wang, Yanming [University Hospitals Case Medical Center, Nuclear Medicine Division, Department of Radiology, Cleveland, OH (United States); Lee, Zhenghong [Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH (United States); University Hospitals Case Medical Center, Nuclear Medicine Division, Department of Radiology, Cleveland, OH (United States)

    2011-07-15

    Choline-based radiotracers have been studied for PET imaging of hepatocellular carcinoma (HCC). Using an {sup 18}F-labeled choline analog, instead of the {sup 11}C-labeled native choline, would facilitate its widespread use in the clinic. In this study, PET with {sup 18}F-fluoroethylcholine (FEC) and {sup 11}C-choline (CHOL) were compared using an animal model of HCC. The effects of fasting on the performance of choline-based tracers were also investigated. A woodchuck model of HCC was used to compare the two tracers, which were administered and imaged in sequence during the same imaging session. Dynamic PET images were generated spanning 50 min starting from tracer injection. Time-activity curves and tracer contrast were calculated in liver regions with tracer accumulation, and the contrast at a late time-point with the two tracers, and between fasted and nonfasted states, were compared. Foci of HCC with increased uptake ranged in size from 1.0 to 1.6 cm, with mean tumor-to-background contrast of 1.3 with FEC and 1.5 with CHOL at 50 min after injection. The tracers show similar patterns of uptake immediately following administration, and both activities plateaued at 10 min after injection. No significant differences in uptake dynamics or final contrast were observed between the fasted and nonfasted states. PET imaging of HCC is possible with both CHOL and FEC. Fasting was not found to affect accumulation of either tracer. These results encourage further investigation into the clinical utility of FEC for HCC imaging. (orig.)

  14. Multi-modal magnetic resonance imaging and histology of vascular function in xenografts using macromolecular contrast agent hyperbranched polyglycerol (HPG-GdF).

    Science.gov (United States)

    Baker, Jennifer H E; McPhee, Kelly C; Moosvi, Firas; Saatchi, Katayoun; Häfeli, Urs O; Minchinton, Andrew I; Reinsberg, Stefan A

    2016-01-01

    Macromolecular gadolinium (Gd)-based contrast agents are in development as blood pool markers for MRI. HPG-GdF is a 583 kDa hyperbranched polyglycerol doubly tagged with Gd and Alexa 647 nm dye, making it both MR and histologically visible. In this study we examined the location of HPG-GdF in whole-tumor xenograft sections matched to in vivo DCE-MR images of both HPG-GdF and Gadovist. Despite its large size, we have shown that HPG-GdF extravasates from some tumor vessels and accumulates over time, but does not distribute beyond a few cell diameters from vessels. Fractional plasma volume (fPV) and apparent permeability-surface area product (aPS) parameters were derived from the MR concentration-time curves of HPG-GdF. Non-viable necrotic tumor tissue was excluded from the analysis by applying a novel bolus arrival time (BAT) algorithm to all voxels. aPS derived from HPG-GdF was the only MR parameter to identify a difference in vascular function between HCT116 and HT29 colorectal tumors. This study is the first to relate low and high molecular weight contrast agents with matched whole-tumor histological sections. These detailed comparisons identified tumor regions that appear distinct from each other using the HPG-GdF biomarkers related to perfusion and vessel leakiness, while Gadovist-imaged parameter measures in the same regions were unable to detect variation in vascular function. We have established HPG-GdF as a biocompatible multi-modal high molecular weight contrast agent with application for examining vascular function in both MR and histological modalities. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Imaging grafted cells with [18F]FHBG using an optimized HSV1-TK mammalian expression vector in a brain injury rodent model.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Salabert

    Full Text Available Cell transplantation is an innovative therapeutic approach after brain injury to compensate for tissue damage. To have real-time longitudinal monitoring of intracerebrally grafted cells, we explored the feasibility of a molecular imaging approach using thymidine kinase HSV1-TK gene encoding and [18F]FHBG as a reporter probe to image enzyme expression.A stable neuronal cell line expressing HSV1-TK was developed with an optimised mammalian expression vector to ensure long-term transgene expression. After [18F]FHBG incubation under defined parameters, calibration ranges from 1 X 104 to 3 X 106 Neuro2A-TK cells were analysed by gamma counter or by PET-camera. In parallel, grafting with different quantities of [18F]FHBG prelabelled Neuro2A-TK cells was carried out in a rat brain injury model induced by stereotaxic injection of malonate toxin. Image acquisition of the rats was then performed with PET/CT camera to study the [18F]FHBG signal of transplanted cells in vivo.Under the optimised incubation conditions, [18F]FHBG cell uptake rate was around 2.52%. In-vitro calibration range analysis shows a clear linear correlation between the number of cells and the signal intensity. The PET signal emitted into rat brain correlated well with the number of cells injected and the number of surviving grafted cells was recorded via the in-vitro calibration range. PET/CT acquisitions also allowed validation of the stereotaxic injection procedure. Technique sensitivity was evaluated under 5 X 104 grafted cells in vivo. No [18F]FHBG or [18F]metabolite release was observed showing a stable cell uptake even 2 h post-graft.The development of this kind of approach will allow grafting to be controlled and ensure longitudinal follow-up of cell viability and biodistribution after intracerebral injection.

  16. [F-18]FDG imaging of head and neck tumors: comparison of hybrid PET, dedicated PET and CT

    International Nuclear Information System (INIS)

    Dresel, S.; Brinkbaeumer, K.; Schmid, R.; Poepperl, G.; Hahn, K.; Szeimies, U.

    2001-01-01

    Aim: Aim of the study was to evaluate [F-18]FDG imaging of head and neck tumors using a Hybrid-PET device of the 2nd or 3rd generation. Examinations were compared to dedicated PET and Spiral-CT. Methods: 54 patients suffering from head and neck tumors were examined using dedicated PET and Hybrid-PET after injection of 185-350 MBq [F-18]FDG. Examinations were carried out on the dedicated PET first followed by a scan on the Hybrid-PET. Dedicated PET was acquired in 3D mode, Hybrid-PET was performed in list mode using an axial filter. Reconstruction of data was performed iteratively on both, dedicated PET and Hybrid-PET. All patients received a CT scan in multislice technique. All finding have been verified by the goldstandard histology or in case of negative histology by follow up. Results: Using dedicated PET the primary or recurrent lesion was correctly diagnosed in 47/48 patients, using Hybrid-PET in 46/48 patients and using CT in 25/48 patients. Metastatic disease in cervical lymph nodes was diagnosed in 17/18 patients with dedicated PET, in 16/18 patients with Hybrid-PET and in 15/18 with CT. False positive results with regard to lymph node metastasis were seen with one patient for dedicated PET and Hybrid-PET, respectively, and with 18 patients for CT. In a total of 11 patients unknown metastastic lesions were seen with dedicated PET and with Hybrid-PET elsewhere in the body. Additional malignant disease other than the head and neck tumor was found in 4 patients. Conclusion: Using Hybrid-PET for [F-18]FDG imaging reveals a loss of sensitivity and specificity of about 1-5% as compared to dedicated PET in head and neck tumors. [F-18]FDG PET with both, dedicated PET and Hybrid-PET is superior to CT in the diagnosis of primary or recurrent lesions as well as in the assessment of lymph node involvement. (orig.) [de

  17. Increasing feasibility and utility of 18F-FDOPA PET for the management of glioma

    International Nuclear Information System (INIS)

    Bell, Christopher; Dowson, Nicholas; Puttick, Simon; Gal, Yaniv; Thomas, Paul; Fay, Mike; Smith, Jye; Rose, Stephen

    2015-01-01

    Introduction: Despite radical treatment therapies, glioma continues to carry with it a uniformly poor prognosis. Patients diagnosed with WHO Grade IV glioma (glioblastomas; GBM) generally succumb within two years, even those with WHO Grade III anaplastic gliomas and WHO Grade II gliomas carry prognoses of 2–5 and 2 years, respectively. PET imaging with 18 F-FDOPA allows in vivo assessment of the metabolism of glioma relative to surrounding tissues. The high sensitivity of 18 F-DOPA imaging grants utility for a number of clinical applications. Methods: A collection of published work about 18 F-FDOPA PET was made and a critical review was discussed and written. Results: A number of research papers have been published demonstrating that in conjunction with MRI, 18 F-FDOPA PET provides greater sensitivity and specificity than these modalities in detection, grading, prognosis and validation of treatment success in both primary and recurrent gliomas. In further comparisons with 11 C-MET, 18 F-FLT, 18 F-FET and MRI, 18 F-FDOPA has shown similar or better efficacy. Recently synthesis cassettes have become available, making 18 F-FDOPA more accessible. Conclusions: According to the available data, 18 F-FDOPA PET is a viable radiotracer for imaging and treatment planning of gliomas. Advances in knowledge and implication for patient care: 18 F-FDOPA PET appears to be a viable radiopharmaceutical for the diagnosis and treatment planning of gliomas cases, improving on that of MRI and 18 F-FDG PET

  18. Usefulness of low dose oral contrast media in 18F-FDG PET/CT

    International Nuclear Information System (INIS)

    An, Young Sil; Yoon, Joon Kee; Hong, Seon Pyo; Joh, Chul Woo; Yoon, Seok Nam

    2006-01-01

    The standard protocol using large volume of oral contrast media may cause gastrointestinal discomfort and contrast-related artifacts in PET/CT. The aim of this study was to evaluate the usefulness of low dose oral contrast in 18 F-FDG PET/CT. We retrospectively reviewed the whole-body PET/CT images in a total of 435 patients. About 200 ml of oral contrast agent (barium sulfate) was administered immediately before injection of 18 F-FDG. The FDG uptake of intestines was analyzed by visual and semi-quantitative method on transaxial, coronal and saggital planes. Seventy (16%, 113 sites) of 435 images showed high FDG uptake (peak SUV > 4); 50 (74%, 84 sites) with diffuse and 20 (26%, 29 sites) with focal uptake. The most commonly delivered site of oral contrast media was small bowel (n = 27, 39%). On PET/CT images, FDG uptake coexisted with oral contrast media in 26 patients (54%, 38 sites) with diffuse pattern and 9 (45%, 9 sites) with focal pattern, and by sites, those were 38 (45%) and 9 (31%), respectively. In small bowel regions, the proportion of coexistence reached as high as 61% (29/47 sites). A visual analysis of available non-attenuation corrected PET images of 27 matched regions revealed no contrast-related artifact. We concluded that the application of low dose contrast media could be helpful in the evaluation of abdominal uptake in the FDG PET/CT image

  19. Influence of P-Glycoprotein Inhibition or Deficiency at the Blood-Brain Barrier on (18)F-2-Fluoro-2-Deoxy-D-glucose ( (18)F-FDG) Brain Kinetics.

    Science.gov (United States)

    Tournier, Nicolas; Saba, Wadad; Goutal, Sébastien; Gervais, Philippe; Valette, Héric; Scherrmann, Jean-Michel; Bottlaender, Michel; Cisternino, Salvatore

    2015-05-01

    The fluorinated D-glucose analog (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) is the most prevalent radiopharmaceutical for positron emission tomography (PET) imaging. P-Glycoprotein's (P-gp, MDR1, and ABCB1) function in various cancer cell lines and tumors was shown to impact (18)F-FDG incorporation, suggesting that P-gp function at the blood-brain barrier may also modulate (18)F-FDG brain kinetics. We tested the influence of P-gp inhibition using the cyclosporine analog valspodar (PSC833; 5 μM) on the uptake of (18)F-FDG in standardized human P-gp-overexpressing cells (MDCKII-MDR1). Consequences for (18)F-FDG brain kinetics were then assessed using (i) (18)F-FDG PET imaging and suitable kinetic modelling in baboons without or with P-gp inhibition by intravenous cyclosporine infusion (15 mg kg(-1) h(-1)) and (ii) in situ brain perfusion in wild-type and P-gp/Bcrp (breast cancer resistance protein) knockout mice and controlled D-glucose exposure to the brain. In vitro, the time course of (18)F-FDG uptake in MDR1 cells was influenced by the presence of valspodar in the absence of D-glucose but not in the presence of high D-glucose concentration. PET analysis revealed that P-gp inhibition had no significant impact on estimated brain kinetics parameters K 1, k 2, k 3, V T , and CMRGlc. The lack of P-gp effect on in vivo (18)F-FDG brain distribution was confirmed in P-gp/Bcrp-deficient mice. P-gp inhibition indirectly modulates (18)F-FDG uptake into P-gp-overexpressing cells, possibly through differences in the energetic cell level state. (18)F-FDG is not a P-gp substrate at the BBB and (18)F-FDG brain kinetics as well as estimated brain glucose metabolism are influenced by neither P-gp inhibition nor P-gp/Bcrp deficiencies in baboon and mice, respectively.

  20. Nicotinic receptor imaging with F-18 A85380 PET in Alzheimer's disease and normal ageing

    International Nuclear Information System (INIS)

    Bottlaender, M.; Maziere, B.; Pappata, S.; Dolle, F.; Rowe, C.; Tochon-Danguy, H.; Reutens, D.; Chan, G.; Woodward, M.

    2002-01-01

    high affinity but low potency for the nicotinic receptor (i.e. it is a weak agonist). It is selective for the alpha2beta4 (A2B4) subtype. A85380 does not bind to the alpha 7 subtype receptor nor the ganglionic alpha3beta4 subtype and therefore has minimal cardiovascular effects. It also has low affinity for muscle nicotinic receptors (Sullivan JP 1996). These properties indicate a high level of safety when this compound is used in the extremely low (nanomolar) concentrations required for PET imaging studies. Labelling of A85380 with fluorine-18, a positron emitting radioisotope, has been achieved without alteration of the receptor binding characteristics by Frederic Dolle and colleagues at the CEA PET Centre, Orsay (Dolle F et al., 1998). In March 2000, F-18 A85380 PET studies in baboons were presented by Prof. Bernard Maziere at the France Australia Scientific Meeting in Melbourne. After this presentation a collaboration between the CEA PET Centre and ARMC was discussed between Prof. Maziere and Dr. Rowe (Director, Department of Nuclear Medicine and Centre for PET, ARMC). Subsequently in June 2000 at the US SNM meeting in St. Louis further discussions were held between Dr. Rowe and Professor Syrota. In September 2000, draft protocols were exchanged and communication between Frederic Dolle and Henri Tochon-Danguy commenced regarding the radiochemistry. In May 2001, Dr. Rowe visited the CEA PET Centre, Orsay and a collaborative agreement was signed. Subsequently between May and August 2001, CEA PET Centre supplied the chemical precursor, labelling method, toxicology results and human radiation dosimetry data to ARMC. The research plan is to investigate the uptake and distribution of F-18 A85380 with PET in normal elderly persons, and subjects with mild Alzheimer's disease, and to quantify the effect of age on uptake. We will assess the utility of nicotinic receptor imaging with PET for the early diagnosis of AD and its potential for monitoring therapies designed to

  1. Full Automatic synthesis of [18F]FMISO

    International Nuclear Information System (INIS)

    Seung Jun Oh; Se Hun Kang; Jin-Sook Ryu; Dae Hyuk Moon

    2004-01-01

    [ 18 F]FMISO is a radiopharmaceutical for hypoxia imaging. Although it was developed in 1986, there has been no report about automatic synthesis. In this experiment, we established the full automatic synthesis of [ 18 F]FMISO and evaluate the stability according to ICH guideline. Method: We used GE MicroLab MX for automatic synthesis. Sequence program was modified to control of the module as follows: [ 18 F]Fluoride drying→[ 18 F]fluorination→trapping of reaction mixture on C18 cartridge→purification-elution of reaction mixture→hydrolysis and HPLC purification. We used disposable cassette for each synthesis and discard it after synthesis. To find optimal synthesis condition, we tested 90 120 degree C as reaction temperature, 5 15 mg of 1-(2-nitro-1-imidazolyl) -2-O-tetrahtdropyranyl-3-O-toluenesulfonyl-propanediol as precursor and 5 15 min as [ 18 F]fluorination time. HPLC purification condition was EtOH:H20 = 5:95, 5ml/min with Alltech Econosil column. To check the stability of production, we performed 30 times of run. We checked the radiochemical stability until 6 hours at 25 degree C and 40% humidity condition. We also performed the stability test at 50 70 degree C with 60-80% humidity condition or under UV light for 6 hours after synthesis for acceleration test, Results: The optimal [ 18 F] fluorination condition was 10mg of precursor and 15 min incubation at 110 degree C. Hydrolysis was performed at 105 degree C for 5 min. After HPLC purification, radiochemical yields and purity were 45±2.8 and 98±1.2%, respectively. Total synthesis time was 60±5.2 min. [ 18 F]FMISO was stable until 6 hours after production with 97±2.4% of radiochemical purity. [ 18 F]FMISO was also stable in acceleration test and photochemical test with 97±2.4 and 97±2.8% of radiochemical purity, respectively. Conclusion: We established the full automatic synthesis method of [ 18 F]FMISO with reproducible high production yield. [18F]FMISO synthesized by this method was stable

  2. Characterization of 18F-dipicolylamine (DPA) derivatives in cells infected with influenza virus

    International Nuclear Information System (INIS)

    Li, Junling; Gerlach, Rachael L.; Jonsson, Colleen B.; Gray, Brian D.; Pak, Koon Y.; Ng, Chin K.

    2015-01-01

    . Cell internalization studies showed that more than 70% of 18 F-FB-Zn-DPA remained on the cell surface over a time course of 2 hr in the cell media, but over 90% of 18 F-FB-Cy7-Zn-DPA was internalized within 15 min of incubation. IC 50 values were estimated to be 1.5 ± 0.3 nM and 26.2 ± 5.1 nM for Zn-DPA and Cy7-Zn-DPA, respectively. Conclusions: 18 F-SFB was the optimal labeling method for Zn-DPA and Cy7-Zn-DPA with respect to radiochemistry and provided complexes with high target-to-background ratios. 18 F-FB-Zn-DPA and 18 F-FB-Cy7-Zn-DPA appeared to have a completely different internalization mechanism, while Zn-DPA showed higher binding affinity than Cy7-Zn-DPA. Based on these favorable characteristics, 18 F-FB-Zn-DPA and 18 F-FB-Cy7-Zn-DPA should be further evaluated as potential imaging agents for viral infection

  3. Automated synthesis of ["1"8F](2S,4R)-4-fluoroglutamine on a GE TRACERlab™ FX-N Pro module

    International Nuclear Information System (INIS)

    Zhang, Xiang; Basuli, Falguni; Shi, Zhen-Dan; Xu, Biying; Blackman, Burchelle; Choyke, Peter L.; Swenson, Rolf E.

    2016-01-01

    Glutamine (Gln) and its analogues may serve as imaging agents for tumor diagnosis using positron emission tomography (PET), especially for tumors with negative ["1"8F]FDG scan. We report the first automated synthesis of ["1"8F](2S,4R)-4-fluoroglutamine (["1"8F]FGln) on a GE TRACERlab™ FX-N Pro module. ["1"8F]FGln was obtained in 80±3 min with a radiochemical yield of 21±3% (n=5, uncorrected). The radiochemical purity was >98%, and optical purity 90±5%. The synthesis is highly reproducible with good chemical purity, radiochemical yield, and is suitable for translation to cGMP production. - Highlights: • The radiosynthesis of ["1"8F]fluoroglutamine was optimized with improved yield and purity. • Fully automated synthesis was established on a GE TRACERlab™ FX-N Pro module. • Radiochemical yield of 21±3% (uncorrected, n=5) was obtained with good reproducibility. • The automation could be easily adapted to cGMP production for routine clinical use.

  4. PET imaging of osteosarcoma in dogs using a fluorine-18-labeled monoclonal antibody fab fragment

    Energy Technology Data Exchange (ETDEWEB)

    Page, R.L.; Garg, P.K.; Gard, S. [North Carolina State Univ., Raleigh, NC (United States)]|[Duke Univ. Medical Center, Durham, NC (United States)]|[North Carolina and Norke Radium Hospital, Oslo (Norway)] [and others

    1994-09-01

    Four dogs with histologically confirmed osteogenic sarcoma were studied with PET following intravenous injection of the {sup 18}F-labeled Fab fragment of TP-3, a monoclonal antibody specific for human and canine osteosarcomas. The antibody fragment was labeled using the N-succinimidyl (8-(4{prime}-({sup 18}F)fluorobenzyl)amino)suberate acylation agent. Blood clearance of activity was biphasic in all dogs but half-times were variable (T{sub 1/2{beta}} = 2-13 hr). Catabolism of labeled Fab was reflected by the decrease in protein-associated activity in serum from more than 90% at 1 min to 60%-80% at 4 hr. PET images demonstrated increased accumulation of {sup 18}F at the primary tumor site relative to normal contralateral bone in one dog as early as 15 min after injection. Biopsies obtained after euthanasia indicated higher uptake at the edges of the tumor as observed on the PET scans. Tumor uptake was 1-3 x 10{sup -3}% injected dose/g, a level similar to that reported for other Fab fragments in human tumors. In the three dogs with metastatic disease, early PET images reflected activity in the blood pool but later uptake was observed in suspected metastatic sites. These results, although preliminary, suggest that PET imaging of {sup 18}F-labeled antibody fragments is feasible and that dogs with spontaneous tumors could be a valuable model for preclinical research with radioimmunoconjugates. 34 refs., 6 figs., 2 tabs.

  5. PET imaging of osteosarcoma in dogs using a fluorine-18-labeled monoclonal antibody fab fragment

    International Nuclear Information System (INIS)

    Page, R.L.; Garg, P.K.; Gard, S.

    1994-01-01

    Four dogs with histologically confirmed osteogenic sarcoma were studied with PET following intravenous injection of the 18 F-labeled Fab fragment of TP-3, a monoclonal antibody specific for human and canine osteosarcomas. The antibody fragment was labeled using the N-succinimidyl (8-(4'-( 18 F)fluorobenzyl)amino)suberate acylation agent. Blood clearance of activity was biphasic in all dogs but half-times were variable (T 1/2β = 2-13 hr). Catabolism of labeled Fab was reflected by the decrease in protein-associated activity in serum from more than 90% at 1 min to 60%-80% at 4 hr. PET images demonstrated increased accumulation of 18 F at the primary tumor site relative to normal contralateral bone in one dog as early as 15 min after injection. Biopsies obtained after euthanasia indicated higher uptake at the edges of the tumor as observed on the PET scans. Tumor uptake was 1-3 x 10 -3 % injected dose/g, a level similar to that reported for other Fab fragments in human tumors. In the three dogs with metastatic disease, early PET images reflected activity in the blood pool but later uptake was observed in suspected metastatic sites. These results, although preliminary, suggest that PET imaging of 18 F-labeled antibody fragments is feasible and that dogs with spontaneous tumors could be a valuable model for preclinical research with radioimmunoconjugates. 34 refs., 6 figs., 2 tabs

  6. Optimization of precursor synthesis, formulation and stability of 1′-[18 F]fluoroethyl-β-D-lactose ([18 F]FEL) for preclinical studies in detection of pancreatic cancer

    International Nuclear Information System (INIS)

    Paolillo, Vincenzo; De Palatis, Louis; Alauddin, Mian M.

    2014-01-01

    Introduction: 1′-[ 18 F]Fluoroethyl-β-D-lactose ([ 18 F]FEL) is a new PET imaging agent for early detection of pancreatic cancer and hepatocellular carcinoma. We previously reported the syntheses of [ 18 F]FEL using a bromo- and a tosyl- precursor, followed by an improved method using a nosyl-precursor. However, some steps in the synthesis of the precursor appeared to be problematic producing low yields. Here, we report on an optimized method for synthesis of the precursor and production of [ 18 F]FEL; we also describe [ 18 F]FEL’s formulation and stability. Methods: Acetylation of D-lactose 1 was performed following a literature procedure to obtain 1′,2′,3′,6′,2,3,4,6-D-lactose octa-acetate 2a/2b. Bromination of 2a/2b was performed using HBr/acetic acid to produce 1'-bromo-2′,3′,6′,2,3,4,6-hepta-O-acetyl-α-D-lactose 3. Coupling of 3 with ethylene glycol was performed in the presence of Ag-tosylate and an excess of ethylene glycol to produce 4a. Compound 4a was reacted with p-nitrophenylsulfonyl chloride to produce the nosyl derivative 5. Radiofluorination of 5 was performed using K[ 18 F]fluoride/kryptofix to obtain 6, which was purified by HPLC and hydrolyzed with Na-methoxide to produce 7. Results: Compound 2 (2a/2b) was obtained in 83% yield as a mixture of two anomeric products. Compound 3 was obtained from the 2a/2b mixture in 80% yield as one product. Coupling of 3 with ethylene glycol produced 4a in 90% yield. Compound 5 was obtained in 64% yield, and radiofluorination of 5 produced 6 in 62.5% ± 7.5% yields (n = 8). Hydrolysis of 6 with Na-methoxide produced 7 in 42.0% ± 7.0% yield (n = 8) from the end of bombardment. Conclusions: A simple 4-step synthesis of the precursor, compound 5, has been achieved with improved yields. A new formulation of [ 18 F]FEL has been developed that allows the product to remain stable at ambient temperature for use in animal studies. This improved synthesis of the precursor and stable formulation of

  7. Optimization of precursor synthesis, formulation and stability of 1′-[18 F] fluoroethyl-β-d-lactose ([18 F]FEL) for preclinical studies in detection of pancreatic cancer

    Science.gov (United States)

    Paolillo, Vincenzo; De Palatis, Louis; Alauddin, Mian M.

    2014-01-01

    Introduction 1′-[18 F]Fluoroethyl-β-d-lactose ([18 F]FEL) is a new PET imaging agent for early detection of pancreatic cancer and hepatocellular carcinoma. We previously reported the syntheses of [18 F]FEL using a bromo- and a tosyl- precursor, followed by an improved method using a nosyl-precursor. However, some steps in the synthesis of the precursor appeared to be problematic producing low yields. Here, we report on an optimized method for synthesis of the precursor and production of [18 F]FEL; we also describe [18 F]FEL’s formulation and stability. Methods Acetylation of d-lactose 1 was performed following a literature procedure to obtain 1′,2′,3′,6′,2,3,4,6-d-lactose octa-acetate 2a/2b. Bromination of 2a/2b was performed using HBr/acetic acid to produce 1'-bromo-2′,3′,6′,2,3,4,6-hepta-O-acetyl-α-d-lactose 3. Coupling of 3 with ethylene glycol was performed in the presence of Ag-tosylate and an excess of ethylene glycol to produce 4a. Compound 4a was reacted with p-nitrophenylsulfonyl chloride to produce the nosyl derivative 5. Radiofluorination of 5 was performed using K[18 F]fluoride/kryptofix to obtain 6, which was purified by HPLC and hydrolyzed with Na-methoxide to produce 7. Results Compound 2 (2a/2b) was obtained in 83% yield as a mixture of two anomeric products. Compound 3 was obtained from the 2a/2b mixture in 80% yield as one product. Coupling of 3 with ethylene glycol produced 4a in 90% yield. Compound 5 was obtained in 64% yield, and radiofluorination of 5 produced 6 in 62.5% ± 7.5% yields (n = 8). Hydrolysis of 6 with Na-methoxide produced 7 in 42.0% ± 7.0% yield (n = 8) from the end of bombardment. Conclusions A simple 4-step synthesis of the precursor, compound 5, has been achieved with improved yields. A new formulation of [18 F]FEL has been developed that allows the product to remain stable at ambient temperature for use in animal studies. This improved synthesis of the precursor and stable formulation of [18 F]FEL should

  8. Production And Quality Control Of Radiopharmaceutical 18F-FDG

    International Nuclear Information System (INIS)

    Dinh Thi Bich Lieu; Nguyen Van Si; Vu Van Tien

    2011-01-01

    18 F-FDG is a radiopharmaceutical for imaging diagnosis with PET/CT in Nuclear Medicine. Criteria of injection pharmaceuticals are the highest standards. So, quality assurance and quality control must be followed very strictly. The selection of the procedure for 18 F-FDG has based on several criteria: high chemical efficiency, short synthesis time, toxic component free and etc. The quality control of 18 F-FDG consist many fields such as: nuclear physic (nuclear purity), radiochemistry (radionuclear purity, radiochemical purity), chemistry (chemical purity), radiation measurement (half life), microbiology (pyrogen, endotoxin), etc. which is following USP, BP or EP. (author)

  9. A robotic system for 18F-FMISO PET-guided intratumoral pO2 measurements.

    Science.gov (United States)

    Chang, Jenghwa; Wen, Bixiu; Kazanzides, Peter; Zanzonico, Pat; Finn, Ronald D; Fichtinger, Gabor; Ling, C Clifton

    2009-11-01

    An image-guided robotic system was used to measure the oxygen tension (pO2) in rodent tumor xenografts using interstitial probes guided by tumor hypoxia PET images. Rats with approximately 1 cm diameter tumors were anesthetized and immobilized in a custom-fabricated whole-body mold. Imaging was performed using a dedicated small-animal PET scanner (R4 or Focus 120 microPET) approximately 2 h after the injection of the hypoxia tracer 18F-fluoromisonidazole (18F-FMISO). The coordinate systems of the robot and PET were registered based on fiducial markers in the rodent bed visible on the PET images. Guided by the 3D microPET image set, measurements were performed at various locations in the tumor and compared to the corresponding 18F-FMISO image intensity at the respective measurement points. Experiments were performed on four tumor-bearing rats with 4 (86), 3 (80), 7 (162), and 8 (235) measurement tracks (points) for each experiment. The 18F-FMISO image intensities were inversely correlated with the measured pO2, with a Pearson coefficient ranging from -0.14 to -0.97 for the 22 measurement tracks. The cumulative scatterplots of pO2 versus image intensity yielded a hyperbolic relationship, with correlation coefficients of 0.52, 0.48, 0.64, and 0.73, respectively, for the four tumors. In conclusion, PET image-guided pO2 measurement is feasible with this robot system and, more generally, this system will permit point-by-point comparison of physiological probe measurements and image voxel values as a means of validating molecularly targeted radiotracers. Although the overall data fitting suggested that 18F-FMISO may be an effective hypoxia marker, the use of static 18F-FMISO PET postinjection scans to guide radiotherapy might be problematic due to the observed high variation in some individual data pairs from the fitted curve, indicating potential temporal fluctuation of oxygen tension in individual voxels or possible suboptimal imaging time postadministration of hypoxia

  10. 18F-PEG-biotin: Precursor (boroaryl-PEG-biotin) synthesis, 18F-labelling and an in-vitro assessment of its binding with NeutravidinTM-trastuzumab pre-treated cells

    International Nuclear Information System (INIS)

    Smith, Tim A.D.; Simpson, Michael; Cheyne, Richard; Trembleau, Laurent

    2011-01-01

    In terms of nuclear decay 18 F is the most ideal PET nuclide but its short t 1/2 precludes its use for directly labelling whole antibodies due to their long blood residence times. Pre-targeted imaging using affinity systems such as Neutravidin TM -biotin facilitates the application of short-lived nuclides by their attachment to biotin for imaging cell surface proteins targeted with Neutravidin TM -conjugated antibodies. Methods: Boroaryl functionalised biotin was prepared with a PEG linker and radiolabelled by incubation with 18 F in acidified aqueous solution. Cells expressing high (SKBr3), medium (MDA-MB-453) and low (MDA-MB-468) levels of HER-2 were pre-incubated with Neutravidin TM -conjugated trastuzumab, washed, and then incubated with 18 F-PEG-biotin. Results: The 18 F-fluorination of boroaryl-PEG-biotin was much more efficient than reported for other versions of boroaryl-biotin. The novel 18 F-PEG-biotin was demonstrated to bind to HER-2-expressing cells in-vitro pre-incubated with Neutravidin TM -conjugated trastuzumab. Conclusion: Biotin can be functionalised with boroaryl and readily 18 F-radiolabelled in aqueous solution and will bind to cells pre-incubated with Neutravidin TM -antibody conjugates. - Highlights: → Boroaryl-biotin precursor is prepared. → Rapid 18 F-fluorination is demonstrated. → HER-2 expressing breast cancer cells pre-treated with trastuzumab-Neutravidin TM . → 18 F-PEG-biotin binding to pre-treated cells corresponds with HER-2 expression.

  11. Synthetic improvement and animal experiment of 6-18F-DOPA

    International Nuclear Information System (INIS)

    Tang Ganghua; Tang Xiaolan; Wang Mingfang; Luo Lei; Li Zhi; Huang Zuhan; Zhang Lan; Wang Yongxian

    2002-01-01

    Objective: To study synthetic improvement and biodistribution of 6- 18 F-DOPA in normal rats and hemi-Parkinsonism rats. Methods: 6- 18 F-DOPA was synthesized from the starting material 6-nitropiperonal via multi-step reaction including the nucleophilic fluorination, reductive iodination with diiodosilane on Sep-Pak column, chiral catalytic phase-transfer alkylation, and hydrolysis reaction. Biodistribution of 6- 18 F-DOPA in normal rats and the brain of hemi-Parkinsonism rats was determined. Results: The total time of synthesis was less than 110 min, the total uncorrected radiochemical yield from potassium 6- 18 F-DOPA was 5%-18%, and the enantiomeric purity and radiochemical purity were above 97% and 98%, respectively. High uptake in the kidney, blood, striatum, and hippocampus, rapid blood clearance in the kidney and blood, long retaining time and high striatum/cerebellum and striatum/cortex 6- 18 F-DOPA uptake ratio were found in normal rats. Compared with the intact side of hemi-Parkinsonism rats and pseudo-operated group, 6- 18 F-DOPA uptake and striatum/cerebellum and striatum/cortex 6- 18 F-DOPA uptake ratio reduced significantly in the lesioned side of hemi-Parkinsonism rats (P 18 F-DOPA. The synthetic 6- 18 F-DOPA is allowed to be used to study the animal and Parkinson's disease with PET imaging

  12. Automatic synthesis of 16α-[18F]fluoro-17β-estradiol using a cassette-type [18F]fluorodeoxyglucose synthesizer

    International Nuclear Information System (INIS)

    Mori, Tetsuya; Kasamatsu, Shingo; Mosdzianowski, Christoph; Welch, Michael J.; Yonekura, Yoshiharu; Fujibayashi, Yasuhisa

    2006-01-01

    16α-[ 18 F]fluoro-17β-estradiol ([ 18 F]FES) is a radiotracer for imaging estrogen receptors by positron emission tomography. We developed a clinically applicable automatic preparation system for [ 18 F]FES by modifying a cassette-type [ 18 F]fluorodeoxyglucose synthesizer. Two milligrams of 3-O-methoxymethyl-16,17-O-sulfuryl-16-epiestriol in acetonitrile was heated at 105 o C for 10 min with dried [ 18 F]fluoride. The resultant solution was evaporated and hydrolyzed with 0.2 N HCl in 90% acetonitrile/water at 95 o C for 10 min under pressurized condition. The neutralization was carried out with 2.8% NaHCO 3 , and then the high-performance liquid chromatography (HPLC) purification was performed. The desired radioactive fraction was collected and the solvent was replaced by 10 ml of saline, and then passed through a 0.22-μm filter into a pyrogen-free vial as the final product. The HPLC purification data demonstrated that [ 18 F]FES was synthesized with a yield of 76.4±1.9% (n=5). The yield as the final product for clinical use was 42.4±3.2% (n=5, decay corrected). The total preparation time was 88.2±6.4 min, including the HPLC purification and the solvent replacement process. The radiochemical purity of the final product was >99%, and the specific activity was more than 111 GBq/μmol. The final product was stable for more than 6 h in saline containing sodium ascorbate. This new preparation system enables us to produce [ 18 F]FES safe for clinical use with high and reproducible yield

  13. Single-step synthesis of [18F]haloperidol from the chloro-precursor and its applications in PET imaging of a cat's brain

    International Nuclear Information System (INIS)

    Hashizume, Kazunari; Tamakawa, Hiroki; Hashimoto, Naoto; Miyake, Yoshihiro

    1997-01-01

    We have established a convenient synthesis process for the synthesis of [ 18 F]haloperidol using a single-step 18 F - for -Cl exchange reaction and a new elution system for the preparative high performance liquid chromatography (HPLC) using C18 bonded vinylalcohol copolymer gel (ODP) and a basic eluent. We successfully applied the product to cat-PET study and got clear images of the striatum, showing the usefulness of this synthesis. (author)

  14. Impact of Personal Characteristics and Technical Factors on Quantification of Sodium 18F-Fluoride Uptake in Human Arteries

    DEFF Research Database (Denmark)

    Blomberg, Björn Alexander; Thomassen, Anders; de Jong, Pim A

    2015-01-01

    Sodium (18)F-fluoride ((18)F-NaF) PET/CT imaging is a promising imaging technique for assessment of atherosclerosis, but is hampered by a lack of validated quantification protocols. Both personal characteristics and technical factors can affect quantification of arterial (18)F-NaF uptake....... This study investigated if blood activity, renal function, injected dose, circulating time, and PET/CT system affect quantification of arterial (18)F-NaF uptake. METHODS: Eighty-nine healthy subjects were prospectively examined by (18)F-NaF PET/CT imaging. Arterial (18)F-NaF uptake was quantified...... assessed the effect of personal characteristics and technical factors on quantification of arterial (18)F-NaF uptake. RESULTS: NaFmax and TBRmax/mean were dependent on blood activity (β = .34 to .44, P

  15. Reduced PBR/TSPO Expression After Minocycline Treatment in a Rat Model of Focal Cerebral Ischemia: A PET Study Using [18F]DPA-714

    International Nuclear Information System (INIS)

    Martin, A.; Boisgard, R.; Tavitian, B.; Kassiou, M.; Dolle, F.

    2011-01-01

    Background: Many new candidate pharmaceuticals designed to improve recovery after stroke have been proposed recently, but there are still too few molecular imaging methods capable to assess their efficacy. A hallmark of the inflammatory reaction that follows focal cerebral ischemia is overexpression of the mitochondrial peripheral benzodiazepine receptor/18 kDa translocator protein (PBR/TSPO) in the monocytic lineage and astrocytes. This overexpression can be imaged with positron emission tomography (PET) using PBR/TSPO-selective radioligands such as [ 18 F]DPA-714. Purpose: Here, we tested whether PET with [ 18 F]DPA-714 would evidence the effect of minocycline, a broad spectrum antibiotic presently tested as neuro-protective agent after stroke, on the inflammatory reaction induced in an experimental model of stroke. Procedures: Ten rats were subjected to a 2-h transient middle cerebral artery occlusion with reperfusion. Minocycline or saline was intravenously administrated 1 h after reperfusion and daily during the following 6 days. PET studies were performed using [ 18 F]DPA-714 at 7 days after cerebral ischemia. Results: In vivo PET imaging showed a significant decrease in [ 18 F]DPA-714 uptake at 7 days after cerebral ischemia in rats treated with minocycline with respect to saline-treated animals. Minocycline treatment had no effect on the size of the infarcted area. Conclusion: Minocycline administered daily during 7 days after ischemia decreases [ 18 F]DPA- 714 binding, suggesting that the drug exerts an anti-inflammatory activity. [ 18 F]DPA-714 PET is a useful bio-marker to study novel anti-inflammatory strategies in experimental cerebral ischemia. (authors)

  16. [{sup 18}F]DPA-714 PET imaging of translocator protein TSPO (18 kDa) in the normal and excitotoxically-lesioned nonhuman primate brain

    Energy Technology Data Exchange (ETDEWEB)

    Lavisse, S.; Inoue, K.; Jan, C.; Petit, F.; Dauguet, J.; Guillermier, M.; Rbah-Vidal, L.; Van Camp, N.; Aron-Badin, R.; Hantraye, P. [CEA, I2BM, MIRCen, Fontenay-aux-Roses (France); CEA, CNRS, URA2210, Fontenay-aux-Roses (France); Peyronneau, M.A.; Goutal, S.; Dolle, F. [CEA, I2BM, Service Hospitalier Frederic Joliot, Orsay (France); Remy, P. [CEA, I2BM, MIRCen, Fontenay-aux-Roses (France); CEA, CNRS, URA2210, Fontenay-aux-Roses (France); Service de Neurologie, CHU Henri Mondor, Creteil (France)

    2014-12-09

    We aimed to characterize pharmacologically the TSPO- radioligand [{sup 18}F]DPA-714 in the brain of healthy cynomolgus monkeys and evaluate the cellular origin of its binding in a model of neurodegeneration induced by intrastriatal injection of quinolinic acid (QA). [{sup 18}F]DPA-714 PET images were acquired before and at 2, 7, 14, 21, 49, 70, 91 days after putaminal lesioning. Blocking and displacement studies were carried out (PK11195). Different modelling approaches estimated rate constants and V{sub T} (total distribution volume) which was used to measure longitudinal changes in the lesioned putamen. Sections for immunohistochemical labelling were prepared at the same time-points to evaluate correlations between in vivo [{sup 18}F]DPA-714 binding and microglial/astrocytic activation. [{sup 18}F]DPA-714 showed a widespread distribution with a higher signal in the thalamus and occipital cortex and lower binding in the cerebellum. TSPO was expressed throughout the whole brain and about 73 % of [{sup 18}F]DPA-714 binding was specific for TSPO in vivo. The one-tissue compartment model (1-TCM) provided good and reproducible estimates of V{sub T} and rate constants, and V{sub T} values from the 1-TCM and the Logan approach were highly correlated (r {sup 2} = 0.85). QA lesioning induced an increase in V{sub T}, which was +17 %, +54 %, +157 % and +39 % higher than baseline on days 7, 14, 21 and 91 after QA injection, respectively. Immunohistochemistry revealed an early microglial and a delayed astrocytic activation after QA injection. [{sup 18}F]DPA-714 binding matched TSPO immunopositive areas and showed a stronger colocalization with CD68 microglia than with GFAP-activated astrocytes. [{sup 18}F]DPA-714 binds to TSPO with high specificity in the primate brain under normal conditions and in the QA model. This tracer provides a sensitive tool for assessing neuroinflammation in the human brain. (orig.)

  17. Clinical relevance of F-18 FDG PET for imaging of neuroendocrine tumors; Wertigkeit der F-18-FDG-PET bei neuroendokrinen Tumoren

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S. [Klinikum der Ruhr-Univ. Bochum - Marienhospital, Herne (Germany). Klinik fuer Radiologie und Nuklearmedizin; Baum, R.P. [Zentralklinik Bad Berka (Germany). Klinik fuer Nuklearmedizin/PET-Zentrum; Hoer, G. [Frankfurt Univ., Frankfurt am Main (Germany). Klinik fuer Nuklearmedizin

    2001-04-01

    Neuroendocrine tumors are characterized immunocytochemically by the expression of different peptides and biogenic amines. Hormones induce their biological action by binding to and stimulating specific membrane-associated receptors for e.g. somatostatin. The presence of somatostatin receptors (SR) has been described mainly in endocrine glands and the central nervous system. Interestingly, a large variety of human tumors, including gastroenteropancreatic (GEP) tumors and medullary thyroid carcinomas (MTC) also express a high density of SR and can be imaged with [{sup 111}In-DTPA-D-Phe{sup 1}]-pentetreotide. Cell proliferative activity is an important indicator of the growth of various malignant tumors associated with a poorer prognosis and Ki-67 expression. {sup 18}F-FDG is a marker of tumor viability, based upon the increased glycolysis that is associated with malignancy as compared with normal tissue. SR-containing neuroendocrine tumors are well-differentiated and tend to grow slowly. Furthermore, these tumors demonstrate inverse relationship between in vivo SR expression, cell proliferation (low Ki-67 expression) and FDG uptake (normal biodistribution). In comparison, less differentiated tumors, e.g. atypical carcinoids or MTC with increasing CEA levels show mitotic activity (high levels of Ki-67 immunoreactivity and increased FDG uptake) and often lack of SR. In conclusion, SR scintigraphy has been shown to localize well-differentiated neuroendocrine tumors. In contrast, PET imaging is valuable for predicting malignancy only in less differentiated tumors with incresed glucose metabolism. Therefore, an additional F-18 FDG PET should be performed if SR scintigraphy (GEP tumors) or combined imaging using [{sup 111}In-DTPA-D-Phe{sup 1}]-pentetreotide and {sup 99m}Tc(V)-DMSA (MTC) is negative. (orig.) [German] Neuroendokrine Tumoren werden durch die spezifische Produktion von Polypeptidhormonen und biogenen Aminen klassifiziert. Die Informationsuebertragung der

  18. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine

    International Nuclear Information System (INIS)

    Becherer, Alexander; Karanikas, Georgios; Szabo, Monica; Zettinig, Georg; Wadsak, Wolfgang; Kletter, Kurt; Asenbaum, Susanne; Marosi, Christine; Henk, Christine; Wunderbaldinger, Patrick; Czech, Thomas

    2003-01-01

    Imaging of amino acid transport in brain tumours is more sensitive than fluorine-18 2-fluoro-deoxyglucose positron emission tomography (PET). The most frequently used tracer in this field is carbon-11 methionine (MET), which is unavailable for PET centres without a cyclotron because of its short half-life. The purpose of this study was to evaluate the performance of 3,4-dihydroxy-6-[ 18 F]fluoro-phenylalanine (FDOPA) in this setting, in comparison with MET. Twenty patients with known supratentorial brain lesions were referred for PET scans with FDOPA and MET. The diagnoses were 18 primary brain tumours, one metastasis and one non-neoplastic cerebral lesion. All 20 patients underwent PET with FDOPA (100 MBq, 20 min p.i.), and 19 of them also had PET scans with MET (800 MBq, 20 min p.i.). In all but one patient a histological diagnosis was available. In 15 subjects, histology was known from previous surgical interventions; in five of these patients, as well as in four previously untreated patients, histology was obtained after PET. In one untreated patient, confirmation of PET was possible solely by correlation with MRI; a histological diagnosis became available 10 months later. MET and FDOPA images matched in all patients and showed all lesions as hot spots with higher uptake than in the contralateral brain. Standardised uptake value ratios, tumour/contralateral side (mean±SD), were 2.05±0.91 for MET and 2.04±0.53 for FDOPA (NS). The benign lesion, which biopsy revealed to be a focal demyelination, was false positive, showing increased uptake of MET and FDOPA. We conclude that FDOPA is accurate as a surrogate for MET in imaging amino acid transport in malignant cerebral lesions for the purpose of visualisation of vital tumour tissue. It combines the good physical properties of 18 F with the pharmacological properties of MET and might therefore be a valuable PET radiopharmaceutical in brain tumour imaging. (orig.)

  19. 18F-FDG PET/CT in detection of gynecomastia in patients with hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Hsin-Yi; Jeng, Long-Bin; Lin, Ming-Chia; Chao, Chih-Hao; Lin, Wan-Yu; Kao, Chia-Hung

    2013-01-01

    We retrospectively investigate the prevalence of gynecomastia as false-positive 2-[18F]fluoro-2-deoxy-d-glucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) imaging in patients with hepatocellular carcinoma (HCC). Among the 127 male HCC patients who underwent 18F-FDG PET/CT scan, the 18FDG uptakes at the bilateral breasts in 9 patients with gynecomastia were recorded as standard uptake value (SUVmax) and the visual interpretation in both early and delayed images. The mean early SUVmax was 1.58/1.57 (right/left breast) in nine gynecomastia patients. The three patients with early visual score of 3 had higher early SUVmaxs. Gynecomastia is a possible cause of false-positive uptake on 18F-FDG PET/CT images. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Fluorine-18-labeling of polymerized nano-micelles for in vivo PET imaging

    International Nuclear Information System (INIS)

    Kuhnast, B.; Hinnen, F.; Mackiewicz, N.; Tavitian, B.; Duconge, F.; Dolle, F.; Gravel, E.; Doris, E.

    2011-01-01

    Complete text of publication follows: Objectives: One of the key issues in nano-medicine, and in particular in the field of cancer treatment and follow up, is the development of nano-particles able to improve the delivery of drugs or contrast agents. It is well established that passive targeting by nano-particles is favoured by specific features of tumors, a phenomena usually defined as the enhanced permeability and retention (EPR) effect. While several nano-particulate systems in the 70- 200 nm size range have been explored for cancer targeting by the EPR effect (liposomes, dendrimers, ceramic or metallic nano-particles, carbon nano-tubes...), recent studies suggested that particles of smaller sizes (≤ 30 nm) might better diffuse through blood vessel walls and reach deeper tumor tissues. Recently, a novel series of small-sized (diameter of ca. 10 nm) and highly stable (polymerized) micelles were designed as drug nano-carriers. For in vivo 3D-imaging purposes, these micelles were provided with a sulfhydryl function permitting prosthetic conjugation with maleimide-based reagents such as AlexaFluor680 R (AF680) for optical fluorescence imaging and [ 18 F]FPyME (1-[3-(2-[ 18 F]fluoropyridin-3-yloxy)propyl]pyrrole-2, 5-dione), a prosthetic reagent labeled with the positron-emitter fluorine-18 for PET imaging, which latter work is presented herein. Methods: nano-micelles were synthesized using standard already reported procedures and comprise a defined molar ratio of functionalized diacetylene-containing poly(ethyleneglycol) (PEG-2000) lipids (pentacosa-10, 12- diyn-1-oxy-penta-tetraconta-ethylene-glycols). Preparation includes polymerization of the diacetylene functions borne by the C-25 lipophilic chains upon UV-irradiation at 254 nm via a topochemical 1, 4-addition mechanism. [ 18 F]FPyME was conjugated with the micelles in a 1/9 (v:v) mixture (1 mL) of DMSO and 0.1 M aq. PBS (pH 7.5) at room temperature for 15 min. The conjugated micelles were then separated from